WO2011116606A1 - 正交频分复用系统中的信道估计方法及装置 - Google Patents

正交频分复用系统中的信道估计方法及装置 Download PDF

Info

Publication number
WO2011116606A1
WO2011116606A1 PCT/CN2010/078354 CN2010078354W WO2011116606A1 WO 2011116606 A1 WO2011116606 A1 WO 2011116606A1 CN 2010078354 W CN2010078354 W CN 2010078354W WO 2011116606 A1 WO2011116606 A1 WO 2011116606A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
ofdm symbol
reference signal
resource element
channel estimation
Prior art date
Application number
PCT/CN2010/078354
Other languages
English (en)
French (fr)
Inventor
游月意
肖海勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/575,900 priority Critical patent/US8798178B2/en
Priority to IN6619DEN2012 priority patent/IN2012DN06619A/en
Priority to JP2012553169A priority patent/JP5548785B2/ja
Priority to EP10848268.8A priority patent/EP2515570B1/en
Publication of WO2011116606A1 publication Critical patent/WO2011116606A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • H04L25/0234Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals by non-linear interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • H04L27/2633Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators using partial FFTs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to channel estimation techniques, and more particularly to a channel estimation method and apparatus in an orthogonal frequency division multiplexing system. Background technique
  • channel estimation is essential. At the receiving end, whether it is signal detection or measurement of various parameters, it is necessary to first estimate the channel first, and then use the estimated channel coefficients for signal detection and the like.
  • LTE Long Term Evolution
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the OFDM (Orthogonal Frequency Division Multiplexing) system channel estimation is theoretically a 2D Wiener estimator as the best estimator, and the estimator can be used for channel estimation for all subcarriers of the OFDM system.
  • the frequency domain interpolation after the first time domain interpolation; the channel estimation for each OFDM symbol can be dynamically calculated by three times the frequency domain interpolation; this method has a very high computational complexity due to too many frequency domain interpolation times.
  • Time domain interpolation after frequency domain interpolation 6 times upper frequency domain interpolation method can be used for OFDM symbols including RS (reference signal), and interpolation results are used to calculate OFDM symbols without RS Channel estimation.
  • RS reference signal
  • the disadvantages of this method are: on the one hand, the result of frequency domain interpolation is preserved, and the storage amount is large; on the other hand, the frequency domain interpolation method uses 6 times of the upper-like method, and the channel estimation performance loss is large, especially in frequency selection. Under strong channel conditions. Summary of the invention
  • One of the objects of the present invention is to provide a channel estimation method and apparatus in an orthogonal frequency division multiplexing system, which can realize storage sharing and save storage.
  • the invention provides a channel estimation method in an orthogonal frequency division multiplexing system, comprising the steps of:
  • step ⁇ Determine whether the channel estimation for the packet is completed, and if yes, end; otherwise, return to step ⁇ , the channel estimation includes the following steps:
  • a second time domain interpolation is performed, and channel coefficients of the OFDM symbol without the reference signal are calculated using the channel coefficients on the OFDM symbol including the reference signal, thereby obtaining channel coefficients on all OFDM symbols.
  • the channel coefficient calculation of the resource element includes the steps of:
  • the information of the resource element is distinguished, and the channel coefficient of the resource element is calculated according to the information of the resource element.
  • the channel estimate is based on the formula:
  • j AT 3 ⁇ 4 / > AT SymDL is the number of OFDM symbols in a single subframe
  • 'SyleDL- ⁇ SymDL denotes the k-th subcarrier channel estimation value of the current subframe OFDM symbol before correction; ⁇ (/ ⁇ ) represents the corrected k-th subcarrier channel estimation value of the current subframe OFDM symbol; i represents the current subframe; I-1 represents the previous subframe; k is the arrangement position of the subcarriers.
  • the step of distinguishing the information of the resource element and calculating the channel coefficient of the resource element according to the information of the resource element includes:
  • the channel coefficient of the resource element is linearly interpolated by using the previous resource element of the resource element and the channel coefficient of the subsequent resource element.
  • the channel estimation includes the steps of:
  • the present invention also provides a channel estimation apparatus in an Orthogonal Frequency Division Multiplexing system, comprising: a packet module, grouping physical resource blocks within a bandwidth of an orthogonal frequency division multiplexing system; Extracting an estimation module, extracting at least one group from the group for channel estimation, and acquiring channel coefficients; wherein, the number of extracted packets is less than the total number of packets;
  • the verification module performs MIMO demodulation by using the obtained channel coefficients
  • the judging module judges whether the channel estimation for the packet is completed; when the channel estimation is not completed, notifying the decimation estimation module to continue extracting the packet for channel estimation.
  • the extraction estimation module includes:
  • a first estimating unit estimating a channel coefficient at the reference signal
  • the first time domain interpolation unit performs the first time domain interpolation to change the reference signal density on the OFDM symbol including the reference signal to 1/3, and calculates a channel coefficient of the resource element on the OFDM symbol including the reference signal;
  • the first frequency domain interpolation unit performs 3 times upper frequency domain interpolation on the OFDM symbol including the reference signal, and obtains a channel coefficient on the OFDM symbol including the reference signal;
  • the second time domain interpolating unit performs a second time domain interpolation to calculate channel coefficients of the OFDM symbol without the reference signal by using channel coefficients on the OFDM symbol including the reference signal, thereby obtaining channel coefficients on all OFDM symbols.
  • the first time domain interpolation unit includes:
  • a first determining subunit determining whether it is a resource element on the first OFDM symbol in the current subframe
  • a second determining subunit determining whether the previous subframe of the resource element on the first OFDM symbol in the current subframe is a downlink subframe
  • a channel coefficient of the resource element is interpolated by using a previous resource element of the resource element and a channel coefficient line 'I' of the subsequent resource element;
  • the second calculation subunit is obtained by linear prediction of channel coefficients of the last two resource elements of the resource element.
  • the extraction estimation module includes: a second estimating unit, estimating a channel coefficient at the reference signal;
  • a second frequency domain interpolation unit performs 6 times upper frequency domain interpolation on the OFDM symbol including the reference signal to obtain a channel coefficient on the OFDM symbol including the reference signal;
  • a third time domain interpolation unit performing first time domain interpolation to correct channel coefficients on the OFDM symbol including the reference signal
  • the fourth time domain interpolation unit performs a second time domain interpolation to calculate channel coefficients of the OFDM symbol without the reference signal by using channel coefficients on the OFDM symbol including the reference signal, thereby obtaining channel coefficients on all OFDM symbols.
  • the channel estimation method and device in the orthogonal frequency division multiplexing system of the present invention firstly groups physical resource blocks in the bandwidth of the orthogonal frequency division multiplexing system, and then separately performs channel estimation processing for each group of resource blocks to implement Storage sharing saves storage.
  • FIG. 1 is a flow chart showing the steps of a channel estimation method in an orthogonal frequency division multiplexing system according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of steps of a channel estimation method according to another embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a process for calculating channel coefficient of a resource element according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a first time domain interpolation in another embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of steps of a channel estimation method according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a first time domain interpolation according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a channel estimation apparatus in an Orthogonal Frequency Division Multiplexing (OFDM) system according to an embodiment of the present invention.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 8 is a schematic structural diagram of a decimation estimation module according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a decimation estimation module according to still another embodiment of the present invention.
  • FIG. 10 is a channel estimation apparatus in an orthogonal frequency division multiplexing system according to still another embodiment of the present invention. Set.
  • the channel estimation method and apparatus in the orthogonal frequency division multiplexing system of the present invention first divides physical resource blocks (PRBs) within the bandwidth of the orthogonal frequency division multiplexing system into groups, and then separately performs each group of physical resource blocks in sequence. Channel estimation processing to achieve storage sharing, thereby saving storage.
  • PRBs physical resource blocks
  • an OFDM (Orthogonal Frequency Division Multiplexing) symbol channel estimation result including a reference signal (RS) is optimized to ensure channel estimation performance;
  • RS reference signal
  • a channel estimation method in an Orthogonal Frequency Division Multiplexing (OFDM) system including:
  • Step S10 group physical resource blocks in the bandwidth of the orthogonal frequency division multiplexing system
  • Step S11 Extract at least one group from the group for channel estimation, and obtain channel coefficients; wherein, the number of extracted packets is less than the total number of packets;
  • Step S12 Perform MIMO demodulation by using the obtained channel coefficients.
  • Step S13 Determine whether the channel estimation for the packet is completed, and if yes, end; otherwise, return to step Sl1.
  • the physical resource blocks of the M group are sequentially numbered 1 , 2, ..., M.
  • channel estimation may be performed on each group of physical resource blocks in sequence to obtain channel coefficients.
  • at least one group of calculated channel coefficients may be extracted from the foregoing group; after channel estimation is completed, other physical resource block groups are extracted for channel estimation until The packet channel estimation is all completed.
  • the number of packets extracted each time is less than the total number of packets (M).
  • the first group of the packets 1 to M may be extracted first for channel estimation, and then the first 1+1 group is extracted, and the channel estimation of the packets 1 to M is completed in this order.
  • the channel estimation here does not impose any restrictions on the channel estimation method used.
  • MIMO Multi-Input Multiple-Out-put
  • step S13 after completing the channel estimation, obtaining the channel coefficients, and demodulating by MIMO, determining whether the channel estimations of all the packets have been completed, and if they have been completed, ending; otherwise, continuing the channel estimation of the packets ( Returning to step S11), steps S11 and S12 are looped until the channel estimation is all completed.
  • the channel estimation method in the orthogonal frequency division multiplexing system of this embodiment divides the physical resource blocks in the bandwidth of the orthogonal frequency division multiplexing system into several groups, and then separately performs channel estimation processing on each group of physical resource blocks in order to Achieve storage sharing to save storage.
  • the channel estimation in the foregoing step S11 may include:
  • Step S110 Estimating a channel coefficient at the reference signal
  • Step S11 performing the first time domain interpolation, changing the reference signal density on the OFDM symbol including the reference signal to 1/3, and calculating the channel coefficient of the resource element on the OFDM symbol including the reference signal;
  • Step S112 including reference The OFDM symbol of the signal is subjected to 3 times upper frequency domain interpolation to obtain a channel coefficient on the OFDM symbol including the reference signal;
  • Step S113 Perform a second time domain interpolation, calculate channel coefficient of the OFDM symbol without the reference signal by using channel coefficients on the OFDM symbol including the reference signal, and obtain channel coefficients on all OFDM symbols.
  • step S110 it is first necessary to estimate the channel coefficients at the reference signal (RS).
  • step S111 in the first time domain interpolation process, only the channel coefficients on the OFDM symbol containing the reference signal are calculated.
  • the channel coefficient calculation of the resource element includes:
  • Step S1110 determining whether it is a resource element on the first OFDM symbol in the current subframe; if yes, proceeding to step S1111; otherwise, proceeding to step S1112;
  • Step S1 l determining whether the previous subframe of the resource element is a downlink subframe; if yes, proceeding to step S1112; otherwise, proceeding to step S1113;
  • Step S1112 linearly interpolating channel coefficients of the resource elements by using channel elements of the previous resource element and the subsequent resource element of the resource element;
  • Step S1113 linearly predicting the channel coefficient of the last two resource elements of the resource element.
  • the information of the resource elements may be first distinguished, and then the channel coefficients of the resource elements are calculated according to the information of the resource elements.
  • the information may include whether it is a resource element on the first OFDM symbol in the current subframe and whether the previous subframe is a downlink subframe or the like.
  • the first time domain interpolation requires calculation of the channel coefficients of the resource elements (RE) on the 0#, 4#, 7#, and ll# OFDM symbols, as shown by the hatched portion in FIG. If the previous subframe of the current subframe containing the slash filled portion is a downlink subframe, the time domain interpolation process is as shown by the solid line in FIG. 4, using the arrow start position and the reference at ⁇ 2 , or 2 ) Signal channel coefficient The channel coefficient at the resource element pointed by the linear interpolation arrow.
  • RE resource elements
  • the 0# OFDM symbol channel coefficient needs to be linearly predicted by using the reference signal channel coefficients at the start positions of the dotted arrows ( 2 and, or 2 and ? 33 ), and the channel coefficients of the remaining resource elements. The calculation is consistent with when the previous subframe is a downlink frame.
  • the channel coefficient on the OFDM symbol including the reference signal may be obtained by performing 3 times upper frequency domain interpolation by using the OFDM symbol of the reference signal.
  • This kind of sample can be It is implemented by FIR (Constant Impulse Response) filtering, or IFFT (Inverse Fast Fourier Transform) I FFT (Fast Fourier Transform) interpolation.
  • step S113 after acquiring the channel coefficients on the OFDM symbol including the reference signal, performing the second time domain interpolation, and calculating the channel of the OFDM symbol without the reference signal by using the channel coefficients on the OFDM symbol including the reference signal. Coefficients to obtain channel coefficients on all OFDM symbols.
  • the above time domain or frequency domain interpolation can be performed by referring to the LTE (Long Term Evolution) protocol.
  • LTE Long Term Evolution
  • the channel estimation method in the orthogonal frequency division multiplexing system of this embodiment optimizes the channel estimation performance by optimizing the OFDM symbol channel estimation result including the reference signal.
  • a channel estimation method in an orthogonal frequency division multiplexing system according to still another embodiment of the present invention is proposed.
  • the above channel estimation includes:
  • Step S120 Estimating a channel coefficient at the reference signal
  • Step S121 Perform 6 times uplink frequency domain interpolation on the OFDM symbol including the reference signal, and obtain a channel coefficient on the OFDM symbol including the reference signal.
  • Step S122 Perform a first time domain interpolation to correct channel coefficients on the OFDM symbol including the reference signal.
  • Step S123 Perform a second time domain interpolation, calculate channel coefficient of the OFDM symbol without the reference signal by using channel coefficients on the OFDM symbol including the reference signal, thereby obtaining all
  • the channel coefficients at the reference signal (RS) need to be estimated first.
  • the OFDM symbol including the reference signal is first subjected to 6 times upper frequency domain interpolation to obtain channel coefficients on the OFDM symbol including the reference signal. This sample can be used
  • step S122 After obtaining the frequency domain interpolation result on the OFDM symbol including the reference signal, as described in step S122, the first time domain interpolation is started, and the OFDM symbol including the reference signals (0#, 4#, 7#, and 11#) is modified. Channel coefficient.
  • the current subframe 0# OFDM symbol channel estimation is corrected, if the previous subframe is a downlink subframe, the current subframe is linearly interpolated with the previous subframe 11# OFDM symbol and the current subframe 4# OFDM symbol. 0# OFDM symbol, plus the channel estimate of the current subframe 0# OFDM symbol itself. If the previous subframe is not a downlink subframe, the current subframe 4# OFDM symbol and the current subframe 11# OFDM symbol are linearly interpolated with the current subframe 0# OFDM symbol, and the channel estimation of the current subframe 0# OFDM symbol itself is added. . As the formula:
  • N s is the number of OFDM symbols in a single sub-ton
  • SymDL represents the current subframe before correction /; # OFDM symbol k-th sub-carrier channel estimation value; represents the corrected current subframe / ⁇ OFDM symbol k-th sub-carrier channel estimation value; The current subframe; i-1 represents the previous subframe; k is the arrangement position of the subcarriers, here the kth subcarrier of the 0# OFDM symbol.
  • the current subframe 7# OFDM symbol and the current subframe 0# OFDM symbol may be linearly interpolated with the current subframe 4# OFDM symbol, plus the current subframe 4# OFDM symbol.
  • Its own channel estimate, ie k 4.
  • the current subframe 7# OFDM symbol and the next subframe 0# OFDM symbol may be linearly interpolated with the current subframe 11# OFDM symbol, plus the current subframe ll#
  • the current subframe 11# OFDM symbol and the next subframe 4# OFDM symbol may be linearly interpolated with the next subframe 0# OFDM symbol, plus the next subframe 0.
  • the second time domain interpolation is started, and the channel coefficients of the OFDM symbol not including the reference signal may be calculated by using channel coefficients on the OFDM symbol including the reference signal, thereby obtaining Channel coefficients on all OFDM symbols.
  • the frequency domain interpolation is reduced by only performing frequency domain interpolation on the OFDM symbol including the reference signal, thereby reducing computational complexity.
  • a channel estimation apparatus 20 in an orthogonal frequency division multiplexing system including:
  • the grouping module 21 groups the physical resource blocks in the bandwidth of the orthogonal frequency division multiplexing system; the decimation estimation module 22 extracts at least one group from the packets for channel estimation, and obtains channel coefficients; wherein, the number of extracted packets is less than the total Number of groups
  • the verification module 23 performs MIMO demodulation by using the channel coefficients acquired by the decimation estimation module 22; the determining module 24 determines whether the channel estimation for the packet is completed; when the channel estimation is not completed, The notification extraction estimation module 22 continues to extract packets for channel estimation.
  • the M resource blocks are numbered 1 , 2, ..., M in turn.
  • the above-mentioned decimation estimation module 22 may sequentially perform channel estimation on each group of physical resource blocks to obtain channel coefficients.
