WO2011118184A1 - 電流から発生する磁界を検知して電流量を推定する方法 - Google Patents

電流から発生する磁界を検知して電流量を推定する方法 Download PDF

Info

Publication number
WO2011118184A1
WO2011118184A1 PCT/JP2011/001625 JP2011001625W WO2011118184A1 WO 2011118184 A1 WO2011118184 A1 WO 2011118184A1 JP 2011001625 W JP2011001625 W JP 2011001625W WO 2011118184 A1 WO2011118184 A1 WO 2011118184A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
magnetic
axis
magnetic sensing
magnetic field
Prior art date
Application number
PCT/JP2011/001625
Other languages
English (en)
French (fr)
Inventor
川瀬 正博
Original Assignee
キヤノン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン電子株式会社 filed Critical キヤノン電子株式会社
Priority to EP11758995.2A priority Critical patent/EP2562550B1/en
Priority to JP2012506818A priority patent/JP5616431B2/ja
Priority to CN201180016327.2A priority patent/CN102822685B/zh
Publication of WO2011118184A1 publication Critical patent/WO2011118184A1/ja
Priority to US13/604,022 priority patent/US9746497B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • G01R15/148Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop involving the measuring of a magnetic field or electric field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Definitions

  • the present invention relates to a current measuring method and a current measuring device for obtaining the current amount of a current to be measured by detecting a magnetic field in the vicinity of a primary conductor through which the current to be measured flows.
  • a current sensor In the measurement of current, a current sensor has conventionally been proposed which detects the circulating magnetic field of the current to be measured with a sensitive magnetic detection element in the vicinity of the primary conductor to which the current to be measured is applied.
  • a small-sized current sensor is configured to detect a circulating magnetic field by a current flowing in a primary conductor by one high sensitivity magnetic detection element (MI element). It is disclosed.
  • a method and an amperometric device are provided.
  • a direction change area for changing the flow direction of the current to be measured from the main direction to another direction is provided in a part of the conductor through which the current to be measured flows. Furthermore, at least one magnetic sensing element is arranged relative to the conductor. A magnetic field generated by the measured current whose direction of flow is changed by the direction change area is detected by the magnetic detection element. The amount of current to be measured is estimated from the output of the magnetic sensing element.
  • FIG. 1 is a block diagram of a first embodiment. It is explanatory drawing of the mode of the electric current in a primary conductor, and a magnetic field. It is sectional drawing of the relationship between a primary conductor and a magnetic sensing element. It is a block diagram of a detection circuit. It is a distribution contour map of the Y-axis direction magnetic field component which used the through-hole of diameter 2mm. It is a distribution contour map of the Y-axis direction magnetic field component which used the through-hole of diameter 3mm.
  • FIG. 7 is a block diagram of a second embodiment. It is a characteristic view of a magnetic impedance element. It is a graph of a detection current and a measurement error. It is a block diagram of a modification.
  • FIG. 14 is a perspective view of the basic configuration of the current sensor of the third embodiment.
  • FIG. 14 is a configuration diagram of Example 4; It is a block diagram of a modification. It is a block diagram of another modification.
  • FIG. 16 is a configuration diagram of Example 5; It is a block diagram of a modification.
  • FIG. 21 is a perspective view of the basic configuration of the current sensor of the sixth embodiment. It is explanatory drawing of the mode of the magnetic field with the electric current in a primary conductor. It is sectional drawing of the relationship between a primary conductor and a magnetic sensing element.
  • FIG. 20 is a configuration diagram of Example 7; It is a related view of the position of the entrance of an electric current, and a Y-axis direction magnetic field component (fixed point).
  • FIG. 18 is a configuration diagram of Example 8; It is a graph of the relationship between the measurement current at the time of changing the width of the entrance and the output. It is a block diagram of a modification.
  • the present invention will be described in detail based on the illustrated embodiments.
  • the present invention has one feature in providing a direction change area for changing the flow direction of the current to be measured from the main direction to another direction in a part of the conductor through which the current to be measured flows. Furthermore, the present invention is characterized in that the magnetic detection element detects a magnetic field generated by the measured current whose direction of flow is changed by the direction change area.
  • FIG. 1 is a basic configuration diagram of Embodiment 1 in which current measurement for a measured current is performed.
  • a current to be measured I to be detected flows through the primary conductor 1, and the primary conductor 1 is in the form of, for example, a copper foil pattern on a printed circuit board or a bus bar formed of a copper plate.
  • a circular through hole 2 which is a non-conductive area, in order to partially interrupt the current, so that part of the measured current I is shown in FIG.
  • a bypass current Ia that wraps around the outside symmetrically.
  • a coordinate axis is set to the primary conductor 1 and the center of the through hole 2 is the origin O, the main direction in which the measured current I flows is Y axis, the width direction which is the orthogonal axis is X axis, thickness Let the direction be the Z axis.
  • a magnetic sensing element 3 having a magnetic field sensing sensitivity in only one direction is disposed on the primary conductor 1.
  • the detection unit 4 of the magnetic detection element 3 is such that the Y-axis direction is the magnetic field detection direction, and the center position of the detection unit 4 is the distance dx in the X-axis direction from the center of the through hole 2 and the X-axis in the Y-axis direction It is arranged at the place which shifted the distance dy across.
  • the magnetic flux generated by the current is directed in the direction orthogonal to the current direction, so the measured current I flows in the Y-axis direction which is the main direction, at a location where the through hole 2 of the primary conductor 1 is not affected. Accordingly, as in the magnetic field vector component Hc0 shown in FIG. 2, the magnetic field has only the vector component Hx in the X-axis direction within the width w of the primary conductor 1.
  • the bypass current Ia is inclined in the Y-axis direction, so that the magnetic field vector component Hc1 in which the magnetic field is distorted on both sides of the through hole 2 is generated by the bypass current Ia. That is, in the inclined portion of the bypass current Ia, a vector component Hy in the Y-axis direction and a vector component Hx in the X-axis direction are generated.
  • the vector sum of the vector component Hy and the vector component Hx is proportional to the magnitude of the current I to be measured, and the current direction is symmetrical on both the positive and negative sides of the Y axis of the through hole 2 so that the vector component Hy is symmetrical about the X axis.
  • the polarity is reversed.
  • the magnetic field vector component by the proximity current I ' is X It is a component only in the axial direction and does not have a component in the Y-axis direction.
  • the magnetic detection element 3 does not receive interference by the magnetic field due to the proximity current I ′, and can detect only the vector component Hy of the bypass current Ia. Therefore, if the vector component Hy is calibrated and converted, the current amount of the measured current I can be obtained.
  • the magnetic impedance element can be used to detect a magnetic field only in the Y-axis direction.
  • a pattern of a magnetic thin film is arranged in parallel in the Y axis direction of the magnetic field detection direction as a detection unit 4 by zigzag and a high frequency pulse of MHz band is applied to the electrodes 5 at both ends, voltage amplitude change from both ends of the detection unit 4 due to a change of magnetic field Is obtained as a sensor signal.
  • illustration is omitted, some of the operations of the detection unit 4 require a bias magnetic field, and if necessary, installation of a bias magnet or winding of a bias coil is carried out and current is set to flow.
  • the height h of the detection portion 4 of the magnetic sensing element 3 with respect to the primary conductor 1 is the space and clearance necessary for the structure for maintaining the positional relationship between the primary conductor 1 and the magnetic sensing element 3 It is decided by the relation of the dielectric breakdown voltage such as distance.
  • FIG. 4 shows a configuration diagram of the detection circuit 100 functioning as a current measurement device.
  • the detection unit 4 of the magnetic detection element 3 is connected to a resistor R that forms a bridge for the CR pulse oscillation circuit 30.
  • the detection circuit 31 takes out the amplitude change from the both-end voltage which is a detection signal of the detection unit 4 and outputs the amplitude change to the amplification circuit 32.
  • the amplification circuit 32 amplifies and outputs the amplitude change.
  • the estimation circuit 33 is a circuit that estimates the amount of current to be measured from the output of the amplification circuit 32.
  • the through hole 2 is pierced.
  • the detection unit 4 was fixed at a height h of 1.6 mm from the primary conductor 1 and the change of the magnetic field vector component Hy in the Y-axis direction when the measured current I was supplied by 1 ampere (A) in the Y-axis direction was examined. .
  • FIG. 5 shows the calculation results of the magnetic field distribution of the vector component Hy of the magnetic field in the Y-axis direction in the case of 3 mm when the through hole is 2 mm, and shows the distribution of contour lines.
  • the coordinates are drawn in 10% increments with the vertex of the vector component Hy being 100% in the first quadrant of X ⁇ ⁇ ⁇ ⁇ 0 and Y ⁇ 0.
  • a magnetic field distribution symmetrical to the X axis or Y axis is formed, the third quadrant has the same polarity as the first quadrant, and the second and fourth quadrants have magnetic fields of the opposite polarity to the first quadrant.
  • the peak position where the magnetic field is maximum is in the direction of about 45 degrees from the through hole 2.
  • (X, Y) (1.5 mm, 1.625 mm), 3 mm
  • In the through hole 2 of (x, Y) (1.75 mm, 1.75 mm).
  • FIG. 7 is a graph of the relationship between the diameter of the through hole 2 and the peak position of the magnetic field vector component Hy in the Y-axis direction.
  • illustration is abbreviate
  • the diameter of the through hole 2 hardly depends on the position of the peak portion.
  • the peak range of vector component Hy is about 1 to 2 mm in both X and Y directions in the practical use range of primary conductor 1 It can be said that
  • the 90% range 10% down from the peak position is a circle with a radius of about 0.5 mm, so in design the distances dx and dy in Figure 1 are both 0.5 to 2.5 mm.
  • the detection unit 4 of the magnetic detection element 3 may be placed in this range.
  • FIG. 8 is a graph of the diameter of the through hole 2 of the primary conductor 1 and the peak value of the vector component Hy in the Y-axis direction, and the vector component Hy increases quadratically as the diameter increases.
  • the magnetic sensing element 3 is provided in the first quadrant on the XY plane, but may be arranged in other quadrants as a matter of course because of symmetry.
  • FIG. 9 shows a modification, in which through holes 2 ′ are provided at 45 degrees with respect to the X axis direction from the origin O with the through holes 2 and the magnetic detection element 3 is disposed at an intermediate position thereof
  • the effect of the bypass current Ia due to the holes 2 and 2 ' is overlapped to increase the magnetic field of the Y-axis direction component to increase the sensitivity.
  • the two through holes 2 and 2 'do not have to have the same size, and the number of the through holes 2 can be further increased, and the angular position to be installed may be designed according to the detection specification of the current.
  • a nonconductive region can be formed to cope with large and small currents.
  • a bypass current can also be generated by providing a notch 8 at the end in the width direction of the primary conductor 1. This configuration is preferable when it is desired to suppress the magnetic field due to the bypass current by the large current.
  • the notch hole 8 it is possible to make the notch hole 8 deeper, concentrate the bypass current, enlarge the magnetic field of the Y-axis direction component, and correspond to the small current. Furthermore, as shown in FIG. 12, by providing the notch hole 8 also from the end from the opposite side, the bypass current can be further increased to cope with a smaller current.
  • FIG. 13 is a block diagram of the second embodiment.
  • a primary conductor 12 consisting of a copper pattern having a width of 10 mm in the X-axis direction, a thickness of 70 ⁇ m in the Z-axis direction, and a 50 mm longitudinal direction in the Y-axis direction. It is provided. Then, a through hole 13 having a diameter of, for example, 2 mm is formed by etching at the center of the primary conductor 12 in the X-axis direction.
  • an integrated magnetic detection unit 14 is disposed at the same position as in FIG. 1, and electrodes 15 a to 15 b for soldering are drawn out on the sensor substrate 11.
  • a magnetic impedance element is used for the magnetic detection unit 14, and the detection portions 16 made of Fe--Ta--C-based magnetic thin film are, for example, eleven long and thin strips 18 .mu.m wide, 2.65 .mu.m thick and 1.2 mm long.
  • the patterns are arranged in parallel.
  • the magnetic field detection direction of the detection part 16 is made only to the Y-axis direction.
  • a plurality of magnetic thin film patterns of the detection unit 16 are electrically connected in series in a zigzag manner although not shown, and both ends thereof are connected to the respective electrodes, and soldered to the electrodes 15a and 15b on the sensor substrate 11 It is joined and connected to a sensor circuit (not shown).
  • a high frequency pulse is applied by the flow of the electrodes 15 a ⁇ 15 b.
  • the magnetic thin film of the magnetic detection unit 14 is provided with an easy magnetization axis in the width direction of the X-axis direction, and when a high frequency pulse is applied to the pattern of the magnetic thin film, the impedance is changed by the external magnetic field.
  • the voltage across 14 is converted into a sensor signal by amplitude detection.
  • the magnetic fields from the adjacent parallel current lines are in the X-axis or Z-axis direction, and effectively having no component in the Y-axis direction and that the magneto-impedance element has no sensitivity in the X-axis direction, It has been confirmed that the influence of the magnetic field due to the adjacent current is at a level that does not pose a problem.
  • the magnetic detection unit 14 exhibits the characteristic of the V-shaped impedance change with respect to the magnetic field as shown in FIG. 14 in the 5 V pulse drive of 5 V, and utilizes the location of the slope with high sensitivity.
  • a bias magnet 17 is disposed on the back of the magnetic detection unit 14 so that a bias magnetic field of about 10 gauss (G) is applied to the detection unit 16.
  • G gauss
  • a good range of linearity is about ⁇ 3 Gauss (G) across the bias operating point.
  • FIG. 15 shows data obtained by measuring a current by applying an AC current (50 Hz) to the primary conductor 1 variably from 0.1 to 40 Arms.
  • 10Arms is a sine wave of 28.28App, and the magnetic field at that time becomes 724 mGpp from the simulation result.
  • FIG. 15 shows the error between the ideal value and the actual value based on this 10 Arms, and the upper limit is set to 40 Arms since adjustment is made to 1 Vpp at 10 Arms with a 5 V power supply. As an accuracy, an error within ⁇ 1% is guaranteed over 0.2Arms.
  • the diameter of the through hole 13 is 2 mm and the linear range of the magnetic detection unit 14 has a characteristic of 6 gauss (G), it exceeds 80 Arms.
  • G 6 gauss
  • the magnetic field applied to the magnetic detection unit 14 becomes 1/3 by simply setting the diameter of the through hole 13 to 1 mm, and a large current such as 270Arms becomes possible with the same layout. Also, conversely, the specification of the small current can be coped with simply by enlarging the through hole 13.
  • the primary conductor 12 is disposed on the sensor substrate 11.
  • the configuration of FIG. 13 excluding the primary conductor 12 can be modularized on the sensor substrate 20.
  • Reference numeral 22 denotes a circuit element provided on the sensor substrate 20, and reference numeral 23 denotes a signal line for extracting a signal of the magnetic detection unit 14.
  • the magnetic detection unit 14 can be modularized and assembled to the bus bar 19 easily.
  • the non-conductive region including the through hole and the notch hole is provided to divert the current.
  • the current may be diverted by arranging the insulating material instead of the hole. .
  • Example 3 According to Japanese Patent Application Laid-Open No. 2006-184269, a proposal has been made to avoid a disturbance magnetic field by differential detection by using two magnetic detection elements.
  • an opening is formed in the central portion of the bus bar as a primary conductor to measure the current Is divided.
  • the magnetic detection elements are disposed in the opening so that the magnetic fields from the current are in opposite phases in the vicinity of the two conductor portions, respectively, and only the magnetic field generated from the bus bar is detected by differential amplification.
  • FIG. 17 is a block diagram of a basic current sensor according to a third embodiment of the present invention which measures the current to be measured.
  • a current to be measured I to be detected flows through the primary conductor 1, and the primary conductor 1 is in the form of, for example, a copper foil pattern on a printed circuit board or a bus bar formed of a copper plate.
  • a circular through hole 2 which is a non-conductive area is provided to partially interrupt the current, so that part of the measured current I is as shown in FIG.
  • the bypass current Ia is provided so as to wrap around the outside symmetrically on both sides of the through hole 2.
  • a coordinate axis is set to the primary conductor 1 and the center of the through hole 2 is the origin O, the main direction in which the measured current I flows is Y axis, the width direction which is the orthogonal axis is X axis, thickness Let the direction be the Z axis.
  • two magnetic sensing elements 3a and 3b are arranged in series in the Y-axis direction to perform differential sensing.
  • the detection units 4a and 4b of the magnetic detection elements 3a and 3b are arranged such that the Y-axis direction is the magnetic field detection direction, and the center position of the detection units 4a and 4b is a distance dx and Y in the X-axis direction from the center of the through hole 2. In the axial direction, it is disposed at a position shifted by a distance dy across the X axis. As shown in FIG.
  • the influence of the magnetic field by the magnetic flux F of the adjacent current I ' It becomes a vector component in the X-axis direction and has no Y-axis component.
  • the magnetic detection elements 3a and 3b do not receive interference from the magnetic field due to the proximity current I 'and can detect only the vector component Hy of the measured current I. Therefore, if the vector component Hy is calibrated and converted, the current amount of the measured current I can be obtained.
  • Magnetic thin film patterns are arranged in parallel in the Y axis direction of the magnetic field detection direction as detection parts 4a and 4b by twisting, high frequency pulses of MHz band are applied to electrodes 5 at both ends, and from both ends of detection parts 4a and 4b Voltage amplitude change is obtained as a sensor signal.
  • the height h of the detecting portions 4a and 4b of the magnetic detecting elements 3a and 3b with respect to the primary conductor 1 is necessary for the structure for maintaining the positional relationship between the primary conductor 1 and the magnetic detecting elements 3a and 3b. It is determined by the relationship between the insulation breakdown voltage such as space and clearance distance and creeping distance.
  • FIG. 20 shows the configuration of the detection circuit.
  • the detection units 4a and 4b of the magnetic detection elements 3a and 3b are connected to the resistor R forming a bridge with respect to the CR pulse oscillation circuit 30. After the amplitude change from the voltage across the detection units 4a and 4b is taken out by the detection circuit 31, differential amplification is performed on the outputs of the detection units 4a and 4b by the differential amplification circuit 32, and the output as a current sensor is obtained. obtain.
  • the outputs of the detection units 4a and 4b have the same sensitivity and the same absolute value if they are at symmetrical positions across the X axis, and the polarities are different. It is twice the absolute value of the part 4a or 4b.
  • the external magnetic field noise is in phase in the narrow range of the detection units 4a and 4b, and differentially capturing the outputs of the detection units 4a and 4b cancels the magnetic field noise and is superimposed on the output of the current sensor There is no possibility that only the vector component Hy of the bypass current will be measured.
  • at least two sensing units may be used. Note that, as apparent from comparison between FIG. 20 and FIG.
  • the four resistors forming the bridge circuit are replaced with the detection unit. For example, if three detectors are employed, three of the four resistors are replaced with detectors. Furthermore, if four detectors are employed, all the resistors will be replaced by the detectors.
  • the magnetic sensing elements 3a and 3b are respectively provided in the first and fourth quadrants on the XY plane, but may be disposed adjacent to other quadrants as a matter of course from the symmetry.
  • FIG. 21 shows a modification in this case, in which the magnetic sensing element 3a is provided in the first quadrant, the magnetic sensing element 3b is provided in the second quadrant, and similar results are obtained even when arranged symmetrically with respect to the Y axis.
  • Be A magnetic field vector component Hc1 due to the bypass current Ia is also targeted with respect to the Y axis in the first quadrant and the second quadrant. Therefore, the magnetic sensing elements 3a and 3b are disposed in the first quadrant and the second quadrant, respectively, and vector components Hy in the Y-axis direction with equal absolute values and opposite polarities can be sensed.
  • the influence of the adjacent and parallel current lines is slightly affected, almost the magnetic field noise can be offset by the differential detection because the distance between the magnetic detection elements 3 is narrow.
  • Example 4 When it is necessary to manage the detection magnetic field range within a certain range in terms of magnetic saturation and linearity, such as a magnetic impedance element which is a magnetic detection element, an orthogonal flux gate sensor, etc. It is preferable that the measurement range can be adjusted only by the diameter of the through hole 2.
  • FIG. 22 is a block diagram of the current sensor of the fourth embodiment. Since the distance between the detection parts 4a and 4b of the magnetic detection elements 3 and 4 in FIG. 17 is short, a magnetic detection unit in which the magnetic detection elements 3a and 3b symmetrically disposed about the X axis are integrally mounted on the same element substrate 6 It is assumed that the variation in performance can be suppressed.
  • the detour current can also be used by providing the cutout hole 8 at the end in the width direction in an idea that only the positive region of the X axis of the primary conductor 1 is used.
  • This notch hole 8 also enables measurement as in the case where the through hole 2 is provided as shown in FIG. In order to make the bypass current flow symmetrically with respect to the X axis, it is necessary for the cutout hole 8 to be symmetrical with respect to the X axis.
  • FIG. 24 is a block diagram of another modification.
  • the detection units 4a, 4b, 4c, and 4d are disposed in the first, second, third, and fourth quadrants, respectively, and a bridge is formed by four elements.
  • the S / N can be further improved.
  • the detection units 4a to 4d are arranged on both sides of the through hole 2 symmetrically with respect to the X axis and the Y axis, the vector component Hy is symmetrical with respect to the X axis and the Y axis.
  • differential detection of the outputs of the detectors 4a and 4d with respect to the X axis, differential detection of the detectors 4b and 4c, differential detection of the detectors 4a and 4b with respect to the Y axis, differential detection of the detectors 4d and 4c It can be performed simultaneously, and if the average of these detection results is obtained, the measurement accuracy is further improved.
  • FIG. 25 is a block diagram of the current sensor of the third embodiment.
  • a primary conductor 12 consisting of a copper pattern with a width of 10 mm in the X-axis direction, a thickness of 70 ⁇ m in the Z-axis direction, and a longitudinal direction of 50 mm in the Y-axis direction is provided on one side of a 1.6 mm thick glass epoxy material sensor substrate 11 ing.
  • a through hole 13 with a diameter of 2 mm is formed by etching at the center of the primary conductor 12 in the X-axis direction.
  • An integrated magnetic detection unit 14 is disposed on the other surface of the sensor substrate 11 at the same position as in FIG. 22, and electrodes 15 a to 15 c for soldering are drawn out on the sensor substrate 11.
  • Magnetic impedance elements are used for the magnetic detection unit 14, and the detection portions 16a and 16b made of Fe--Ta--C-based magnetic thin film are 11 long strips each having a width of 18 ⁇ m, a thickness of 2.65 ⁇ m, and a length of 1.2 mm. The patterns of are arranged in parallel. And the magnetic field detection direction of detection part 16a, 16b is made into the Y-axis direction.
  • dx 1.5 mm in the X-axis direction
  • dy 3 mm.
  • a plurality of magnetic thin film patterns of the detection units 16a and 16b are electrically connected in series in a zigzag manner although not shown, and both ends thereof are connected to the respective electrodes, and the electrodes 15a to 15c on the sensor substrate 11 Are solder-bonded to each other and connected to a sensor circuit (not shown).
  • a high frequency pulse is applied by the flow of the electrodes 15 a ⁇ 15 c and the electrodes 15 b ⁇ 15 c drawn to the sensor substrate 11.
  • the magnetic detection unit 14 is provided with a magnetization easy axis in the width direction of the X-axis direction, and by applying high frequency pulses to the pattern of the magnetic thin film, the impedance is changed by the external magnetic field, and the voltage across the magnetic detection unit 14 Converted to a sensor signal by amplitude detection.
  • copper rods 18 with a diameter of 2 mm are arranged in parallel at a distance of 10 mm from the primary conductor 12 and a 50 Hz current I 'of 10Arms flows to The conductor 12 was measured under the condition that no current flowed. Then, in the magnetic detection unit 14, the influence of the current I 'flowing through the copper rod 18 was not observed, and was below the noise level (10 mVpp or less).
  • the magnetic field from the adjacent parallel current line is in the X or Z axis direction, and there is no component in the Y axis direction, and the distance between the detection units 16a and 16b and the adjacent copper rod 18 is equal to the differential removal function It was confirmed that the effect of the magnetic field was almost completely eliminated.
  • the primary conductor 12 is disposed on the sensor substrate 11.
  • the one in which the primary conductor 12 is removed from the form of FIG. 25 can be modularized on the sensor substrate 20.
  • Reference numeral 22 denotes a circuit element provided on the sensor substrate 20, and reference numeral 23 denotes a signal line for extracting a signal of the magnetic detection unit 14.
  • the magnetic detection unit 14 can be modularized and assembled to the bus bar 19 easily.
  • the non-conductive region including the through hole and the notch hole is provided to divert the current.
  • the current may be diverted by arranging the insulating material instead of the hole. .
  • these non-conductive areas need to be symmetrical in shape on both sides with respect to the X axis.
  • Example 6 the nonconductive region was adopted as the direction change region.
  • the first to fifth embodiments are inventions of detecting a distorted magnetic field generated by current flowing around a nonconductive region and estimating the amount of current from the detected magnetic field.
  • a common concept in the first to fifth embodiments is to provide the primary conductor with a region that promotes non-linear current flow. That is, as long as the direction of current flow can be bent, the non-conductive region is not necessarily required.
  • the sixth embodiment another example of the direction change area will be described.
  • FIG. 27 is a block diagram of a basic current sensor according to a sixth embodiment which measures the current to be measured.
  • a measured current I to be detected flows through the primary conductor 1.
  • the form of the primary conductor 1 is, for example, a form such as a copper foil pattern on a printed circuit board or a bus bar formed of a copper plate.
  • the part (main part) which makes the detection object of a magnetic field among the primary conductors 1 is a rectangular part formed in length L and width W0.
  • an inlet 9a and an outlet 9b of widths W1 and W2 are formed at the rear and front, respectively, where current flows.
  • the widths W1 and W2 are both narrower than the width W0.
  • the inlet 9a and the outlet 9b are placed at the center of the width W0. Coordinate axes are set on the primary conductor 1.
  • the center of the magnetic detection unit is set as the origin O. As shown in FIGS.
  • a line connecting the inlet 9a and the outlet 9b is an intersection point of a straight line dividing the width W0 of the magnetic detection unit into two and a straight line dividing the length L of the magnetic detection unit into two. Is the origin O.
  • the main direction in which the current to be measured I flows is taken as the Y axis
  • the width direction which is the orthogonal axis is taken as the X axis
  • the thickness direction is taken as the Z axis.
  • two magnetic sensing elements 3a and 3b are arranged in series in the Y-axis direction to perform differential sensing.
  • the number of the magnetic detection elements may be one.
  • the configurations of the magnetic detection elements 3a and 3b are the same as in the first to fifth embodiments.
  • the magnetic detection elements 3a and 3b are disposed such that the Y axis direction of the detection units 4a and 4b of the magnetic detection elements 3a and 3b is the magnetic field detection direction.
  • the central positions of the detection units 4a and 4b are arranged at a distance dx in the X-axis direction from the center of the origin O, and at positions shifted by distances dy1 and dy2 across the X-axis in the Y-axis direction.
  • the magnetic flux generated by the current is in the direction orthogonal to the current direction. Therefore, a magnetic field HC1 having only a vector component Hx in the X-axis direction can be formed at a portion where there is no current component facing the width direction of the primary conductor 1, that is, on the X axis passing the origin O.
  • the current at a position deviated in the front-rear direction through which the current flows from the origin O has a current component that flows obliquely to the Y-axis direction toward the inlet 9a and the outlet 9b.
  • a vector component Hy in the Y-axis direction is generated, and the magnetic field meanders like Hc2 and Hc3.
  • the magnetic fields of Hc2 and Hc3 are axisymmetric with respect to the X axis.
  • the vector component Hy has the opposite polarity across the X axis.
  • the influence of the magnetic field by the adjacent current I ' is the X axis direction And has no Y-axis direction component.
  • the magnetic detection elements 3a and 3b do not receive interference from the magnetic field due to the proximity current I 'and can detect only the vector component Hy of the measured current I. Therefore, if the vector component Hy is calibrated and converted, the current amount of the measured current I can be obtained.
  • the magnetic detection elements 3a and 3b detect the magnetic field vector component Hx in the X-axis direction, the estimation accuracy of the current decreases. Therefore, as the magnetic detection elements 3a and 3b, for example, there are a magnetic impedance element having high directivity and an orthogonal flux gate element. In the sixth embodiment, magnetic impedance elements are used as the magnetic detection elements 3a and 3b.
  • the patterns of magnetic thin films as the detection units 4a and 4b are arranged in parallel in a Y-axis direction of the magnetic field detection direction by means of serpentine folding.
  • a high frequency pulse of MHz band is applied to the electrodes 5 at both ends, and a voltage amplitude change from both ends of the detection units 4a and 4b due to a change of the magnetic field is obtained as a sensor signal.
  • a bias magnetic field is required, although not shown, it is applied by a magnet or wound coil close to the magnetic detection elements 3a and 3b.
  • the height h of the detection parts 4a and 4b of the magnetic detection elements 3a and 3b with respect to the primary conductor 1 is, for example, the magnitude adjustment of the generated magnetic field, the positions of the primary conductor 1 and the magnetic detection elements 3a and 3b It is determined by the relationship of insulation withstand voltage such as space, space distance, and creepage distance necessary for the structure that holds the relationship.
  • the circuit configuration shown in FIG. 20 can be adopted as the configuration of the detection circuit 100 functioning as a current detection device. This is because the basic part of the current detection device of the present invention can be used as it is even if the specific configuration of the area change area changing the direction of current flow changes.
  • FIGS. 30A to 30D and FIG. 31 show the results of simulation of the magnetic field component Hy in the Y-axis direction related to the diffusion current from the narrow entrance.
  • the primary conductor 1 has a width W0 of 8 mm in the X-axis direction and a thickness t of 0.8 mm in the Z-axis direction.
  • the coordinates are drawn in 10% increments with the vertex of the vector component Hy being 100% in the first quadrant of X ⁇ ⁇ ⁇ ⁇ 0 and Y ⁇ 0.
  • a magnetic field distribution symmetrical to the X axis or Y axis is formed, the third quadrant has the same polarity as the first quadrant, and the second and fourth quadrants have magnetic fields of the opposite polarity to the first quadrant.
  • the peak position P does not substantially change in the Y direction at 2.5 mm, and the X direction moves gently from 1.7 mm to 2.15 mm as the width of the entrance becomes wider.
  • L be the distance from the entrance in the Y direction.
  • the practical dimension of the distance L is determined in consideration of the fact that the peak can be clearly formed and does not interfere with the adjacent peak in the opposite phase. For example, the distance L should be 5 mm or more, four times 1.25 mm.
  • FIG. 31 is a graph showing the magnetic field Hy at the peak position.
  • a magnetic field of 0.08 gauss per 1 A is generated Recognize.
  • a magnetic detection element capable of detecting milligauss or less, even a small target current of 1 A or less can be detected with a sufficient S / N by placing it at a peak position.
  • the widths W1 and W2 of the inlet 9a and the outlet 9b are increased, the current component spreading in the width direction is reduced, and the magnetic field Hy is rapidly reduced.
  • the widths W1 and W2 may be expanded.
  • Such characteristics are extremely convenient for an element such as a magnetic impedance element or an orthogonal flux gate sensor, which needs to manage the detection magnetic field range within a certain range in terms of magnetic saturation and linearity. .
  • productivity it is possible to cope with various current specifications by preparing several types of devices with different positions of the entrance of the primary conductor while fixing the position of the element, which greatly contributes to the cost reduction of the current sensor. I will.
  • the magnetic detection elements 3a and 3b are respectively provided in the first and fourth quadrants on the XY plane. However, as a matter of symmetry, they can be arranged adjacent to other quadrants.
  • FIG. 32 the example in which the magnetic detection element 3a is disposed in the first quadrant and the magnetic detection element 3b is disposed in the second quadrant is erased.
  • FIG. 33 shows an example in which magnetic sensing elements are provided in all quadrants.
  • the sensing portions 4a, 4b, 4c and 4d are disposed in the first, second, third and fourth quadrants, respectively.
  • the S / N of the detection circuit 100 can be improved.
  • the detection units 4a to 4d are arranged symmetrically on the X axis and the Y axis on both sides of the two origin O, the vector component Hy is symmetrical on the X axis and the Y axis.
  • differential detection of the outputs of the detectors 4a and 4d with respect to the X axis, differential detection of the detectors 4b and 4c, differential detection of the detectors 4a and 4b with respect to the Y axis, differential detection of the detectors 4d and 4c It can be performed simultaneously, and if the average of these detection results is obtained, the measurement accuracy is further improved.
  • the primary conductor 1 can be differentially operated by symmetrically installing the elements whose sensitivity is adjusted to the X axis or Y axis.
  • the output due to the magnetic field from x will be doubled, and the in-phase external magnetic field will be cancelled.
  • FIG. 34 shows a modification. If the width of the conductor to the inlet 9a or the width of the conductor after the outlet 9b is too thin, the problem of heat generation may occur when a large current is applied. Therefore, as shown in FIG. 34, by restricting the current inlet / outlet with the slit grooves 7a, 7b, 7c and 7d, it is possible to suppress heat generation itself and to improve heat diffusion. From FIG. 34, it can be understood that the aforementioned main portion, the inlet 9a and the outlet 9b are formed by inserting the slit grooves 7a, 7b, 7c and 7d into the primary conductor 1.
  • Example 7 In the sixth embodiment, if the detection parts 4a and 4b of the magnetic detection elements 3a and 3b are placed near (2, 2.5) and (2, -2.5) respectively at the coordinate position, the inlet 9a and the outlet 9b are obtained. It has been shown that the specification of the current to be measured can be coped with only by changing the widths W1 and W2. Alternatively, the arrangement positions of the inlet 9 a and the outlet 9 b may be offset in the width direction of the primary conductor 1. The layout is shown in FIG. In the layout of FIG. 28, the inlet 9a and the outlet 9b are shifted by dw in the width direction. As a result, since the spread of the current changes, it is possible to change the direction of the magnetic field at the position where the detection units 4a and 4b of the magnetic detection elements 3a and 3b are arranged.
  • FIG. 36 shows the results of simulation of the magnetic field component Hy in the Y-axis direction for the seventh example.
  • the width W0 of the primary conductor 1 in the X-axis direction is 8 mm, and the thickness t in the Z-axis direction is 0.8 mm.
  • the inlet 9a and the outlet 9b have widths W1 and W2 of 1.2 mm.
  • the length L in the Y-axis direction of the primary conductor 1 which is the magnetic detection portion is 7.5 mm.
  • the offset amount dw 0.
  • the magnetic field of the magnetic field component Hy in the direction in which the current mainly flows is, as shown in FIG.
  • the offset amount is positive
  • the magnetic field is rapidly reduced to the opposite polarity. Therefore, the magnetic field component Hy can be largely adjusted in a region where the offset amount is positive.
  • FIG. 37 is a block diagram of the current sensor of the eighth embodiment.
  • the sensor substrate 11 is a glass epoxy material and has a thickness of 1.6 mm.
  • a primary conductor 12 is provided on one side of the sensor substrate 11.
  • the primary conductor 12 is a copper pattern having a width of 8 mm in the X-axis direction, a length of 7.5 mm in the Y-axis direction, and a thickness of 70 ⁇ m in the Z-axis direction.
  • the origin O of the X and Y axes is set at the center of the primary conductor 12.
  • a magnetic detection unit 14 in which two magnetic detection elements are integrated is disposed. From the magnetic detection unit 14, electrodes 15 a to 15 c for soldering are drawn out on the sensor substrate 11.
  • a magnetic impedance element is used for the magnetic detection unit 14.
  • the detection portions 16a and 16b made of Fe--Ta--C magnetic thin films are each formed by 11 elongated patterns arranged in parallel, each having a width of 18 ⁇ m, a thickness of 2.65 ⁇ m, and a length of 1.2 mm. And the magnetic field detection direction of detection part 16a, 16b is made into the Y-axis direction.
  • the center distance dy of the detection units 16a and 16b is 5 mm.
  • the magnetic detection units 14 are arranged symmetrically with respect to the X axis.
  • the plurality of magnetic thin film patterns of the detection units 16a and 16b are electrically connected in series in a serpentine manner although not shown. Both ends of the magnetic thin film pattern connected in series are connected to the respective electrodes. As shown in FIG. 37, the end of the magnetic thin film pattern is soldered to the electrodes 15a to 15c on the sensor substrate 11 and connected to the detection circuit 100. In FIG. 37, a high frequency pulse is applied with the electrode 15 a drawn from the sensor substrate 11 to the electrode 15 c and the electrode 15 b to the electrode 15 c as a pair.
  • the magnetic detection unit 14 is provided with a magnetization easy axis in the X-axis direction (width direction). By applying a high frequency pulse to the pattern of the magnetic thin film, the impedance is changed by the external magnetic field, and the voltage across the magnetic detection unit 14 is converted into a sensor signal by amplitude detection. If the bias magnetic fields and circuit gains of the respective elements are matched relatively without any difference, the effect of differential detection is enhanced.
  • the magnetic field Hy in the Y direction applied to the element is 0.078 gauss per 1 A, and in the sensor in which the aforementioned linearity is secured in the range of ⁇ 3 gauss, it exceeds ⁇ 38.5 A Linearity will be reduced. It can also be seen from the measured data shown in FIG. 38 that the linear accuracy is lowered when it exceeds 40A. Under this condition, the specification is ⁇ 40A.
  • the widths of the inlet 9a and the outlet 9b may be increased.
  • the magnetic field Hy is 0.038 gauss per 1A, and linear accuracy is secured up to ⁇ 79 A, and linear data is secured at ⁇ 80 A even from actual measurement data. It is understood that The difference in sensitivity may be adjusted by the gain of differential amplification.
  • the primary conductor 12 is disposed on the sensor substrate 11.
  • the magnetic detection element and the sensor substrate 20 on which the electric parts and terminals of the processing circuit are mounted are aligned and modularized It can be done.
  • the tips of the bus bars 19 are processed to be thin so that they can be inserted into the other substrate and soldered.
  • Holding of the magnetic detection unit 14 is simple illustration, but can be assembled to a non-conductive member 24 such as a resin mold member to ensure both positional accuracy and insulation.
  • Reference numeral 22 denotes a circuit element provided on the sensor substrate 20, and reference numeral 23 denotes a terminal for connecting the signal of the magnetic detection unit 14 to another circuit substrate.
  • the present invention there is one feature in providing a direction change area for changing the flow direction of the current to be measured from the main direction to another direction in a part of the conductor through which the current to be measured flows. is there. Furthermore, the present invention is characterized in that the magnetic detection element detects a magnetic field generated by the measured current whose direction of flow is changed by the direction change area. This makes it difficult to receive the influence of the magnetic field generated by the current flowing through another conductor arranged in parallel with the primary conductor whose current is to be measured. That is, the measurement accuracy of the current can be improved.
  • the redirecting area is a non-conductive area that impedes the flow of current.
  • a hole is adopted as the nonconductive region, but a nonconductive member such as an insulator may be inserted into the hole. Also, it may be a bottomed hole rather than a through hole. If the hole is to be made into a hole instead, the thickness of the part forming the bottom of the hole must be thin enough to the depth of the hole so that the direction of the magnetic field can be sufficiently changed.
  • the magnetic field is distorted near the nonconductive region.
  • a magnetic detection element having magnetic field detection sensitivity is disposed only in the main direction (Y-axis direction) of the current, the measurement accuracy is improved because it is not affected by magnetic fields in other directions such as the X-axis direction.
  • the number of magnetic detection elements may be plural.
  • two magnetic sensing elements are arranged so as to be axisymmetric with respect to the Y axis passing through the center of the primary conductor, or two magnetic sensing elements are arranged so as to be axisymmetric with respect to the X axis. You may Furthermore, these may be combined to provide a total of four magnetic sensing elements.
  • an outlet 9b having a width W2 narrower than the width W0 of the main portion and a width W2 narrower than the width W0 of the main portion behind the main portion with respect to the main portion of the primary conductor through which current flows
  • the inlet 9a may be provided. Although the accuracy is reduced, only one of the inlet 9a and the outlet 9b may be disposed in the main part.
  • the arrangement position and the number of the magnetic detection elements may be substantially the same as the arrangement position and the number of the nonconductive regions.
  • the detection range of the current to be measured can be easily adjusted only by changing the size of the non-conductive region, so the degree of freedom in design is also large.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 一次導体1に貫通孔2を設けることにより、被測定電流Iの一部は貫通孔2を回り込む迂回電流Iaとなる。貫通孔2の影響がない部分を流れる電流からはX軸方向の磁界成分Hxのみが生ずるが、迂回電流Iaはその傾き部分でY軸方向の磁界成分Hyを発生する。Y軸方向にのみ磁界検知感度を有する磁気検知素子3を貫通孔2に近接し、磁界検知方向がY軸方向となるように設置することで磁界成分Hyを検知し、近接電流の影響を排除した電流量を測定する。

Description

電流から発生する磁界を検知して電流量を推定する方法
 本発明は、被測定電流が流れる一次導体の近傍において磁界を検知することにより、被測定電流の電流量を求める電流測定方法及び電流測定装置に関するものである。
 電流の測定では、被測定電流が印加される一次導体の近傍で、被測定電流による周回磁界を感度の良い磁気検知素子で検知する電流センサが従来から提案されている。
 その一例として、特開2001-264361号公報のように、高感度の1個の磁気検知素子(MI素子)により、一次導体に流れる電流による周回磁界を検知する構成とされ、小型の電流センサが開示されている。
 この構成では、被測定電流を流す電線が孤立している場合に問題はないが、例えば三相電源のように隣相の電流が近接して平行して流れる場合では、隣接電流による磁界が重畳してしまい、測定精度を悪化させる問題がある。
 この影響を回避するためには、磁気検知素子の周囲をパーマロイ等の磁性体で囲む磁気シールドを設けることが一般的であるが、磁気シールドが磁気回路を構成し、電流からの磁場を歪めてしまう問題があり、完全に対処することは困難である。
特開2001-264361号公報
 特開2001-264361号公報のように、一次導体を流れる電流から発する周回磁界を磁気検知素子で直接検知する場合には、次のような問題がある。即ち、被測定電流が流れる一次導体に隣接して、異なる相の電流が流れる一次導体が平行に配置されている場合に、電流が流れる方向と直角方向の成分となる周回磁界を対象にすると、隣接する電流線からの磁界が加わり、十分な測定精度が得られない。これらの干渉を磁気シールドで防止するとしても、被測定電流からの磁束が磁場自体を乱してしまう虞れや、シールド部材の磁気飽和の心配があり、効果的な対策を施すことは極めて困難である。
 本発明の目的は、上述の問題点を解消し、異なる相の電流が平行して流れる設置環境であっても、磁気シールドに頼らず、被測定電流の測定精度を安定して確保できる電流測定方法及び電流測定装置を提供することにある。
 本発明によれば、被測定電流が流れる導体の一部に被測定電流の流れる方向を主方向から別の方向に変更する方向変更領域が設けられる。さらに、導体に対して少なくとも1つの磁気検知素子が配置される。方向変更領域によって流れる方向を変更された被測定電流によって生じた磁界が磁気検知素子によって検知される。磁気検知素子の出力から被測定電流の電流量が推定される。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
実施例1の構成図である。 一次導体内の電流と磁場の様子の説明図である。 一次導体と磁気検知素子の関係の断面図である。 検知回路の構成図である。 直径2mmの貫通孔を用いたY軸方向磁界成分の分布等高線図である。 直径3mmの貫通孔を用いたY軸方向磁界成分の分布等高線図である。 貫通孔の直径とY軸方向磁界成分のピーク位置との関係図である。 貫通孔の直径とY軸方向磁界成分のピーク値との関係図である。 変形例の構成図である。 変形例の構成図である。 変形例の構成図である。 変形例の構成図である。 実施例2の構成図である。 磁気インピーダンス素子の特性図である。 検知電流と測定誤差のグラフ図である。 変形例の構成図である。 実施例3の電流センサの基本的な構成の斜視図である。 一次導体内の電流との磁場の様子の説明図である。 一次導体と磁気検知素子の関係の断面図である。 検知回路の構成図である。 変形例の構成図である。 実施例4の構成図である。 変形例の構成図である。 他の変形例の構成図である。 実施例5の構成図である。 変形例の構成図である。 実施例6の電流センサの基本的な構成の斜視図である。 一次導体内の電流との磁場の様子の説明図である。 一次導体と磁気検知素子の関係の断面図である。 電流の出入口の幅を変えたY軸方向磁界成分の分布等高線図である。 電流の出入口の幅を変えたY軸方向磁界成分の分布等高線図である。 電流の出入口の幅を変えたY軸方向磁界成分の分布等高線図である。 電流の出入口の幅を変えたY軸方向磁界成分の分布等高線図である。 電流の出入口の幅とY軸方向磁界成分のピーク値の関係図である。 変形例の構成図である。 変形例の構成図である。 変形例の構成図である。 実施例7の構成図である。 電流の出入口の位置とY軸方向磁界成分(固定点)の関係図である。 実施例8の構成図である。 出入口の幅を変えた際の測定電流と出力の関係のグラフ図である。 変形例の構成図である。
 本発明を図示の実施例に基づいて詳細に説明する。本発明では、被測定電流が流れる導体の一部に被測定電流の流れる方向を主方向から別の方向に変更する方向変更領域を設けることに1つの特徴がある。さらに、本発明では、方向変更領域によって流れる方向を変更された被測定電流によって生じた磁界を磁気検知素子によって検知することに特徴がある。
 <実施例1>
 図1は被測定電流に対する電流測定を行う実施例1の基本的な構成図である。一次導体1には検知対象の被測定電流Iが流れ、一次導体1は例えばプリント基板上の銅箔パターン又は銅板で形成されたバスバー等の形態とされている。
 一次導体1のほぼ中央には、電流の遮断を部分的に行うために、非導電領域である円形の貫通孔2が設けられており、このため被測定電流Iの一部は図2に示すようにこの貫通孔2の両側において外側を対称的に回り込む迂回電流Iaとなっている。説明の便宜のために、一次導体1に座標軸を設定し、貫通孔2の中心を原点Oとして、被測定電流Iが流れる主方向をY軸、その直交軸である幅方向をX軸、厚み方向をZ軸とする。
 一次導体1上には、一方向にのみ磁界検知感度を有する磁気検知素子3が配置されている。磁気検知素子3の検知部4をY軸方向が磁界検知方向となるようにし、検知部4の中心位置は、貫通孔2の中心よりもX軸方向に距離dx、Y軸方向にはX軸を挟んで距離dyずらした個所に配置されている。
 本来、電流により発生する磁束は電流方向と直交する方向を向くので、一次導体1の貫通孔2の影響がない個所では、被測定電流Iは主方向であるY軸方向に流れる。従って、図2に示す磁界ベクトル成分Hc0のように、一次導体1の幅w内ではX軸方向のベクトル成分Hxしか持たない磁場となる。
 しかし貫通孔2の近傍では、迂回電流IaはY軸方向に対し傾くことから、この迂回電流Iaにより貫通孔2の両側で磁場が歪んだ磁界ベクトル成分Hc1が発生する。つまり、迂回電流Iaの傾き部分においては、Y軸方向のベクトル成分Hy及びX軸方向のベクトル成分Hxが発生する。ベクトル成分Hyとベクトル成分Hxのベクトル和は被測定電流Iの大きさに比例し、貫通孔2のY軸の正負両側では電流方向が対称形のため、ベクトル成分HyはX軸を挟んで対称となり、極性は逆になる。
 また図1に示すように、異なる相の電流が流れる一次導体1’が近接し、近接電流I’の方向が被測定電流Iと平行していても、近接電流I’による磁界ベクトル成分はX軸方向のみの成分であり、Y軸方向成分を持たない。検知部4の磁界検知方向をY軸方向とすると、磁気検知素子3は近接電流I’による磁界による干渉は受けず、迂回電流Iaのベクトル成分Hyのみを検知できる。従って、このベクトル成分Hyを校正して換算すれば、被測定電流Iの電流量を求めることができる。
 使用する磁気検知素子3として、X軸方向の磁界ベクトル成分Hxを検知することは望ましくない。従って、指向性の高い磁気インピーダンス素子や直交フラックスゲート素子が好適であり、実施例1では磁気インピーダンス素子を用い、Y軸方向にのみ磁界検知が可能とされている。検知部4として磁性薄膜のパターンが磁界検知方向のY軸方向につづら折りにより並列され、両端の電極5にMHz帯の高周波パルスを印加し、磁界の変化による検知部4の両端からの電圧振幅変化をセンサ信号として得ている。図示は省略しているが、検知部4の動作には、バイアス磁界が必要となるものがあり、必要に応じて近くにバイアス磁石の設置又はバイアスコイルを巻き付けて電流を流して設定する。
 図3に示すように、一次導体1に対する磁気検知素子3の検知部4の高さhは、一次導体1と磁気検知素子3の位置関係を保持する構造上、必要なスペースと空間距離、沿面距離等の絶縁耐圧の関係で決められる。
 図4は電流測定装置として機能する検知回路100の構成図を示す。CRパルス発振回路30に対しブリッジを構成する抵抗Rに、磁気検知素子3の検知部4が接続されている。検波回路31は、検知部4の検知信号である両端電圧からの振幅変化を取り出して増幅回路32へ出力する。増幅回路32は、振幅変化を増幅して出力する。推定回路33は、増幅回路32の出力から被測定電流の電流量を推定する回路である。
 図5、図6は貫通孔2による迂回電流Iaに係わるY軸方向の磁界成分Hyのシミュレーションの結果を示している。一次導体1はX軸方向の幅w=10mm、Z軸方向の厚さt=70μmの断面で、Y軸方向に計算上は無限長とした十分に長い銅板であり、X軸方向の中央に貫通孔2を穿けてある。検知部4は一次導体1から1.6mmの高さhに固定し、Y軸方向に被測定電流Iを1アンペア(A)流した際のY軸方向の磁界ベクトル成分Hyの変化を調べた。
 図5は貫通孔が2mmの場合、図6は3mmの場合におけるY軸方向磁界のベクトル成分Hyの磁界分布の計算結果を等高線の分布として示している。座標はX≧0、Y≧0の第1象限で、ベクトル成分Hyの頂点を100%として、10%刻みで等高線を描いている。他の象限ではX軸又はY軸に関し対称な磁界分布が形成され、第3象限は第1象限と同一極性で、第2、第4象限は第1象限と逆極性の磁場が形成される。
 図5、図6から磁界が最大となるピーク位置は、貫通孔2から約45度方向にあり、直径2mmの貫通孔2では(X、Y)=(1.5mm、1.625mm)、3mmの貫通孔2では(X、Y)=(1.75mm、1.75mm)辺りにある。これらの磁界のピーク位置での磁界成分Hyは、それぞれ電流1アンペア(A)に対して、Hy=25.6mガウス(G)、Hy=47.9mガウス(G)となっている。
 図7は貫通孔2の直径とY軸方向の磁界ベクトル成分Hyのピーク位置の関係のグラフ図である。図5、図6に示す等高線図では図示を省略しているが、直径1mm、4mmでの結果も併せて記載している。図7から分るように、貫通孔2の直径の大きさはピーク部の位置に殆ど依存することはない。幅w=5mmでの貫通孔2の直径1mmの結果も併せて考えると、実用的な一次導体1の使用範囲では、ベクトル成分Hyのピークの範囲は、X、Y軸方向共に1~2mm程度であると云える。
 また、ピーク位置から10%下がった90%の範囲が、半径0.5mm程度のサークルとなっていることから、設計的には図1の距離dx、dyは共に0.5~2.5mmの範囲で、この範囲に磁気検知素子3の検知部4が掛かるようにすればよい。
 図8は一次導体1の貫通孔2の径とY軸方向のベクトル成分Hyのピーク値とのグラフ図であり、径が大となるにつれて、2次関数的にベクトル成分Hyが大きくなってゆくことが分かる。つまり、図1で示す距離dx=1.5mm、dy=1.5mm辺りに、磁気検知素子3の検知部4を固定し、貫通孔2の径の大きさを変えるだけで、数倍もの測定レンジを選択できることが可能となる。
 図1においては、磁気検知素子3はXY平面上の第1象限に設けているが、対称性から当然のことながら、その他の象限に配置することもできる。
 図9は変形例を示し、貫通孔2’を貫通孔2のある原点OからX軸方向に対して45度方向に設けて、その中間位置に磁気検知素子3を配置することで、両貫通孔2、2’による迂回電流Iaによる効果を重ねY軸方向成分の磁界を増加し、感度を上げている。2つの貫通孔2、2’は同一の大きさである必要はなく、更に貫通孔2の数を増やすこともできるし、設置する角度位置は電流の検知仕様に応じて設計すればよい。
 電流を迂回させる手段としては、貫通孔2だけではなく切欠孔を用いることにより非導電領域を形成し、大小の電流に対応させることができる。例えば図10に示すように、一次導体1の幅方向の端部に切欠孔8を設けることでも迂回電流を生成できる。大電流により迂回電流による磁界を抑制したい場合には、この構成が好適である。
 また、逆に図11に示すように切欠孔8を深くし、迂回電流を集中させ、Y軸方向成分の磁界を大きくし、小電流に対応させることも可能である。更に、図12に示すように反対側からの端部からも切欠孔8をずらして設けることで、更に迂回電流を強めて、より小さな電流にも対応させることができる。
 <実施例2>
 図13は実施例2の構成図である。例えば、厚さ1.6mmのガラスエポキシ材のセンサ基板11の片面に、X軸方向の幅10mm、Z軸方向の厚さ70μm、Y軸方向の長手方向50mmの銅パターンから成る一次導体12が設けられている。そして、一次導体12のX軸方向の中央に例えば直径2mmの貫通孔13がエッチングにより形成されている。センサ基板11の他面には、図1と同様の位置に、一体型の磁気検知ユニット14が配置され、半田付けのための電極15a~15bがセンサ基板11上に引き出されている。
 磁気検知ユニット14には磁気インピーダンス素子が用いられ、Fe-Ta-C系の磁性薄膜から成る検知部16は、それぞれ例えば幅18μm、厚さ2.65μm、長さ1.2mmの細長い11本のパターンが並列に配置されている。そして、検知部16の磁界検知方向はY軸方向のみとされている。
 検知部16の位置は、貫通孔13の中心からX軸及びY軸方向に距離dx=1.5mm、dy=1.5mmだけオフセットされて配置されている。検知部16の複数本の磁性薄膜パターンは、図示は省略しているが電気的にはつづら折りで直列につながれて、両端はそれぞれの電極に接続され、センサ基板11上の電極15a、15bに半田接合され、図示しないセンサ回路に接続されている。図13では、電極15a→15bの流れにより高周波パルスを印加する。
 磁気検知ユニット14の磁性薄膜にはX軸方向の幅方向に磁化容易軸が設けられており、高周波のパルスを磁性薄膜のパターンに通電することで、外部磁界によりインピーダンスが変化し、磁気検知ユニット14の両端電圧を振幅検波によりセンサ信号に変換する。
 平行して流れる被測定電流I以外の電流の影響評価では、図13に示すように、一次導体12から10mmの間隔をおいて直径2mmの銅棒18を並行に配置し、10Armsの50Hzの電流I’を流して、一次導体12には電流を流さない条件で測定した。すると、磁気検知ユニット14では銅棒18を流れる電流I’の影響は観測されず、ノイズレベル以下(10mVpp以下)であった。
 隣接する平行な電流線からの磁界はX軸又はZ軸方向となり、Y軸方向の成分は持たないことと、磁気インピーダンス素子がX軸方向には感度を持たないことが効果的に作用し、隣接の電流による磁界の影響は問題とはならないレベルであることが確認された。
 この磁気検知ユニット14は5Vの5MHzのパルス駆動では、図14に示すように磁界に対してV字のインピーダンス変化の特性を示し、感度の良い傾きの個所を利用している。そのためには、図13に示すように磁気検知ユニット14の背面にバイアス用磁石17を配置して、検知部16に10ガウス(G)程度のバイアス磁界が掛かるように設定している。直線性の良好な範囲は、この磁気検知ユニット14の場合ではバイアス動作点を挟んで±3ガウス(G)程度である。
 図15は一次導体1にAC電流(50Hz)を0.1~40Armsまで可変で通電させて、電流測定したデータを示している。10Armsは28.28Appの正弦波であり、そのときの磁界はシミュレーション結果から、724mGppとなる。図15はこの10Armsを基準に理想値と実測値の誤差を示し、5V電源で10Arms時に1Vppとなるように調整したため、上限は40Armsとした。精度として、0.2Arms以上で±1%以内の誤差が保証される。
 貫通孔13の直径を2mmとし、磁気検知ユニット14の直線性範囲が6ガウス(G)の特性のものを使用した場合では、80Arms強の個所で越えてしまう。仮に、200Armsまで対応させる場合では、貫通孔13の直径を1mmにするだけで、磁気検知ユニット14に掛かる磁界は1/3になり、270Armsのような大電流にも同じレイアウトで可能になる。また、逆に小電流の仕様には、貫通孔13を大きくするだけで対応できる。
 実施例2では、一次導体12をセンサ基板11上に配置している例を想定している。しかし、図16の変形例に示すように、一次導体が銅板から成るバスバー19の場合は、図13の形態から一次導体12を除いたものをセンサ基板20の上にモジュール化することもできる。この場合には、バスバー19に穿けた貫通孔21にセンサ基板20を位置合わせして、センサ基板20をバスバー19に貼り合わせなどにより固定して使用することが可能である。なお、22はセンサ基板20上に設けられた回路素子、23は磁気検知ユニット14の信号を引き出す信号線である。
 このような構成とすることにより、予めバスバー19を布設した後においても、磁気検知ユニット14をモジュール化してバスバー19に組み付けることにより容易に組立てが可能となる。
 なお、上述の各実施例においては、貫通孔、切欠孔による非導電領域を設けて電流を迂回させたが、必ずしも孔部ではなく、絶縁材料を配置することによっても電流を迂回させることができる。
 <実施例3>
 特開2006-184269号公報によれば、2個の磁気検知素子を使用することで、差動検知により外乱磁界を回避しようとする提案がなされている。この特許文献では、被測定電流による磁界検知を単一の磁気センサで検知する場合の外部磁界の影響を回避するために、一次導体としてのバスバーの中央部に開口部を形成して被測定電流を分流している。そして、開口部内に2つの導体部近傍に電流からの磁界がそれぞれ逆相になるようにそれぞれ磁気検知素子を配し、差動増幅によりバスバーから発生する磁界のみを検知している。
 しかしながら、この方法でも一様な磁界に対する影響は排除できても、隣接して電流線が平行して流れる場合には、2つの磁気検知素子にはその外乱となる磁界が等しく印加されず、結局は磁気シールドが不可欠となる。
この課題を解決する方法として、非導電領域を一次導体に設けるとともに、非導電領域の近傍に1つの磁気検知素子を設けることを実施例1、2で提案した。ここで、磁気検知素子は複数であってもよい。そこで、実施例3では、複数の磁気検知素子を設ける案について説明する。
 図17は被測定電流に対する電流測定を行う実施例3の基本的な電流センサの構成図である。一次導体1には検知対象の被測定電流Iが流れ、一次導体1は例えばプリント基板上の銅箔パターン又は銅板で形成されたバスバー等の形態とされている。
 一次導体1のほぼ中央には、電流の遮断を部分的に行うため非導電領域である円形の貫通孔2が設けられており、このため被測定電流Iの一部は図18に示すようにこの貫通孔2の両側において外側を対称的に回り込む迂回電流Iaとなっている。説明の便宜のために、一次導体1に座標軸を設定し、貫通孔2の中心を原点Oとして、被測定電流Iが流れる主方向をY軸、その直交軸である幅方向をX軸、厚み方向をZ軸とする。
 一次導体1上には、2つの磁気検知素子3a、3bがY軸方向に向けて直列的に配置されて差動検知が行われる。磁気検知素子3a、3bの検知部4a、4bをY軸方向が磁界検知方向となるようにし、検知部4a、4bの中心位置は、貫通孔2の中心よりもX軸方向に距離dx、Y軸方向にはX軸を挟んで距離dyずらした個所に配置されている。
図17に示すように、異なる相の電流が流れる一次導体1’が近接し近接電流I’の方向が被測定電流Iと平行していても、近接電流I’の磁束Fによる磁界の影響はX軸方向のベクトル成分となり、Y軸方向成分を持たない。検知部4a、4bの磁界検知方向をY軸方向に取ると、磁気検知素子3a、3bは近接電流I’による磁界による干渉は受けず、被測定電流Iのベクトル成分Hyのみを検知できる。従って、このベクトル成分Hyを校正して換算すれば、被測定電流Iの電流量を求めることができる。
 使用する磁気検知素子3a、3bとして、X軸方向の磁界ベクトル成分Hxを検知することは望ましくないため、指向性の高い磁気インピーダンス素子や直交フラックスゲート素子が好適であり、実施例1では磁気インピーダンス素子を用いている。検知部4a、4bとして磁性薄膜のパターンが磁界検知方向のY軸方向につづら折りにより並列され、両端の電極5にMHz帯の高周波パルスを印加し、磁界の変化による検知部4a、4bの両端からの電圧振幅変化をセンサ信号として得ている。
 図19に示すように、一次導体1に対する磁気検知素子3a、3bの検知部4a、4bの高さhは、一次導体1と磁気検知素子3a、3bの位置関係を保持する構造上、必要なスペースと空間距離、沿面距離等の絶縁耐圧の関係で決められる。
 図20は検知回路の構成図を示し、CRパルス発振回路30に対しブリッジを構成する抵抗Rに、磁気検知素子3a、3bの検知部4a、4bが接続されている。検知部4a、4bの両端電圧からの振幅変化を検波回路31により取り出した後に、差動増幅回路32で検知部4a、4bの出力に対し差動増幅が行われて、電流センサとしての出力を得る。
 この場合に、検知部4a、4bの出力は、感度が同じでX軸を挟んで対称な位置にあれば絶対値は同じになり、極性が異なるため、差動的に検知すると、出力は検知部4a又は4bの絶対値の2倍となる。また、外来の磁界ノイズは狭い範囲にある検知部4a、4bでは同相となり、検知部4a、4bの出力を差動的に捉えることにより、磁界ノイズは相殺されて、電流センサの出力に重畳されることはなく、迂回電流のベクトル成分Hyのみが測定されることになる。なお、磁気検知素子の出力を差動的に検知するには、少なくとも2個の検知部を用いればよい。  なお、図20と図4とを比較すれば明らかなように、ブリッジ回路を形成している4つの抵抗が検知部に置き換わることになる。たとえば、3つの検知部を採用するのであれば、4つある抵抗のうちの3つの抵抗が検知部に置換される。さらに、4つの検知部を採用するのであれば、すべての抵抗が検知部に置換されることになる。
 図17においては、磁気検知素子3a、3bはXY平面上の第1、第4象限にそれぞれ設けているが、対称性から当然のことながら、その他の象限に隣接して配置することもできる。
 図21はこの場合の変形例を示し、磁気検知素子3aは第1象限に、磁気検知素子3bは第2象限に設け、Y軸に対して対称的に配置した場合においても同様の結果が得られる。迂回電流Iaによる磁界ベクトル成分Hc1は第1象限と第2象限においてY軸に関して対象ともなっている。従って、磁気検知素子3a、3bを第1象限、第2象限にそれぞれ配置し、絶対値が等しく極性が逆のY軸方向のベクトル成分Hyをそれぞれ検知することができる。この場合においては、隣接して平行する電流線の影響は僅かに受けるが、磁気検知素子3同士の間隔が狭いために、ほぼ磁界ノイズを差動検知により相殺することができる。
 <実施例4>
 磁気検知素子である磁気インピーダンス素子や直交フラックスゲートセンサ等のように、磁気飽和や直線性の点で、検知磁界範囲を或る範囲内で管理しなくてはならない場合には、一次導体1の貫通孔2の径だけで測定レンジを調整できることが好ましい。
 図22は実施例4の電流センサの構成図である。図17における磁気検知素子3、4の検知部4a、4bの距離は短いことから、同一の素子基板6にX軸に関して対称に配置した磁気検知素子3a、3bを一体型として取り付けた磁気検知ユニット7とされ、性能のばらつきが抑制可能となっている。
 図23の変形例に示すように、一次導体1のX軸の正の領域だけ使う発想で、幅方向の端部に切欠孔8を設けることでも迂回電流を利用できる。この切欠孔8によっても、図17に示すように貫通孔2を設けた場合と同様に測定が可能である。なお、迂回電流をX軸に関して対称的に流すためには、切欠孔8はX軸に関して対称形であることが必要である。
 図24は他の変形例の構成図である。4個の磁気検知素子3a~3dを一体化した磁気検知ユニット7において、第1、第2、第3、第4象限にそれぞれ検知部4a、4b、4c、4dを配置し、4素子によりブリッジ構成として動作させると、更にS/Nを向上させることができる。このように、貫通孔2の両側に検知部4a~4dをX軸、Y軸に対称に配置すると、ベクトル成分HyがX軸、Y軸にそれぞれ対称となる。
 従って、X軸に関して検知部4aと4dの出力を差動検知、検知部4bと4cの差動検知、Y軸に関して検知部4aと4bの差動検知、検知部4dと4cの差動検知を同時に行うことができ、これらの検知結果の平均を求めれば更に測定精度が向上する。
 <実施例5>
 図25は実施例3の電流センサの構成図である。厚さ1.6mmのガラスエポキシ材のセンサ基板11の片面に、X軸方向の幅10mm、Z軸方向の厚さ70μm、Y軸方向の長手方向50mmの銅パターンから成る一次導体12が設けられている。そして、一次導体12のX軸方向の中央に直径2mmの貫通孔13がエッチングにより形成されている。センサ基板11の他面には、図22と同様の位置に、一体型の磁気検知ユニット14が配置され、半田付けのための電極15a~15cがセンサ基板11上に引き出されている。
 磁気検知ユニット14には磁気インピーダンス素子が用いられ、Fe-Ta-C系の磁性薄膜から成る検知部16a、16bは、それぞれ幅18μm、厚さ2.65μm、長さ1.2mmの細長い11本のパターンが並列に配置されている。そして、検知部16a、16bの磁界検知方向はY軸方向とされている。
 検知部16a、16bの位置は、貫通孔13の中心からX軸方向に距離dx=1.5mmだけオフセットされ、検知部16a、16bの中心間隔は、dy=3mmとし、貫通孔13の中心Oから幅方向に延びるX軸に対して対称的に配置されている。
 検知部16a、16bの複数本の磁性薄膜パターンは、図示は省略しているが電気的にはつづら折りで直列につながれて、両端はそれぞれの電極に接続され、センサ基板11上の電極15a~15cに半田接合され、図示しないセンサ回路に接続されている。図25では、センサ基板11に引き出された電極15a→15c及び電極15b→15cの流れにより高周波パルスを印加する。
 磁気検知ユニット14はX軸方向の幅方向に磁化容易軸を設けておき、高周波のパルスを磁性薄膜のパターンに通電することで、外部磁界によりインピーダンスが変化し、磁気検知ユニット14の両端電圧を振幅検波によりセンサ信号に変換する。
 平行して流れる被測定電流I以外の電流の影響評価では、一次導体12から10mmの間隔を離して直径2mmの銅棒18を並列に配置し、10Armsの50Hzの電流I’を流して、一次導体12には電流を流さない条件で測定した。すると、磁気検知ユニット14では銅棒18を流れる電流I’の影響は観測されず、ノイズレベル以下(10mVpp以下)であった。隣接する平行な電流線からの磁界はX又はZ軸方向となり、Y軸方向の成分は持たないことと、検知部16a、16bと隣接する銅棒18との距離が等しいことで差動除去機能が効果的に働き、ノイズ的な磁界の影響もほぼ完全に除去できていることが確認された。
 実施例5では、一次導体12をセンサ基板11上に配置している例を想定した。しかし、図26の変形例に示すように一次導体が銅板から成るバスバー19の場合は、図25の形態から一次導体12を除いたものをセンサ基板20の上にモジュール化することもできる。この場合には、バスバー19に穿けた貫通孔21にセンサ基板20を位置合わせして、センサ基板20をバスバー19に貼り合わせなどにより固定して使用することが可能である。なお、22はセンサ基板20上に設けられた回路素子、23は磁気検知ユニット14の信号を引き出す信号線である。
 このような構成とすることにより、予めバスバー19を布設した後においても、磁気検知ユニット14をモジュール化してバスバー19に組み付けることにより容易に組立てが可能となる。
 なお、上述の各実施例においては、貫通孔、切欠孔による非導電領域を設けて電流を迂回させたが、必ずしも孔部ではなく、絶縁材料を配置することによっても電流を迂回させることができる。そして、これらの非導電領域はX軸に関しその両側で形状が対称であることが必要である。
 <実施例6>
 実施例1ないし実施例5では、方向変更領域として非導電領域を採用した。つまり、実施例1ないし実施例5は、電流が非導電領域を迂回して流れることで発生する歪み磁界を検知し、検知した磁界から電流量を推定する発明である。実施例1ないし実施例5において共通した概念は、電流が非直線的に流れることを促進する領域を一次導体に設けることである。つまり、電流の流れる方向を曲げることができるのであれば、必ずしも非導電領域である必要はない。そこで、実施例6では、方向変更領域についての他の例について説明する。
 図27は被測定電流に対する電流測定を行う実施例6の基本的な電流センサの構成図である。一次導体1には検知対象の被測定電流Iが流れる。一次導体1の形態は例えばプリント基板上の銅箔パターン又は銅板で形成されたバスバー等の形態とされている。
 一次導体1のうち磁界の検知対象とする部分(主要部)は、長さがLで幅がW0で形成された矩形状の部分である。主要部において、電流が流れる後方と前方にはそれぞれ幅W1、W2の入口9a、出口9bが形成されている。幅W1、W2はいずれも幅W0よりも狭い。説明を判りやすくするため、入口9a、出口9bを幅W0に対して中央に設置しておく。
一次導体1に座標軸を設定する。ここでは、磁気検知部の中心を原点Oとする。図27および図28が示すように、入口9a、出口9bを結ぶ線であって、磁気検知部の幅W0を2分割する直線と、磁気検知部の長さLを2分割する直線との交点を原点Oとしている。他の実施例と同様に、被測定電流Iが流れる主方向をY軸、その直交軸である幅方向をX軸、厚み方向をZ軸とする。
 一次導体1上には、2つの磁気検知素子3a、3bがY軸方向に向けて直列的に配置されて差動検知が行われる。なお、実施例1、2と同様に、磁気検知素子は1つでもよい。磁気検知素子3a、3bの構成は実施例1乃至5と同様である。磁気検知素子3a、3bの検知部4a、4bをY軸方向が磁界検知方向となるようにし、磁気検知素子3a、3bが配置される。検知部4a、4bの中心位置は、原点Oの中心よりもX軸方向に距離dx、Y軸方向にはX軸を挟んで距離dy1、dy2ずつずらした個所に配置されている。
 本来、電流により発生する磁束は電流方向と直交する方向を向く。そのため、一次導体1の幅方向を向く電流成分がない個所、つまり原点Oを通るX軸上ではX軸方向のベクトル成分Hxしか持たない磁場HC1ができる。
 しかし、原点Oよりもその電流が流れる前後方向でずれた位置での電流は、入口9a、出口9bに向けてY軸方向に対し傾いて流れる電流成分を持っている。これによって、Y軸方向のベクトル成分Hyが発生し、Hc2、Hc3のように磁場が蛇行する。Hc2、Hc3の磁場は、X軸に対して線対称である。ベクトル成分HyはX軸を挟んで逆極性になっている。
 図27に示すように、異なる相の電流が流れる一次導体1’が近接し近接電流I’の方向が被測定電流Iと平行していても、近接電流I’による磁界の影響はX軸方向のベクトル成分となり、Y軸方向成分を持たない。検知部4a、4bの磁界検知方向をY軸方向に取ると、磁気検知素子3a、3bは近接電流I’による磁界による干渉は受けず、被測定電流Iのベクトル成分Hyのみを検知できる。従って、このベクトル成分Hyを校正して換算すれば、被測定電流Iの電流量を求めることができる。
 磁気検知素子3a、3bが、X軸方向の磁界ベクトル成分Hxを検知すると電流の推定精度が低下する。そのため、磁気検知素子3a、3bとしては、たとえば、指向性の高い磁気インピーダンス素子や直交フラックスゲート素子がある。実施例6では磁気検知素子3a、3bとして磁気インピーダンス素子を用いている。検知部4a、4bとして磁性薄膜のパターンが磁界検知方向のY軸方向につづら折りにより並列されている。両端の電極5にMHz帯の高周波パルスを印加し、磁界の変化による検知部4a、4bの両端からの電圧振幅変化がセンサ信号として得られる。バイアス磁界が必要な場合は、不図示ではあるが、磁気検知素子3a、3bに近接した磁石または巻回したコイルにより印加する。
 図29に示すように、一次導体1に対する磁気検知素子3a、3bの検知部4a、4bの高さhは、たとえば、発生する磁界の大小調整、一次導体1と磁気検知素子3a、3bの位置関係を保持する構造上必要なスペース、空間距離、および、沿面距離等の絶縁耐圧の関係で決められる。
 電流検知装置として機能する検知回路100の構成は、図20に示した回路構成を採用できる。なぜなら、電流の流れる方向を変更する領域方向変更領域の具体的な構成が変わったとしても、本発明の電流検知装置の基本的な部分はそのまま使用できるからである。
 図30Aないし図30D、および、図31は狭い出入口からの拡散電流に係わるY軸方向の磁界成分Hyのシミュレーションの結果を示している。一次導体1はX軸方向の幅W0=8mm、Z軸方向の厚さt=0.8mmの断面で、入口9a、出口9bは間隔Lを7.5mmとし、その幅方向の位置を幅W0の中央にする。入口9a、出口9bの幅をW1=W2=dとして、d=0.8、 1.2、 2.4、 3.6mmと振って、一次導体の表面(高さH=1.6mm)で、電流が流れる主方向の磁界Hyを計算した。被測定電流Iは1アンペア(A)とした。  図30Aないし図30Dは、d=0.8、 1.2、 2.4、 3.6mmのそれぞれにおけるシミュレーション結果である。座標はX≧0、Y≧0の第1象限で、ベクトル成分Hyの頂点を100%として、10%刻みで等高線を描いている。他の象限ではX軸又はY軸に関し対称な磁界分布が形成され、第3象限は第1象限と同一極性で、第2、第4象限は第1象限と逆極性の磁場が形成される。
 ピーク位置Pは、Y方向が2.5mmでほぼ変わらず、X方向は出入口の幅が広くなるに連れて1.7mmから2.15mmまで緩やかに移動している。
 出入口からのY方向の距離をLとする。ピーク位置Pは、L=7.5mmで1.25(=L/2-2.5)mmにあるが、L=11.5mmで計算したところでも1.35mmとなり、両者は大きくは変わらない。実用的な距離Lの寸法としては、ピークが明確に形成でき、かつ、隣接の逆相となるピークと干渉しないことを考慮して決定する。たとえば、距離Lは、1.25mmの4倍の5mm以上は確保すべきである。
 図31はピーク位置での磁界Hyを示したグラフである。図31によれば、入口9a、出口9bの幅W1とW0との比が10%(W0=8mm、d=0.8mm)では、1Aあたり0.08ガウスの磁界を発生していることがわかる。ミリガウス以下を検知できる磁気検知素子では、ピーク位置に置くことで1A以下の小さな被対象電流でも十分なS/Nで検知できる。
入口9a、出口9bの幅W1、W2を広げていくと、幅方向に広がる電流成分が減ることで、急激に磁界Hyが下がる。よって、大電流を検知するには幅W1、W2を広げればよい。幅W1とW0との比が100%、つまりd=8mmでは、磁界がゼロになる。これは、大電流に対しての調整範囲を広く取れることを意味する。以上のことより、X=2mm、Y=2.5mmのところに磁気検知素子を固定すれば、幅W1、W2を変えるだけでいろいろな電流検知範囲の仕様に対応できることを意味する。
このような特性は、磁気インピーダンス素子や直交フラックスゲートセンサ等のように、磁気飽和や直線性の点で、検知磁界範囲を或る範囲内で管理しなくてはならない素子には極めて都合が良い。生産性でも、素子の位置を固定しておいて、一次導体の出入口の幅を変えたものを数種類用意しておくことで、各種電流仕様に対応でき、電流センサのコスト低減に大きく寄与するだろう。
 図27においては、磁気検知素子3a、3bはXY平面上の第1、第4象限にそれぞれ設けている。しかし、対称性から当然のことながら、その他の象限に隣接して配置することもできる。図32は、磁気検知素子3aを第1象限に配置し、磁気検知素子3bを第2象限に配置した例を紙滅している。図33は、全ての象限に磁気検知素子を設けた例を示している。
 図33では、4個の磁気検知素子3a~3dを一体化した磁気検知素子ユニットにおいて、第1、第2、第3、第4象限にそれぞれ検知部4a、4b、4c、4dを配置している。さらに、図20に示したように検知部4a、4b、4c、4dをブリッジ構成として動作させると、検知回路100のS/Nを向上させることができる。このように、2原点Oの両側に検知部4a~4dをX軸、Y軸に対称に配置すると、ベクトル成分HyがX軸、Y軸にそれぞれ対称となる。
 従って、X軸に関して検知部4aと4dの出力を差動検知、検知部4bと4cの差動検知、Y軸に関して検知部4aと4bの差動検知、検知部4dと4cの差動検知を同時に行うことができ、これらの検知結果の平均を求めれば更に測定精度が向上する。
 入口9a、出口9bが一次導体1の幅方向の中央にある場合は、素子の感度を同等に調整した素子をX軸又はY軸に対称に設置して差動動作させることで、一次導体1からの磁界による出力は2倍となり、同相の外部磁界はキャンセルされることになる。
 図34は変形例を示している。入口9aに至る導体の幅や、出口9b以降の導体の幅が細すぎると、大電流印加時に発熱の問題が発生するかもしれない。そこで、図34が示すように、電流の出入口をスリット溝7a、7b、7c、7dで規制することで、発熱自体を抑えることができるとともに、熱拡散も良くすることができるだろう。なお、図34から、一次導体1にスリット溝7a、7b、7c、7dを入れることで、上述した主要部、入口9a、および、出口9bが形成されていることを理解できよう。
 <実施例7>
 実施例6では、座標位置で(2, 2.5)と(2, -2.5)の付近にそれぞれ磁気検知素子3a、3bの検知部4a、4bを置けば、入口9a、出口9bの幅W1、W2を変えることだけで被測定電流の仕様に対応できることを示した。別の方法としては入口9a、出口9bの配置位置を一次導体1の幅方向にオフセットさせても良い。図35にそのレイアウトを示す。図28のレイアウトから、入口9a、出口9bを幅方向にdwだけずらしたものである。これにより、電流の広がりが変わるため、磁気検知素子3a、3bの検知部4a、4bが配置された位置での磁界の方向を変えることができる。
 図36は、実施例7についてY軸方向の磁界成分Hyのシミュレーションの結果を示している。一次導体1のX軸方向の幅W0=8mm、Z軸方向の厚さt=0.8mmである。入口9a、出口9bは幅W1、W2ともに1.2mmである。磁気検知部である一次導体1のY軸方向の長さLを7.5mmとしている。実施例6のように入口9a、出口9bの位置が幅W0の中央にした状態では、オフセット量dw=0である。実施例7ではオフセット量dw=-2、 -1、 0、 1、 2mmのそれぞれについてシミュレーションを行った。
 磁気検知素子3aの座標位置をX=2、Y=2.5mmに固定している。電流が主に流れる方向の磁界成分Hyの磁界は、図36が示すとおり、オフセット量がマイナスになると調整シロが少ない。一方、オフセット量がプラスになると、つまり入口9a、出口9bと磁気検知素子との距離が縮まると、急激に磁界が低下し、反対の極性にまでいたる。よって、オフセット量がプラスになる領域では、磁界成分Hyを大幅に調整可能である。
 <実施例8>
 図37は実施例8の電流センサの構成図である。センサ基板11は、ガラスエポキシ材であり、その厚さ1.6mmである。センサ基板11の片面に一次導体12が設けられている。一次導体12は、X軸方向の幅8mm、Y軸方向の長さが7.5mmで、Z軸方向の厚さ70μmの銅パターンである。X、Y軸の原点Oは一次導体12の中心に設定する。
 一次導体12の入口9a、出口9bは、X軸方向の幅Wの中央から幅W1=W2=1.2mmでY軸に沿って引き出されている。入口9a、出口9bを1.2mmの幅のままで長く引き出すと、大電流側では発熱が発生するかもしれない。そこで、実験では入口9a、出口9bの直ぐ近くで、芯線径1.6mmのケーブル線を半田付けして、被測定電流を印加した。
センサ基板11の他面には、2つの磁気検知素子が一体化された磁気検知ユニット14が配置されている。磁気検知ユニット14からは半田付けのための電極15a~15cがセンサ基板11上に引き出されている。
 磁気検知ユニット14には磁気インピーダンス素子が用いられている。Fe-Ta-C系の磁性薄膜から成る検知部16a、16bは、それぞれ幅18μm、厚さ2.65μm、長さ1.2mmの細長い並列に配置された11本のパターンにより構成されている。そして、検知部16a、16bの磁界検知方向はY軸方向とされている。
 図37が示すように、検知部16a、16bの位置は、貫通孔13の中心からX軸方向に距離dx=2mmだけオフセットされている。検知部16a、16bの中心間隔dyは5mmとしている。このように、磁気検知ユニット14はX軸に対して対称的に配置されている。
 検知部16a、16bの複数本の磁性薄膜パターンは、図示は省略しているが電気的にはつづら折りで直列につながれている。直列につながれた磁性薄膜パターンの両端はそれぞれの電極に接続されている。図37が示すように、磁性薄膜パターンの端部は、センサ基板11上の電極15a~15cに半田接合され、検知回路100に接続されている。図37では、センサ基板11に引き出された電極15aから電極15cと、電極15bから電極15cとをペアとして高周波パルスを印加する。
 磁気検知ユニット14にはX軸方向(幅方向)に磁化容易軸を設けておく。高周波のパルスを磁性薄膜のパターンに通電することで、外部磁界によりインピーダンスが変化し、磁気検知ユニット14の両端電圧を振幅検波によりセンサ信号に変換する。それぞれの素子のバイアス磁界や回路ゲインを、相対的に差が出ないよう合わせておくと、差動検知の効果が高まる。
 平行して流れる被測定電流I以外の電流の影響評価では、一次導体12の端から10mmの間隔を離して直径2mmの銅棒18を並列に配置した。10Armsの50Hzの電流I’を銅棒18に流して、一次導体12には電流を流さない条件で測定を行った。磁気検知ユニット14では銅棒18を流れる電流I’の影響は、ノイズレベル以下(10mVpp以下)であった。隣接する平行な電流線からの磁界はX又はZ軸方向となり、Y軸方向の成分は持たないことと、検知部16a、16bと隣接する銅棒18との距離が等しいことで、差動除去機能が効果的に働き、ノイズ的な磁界の影響もほぼ完全に除去できていることが確認された。
 図38には、一次導体1の入口9a、出口9bの幅W1(=W2)を1.2mmと4.8mmとしたときの測定電流と出力電圧との関係を示す。なお、検知回路100を5Vの単電源で駆動したため、測定電流0Aに対する出力電圧を2.5Vに合わせてある。
 図31で示したように素子に掛かるY方向の磁界Hyは、1Aあたり0.078ガウスであり、前述の直線性が±3ガウスの範囲で確保されたセンサでは、±38.5Aを越えると直線性が低下することになる。図38に示した実測データでも40Aを越えたあたりから直線精度が低下していることが判る。この条件では、±40Aの仕様となる。
 直線性の良い範囲を広げるためには、入口9a、出口9bの幅を大きくすれば良い。幅W1、W2を4.8mmにしたものは、磁界Hyは1Aあたり0.038ガウスとなり、±79Aまでは直線精度が確保されることになり、実測のデータでも±80Aで直線精度が確保されていることが判る。感度の差は、差動増幅のゲインで調整すればよい。
 このことは使用する磁気検知素子や回路構成を同じにして、電流の出入口の幅だけを変えることで、所望の測定電流範囲で直線精度を確保することができることを意味する。
 実施例8では、一次導体12をセンサ基板11上に配置している例を想定した。しかし、図39の変形例に示すように一次導体が銅板から成るバスバー19の場合は、磁気検知素子と処理回路の電気部品や端子とを実装したセンサ基板20とを位置合わせてしてモジュール化をしておくことができる。バスバー19は相手の基板に挿して半田付けして使えるよう、先端が細く加工されている。磁気検知ユニット14の保持は、簡単な図示ではあるが、樹脂モールド部材のような非導電部材24に組み付けて、位置精度と絶縁性の両方を確保しておくことができる。
なお、22はセンサ基板20上に設けられた回路素子、23は磁気検知ユニット14の信号を他の回路基板と接続する端子である。
 このような構成により、バスバー19には電流検知部の出入口21となる切り欠き部分の幅や位置を変えたものを何種類か用意するだけで、幅広い電流仕様に対応でき、製品の自由度が確保できる。
 以上で説明したように、本発明によれば、被測定電流が流れる導体の一部に被測定電流の流れる方向を主方向から別の方向に変更する方向変更領域を設けることに1つの特徴がある。さらに、本発明では、方向変更領域によって流れる方向を変更された被測定電流によって生じた磁界を磁気検知素子によって検知することに特徴がある。これにより、電流の測定対象である一次導体と平行に配置された別の導体に流れる電流が発生する磁界の影響を受けにくくなる。つまり、電流の測定精度を向上させることができる。
 方向変更領域としては、電流の流れを妨げる非導電領域がある。上述した実施例では非導電領域として孔を採用したが、当該孔に絶縁体などの非導電性の部材が挿入されていてもよい。また、貫通した孔ではなく、底のある穴であってよい。孔に代わりに穴を形成する場合は、穴の底を形成する部分の厚さは、磁界の方向を十分に変更できるよう、穴の深さに対して十分に薄くなければならない。
 電流は非導電性領域を迂回する迂回電流になるため、非導電性領域の近傍では磁界がひずむ。とりわけ、電流の主方向(Y軸方向)にのみ磁界検知感度を有した磁気検知素子を配置すれば、X軸方向など他の方向の磁界の影響を受けないため、測定精度が向上する。
 測定精度を向上させるために、磁気検知素子の数は複数であってもよい。たとえば、一次導体の中心を通るY軸に対して線対称となるように2個の磁気検知素子を配置したり、X軸に対して線対称となるように2個の磁気検知素子を配置したりしてもよい。さらに、これらを組み合わせて、合計で4個の磁気検知素子を配置してもよい。
 なお、実験結果から、磁気検知素子の検知部を、非導電領域の中心からX軸と、Y軸とでそれぞれ0.5ないし2.5mmの距離だけ離した範囲に配置すると、測定精度が向上する。
 また、方向変更領域としては、電流が流れる一次導体の主要部に対して、主要部の幅W0よりも狭い幅W2の出口9bと、主要部の後方に主要部の幅W0よりも狭い幅W2の入口9aを設けてもよい。なお、精度は低下するが、入口9aと出口9bとのうちいずれか一方のみを主要部に配置してもよい。なお、磁気検知素子の配置位置や数は、非導電領域についての配置位置や数と実質的に同様であってよい。
 また、被測定電流の検知範囲も、非導電領域の大きさを変えるだけで、容易に調整できるため、設計の自由度も大きい。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2010年3月26日提出の日本国特許出願特願2010-071362と、2010年10月25日提出の日本国特許出願特願2010-238564と、を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (28)

  1.  電流測定方法であって、
     被測定電流が流れる導体(1)の一部に前記被測定電流の流れる方向を主方向から別の方向に変更する方向変更領域(2;8;13;9a;9b;7a,7b;7c、7d)を設けるステップと、
     前記導体に対して少なくとも1つの磁気検知素子(3;3a,3b)を配置するステップと、
     前記方向変更領域(2;8;13;9a;9b;7a,7b;7c、7d)によって流れる方向を変更された前記被測定電流によって生じた磁界を前記磁気検知素子によって検知するステップと、
     前記磁気検知素子の出力から前記被測定電流の電流量を推定するステップと
    を有することを特徴とする電流測定方法。
  2.  前記被測定電流が流れる導体の一部に前記被測定電流の流れる方向を主方向から別の方向に変更する方向変更領域を設けるステップは、
     前記方向変更領域として、前記被測定電流が流れない非導電領域(2;8;13;7a,7b;7c、7d)を設けるステップ
    を含むことを特徴とする請求項1に記載の電流測定方法。
  3.  前記方向変更領域によって流れる方向を変更された前記被測定電流によって生じた磁界を前記磁気検知素子によって検知するステップは、
     前記磁気検知素子によって、前記非導電領域の外側を流れる迂回電流の前記被測定電流の主方向を向く磁界成分の検知するステップ
    を含むことを特徴とする請求項2に記載の電流測定方法。
  4.  前記導体に対して少なくとも1つの磁気検知素子を配置するステップは、
     一方向にのみ磁界検知感度を有した磁気検知素子を、前記非導電領域の近傍で、かつ、前記磁界検知感度の方向が前記被測定電流の主方向を向くように配置するステップ
    を含むことを特徴とする請求項3に記載の電流測定方法。
  5.  前記方向変更領域によって流れる方向を変更された前記被測定電流によって生じた磁界を前記磁気検知素子によって検知するステップは、
     前記主方向の軸に対して直交した軸であって、前記非導電領域の中心を通る軸に関して対称に配置された少なくとも2個の磁気検知素子により、極性が異なる前記迂回電流の前記主方向の磁界成分を、それぞれ検知するステップ
    を含むことを特徴とする請求項3に記載の電流測定方法。
  6.  前記方向変更領域によって流れる方向を変更された前記被測定電流によって生じた磁界を前記磁気検知素子によって検知するステップは、
     前記主方向の軸と平行な軸であって、前記非導電領域の中心を通る軸に関して対称に配置された少なくとも2個の磁気検知素子により、極性が異なる前記迂回電流の前記主方向の磁界成分を、それぞれ検知するステップ
    を含むことを特徴とする請求項3に記載の電流測定方法。
  7.  前記方向変更領域によって流れる方向を変更された前記被測定電流によって生じた磁界を前記磁気検知素子によって検知するステップは、
     前記主方向の軸に対して直交した軸であって、前記非導電領域の中心を通る軸に関して対称に配置された少なくとも2個の磁気検知素子と、前記主方向の軸と平行な軸であって、前記非導電領域の中心を通る軸に関して対称に配置された少なくとも2個の磁気検知素子とにより、極性が異なる前記迂回電流の前記主方向の磁界成分を、それぞれ検知するステップ
    を含むことを特徴とする請求項3に記載の電流測定方法。
  8.  前記導体に対して少なくとも1つの磁気検知素子を配置するステップは、
     前記非導電領域の中心を原点とし、前記被測定電流の主方向をY軸、該Y軸に直交する幅方向をX軸とし、前記磁気検知素子の検知部を、前記非導電領域の中心から前記X軸と、前記Y軸とでそれぞれ0.5ないし2.5mmの距離だけ離した範囲に配置するステップを含むことを特徴とする請求項4ないし7のいずれか1項に記載の電流測定方法。
  9.  前記被測定電流が流れる導体の一部に前記被測定電流の流れる方向を主方向から別の方向に変更する方向変更領域を設けるステップは、
     前記方向変更領域として、前記被測定電流が流れる導体(1)の、前記被測定電流が流れる主方向における前方に前記導体の主要部の幅(W0)よりも狭い幅(W2)の出口(9b)を設け、前記導体(1)の後方に前記導体(1)の幅(W0)よりも狭い幅(W2)の入口(9a)を設けるステップ
     を含むことを特徴とする請求項2に記載の電流測定方法。
  10.  前記導体に対して少なくとも1つの磁気検知素子を配置するステップは、
     前記導体の中心から、前記磁気検知素子を前記主方向からオフセットして配置するとともに、前記主方向と直交した方向からもオフセットして配置するステップ
    を含むことを特徴とする請求項9に記載の電流測定方法。
  11.  前記導体に対して少なくとも1つの磁気検知素子を配置するステップは、
     前記導体において、前記出口と前記入口とを結ぶ線を挟んで少なくとも2個の磁気検知素子を配置するステップ
    を含むことを特徴とする請求項10に記載の電流測定方法。
  12.  前記導体に対して少なくとも1つの磁気検知素子を配置するステップは、
     前記導体において、前記主方向に対して直交した線を挟んで少なくとも2個の磁気検知素子を配置するステップ
    を含むことを特徴とする請求項10に記載の電流測定方法。
  13.  前記導体に対して少なくとも1つの磁気検知素子を配置するステップは、
     前記導体において、前記主方向に対して直交した線を挟んで少なくとも2個の磁気検知素子を配置し、前記主方向に対して直交した線を挟んで少なくとも2個の磁気検知素子を配置するステップ
    を含むことを特徴とする請求項10に記載の電流測定方法。
  14.  前記導体に対して少なくとも1つの磁気検知素子を配置するステップは、
     前記磁気検知素子として、磁気インピーダンス素子又は直交フラックスゲート素子を配置するステップを含む
    ことを特徴とする請求項1ないし13の何れか1項に記載の電流測定方法。
  15.  電流測定装置であって、
     被測定電流が流れる導体(1)と、
     前記導体の一部に設けられ、前記被測定電流の流れる方向を主方向から別の方向に変更する方向変更領域(2;8;13;9a;9b;7a,7b;7c、7d)と、
     前記導体に対して配置された少なくとも1つの磁気検知素子(3;3a,3b)と、
     前記方向変更領域(2;8;13;9a;9b;7a,7b;7c、7d)によって流れる方向を変更された前記被測定電流によって生じた磁界を検知した前記磁気検知素子の出力から前記被測定電流の電流量を推定する推定回路と
    を有することを特徴とする電流測定装置。
  16.  前記方向変更領域は、前記被測定電流が流れない非導電領域(2;8;13;7a,7b;7c、7d)であることを特徴とする請求項14に記載の電流測定装置。
  17.  前記磁気検知素子は、前記非導電領域の外側を流れる迂回電流の前記被測定電流の主方向を向く磁界成分の検知する磁気検知素子であることを特徴とする請求項16に記載の電流測定装置。
  18.  前記磁気検知素子は、一方向にのみ磁界検知感度を有し、前記非導電領域の近傍で、かつ、前記磁界検知感度の方向が前記被測定電流の主方向を向くように配置された磁気検知素子であることを特徴とする請求項17に記載の電流測定装置。
  19.  前記磁気検知素子は、前記主方向の軸に対して直交した軸であって、前記非導電領域の中心を通る軸に関して対称に配置された少なくとも2個の磁気検知素子であり、
     前記少なくとも2個の磁気検知素子は、それぞれ極性が異なる前記迂回電流の前記主方向の磁界成分を検知することを特徴とする請求項17に記載の電流測定装置。
  20.  前記磁気検知素子は、前記主方向の軸と平行な軸であって、前記非導電領域の中心を通る軸に関して対称に配置された少なくとも2個の磁気検知素子であり、
     前記少なくとも2個の磁気検知素子は、それぞれ極性が異なる前記迂回電流の前記主方向の磁界成分を検知することを特徴とする請求項17に記載の電流測定装置。
  21.  前記磁気検知素子は、前記主方向の軸に対して直交した軸であって、前記非導電領域の中心を通る軸に関して対称に配置された少なくとも2個の磁気検知素子と、前記主方向の軸と平行な軸であって、前記非導電領域の中心を通る軸に関して対称に配置された少なくとも2個の磁気検知素子であることを特徴とする請求項17に記載の電流測定装置。
  22.  前記磁気検知素子は、前記非導電領域の中心を原点とし、前記被測定電流の主方向をY軸、該Y軸に直交する幅方向をX軸とし、前記磁気検知素子の検知部を、前記非導電領域の中心から前記X軸と、前記Y軸とでそれぞれ0.5ないし2.5mmの距離だけ離した範囲に配置するステップを含むことを特徴とする請求項18ないし21のいずれか1項に記載の電流測定装置。
  23.  前記方向変更領域は、前記被測定電流が流れる導体(1)において、前記被測定電流が流れる主方向における前方に設けられた前記導体の主要部の幅(W0)よりも狭い幅(W2)の出口(9b)と、前記導体(1)の後方に設けられた前記導体(1)の幅(W0)よりも狭い幅(W2)の入口(9a)とを含むことを特徴とする請求項16に記載の電流測定装置。
  24.  前記磁気検知素子は、前記導体の中心から、前記主方向からオフセットして配置されているとともに、前記主方向と直交した方向からもオフセットして配置されていることを特徴とする請求項23に記載の電流測定装置。
  25.  前記磁気検知素子は、前記導体において、前記出口と前記入口とを結ぶ線を挟んで配置された少なくとも2個の磁気検知素子を含むことを特徴とする請求項24に記載の電流測定装置。
  26.  前記磁気検知素子は、前記導体において、前記主方向に対して直交した線を挟んで配置された少なくとも2個の磁気検知素子を含むことを特徴とする請求項24に記載の電流測定装置。
  27.  前記磁気検知素子は、前記導体において、前記主方向に対して直交した線を挟んで配置された少なくとも2個の磁気検知素子と、前記主方向に対して直交した線を挟んで配置された少なくとも2個の磁気検知素子とを含むことを特徴とする請求項24に記載の電流測定装置。
  28.  前記磁気検知素子は、磁気インピーダンス素子又は直交フラックスゲート素子であることを特徴とする請求項15ないし27の何れか1項に記載の電流測定装置。
PCT/JP2011/001625 2010-03-26 2011-03-18 電流から発生する磁界を検知して電流量を推定する方法 WO2011118184A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11758995.2A EP2562550B1 (en) 2010-03-26 2011-03-18 Method for detecting magnetic field generated by a current to estimate the amount of current
JP2012506818A JP5616431B2 (ja) 2010-03-26 2011-03-18 電流から発生する磁界を検知して電流量を推定する方法
CN201180016327.2A CN102822685B (zh) 2010-03-26 2011-03-18 检测由电流产生的磁场来估计电流量的方法
US13/604,022 US9746497B2 (en) 2010-03-26 2012-09-05 Method of detecting magnetic field generated from current and estimating current amount

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010071362 2010-03-26
JP2010-071362 2010-03-26
JP2010238564 2010-10-25
JP2010-238564 2010-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/604,022 Continuation US9746497B2 (en) 2010-03-26 2012-09-05 Method of detecting magnetic field generated from current and estimating current amount

Publications (1)

Publication Number Publication Date
WO2011118184A1 true WO2011118184A1 (ja) 2011-09-29

Family

ID=44672763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001625 WO2011118184A1 (ja) 2010-03-26 2011-03-18 電流から発生する磁界を検知して電流量を推定する方法

Country Status (5)

Country Link
US (1) US9746497B2 (ja)
EP (1) EP2562550B1 (ja)
JP (1) JP5616431B2 (ja)
CN (1) CN102822685B (ja)
WO (1) WO2011118184A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103185827A (zh) * 2011-12-27 2013-07-03 阿尔卑斯绿色器件株式会社 电流传感器
WO2013136751A1 (ja) * 2012-03-16 2013-09-19 キヤノン電子株式会社 計測モジュール、電子機器、電源タップ及び電源ユニット、並びに組込型計測モジュール
JP2013234990A (ja) * 2012-04-13 2013-11-21 Canon Electronics Inc 計測モジュール、電子機器、電源タップ及び電源ユニット、並びに組込型計測モジュール
JP2015132514A (ja) * 2014-01-10 2015-07-23 日立金属株式会社 電流検出構造
JP2016109663A (ja) * 2014-11-28 2016-06-20 トヨタ自動車株式会社 電流検出装置
JP2016142655A (ja) * 2015-02-03 2016-08-08 アルプス・グリーンデバイス株式会社 電流測定装置
JP2017129455A (ja) * 2016-01-20 2017-07-27 ローム株式会社 電流センサ
WO2023136125A1 (ja) * 2022-01-14 2023-07-20 株式会社アイシン 電流センサ装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014007046T5 (de) * 2014-10-10 2017-08-10 Hitachi Metals, Ltd. Elektrische Stromerfassungsvorrichtung und elektrisches Stromerfassungsverfahren
JP6414498B2 (ja) * 2015-03-27 2018-10-31 愛知製鋼株式会社 差動型磁気センサ
JP6370768B2 (ja) * 2015-11-26 2018-08-08 矢崎総業株式会社 磁界検出センサ
EP3376238A1 (en) * 2017-03-16 2018-09-19 LEM Intellectual Property SA Electrical current transducer with magnetic field gradient sensor
JP6932561B2 (ja) 2017-06-15 2021-09-08 キヤノン電子株式会社 3軸磁気検出装置および人工衛星
CN107860959A (zh) * 2017-10-20 2018-03-30 宁波中车时代传感技术有限公司 一种基于磁通门芯片的开环电流传感器
JP7003608B2 (ja) * 2017-12-05 2022-01-20 日立金属株式会社 電流センサ
US11493660B2 (en) 2018-01-31 2022-11-08 Canon Denshi Kabushiki Kaisha Inspection device
DE102020108880B4 (de) * 2020-03-31 2024-05-08 Infineon Technologies Ag Sensorvorrichtungen mit Bypassstrompfad und zugehörige Herstellungsverfahren
JP2022138229A (ja) * 2021-03-10 2022-09-26 株式会社リコー 磁気計測装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264361A (ja) 2000-03-21 2001-09-26 Stanley Electric Co Ltd 電流センサ
JP2002516396A (ja) * 1998-05-14 2002-06-04 ダイムラークライスラー アクチエンゲゼルシャフト ホールセンサによって導体を流れる電流を非接触で測定する方法およびホールセンサ装置
DE10110254A1 (de) * 2001-03-02 2002-09-05 Sensitec Gmbh Stromsensor, bestehend aus Stromleitern und Magnetfeld-oder Magnetfeldgradientensensoren
JP2006184269A (ja) 2004-12-02 2006-07-13 Yazaki Corp 電流センサ
JP2007121283A (ja) * 2005-10-08 2007-05-17 Sentron Ag 電流測定値用組立体群
WO2008030129A2 (en) * 2006-09-06 2008-03-13 Radivoje Popovic Sensor and procedure for measuring bus bar current with skin effect correction
JP2010071362A (ja) 2008-09-17 2010-04-02 Toyota Motor Corp チェーンテンショナ、並びに同チェーンテンショナを具備するチェーンの張力制御装置
JP2010238564A (ja) 2009-03-31 2010-10-21 Yazaki Corp Lifコネクタ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041780A (en) * 1988-09-13 1991-08-20 California Institute Of Technology Integrable current sensors
US6271656B1 (en) * 1999-08-03 2001-08-07 Eaton Corporation Electrical current sensing apparatus
JP3696448B2 (ja) * 1999-09-02 2005-09-21 矢崎総業株式会社 電流検出器
JP3631925B2 (ja) * 1999-09-07 2005-03-23 矢崎総業株式会社 電流検出器及びこれを用いた電気接続箱
JP2001116814A (ja) 1999-10-22 2001-04-27 Canon Electronics Inc 磁気インピーダンス素子
JP2002107383A (ja) * 2000-09-27 2002-04-10 Stanley Electric Co Ltd 電流センサ
JP2002131342A (ja) 2000-10-19 2002-05-09 Canon Electronics Inc 電流センサ
US20040053425A1 (en) * 2002-04-19 2004-03-18 Baylor College Of Medicine Quantitative measurement of proteins using genetically-engineeredglucose oxidase fusion molecules
JP4160330B2 (ja) 2002-07-12 2008-10-01 キヤノン電子株式会社 磁界検出回路
JP4247821B2 (ja) 2003-04-11 2009-04-02 キヤノン電子株式会社 電流センサ
US7816025B2 (en) 2006-08-23 2010-10-19 Canon Kabushiki Kaisha Enzyme electrode, enzyme electrode producing method, sensor and fuel cell each using enzyme electrode
DE102008039568B4 (de) * 2008-08-25 2015-03-26 Seuffer gmbH & Co. KG Stromerfassungsvorrichtung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516396A (ja) * 1998-05-14 2002-06-04 ダイムラークライスラー アクチエンゲゼルシャフト ホールセンサによって導体を流れる電流を非接触で測定する方法およびホールセンサ装置
JP2001264361A (ja) 2000-03-21 2001-09-26 Stanley Electric Co Ltd 電流センサ
DE10110254A1 (de) * 2001-03-02 2002-09-05 Sensitec Gmbh Stromsensor, bestehend aus Stromleitern und Magnetfeld-oder Magnetfeldgradientensensoren
JP2006184269A (ja) 2004-12-02 2006-07-13 Yazaki Corp 電流センサ
JP2007121283A (ja) * 2005-10-08 2007-05-17 Sentron Ag 電流測定値用組立体群
WO2008030129A2 (en) * 2006-09-06 2008-03-13 Radivoje Popovic Sensor and procedure for measuring bus bar current with skin effect correction
JP2010071362A (ja) 2008-09-17 2010-04-02 Toyota Motor Corp チェーンテンショナ、並びに同チェーンテンショナを具備するチェーンの張力制御装置
JP2010238564A (ja) 2009-03-31 2010-10-21 Yazaki Corp Lifコネクタ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103185827A (zh) * 2011-12-27 2013-07-03 阿尔卑斯绿色器件株式会社 电流传感器
WO2013136751A1 (ja) * 2012-03-16 2013-09-19 キヤノン電子株式会社 計測モジュール、電子機器、電源タップ及び電源ユニット、並びに組込型計測モジュール
US9651583B2 (en) 2012-03-16 2017-05-16 Canon Denshi Kabushiki Kaisha Measurement module, electronic apparatus, power supply tap, power supply unit, and built-in measurement module
JP2013234990A (ja) * 2012-04-13 2013-11-21 Canon Electronics Inc 計測モジュール、電子機器、電源タップ及び電源ユニット、並びに組込型計測モジュール
JP2015132514A (ja) * 2014-01-10 2015-07-23 日立金属株式会社 電流検出構造
JP2016109663A (ja) * 2014-11-28 2016-06-20 トヨタ自動車株式会社 電流検出装置
JP2016142655A (ja) * 2015-02-03 2016-08-08 アルプス・グリーンデバイス株式会社 電流測定装置
JP2017129455A (ja) * 2016-01-20 2017-07-27 ローム株式会社 電流センサ
WO2023136125A1 (ja) * 2022-01-14 2023-07-20 株式会社アイシン 電流センサ装置

Also Published As

Publication number Publication date
CN102822685A (zh) 2012-12-12
JP5616431B2 (ja) 2014-10-29
EP2562550A4 (en) 2017-05-31
US9746497B2 (en) 2017-08-29
US20120326716A1 (en) 2012-12-27
EP2562550B1 (en) 2019-02-13
JPWO2011118184A1 (ja) 2013-07-04
CN102822685B (zh) 2014-11-05
EP2562550A1 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
WO2011118184A1 (ja) 電流から発生する磁界を検知して電流量を推定する方法
JP4833111B2 (ja) 電流検出器
JP5385996B2 (ja) 電流測定装置
WO2018185964A1 (ja) 電流センサ
JP5886097B2 (ja) Acインレット、電子機器および電源タップ
US9651583B2 (en) Measurement module, electronic apparatus, power supply tap, power supply unit, and built-in measurement module
WO2016194240A1 (ja) 電流センサ
US10545178B2 (en) Current sensor for measuring an alternating current
JP6270323B2 (ja) 計測モジュール、電子機器、電源タップ及び電源ユニット、並びに組込型計測モジュール
JP2015137892A (ja) 電流検出構造
JPWO2014203862A1 (ja) 電流センサ
JP6464342B2 (ja) 電力計測装置
JP5783361B2 (ja) 電流測定装置
JP5187598B2 (ja) 電流検出回路
WO2002061440A1 (en) Arrangement for measuring the magnetic field strength
JP2010127736A (ja) 多端子電流検出用抵抗器
EP3919922B1 (en) Current sensor system
JP2013053914A (ja) 電流測定装置
JP2022052554A (ja) 電流検出装置
JP2009222696A (ja) 多相電流の検出装置
JP2011043338A (ja) 電流センサ
US20230040496A1 (en) Current sensor
JP2017058275A (ja) 電流センサおよびそれを備える電力変換装置
JP2017133842A (ja) 電流センサ及び電流検出装置
JP2022158768A (ja) 電流検出装置及び該装置の回路部

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016327.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506818

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011758995

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE