WO2011147181A1 - 一种信道估计方法及装置、频偏估计方法及装置 - Google Patents
一种信道估计方法及装置、频偏估计方法及装置 Download PDFInfo
- Publication number
- WO2011147181A1 WO2011147181A1 PCT/CN2010/080319 CN2010080319W WO2011147181A1 WO 2011147181 A1 WO2011147181 A1 WO 2011147181A1 CN 2010080319 W CN2010080319 W CN 2010080319W WO 2011147181 A1 WO2011147181 A1 WO 2011147181A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- reference signal
- frequency offset
- channel estimation
- received signal
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/01—Reducing phase shift
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0024—Carrier regulation at the receiver end
- H04L2027/0026—Correction of carrier offset
Definitions
- the present invention relates to a mobile communication system, and in particular to a channel estimation method and apparatus for an orthogonal frequency division multiplexing system having a block reference signal, and a frequency offset estimation method and apparatus.
- the signal is affected by the frequency offset.
- this frequency offset is large, if it is not specially processed, the receiver performance will be greatly reduced.
- the Doppler effect also causes a frequency offset effect, thereby reducing the base station reception performance.
- the method for estimating the frequency offset of the shared channel of the 3GPP LTE uplink service can work normally when the single path, the high signal to noise ratio and the frequency offset are small, the multipath delay is large, the signal to noise ratio is relatively low, and the frequency offset is relatively large. Not good.
- a typical frequency offset estimation method is to calculate the phase difference of the channel estimation values obtained at two reference channels in one subframe of the uplink shared channel non-subframe hopping, and then estimate the frequency offset according to the phase difference.
- the frequency offset is large, the inter-subcarrier interference caused by the frequency offset is large, which affects the accuracy of the channel estimation, and the estimated frequency offset is not accurate enough.
- the signal of the mobile terminal has a large Doppler shift, and the conventional method of estimating the frequency offset is not good. There is no solution to the prior art.
- the technical problem to be solved by the present invention is to provide a channel estimation method, a frequency offset estimation method and a device, which can accurately estimate the frequency of the uplink shared channel when the frequency offset is large when the multipath delay of the uplink signal is large and the signal to noise ratio is low. Bias and channel estimates.
- the present invention provides a frequency offset estimation method, including:
- the first channel estimation value is obtained according to the first reference signal, the frequency offset value/and the actual received signal transmitted by the terminal at the first reference signal;
- the received signal estimated value _y 2 and the actual received signal _y 2 at the second reference signal are closest to / as the final estimated frequency offset value.
- k , / is a subcarrier identifier, which ranges from 0 to m-1, where m is the number of subcarriers used for the frequency offset estimation, F is the subcarrier spacing, and N is the fft point of an OFDM symbol.
- the frequency offset value that makes the received signal estimated value _y 2 and the actual received signal _y 2 at the second reference signal closest to each other mean a frequency offset value that makes
- the step of causing the received signal estimated value _y 2 and the frequency offset value closest to the actual received signal _y 2 on the second time slot to be the final estimated frequency offset value includes: Searching at a preset granularity in a preset frequency range, calculating a norm of the _y 2 and _y 2 for the frequency range, and using the minimum norm corresponding frequency offset value as a final estimate Frequency offset value.
- the first reference signal and the second reference signal are respectively a reference signal transmitted by the terminal at the first time slot of the same subframe and a reference signal transmitted by the terminal at the second time slot.
- the present invention also provides a channel estimation method, comprising: obtaining a channel estimation value by performing a frequency offset value/channel estimation obtained according to the method of the present invention.
- ifcg is a diagonal matrix
- the diagonal element of ifcg is a reference signal value transmitted by the terminal
- _y is a received signal at the reference signal
- N k , / is a subcarrier identifier, which ranges from 0 to m - 1, m is the number of subcarriers used for the frequency offset estimation, F is the subcarrier spacing, and N is the fft point of an OFDM symbol.
- the invention also provides a frequency offset estimation device, comprising:
- a first channel estimation value acquiring unit configured to: when the uplink shared channel is not intra-subframe frequency hopping, Obtaining a first channel estimation value A according to a first reference signal value, a frequency offset value/and an actual received signal transmitted by the terminal at a first reference signal;
- a received signal estimated value obtaining unit configured to: obtain a received signal estimated value at the second reference signal according to the second channel estimated value; 2 ; a frequency offset estimating unit configured to: The received signal estimate_y 2 and the actual received signal _y 2 at the second reference signal are closest/as the final estimated frequency offset value.
- the first channel estimate / 3 ⁇ 4 (diag(P l )-(M(-f)-y l )
- Received signal estimate at the second reference signal; 2 M(f)-diag(P 2 )-h 2
- the frequency offset estimation unit is configured to: acquire yi-yi
- the frequency offset value of yi-yi is used as the final estimated frequency offset value, where it represents the norm.
- the present invention also provides a channel estimation apparatus, wherein the channel estimation apparatus is configured to: obtain a frequency offset value / according to the method of the present invention, and obtain a channel estimation value according to the frequency offset value / performing channel estimation.
- the present invention can make the 3GPP LTE base station accurately estimate the frequency offset value and channel estimation value of the uplink shared channel when the uplink signal multipath delay is large and the signal to noise ratio is low.
- FIG. 2 is a block diagram of a frequency offset estimating apparatus of the present invention.
- OFDM Orthogonal Frequency Division Multiplexing
- A is an identifier of a subcarrier allocated to a mobile terminal, which is a transmission signal on the Ath subcarrier, ⁇ ⁇ is a received signal on the kth subcarrier, and H is a channel estimation value on the first subcarrier.
- F the subcarrier spacing
- / the frequency offset value
- ⁇ is the fft point of an OFDM symbol (in LTE systems,
- the system bandwidth is 20M, and N is 2048.
- the interference between the other subcarriers and the A subcarriers is a noise term, where:
- m is the number of subcarriers used for the frequency offset estimation.
- formula (1) can be expressed in matrix form as In the symbol where the reference signal is located, there is + n , P is the reference signal transmitted by the mobile terminal, the matrix ifcg(P) is a diagonal matrix, and the diagonal elements are reference signals.
- k takes a value from 0 to m - 1
- m is the number of subcarriers used for the frequency offset estimation.
- the value can be taken as follows: if ⁇ - /
- >C, then 0, where the three typical values of the constant (: 1, respectively) 2,
- the frequency offset estimation method provided by the present invention is as shown in FIG. 1 and includes:
- Step 140 The received signal estimated value _y 2 and the actual received signal at the second reference signal; 2 are closest/as the final estimated frequency offset value. Among them, judging whether the closest is by calculating
- the search may be performed at a preset granularity in a preset frequency range, and the norm in the frequency range is calculated; the norm of 2 and 2 , the frequency offset value corresponding to the minimum norm is taken as the final Estimated frequency offset value.
- the first reference signal and the second reference signal may be reference signals on adjacent time slots in the same subframe, or may be reference signals on different subframes.
- an uplink resource block of the mobile terminal is selected, and only the received reference signal on the resource block is used to estimate the frequency offset.
- the channel estimate can be further filtered to obtain a more accurate channel estimate.
- the filtered channel estimate is still recorded as .
- the channel estimate at the reference signal of the second time slot of the same subframe can be estimated as:
- At is the time difference of the reference symbols of the two slots in the same subframe.
- the present invention also provides a channel estimation method for estimating a frequency offset value/after, according to the method of the present invention, Obtaining a channel estimation value, that is, a channel estimation value, according to the frequency offset value/channel estimation
- the ⁇ 3 ⁇ 4 ⁇ (corpse) is a diagonal matrix
- the diagonal element is a reference signal value transmitted by the terminal, which is a received signal at the reference signal, and the value of M(/) is as described above, where Let me repeat.
- the present invention also provides a frequency offset estimation apparatus, as shown in FIG. 2, including:
- a first channel estimation value acquiring unit configured to acquire a first channel according to a first reference signal value, a frequency offset value/and an actual received signal transmitted by the terminal at a first reference signal when the uplink shared channel is not intra-subframe frequency hopping Estimated value /3 ⁇ 4;
- a received signal estimated value obtaining unit configured to obtain a received signal estimated value _y 2 at the second reference signal according to the second channel estimation value / ⁇ 4;
- a frequency offset estimating unit configured to make the received signal estimated value _y 2 and the actual received signal _y 2 at the second reference signal closest to each other as the final estimated frequency offset value.
- the first channel estimate / 3 ⁇ 4 [ ⁇ ⁇ ⁇ ⁇ ⁇ )-( ⁇ - )- ⁇ ⁇ )
- Received signal estimate at the second reference signal; 2 M(f)-diag(P 2 )-h 2
- Ifcg( ) is a diagonal matrix whose diagonal elements are the first reference signal values, dia g P 2 ) is a diagonal matrix, and the diagonal elements are the second reference signal values; M( a ' where:
- the frequency offset estimation unit is configured to: acquire Yi -yi The smallest frequency offset value / as the final estimated frequency offset value, where, represents the norm, such as 2-norm.
- the present invention also provides a channel estimation apparatus for performing channel estimation based on a frequency offset value f obtained by the method of the present invention to obtain a channel estimation value.
- the present invention is a method for frequency offset estimation of an orthogonal frequency division multiplexing system suitable for block reference symbols.
- the present invention can be applied to frequency offset estimation of an uplink service shared channel in a scenario of 3GPP LTE uplink non-subframe frequency hopping.
- the present invention can make the 3GPP LTE base station accurately estimate the frequency offset value and channel estimation value of the uplink shared channel when the uplink signal multipath delay is large and the signal to noise ratio is low.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
Description
一种信道估计方法及装置、 频偏估计方法及装置
技术领域
本发明涉及移动通信系统, 具体涉及一种具有块状参考信号的正交频分 复用系统的信道估计方法及装置, 以及频偏估计方法和装置。
背景技术
当通讯系统发射机和接收机的晶振没有对准时,信号会受到频偏的影响。 这种频偏较大时, 如果不做专门处理, 会大大降低接收机性能。 在移动终端 快速移动时, 多普勒效应也会造成频偏影响, 从而降低基站接收性能。
目前 3GPP LTE上行业务共享信道频偏估计的方法多在单径、 较高信噪 比和频偏较小时能正常工作, 在多径延迟较大, 信噪比较低, 频偏比较大时 性能不佳。 一种典型的频偏估计方法是计算上行共享信道非子帧内跳频的一 个子帧内两个参考信道处分别获得的信道估计值的相位差, 再根据该相位差 估计频偏。 这种方法在频偏较大时, 由于频偏导致的子载波间干扰较大, 影 响了信道估计的准确性, 从而导致估计出来的频偏不够准确。 例如高速列车 场景下, 移动终端的信号有较大的多普勒频移, 这时使用传统的估计频偏的 方法性能不佳。 现有技术尚未有解决方案。
发明内容
本发明要解决的技术问题是提供一种信道估计方法、 频偏估计方法和装 置, 在上行信号多径延迟较大, 信噪比较低时, 频偏较大时准确估计上行共 享信道的频偏值和信道估计值。
为了解决上述问题, 本发明提供了一种频偏估计方法, 包括:
上行共享信道非子帧内跳频时, 根据第一参考信号处终端发射的第一参 考信号、 频偏值 /和实际接收信号 获取第一信道估计值 ;
将使得所述接收信号估计值 _y2和所述第二参考信号处的实际接收信号 _y2 最接近的 /作为最终估计的频偏值。
其中, 所述第一信道估计值/ ¾ = (diag(Pl )-(M(-f)-yl) 所述第二参考信号处的接收信号估计值; 2 = M(f)-diag(P2)-h2
ifcg( )为对角矩阵, ifcg( )的对角元素为所述第一参考信号值, diag(P2) 为对角矩阵, ifcg )的对角元素为所述第二参考信号值; M(f) = (akl) ,其中:
或者,
A-/|>C时, akl =0 , (:为预先给定的常数, 其他情况下:
k , /为子载波标识, 其取值范围为 0至 m-1, m为频偏估计使用的子载 波个数, F为子载波间隔, N为一个 OFDM符号的 fft点数。
其中, 所述使得接收信号估计值 _y2和第二参考信号处的实际接收信号 _y2 最接近的频偏值/是指使得 |_y2- _y2|最小的频偏值 /, 其中, 表示求范数。 其中, 将使得所述接收信号估计值 _y2和第二时隙上的实际接收信号 _y2最 接近的频偏值 /作为最终估计的频偏值的步骤包括:
在预设的频率范围以预设的颗粒度进行搜索, 对该频率范围内的 /, 计 算所述 _y2和 _y2的范数, 将最小范数对应的频偏值 /作为最终估计的频偏值。 其中, 所述第一参考信号和第二参考信号分别为同一子帧的第一时隙处 终端发射的参考信号和第二时隙处终端发射的参考信号。
其中, 所述 ifcg )为对角矩阵, ifcg )的对角元素为终端发射的参考 信号值, _y为所述参考信号处的接收信号, Μ(/) = ( ), 其中:
exp ίτνγ- 当 ≠射
N N
Nsin
N 或者,
!>exp -jn exp jTT ~ 7— |,3A:≠/0T
N N
Nsin
N k , /为子载波标识, 其取值范围为 0至 m- 1, m为频偏估计使用的子载 波个数, F为子载波间隔, N为一个 OFDM符号的 fft点数。
本发明还提供一种频偏估计装置, 包括:
第一信道估计值获取单元, 其设置为: 上行共享信道非子帧内跳频时,
根据一第一参考信号处终端发射的第一参考信号值、 频偏值 /和实际接收信 号 获取第一信道估计值 A;
第二信道估计值获取单元, 其设置为: 根据所述第一信道估计值/ ¾获取 一第二参考信号处的第二信道估计值 = exp( · 2π fAt)-h, , At为所述第一参考 信号和第二参考信号的时间差;
接收信号估计值获取单元, 其设置为: 根据所述第二信道估计值/ ¾得到 所述第二参考信号处的接收信号估计值; 2; 频偏估计单元, 其设置为: 将使得所述接收信号估计值 _y2和所述第二参 考信号处的实际接收信号 _y2最接近的 /作为最终估计的频偏值。 其中, 所述第一信道估计值/ ¾ = (diag(Pl )-(M(-f)-yl)
所述第二参考信号处的接收信号估计值; 2 = M(f)-diag(P2)-h2
ifcg( )为对角矩阵, ifcg( )的对角元素为所述第一参考信号值, diag(P2) 为对角矩阵, ifc 的对角元素为所述第二参考信号值; M(f) = (akl) ,其中:
当 ≠射
或者,
\k-l>CH, ak =0 , (:为预先给定的常数, 其他情况下:
当 ≠射
k , /为子载波标识, 其取值范围为 0至 m- 1, m为频偏估计使用的子载 波个数, γ , F为子载波间隔, N为一个 OFDM符号的 fft点数。 其中, 所述频偏估计单元是设置为: 获取 yi-yi
yi-yi 的频偏值/作为最终估计的频偏值, 其中, 表示求范数。 本发明还提供一种信道估计装置, 所述信道估计装置设置为: 根据本发 明所述方法得到频偏值/, 根据所述频偏值/进行信道估计, 得到信道估计 值。
本发明可以使得 3GPP LTE基站在上行信号多径延迟较大, 信噪比较低 时, 频偏较大时准确估计上行共享信道的频偏值及信道估计值。
附图概述
图 1是本发明频偏估计方法流程图
图 2是本发明频偏估计装置框图。
本发明的较佳实施方式
下面以 3GPP LTE上行非子帧内跳频时的场景说明本发明。
3GPP LTE 上行空口信号经过正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM)解调之后可以如下表示:
N_\
A为分配给某个移动终端的子载波的标识, 为第 A个子载波上的发射 信号 , γ η为第 k个子载波上的接收信号, H 为第 个子载波上信道估计值。 为归一化的频偏值,在子载波间隔为 F时, /是频偏值,比如, F=15000
赫兹时, γ=^~。 Ν为一个 OFDM符号的 fft点数(在 LTE系统中, 也可
15000
为一个单载波符号的釆样点数) , 系统带宽为 20M时, N为 2048。
m为频偏估计使用的子载波个数。
其中, 式( 1 )可以用矩阵形式表示为
在参考信号 所在符号, 有
+ n , P为移动终端发射的参考信号, 矩阵 ifcg(P)为对角矩阵, 其对角元素为参考信号。 M(/)为 Toeplitz 矩阵, (/;) = (
其中, k, 1取值为 0至 m - 1 , m为频偏估计使用的子载波个数。
为简化计算, 考虑到子载波间干扰主要来自邻近的子载波, 可以按如下 方式取值:如果 μ- /|>C,则 =0,其中常数 (:的三种典型取值分别为 1, 2,
3,其他情况下取值同式(3)。可以发现 M(/)— /), 因此,可以用 M(-/) 替代 MO )-1, 减少计算量。
本发明提供的频偏估计方法如图 1所示, 包括:
步骤 110, 上行共享信道非子帧内跳频情况下, 根据第一参考信号处的 终端发射的参考信号值、 频偏值 /和实际接收信号 获取第一信道估计值 /¾; 其中, Α=(Μ(/)· ·^( ))— Ά,实际计算时,取 A=( g( )— /) ); 步骤 120,根据所述第一信道估计值/ ¾获取一第二参考信号处的第二信道 估计值 = exp( - · 2π fAt)-h, , At为所述第一参考信号和第二参考信号的时间差; 步骤 130,根据所述第二信道估计值 /¾得到所述第二参考信号处的接收信 号估计值;^
其中, _y2 =
ifcg(P2 )为对角矩阵, 其对角元素为第二参 考信号值;
步骤 140 , 将使得所述接收信号估计值 _y2和所述第二参考信号处的实际 接收信号; 2最接近的 /作为最终估计的频偏值。 其中,判断是否最接近是通过计算 |_y2 -_y2| , l^-^l最小时表示 _y2和 _y2最 接近。 表示求范数, 比如求 2 _范数, 也可是其他范数。
其中, 可以在预设的频率范围以预设的颗粒度进行搜索, 对该频率范围 内的 / , 计算所述; 2和; 2的范数, 将最小范数对应的频偏值/作为最终估计 的频偏值。
其中, 第一参考信号和第二参考信号可以是同一子帧内相邻时隙上的参 考信号, 或者, 为不同子帧上的参考信号。
下面通过实施例进一步说明本发明。
为降低计算量和提高准确度选取移动终端的一个上行资源块, 仅用这个 资源块上的接收参考信号来估计频偏。
在上行共享信道非子帧内跳频情况下, 给定一个频偏的估计值/ , 对于 一个子帧的第一个参考信号 , 对应的信道估计值为:
= (M (/) · άια8{Ρ )γ · γ - (diag^ )- 1 ) . (M (― /) · ) ( 4 )
该信道估计值可以进一步做滤波处理, 以得到更为准确的信道估计值。 将滤波处理后的信道估计仍然记为 。
其中 At为同一子帧内两个时隙的参考符号的时间差。
在 [-1300赫兹, +1300赫兹]范围内按 50赫兹的颗粒度搜索 /使得搜索到 的 /对应的 |_y2 - Μ (/) · ·^(Ρ2 ) · /|值最小,其中, |·|表示求向量的 2-范数运算, 2为接收到的第二个时隙的, Ρ2为第二个时隙的参考信号。这个搜索到的 /为 估计出来的频偏值。
其中, 所述^¾^(尸)为对角矩阵, 其对角元素为终端发射的参考信号值, 为所述参考信号处的接收信号, M(/)的取值见前述, 此处不再赘述。 本发明还提供一种频偏估计装置, 如图 2所示, 包括:
第一信道估计值获取单元, 用于上行共享信道非子帧内跳频时, 根据一 第一参考信号处终端发射的第一参考信号值、 频偏值 /和实际接收信号 ,获 取第一信道估计值 /¾;
接收信号估计值获取单元, 用于根据所述第二信道估计值/ ¾得到所述第 二参考信号处的接收信号估计值 _y2;
频偏估计单元, 用于将使得所述接收信号估计值 _y2和所述第二参考信号 处的实际接收信号 _y2最接近的 /作为最终估计的频偏值。 其中, 所述第一信道估计值/ ¾ = [ώα§{Ρλγ)-(Μ{- )-γλ)
所述第二参考信号处的接收信号估计值; 2 = M(f)-diag(P2)-h2
ifcg( )为对角矩阵, 其对角元素为所述第一参考信号值, diag P2)为对 角矩阵, 其对角元素为所述第二参考信号值; M( a ' 其中:
当 ≠射
{l-k + \ N N
Nsin
N k , /为子载波标识, 其取值范围为 0至 m, m为频偏估计使用的子载波 个数, γ= , F为子载波间隔, N为一个单载波符号的釆样点数。 其中, 所述频偏估计单元是用于: 获取
yi -yi 最小的 频偏值 /作为最终估计的频偏值, 其中, 表示求范数, 例如 2-范数。 本发明还提供一种信道估计装置, 所述信道估计装置用于根据本发明方 法得到的频偏值 f进行信道估计, 得到信道估计值。 本发明是一种适用于块状参考符号的正交频分复用系统的频偏估计的方 法。 本发明可应用在 3GPP LTE上行非子帧内跳频的场景下上行业务共享信 道的频偏估计。
工业实用性 本发明可以使得 3GPP LTE基站在上行信号多径延迟较大, 信噪比较低 时, 频偏较大时准确估计上行共享信道的频偏值及信道估计值。
Claims
1、 一种频偏估计方法, 包括:
上行共享信道非子帧内跳频时, 根据第一参考信号处终端发射的第一参 考信号、 频偏值 /和实际接收信号 获取第一信道估计值 ;
将使得所述接收信号估计值 _y2和所述第二参考信号处的实际接收信号 _y2 最接近的 /作为最终估计的频偏值。
2、 如权利要求 1所述的方法, 其中,
所述第一信道估计值/ ¾ = (diag(Pl )-(M(-f)-yl)
所述第二参考信号处的接收信号估计值; 2 = M(f)-diag(P2)-h2
ifcg( )为对角矩阵, ifcg( )的对角元素为所述第一参考信号值, diag(P2) 为对角 二参考信号值; M(f) = (akl) ,其中:
当 ≠射
{l-k + \ N N
Nsin
N k , /为子载波标识, 其取值范围为 0至 m-1, m为频偏估计使用的子载 波个数, F为子载波间隔, N为一个 OFDM符号的 fft点数。
3、 如权利要求 1或 2所述的方法, 其中, 所述使得接收信号估计值 _y2和 第二参考信号处的实际接收信号 _y2最接近的频偏值 /是指使得 11^-^1最小 的频偏值/, 其中, 表示求范数。
4、 如权利要求 3所述的方法, 其中, 将使得所述接收信号估计值 _y2和第 二时隙上的实际接收信号 _y2最接近的频偏值 /作为最终估计的频偏值的步骤 包括:
在预设的频率范围以预设的颗粒度进行搜索, 对该频率范围内的 /, 计 算所述 _y2和 _y2的范数, 将最小范数对应的频偏值 /作为最终估计的频偏值。
5、 如权利要求 1或 2所述的方法, 其中, 所述第一参考信号和第二参考 信号分别为同一子帧的第一时隙处终端发射的参考信号和第二时隙处终端发 射的参考信号。
6、 一种信道估计方法, 包括: 根据权利要求 1至 5任一所述方法得到的 频偏值 /进行信道估计, 得到信道估计值。
7、 如权利要求 6所述的方法, 其中,
所述信道估计值 h = diag(P )- 1 ) . (M (-/) · ) 其中, 所述 ifcg )为对角矩阵, ifcg )的对角元素为终端发射的参考 信号值, _y为所述参考信号处的接收信号, Μ(/) = ( ), 其中: 当 ≠射
或 , μ- /|>C时, a =0, (:为预先给定的常数, 其他情况下:
k, /为子载波标识, 其取值范围为 0至 m-1, m为频偏估计使用的子载 波个数, F为子载波间隔, N为一个 OFDM符号的 fft点数。
8、 一种频偏估计装置, 包括:
第一信道估计值获取单元, 其设置为: 上行共享信道非子帧内跳频时, 根据一第一参考信号处终端发射的第一参考信号值、 频偏值 /和实际接收信 号 获取第一信道估计值 A;
第二信道估计值获取单元, 其设置为: 根据所述第一信道估计值/ ¾获取 一第二参考信号处的第二信道估计值 = exp( · 2π fAt)-h, , At为所述第一参考 信号和第二参考信号的时间差;
接收信号估计值获取单元, 其设置为: 根据所述第二信道估计值/ ¾得到 所述第二参考信号处的接收信号估计值; 2;
频偏估计单元, 其设置为: 将使得所述接收信号估计值 _y2和所述第二参 考信号处的实际接收信号 _y2最接近的 /作为最终估计的频偏值。
9、 如权利要求 8所述的装置, 其中, 所述第一信道估计值/ ¾ =
所述第二参考信号处的接收信号估计值; 2 = M(f)-diag(P2)-h2 ifcg( )为对角矩阵, ifcg( )的对角元素为所述第一参考信号值, diag(P2) 为对角矩阵, ifcg )的对角元素为所述第二参考信号值; M(f) = (akl),其中:
ak,i =
sin(^ ) l-k N_\
exp ίτνγ- 当 ≠射
n{l-k + N N
Nsin
N 或者,
ak,i =
sin(^ ) l-k
exp ίτνγ- '当 ≠射
n{l-k + N N
Nsin
N k, /为子载波标识, 其取值范围为 0至 m- 1, m为频偏估计使用的子载 波个数, γ丄, F为子载波间隔, N为一个 OFDM符号的 fft点数。
F
10、 如权利要求 8或 9所述的装置, 其中, 所述频偏估计单元是设置为: 获取 yi-yi , 将使得 ,, yi-yi ,,最小的频偏值 /作为最终估计的频偏值, 其中, I表示求范数。
11、 一种信道估计装置, 所述信道估计装置设置为: 根据权利要求 1至 5任一所述方法得到频偏值 f , 根据所述频偏值 /进行信道估计, 得到信道估 计值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010183638.5 | 2010-05-24 | ||
CN201010183638.5A CN102263710B (zh) | 2010-05-24 | 2010-05-24 | 一种信道估计方法及装置、频偏估计方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011147181A1 true WO2011147181A1 (zh) | 2011-12-01 |
Family
ID=45003256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/080319 WO2011147181A1 (zh) | 2010-05-24 | 2010-12-27 | 一种信道估计方法及装置、频偏估计方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102263710B (zh) |
WO (1) | WO2011147181A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104580050B (zh) * | 2013-10-11 | 2018-01-19 | 普天信息技术研究院有限公司 | 一种上行频偏补偿方法 |
CN103986674B (zh) * | 2014-04-18 | 2017-06-13 | 北京交通大学 | 矿井巷道上行时频编码协作mc‑cdma信道估计方法 |
CN105119638B (zh) * | 2015-07-30 | 2018-10-09 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | 一种分数时偏条件下的mimo-ofdm系统的信道估计方法 |
CN107454027B (zh) * | 2016-05-31 | 2020-02-04 | 展讯通信(上海)有限公司 | 一种频偏估计的方法及装置 |
WO2018188016A1 (zh) * | 2017-04-13 | 2018-10-18 | 华为技术有限公司 | 跳频信号的信道估计方法、装置及系统 |
US10560942B2 (en) * | 2018-02-21 | 2020-02-11 | Qualcomm Incorporated | Sub-band utilization for a wireless positioning measurement signal |
CN112383495B (zh) * | 2020-11-03 | 2021-06-22 | 上海擎昆信息科技有限公司 | 一种基于pt-rs的频偏估计方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1819574A (zh) * | 2006-03-24 | 2006-08-16 | 清华大学 | 交织ofdma上行链路系统的载波频偏估计方法 |
CN101039291A (zh) * | 2006-03-16 | 2007-09-19 | 中国科学院上海微系统与信息技术研究所 | 纠正残余载波频偏、固定相位和幅值偏差的方法及装置 |
US20100080112A1 (en) * | 2008-07-11 | 2010-04-01 | Texas Instruments Incorporated | Frequency Offset Estimation in Orthogonal Frequency Division Multiple Access Wireless Networks |
-
2010
- 2010-05-24 CN CN201010183638.5A patent/CN102263710B/zh active Active
- 2010-12-27 WO PCT/CN2010/080319 patent/WO2011147181A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101039291A (zh) * | 2006-03-16 | 2007-09-19 | 中国科学院上海微系统与信息技术研究所 | 纠正残余载波频偏、固定相位和幅值偏差的方法及装置 |
CN1819574A (zh) * | 2006-03-24 | 2006-08-16 | 清华大学 | 交织ofdma上行链路系统的载波频偏估计方法 |
US20100080112A1 (en) * | 2008-07-11 | 2010-04-01 | Texas Instruments Incorporated | Frequency Offset Estimation in Orthogonal Frequency Division Multiple Access Wireless Networks |
Also Published As
Publication number | Publication date |
---|---|
CN102263710A (zh) | 2011-11-30 |
CN102263710B (zh) | 2014-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11095491B2 (en) | Methods and apparatus for frequency offset estimation | |
CN101945073B (zh) | 基于导频的时偏估计装置和方法 | |
US9807718B2 (en) | Secondary cell synchronization for carrier aggregation | |
WO2011147181A1 (zh) | 一种信道估计方法及装置、频偏估计方法及装置 | |
US8675792B2 (en) | Method of Doppler spread estimation | |
KR100719111B1 (ko) | Ofdm 시스템에 적용되는 위상잡음 보상장치 및 그 방법 | |
JP6300860B2 (ja) | マッチング追跡を使用した到着時間を判定する通信システム | |
WO2015139590A1 (zh) | 一种频偏估计和补偿的方法及装置 | |
US20190013987A1 (en) | System and method for frequency synchronization of doppler-shifted subcarriers | |
US20120320961A1 (en) | Channel estimation for ofdm systems | |
AU2017219686B2 (en) | NB-loT receiver operating at minimum sampling rate | |
WO2011147205A1 (zh) | 正交频分复用系统频偏补偿和均衡的方法和装置 | |
CN112702290B (zh) | 一种信道估计方法和设备 | |
TW201212597A (en) | Channel estimation circuit, channel estimation method and receiver | |
CN108989259B (zh) | 无线综测仪窄带物理上行共享信道的时偏估计方法及系统 | |
KR101295131B1 (ko) | Ofdm 시스템에서 omp 알고리즘을 이용한 시간 영역 등화 장치 및 방법 | |
WO2012171407A1 (zh) | 一种确定时间同步位置的方法及设备 | |
CN103428147B (zh) | 一种tdd-lte系统中频偏补偿的方法 | |
CN103988475B (zh) | 一种载波频偏估计方法及装置 | |
WO2019034252A1 (en) | TECHNIQUES FOR DETERMINING THE LOCATION OF A MOBILE DEVICE | |
JP2013046131A (ja) | 時間変化的および周波数選択的なチャネルを推定するための方法 | |
KR20120071250A (ko) | 이동통신 시스템의 채널 추정 장치 및 방법 | |
WO2011127759A1 (zh) | 一种时偏估计方法和装置 | |
KR20150086591A (ko) | 무선 네트워크에서 시간 동기화 방법 및 장치 | |
KR20160083790A (ko) | 잡음 전력 측정 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10852050 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10852050 Country of ref document: EP Kind code of ref document: A1 |