  • at least one set of computation channel coefficients may be extracted from the foregoing packet; after the channel estimation is completed, other physical resource block packets are extracted for channel estimation until the packet channel estimation is completed.
  • the number of packets extracted each time is less than the total number of packets (M).
  • M the total number of packets
  • the first group of the packets 1 to M can be extracted first for channel estimation, and then the 1+1th group is extracted after completion, so that the channel estimation of the packets 1 to M is completed in this order.
  • the channel estimation here does not impose any restrictions on the channel estimation method used.
  • the above-mentioned checking module 23 can perform MIMO (Multiple-Input Multiple-Output) demodulation by using the channel coefficients acquired by the decimation estimation module 22 after each channel estimation is performed.
  • MIMO Multiple-Input Multiple-Output
  • the determining module 24 after completing the channel estimation, obtaining the channel coefficients and demodulating by MIMO, determining whether the channel estimations of all the packets have been completed, and if they have been completed, ending; otherwise, continuing the channel estimation of the packet, looping Channel estimation and verification are performed until the channel estimation is all over.
  • the channel estimation apparatus 20 in the orthogonal frequency division multiplexing system of the present embodiment divides the physical resource blocks in the bandwidth of the orthogonal frequency division multiplexing system into several groups, and then separately performs channel estimation processing for each group of physical resource blocks. To achieve storage sharing, thereby saving storage.
  • the extraction estimation module 22 includes:
  • the first time domain interpolation unit 222 performs the first time domain interpolation and uses the OFDM with the reference signal
  • the reference signal density on the symbol becomes 1/3, and the channel coefficient of the resource element on the OFDM symbol including the reference signal is calculated;
  • the first frequency domain interpolating unit 223 performs 3 times upper frequency domain interpolation on the OFDM symbol including the reference signal to obtain a channel coefficient on the OFDM symbol including the reference signal;
  • the second time domain interpolating unit 224 performs a second time domain interpolation to calculate channel coefficients of the OFDM symbols without the reference signal by using channel coefficients on the OFDM symbols including the reference signals, thereby obtaining channel coefficients on all OFDM symbols.
  • the first estimating unit 221 needs to estimate the channel coefficient at the reference signal (RS).
  • the first time domain interpolation unit 222 calculates the channel coefficients on the OFDM symbol including the reference signal in the first time domain interpolation process.
  • the first time domain interpolation unit 222 may include: a first determining subunit 2221, a second determining subunit 2222, a first calculating subunit 2223, and a second calculating subunit 2224; the first determining subunit 2221 Determining whether it is a resource element on the first OFDM symbol in the current subframe; the second determining sub-unit 2222, determining whether the previous subframe of the resource element on the first OFDM symbol in the current subframe is a downlink subframe The first calculating subunit 2223, linearly interpolating the channel coefficients of the resource element by using the previous resource element of the resource element and the channel coefficient of the subsequent resource element; the second calculating subunit 2224, using the resource element The channel coefficients of the last two resource elements are linearly predicted.
  • the first determining sub-unit 2221 may first determine whether the calculated resource element is a resource element on the first OFDM symbol in the current subframe; if yes, use the second determining sub-unit 2222 to determine whether the previous subframe of the resource element is a downlink subframe; otherwise, the first resource unit 2223 linearly interpolates the channel coefficients of the resource element by using the previous resource element of the resource element and the channel coefficient of the subsequent resource element; the previous subframe of the resource element is In the downlink subframe, the channel coefficients of the resource element may be linearly interpolated by the first resource unit and the channel coefficient of the latter resource element by the first calculation sub-unit 2223; otherwise, the second calculation sub-unit 2224 is utilized. Above resources The channel coefficients of the last two resource elements of the element are linearly predicted.
  • the information of the resource elements may be first distinguished, and then the channel coefficients of the resource elements are calculated according to the information of the resource elements.
  • the information may include whether it is the first one in the current subframe
  • the resource element on the OFDM symbol and whether the previous subframe is a downlink subframe or the like is a downlink subframe or the like.
  • the first time domain interpolation requires calculation of the channel coefficients of the resource elements (RE) on the 0#, 4#, 7#, and ll# OFDM symbols, as shown by the hatched portion in FIG. If the previous subframe of the current subframe including the gray portion is a downlink subframe, the time domain interpolation process is as shown by the solid line in FIG. 4, using the start position of the arrow and the reference signal channel coefficient at or ⁇ and ⁇ ) The channel coefficient at the resource element pointed to by the linear interpolation arrow.
  • RE resource elements
  • the 0# OFDM symbol channel coefficient needs to be linearly predicted by the reference signal channel coefficients at the start position of the dotted arrow ( 2 and, or 2 and), and the channel coefficients of the remaining resource elements are calculated and
  • the previous subframe is the same as the downlink frame.
  • the first frequency domain interpolating unit 223 may perform 3 times upper frequency domain interpolation by using an OFDM symbol including a reference signal to obtain a channel coefficient on the OFDM symbol including the reference signal.
  • the second time domain interpolating unit 224 performs the second time domain interpolation after acquiring the channel coefficients on the OFDM symbol including the reference signal, and calculates the OFDM without the reference signal by using the channel coefficients on the OFDM symbol including the reference signal. The channel coefficients of the symbols, thereby obtaining channel coefficients on all OFDM symbols.
  • the channel estimating apparatus 20 in the orthogonal frequency division multiplexing system of the present embodiment ensures channel estimation performance by optimizing the OFDM symbol channel estimation result including the reference signal.
  • the extraction estimation module 22 includes:
  • the second frequency domain interpolation unit 232 performs 6 times uplink frequency domain interpolation on the OFDM symbol including the reference signal, and acquires channel coefficients on the OFDM symbol including the reference signal; a third time domain interpolation unit 233, performing first time domain interpolation, and correcting channel coefficients on the OFDM symbol including the reference signal;
  • the fourth time domain interpolation unit 234 performs a second time domain interpolation to calculate channel coefficients of the OFDM symbol without the reference signal by using channel coefficients on the OFDM symbol including the reference signal, thereby obtaining channel coefficients on all OFDM symbols.
  • the second estimating unit 231 described above needs to estimate the channel coefficient at the reference signal (RS).
  • the second frequency domain interpolating unit 232 performs 6 times upper frequency domain interpolation on the OFDM symbol including the reference signal, thereby acquiring channel coefficients on the OFDM symbol including the reference signal.
  • the third time domain interpolation unit 233 obtains a frequency domain interpolation result on the OFDM symbol including the reference signal, and starts the first time domain interpolation, and the correction includes the reference signals (0#, 4#, 7#, and 11#). Channel coefficients on OFDM symbols.
  • the current subframe 0# OFDM symbol channel estimation is corrected, if the previous subframe is a downlink subframe, the current subframe is linearly interpolated with the previous subframe 11# OFDM symbol and the current subframe 4# OFDM symbol. 0# OFDM symbol, plus the channel estimate of the current subframe 0# OFDM symbol itself. If the previous subframe is not a downlink subframe, the current subframe 4# OFDM symbol and the current subframe 11# OFDM symbol are linearly interpolated with the current subframe 0# OFDM symbol, and the channel estimation of the current subframe 0# OFDM symbol itself is added. . As the formula:
  • N s is the number of OFDM symbols in a single sub-ton
  • SymDL represents the current subframe before correction /; # OFDM symbol kth subcarrier channel estimation value; ⁇ , represents the corrected current subframe / ⁇ OFDM symbol kth subcarrier channel estimation value; i represents the current subframe; i-1 represents the previous subframe; k is the arrangement position of the subcarriers, here is the 0# OFDM symbol The kth subcarrier.
  • the current subframe 7# OFDM symbol and the next subframe 0# OFDM symbol may be linearly interpolated with the current subframe 11# OFDM symbol, plus the current subframe ll#
  • the current subframe 11# OFDM symbol and the next subframe 4# OFDM symbol may be linearly interpolated with the next subframe 0# OFDM symbol, plus the next subframe 0.
  • the fourth time domain interpolation unit 234 starts the second time domain interpolation after completing the first time domain interpolation, and can calculate the channel coefficient of the OFDM symbol that does not include the reference signal by using the channel coefficient on the OFDM symbol including the reference signal. Thereby obtaining channel coefficients on all OFDM symbols.
  • the channel estimation apparatus 20 in the orthogonal frequency division multiplexing system of this embodiment passes only the reference parameters
  • the OFDM symbols of the test signal are frequency-domain interpolated to reduce the number of frequency domain interpolations, thereby reducing computational complexity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Nonlinear Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明揭示了一种正交频分复用系统中的信道估计方法及装置。所述方法包括步骤:A、将正交频分复用系统带宽内的物理资源块分组;B、从分组中抽取至少一组进行信道估计,获取信道系数;其中,抽取的分组数少于总的分组数;C、利用获取的信道系数完成多天线输入输出(MIMO)解调;D、判断对分组的信道估计是否完成,如是,结束;否则,返回步骤B。所述装置通过将正交频分复用系统带宽内的物理资源块(PRB)分成若干组,再对每组资源块依次单独信道估计处理,以实现存储共享,从而节省存储量。

Description

正交频分复用系统中的信道估计方法及装置 技术领域
本发明涉及到信道估计技术, 特别涉及到正交频分复用系统中的信道 估计方法及装置。 背景技术
在无线通信系统中, 信道估计是必不可少的。 由于在接收端, 无论是 信号检测, 还是各种参数的测量, 都需要首先对信道进行相应估计, 然后 利用估计出的信道系数进行信号检测等操作。 在 3GPP ( 3rd Generation Partnership Project, 第三代合作伙伴计划 ) LTE ( Long Term Evolution, 长 期演进) 系统中, 釆用 OFDMA ( Orthogonal Frequency Division Multiple Access, 正交频分多址)技术, 因此需要对时域和频域的信道进行估计。
OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用 ) 系统信道估计在理论上以 2 维维纳估计器为最佳估计器, 且可使用估计器 对 OFDM系统所有子载波进行信道估计。
目前常用的 LTE终端信道估计方法主要有两种:
一、 先时域插值后频域插值; 可对每个 OFDM符号的信道估计通过三 倍上釆样的频域插值动态计算; 此方法由于频域插值次数太多造成计算复 杂度非常高。
二、 先频域插值后时域插值; 可对含 RS ( reference signal, 参考信号) 的 OFDM符号釆用 6倍上釆样的频域插值方法, 并利用插值结果计算不含 RS的 OFDM符号上的信道估计。此方法的缺点在于: 其一方面要保存频域 插值的结果, 存储量较大; 另一方面频域插值釆用 6倍上釆样的方法, 信 道估计性能损失较大, 特别是在频率选择性强的信道条件下。 发明内容
本发明的目的之一为提供一种正交频分复用系统中的信道估计方法及 装置, 可实现存储共享, 节省存储量。
为了实现上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种正交频分复用系统中的信道估计方法, 包括步骤:
A、 将正交频分复用系统带宽内的物理资源块分组;
B、 从分组中抽取至少一组进行信道估计, 获取信道系数; 其中, 抽取 的分组数少于总的分组数;
C、 利用获取的信道系数完成多天线输入输出 (MIMO )解调;
D、 判断对分组的信道估计是否完成, 如是, 结束; 否则, 返回步骤^ 所述信道估计包括步骤:
估计参考信号处信道系数;
进行第一次时域插值, 将含参考信号的正交频分复用(OFDM )符号上 的参考信号密度变为 1/3 , 计算含参考信号的 OFDM符号上资源元的信道 系数;
对包含参考信号的 OFDM符号进行 3倍上釆样频域插值, 获取包含参 考信号的 OFDM符号上的信道系数;
进行第二次时域插值, 利用包含参考信号的 OFDM符号上的信道系数 计算不含参考信号的 OFDM符号的信道系数,从而获取所有 OFDM符号上 的信道系数。
所述资源元的信道系数计算包括步骤:
区分资源元的信息, 并根据资源元的信息计算资源元的信道系数。 所述信道估计根据算式:
& = ^— + H +^ 2' , 行 k 若/。≥0 f k < NSymDL
+ NSymDL 若 /。< 0 、 l ~ \ h + NSymDL 若 k > NSymDL 若 /2 < N,
j AT ¾/ > AT SymDL; 为单个子帧内 OFDM符号的个数;
' SymDL ― ^ SymDL 表示修正前的当前子帧 OFDM符号第 k个子载波信道估计值; ^(/^)代表 修正后的当前子帧 OFDM符号第 k个子载波信道估计值; i表示当前子帧; i-1表示上一子帧; k为子载波的排列位置。
所述区分资源元的信息, 并根据资源元的信息计算资源元的信道系数 的步骤包括:
判断是否为当前子帧内第一个 OFDM符号上的资源元;
如是, 判断资源元的上一子帧是否为下行子帧; 如是下行子帧, 利用 所述资源元的前一资源元以及后一资源元的信道系数线性插值所述资源元 的信道系数; 如不是下行子帧, 利用所述资源元的后两个资源元的信道系 数线性预测获得;
如不为当前子帧内第一个 OFDM符号上的资源元, 利用所述资源元的 前一资源元以及后一资源元的信道系数线性插值所述资源元的信道系数。
所述信道估计包括步骤:
估计参考信号处信道系数;
对包含参考信号的 OFDM符号进行 6倍上釆样频域插值, 获取包含参 考信号的 OFDM符号上的信道系数;
进行第一次时域插值,修正包含参考信号的 OFDM符号上的信道系数; 进行第二次时域插值, 利用包含参考信号的 OFDM符号上的信道系数 计算不含参考信号的 OFDM符号的信道系数,从而获取所有 OFDM符号上 的信道系数。
本发明还提供了一种正交频分复用系统中的信道估计装置, 包括: 分组模块, 将正交频分复用系统带宽内的物理资源块分组; 抽取估计模块, 从分组中抽取至少一组进行信道估计, 获取信道系数; 其中, 抽取的分组数少于总的分组数;
检验模块, 利用获取的信道系数完成 MIMO解调;
判断模块, 判断对分组的信道估计是否完成; 在信道估计未完成时, 通知抽取估计模块继续抽取分组进行信道估计。
所述抽取估计模块包括:
第一估计单元, 估计参考信号处信道系数;
第一时域插值单元, 进行第一次时域插值, 将含参考信号的 OFDM符 号上的参考信号密度变为 1/3 , 计算含参考信号的 OFDM符号上资源元的 信道系数;
第一频域插值单元, 对包含参考信号的 OFDM符号进行 3倍上釆样频 域插值, 获取包含参考信号的 OFDM符号上的信道系数;
第二时域插值单元,进行第二次时域插值,利用包含参考信号的 OFDM 符号上的信道系数计算不含参考信号的 OFDM符号的信道系数, 从而获取 所有 OFDM符号上的信道系数。
其特征在于, 所述第一时域插值单元包括:
第一判断子单元, 判断是否为当前子帧内第一个 OFDM符号上的资源 元;
第二判断子单元, 判断当前子帧内第一个 OFDM符号上的资源元的上 一子帧是否为下行子帧;
第一计算子单元, 利用所述资源元的前一资源元以及后一资源元的信 道系数线 ' I"生插值所述资源元的信道系数;
第二计算子单元, 利用所述资源元的后两个资源元的信道系数线性预 测获得。
所述抽取估计模块包括: 第二估计单元, 估计参考信号处信道系数;
第二频域插值单元, 对包含参考信号的 OFDM符号进行 6倍上釆样频 域插值, 获取包含参考信号的 OFDM符号上的信道系数;
第三时域插值单元,进行第一次时域插值,修正包含参考信号的 OFDM 符号上的信道系数;
第四时域插值单元,进行第二次时域插值,利用包含参考信号的 OFDM 符号上的信道系数计算不含参考信号的 OFDM符号的信道系数, 从而获取 所有 OFDM符号上的信道系数。
本发明的正交频分复用系统中的信道估计方法及装置, 是先将正交频 分复用系统带宽内的物理资源块分组, 再对每组资源块依次单独信道估计 处理, 以实现存储共享, 从而节省存储量。 附图说明
图 1 为本发明一实施例中正交频分复用系统中的信道估计方法的步骤 流程示意图;
图 2 为本发明另一实施例中信道估计方法的步骤流程示意图; 图 3 为本发明另一实施例的一实施方式中资源元的信道系数计算的步 骤流程示意图;
图 4 为本发明另一实施例中第一次时域插值示意图;
图 5 为本发明又一实施例中信道估计方法的步骤流程示意图; 图 6 为本发明又一实施例中第一次时域插值示意图;
图 7 为本发明一实施例中正交频分复用系统中的信道估计装置的结构 示意图;
图 8 为本发明另一实施例中抽取估计模块的结构示意图;
图 9 为本发明又一实施例中抽取估计模块的结构示意图;
图 10 为本发明又一实施例的一种正交频分复用系统中的信道估计装 置。
本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一 步说明。 具体实施方式
本发明的正交频分复用系统中的信道估计方法及装置, 先将正交频分 复用系统带宽内的物理资源块( PRB )分成若干组, 再对每组物理资源块依 次单独进行信道估计处理, 以实现存储共享, 从而节省存储量。 另外, 对 于每组物理资源块信道估计的方法, 一方面优化包含参考信号 (RS ) 的 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用技术 ) 符号信道估计结果, 以保证信道估计性能; 另一方面只对包含参考信号的 OFDM符号进行频域插值, 减少频域插值次数, 从而减少计算复杂度。
参照图 1 ,提出本发明一实施例的一种正交频分复用系统中的信道估计 方法, 包括:
步骤 S10、 将正交频分复用系统带宽内的物理资源块分组;
步骤 S11、从分组中抽取至少一组进行信道估计,获取信道系数;其中, 抽取的分组数少于总的分组数;
步骤 S12、 利用获取的信道系数完成 MIMO解调;
步骤 S13、 判断对分组的信道估计是否完成, 如是, 结束; 否则, 返回 步骤 Sl l。
如步骤 S10所述, 可设正交频分复用系统带宽包括 N个物理资源块, 将该 N个物理资源块等分成 M组, 每组包含 K个连续物理资源块, 其中 N=M*K。 并对 M组物理资源块依次编号为 1 , 2, ... , M。
如步骤 S11 所述, 可依次分别对每组物理资源块进行信道估计, 获取 信道系数。 进行信道估计时, 可先从上述分组中抽取至少一组计算信道系 数; 在信道估计完成后, 再抽取其他物理资源块分组进行信道估计, 直至 分组信道估计全部完成。 且每次抽取的分组数少于总的分组数(M )。 比如 可先抽取分组 1至 M中的第 I组进行信道估计, 完成后再抽取第 1+1组进 行, 如此依次完成分组 1至 M的信道估计。 此处的信道估计对使用的信道 估计方法没有任何限制。
如步骤 S12所述, 每进行一次信道估计后, 即可利用获取的信道系数 完成 MIMO ( Multiple-Input Multiple-Out-put, 多天线输入输出)解调, 然 后丟弃该信道系数。
如步骤 S13所述, 在完成一次信道估计, 获得信道系数并通过 MIMO 解调后, 判断所有分组的信道估计是否都已经完成, 如都已经完成, 则结 束; 否则, 继续进行分组的信道估计(返回至步骤 S11 ), 循环进行步骤 S11 和 S12直至信道估计全部结束。
本实施例的正交频分复用系统中的信道估计方法, 通过将正交频分复 用系统带宽内的物理资源块分成若干组, 再对每组物理资源块依次单独信 道估计处理, 以实现存储共享, 从而节省存储量。
参照图 2,提出本发明另一实施例的一种正交频分复用系统中的信道估 计方法。 其中, 上述步骤 S11中的信道估计可包括:
步骤 S110、 估计参考信号处信道系数;
步骤 Sl l l、 进行第一次时域插值, 将含参考信号的 OFDM符号上的参 考信号密度变为 1/3 , 计算含参考信号的 OFDM符号上资源元的信道系数; 步骤 S112、 对包含参考信号的 OFDM符号进行 3倍上釆样频域插值, 获取包含参考信号的 OFDM符号上的信道系数;
步骤 S113、 进行第二次时域插值, 利用包含参考信号的 OFDM符号上 的信道系数计算不含参考信号的 OFDM符号的信道系数, 获取所有 OFDM 符号上的信道系数。
如步骤 S110所述, 首先需估计参考信号 (RS )处的信道系数。 如步骤 Si l l所述,第一次时域插值过程中,仅计算含参考信号的 OFDM 符号上的信道系数。
参照图 3 , 在本实施例的一实施方式中, 上述资源元的信道系数计算包 括:
步骤 S1110、 判断是否为当前子帧内第一个 OFDM符号上的资源元; 如是, 进行步骤 S1111 ; 否则, 进行步骤 S1112;
步骤 Sl l l l、 判断资源元的上一子帧是否为下行子帧; 如是, 进行步骤 S1112; 否则, 进行步骤 S1113;
步骤 S1112、利用上述资源元的前一资源元以及后一资源元的信道系数 线性插值上述资源元的信道系数;
步骤 S1113、 利用上述资源元的后两个资源元的信道系数线性预测获 付。
在计算资源元的信道系数时, 可先区分资源元的信息, 再根据资源元 的信息计算资源元的信道系数。 所述信息可包括是否为当前子帧内第一个 OFDM符号上的资源元以及上一子帧是否为下行子帧等。
参照图 4, 第一次时域插值需要计算 0#、 4#、 7#以及 l l#OFDM符号上 资源元(RE ) 的信道系数, 如图 4中斜线填充部分所示。 若包含斜线填充 部分的当前子帧的上一子帧是下行子帧, 那么时域插值过程如图 4 中实线 所示, 利用箭头起始位置 和^ 2、 或者 和 2 )处的参考信号信道系 数线性插值箭头指向的资源元处的信道系数。 若上一子帧不是下行子帧, 0#OFDM符号信道系数需要利用虚线箭头起始位置 ( 2和 、 或者 2和 ?33 )处的参考信号信道系数线性预测得到, 其余资源元的信道系数的计算 与上一子帧是下行帧时一致。
如步骤 S112所述, 可通过包含参考信号的 OFDM符号进行 3倍上釆 样频域插值, 获取包含参考信号的 OFDM符号上的信道系数。 该釆样可釆 用 FIR ( Finite Impulse Response , 有限长单位冲激响应)滤波、 或 IFFT ( Inverse Fast Fourier Transform, 快速傅立叶逆更换 ) I FFT ( Fast Fourier Transform, 快速傅立叶变换)插值实现。
如步骤 S113所述, 在获取包含参考信号的 OFDM符号上的信道系数 后, 再进行第二次时域插值, 利用包含参考信号的 OFDM符号上的信道系 数计算不含参考信号的 OFDM符号的信道系数,从而获取所有 OFDM符号 上的信道系数。
上述时域或者频域插值可参考 LTE ( Long Term Evolution, 长期演进) 协议规定进行。
本实施例的正交频分复用系统中的信道估计方法, 通过优化包含参考 信号的 OFDM符号信道估计结果, 以保证信道估计性能。
参照图 5 ,提出本发明的又一实施例的一种正交频分复用系统中的信道 估计方法。 其中, 上述信道估计包括:
步骤 S120、 估计参考信号处信道系数;
步骤 S121、 对包含参考信号的 OFDM符号进行 6倍上釆样频域插值, 获取包含参考信号的 OFDM符号上的信道系数;
步骤 S122、 进行第一次时域插值, 修正包含参考信号的 OFDM符号上 的信道系数;
步骤 S123、 进行第二次时域插值, 利用包含参考信号的 OFDM符号上 的信道系数计算不含参考信号的 OFDM符号的信道系数, 从而获取所有
OFDM符号上的信道系数。
如步骤 S120所述, 首先需估计参考信号 (RS )处的信道系数。
如步骤 S 121所述, 先对包含参考信号的 OFDM符号进行 6倍上釆样频域 插值, 从而获取包含参考信号的 OFDM符号上的信道系数。 该釆样可釆用
FIR滤波或 IFFT/FFT插值实现。 如步骤 S122所述, 获得包含参考信号的 OFDM符号上的频域插值结果 之后, 开始第一次时域插值, 修正包含参考信号 (0#、 4#、 7#以及 11#) 的 OFDM符号上的信道系数。
参照图 6, 在修正当前子帧 0#OFDM符号信道估计时, 若其上一子帧 是下行子帧, 利用上一子帧 ll#OFDM符号和当前子帧 4#OFDM符号线性 插值当前子帧 0#OFDM符号,再加上当前子帧 0#OFDM符号本身的信道估 计。 若上一子帧不是下行子帧, 利用当前子帧 4#OFDM符号和当前子帧 ll#OFDM符号线性插值当前子帧 0#OFDM符号,再加上当前子帧 0#OFDM 符号本身的信道估计。 如算式:
/2— /0 /2― /0 立 中
、 ' 0
Figure imgf000012_0001
'
/;= ! l T :2 , Ns 为单个子顿内 OFDM符号的个数,
{12 _ ^SymDL 石 1 SymDL 代表修正前的当前子帧 /;#OFDM符号第 k个子载波信道估计值; 代 表修正后的当前子帧 /^OFDM符号第 k个子载波信道估计值; i表示当前子 帧; i-1表示上一子帧; k为子载波的排列位置, 此处即为 0#OFDM符号的 第 k个子载波。
若上一子帧为下行子帧, 则令 /。=-3 , /1 =0, /2=4 , 代入算式(1 )计 算信道系数。
若上一子帧不为下行子帧, 则令 /。=11, /1 =0, /2=4 , 代入算式(1 ) 计算信道系数。
在修正当前子帧 4#OFDM符号信道估计时, 可利用当前子帧 7#OFDM 符号和当前子帧 0#OFDM符号线性插值当前子帧 4#OFDM符号,再加上当 前子帧 4#OFDM符号本身的信道估计, 即 k=4。 可使用算式( 1 )计算信道 系数, 令 /。=0, /1 =4, /2=7 , 代入算式(1 )计算。
在修正当前子帧 7#OFDM符号信道估计时, 可利用当前子帧 4#OFDM 符号和当前子帧 ll#OFDM符号线性插值当前子帧 7#OFDM符号, 再加上 当前子帧 7#OFDM符号本身的信道估计, 即 k=7。 可使用算式 ( 1 )计算信 道系数令 /。=4, /1 =7, /2=11, 代入算式(1 )计算。
在爹正当前子帧 ll#OFDM符号信道估计时,可利用当前子帧 7#OFDM 符号和下一子帧 0#OFDM符号线性插值当前子帧 ll#OFDM符号, 再加上 当前子帧 ll#OFDM符号本身的信道估计, 即 k=ll。 可使用算式(1 )计算 信道系数, 令 /。=7, /1 =11, /2=14, 代入算式(1 )计算。
在修正下一子帧 0#OFDM符号信道估计时, 可利用当前子帧 ll#OFDM 符号和下一子帧 4#OFDM符号线性插值下一子帧 0#OFDM符号,再加上下一 子帧 0#OFDM符号本身的信道估计。可使用算式( 1 )计算信道系数,令 /。=11, /1 =14, /2=18, 代入算式( 1 )计算。
如步骤 S123所述, 完成第一次时域插值后, 则开始第二次时域插值, 可利用包含参考信号的 OFDM符号上的信道系数计算不包含参考信号的 OFDM符号的信道系数, 从而得到所有 OFDM符号上的信道系数。
本实施例的正交频分复用系统中的信道估计方法, 通过只对包含参考 信号的 OFDM符号进行频域插值,减少频域插值次数,从而减少计算复杂度。
参照图 7,提出本发明一实施例的一种正交频分复用系统中的信道估计 装置 20, 包括:
分组模块 21, 将正交频分复用系统带宽内的物理资源块分组; 抽取估计模块 22, 从分组中抽取至少一组进行信道估计, 获取信道系 数; 其中, 抽取的分组数少于总的分组数;
检验模块 23, 利用抽取估计模块 22获取的信道系数完成 MIMO解调; 判断模块 24, 判断对分组的信道估计是否完成; 在信道估计未完成时, 通知抽取估计模块 22继续抽取分组进行信道估计。
上述分组模块 21 , 可设正交频分复用系统带宽包括 N个物理资源块, 将该 N个物理资源块等分成 M组, 每组包含 K个连续物理资源块, 其中 N=M*K。 并对 M组资源块依次编号为 1 , 2, ... , M。
上述抽取估计模块 22, 可依次分别对每组物理资源块进行信道估计, 获取信道系数。 进行信道估计时, 可先从上述分组中抽取至少一组计算信 道系数; 在信道估计完成后, 再抽取其他物理资源块分组进行信道估计, 直至分组信道估计全部完成。 且每次抽取的分组数少于总的分组数(M )。 比如可先抽取分组 1至 M中的第 I组进行信道估计, 完成后再抽取第 1+1 组进行, 如此依次完成分组 1至 M的信道估计。 此处的信道估计对使用的 信道估计方法没有任何限制。
上述检验模块 23 , 在每进行一次信道估计后, 即可利用抽取估计模块 22获取的信道系数完成 MIMO ( Multiple-Input Multiple-Out-put, 多天线输 入输出)解调。
上述判断模块 24, 在完成一次信道估计, 获得信道系数并通过 MIMO 解调后, 判断所有分组的信道估计是否都已经完成, 如都已经完成, 则结 束; 否则, 继续进行分组的信道估计, 循环进行信道估计以及检验直至信 道估计全部结束。
本实施例的正交频分复用系统中的信道估计装置 20, 通过将正交频分 复用系统带宽内的物理资源块分成若干组, 再对每组物理资源块依次单独 信道估计处理, 以实现存储共享, 从而节省存储量。
参照图 8,提出本发明另一实施例的一种正交频分复用系统中的信道估 计装置 20, 上述抽取估计模块 22包括:
第一估计单元 221 , 估计参考信号处信道系数;
第一时域插值单元 222,进行第一次时域插值,将含参考信号的 OFDM 符号上的参考信号密度变为 1/3 , 计算含参考信号的 OFDM符号上资源元 的信道系数;
第一频域插值单元 223 , 对包含参考信号的 OFDM符号进行 3倍上釆 样频域插值, 获取包含参考信号的 OFDM符号上的信道系数;
第二时域插值单元 224, 进行第二次时域插值, 利用包含参考信号的 OFDM符号上的信道系数计算不含参考信号的 OFDM符号的信道系数, 从 而获取所有 OFDM符号上的信道系数。
上述第一估计单元 221 , 需估计参考信号 (RS )处的信道系数。
上述第一时域插值单元 222, 在第一次时域插值过程中, 计算含参考信 号的 OFDM符号上的信道系数。
参照图 9, 上述第一时域插值单元 222可包括: 第一判断子单元 2221、 第二判断子单元 2222、 第一计算子单元 2223以及第二计算子单元 2224; 该第一判断子单元 2221 ,判断是否为当前子帧内第一个 OFDM符号上的资 源元; 该第二判断子单元 2222, 判断当前子帧内第一个 OFDM符号上的资 源元的上一子帧是否为下行子帧; 该第一计算子单元 2223 , 利用所述资源 元的前一资源元以及后一资源元的信道系数线性插值所述资源元的信道系 数; 该第二计算子单元 2224, 利用所述资源元的后两个资源元的信道系数 线性预测获得。
可先通过第一判断子单元 2221判断所计算的资源元是否为当前子帧内 第一个 OFDM符号上的资源元;如是,再利用第二判断子单元 2222判断资 源元的上一子帧是否为下行子帧; 否则, 通过第一计算子单元 2223利用上 述资源元的前一资源元以及后一资源元的信道系数线性插值上述资源元的 信道系数; 在上述资源元的上一子帧为下行子帧时, 也可通过第一计算子 单元 2223利用上述资源元的前一资源元以及后一资源元的信道系数线性插 值上述资源元的信道系数; 否则, 通过第二计算子单元 2224利用上述资源 元的后两个资源元的信道系数线性预测获得。
在计算资源元的信道系数时, 可先区分资源元的信息, 再根据资源元 的信息计算资源元的信道系数。 所述信息可包括是否为当前子帧内第一个
OFDM符号上的资源元以及上一子帧是否为下行子帧等。
参照图 4, 第一次时域插值需要计算 0#、 4#、 7#以及 l l#OFDM符号上 资源元(RE ) 的信道系数, 如图 4中斜线填充部分所示。 若包含灰色部分 的当前子帧的上一子帧是下行子帧, 那么时域插值过程如图 4中实线所示, 利用箭头起始位置 和 、 或者 ^和^ )处的参考信号信道系数线性 插值箭头指向的资源元处的信道系数。若上一子帧不是下行子帧, 0#OFDM 符号信道系数需要利用虚线箭头起始位置 ( 2和 、 或者 2和 )处的 参考信号信道系数线性预测得到, 其余资源元的信道系数的计算与上一子 帧是下行帧时一致。
上述第一频域插值单元 223 ,可通过包含参考信号的 OFDM符号进行 3 倍上釆样频域插值, 获取包含参考信号的 OFDM符号上的信道系数。
上述第二时域插值单元 224, 在获取包含参考信号的 OFDM符号上的 信道系数后, 再进行第二次时域插值, 利用包含参考信号的 OFDM符号上 的信道系数计算不含参考信号的 OFDM符号的信道系数, 从而获取所有 OFDM符号上的信道系数。
本实施例的正交频分复用系统中的信道估计装置 20, 通过优化包含参 考信号的 OFDM符号信道估计结果, 以保证信道估计性能。
参照图 10, 提出本发明又一实施例的一种正交频分复用系统中的信道 估计装置 20, 上述抽取估计模块 22包括:
第二估计单元 231 , 估计参考信号处信道系数;
第二频域插值单元 232, 对包含参考信号的 OFDM符号进行 6倍上釆 样频域插值, 获取包含参考信号的 OFDM符号上的信道系数; 第三时域插值单元 233 , 进行第一次时域插值, 修正包含参考信号的 OFDM符号上的信道系数;
第四时域插值单元 234 , 进行第二次时域插值, 利用包含参考信号的 OFDM符号上的信道系数计算不含参考信号的 OFDM符号的信道系数,从而 获取所有 OFDM符号上的信道系数。
上述第二估计单元 231 , 需估计参考信号 (RS )处的信道系数。
上述第二频域插值单元 232,对包含参考信号的 OFDM符号进行 6倍上釆 样频域插值, 从而获取包含参考信号的 OFDM符号上的信道系数。
上述第三时域插值单元 233 , 获得包含参考信号的 OFDM符号上的频域 插值结果之后, 开始第一次时域插值, 修正包含参考信号 (0#、 4#、 7#以 及 11# ) 的 OFDM符号上的信道系数。
参照图 6, 在修正当前子帧 0#OFDM符号信道估计时, 若其上一子帧 是下行子帧, 利用上一子帧 l l#OFDM符号和当前子帧 4#OFDM符号线性 插值当前子帧 0#OFDM符号,再加上当前子帧 0#OFDM符号本身的信道估 计。 若上一子帧不是下行子帧, 利用当前子帧 4#OFDM符号和当前子帧 l l#OFDM符号线性插值当前子帧 0#OFDM符号,再加上当前子帧 0#OFDM 符号本身的信道估计。 如算式:
/2— /0 /2― /0 立 中
、 ' 0
Figure imgf000017_0001
'
/;= ! l T :2 s , Ns 为单个子顿内 OFDM符号的个数,
{12 _ ^SymDL 石 1 SymDL 代表修正前的当前子帧 /;#OFDM符号第 k个子载波信道估计值; ^, 代 表修正后的当前子帧 /^OFDM符号第 k个子载波信道估计值; i表示当前子 帧; i-1表示上一子帧; k为子载波的排列位置, 此处即为 0#OFDM符号的 第 k个子载波。
若上一子帧为下行子帧, 则令 /。=-3 , /1 =0, /2=4 , 代入算式(1 )计 算信道系数。
若上一子帧不为下行子帧, 则令 /。=11, /1 =0, /2=4 , 代入算式(1 ) 计算信道系数。
在修正当前子帧 4#OFDM符号信道估计时, 可利用当前子帧 7#OFDM 符号和当前子帧 0#OFDM符号线性插值当前子帧 4#OFDM符号,再加上当 前子帧 4#OFDM符号本身的信道估计, 即 k=4。 可使用算式( 1 )计算信道 系数, 令 /。=0, /1 =4, /2=7 , 代入算式(1 )计算。
在修正当前子帧 7#OFDM符号信道估计时, 可利用当前子帧 4#OFDM 符号和当前子帧 ll#OFDM符号线性插值当前子帧 7#OFDM符号, 再加上 当前子帧 7#OFDM符号本身的信道估计, 即 k=7。 可使用算式 ( 1 )计算信 道系数令 /。=4, /1 =7, /2=11, 代入算式(1 )计算。
在爹正当前子帧 ll#OFDM符号信道估计时,可利用当前子帧 7#OFDM 符号和下一子帧 0#OFDM符号线性插值当前子帧 ll#OFDM符号, 再加上 当前子帧 ll#OFDM符号本身的信道估计, 即 k=ll。 可使用算式(1 )计算 信道系数, 令 /。=7, /1 =11, /2=14, 代入算式(1 )计算。
在修正下一子帧 0#OFDM符号信道估计时, 可利用当前子帧 ll#OFDM 符号和下一子帧 4#OFDM符号线性插值下一子帧 0#OFDM符号,再加上下一 子帧 0#OFDM符号本身的信道估计。可使用算式( 1 )计算信道系数,令 /。=11, /1 =14, /2=18, 代入算式( 1 )计算。
上述第四时域插值单元 234, 在完成第一次时域插值后, 开始第二次时 域插值,可利用包含参考信号的 OFDM符号上的信道系数计算不包含参考信 号的 OFDM符号的信道系数, 从而得到所有 OFDM符号上的信道系数。
本实施例的正交频分复用系统中的信道估计装置 20, 通过只对包含参 考信号的 OFDM符号进行频域插值,减少频域插值次数,从而减少计算复杂 度。
以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直 接或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范 围内。

Claims

权利要求书
1、 一种正交频分复用系统中的信道估计方法, 其特征在于, 包括步骤:
A、 将正交频分复用系统带宽内的物理资源块分组;
B、 从分组中抽取至少一组进行信道估计, 获取信道系数; 其中, 抽取 的分组数少于总的分组数;
C、 利用获取的信道系数完成多天线输入输出 (MIMO )解调;
D、 判断对分组的信道估计是否完成, 如是, 结束; 否则, 返回步骤^
2、 根据权利要求 1所述的正交频分复用系统中的信道估计方法, 其特 征在于, 所述信道估计包括步骤:
估计参考信号处信道系数;
进行第一次时域插值, 将含参考信号的正交频分复用(OFDM )符号上 的参考信号密度变为 1/3 , 计算含参考信号的 OFDM符号上资源元的信道 系数;
对包含参考信号的 OFDM符号进行 3倍上釆样频域插值, 获取包含参 考信号的 OFDM符号上的信道系数;
进行第二次时域插值, 利用包含参考信号的 OFDM符号上的信道系数 计算不含参考信号的 OFDM符号的信道系数,从而获取所有 OFDM符号上 的信道系数。
3、 根据权利要求 2所述的正交频分复用系统中的信道估计方法, 其特 征在于, 所述资源元的信道系数计算包括步骤:
区分资源元的信息, 并根据资源元的信息计算资源元的信道系数。
4、 根据权利要求 3所述的正交频分复用系统中的信道估计方法, 其特 征在于, 所述信道估计根据算式:
& = ^— + H +^ 2' , 行 k 若/。≥0 f k 若 k < NSymDL
+ NSymDL 若 /0 < 0 、 l ~ \ h + NSymDL {≥ NSymDL 若 /2 < N,
} AT ¾/ > AT SymDL; Λ^ΰ为单个子帧内 OFDM符号的个数;
' SymDL ― ^ SymDL 表示修正前的当前子帧 OFDM符号第 k个子载波信道估计值; , k)代表 修正后的当前子帧 OFDM符号第 k个子载波信道估计值; i表示当前子帧; i-1表示上一子帧; k为子载波的排列位置。
5、 根据权利要求 3所述的正交频分复用系统中的信道估计方法, 其特 征在于, 所述区分资源元的信息, 并根据资源元的信息计算资源元的信道 系数的步骤包括:
判断是否为当前子帧内第一个 OFDM符号上的资源元;
如是, 判断资源元的上一子帧是否为下行子帧; 如是下行子帧, 利用 所述资源元的前一资源元以及后一资源元的信道系数线性插值所述资源元 的信道系数; 如不是下行子帧, 利用所述资源元的后两个资源元的信道系 数线性预测获得;
如不为当前子帧内第一个 OFDM符号上的资源元, 利用所述资源元的 前一资源元以及后一资源元的信道系数线性插值所述资源元的信道系数。
6、 根据权利要求 1所述的正交频分复用系统中的信道估计方法, 其特 征在于, 所述信道估计包括步骤:
估计参考信号处信道系数;
对包含参考信号的 OFDM符号进行 6倍上釆样频域插值, 获取包含参 考信号的 OFDM符号上的信道系数;
进行第一次时域插值,修正包含参考信号的 OFDM符号上的信道系数; 进行第二次时域插值, 利用包含参考信号的 OFDM符号上的信道系数 计算不含参考信号的 OFDM符号的信道系数,从而获取所有 OFDM符号上 的信道系数。
7、 一种正交频分复用系统中的信道估计装置, 其特征在于, 包括: 分组模块, 将正交频分复用系统带宽内的物理资源块分组;
抽取估计模块, 从分组中抽取至少一组进行信道估计, 获取信道系数; 其中, 抽取的分组数少于总的分组数;
检验模块, 利用获取的信道系数完成 MIMO解调;
判断模块, 判断对分组的信道估计是否完成; 在信道估计未完成时, 通知抽取估计模块继续抽取分组进行信道估计。
8、 根据权利要求 7所述的正交频分复用系统中的信道估计装置, 其特 征在于, 所述抽取估计模块包括:
第一估计单元, 估计参考信号处信道系数;
第一时域插值单元, 进行第一次时域插值, 将含参考信号的 OFDM符 号上的参考信号密度变为 1/3 , 计算含参考信号的 OFDM符号上资源元的 信道系数;
第一频域插值单元, 对包含参考信号的 OFDM符号进行 3倍上釆样频 域插值, 获取包含参考信号的 OFDM符号上的信道系数;
第二时域插值单元,进行第二次时域插值,利用包含参考信号的 OFDM 符号上的信道系数计算不含参考信号的 OFDM符号的信道系数, 从而获取 所有 OFDM符号上的信道系数。
9、 根据权利要求 8所述的正交频分复用系统中的信道估计装置, 其特 征在于, 其特征在于, 所述第一时域插值单元包括:
第一判断子单元, 判断是否为当前子帧内第一个 OFDM符号上的资源 元;
第二判断子单元, 判断当前子帧内第一个 OFDM符号上的资源元的上 一子帧是否为下行子帧;
第一计算子单元, 利用所述资源元的前一资源元以及后一资源元的信 道系数线 ' 1·生插值所述资源元的信道系数;
第二计算子单元, 利用所述资源元的后两个资源元的信道系数线性预 测获得。
10、 根据权利要求 7所述的正交频分复用系统中的信道估计装置, 其 特征在于, 所述抽取估计模块包括:
第二估计单元, 估计参考信号处信道系数;
第二频域插值单元, 对包含参考信号的 OFDM符号进行 6倍上釆样频 域插值, 获取包含参考信号的 OFDM符号上的信道系数;
第三时域插值单元,进行第一次时域插值,修正包含参考信号的 OFDM 符号上的信道系数;
第四时域插值单元,进行第二次时域插值,利用包含参考信号的 OFDM 符号上的信道系数计算不含参考信号的 OFDM符号的信道系数, 从而获取 所有 OFDM符号上的信道系数。
PCT/CN2010/078354 2010-03-24 2010-11-02 正交频分复用系统中的信道估计方法及装置 WO2011116606A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/575,900 US8798178B2 (en) 2010-03-24 2010-11-02 Method and device for channel estimation in orthogonal frequency division multiplexing system
IN6619DEN2012 IN2012DN06619A (zh) 2010-03-24 2010-11-02
JP2012553169A JP5548785B2 (ja) 2010-03-24 2010-11-02 直交周波数分割多重化システムにおけるチャネル推定方法及び装置
EP10848268.8A EP2515570B1 (en) 2010-03-24 2010-11-02 Method and device for channel estimation in orthogonal frequency division multiplexing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010138069.2 2010-03-24
CN201010138069.2A CN102202029B (zh) 2010-03-24 2010-03-24 正交频分复用系统中的信道估计方法及装置

Publications (1)

Publication Number Publication Date
WO2011116606A1 true WO2011116606A1 (zh) 2011-09-29

Family

ID=44662429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078354 WO2011116606A1 (zh) 2010-03-24 2010-11-02 正交频分复用系统中的信道估计方法及装置

Country Status (6)

Country Link
US (1) US8798178B2 (zh)
EP (1) EP2515570B1 (zh)
JP (1) JP5548785B2 (zh)
CN (1) CN102202029B (zh)
IN (1) IN2012DN06619A (zh)
WO (1) WO2011116606A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2834937A1 (en) * 2012-04-05 2015-02-11 Qualcomm Incorporated Systems and methods for transmitting pilot tones

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276471B2 (ja) * 2009-02-25 2013-08-28 京セラ株式会社 無線通信装置
US9503285B2 (en) * 2011-03-01 2016-11-22 Qualcomm Incorporated Channel estimation for reference signal interference cancelation
CN102953131B (zh) * 2011-08-20 2016-08-03 苏州敏喆机械有限公司 一种大位距侧吹风装置
US9184889B2 (en) * 2012-08-08 2015-11-10 Blackberry Limited Method and system having reference signal design for new carrier types
US9402256B2 (en) 2012-08-08 2016-07-26 Blackberry Limited Method and system having reference signal design for new carrier types
CN103841057B (zh) * 2012-11-21 2017-07-14 电信科学技术研究院 一种信道估计方法和设备
KR102094732B1 (ko) 2013-03-11 2020-03-30 삼성전자주식회사 직교 주파수 분할 다중화 시스템에서 적응적으로 채널을 추정하는 장치 및 그 장치를 이용한 방법
GB2533534A (en) * 2013-09-24 2016-06-22 Zte Wistron Telecom Ab Method and apparatus for modified reference signal transmission for cell discovery
CN109995689B (zh) * 2017-12-29 2021-08-06 普天信息技术有限公司 估计pucch频偏的方法、装置、电子设备和存储介质
WO2019182486A1 (en) * 2018-03-20 2019-09-26 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device, a network node and methods therein for enabling and determining reference signal configurations in a wireless communications network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1925471A (zh) * 2006-05-26 2007-03-07 上海大学 一种联合正交导频设计的mimo-ofdm信道估计方法
CN1981498A (zh) * 2004-05-04 2007-06-13 高通股份有限公司 用于信道估计和时间跟踪的交错导频传输
EP1971096A2 (en) * 2007-03-16 2008-09-17 Samsung Electronics Co., Ltd. Method and apparatus to enable fast decoding of transmissions with multiple code blocks
CN101534281A (zh) * 2009-04-20 2009-09-16 北京交通大学 一种ofdm系统基于梳状导频的分集式信道估计方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490368B2 (ja) * 2003-04-21 2010-06-23 三菱電機株式会社 無線通信装置、無線通信システムおよび無線通信方法
JP2006527965A (ja) * 2003-06-18 2006-12-07 サムスン エレクトロニクス カンパニー リミテッド 直交周波数分割多重方式を使用する通信システムにおける基地局の識別のためのパイロットパターンを送受信する装置及び方法
KR100564601B1 (ko) * 2003-12-29 2006-03-28 삼성전자주식회사 주파수 도메인 에코 검출방법 및 이를 사용하는 이퀄라이저
KR100594084B1 (ko) * 2004-04-30 2006-06-30 삼성전자주식회사 직교 주파수 분할 다중 수신기의 채널 추정 방법 및 채널추정기
US8331465B2 (en) * 2005-08-23 2012-12-11 Apple Inc. Adaptive two-dimensional channel interpolation
JP4658191B2 (ja) * 2006-04-28 2011-03-23 パナソニック株式会社 基地局装置および通信方法
MY149990A (en) * 2006-12-28 2013-11-15 Nokia Corp Resource restricted allocation in long term evolution
US8320407B2 (en) * 2007-01-05 2012-11-27 Qualcomm Incorporated Mapping of subpackets to resources in a communication system
EA021845B1 (ru) * 2007-01-09 2015-09-30 Хуавэй Текнолоджиз Ко., Лтд. Устройство базовой станции, устройство мобильной станции, способ передачи управляющей информации, способ приема управляющей информации и программа
KR100929850B1 (ko) * 2007-04-02 2009-12-04 삼성전자주식회사 광대역 무선통신시스템에서 간섭 제거 장치 및 방법
JP5282425B2 (ja) * 2008-03-19 2013-09-04 富士通モバイルコミュニケーションズ株式会社 無線通信端末
US20090245402A1 (en) * 2008-03-31 2009-10-01 Qualcomm Incorporated Apparatus and method for tile processing in wireless communications
JP2010045422A (ja) * 2008-08-08 2010-02-25 Sharp Corp 無線受信装置および無線受信方法
CN101582712B (zh) * 2009-06-19 2014-11-05 中兴通讯股份有限公司 一种实现预编码的方法及预编码矩阵集的生成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981498A (zh) * 2004-05-04 2007-06-13 高通股份有限公司 用于信道估计和时间跟踪的交错导频传输
CN1925471A (zh) * 2006-05-26 2007-03-07 上海大学 一种联合正交导频设计的mimo-ofdm信道估计方法
EP1971096A2 (en) * 2007-03-16 2008-09-17 Samsung Electronics Co., Ltd. Method and apparatus to enable fast decoding of transmissions with multiple code blocks
CN101534281A (zh) * 2009-04-20 2009-09-16 北京交通大学 一种ofdm系统基于梳状导频的分集式信道估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2515570A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2834937A1 (en) * 2012-04-05 2015-02-11 Qualcomm Incorporated Systems and methods for transmitting pilot tones

Also Published As

Publication number Publication date
JP5548785B2 (ja) 2014-07-16
CN102202029A (zh) 2011-09-28
JP2013520853A (ja) 2013-06-06
US8798178B2 (en) 2014-08-05
IN2012DN06619A (zh) 2015-10-23
EP2515570A1 (en) 2012-10-24
EP2515570A4 (en) 2015-09-09
US20120300884A1 (en) 2012-11-29
CN102202029B (zh) 2015-01-28
EP2515570B1 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2011116606A1 (zh) 正交频分复用系统中的信道估计方法及装置
TWI422193B (zh) 通道估測裝置與方法
KR101643419B1 (ko) 무선 통신 시스템에서 위상 보상을 이용한 채널 추정 방법 및 장치
TW200832977A (en) Multi-path receiving system, adaptive channel estimation method and OFDM demodulator
US9860764B2 (en) Channel estimation for a subset of resource elements of a resource block
WO2011035594A1 (zh) 正交频分复用-多输入多输出系统的解调方法及解调器
CN101827057A (zh) 用于正交频分复用通信系统的信道估计方法及信道估计器
WO2011130994A1 (zh) 多用户信道估计方法及装置
WO2013056653A1 (zh) 适用于fdd-lte室内场景上行信道估计及载波同步的方法与装置
WO2011147205A1 (zh) 正交频分复用系统频偏补偿和均衡的方法和装置
WO2015010607A1 (zh) 一种用于大规模天线的信道测量方法和用户终端
KR101574191B1 (ko) 광대역 무선통신 시스템에서 채널 추정 장치 및 방법
WO2013178090A1 (zh) 信道估计方法、信道估计装置和接收机
WO2011147181A1 (zh) 一种信道估计方法及装置、频偏估计方法及装置
TW201105069A (en) Channel estimation method and device
WO2013155908A1 (zh) 一种re检测方法及装置
US7830984B2 (en) OFDM/OFDMA channel estimation
CN107743106B (zh) 用于lte系统中基于统计特性的信道估计方法
WO2012045244A1 (zh) 低复杂度高性能的信道估计方法及装置
CN105791180B (zh) 多播广播单频网络信道估计方法和装置
WO2009082849A1 (fr) Procédé et appareil d&#39;estimation de canal
JP2013046131A5 (zh)
JP2013046131A (ja) 時間変化的および周波数選択的なチャネルを推定するための方法
JP6050177B2 (ja) ノイズ電力推定方法
CN110602014A (zh) 基于lte下行参考信号的采样时刻偏差估计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848268

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010848268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010848268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6619/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13575900

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012553169

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE