WO2011111983A2 - 아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법 - Google Patents

아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법 Download PDF

Info

Publication number
WO2011111983A2
WO2011111983A2 PCT/KR2011/001596 KR2011001596W WO2011111983A2 WO 2011111983 A2 WO2011111983 A2 WO 2011111983A2 KR 2011001596 W KR2011001596 W KR 2011001596W WO 2011111983 A2 WO2011111983 A2 WO 2011111983A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
polymerization
weight
sulfide
injection
Prior art date
Application number
PCT/KR2011/001596
Other languages
English (en)
French (fr)
Other versions
WO2011111983A3 (ko
Inventor
김성기
임재봉
차일훈
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Priority to US13/582,868 priority Critical patent/US9255183B2/en
Priority to CN201180013162.3A priority patent/CN102822240B/zh
Priority to ES11753588.0T priority patent/ES2686842T3/es
Priority to EP11753588.0A priority patent/EP2546281B1/en
Priority to JP2012556973A priority patent/JP6001459B2/ja
Publication of WO2011111983A2 publication Critical patent/WO2011111983A2/ko
Publication of WO2011111983A3 publication Critical patent/WO2011111983A3/ko
Priority to HK13106748.7A priority patent/HK1179640A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides

Definitions

  • the present invention exhibits excellent processability at low temperatures, reduces outgassing and flash or burr generation, and accordingly, polyarylene sulfide and its preparation capable of satisfactorily molding products requiring molding precision. It is about a method.
  • polyarylene sulfide is a representative engineering plastic, which is highly demanded for high temperature and corrosive environments and electronic products because of high heat resistance, chemical resistance, flame resistance, and electrical insulation. Its main use is in computer accessories, automotive parts, coatings of contact with corrosive chemicals, industrial chemical resistant fibers and the like.
  • TPS polyphenylene sulfide
  • pDCB p-dichlorobenzene
  • sodium sulfide sodium sulfide
  • N-methylpyrrolidone It is a method of making it react in polar organic solvents, such as N-methylpyrrolidone.
  • This method is known as the Macallum process and the basic process can be found in US Pat. Nos. 2,513, 188 and 2,583, 941.
  • polar solvents such as N-methylpyrrolidone.
  • This process uses all dichloro aromatic compounds as raw materials, and by-product sodium chloride (NaCl) is produced.
  • PPS obtained in the Mac column process as described above is generally good flowability at high temperatures, it is known that the workability is good because the molding of the product can be formed under low pressure.
  • various computer components or electronics When manufacturing a product having a high flatness or a flat shape, such as a product, due to the flash (burr) formed in the molded product, there has been a limit to apply to the manufacture of precision parts.
  • the molding process should be performed at a high temperature, so that a large amount of outgas generated may harm the health of the worker. It has been pointed out as a pollution problem.
  • An object of the present invention is to provide a polyarylene sulfide that exhibits excellent processability even at low temperature, reduces outgas and variance, and thus can form a product that requires high molding precision. do.
  • An object of the present invention is to provide a method for producing such polyarylene sulfide.
  • Still another object of the present invention is to provide a molded article, film, sheet, or fiber manufactured by molding the polyarylene sulfide as described above.
  • the present invention provides a polyarylene sulfide comprising an arylene sulfide repeating unit and an arylene disulfide repeating unit, wherein a weight ratio of the arylene sulfide repeating unit: arylene disulfide repeating unit is from 1: 0.0001 to 1: 0.05.
  • the present invention also includes the steps of: (a) adding a reaction mixture comprising a diiodine aromatic compound and a sulfur compound; And (b) further adding 0.1 to 20 parts by weight of the sulfur compound with respect to 100 parts by weight of the sulfur compound included in the reaction product while the polymerization reaction step is performed. Provide a method.
  • the present invention also provides a product produced by molding the polyarylene sulfide.
  • the present invention will be described in more detail.
  • the inventors of the present invention completed the present invention while repeatedly studying the polyarylene sulfide that can form a product requiring molding precision without exhibiting burr or the like while exhibiting excellent processability even at a low temperature. .
  • flash or “burr” refers to the fact that the molten resin leaks from the coating surface of the mold, and the material adheres to the molded article in the form of a thin film.
  • flash or “burr” refers to the fact that the molten resin leaks from the coating surface of the mold, and the material adheres to the molded article in the form of a thin film.
  • Such a variation may appear in relation to the injection conditions, such as an excessively high injection pressure or a problem in the mold, and may appear when the flowability of the resin is too good. Throughout this specification, it is assumed that the problem appears as the latter problem.
  • the inventors of the present invention according to the method described below, in addition to the arylene sulfide repeating unit which is a repeating unit of the general polyarylene sulfide, a polyarylene sulfide containing an arylene disulfide repeating unit in a predetermined amount of content to be obtained Confirmed that it can.
  • the disulfide structure of the arylene disulfide repeating unit may cause a sulfur exchange reaction that is in equilibrium with various polymer chains included in the polyarylene sulfide.
  • the molecular weight of the polymer chains contained in the polyarylene sulfide may be uniform, and the content of the polymer chains having too large or too low molecular weight in the polymer chains may be reduced. That is, the molecular weight distribution of the polymer chains contained in the polyarylene sulfide may be symmetrical.
  • the melting point of the polyarylene sulfide can be lowered, so that the processability of the polyarylene sulfide can be further improved.
  • the melting point of the polyarylene sulfide may be lowered and thus the processing temperature may be lowered during molding, it can be seen that the physical properties of the polyarylene sulfide can be further improved by reducing the amount of outgas generated. Accordingly, the polyarylene sulfide may exhibit excellent physical properties and workability, and may minimize the amount of burial, etc., and thus may form a product that requires molding precision.
  • Such a polyarylene sulfide according to an embodiment of the present invention includes an arylene sulfide repeating unit and an arylene disulfide repeating unit, and the weight ratio of the arylene sulfide repeating unit: arylene disulfide repeating unit is from 1: 0.0001 to 1 : 0.05.
  • the polyarylene sulfide containing the arylene disulfide repeat unit in a predetermined weight ratio with respect to the arylene sulfide repeat unit has a low melting point, thereby lowering the molding operation temperature.
  • the arylene sulfide repeating unit may be included in an amount of 95 to 99.99% by weight based on the total weight of polyarylene sulfide.
  • the arylene disulfide repeat unit is 0.01 to about the total polyarylene sulfide increase.
  • such polyarylene sulfide has It is suitable and can exhibit the same or higher processability as previously known, and at the same time, it is necessary to produce a product having a flat shape or requiring high molding precision without generating flash or burr or the like during molding of polyarylene sulfide. It has been confirmed that molding is possible.
  • polyarylene sulfide as described above may have a number average molecular weight of 3,000 to 1,000, 000, and preferably 3,000 to 50,000.
  • the polyarylene sulfide as described above may be a polyarylene sulfide having a relatively even dispersity of 2.0 to 4.0, preferably 2.0 to 3.5, which is defined as a weight average molecular weight relative to the number average molecular weight.
  • the polyarylene sulfide having the above number average molecular weight, and / or dispersity value may be manufactured and used in various product forms depending on the molecular weight or melt viscosity.
  • the polyarylene sulfide according to the embodiment of the present invention includes a predetermined amount of arylene disulfide repeating units, such as co-polymers having the same molecular weight, to polyarylene sulfides composed of pure arylene sulfide repeating units only.
  • arylene disulfide repeating units such as co-polymers having the same molecular weight
  • it can have a low melting point, and thus the processable temperature is low, so that the amount of outgas that is a by-product during molding processing is small, and the physical properties of the resulting polyarylene sulfide are also excellent.
  • the melting point of the polyarylene sulfide may be 265 to 285 ° C.
  • the polyarylene sulfide having such a melting point may have a melt viscosity of 300 to 4000 poise measured at a melting point of + 20 ° C. using a rotating disc viscometer.
  • the present invention can lower the lowest injection temperature due to the melting point and melt viscosity properties.
  • lowest injection temperature' is defined as the lowest temperature at which the polymer can be injection molded.
  • the above expression refers to the minimum temperature at which the molten resin can be layered in the barrel by rotating the screw in the reverse direction when measuring the resin, as described in the 'lowest injection temperature measuring method' of the experimental example to be described later, continuous injection is possible Determine experimentally by temperature.
  • the polyarylene sulfide according to the embodiment described above is a precision component
  • the product has been improved to have an appropriate degree of flowability, and the low melting point can also reduce the working temperature, which can reduce the outgas generation during the molding process of the product.
  • the polyarylene sulfide after melting the polyarylene sulfide in the injection machine, the maximum injection pressure of 1600 kgf / cm 2 , the injection laminar amount 20inl, injection speed 30mm / s, the injection pressure 1550 kgf / cm 2 And a length of the injection molded product injected from the spiral mold having a flow path radius of 3 mm and a flow path length of 150 cm under a minimum injection temperature condition is 50 cm or less.
  • disulfide-based bonds may be formed in the polymer.
  • Such disulfide-based bonds can cause the sulfur chain reaction, which is in equilibrium with the polymer chains contained in the polyarylene sulfide, to substantially uniform the molecular weight of the polymer chains contained in the polyarylene sulfide.
  • the sulfur exchange reaction which is the equilibrium reaction reaction, the degree of polymerization of the overall reaction product can be uniformized, and thus formation of polyarylene sulfide polymer chains having an excessively large or small molecular weight can be suppressed.
  • a polyarylene sulfide having a specific weight ratio of the arylene sulfide repeating unit and the arylene disulfide repeating unit according to the above-described embodiment may be prepared.
  • the diiodine aromatic compound may be used in an amount of 1000 to 1400 parts by weight based on 100 parts by weight of the sulfur compound added before the polymerization. If the content of the diiodine aromatic compound is less than 1000 parts by weight may cause side reactions, if the content of more than 1400 parts by weight there is a problem that does not raise the reactor internal temperature to the desired temperature.
  • the diiodine aromatic compound in the reactant may be included in more than 0.9 mole compared to the sulfur compound.
  • the sulfur compound in the polymerization reaction conditions can be administered without limitation of the time point, if the polymerization proceeds, preferably, the sulfur compound may be further added when the polymerization is made of 30 to 9.
  • the arylene disulfide repeat units in an appropriate weight ratio may be included in the polyarylene sulfide.
  • such an additional step of the sulfur compound may proceed only once during the polymerization step, but in some cases, may be carried out more than once, that is, multistage.
  • the amount of the total sulfur compound added in the multi-stage can be adjusted according to the reaction within the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the sulfur compound included in the initial reaction product, preferably the sulfur compound included in the reactant 0.1 to 15 parts by weight, more preferably about 100 parts by weight of sulfur compound contained in the semi-flour, and about 1 to 13 parts by weight, most preferably about 100 parts by weight of sulfur compound included in the 10 parts by weight can be added.
  • the sulfur compound when the sulfur compound is added in multiple stages, the number is not limited as long as it satisfies the content range.
  • the sulfur compound may be added by dividing it at least once to 4_ times.
  • a polymerization terminator may be further administered together.
  • the content range of the polymerization terminator may preferably be included in an amount of 1 to 20 parts by weight based on 100 parts by weight of the sulfur compound included in the semi-ungmul. If the amount of the polymerization terminator is less than 1, the effect of adding the polymerization terminator is negligible, and if it exceeds 20 parts by weight, an excessively low molecular weight polyarylene sulfide may be prepared.
  • the polymerization terminator may be included in an amount of 1 to 13 parts by weight, and more preferably 1 to 10 parts by weight, based on 100 parts by weight of the sulfur compound included in the reactant.
  • the polymerization terminator is a compound capable of stopping the polymerization by removing the iodine group contained in the polymer to be polymerized, but the configuration thereof is not limited, but preferably diphenyl sulfide, diphenyl ether, Biphenyl: biphenyl: or di henyl, benzophenone, dibenzothiazyl disulfide, monoiodoaryl compound, benzothiazoles,
  • the polymerization terminating agent is iodobi phenyl, iodophenol, iodoaniline, iodobenzophenone, iodobenzophenone,
  • ⁇ , ⁇ -dicyclonucleosilbenzothiazole-2-sulfenamide ( ⁇ , N-dicyc 1 ohexylbenzothiazo 1 e 2-sulfenamide), tetramethylthiuram monosulfide, tetramethylthiuram disulfide ( tetramethyl thiuram disulfide, Zinc dimethyldithiocarbamate, Zinc diethyldithiocarbamate, Dibenzothiazyl Disulfide (synonymous .benzothiazyl Disulfide) and diphenyl disulfide It may be one or more selected from the group consisting of.
  • diiodine aromatic compounds that can be used for the polymerization reaction of the polyarylene sulfide as described above are diiodobenzene (DIB), diiodonaphthalene (di iodonaphthalene),
  • diiodic biphenyl diiodobi phenyl
  • diiodobisphenol diiodobenzophenone
  • An alkyl group, a sulfone group, or the like may be attached to a substituent, or a diiodine aromatic compound in which an aryl compound contains atoms such as oxygen or nitrogen may also be used.
  • the diiodine aromatic compound is an isomer of various diiodine compounds depending on the position of the iodine atom, the most preferred of these diiodine, pDIB, 2,6—diiodonaphthalene, or ⁇ , ⁇ '— Like diiodobiphenyl, these compounds are symmetrically iodine attached at the longest distance to both ends of the molecule.
  • Sulfur is usually present in the form of a cyclooctasulfur (S8) in which eight atoms are connected at room temperature, but there is no limitation in composition as long as it is commercially available solid or liquid sulfur.
  • the polymerization reaction conditions are not limited as long as the polymerization reaction can be initiated with the reaction product containing the diiodine aromatic compound and the sulfur compound.
  • the polymerization step may be carried out under elevated pressure reaction conditions, in this case, by performing a temperature rise and a pressure drop at the initial reaction conditions of the temperature of 180 to 250 ° C and a pressure of 50 to 450 torr to the final reaction conditions of temperature 270 To 350 ° C. and a pressure of 0.001 to 20 torr, for 1 to 30 hours.
  • the method for producing a polyarylene sulfide according to the above-described embodiment may further include the step of melting and mixing a semi-ungmul containing a diiodine aromatic compound and a sulfur compound before the polymerization step.
  • the above-mentioned polymerization step is a melt polymerization reaction step performed in the absence of an organic solvent.
  • a reaction mixture including a diiodine aromatic compound may be melt mixed in advance and then the polymerization reaction may be performed. .
  • Such melt mixing may be performed at a temperature of preferably 130 ° C. to 20 ° C., although there is no limitation in the configuration thereof as long as the above-mentioned semi-composites are all melt mixed.
  • the melt polymerization reaction can be made more easily.
  • the polymerization reaction can be carried out in the presence of a nitrobenzene-based catalyst.
  • the catalyst may be added in the melt mixing step.
  • the nitrobenzene-based catalyst include 1,3-diiodine—4-nitrobenzene, 1-iodine-4-nitrobenzene, and the like, but are not limited to the examples described above.
  • the polyarylene sulfide manufactured by the method mentioned above contains an arylene sulfide repeating unit and an arylene disulfide repeating unit, and the increase ratio of the said arylene sulfide repeating unit: arylene disulfide repeating unit is 1: 0.0001-1: 0.05.
  • the present invention also provides a product manufactured by molding the polyarylene sulfide, which may be in the form of a molded article, a film, a sheet, or a fiber.
  • the molded article may be a molded article such as a mobile phone connector, a transistor part, a DVD player part, a sensor-related part, etc., in which particularly high molding precision is required.
  • the polyarylene sulfide of this invention can be processed and used for various molded articles by methods, such as injection molding and extrusion molding.
  • the molded article may be an injection molded article, an extrusion molded article, or a blow molded article.
  • a mold temperature in the case of injection molding from a viewpoint of crystallization, 30 degreeC or more is preferable, 60 degreeC or more is more preferable, 80 degreeC or more is more preferable.
  • the mold temperature at the time of injection molding is preferably 190 ° C. or less, more preferably ⁇ 70 ° C., more preferably 160 ° C. or less.
  • the polyarylene sulfide according to the above-described embodiments and the polyarylene sulfide polymerized according to the preparation method of the above-described embodiment may lower the injection temperature due to the relatively low melt viscosity characteristics compared to the low melting point and melting point.
  • the present invention is capable of injection molding even at a melting point + 20 or less, so that the flowability is appropriate at such an injection temperature, thereby minimizing the amount of variation.
  • these articles can be used as electrical / electronic parts, building members, automobile parts, mechanical parts and daily necessities.
  • these injection molded articles may be molded after being compounded with a layered product such as glass fiber or inorganic filler.
  • the amount of the layered product is not limited, but in order to increase the mechanical strength such as tensile strength while maintaining excellent physical properties of the polyarylene sulfide resin, the amount of 10 to 70 is preferably increased in the total compounding composition. It may be included in 65% by weight.
  • the molded article may include additives such as lubricants and oxidative stabilizers that are commonly used, and the type and content thereof are not limited.
  • the said molded article When the said molded article is provided as a film or a sheet, it can manufacture with various films, sheets, such as unstretched, uniaxial stretch, and biaxial stretch.
  • the molded article When the molded article is a fiber, it is made of a variety of fibers, such as undrawn yarn, drawn yarn, super-drawn yarn, woven fabric. It can be used as a knitted nonwoven fabric (snip bond, melt blow, staple), a rope, a net.
  • the polyarylene sulfide of the present invention exhibits excellent processability even at low temperatures, reduces the amount of outgases and variances, and thus can form a product requiring high molding precision, thereby preparing polyarylene sulfide and It can be usefully used in the industrial field related to the production of the used molded article.
  • Ticona's 0205P4 grade polyarylene sulfide was prepared.
  • the melt viscosity (hereinafter referred to as 'MV') of the polymer was 700 poise and the melting point (hereinafter 'Ttn') was 282 ° C.
  • a reactant containing 4000 g paradiiodinebenzene, 10 g polymerization terminator (benzothiazyl disulfide), 340 g sulfur and 5 g catalyst (1,3-diiodine-4-nitrobenzene) was melt mixed at 180 ° C. .
  • the mixed mixture was heated at 180 ° C. to 30 CTC, and the reaction was carried out while reducing the pressure to 10 torr at normal pressure.
  • 5 hours after the addition of 5g of sulfur (at the time of 95% polymerization) was additionally administered the polymerization was further performed for 3 hours to obtain a polymer.
  • the resulting polymer was MV 700 poise, Tm 280 ° C.
  • a reaction comprising 4000 g para diiodinebenzene, 10 g polymerization terminator (benzothiazyl disulfide), 340 g sulfur and 10 g catalyst (1,3-diiodine-4-nitrobenzene) was melt mixed at 18 CTC.
  • the mixed mixture was heated at 180 ° C. to 300 ° C. and subjected to a polymerization reaction under reduced pressure to 10 torr at normal pressure. After the start of the polymerization, after 5 hours (polymerization was 95%) 10 g of sulfur was additionally administered, the polymerization reaction was further performed for 3 hours to obtain a polymer.
  • the resulting polymer was MV 1100 Poise, Tm 278 ° C.
  • a semicoast containing 10 g, 350 g sulfur and 15 g catalyst (1,3-diiodine—4-nitrobenzene) was melt mixed at 18 C C.
  • the mixed mixture was heated to 180 ° C to 300 ° C, the pressure was reduced to 10 torr at atmospheric pressure to proceed with the polymerization.
  • an additional 15 g of sulfur was added at a time point of 5 hours (polymerization was 953 ⁇ 4 >), followed by further polymerization reaction for 3 hours to obtain a polymer.
  • the resulting polymer was MV 2000 Poise, Tm 273 ° C.
  • Example 1 4000 340/10 5 5 5h
  • Example 2 4000 340/10 10 10 5h
  • Example 3 4000 340/10 15 15 5h
  • Example 4 4000 350/10 15 15 5h
  • Example 5 4000 355/10 15 15 5h
  • the catalyst uses 1, 3-diiodine-4-nitrobenzene.
  • the additional time point S is added means the elapsed time after the start of polymerization reaction.
  • the polymers of Comparative Examples 1, 2, and 3 were injected at 305 ° C. and the lowest injection temperature, respectively, and flowability and variability were measured, and the outgas content of the injection molding was evaluated.
  • the polymers of Examples 1, 2, 3, 4, and 5 were injected at 305 ° C. and the lowest injection temperature, respectively, and flowability and variability were measured and the outgas content of the injection molded products was evaluated. Meanwhile, the flowability, the amount of variance generated and the outgas content measured for the sample injected at 305 ° C are shown in Table 2, and the flowability, the amount of variance generated and the outgas content measured for the sample injected at the lowest injection temperature. Table 3 shows. And, as described above, the 'lowest injection temperature' is defined as the lowest silver that can injection molding the polymer, and may be generally 20 ° C higher than the melting point of the polymer.
  • the lowest injection temperature may be measured below the melting point + 20 ° C.
  • the lowest injection temperature was determined experimentally. It is as shown in Table 3 below, the lowest injection temperature measuring method is as shown in the following experimental example.
  • the melt viscosity was measured at Tm + 20 ° C with a rotating disk viscometer.
  • the frequency sweep method the angular frequency was measured from 0.6 to 500 rad / s, and the viscosity at 1.0 rad / s was defined as the melt viscosity. The measured value is as shown in Table 3.
  • a commonly used spiral test method was used to measure the flow of polymerized polymer.
  • the pellets of the PPS in the form of pellets were melted in the injection machine, and then the maximum injection pressure of 1600 kgf / cm 2 , the injection stratification amount 20ml, the injection speed of 30 mm / s, The size was constant at 1550 kgf / cm 2 , and the barrel temperature was changed to 305 ° C. at the time of injection.
  • the mold used for the flow test is a spiral-shaped mold having a shape in which only half of the cylinder exists like a tunnel of a road, the radius of the flow path is 3 ⁇ , the total length of the flow path is 150 cm. After the polymer is injected from the middle part, the radius increases, and the better flowability, the longer the distance.
  • the final length of the molded article separated from the spiral-type mold was measured to measure the flowability of the polymer, and the measured values are shown in Table 2.
  • the spiral test was performed after the remaining conditions were the same even at the minimum injection temperature of each resin.
  • the spiral test results injected at the lowest injection temperature are shown in Table 3.
  • the minimum injection temperature of each sample is described later in '7.
  • Minimum injection temperature measurement method ' and the lowest injection temperature is a proper injection temperature of each resin.
  • the injection machine used above is Nissei company model name FN2000.
  • the lowest injection temperature may generally be around 20 t of the PPS melting point. However, taking into account also during the injection molding process in addition to the melting point The melt viscosity, the melting compared to 20 ° C to the first injection at higher temperatures the rear, a low melt viscosity at the melting point over 20 ° C higher temperature, the minimum injection temperature can be lower, and , The following experiment was repeated three more times to determine the lowest injection temperature of each sample.
  • the measured minimum injection temperatures of the resins of the comparative examples and examples are shown in Table 3 below.
  • the minimum injection temperature was experimentally determined as the minimum temperature at which the molten resin can be deposited in the barrel by rotating the screw in the reverse direction when measuring the resin, and continuous injection should be possible at this temperature. For reference, if the barrel temperature is so low that the resin does not melt sufficiently, no metering or continuous injection occurs. Table 2
  • polyarylene sulfide resins containing disulfide repeat units can lower the lowest injection temperature, and also excessive flowability when forming products at such lowest injection temperatures. It can be seen that this can reduce the amount of vari generated, and also can reduce the outgas generated much more than the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 낮은 온도에서 우수한 가공성을 나타내고, 아웃가스와 바리 발생량을 감소시키며, 이에 따라 높은 성형 정밀도가 요구되는 제품을 양호하게 성형할 수 있는 폴리아릴렌 설파이드(polyarylene sulfide) 및 이의 제조방법에 관한 것이다. 구체적으로 상기 폴리아릴렌 설파이드는 아릴렌 설파이드 반복 단위 및 아릴렌 디설파이드 반복 단위를 포함하고, 상기 아릴렌 설파이드 반복 단위: 아릴렌 디설파이드 반복단위의 중량비가 1 : 0.0001 내지 1 : 0.05 이다.

Description

【명세세
【발명의 명칭】
아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법 【기술분야】
본 발명은 낮은 온도에서 우수한 가공성을 나타내고, 아웃가스 (outgassing)와 바리 (flash 또는 burr) 발생량을 감소시키며, 이에 따라 성형 정밀도가 요구되는 제품을 양호하게 성형할 수 있는 폴리아릴렌 설파이드 및 이의 제조방법에 관한 것이다.
【배경기술】
현재 폴리아릴렌 설파이드는 대표적인 엔지니어링 폴라스틱 (Engineering Plastic)으로, 높은 내열성과 내화학성, 내화염성 (flame resistance), 전기 절연성으로 인해 고온과 부식성 환경 및 전자 제품 용도로 수요가 크다. 그 주된 용도는 컴퓨터 부속품, 자동차 부품, 부식성 화학물질이 접촉하는 부분의 코팅, 산업용 내화학성 섬유 등에 사용되는 것이다.
폴리아릴렌 설파이드 증에서 상업적으로 판매되는 것은 현재 폴리페닐렌 설파이드 (polyphenylene sulfide; 이하 TPS'라 한다)가 유일하다. 현재 PPS의 상업적 생산 공정은, 모두 파라-디클로로벤젠 (p-dichlorobenzene; 이하 'pDCB'라 한다)과 황화나트륨 (sodium sulfide)을 원료로 하여
N-메틸피를리돈 (N-methylpyrrolidone) 등의 극성 유기 용매에서 반응시키는 방법이다. 이 방법은 맥컬럼 공정 (Macallum process)으로 알려져 있으며, 기본 공정을 미국 특허 제 2, 513, 188호 및 제 2, 583, 941호에서 볼 수 있다. 사용하는 극성 용매는 몇 가지 종류가 제안되어 있으나, 현재 가장 많이 쓰이는 것은 N-메틸피롤리돈이다. 이 공정은 원료로서 모두 이염화 방향족 화합물 (dichloro aromatic compound)을 사용하며, 부산물로는 염화나트륨 (NaCl)이 생긴다.
한편, 상기와 같은 맥컬럼 공정에서 얻어지는 PPS는 일반적으로 고온에서 흐름성이 좋아서, 낮은 압력 하에서도 제품의 성형이 가능하여 작업성이 좋은 것으로 알려져 있다. 하지만, 각종 컴퓨터 부품, 또는 전자 제품과 같은 높은 정밀도를 요구하거나 납작한 형상을 갖는 제품으로 제작하는 경우, 성형된 제품에 형성된 바리 (flash 또는 burr)로 인해, 정밀 부품의 제조에 적용되기에는 한계가 있어 왔다. 또한 정밀 부품에 적용하고 흐름성을 좋게 하기 위해서는 고온에서 성형 가공을 하여야 하므로, 이에 따라 발생되는 다량의 아웃가스로 인해 작업자의 건강을 해칠 수도 있다는 문제점이 지적되었고, 또한 발생된 아웃 가스에 의한 대기오염 문제로 지적되어 왔다.
【발명의 내용】
【해결하려는 과제】
본 발명은 낮은 온도에서도 우수한 가공성을 나타내고, 아웃가스와 바리 발생량을 감소시키며, 이에 따라 높은 성형 정밀도가 요구되는 제품을 양호하게 성형할 수 있는 폴리아릴렌 설파이드 (polyarylene sulfide)를 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 폴리아릴렌 설파이드의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명의 또 다른 목적은 상기와 같은 폴리아릴렌 설파이드를 성형하여 제조되는 성형품, 필름, 시트, 또는 섬유를 제공하는 것이다. 【과제의 해결 수단】
본 발명은 아릴렌 설파이드 반복 단위 및 아릴렌 디설파이드 반복 단위를 포함하고, 상기 아릴렌 설파이드 반복 단위 : 아릴렌 디설파이드 반복단위의 중량비가 1 : 0.0001 내지 1 : 0.05인 폴리아릴렌 설파이드를 제공한다.
본 발명은 또한, (a) 디요오드 방향족 화합물과 황 화합물을 포함하는 반웅물을 증합 반웅시키는 단계; 및 (b) 상기 중합 반웅 단계를 진행하면서, 상기 반웅물에 포함된 황 화합물 100 중량부에 대해, 0.1 내지 20 중량부의 황 화합물을 추가로 가하는 단계를 포함하는 상기와 같은 폴리아릴렌 설파이드의 제조방법을 제공한다.
본 발명은 또한, 상기 폴리아릴렌 설파이드를 성형하여 제조되는 제품을 제공한다. 이하, 본 발명을 보다 상세하게 설명한다.
본 발명의 발명자들은 낮은 온도에서도 우수한 가공성을 나타내면서도, 바리 등을 발생시키지 않고, 성형 정밀도가 요구되는 제품을 양호하게 성형할 수 있는 폴리아릴렌 설파이드에 관한 연구를 거듭하던 중 본 발명을 완성하였다.
상술한 바와 같이 종래에 알려진 폴리아릴렌 설파이드로 성형 정밀도가 요구되는 컴퓨터 부품 또는 전자 제품 등을 성형하면, 높은 가공온도에서 높은 흐름성을 갖는 폴리아릴렌 설파이드가 성형을 위한 주형의 름으로 스며들어 성형된 제품의 주위에 바리 (flash 또는 burr)를 발생시켜 문제점이 지적되어 왔다. 이와 같은 바리의 제거를 위해. 종래 방법은 별도로 바리 제거 공정을 수행해야 하여, 성형 공정이 복잡해지는 단점이 지적되어 왔고 , 또한 상기 바리의 발생으로 인해 제품의 성형 불량을 초래할 수 있다는 우려도 지적되어 왔다.
참고로, 상기에서 바리 (flash 또는 burr)란 주형의 피복 면에서 용융 수지가 누출되어 재료가 엷은 막 형태로 성형품에 달라 붙어 있는 것을 지칭한다. 이와 같은 바리는 사출압력이 지나치게 높거나, 주형에 문제가 있는 등, 사출 조건 관련하여 나타날 수 있고, 근본적으로는 수지의 흐름성이 너무 좋은 경우 나타날 수 있다. 본 명세서 전체에서 바리는 후자의 문제점으로 나타나는 경우로 정와한다.
그리고, 종래 방법의 경우 정밀 부품의 성형을 위해 고온에서 가공 시, 성형 첨가제인 활제 (lubricant) 등과 폴리아릴렌 설파이드에 함유된 저비점 화합물이 가스화되어 작업공간에 퍼지므로 작업자의 건강을 위협하고 대기 환경을 오염시키는 문제점이 지적되어 왔다.
한편, 본 발명의 발명자들은 후술하는 방법에 따라, 일반적인 폴리아릴렌 설파이드의 반복 단위인 아릴렌 설파이드 반복 단위뿐 아니라, 아릴렌 디설파이드 반복 단위를 일정 수준의 함량으로 포함하는 폴리아릴렌 설파이드가 얻어질 수 있음을 확인하였다. 이와 같은 폴리아릴렌 설파이드에서는 아릴렌 디설파이드 반복 단위의 디설파이드 구조가, 폴리아릴렌 설파이드에 포함된 여러 고분자 쇄들과 평형 반웅인 황 교환 반웅을 일으킬 수 있다. 따라서, 이러한 황 교환 반웅으로 인해, 폴리아릴렌 설파이드에 포함된 고분자 쇄들의 분자량이 균일화될 수 있으며, 고분자 쇄들 증에서 지나치게 크거나 작은 분자량을 갖는 고분자 쇄들의 함량이 줄어들 수 있다. 즉, 폴리아릴렌 설파이드에 포함된 고분자 쇄들의 분자량 분포가 대칭적으로 될 수 있다.
이 때문에, 폴리아릴렌 설파이드의 흐름성이 적절하게 되고, 낮은 온도에서도 우수한 가공성을 나타낼 수 있을 뿐 아니라, 지나치게 작은 분자량을 갖는 고분자 쇄들의 함량이 낮아짐에 따라, 폴리아릴렌 설파이드의 흐름성이 지나치게 커지거나 성형 시 바리 등이 발생하는 현상을 줄일 수 있게 된다.
또한, 상기 아릴렌 디설파이드 반복 단위의 존재로 인해, 폴리아릴렌 설파이드의 융점이 낮아질 수 있어, 폴리아릴렌 설파이드의 가공성이 더욱 우수하게 될 수 있게 된다. 부가하여, 상기 폴리아릴렌 설파이드의 융점이 낮아져 성형 시 가공 온도가 낮아질 수 있으므로, 아웃가스 발생량을 줄여 폴리아릴렌 설파이드의 물성을 더욱 향상시킬 수 있게 됨을 알 수 있었다. 따라서, 상기 폴리아릴렌 설파이드는 우수한 물성 및 가공성을 나타내면서도, 바리 등의 발생량을 최소화할 수 있어, 성형 정밀도가 요구되는 제품을 양호하게 성형할 수 있다.
이와 같은 본 발명의 일 구현예에 따른 폴리아릴렌 설파이드는 아릴렌 설파이드 반복 단위 및 아릴렌 디설파이드 반복 단위를 포함하고, 상기 아릴렌 설파이드 반복 단위 : 아릴렌 디설파이드 반복단위의 중량비가 1 : 0.0001 내지 1 : 0.05이다. 상기 아릴렌 설파이드 반복 단위에 대한 일정 중량비의 아릴렌 디설파이드 반복단위가 포함된 폴리아릴렌 설파이드는, 융점이 낮아 성형 작업 온도를 낮출 수 있고. 또한 성형 시 우수한 가공성을 나타내면서도, 바리 등을 발생시키지 않고, 이에 따라 높은 성형 정밀도가 요구되는 제품올 양호하게 성형할 수 있다.
이때, 상기 아릴렌 설파이드 반복 단위는 전체 폴리아릴렌 설파이드 중량에 대해 95 내지 99.99 중량 %로 포함될 수 있다. 또한 상기 아릴렌 디설파이드 반복 단위는 전체 폴리아릴렌 설파이드 증량에 대해 0.01 내지
5 중량 %로 포함될 수 있다.
본 발명자들의 실험 결과, 이러한 폴리아릴렌 설파이드는 흐름성이 적절하여 이전에 알려진 것과 동등하거나 그 이상의 가공성을 나타낼 수 있으며, 이와 동시에, 폴리아릴렌 설파이드의 성형 중에 바리 (flash 또는 burr) 등을 발생시키지 않고 높은 성형 정밀도가 요구되거나 납작한 형상을 갖는 제품의 양호한 성형을 가능케 함이 확인되었다.
그리고, 상기와 같은 폴리아릴렌 설파이드는 수 평균 분자량이 3,000 내지 1,000, 000이고, 바람직하게는 3,000 내지 50,000 일 수 있다.
또한, 상기와 같은 폴리아릴렌 설파이드는 수평균 분자량에 대한 중량평균 분자량으로 정의되는 분산도가 2.0 내지 4.0, 바람직하게는 2.0 내지 3.5로 비교적 고른 분산도를 갖는 폴리아릴렌 설파이드일 수 있다. 상기와 같은 수 평균 분자량, 및 /또는 분산도 값을 갖는 폴리아릴렌 설파이드는 분자량 또는 용융 점도에 따라 다양한 제품 형태로 제작되어 웅용될 수 있다.
한편, 상술한 바와 같이 본 발명의 구현예에 따른 폴리아릴렌 설파이드는 일정 함량의 아릴렌 디설파이드 반복 단위를 포함하여, 동일 분자량 하의 공증합체와 같이 순수한 아릴렌 설파이드 반복단위만으로 이루어진 폴리아릴렌 설파이드에 비해, 낮은 융점을 가질 수 있고, 이에 따라 가공 가능한 온도가 낮아져, 성형 가공 시 부산물인 아웃가스의 발생량도 적고, 최종 생성되는 폴리아릴렌 설파이드의 물성 또한 우수하다. 이때, 폴리아릴렌 설파이드의 융점은 265 내지 285°C가 될 수 있다.
그리고, 이와 같은 융점을 갖는 폴리아릴렌 설파이드는 회전 원판 점도계로 융점 +20°C에서 측정한 용융 점도가 300 내지 4000 poise일 수 있다.
본 발명은 상기 융점 및 용융 점도 특성으로 인해 최저 사출 온도를 낮출 수 있다.
한편 본 명세서 전체에서 '최저 사출 온도'란 고분자를 사출 성형할 수 있는 최저의 온도로 정의된다. 또한, 상기 표현은 후술하는 실험예의 '최저 사출 온도 측정 방법'에 기재된 바와 같이, 수지를 계량 시 screw가 역방향으로 회전하여 용융 수지가 barrel에 층진될 수 있는 최저 온도를 의미하며, 연속 사출이 가능한 온도로 실험적으로 결정한다.
그리고, 상술한 구현예에 따른 폴리아릴렌 설파이드는 정밀 부품 성형 시 작업성을 좋게 하면서도 바리 발생량을 최소화하기 위해, 적절한 정도의 흐름성을 갖도록 개선한 제품이며, 또한 낮은 융점으로 인해 작업 온도 또한 낮출 수 있어, 제품의 성형 가공 시 아웃 가스 발생량도 줄일 수 있는 제품이다. 구체적으로 상기 폴리아릴렌 설파이드는, 상기 폴리아릴렌 설파이드를 사출기 내에서 용융 시킨 후, 최대 사출압 1600 kgf/cm2, 사출 층진량 20inl, 사출 속도 30mm/s, 사출시 보압 1550 kgf/cm2, 최저 사출 온도 조건 하에서, 유로 반경 3圆, 유로 길이 150cm인 스파이럴 몰드에서 사출한 사출물의 길이가 50cm 이하인 것을 포함한다.
이와 같은 최적화된 흐름성으로 인해, 본 발명에 따르면 정밀도가 요구되는 컴퓨터 부품 또는 전자 부품을 위한 성형 시에도 바리 (flash, burr) 등이 생성되지 않는 등, 높은 성형 정밀도가 요구되는 제품의 성형 시에 유용하게 이용할 수 있다.
한편, 본 발명의 다른 구현예에 따라 디요오드 방향족 화합물과 황 화합물을 포함하는 반웅물을 중합 반웅시키는 단계; 및 상기 중합 반웅 단계를 진행하면서, 상기 반웅물에 포함된 황 화합물 100 중량부에 대해, 0.1 내지 20 중량부의 황 화합물을 추가로 가하는 단계를 포함하는, 상술한 구현예들에 따른 폴리아릴렌 설파이드를 제조하는 방법을 제공한다.
상기와 같은 제조 방법에서는, 반웅 증에 미량의 황 화합물이 추가적으로 가해짐에 따라, 고분자 내에 디설파이드계 결합이 형성될 수 있다. 이러한 디설파이드계 결합은 폴리아릴렌 설파이드에 포함된 고분자 쇄들과 평형 반웅인 황 교환 반웅을 계속적으로 일으키면서, 폴리아릴렌 설파이드에 포함된 고분자 쇄들의 분자량을 대체로 균일화할 수 있다. 특히, 상기 평형 반웅인 황 교환 반웅으로 인해, 전체적인 반웅물의 중합 정도가 균일화될 수 있으므로, 지나치게 크거나 작은 분자량을 갖는 폴리아릴렌 설파이드 고분자 쇄의 형성이 억제될 수 있다.
이에 따라, 상술한 구현예에 따른 아릴렌 설파이드 반복 단위 및 아릴렌 디설파이드 반복 단위의 특정 중량비를 갖는 폴리아릴렌 설파이드가 제조될 수 있다.
또한 본 발명에서 디요오드 방향족 화합물은 증합전 투입되는 황 화합물 100 중량부에 대하여 1000 내지 1400 중량부로 사용될 수 있다. 상기 디요오드 방향족 화합물의 함량이 1000 중량부 미만이면 부반응을 야기시킬 수 있고, 1400 중량부를 초과하면 반응기 내온을 원하는 온도까지 상승시키지 못하는 문제가 있다.
바람직하게, 상기 반응물 중 디요오드 방향족 화합물은 황 화합물 대비 0.9 몰 이상 포함될 수 있다.
한편, 중합 반웅 중의 황 화합물 추가 시점은 중합이 진행되는 조건이라면, 시점의 한정이 없이 투여될 수 있으나, 바람직하게는 중합이 30 내지 9 이루어진 시점에서 황 화합물을 추가로 가할 수 있다. 이와 같은 시점에 투여하는 경우, 폴리아릴렌 설파이드 내에 적정 중량비율의 아릴렌 디설파이드 반복 단위가 포함될 수 있다. 또한, 이와 같은 황 화합물의 추가 단계는 중합 단계 중에 한 번만 진행할 수도 있으나, 경우에 따라서는 한 번 이상 즉, 다단으로 진행할 수도 있다. 이 경우, 다단으로 추가되는 총 황 화합물의 양은 초기 반웅물에 포함된 황 화합물 100 중량부에 대해, 0.1 내지 20 중량부의 범위 내에서 반웅에 따라 조절할 수 있으나, 바람직하게는 반응물에 포함된 황 화합물 100 중량부에 대해, 0.1 내지 15 중량부, 더욱 바람직하게는 반웅물에 포함된 황 화합물 100 중량부에 대해 1 내지 13 중량부, 가장 바람직하게는 반웅물에 포함된 황 화합물 100 중량부에 대해 10 중량부로 추가할 수 있다. 또한 다단으로 황 화합물을 추가시, 상기 함량범위를 만족하는 정도라면 그 횟수가 한정되지 않으나, 바람직하게는 1회 이상 내지 4_회로 분할하여 황 화합물을 첨가할 수 있다.
한편, 상기 (a)의 디요오드 방향족 화합물과 황화합물의 반응물을 중합반응시키는 단계에서, 중합중지제를 함께 추가로 투여할 수 있다. 이때 중합중지제의 함량 범위는 바람직하게 반웅물에 포함된 황 화합물 100 중량부에 대해 1 내지 20 중량부로 포함될 수 있다. 중합중지제의 함량이 1 미만이면, 중합중지제 첨가에 따른 효과가 미미하고, 20 중량부를 초과하는 경우, 지나치게 분자량이 낮은 폴리아릴렌 설파이드가 제조될 수 있다. 바람직하게, 중합중지제는 반웅물에 포함된 황 화합물 100 증량부에 대해 1 내지 13 중량부, 더욱 바람직하게는 반응물에 포함된 황 화합물 100 중량부에 대해 1 내지 10 중량부로 포함될 수 있다. 상기 중합중지제는 중합되는 고분자에 포함되는 요오드 그룹을 제거하여 중합을 중지시킬 수 있는 화합물이면, 그 구성의 한정은 없으나 바람직하게는 디페닐 설파이드 (diphenyl sulfide), 디페닐 에테르 (diphenyl ether) , 비페닐 (biphenyl: or di henyl ) , 벤조페논 (benzophenone) , 디벤조티아질 디설파이드 (dibenzothiazyl disulfide) , 모노요오도아릴화합물 (monoiodoaryl compound) , 벤조티아졸류 (benzothiazole)류,
벤조티아졸술펜아미드 (benzothiazolesulfenamide)류, 티우람 (thiuram)류, 디티오카바메이트 (dithiocarbamate)류 및 디페닐 디설파이드로 이루어지는 군에서 선택되는 1종 이상일 수 있다. 더욱 바람직하게, 상기 중합중지제는 요오도비페닐 ( iodobi phenyl ) , 요오도페놀 ( iodophenol ) , 요오도아닐린 ( iodoani line) , 요오도벤조페논( iodobenzophenone) ,
2-메르캅토벤조티아졸 (2-mercaptobenzothiazole),
2,2'-디티오비스벤조티아졸(2,2'-(1^ 0^ 201±132016),
N-시클로핵실벤조티아졸 -2-술펜아미드 (N-cyclohexylbenzothiazole-2-sulfen amide), 2-모르폴리노티오벤조티아졸 (2-morphol inothiobenzothiazole) ,
Ν , Ν-디시클로핵실벤조티아졸 -2-술펜아미드 (Ν , N-dicyc 1 ohexylbenzothiazo 1 e- 2-sulfenamide), 테트라메틸티우람 모노술파이드 (tetramethylthiuram monosulfide), 테트라메틸티우람 디술파이드 (tetramethyl thiuram disulfide), 아연 디메틸디티오카바메이트 (Zinc dimethyldithiocarbamate), 아연 디에틸디티오카바메이트 (Zinc diethyldithiocarbamate), 디벤조티아질 디설파이드 (Dibenzothiazyl Disulfide: 동의어 .benzothiazyl Disulfide) 및 디페닐 디설파이드 (diphenyl disulfide)로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
한편, 상기와 같은 폴리아릴렌 설파이드의 중합 반웅에 사용 가능한 디요오드 방향족 화합물은 디요오드화벤젠 (diiodobenzene; DIB), 디요오드화나프탈렌 (di iodonaphthalene),
디요오드화비페닐 (dii odobi phenyl ) , 디요오드화비스페놀 (dii odobisphenol ) , 및 디요오드화벤조페논 (di iodobenzophenone) 로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있지만, 이에 한정되지 않고, 이런 화합물들에 알킬기 (alkyl group)나 술폰기 (sulfone group) 등이 치환기로 붙어 있거나, 아릴 화합물에 산소나 질소 등의 원자를 함유한 형태의 디요오드 방향족 화합물도 사용할 수 있다. 이 때, 상기 디요오드 방향족 화합물은 요오드 원자가 붙은 위치에 따라 여러 가지 디요오드 화합물의 이성질체 (isomer)가 있는데, 이 중 가장 바람직한 것은 pDIB, 2,6—디요오도나프탈렌, 또는 ρ,ρ'—디요오도비페닐처럼 분자의 양쪽 끝에 가장 먼 거리로 대칭되게 요오드가 붙어 있는 화합물들이다.
그리고, 본 발명에서 사용 가능한 황 화합물의 형태에는 제한이 없다. 보통 황은 상온에서 원자 8개가 연결된 고리 형태 (cyclooctasulfur; S8)로 존재하는데, 그렇지 않더라도 상업적으로 사용 가능한 고체 또는 액체 상태의 황이라면 구성의 한정이 없다.
한편, 상기와 같은 중합 단계에 있어서, 디요오드 방향족 화합물과 황 화합물을 포함하는 반웅물을 중합이 개시될 수 있는 조건이면, 그 중합 반웅 조건은 그 구성의 한정이 없다. 바람직하게는, 중합 단계는 승온 감압 반웅 조건에서 진행할 수 있는데, 이 경우, 온도 180 내지 250°C 및 압력 50 내지 450 torr의 초기 반웅조건에서 온도 상승 및 압력 강하를 수행하여 최종 반웅조건인 온도 270 내지 350°C 및 압력 0.001 내지 20 torr로 변화시켜, 1 내지 30시간 동안 진행할 수 있다.
한편, 상술한 구현예에 따른 폴리아릴렌 설파이드의 제조 방법은 상기 중합 단계 전에, 디요오드 방향족 화합물과 황 화합물을 포함하는 반웅물을 용융 흔합하는 단계를 추가로 포함할 수 있다. 상술한 증합 단계는 유기 용매의 미존재 하에 진행되는 용융 증합 반응 단계인데, 이와 같은 용융 중합 반웅의 진행을 위해, 디요오드 방향족 화합물을 포함한 반웅물을 미리 용융 흔합한 후, 중합 반웅을 진행할 수 있다. 이와 같은 용융 흔합은 상술한 반웅물들이 모두 용융 흔합될 수 있는 조건이면, 그 구성의 한정은 없으나 바람직하게 130°C 내지 20C C의 온도에서 진행될 수 있다.
이와 같이 중합 전에 용융 흔합 단계를 진행하여, 용융 중합 반응이 보다 용이하게 이루어질 수 있다.
한편, 상술한 구현예에 따른 폴리아릴렌 설파이드의 제조 방법에 있어서, 중합 반웅은 니트로벤젠계 촉매의 존재 하에서 진행될 수 있다. 또한, 상술한 바와 같이 중합 반웅 전에 용융 흔합 단계를 거치는 경우, 상기 촉매는 용융 흔합 단계에서 추가될 수 있다. 니트로벤젠계 촉매의 종류로는 1,3-디요오드— 4-니트로벤젠, 또는 1-요오드 -4-니트로벤젠 등을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.
그리고, 상술한 방법에 따라 제조된 폴리아릴렌 설파이드는 아릴렌 설파이드 반복 단위 및 아릴렌 디설파이드 반복 단위를 포함하고, 상기 아릴렌 설파이드 반복 단위 : 아릴렌 디설파이드 반복단위의 증량비가 1 : 0.0001 내지 1 : 0.05이다.
본 발명은 또한, 상기 폴리아릴렌 설파이드를 성형하여 제조되는 제품을 제공하며, 상기 제품은 성형품, 필름, 시트, 또는 섬유형태가 될 수 있다. 특히 성형품인 경우, 특히 높은 성형 정밀도가 요구되는 휴대폰 커넥터, 트랜지스터 부품, DVD 플레이어 부품, 센서 관련 부품 등의 성형품일 수 있다.
본 발명의 폴리아릴렌 설파이드는, 사출 성형, 압출 성형 등의 방법에 의하여 각종 성형품으로 가공하여 이용할 수 있다. 성형품으로서는, 사출 성형품, 압출 성형품, 블로우 성형품일 수 있다. 사출 성형하는 경우의 금형 온도로서는, 결정화의 관점에서, 30 °C 이상이 바람직하고, 60 °C 이상이 보다 바람직하고, 80 °C 이상이 더욱 바람직하다. 또한, 시험편의 변형의 관점에서, 사출 성형시의 금형온도는 190 °C 이하가 바람직하고, Γ70 °C 이하가 보다 바람직하고, 160 °C 이하가 더욱 바람직하다.
한편, 상술한 구현예들에 따른 폴리아릴렌 설파이드 및 상술한 구현예의 제조방법에 따라 중합된 폴리아릴렌 설파이드는 낮은 융점 및 융점과 비교하여 비교적 낮은 용융 점도 특성으로 인해, 사출 온도를 낮출 수 있다. 구체적으로, 본 발명은 융점+ 20 이하의 온도에서도 사출 성형이 가능하여ᅳ 이와 같은 사출 온도에서 흐름성도 적절하여 바리 발생량도 최소화할 수 있다. 본 발명에서는 정밀품의 성형이 가능하며, 또한 낮은 사출 온도에서 작업이 가능하여, 아웃 가스의 함량도 줄일 수 있는 장점이 있다. 또, 이들 물품은, 전기 ·전자부품, 건축 부재, 자동차 부품, 기계 부품ᅳ 일용품 등으로서 이용할 수 있다. 그리고, 이들 사출 성형품들은 유리 섬유 (glass fiber)나 무기 층진제 (mineral filler) 등과 같은 층진물과 함께 컴파운딩된 후 성형될 수 있다. 이때, 상기 층진물의 포함량은 한정되지 않으나, 폴리아릴렌 설파이드 수지의 우수한 물성을 유지하면서도 인장 강도 등의 기계적 강도 등을 높이기 위해, 전체 컴파운딩 조성물 내에 10 내지 70 증량 바림직하게는 30 내지 65 중량 %로 포함될 수 있다. 그 밖에 , 성형품에는 통상 사용되는 활제나 산화안정제 등의 첨가제가 포함될 수 있고, 그 종류와 함량이 한정되지는 않는다.
상기 성형품이 필름, 또는 시트로서 제공되는 경우, 미연신, 1축 연신, 2축 연신 등의 각종 필름, 시트로 제조할 수 있다. 상기 성형품이 섬유인 경우, 미연신사, 연신사, 초연신사 등 각종 섬유로 하고, 직물. 편물 부직포 (스편본드, 멜트블로우, 스테이플), 로프, 네트로서 이용할 수 있다.
【발명의 효과】
본 발명의 폴리아릴렌 설파이드는 낮은 온도에서도 우수한 가공성을 나타내고, 아웃가스와 바리 발생량이 감소시키며 , 이에 따라 높은 성형 정밀도가 요구되는 제품을 양호하게 성형할 수 있어, 폴리아릴렌 설파이드의 제조 및 이를 이용한 성형품의 제작에 관한 산업 분야에 유용하게 웅용될 수 있다.
【발명을 실시하기 위한 구체적인 내용】
이하, 실시예 및 비교예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다. [비교예] 폴리아릴렌 설파이드의 증합
1, 비교예 1의 폴리아릴렌 설파이드
Ticona社의 0205P4 grade의 폴리아릴렌 설파이드를 준비하였다. 고분자의 용융 점도 (melt viscosity, 이하 'MV')는 700 포이즈이고, 융점 (이하 'Ttn')은 282°C였다.
2. 비교예 2의 폴리아릴렌 설파이드 비교예 1과 MV 만이 다르고, 동일한 방법으로 중합된 grade의 폴리아릴렌 설파이드로, Chevron Philips社의 Ryton P6 grade를 준비하였다. 고분자의 MV는 1100 포이즈이고, Tm은 281°C였다.
3. 비교예 3의 폴리아릴렌 설파이드 증합
비교예 1과 V 만이 다르고, 동일한 방법으로 중합된 grade의 폴리아릴렌 설파이드로, Deyang社의 hb grade를 준비하였다. 고분자의 MV는 2000 포이즈이고, Tm은 28CTC 였다.
[실시예] 폴리아릴렌 설파이드의 중합
1. 실시예 1의 폴리아릴렌 설파이드 중합
4000g의 파라 디요오드벤젠, 중합중지제 (벤조티아질 디설파이드) 10g, 340g의 황과 5g의 촉매 (1,3-디요오드 -4-니트로벤젠)를 포함하는 반응물을 180°C에서 용융 흔합시켰다. 상기의 흔합된 흔합물을 180°C에서 30CTC까지 온도를 높이고, 상압에서 10 torr까지 감압시키면서 증합 반웅을 진행하였다. 증합이 시작된 이후, 5시간이 지난 시점에서 (증합이 95% 이루어진 시점) 황 5g을 추가로 투여한 후, 3시간 더 중합반응을 진행하여, 고분자를 얻었다. 생성된 고분자는 MV 700 포이즈, Tm 280°C였다.
2. 실시예 2의 폴리아릴렌 설파이드 중합
4000g의 파라 디요오드벤젠, 중합중지제 (벤조티아질 디설파이드) 10g, 340g의 황과 10g의 촉매 (1,3-디요오드 -4-니트로벤젠)를 포함하는 반응물을 18CTC에서 용융 흔합시켰다. 상기의 흔합된 흔합물을 180°C에서 300°C까지 온도를 높이고, 상압에서 10 torr까지 감압시키면서 중합 반응을 진행하였다. 증합이 시작된 이후, 5시간이 지난 시점에서 (중합이 95% 이루어진 시점) 황 10g을 추가로 투여한 후, 3시간 더 중합반웅을 진행하여, 고분자를 얻었다. 생성된 고분자는 MV 1100 포이즈, Tm 278°C였다.
3. 실시예 3의 폴리아릴렌 설파이드 증합
4000g의 파라 디요오드벤젠, 중합중지제 (벤조티아질 디설파이드) 10g, 340g의 황과 15g의 촉매 (1,3-디요오드 -4-니트로벤젠)를 포함하는 반웅물을 180 °C에서 용융 흔합시켰다. 상기의 흔합된 흔합물을 18CTC에서 300°C까지 온도를 높이고, 상압에서 10 torr까지 감압시키며 증합 반웅을 진행하였다. 중합이 시작된 이후, 5시간이 지난 시점에서 (중합이 95% 이루어진 시점) 황 15g을 추가로 투여한 후, 3시간 더 중합반웅을 진행하여, 고분자를 얻었다. 생성된 고분자는 MV 2000 포이즈, Tm 275°C였다.
4. 실시예 4의 폴리아릴렌 설파이드 증합
4000g의 파라 디 요오드벤젠, 중합중지제 (벤조티아질 디설파이드)
10g, 350g의 황과 15g의 촉매 (1,3-디요오드— 4-니트로벤젠)를 포함하는 반웅물을 18C C에서 용융 흔합시켰다. 상기의 흔합된 흔합물을 180°C에서 300°C까지 온도를 높이고, 상압에서 10 torr까지 감압시키며 중합 반응을 진행하였다. 중합이 시작된 이후, 5시간이 지난 시점에서 (중합이 95¾» 이루어진 시점) 황 15g을 추가로 투여한 후, 3시간 더 중합반웅을 진행하여, 고분자를 얻었다. 생성된 고분자는 MV 2000 포이즈, Tm 273°C였다.
5. 실시예 5의 폴리아릴렌 설파이드 중합
4000g의 파라 디 요오드벤젠, 중합중지제 (벤조티아질 디설파이드) 10g, 355g의 황과 15g의 촉매 (1,3-디요오드 -4-니트로벤젠)을 포함하는 반웅물을 180°C에서 용융 흔합시켰다. 상기의 흔합된 흔합물을 180°C에서 300°C까지 온도를 높이고, 상압에서 10 torr까지 감압시키며 중합 반응을 진행하였다. 중합이 시작된 이후, 5시간이 지난 시점에서 (중합이 95% 이루어진 시점) 황 15g을 추가로 투여한 후, 3시간 더 중합반응을 진행하여, 고분자를 얻었다. 생성된 고분자는 MV 2000 포이즈, Τηι 270 °C 였다. 한편, 상술한 비교예들의 고분자의 제조사 및 실시예들의 중합 반웅의 반웅물 및 첨가량, 및 중합 중에 추가로 투여되는 황 화합물의 투여량 및 투여 시점 등을 정리하여, 하기 표 1에 나타내었다. 【표 1】
비교예의 폴리아릴렌 설파이드 준비 비교예 1 Ticona社의 0205P4 grade
비교예 2 Chevron Phi lips社의 Ryton P6 grade
비교예 3 Deyang社의 hb grade
실시예의 폴리아릴렌 설파이드 준비 실시예의 반응물 추가되는 추가로
S/중합중지제 S투입 시점 pDIB(g) 촉매 * (g) 투입되는 S (g)
* (g)
실시예 1 4000 340/10 5 5 5h 실시예 2 4000 340/10 10 10 5h 실시예 3 4000 340/10 15 15 5h 실시예 4 4000 350/10 15 15 5h 실시예 5 4000 355/10 15 15 5h
(주) * 상기 촉매는 1, 3-디요오드 -4-니트로벤젠을 사용함.
** 상기 중합중지제로 벤조티아질 디설파이드 (Benzothiazyl disulfide) 를 사용함.
*** 추가로 S이 투입되는 시점은 중합 반웅 시작 후에, 경과시간을 의미함.
6. 비교예 1 내지 3의 폴라아릴렌 설파이드 사출
비교예 1, 2, 3의 고분자를 305°C와 최저 사출온도에서 각각 사출하였고, 흐름성과 바리측정 및 사출물에 대한 아웃가스 함량을 평가하였다.
7. 실시예 1 내지 5의 폴리아릴렌 설파이드 사출
실시예 1, 2, 3, 4, 5의 고분자를 305 °C와 최저 사출온도에서 각각 사출하였고, 흐름성과 바리측정 및 사출물에 대한 아웃가스 함량을 평가하였다. 한편 , 305°C에서 사출한 시료에 대해 측정한 흐름성 , 바리 발생량 및 아웃 가스 함량을 표 2에 나타내었고, 최저 사출온도에서 사출한 시료에 대해 측정한 흐름성, 바리 발생량 및 아웃 가스 함량을 표 3에 나타내었다. 그리고, 상술한 바와 같이, '최저 사출 온도'란 고분자를 사출 성형할 수 있는 최저의 은도로 정의되며, 일반적으로 고분자의 융점 대비 20 °C 높은 온도일 수 있다. 다만, 융점 외에 사출 성형 시 용융 점도 등도 고려하여, 융점 대비 2(rc 높은 온도에서 고분자의 용융 점도가 비교적 낮은 경우, 최저 사출 온도는 융점 +20°C 보다 낮은 온도로 측정되기도 한다. 최저 사출 온도는 실험치로 결정하였다. 각 시료의 최저 사출 온도에 대해서는 하기 표 3에 나타낸 바와 같으며, 최저 사출 온도 측정 방법은 하기 실험예에 나타난 바와 같다.
[실험예] 비교예 및 실시예의 폴리아릴렌 설파이드의 물성 측정
1. 디설파이드의 중량 % 분석
소량의 시료 (약 2mg)를 AQF(Automatic Quick Furnace)로 1000°C에서 연소시켜 황산 가스를 흡수용액 (과산화 수소수)으로 포집, 이온화한 후 IC(Ion Chromatography) 측정법을 이용하여 컬럼에서 황 이온을 분리하고, 황 이온 표준물질 (K2S04)로 황 함량을 정량하였다. 이론 황 함량대비 분석한 황 함량의 차이를 모두 디설파이드 (disulfide)로 계산하여, 결과를 표 3에 나타내었다.
2. 용융 점도 (Melt Viscosity) 분석
비교예들 및 실시예들에 따라 합성된 고분자의 물성 분석에 있어서, 용융 점도는 회전 원판 점도계 (rotating disk viscometer)로 Tm+20°C에서 측정하였다. Frequency sweep방법으로 측정함에 있어, angular frequency를 0.6부터 500 rad/s까지 측정하였고, 1.0 rad/s에서의 점도를 용융점도로 정의하였다. 측정 값은 표 3 에 나타낸 바와 같다.
3. 융점 (Tm) 측정
시차주사 열량분석기 (Differential Scanning Calorimeter; DSC)를 이용하여 30 °C에서 320 °C까지 10 °C/min 의 속도로 승온 후 30 °C까지 냉각 후에 다시 30 °C에서 320 °C까지 10 °C/min 의 속도로 승온 하면서 융점을 측정하였다. 측정 값은 표 2 에 나타낸 바와 같다.
4. 고분자의 흐름성 측정 (스파이럴 테스트)
반웅 중합된 고분자의 흐름을 측정하기 위해 보편적으로 사용되는 스파이럴 테스트 (Spiral test) 방법이 사용되었다. 하기의 테스트 진행을 위하여, 펠렛 타입의 형태의 PPS를 사출기 내에서 용융시킨 후 최대 사출압 1600 kgf/cm2, 사출 층진량 20ml , 사출 속도 30 mm/s, 사출시의 보압의 크기를 1550 kgf/cm2로 일정하게 하였으며, 사출시의 온도는 305°C로 베럴 (barrel 기준) 온도를 변화하였다.
한편, 상기 흐름성 테스트 (스파이럴 테스트)에 사용되는 몰드는 도로의 터널처럼 원통의 절반만 존재하는 모습을 띠고 있는 스파이럴 형태의 유로가 난 몰드로, 유로의 반경은 3隱이며, 유로 총 길이는 150cm다. 고분자는 중간부위에서부터 사출된 뒤, 반경이 점점 커지는데 흐름성이 우수할수록 먼 거리까지 흘러간다.
스파이럴 테스트 후 스파이럴 형태의 몰드에서 분리된 성형품의 최종 길이를 측정하여, 고분자의 흐름성을 측정하였으며, 측정 값은 표 2 에 나타낸 바와 같다. 또한, 각 수지의 최저 사출온도에도 나머지 조건은 동일하게 한 후, 스파이럴 테스트를 진행하였다. 최저 사출온도에서 사출한 스파이럴 테스트 결과는 표 3에 나타낸 바와 같다. 한편, 각 시료의 최저 사출 온도는 후술하는 '7. 최저 사출 온도 측정 방법'에 나타낸 바와 같으며, 최저 사출 온도가 각 수지의 적정 사출온도가 된다. 그리고, 상기에서 사용된 사출기는 Nissei 社 model명 FN2000이다.
5. 성형품 제작 시 형성된 바리 측정
비교예 및 실시예의 고분자를 이용하여, 305 °C 및 최저 사출 온도에서 스파이럴 테스트 (spiral test)에 사용된 몰드의 주된 형태를 제외하고는, 몰드의 앞판과 뒷판 사이에 끼어든 얇은 부분에 대하여 절단하고 바리 발생량을 측정하여 그 결과를 하기 표 2 및 표 3 에 나타내었다.
6. 아웃 가스 발생량 측정
실시예 및 비교예에 따른 차이를 평가하기 위하여 스파이럴 사출시편의 일정량 (2g)의 시료를 20mL 밀봉 바이알에 밀봉시킨 후 HSCHead Space)장비로 180°C에서 30분간 가열한 후 발생한 가스를 자동으로 GC/MS(Gas chromatography-Mass Spectrometer)장비로 보내었다. 이후, 각 성분을 캐필러리 컬럼으로 분리한 후 정성분석하고 표준물질 (Benzothiazole)을 사용하여 시료 내 각 성분의 함량을 대체 정량 분석하였다. 이때 사용된 시료는 바리를 측정하기 위한 성형품을 사용하였고 그 측정 결과는 하기 표 2 및 표 3에 나타내었다. 7."최저 사출 온도 측정 방법
최저 사출 온도는 일반적으로 PPS 융점 대비 20 t 내외의 온도일 수 있다. 다만, 융점 외에 사출 성형 시 용융 점도 등도 고려하여, 융점 대비 20 °C 높은 온도에서 먼저 사출해 본 뒤, 융점 대비 20°C 높은 온도에서 용융 점도가 낮은 경우, 최저 사출 온도는 더 낮게 할 수 있으며, 하기와 같은 실험을 3 회 이상 반복하여, 각 시료의 최저 사출 온도를 결정하였다. 비교예 및 실시예의 수지의 측정된 최저 사출 온도는 하기 표 3에 나타낸 바와 같다.
이때, 최저 사출 온도는 수지를 계량 시 screw가 역방향으로 회전하여 용융 수지가 barrel에 층진될 수 있는 최저 온도로 실험적으로 결정하였는데, 이 온도에서 연속 사출이 가능하여야 한다. 참고로, 배럴 (barrel) 온도가 너무 낮아 수지가 층분히 녹지 않으면 계량이 안되거나 연속 사출이 이루어지지 않는다. 【표 2】
Figure imgf000018_0001
【표 3】
Figure imgf000018_0002
중량 (%) 사출온도 (°C) (cm) 발생량 (ppm) 비교예 1 0 300 58 0.65 620 비교예 2 0 300 55 0.38 810 비교예 3 0 300 53 0.48 700 실시예 1 0.4 295 50 0.34 400 실시예 2 0.7 293 45 0.23 310 실시예 3 1.0 290 45 0.1 240 실시예 4 1.5 286 45 0.1 180 실시예 5 2 285 45 0.1 120 상기 표 2에서 볼 수 있는 바와 같이, 동일한 사출온도인 305°C에서 사출 시 바교예나 실시예에서 흐름성 및 바리 발생량은 유사하지만, 아웃가스 발생량은 실시예에서 적게 나타나는 것을 확인할 수 있었다.
또한, 표 3에서 볼 수 있는 바와 같이, 실시예에서처럼 디설파이드 (disulfide)반복 단위를 포함한 폴리아릴렌 설파이드 수지는 최저 사출 온도를 낮출 수 있고, 또한 이와 같은 최저 사출 온도에서 제품 성형 시, 과도한 흐름성을 감소시킬 수 있고 이로 인해 바리 발생량이 감소되며, 또한 아웃가스 발생량도 비교예에 비해 훨씬 저하시킬 수 있는 것을 확인할 수 있었다.

Claims

【특허청구범위】
【청구항 11
아릴렌 설파이드 반복 단위 및 아릴렌 디설파이드 반복 단위를 포함하고, 상기 아릴렌 설파이드 반복 단위 : 아릴렌 디설파이드 반복단위의 중량비가 1 : 0.0001 내지 1 : 0.05인 폴리아릴렌 설파이드.
【청구항 2】
제 1 항에 있어서,
상기 아릴렌 설파이드 반복 단위는 전체 폴리아릴렌 설파이드 중량에 대해 95 내지 99.99 중량 %로 포함되는 폴리아릴렌 설파이드.
【청구항 3]
제 1 항에 있어서,
상기 아릴렌 디설파이드 반복 단위는 전체 폴리아릴렌 설파이드 중량에 대해 0.01 내지 5 중량 %로 포함되는 폴리아릴렌 설파이드.
【청구항 4】
제 1항에 있어서,
수 평균 분자량이 3,000 내지 1,000,000 인 폴리아랄렌 설파이드.
【청구항 5】
제 1항에 있어서,
수평균 분자량에 대한 중량평균 분자량으로 정의되는 분산도가 2.0 내지 4.0 인 폴리아릴렌 설파이드.
【청구항 6】
제 1항에 있어서,
융점이 265 내지 285°C인 폴리아릴렌 설파이드. 【청구항 7i
제 6항에 있어서,
회전 원판 점도계로 융점 +20°C에서 측정한 용융 점도가 300 내지 4000 poise인 폴리아릴렌 설파이드.
【청구항 8】
제 1항에 있어서
상기 폴리아릴렌 설파이드를 사출기 내에서 용융시킨 후, 최대 사출압 1600 kgf/cm2, 사출 층진량 20ml, 사출 속도 30 mm/s, 사출시 보압 1550 kgf/cm2, 최저 사출 온도 조건 하에서, 유로 반경 3圆, 유로 길이 150cm인 스파이럴 몰드에서 사출한 사출물의 길이가 50cm 이하인 폴리아릴렌 설파이드.
【청구항 9]
(a) 디요오드 방향족 화합물과 황 화합물을 포함하는 반웅물을 중합 반웅시키는 단계; 및 (b) 상기 중합 반웅 단계를 진행하면서, 상기 반웅물에 포함된 황 화합물 100 중량부에 대해, 0.1 내지 20 중량부의 황 화합물을 추가로 가하는 단계를 포함하는 상기 청구항 1의 폴리아릴렌 설파이드의 제조 방법 .
【청구항 10】
제 9항에 있어서,
중합이 30 내지 90% 이상 이루어진 시점에서 황 화합물을 추가로 가하는 폴리아릴렌 설파이드의 제조 방법.
【청구항 111
제 9항에 있어서,
중합 단계 중의 황 화합물의 추가 단계는 한 번 이상인 폴리아릴렌 설파이드의 제조 방법 . 【청구항 12]
제 9항에 있어서,
상기 반웅물 중 디요오드 방향족 화합물은 황 화합물 대비 0.9몰 이상 포함되는 폴리아릴렌 설파이드의 제조 방법.
【청구항 13]
제 9항에 있어서,
상기 (a)의 중합 반웅시키는 단계에서, 반웅물에 포함된 황 화합물 100 중량부에 대해, 1 내지 20 중량부의 중합중지제를 추가로 가하는 단계를 포함하는 폴리아릴렌 설파이드의 제조 방법.
【청구항 14]
제 13항에 있어서,
상기 중합증지제는 디페닐 설파이드 (diphenyl sulfide), 디페닐 에테르 (diphenyl ether), 비페닐 (bi phenyl), 벤조페논 (benzophenone) , 디벤조티아졸 디설파이드 (dibenzothiazole disulfide), 모노요오도아릴 화합물 (mono iodoaryl compound), 벤조티아졸류 (benzothiazole)류, 벤조티아졸술펜아미드 (benzothiazolesulfenamide)류, 티우람 (thiuram)류, 디티오카바메이트 (dithiocarbamate)류 및 디페닐 디 설파이드로 이루어지는 군에서 선택되는 1종 이상인 폴리아릴텐 설파이드의 제조 방법.
【청구항 15]
제 9항에 있어서,
상기 디요오드 방향족 화합물은 디요오드화 벤젠, 디요오드화 나프탈렌, 디요오드화바이페닐, 디요오드화비스페놀, 및 디요오드화벤조페논으로 이루어진 군에서 선택된 1종 이상인 폴리아릴렌 설파이드의 제조 방법 .
【청구항 16]
제 9 항에 있어서 상기 중합 반웅시키는 단계는ᅵ
온도 180 내지 25C C 및 압력 50 내지 450 torr의 초기 반응조건에서 온도 상승 및 압력 강하를 수행하여 최종 반응조건인 온도 270 내지 35C C 및 압력 0.001 내지 20 torr로 변화시켜, 1 내지 30시간 동안 중합 반웅을 진행하는 단계를 포함하는 폴리아릴렌 설파이드의 제조 방법.
【청구항 17]
제 9 항에 있어서,
상기 중합 단계 전에, 디요오드 방향족 화합물 및 황 화합물을 포함하는 반웅물을 용융 흔합하는 단계를. 추가로 포함하는 폴리아릴렌 설파이드의 제조 방법 .
【청구항 18]
제 9항에 있어서,
상기 중합 반웅은 니트로벤젠계 촉매의 존재 하에서 진행되는 폴리아릴렌 설파이드의 제조 방법 .
【청구항 19】
제 1항 내지 제 8항 중 어느 한 항에 따른 폴리아릴렌 설파이드를 성형하여 제조되는 제품 .
【청구항 20]
제 19항에 있어서, 상기 제품은 성형품, 필름, 시트, 또는 섬유 형태인 제품.
PCT/KR2011/001596 2010-03-10 2011-03-08 아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법 WO2011111983A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/582,868 US9255183B2 (en) 2010-03-10 2011-03-08 Polyarylene sulfide having reduced outgassing and preparation method thereof
CN201180013162.3A CN102822240B (zh) 2010-03-10 2011-03-08 具有减少的排气的聚亚芳基硫醚及其制备方法
ES11753588.0T ES2686842T3 (es) 2010-03-10 2011-03-08 Poli(sulfuro de arileno) con pequeña cantidad de desgasificación, y procedimiento de preparación del mismo
EP11753588.0A EP2546281B1 (en) 2010-03-10 2011-03-08 Polyarylene sulfide with small amount of outgassing, and preparation method thereof
JP2012556973A JP6001459B2 (ja) 2010-03-10 2011-03-08 アウトガス発生量が少ないポリアリーレンスルフィドの製造方法
HK13106748.7A HK1179640A1 (en) 2010-03-10 2013-06-06 Polyarylene sulfide having reduced outgassing and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100021390 2010-03-10
KR10-2010-0021390 2010-03-10

Publications (2)

Publication Number Publication Date
WO2011111983A2 true WO2011111983A2 (ko) 2011-09-15
WO2011111983A3 WO2011111983A3 (ko) 2012-03-01

Family

ID=44563988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001596 WO2011111983A2 (ko) 2010-03-10 2011-03-08 아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법

Country Status (9)

Country Link
US (1) US9255183B2 (ko)
EP (1) EP2546281B1 (ko)
JP (2) JP6001459B2 (ko)
KR (1) KR101727258B1 (ko)
CN (1) CN102822240B (ko)
ES (1) ES2686842T3 (ko)
HK (1) HK1179640A1 (ko)
TW (2) TWI560216B (ko)
WO (1) WO2011111983A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150218376A1 (en) * 2012-09-19 2015-08-06 Sk Chemicals Co., Ltd. Polyarylene sulfide resin composition and formed article
EP2883900A4 (en) * 2012-08-07 2016-04-27 Sk Chemicals Co Ltd POLY RESIN (ARYLENE SULFIDE) AND PROCESS FOR PREPARING THE SAME
CN107207857A (zh) * 2015-02-09 2017-09-26 英驰株式会社 具有优异的金属粘接性的聚芳硫醚组合物

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111982A2 (ko) * 2010-03-10 2011-09-15 에스케이케미칼주식회사 폴리아릴렌 설파이드 및 이의 제조 방법
KR20160042939A (ko) * 2013-08-09 2016-04-20 디아이씨 가부시끼가이샤 폴리아릴렌설피드 수지 조성물 및 그 성형품
WO2015020142A1 (ja) * 2013-08-09 2015-02-12 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及びその成形品
CN105517797B (zh) * 2013-08-30 2018-04-03 Dic株式会社 多层成形体和使用了其的燃料用部件
JP6718232B2 (ja) * 2013-09-26 2020-07-08 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及びその成形品、並びに表面実装電子部品
KR101758039B1 (ko) * 2014-03-31 2017-07-13 가부시끼가이샤 구레하 폴리아릴렌 설파이드의 제조방법
KR102300453B1 (ko) * 2015-05-14 2021-09-09 에스케이케미칼 주식회사 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
KR102289864B1 (ko) * 2015-05-14 2021-08-13 에스케이케미칼 주식회사 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
KR20170095569A (ko) * 2016-02-15 2017-08-23 이니츠 주식회사 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
KR20170105269A (ko) * 2016-03-09 2017-09-19 이니츠 주식회사 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물
JP6742132B2 (ja) * 2016-04-15 2020-08-19 帝人株式会社 樹脂組成物およびその製造方法
KR102502509B1 (ko) 2016-04-26 2023-02-22 에이치디씨폴리올 주식회사 유동성이 우수한 폴리아릴렌 설파이드 수지 조성물
KR102492258B1 (ko) * 2016-04-26 2023-01-26 에이치디씨폴리올 주식회사 내가수분해성이 우수한 폴리아릴렌 설파이드 수지 조성물
JP6691012B2 (ja) 2016-07-28 2020-04-28 マレリ株式会社 車両用周辺監視装置および車両用周辺監視方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2513188A (en) 1948-09-10 1950-06-27 Macallum Alexander Douglas Mixed phenylene sulfide resins
US2583941A (en) 1946-11-13 1952-01-29 Jr Thurlow M Gordon Device for detecting variations in fluid pressure

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786713A (en) * 1987-11-06 1988-11-22 Eastman Kodak Company Copoly(arylene sulfidex-disulfide)
ATE84805T1 (de) 1987-10-19 1993-02-15 Eastman Kodak Co Verfahren zur herstellung von copolyarylensulfid.
US4792600A (en) * 1987-11-09 1988-12-20 Eastman Kodak Company Process for the preparation of copoly(arylene sulfide) with aromatic nitro compound catalyst
US4855393A (en) * 1988-06-24 1989-08-08 Eastman Kodak Company Process for the preparation of copoly(arylene sulfide)
US4952671A (en) * 1988-07-15 1990-08-28 Eastman Kodak Company Terminated copoly(arylene sulfide)
JP3699777B2 (ja) 1996-04-24 2005-09-28 出光興産株式会社 ポリアリーレンスルフィドの製造方法
JP2000319394A (ja) 1999-04-30 2000-11-21 Idemitsu Kosan Co Ltd ポリアリーレンスルフィド樹脂組成物
JP4432971B2 (ja) 2005-09-22 2010-03-17 東レ株式会社 ポリアリーレンスルフィドの製造方法
KR101183780B1 (ko) * 2006-08-24 2012-09-17 에스케이케미칼주식회사 폴리아릴렌 설파이드의 제조방법
KR101196415B1 (ko) 2007-01-04 2012-11-02 에스케이케미칼주식회사 백색도가 높은 폴리아릴렌설파이드 수지 및 이의 제조방법
JP2008202164A (ja) * 2007-02-20 2008-09-04 Toray Ind Inc ポリフェニレンスルフィド繊維
KR101549205B1 (ko) 2008-12-23 2015-09-02 에스케이케미칼 주식회사 폴리아릴렌 설파이드의 제조 방법
US9249263B2 (en) 2010-03-09 2016-02-02 Sk Chemicals Co., Ltd. Recyclable polyarylene sulfide and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2583941A (en) 1946-11-13 1952-01-29 Jr Thurlow M Gordon Device for detecting variations in fluid pressure
US2513188A (en) 1948-09-10 1950-06-27 Macallum Alexander Douglas Mixed phenylene sulfide resins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2546281A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2883900A4 (en) * 2012-08-07 2016-04-27 Sk Chemicals Co Ltd POLY RESIN (ARYLENE SULFIDE) AND PROCESS FOR PREPARING THE SAME
US20150218376A1 (en) * 2012-09-19 2015-08-06 Sk Chemicals Co., Ltd. Polyarylene sulfide resin composition and formed article
EP2899234A4 (en) * 2012-09-19 2016-06-22 Sk Chemicals Co Ltd POLYARYLENE SULFIDE RESIN COMPOSITION AND FORMING PRODUCTS
US10494526B2 (en) * 2012-09-19 2019-12-03 Sk Chemicals Co., Ltd. Polyarylene sulfide resin composition and formed article
US11370915B2 (en) 2012-09-19 2022-06-28 Hdc Polyall Co., Ltd. Polyarylene sulfide resin composition and formed article
CN107207857A (zh) * 2015-02-09 2017-09-26 英驰株式会社 具有优异的金属粘接性的聚芳硫醚组合物
CN107207857B (zh) * 2015-02-09 2019-12-17 英驰株式会社 具有优异的金属粘接性的聚芳硫醚组合物
TWI680157B (zh) * 2015-02-09 2019-12-21 南韓商英馳股份有限公司 具有經改良的金屬黏著性之聚伸芳基硫醚組成物

Also Published As

Publication number Publication date
HK1179640A1 (en) 2013-10-04
US9255183B2 (en) 2016-02-09
CN102822240B (zh) 2014-09-10
CN102822240A (zh) 2012-12-12
JP2016148058A (ja) 2016-08-18
JP2013522387A (ja) 2013-06-13
TWI617597B (zh) 2018-03-11
ES2686842T3 (es) 2018-10-22
KR20110102226A (ko) 2011-09-16
EP2546281A2 (en) 2013-01-16
EP2546281B1 (en) 2018-07-04
EP2546281A4 (en) 2015-07-22
TWI560216B (en) 2016-12-01
KR101727258B1 (ko) 2017-04-27
WO2011111983A3 (ko) 2012-03-01
TW201636383A (zh) 2016-10-16
JP6001459B2 (ja) 2016-10-05
US20120329983A1 (en) 2012-12-27
TW201136991A (en) 2011-11-01

Similar Documents

Publication Publication Date Title
WO2011111983A2 (ko) 아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법
KR102210480B1 (ko) 폴리아릴렌 설파이드계 수지 조성물 및 성형품
KR102210479B1 (ko) 폴리아릴렌 설파이드 수지 및 그의 제조 방법
JP6412519B2 (ja) ポリアリーレンスルフィド及びその製品
EP2860221B1 (en) Polyarylene sulfide resin composition and method for preparing same
JP6425315B2 (ja) 加工性に優れたポリアリーレンスルフィド、及び製品
KR101781607B1 (ko) 재활용 가능한 폴리아릴렌 설파이드 및 이의 제조 방법
KR102245611B1 (ko) 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
JP6707655B2 (ja) 金属に対して優れた接着性を有するポリアリーレンスルフィド組成物
KR20110120554A (ko) 열적 및 기계적 물성이 우수한 폴리아릴렌 설파이드 수지 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013162.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753588

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012556973

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13582868

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011753588

Country of ref document: EP