KR102210480B1 - 폴리아릴렌 설파이드계 수지 조성물 및 성형품 - Google Patents

폴리아릴렌 설파이드계 수지 조성물 및 성형품 Download PDF

Info

Publication number
KR102210480B1
KR102210480B1 KR1020190170655A KR20190170655A KR102210480B1 KR 102210480 B1 KR102210480 B1 KR 102210480B1 KR 1020190170655 A KR1020190170655 A KR 1020190170655A KR 20190170655 A KR20190170655 A KR 20190170655A KR 102210480 B1 KR102210480 B1 KR 102210480B1
Authority
KR
South Korea
Prior art keywords
polyarylene sulfide
resin composition
polymerization
group
reaction
Prior art date
Application number
KR1020190170655A
Other languages
English (en)
Other versions
KR20200002731A (ko
Inventor
이세호
김성기
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Publication of KR20200002731A publication Critical patent/KR20200002731A/ko
Application granted granted Critical
Publication of KR102210480B1 publication Critical patent/KR102210480B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0263Preparatory processes using elemental sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0286Chemical after-treatment
    • C08G75/029Modification with organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • D01F6/765Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products from polyarylene sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

본 발명은 가공성이 우수하며, 다른 고분자 소재나 충진재 등과의 보다 향상된 상용성으로 인해 우수한 물성을 나타내는 폴리아릴렌 설파이드계 수지 조성물 및 성형품에 관한 것이다. 이러한 폴리아릴렌 설파이드계 수지 조성물은 주쇄의 반복 단위 중에 디설파이드 반복 단위를 포함하는 폴리아릴렌 설파이드; 및 열가소성 수지, 열가소성 엘라스토머 및 충진재로 이루어진 군에서 선택된 1종 이상을 포함하는 것이다.

Description

폴리아릴렌 설파이드계 수지 조성물 및 성형품 {POLYARYLENE SULFIDE RESIN COMPOSITION AND FORMED ARTICLE}
본 발명은 다른 고분자 소재나 충진재 등과의 보다 향상된 상용성으로 인해 우수한 물성을 나타내는 폴리아릴렌 설파이드계 수지 조성물 및 성형품에 관한 것이다.
현재 폴리아릴렌 설파이드는 대표적인 엔지니어링 플라스틱(Engineering Plastic)으로, 높은 내열성과 내화학성, 내화염성(flame resistance), 전기 절연성 등으로 인해 고온과 부식성 환경에서 사용되는 각종 제품이나 전자 제품에 사용되는 용도로 수요가 증대되고 있다.
이러한 폴리아릴렌 설파이드 중에서 상업적으로 판매되는 것은 현재 폴리페닐렌 설파이드(polyphenylene sulfide; 이하 'PPS')가 유일하다. 현재까지 주로 적용되는 PPS의 상업적 생산 공정은, 파라-디클로로벤젠(p-dichlorobenzene; 이하 'pDCB')과 황화나트륨(sodium sulfide)을 원료로 하여 N-메틸파이롤리돈(N-methyl pyrrolidone) 등의 극성 유기 용매에서 용액중합반응시키는 방법이다. 이 방법은 맥컬럼 공정(Macallum process)으로 알려져 있다.
그러나, 이러한 용액중합 방식의 맥컬럼 공정으로 제조한 폴리아릴렌설파이드의 경우, 황화나트륨 등을 사용한 용액중합 공정으로 인해 염 형태의 부산물이 발생할 수 있으며, 이러한 염 형태의 부산물 또는 잔류 유기 용매의 제거를 위해 세척 또는 건조 공정 등이 필요하게 되는 단점이 있다. 또, 이러한 맥컬럼 공정으로 제조된 폴리아릴렌설파이드가 분말 형태를 가짐에 따라, 후가공이 용이하지 않고 작업성이 떨어질 수 있다. 더구나, 상기 맥컬럼 공정으로 제조한 폴리아릴렌 설파이드의 경우, 분자량이 낮은 올리고머 형태의 고분자 쇄를 상당 함량으로 포함함에 따라, 높은 정밀도가 요구되는 제품을 성형하고자 하면 바리(flash)가 상당량 발생하고 이를 제거하기 위한 별도 공정의 필요성 등으로 인해 가공성이 떨어지는 문제를 가지고 있었다.
이에 따라, 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 용융중합하는 방법으로 상기 PPS 등의 폴리아릴렌 설파이드를 제조하는 방법이 제안된 바 있다. 이렇게 제조된 폴리아릴렌 설파이드는 제조 과정 중에 염 형태의 부산물 등이 발생하지 않고 유기 용매의 사용이 요구되지 않으므로, 이들의 제거를 위한 별도의 공정이 요구되지 않는다. 또, 최종 제조된 폴리아릴렌 설파이드가 펠렛(pellet) 형태를 가짐에 따라, 후가공이 보다 용이해지고 작업성이 좋은 장점이 있다.
그런데, 상기 용융중합 방식으로 제조된 폴리아릴렌 설파이드의 경우, 그 주쇄 말단이 요오드와 대부분의 아릴기(대표적으로, 벤젠)으로 이루어져 있다. 이러한 폴리아릴렌 설파이드의 경우, 주쇄 구조의 특성상 다른 고분자 소재 또는 유리 섬유 등 각종 강화재나 충진재와의 상용성이 떨어지는 단점이 있다.
이로 인해, 상기 용융중합 방식으로 제조된 폴리아릴렌 설파이드의 경우, 다양한 용도에 적합한 최적화된 물성을 나타내게 하기 위해 다른 고분자 소재 또는 충진재 등과 컴파운딩하기가 힘들었으며, 컴파운딩하더라도 원하는 최적화된 물성을 나타내기 어려운 단점이 있었다. 이러한 문제점으로 인해, 이전에 알려진 폴리아릴렌 설파이드계 수지 조성물의 경우, 각 용도에 맞는 충분한 물성을 나타내기 어려웠고, 다양한 용도에의 적용에 있어 한계가 있었던 것이 사실이다.
또한, 높은 정밀도가 요구되는 제품을 성형하고자 할 때, 바리(flash)의 발생량을 보다 줄일 수 있고, 보다 우수한 가공성을 나타내는 폴리아릴렌 설파이드의 개발이 계속적으로 요구되고 있다.
본 발명은 가공성이 우수하며, 다른 고분자 소재나 충진재 등과의 보다 향상된 상용성으로 인해 우수한 물성을 나타내는 폴리아릴렌 설파이드계 수지 조성물을 제공하는 것이다.
또한, 본 발명은 상기 폴리아릴렌 설파이드계 수지 조성물을 포함하여 각 용도에 최적화된 물성을 나타내는 성형품 및 이의 제조 방법을 제공하는 것이다.
본 발명은 주쇄의 반복 단위 중에 디설파이드 반복 단위를 포함하는 폴리아릴렌 설파이드; 및 열가소성 수지, 열가소성 엘라스토머 및 충진재로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리아릴렌 설파이드계 수지 조성물을 제공한다.
또한, 본 발명은 상기 폴리아릴렌설파이드계 수지 조성물을 압출하는 단계를 포함하는 성형품의 제조 방법을 제공한다.
본 발명은 또한, 상기 폴리아릴렌 설파이드계 수지 조성물을 포함하는 성형품을 제공한다.
이하, 발명의 구체적인 구현예에 따른 폴리아릴렌 설파이드계 수지 조성물 및 이를 포함하는 성형품과 이의 제조 방법에 대하여 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유"라 함은 어떤 구성 요소(또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성 요소(또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.
발명의 일 구현예에 따르면, 주쇄의 반복 단위 중에 디설파이드 반복 단위를 포함하는 폴리아릴렌 설파이드; 및 열가소성 수지, 열가소성 엘라스토머 및 충진재로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리아릴렌 설파이드계 수지 조성물이 제공된다.
이러한 폴리아릴렌 설파이드계 수지 조성물에서, 상기 디설파이드 반복 단위라 함은 하기 일반식 1로 표시되는 폴리아릴렌 설파이드의 일반적인 반복 단위에서, 황 결합 대신 디설파이드 결합(-S-S- 결합)을 포함하는 일반식 2의 폴리아릴렌 디설파이드 반복 단위를 지칭할 수 있다:
[일반식 1]
Figure 112019131518283-pat00001
[일반식 2]
Figure 112019131518283-pat00002
상기 일반식 1 및 2에서, Ar은 치환 또는 비치환된 아릴렌기를 나타낸다.
이와 같이, 상기 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드가 디설파이드 반복 단위를 포함함에 따라, 상기 폴리아릴렌 설파이드 중에 분자량이 지나치게 낮은 올리고머 형태의 고분자 쇄가 상당 함량 포함되는 것을 억제할 수 있다. 이는 상기 디설파이드 반복 단위 중의 디설파이드 결합이 폴리아릴렌 설파이드에 포함된 고분자 쇄들 간의 황 교환 반응을 계속적으로 일으키면서 폴리아릴렌 설파이드에 포함된 고분자 쇄들의 분자량을 대체로 균일화할 수 있기 때문으로 보인다. 그 결과, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는 분자량이 지나치게 낮은 올리고머 형태의 고분자 쇄를 최소한의 함량으로 포함할 수 있고, 전체 고분자 쇄들의 분자량 분포가 균일화되어 분자량 분포 곡선이 비교적 좁고 정규 분포 곡선에 가까운 대칭형으로 도출될 수 있다. 따라서, 이러한 폴리아릴렌 설파이드를 포함하는 일 구현예의 수지 조성물은 이를 사용해 높은 정밀도가 요구되는 제품을 성형하고자 하는 경우에도 바리(flash)의 발생량을 크게 줄일 수 있고, 보다 향상된 가공성을 나타낼 수 있다.
또, 이러한 디설파이드 반복 단위는 전체 폴리아릴렌 설파이드에 대해 약 3 중량% 이하, 혹은 약 0.01 내지 3.0 중량%, 혹은 약 0.1 내지 2.0 중량%로 포함될 수 있다. 이에 따라, 상기 디설파이드 반복 단위에 기인한 가공성 향상 효과가 최적화될 수 있고, 이러한 디설파이드 반복 단위가 지나치게 많아져 상기 폴리아릴렌 설파이드의 물성이 오히려 저하되는 것을 억제할 수 있다.
또한, 이하에 더욱 상세히 설명하겠지만, 일 구현예의 수지 조성물에서, 상기 폴리아릴렌 설파이드는 중합중지제의 단계적 투입에 의해 제조된 것으로 될 수 있으며, 보다 구체적으로, 상기 폴리아릴렌 설파이드는 중합중지제를 2 회 이상으로 나누어 단계적으로 투입하면서, 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 용융중합하여 제조된 것일 수 있다.
본 발명자들은 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 용융중합하여 폴리아릴렌 설파이드를 제조하는 과정에서, 중합중지제의 단계적 투입으로 다른 고분자 소재나 충진재 등과의 보다 우수한 상용성을 나타내어 다양한 소재와의 컴파운딩 및 이를 통한 각 용도에 맞는 최적화된 물성의 구현을 가능케 하는 폴리아릴렌 설파이드를 얻을 수 있음을 밝혀 내었다.
이는 다음과 같은 기술적 원리에 기인하는 것으로 예측된다.
상기 용융중합 중에 중합중지제가 투입되면 고분자 사슬 말단에 있는 요오드 분자가 발생하게 되는데, 중합중지제가 투입되는 최종 반응 단계는 300℃ 전후의 고온 하에 진행되므로, 상기 고분자 사슬 말단에서 발생한 요오드의 반응성이 증가할 수 있다. 따라서, 이러한 요오드가 고분자 사슬의 가지 구조를 발생시키거나 가교 결합을 일으킬 수 있는데, 이러한 중합 중지제가 단계적으로 투입되면 중합중지제를 일시에 투입할 때에 비해 발생되는 요오드를 보다 효율적으로 제거할 수 있어서, 상기 가지 구조의 발생 또는 가교 결합의 발생이 보다 억제될 수 있다. 그 결과, 상기 폴리아릴렌 설파이드 고분자 사슬의 선형성이 향상될 수 있으므로, 다른 고분자 소재나 충진재 등과의 보다 우수한 상용성을 나타내어 다양한 소재와의 컴파운딩 및 이를 통한 각 용도에 맞는 최적화된 물성의 구현을 가능케 하는 폴리아릴렌 설파이드를 얻을 수 있는 것으로 보인다.
한편, 일 구현예의 수지 조성물에서, 상기 폴리아릴렌 설파이드는 주쇄의 말단기(End Group) 중 적어도 일부에 카르복시기 (-COOH) 또는 아민기(-NH2)가 결합된 것으로 될 수 있다.
본 발명자들의 계속적인 실험 결과, 상기 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 용융중합하여 폴리아릴렌 설파이드를 제조하는 과정에서, 특정한 말단기의 도입으로 다른 고분자 소재나 충진재 등과의 보다 우수한 상용성을 나타내어 다양한 소재와의 컴파운딩 및 이를 통한 각 용도에 맞는 최적화된 물성의 구현을 가능케 하는 폴리아릴렌 설파이드를 얻을 수 있음을 밝혀 내었다.
즉, 이전에 용융중합 방식으로 제조된 폴리아릴렌 설파이드의 경우, 그 주쇄 말단이 요오드와 대부분의 아릴기(대표적으로, 벤젠)으로 이루어져 있기 때문에, 주쇄 말단에 반응성기가 실질적으로 존재하지 않고, 그 결과, 상기 폴리아릴렌 설파이드가 다른 고분자 소재 또는 유리 섬유 등 각종 강화재나 충진재와의 상용성이 떨어지는 단점을 가지고 있었다.
그러나, 주쇄 말단의 적어도 일부에 카르복시기 (-COOH) 또는 아민기(-NH2)와 같은 반응성기가 도입된 폴리아릴렌 설파이드의 경우, 상기 반응성기의 존재로 인해 다른 고분자 소재나, 충진재 등과의 우수한 상용성을 나타냄이 확인되었다. 그 결과, 이러한 폴리아릴렌 설파이드와 함께, 열가소성 수지 또는 열가소성 엘라스토머의 다른 고분자 소재나, 충진재를 포함하는 일 구현예의 수지 조성물의 경우, 폴리아릴렌 설파이드 특유의 우수한 내열성, 내화학성 및 뛰어난 기계적 물성 등을 나타내면서도, 다른 소재와의 혼합(예를 들어, 컴파운딩)에 따른 물성의 상승이 최적화되어 다양한 용도에 적합한 뛰어난 물성을 나타내는 성형품의 제공을 가능케 한다. 따라서, 일 구현예의 수지 조성물로 인해 폴리아릴렌 설파이드계 수지 조성물을 보다 다양한 용도로 적용할 수 있게 된다.
결국, 일 구현예의 수지 조성물은 높은 정밀도가 요구되는 제품의 성형시에 바리를 거의 발생시키지 않고 우수한 가공성을 나타내면서도, 폴리아릴렌 설파이드 및 다른 소재 간의 우수한 상용성을 나타내어 컴파운딩에 따른 보다 우수한 상승 효과를 나타낼 수 있고, 다양한 용도에 적합한 물성을 갖는 성형품의 제공을 가능케 한다.
이러한 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는, FT-IR 분광법으로 분석하였을 때, FT-IR 스펙트럼에서 상기 주쇄 말단의 카르복시기에서 유래한 약 1600 내지 1800cm-1의 피크 또는 아민기에서 유래한 약 3300 내지 3500cm-1의 피크를 나타낼 수 있다. 이때, 상기 1600 내지 1800cm-1 또는 3300 내지 3500cm-1의 피크의 강도는 주쇄 말단기에 결합된 카르복시기 또는 아민기의 함량에 대응할 수 있다.
일 예에 따르면, 상기 일 구현예의 폴리아릴렌 설파이드는 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 1600 내지 1800cm-1 또는 약 3300 내지 3500cm-1의 피크의 상대적 높이 강도가 약 0.001 내지 10%, 혹은 약 0.01 내지 7%, 혹은 약 0,1 내지 4%, 혹은 약 0.5 내지 3.5%로 될 수 있다. 이때, 상기 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크는 폴리아릴렌 설파이드의 주쇄 중에 포함된 페닐렌 등의 아릴렌기에서 유래한 것으로 될 수 있다. 상기 카르복시기에서 유래한 약 1600 내지 1800cm-1의 피크 또는 아민기에서 유래한 약 3300 내지 3500cm-1의 피크가 아릴렌기(예를 들어, 페닐렌기)에서 유래한 피크의 높이 강도에 대해 약 0.001 내지 10%, 혹은 약 0.01 내지 7%, 혹은 약 0,1 내지 4%, 혹은 약 0.5 내지 3%의 높이 강도를 나타냄에 따라, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는 다른 고분자 소재 또는 충진재 등과의 보다 우수한 상용성을 나타내면서도, 폴리아릴렌 설파이드 특유의 우수한 물성을 유지할 수 있다. 따라서, 이를 포함하는 일 구현예의 수지 조성물은 폴리아릴렌 설파이드 및 다른 고분자 소재나 충진재의 컴파운딩에 따른 보다 뛰어난 상승 효과를 나타낼 수 있다.
한편, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는 융점이 약 265 내지 290 ℃, 혹은 약 270 내지 285 ℃, 혹은 약 275 내지 283 ℃로 될 수 있다. 이러한 융점 범위를 가짐에 따라, 카르복시기 또는 아민기가 도입되며 용융중합 방식으로 얻어진 상기 폴리아릴렌 설파이드와 이를 포함하는 일 구현예의 수지 조성물은 우수한 내열성 및 난연성을 나타낼 수 있다.
또한, 상기 폴리아릴렌 설파이드는 수 평균 분자량이 약 5,000 내지 50,000, 혹은 약 8,000 내지 40,000, 혹은 약 10,000 내지 30,000으로 될 수 있다. 그리고, 상기 폴리아릴렌 설파이드는 수평균 분자량에 대한 중량평균 분자량으로 정의되는 분산도가 약 2.0 내지 4.5, 혹은 약 2.0 내지 4.0, 혹은 약 2.0 내지 3.5로 될 수 있다. 일 구현예의 폴리아릴렌 설파이드가 상술한 범위의 분산도 및 분자량을 가짐에 따라, 우수한 기계적 물성 및 가공성 등을 나타낼 수 있고, 보다 다양한 용도로 사용 가능한 여러 가지 성형품으로 가공될 수 있다.
그리고, 상술한 폴리아릴렌 설파이드는 회전 원판 점도계로 300 ℃에서 측정한 용융 점도가 약 10 내지 50,000 poise, 혹은 약 1,00 내지 20,000, 혹은 약 3,00 내지 10,000으로 될 수 있다. 이러한 용융 점도를 나타내는 폴리아릴렌 설파이드 및 이를 포함하는 일 구현예의 수지 조성물은 우수한 가공성과 함께, 뛰어난 기계적 물성 등을 나타낼 수 있다.
예를 들어, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는 ASTM D 638에 따라 측정한 인장강도 값이 약 100 내지 900 kgf/cm2, 혹은 약 200 내지 800 kgf/cm2, 혹은 약 300 내지 700 kgf/cm2일 수 있으며, ASTM D 638에 따라 측정한 신율이 약 1 내지 10%, 혹은 약 1 내지 8%, 혹은 약 1 내지 6%로 될 수 있다. 또, 상기 폴리아릴렌 설파이드는 ASTM D 790에 따라 측정한 굴곡강도 값이 약 100 내지 2000 kgf/cm2, 혹은 약 500 내지 2000 kgf/cm2, 혹은 약 1000 내지 2000 kgf/cm2으로 될 수 있고, ASTM D 256에 따라 측정한 충격강도가 약 1 내지 100J/m, 혹은 약 5 내지 50 J/m, 혹은 약 10 내지 20 J/m 로 될 수 있다. 이와 같이, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는 우수한 기계적 물성 등 제반 물성을 나타낼 수 있으며, 이와 함께, 이미 상술한 다른 고분자 소재 또는 충진재와의 우수한 상용성을 나타낼 수 있기 때문에, 일 구현예의 수지 조성물은 각 성분의 혼합에 따른 보다 높은 상승 효과 및 다양한 용도에 적합한 뛰어난 물성을 나타낼 수 있다.
한편, 일 구현예의 수지 조성물은 주쇄 말단에 카르복시기 또는 아민기가 도입된 상술한 폴리아릴렌 설파이드와 함께, 열가소성 수지 또는 열가소성 엘라스토머의 다른 고분자 소재나, 충진재 등을 포함한다. 이때, 일 구현예의 수지 조성물에 포함될 수 있는 고분자 소재의 예로는, 폴리비닐알코올계 수지, 염화비닐계 수지, 폴리아미드계 수지, 폴리올레핀계 수지 또는 폴리에스테르계 수지 등의 다양한 열가소성 수지; 혹은 폴리염화비닐계 엘라스토머, 폴리올레핀계 엘라스토머, 폴리우레탄계 엘라스토머, 폴리에스테르계 엘라스토머, 폴리아미드계 엘라스토머 또는 폴리부타디엔계 엘라스토머 등의 다양한 열가소성 엘라스토머 등을 들 수 있다.
또, 이러한 수지 조성물에 포함될 수 있는 충진재는 섬유, 비드, 플레이크, 또는 분말 형태의 유기 또는 무기 충진재로 될 수 있고, 이의 구체적인 예로는, 유리 섬유, 탄소 섬유, 붕소 섬유, 유리 비드, 유리 플레이크, 탈크 또는 탄산칼슘 등의 다양한 강화재/충진재를 들 수 있다. 이러한 충진재 중에서도, 유리 섬유 또는 탄소 섬유 등이 대표적으로 사용될 수 있는데, 이러한 유리 섬유 등은 표면이 실란 커플링제 등으로 처리되거나 미처리될 형태로 사용될 수도 있다. 다만, 실란 커플링제로 표면 처리시 상기 충진재와 폴리아릴렌 설파이드의 응집력 또는 상용성이 보다 향상될 수 있다.
일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드가 이러한 다양한 고분자 소재나 충진재 등과 우수한 상용성을 나타냄에 따라, 일 구현예의 수지 조성물은 상술한 다양한 다른 고분자 소재나 충진재 등과 혼합(예를 들어, 컴파운딩)되어 뛰어난 상승 효과를 나타낼 수 있고, 다양한 용도에 맞는 최적화된 물성을 나타낼 수 있게 된다. 다만, 위에서 나열된 고분자 소재 또는 충진재 외에도, 다른 여러 가지 고분자 소재 또는 강화재/충진재 등이 일 구현예의 수지 조성물에 상술한 폴리아릴렌 설파이드와 함께 포함되어 보다 우수한 물성을 나타낼 수 있음은 물론이다. 보다 구체적으로, 수지 조성물의 기계적 물성, 내열성, 내후성 또는 성형성 등을 보다 향상시키기 위한 다양한 고분자 소재 또는 충진재 등이 별다른 제한없이 일 구현예의 수지 조성물에 포함될 수 있다.
또한, 일 구현예의 수지 조성물은 상기 폴리아릴렌 설파이드의 약 5 내지 95 중량%, 혹은 약 50 내지 90 중량%와, 상기 열가소성 수지, 열가소성 엘라스토머 및 충진재로 이루어진 군에서 선택된 1종 이상의 5 내지 95 중량%, 혹은 약 10 내지 50 중량%를 포함할 수 있다. 각 성분을 이러한 함량 범위로 포함함에 따라, 일 구현예의 수지 조성물은 폴리아릴렌 설파이드 특유의 우수한 물성을 유지하면서도, 다른 성분과의 혼합에 따른 상승 효과를 최적화하여 다양한 용도에 바람직하게 적용 가능한 뛰어난 물성을 나타낼 수 있게 된다.
한편, 일 구현예의 수지 조성물은 이의 기계적 물성, 내열성, 내후성 또는 성형성 등을 추가적으로 향상시키기 위해 추가적인 첨가제 및/또는 안정제 등을 더 포함할 수도 있다. 이러한 첨가제 등의 종류는 별달리 한정되지는 않지만, 예를 들어, 산화 안정제, 광 안정제(UV 안정제 등), 가소제, 활제, 핵제 또는 충격 보강재 등을 들 수 있으며, 이들 중에 선택된 2종 이상을 더 포함할 수도 있다.
이들 첨가제 중, 산화 안정제로는 1차 또는 2차 산화 방지제를 사용할 수 있고, 보다 구체적인 예로는, 힌더드 페놀계, 아민계, 유황계, 또는 인계 산화 방지제를 들 수 있다. 또, 상기 광안정제는 일 구현예의 수지 조성물이 외장재에 적용될 경우 포함될 수 있는데, 특히 UV 안정제가 대표적으로 사용되며, 예를 들어, 벤조트리아졸 또는 벤조페놀 등을 들 수 있다.
그리고, 활제는 일 구현예의 수지 조성물을 성형, 가공함에 있어 성형성의 향상을 위해 사용되는 성분으로서, 탄화수소계 활제를 대표적으로 사용할 수 있다. 이러한 활제의 사용으로, 수지 조성물과 금형 금속과의 마찰방지나, 금형에서의 탈착 등 이형성의 부여가 가능해진다.
또한, 수지 조성물의 성형 과정에서 결정화 속도 개선을 위해 다양한 핵제를 사용할 수 있고, 이를 통해 압, 사출시 제품의 고화 속도 향상, 제품제조 시간 (Cycle time) 단축 등이 가능해진다.
한편, 상술한 일 구현예의 수지 조성물은 주된 수지 성분으로서 주쇄 말단에 카르복시기 (-COOH) 또는 아민기(-NH2)가 도입된 용융중합형 폴리아릴렌 설파이드가 포함되는데, 이러한 폴리아릴렌 설파이드는 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 중합반응시키는 단계; 및 상기 중합반응 단계를 진행하면서, 카르복시기 또는 아민기를 갖는 화합물을 추가로 첨가하는 단계를 포함하는 방법으로 제조될 수 있다. 또, 상기 폴리아릴렌 설파이드에 포함된 디설파이드 반복 단위의 함량을 적절한 범위로 조절하기 위해, 예를 들어, 상기 중합반응 단계를 진행하면서, 상기 반응물에 포함된 황 원소 100 중량부에 대해, 0.01 내지 30 중량부의 황 원소를 추가로 가하는 단계를 더 포함할 수도 있다. 부가하여, 상기 용융중합 단계의 일정 시점에서, 중합중지제를 추가 투입하는 단계를 더 포함할 수 있고, 이러한 중합중지제는 2 단계 이상으로 나누어 단계적으로 투입될 수 있다.
이하 이러한 폴리아릴렌 설파이드의 제조 방법에 대해 설명하기로 한다.
상기 폴리아릴렌 설파이드의 제조 방법에서, 상기 카르복시기 또는 아민기를 갖는 화합물은 목표 점도에 대한 현재 점도의 비율로 중합반응의 진행 정도를 측정하였을 때, 상기 디요오드 방향족 화합물과 황 원소 간의 중합반응이 약 90% 이상, 혹은 약 90% 이상 100% 미만으로 진행되었을 때(예를 들어, 중합반응 후기에) 첨가될 수 있다. 상기 중합반응의 진행 정도는 얻고자 하는 폴리아릴렌 설파이드의 분자량 및 이에 따른 중합 산물의 목표 점도를 설정하고, 중합 반응의 진행 정도에 따른 현재 점도를 측정하여 상기 목표 점도에 대한 현재 점도의 비율로서 측정할 수 있다. 이때, 현재 점도를 측정하는 방법은 반응기 스케일에 따라 당업자에게 자명한 방법으로 결정할 수 있다. 예를 들어, 상대적으로 소형 중합 반응기에서 중합을 진행하는 경우, 반응기에서 중합 반응이 진행 중인 샘플을 취하여 점도계로 측정할 수 있다. 이와 달리, 대형의 연속 중합 반응기에서 중합을 진행하는 경우, 반응기 자체에 설치된 점도계로 연속적, 실시간으로 현재 점도가 자동 측정될 수 있다.
이와 같이, 상기 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 중합반응시키는 과정에서, 중합반응 후기에 카르복시기 또는 아민기를 갖는 화합물을 첨가하여 반응시킴에 따라, 폴리아릴렌 설파이드 주쇄의 말단기(End Group) 중 적어도 일부에 카르복시기 (-COOH) 또는 아민기(-NH2)가 도입된 용융중합형 폴리아릴렌 설파이드를 제조할 수 있다. 특히, 상기 중합반응 후기에 카르복시기 또는 아민기를 갖는 화합물을 추가로 첨가하여, 주쇄 말단기에 적절한 함량의 카르복시기 또는 아민기가 도입되어 상술한 다른 고분자 소재 또는 충진재 등과의 우수한 상용성을 나타내면서도, 폴리아릴렌 설파이드 특유의 우수한 물성을 갖는 일 구현예의 폴리아릴렌 설파이드가 효과적으로 제조될 수 있다.
또한, 상기 폴리아릴렌 설파이드의 제조 방법에서, 상기 카르복시기 또는 아민기를 갖는 화합물로는, 카르복시기 또는 아민기를 갖는 임의의 모노머(단분자) 형태의 화합물을 사용할 수 있다. 이러한 카르복시기 또는 아민기를 갖는 화합물의 보다 구체적인 예로는, 2-요오드벤조산 (2-Iodobenzoic acid), 3-요요드벤조산 (3-Iodobenzoic acid), 4-요오드벤조산 (4-Iodobenzoic acid), 2,2'-디티오벤조산 (2,2'-Dithiobenzoic acid), 2-요오드아닐린 (2-Iodoaniline), 3-요오드아닐린 (3-Iodoaniline), 4-요오드아닐린 (4-Iodoaniline), 2,2'-디티오아닐린 (2,2'-Dithiodianiline), 또는 4,4'-디티오아닐린 (4,4'-Dithiodianiline) 등을 들 수 있고, 이외에도 다양한 카르복시기 또는 아민기를 갖는 화합물을 사용할 수 있다.
또, 상기 카르복시기 또는 아민기를 갖는 화합물은 디요오드 방향족 화합물의 약 100 중량부에 대해 약 0.0001 내지 5 중량부, 혹은 약 0.001 내지 3 중량부, 혹은 약 0.01 내지 2 중량부로 첨가될 수 있다. 이러한 함량으로 카르복시기 또는 아민기를 갖는 화합물을 첨가하여, 주쇄 말단기에 적절한 함량의 카르복시기 또는 아민기를 도입할 수 있고, 그 결과, 다른 고분자 소재 또는 충진재 등과의 우수한 상용성을 나타내면서도, 폴리아릴렌 설파이드 특유의 우수한 물성을 갖는 폴리아릴렌 설파이드가 효과적으로 제조될 수 있다.
또한, 상술한 폴리아릴렌 설파이드는 기본적으로 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 중합반응시키는 방법으로 제조되며, 이에 따라 종래의 맥컬럼 공정으로 제조된 것에 비해 보다 우수한 기계적 물성 등을 나타낼 수 있다.
이때, 상기 중합반응에 사용 가능한 디요오드 방향족 화합물로는 디요오드화벤젠(diiodobenzene; DIB), 디요오드화나프탈렌(diiodonaphthalene), 디요오드화비페닐(diiodobiphenyl), 디요오드화비스페놀(diiodobisphenol), 및 디요오드화벤조페논(diiodobenzophenone)로 이루어진 군에서 선택되는 1종 이상을 들 수 있지만, 이에 한정되지 않고, 이러한 화합물들에 알킬 원자단(alkyl group)이나 술폰 원자단(sulfone group) 등이 치환기로 결합되어 있거나, 방향족기에 산소나 질소 등의 원자가 함유된 형태의 디요오드 방향족 화합물도 사용될 수 있다. 또, 상기 디요오드 방향족 화합물에는 요오드 원자가 붙은 위치에 따라 여러 가지 디요오드 화합물의 이성질체(isomer)가 있는데, 이 중에서도 파라-디요오드벤젠(pDIB), 2,6-디요오도나프탈렌, 또는 p,p'-디요오도비페닐처럼 파라 위치에 요오드가 결합된 화합물이 보다 적합하게 사용될 수 있다.
그리고, 상기 디요오드 방향족 화합물과 반응하는 황 원소의 형태에는 별다른 제한이 없다. 보통 황 원소는 상온에서 원자 8개가 연결된 고리 형태(cyclooctasulfur; S8)로 존재하는데, 이러한 형태가 아니더라도 상업적으로 사용 가능한 고체 또는 액체 상태의 황이라면 별다른 한정 없이 모두 사용할 수 있다.
또, 이미 상술한 바와 같이, 상술한 폴리아릴렌 설파이드에 포함된 디설파이드 반복 단위의 함량을, 예를 들어, 약 3 중량% 이하의 적절한 범위로 조절하기 위해, 상기 황 원소는 중합반응 단계 중에 추가적으로 가해질 수도 있다. 이렇게 추가적으로 가해지는 황 원소의 양은 적절한 디설파이드 반복 단위의 함량을 고려하여 당업자가 적절히 결정할 수 있지만, 예를 들어, 상기 최초 반응물에 포함된 황 원소 100 중량부에 대해, 0.01 내지 30 중량부의 양으로 가해질 수 있다. 이렇게 추가적으로 가해지는 황 원소는, 예를 들어, 중합반응이 약 50 내지 99% 정도 진행되었을 때, 가해질 수 있고, 이미 상술한 카르복시기 또는 아민기를 갖는 화합물과 별도로 가해지거나, 이와 함께 가해질 수도 있다.
한편, 상기 폴리아릴렌 설파이드의 제조를 위한 반응물에는 디요오드 방향족 화합물과 황 원소 외에도 중합개시제, 안정제, 또는 이들의 혼합물을 추가로 포함시킬 수 있는데, 구체적으로 사용 가능한 중합개시제로는 1,3-디요오드-4-니트로벤젠, 머캅토벤조티아졸, 2, 2'-디티오벤조티아졸, 사이클로헥실벤조티아졸 술펜아미드, 및 부틸벤조티아졸 술펜아미드로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있으나, 상술한 예에 한정되지는 않는다.
그리고, 상기 안정제로는 통상 수지의 중합반응에 사용되는 안정제이면 그 구성의 한정은 없다.
한편, 상기와 같은 중합반응 도중, 중합이 어느 정도 이루어진 시점에 중합중지제를 첨가할 수 있다. 이때 사용 가능한 중합 중지제는 중합되는 고분자에 포함되는 요오드 그룹을 제거하여 중합을 중지 시킬 수 있는 화합물이면, 그 구성의 한정은 없다. 구체적으로는 디페닐 설파이드(diphenyl suldife), 디페닐 에테르(diphenyl ether), 디페닐(diphenyl), 벤조페논(benzophenone), 디벤조티아졸 디설파이드(dibenzothiazole disulfide), 모노요오도아릴화합물(monoiodoaryl compound), 벤조티아졸류(benzothiazole)류, 벤조트리아졸류(benzotriazole)류, 벤조티아졸술펜아미드(benzothiazolesulfenamide)류, 티우람(thiuram)류, 디티오카바메이트(dithiocarbamate)류 및 디페닐 디 설파이드로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
더욱 바람직하게로, 상기 중합중지제는 요오도비페닐(iodobiphenyl), 요오도페놀(iodophenol), 요오도아닐린(iodoaniline), 요오도벤조페논(iodobenzophenone), 2-메르캅토벤조티아졸(2-mercaptobenzothiazole), 2,2'-디티오비스벤조티아졸(2,2'-dithiobisbenzothiazole), 2,2'-디티오비스벤조트리아졸(2,2'-dithiobisbenzotriazole), N-시클로헥실벤조티아졸-2-술펜아미드(N-cyclohexylbenzothiazole-2-sulfenamide), 2-모르폴리노티오벤조티아졸(2-morpholinothiobenzothiazole), N,N-디시클로헥실벤조티아졸-2-술펜아미드(N,N-dicyclohexylbenzothiazole-2-sulfenamide), 테트라메틸티우람 모노술파이드(tetramethylthiuram monosulfide), 테트라메틸티우람 디술파이드(tetramethylthiuram disulfide), 아연 디메틸디티오카바메이트(Zinc dimethyldithiocarbamate), 아연 디에틸디티오카바메이트(Zinc diethyldithiocarbamate) 및 디페닐 디 설파이드(diphenyl disulfide)로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
한편, 중합중지제의 투입 시점은 최종 중합시키고자 하는 폴리아릴렌 설파이드의 분자량을 고려하여 그 시기를 결정할 수 있다. 예를 들어, 초기 반응물 내에 포함된 디요오드 방향족 화합물이 약 70 내지 100 중량%이 반응되어 소진된 시점에서 투입할 수 있다.
또한, 이러한 중합중지제는 이러한 시점에서 최초 투입한 후에, 2 단계 이상으로 나누어 단계적으로 투입될 수 있다. 예를 들어, 투입하여야 할 중합중지제의 양이 정해지면 이러한 양을 2 회분 이상, 예를 들어, 2 내지 10 회분, 혹은 3 내지 7 회분으로 나누어, 약 5 내지 30분 간격으로 나누어 단계적으로 투입한 후, 나머지 중합 단계를 진행할 수 있다. 이러한 중합중지제의 단계적 투입으로 인해, 이미 상술한 바와 같이 폴리아릴렌 설파이드의 선형성이 향상되어 다른 고분자 소재나 충진재 등과의 보다 우수한 상용성을 나타낼 수 있으며, 그 결과 다양한 소재와의 컴파운딩 및 이를 통한 각 용도에 맞는 최적화된 물성의 구현을 가능케 하는 폴리아릴렌 설파이드를 얻을 수 있다.
그리고, 상기와 같은 중합반응은 디요오드 방향족 화합물과 황 원소를 포함하는 반응물의 중합이 개시될 수 있는 조건이면 어떠한 조건에서든 진행될 수 있다. 예를 들어, 상기 중합반응은 승온 감압 반응 조건에서 진행될 수 있는데, 이 경우, 온도 약 180 내지 250℃ 및 압력 약 50 내지 450 torr의 초기 반응조건에서 온도 상승 및 압력 강하를 수행하여 최종 반응조건인 온도 약 270 내지 350 ℃ 및 압력 약 0.001 내지 20 torr로 변화시키며, 약 1 내지 30시간 동안 진행할 수 있다. 보다 구체적인 예로서, 최종 반응조건을 온도 약 280 내지 300℃ 및 압력 약 0.1내지 0.5 torr로 하여 중합반응을 진행할 수 있다.
한편, 상술한 폴리아릴렌 설파이드의 제조 방법은 상기 중합반응 전에, 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 용융 혼합하는 단계를 추가로 포함할 수 있다. 이와 같은 용융 혼합은 상술한 반응물들이 모두 용융 혼합될 수 있는 조건이면 그 구성의 한정은 없으나, 예를 들어, 약 130 ℃ 내지 200 ℃, 혹은 약 160 ℃ 내지 190 ℃의 온도에서 진행할 수 있다.
이와 같이 중합반응 전에 용융 혼합 단계를 진행하여, 추후 행해지는 중합반응을 보다 용이하게 진행할 수 있다.
그리고, 상술한 폴리아릴렌 설파이드의 제조 방법에 있어서, 중합반응은 니트로벤젠계 촉매의 존재 하에서 진행될 수 있다. 또한, 상술한 바와 같이 중합반응 전에 용융혼합 단계를 거치는 경우, 상기 촉매는 용융혼합 단계에서 추가될 수 있다. 니트로벤젠계 촉매의 종류로는 1,3-디요오드-4-니트로벤젠, 또는 1-요오드-4-니트로벤젠 등을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.
상술한 제조 방법으로, 주쇄 말단에 카르복시기 또는 아민기 등이 도입된 용융중합형 폴리아릴렌 설파이드가 얻어질 수 있고, 이러한 폴리아릴렌 설파이드는 다른 고분자 소재 또는 충진제 등과의 우수한 상용성을 나타내므로, 이를 이용해 일 구현예의 수지 조성물을 얻을 수 있게 된다.
한편, 발명의 다른 구현예에 따르면, 상술한 일 구현예의 폴리아릴렌 설파이드계 수지 조성물을 포함하는 성형품 및 이의 제조 방법이 제공된다. 상기 성형품은 상기 일 구현예이 수지 조성물을 압출하는 단계를 포함하는 방법으로 제조될 수 있다.
이하 이러한 성형품 및 제조 방법에 대해 보다 구체적으로 설명하기로 한다. 다만, 상기 성형품에 포함될 수 있는 성분의 종류 및 함량에 대해서는 이미 일 구현예의 수지 조성물에 대해 설명한 바가 있으므로, 이에 대한 추가적인 구체적인 설명은 생략하기로 한다.
다른 구현예의 성형품은 카르복시기 또는 아민기 등이 도입된 용융중합형 폴리아릴렌 설파이드, 열가소성 수지, 열가소성 엘라스토머 및 충진재로 이루어진 군에서 선택된 1종 이상, 그리고 선택적으로 다른 첨가제 등을 포함하게 되는데, 이들 각 성분을 혼합하여 일 구현예의 수지 조성물을 얻은 후 이를 압출하여 제조될 수 있다.
이러한 성형품은 상기 폴리아릴렌 설파이드의 약 5 내지 95 중량%, 혹은 약 50 내지 90 중량%와, 상기 열가소성 수지, 열가소성 엘라스토머 및 충진재로 이루어진 군에서 선택된 1종 이상의 약 5 내지 95 중량%, 혹은 약 10 내지 50 중량%를 포함할 수 있으며, 상기 2 가지 성분의 함량을 합한 100 중량부에 대해 약 2 중량부 이하, 예를 들어, 약 0.1 내지 2 중량부의 다른 첨가제 등을 포함할 수 있다. 예를 들어, 산화 안정제 또는 활제 등의 첨가제는 약 0.1 내지 1 중량부의 함량으로 포함될 수 있고, 경화제 등의 첨가제는 약 0.1 내지 2 중량부의 함량으로 포함될 수 있다. 상기 성형품이 이러한 함량 범위를 충족함에 따라, 다양한 용도에 바람직하게 적용 가능한 뛰어난 물성을 나타낼 수 있다.
또한, 이들 각 성분을 포함하는 수지 조성물을 혼합 및 압출하여 성형품을 제조함에 있어서는, 예를 들어, 이축 압출기 (Twin Screw Extruder)를 사용할 수 있으며, 이러한 이축 압출기의 직경비 (L/D)는 약 30에서 50 내외로 될 수 있다.
일 예에 따르면, 먼저 소량 첨가되는 기타 첨가제 등을 수퍼믹서 등의 혼합기로 폴리아릴렌 설파이드와 사전에 혼합할 수 있고, 사전 혼합된 1차 조성물을 2축 압출기의 주 투입구를 통해 투입할 수 있다. 또한, 열가소성 수지 또는 열가소성 엘라스토머의 다른 고분자 소재나, 충진재 등은 압출기의 측면에 위치한 투입구(side feeder)를 통해 별도로 투입할 수 있다. 이때, 측면 투입하는 위치는 압출기 전체 배럴의 배출구 측으로부터 대략 1/3~1/2 지점으로 될 수 있다. 이렇게 하면, 상기 충진재 등이 압출기 내에서 압출기 스크루에 의한 회전 및 마찰에 의해 깨지는 것이 방지할 수 있다.
이러한 방식으로 일 구현예의 수지 조성물의 각 성분을 혼합한 후, 이축 압출기로 압출함으로서, 다른 구현예의 성형품을 얻을 수 있다.
이러한 다른 구현예의 성형품은 필름, 시트, 또는 섬유 등의 다양한 형태로 될 수 있다. 또, 상기 성형품은 사출 성형품, 압출 성형품, 또는 블로우 성형품일 수 있다. 사출 성형하는 경우의 금형 온도는, 결정화의 관점에서, 약 50 ℃ 이상, 약 60 ℃ 이상, 혹은 약 80 ℃ 이상으로 될 수 있고, 시험편의 변형의 관점에서, 약 190 ℃ 이하, 혹은 약 170 ℃ 이하, 혹은 약 160 ℃ 이하로 될 수 있다.
그리고, 상기 성형품이 필름 또는 시트 형태로 되는 경우, 미연신, 1축 연신, 2축 연신 등의 각종 필름 또는 시트로 제조할 수 있다. 섬유로서는, 미연신사, 연신사, 또는 초연신사 등 각종 섬유로 하고, 직물, 편물, 부직포(스펀본드, 멜트블로우, 스테이플), 로프, 또는 네트로서 이용할 수 있다.
이러한 성형품은 컴퓨터 부속품 등의 전기·전자 부품, 건축 부재, 자동차 부품, 기계 부품, 일용품 또는 화학물질이 접촉하는 부분의 코팅, 산업용 내화학성 섬유 등으로서 이용할 수 있다.
본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.
본 발명은 카르복시기 또는 아민기를 주쇄 말단에 포함함으로써, 다른 고분자 소재 또는 강화재/충진재 등과 우수한 상용성을 나타내면서도 우수한 가공성을 나타내는 용융 중합형 폴리아릴렌 설파이드와, 다른 고분자 소재 또는 충진재 등을 포함하는 수지 조성물을 제공할 수 있다.
이러한 수지 조성물은 각 용도에 최적화된 우수한 물성을 나타낼 수 있으면서도, 폴리아릴렌 설파이드 특유의 우수한 물성을 나타낼 수 있다. 이는 수지 조성물의 각 성분의 상용성이 향상되어 각 성분의 물성이 상승 효과를 나타낼 수 있기 때문으로 보인다.
따라서, 이러한 수지 조성물은 보다 다양한 용도로 적용되어 우수한 물성 및 효과를 나타낼 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
실시예 1: 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오드벤젠(p-DIB) 5130g, 황 450g, 반응개시제로 1,3-디요오드-4-니트로벤젠 4g을 포함한 반응물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다. 상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는 "(현재점도/목표점도)*100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조트리아졸을 25g 첨가하고 1시간 반응을 진행하였다. 이어서, 디설파이드의 함량을 조절하기 위해 황을 1시간 단위로 0.2g씩 3회 투입하였다. 상기 중합반응이 90% 진행되었을 때 4-Iodobenzoic acid 51g 첨가하고 10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 1시간 반응을 진행한 후 종료하여, 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 1의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 1600 내지 1800cm-1의 카르복시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 1600 내지 1800cm-1 의 피크의 상대적 높이 강도는 약 3.4 %임이 확인되었다.
실시예 2: 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오드벤젠(p-DIB) 5130g, 황 450g, 반응개시제로 1,3-디요오드-4-니트로벤젠머캅토벤조티아졸 4g을 포함한 반응물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다. 상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는 "(현재점도/목표점도)*100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조트리아졸을 25g 첨가하고 1시간 반응을 진행하였다. 이어서, 디설파이드의 함량을 조절하기 위해 황을 1시간 단위로 0.2g씩 3회 투입하였다. 상기 중합반응이 90% 진행되었을 때, 4-Iodoaniline을 51g 첨가하고 10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 1시간 반응을 진행한 후 종료하여, 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 2의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3500cm-1 의 아민기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3500cm-1 피크의 상대적 높이 강도는 약 1.4%임이 확인되었다.
실시예 3 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오드벤젠(p-DIB) 5130g, 황 450g, 반응개시제로 1,3-디요오드-4-니트로벤젠 4g을 포함한 반응물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다. 상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는 "(현재점도/목표점도)*100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조트리아졸을 25g 첨가하고 1시간 반응을 진행하였다. 이어서, 디설파이드의 함량을 조절하기 위해 황을 1시간 단위로 0.2g씩 3회 투입하였다. 상기 중합반응이 90% 진행되었을 때 4-Iodobenzoic acid 25g 첨가하고 10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 1시간 반응을 진행한 후 종료하여, 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 3의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 1600 내지 1800cm-1의 카르복시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 1600 내지 1800cm-1 의 피크의 상대적 높이 강도는 약 2.1 %임이 확인되었다.
실시예 4: 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오드벤젠(p-DIB) 5130g, 황 450g, 반응개시제로 1,3-디요오드-4-니트로벤젠 4g을 포함한 반응물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다. 상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는 "(현재점도/목표점도)*100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조트리아졸을 25g 첨가하고 1시간 반응을 진행하였다. 이어서, 디설파이드의 함량을 조절하기 위해 황을 1시간 단위로 0.2g씩 3회 투입하였다. 상기 중합반응이 90% 진행되었을 때 4-Iodoaniline 25g 첨가하고 10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 1시간 반응을 진행한 후 종료하여, 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 4의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3500cm-1의 카르복시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3500cm-1 의 피크의 상대적 높이 강도는 약 1.1 %임이 확인되었다.
실시예 5: 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오드벤젠(p-DIB) 5130g, 황 450g, 반응개시제로 1,3-디요오드-4-니트로벤젠 4g을 포함한 반응물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다. 상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는 "(현재점도/목표점도)*100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조트리아졸을 25g 첨가하고 1시간 반응을 진행하였다. 이어서, 디설파이드의 함량을 조절하기 위해 황을 1시간 단위로 0.2g씩 3회 투입하였다. 상기 중합반응이 90% 진행되었을 때 2,2'-dithiodibenzoic acid 51g 첨가하고 10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 1시간 반응을 진행한 후 종료하여, 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 5의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 1600 내지 1800cm-1의 카르복시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 1600 내지 1800cm-1 의 피크의 상대적 높이 강도는 약 3.2 %임이 확인되었다.
실시예 6: 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오드벤젠(p-DIB) 5130g, 황 450g, 반응개시제로 1,3-디요오드-4-니트로벤젠 4g을 포함한 반응물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다. 상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는 "(현재점도/목표점도)*100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조트리아졸을 25g 첨가하고 1시간 반응을 진행하였다. 이어서, 디설파이드의 함량을 조절하기 위해 황을 1시간 단위로 0.2g씩 3회 투입하였다. 상기 중합반응이 90% 진행되었을 때 4,4'-dithiodianiline 51g 첨가하고 10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 1시간 반응을 진행한 후 종료하여, 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 6의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3500cm-1의 카르복시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3500cm-1 의 피크의 상대적 높이 강도는 약 1.3 %임이 확인되었다.
실시예 7: 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오드벤젠(p-DIB) 5130g, 황 450g, 반응개시제로 1,3-디요오드-4-니트로벤젠 4g을 포함한 반응물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다. 상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는 "(현재점도/목표점도)*100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조트리아졸을 25g 첨가하고 1시간 반응을 진행하였다. 이어서, 디설파이드의 함량을 조절하기 위해 황을 1시간 단위로 0.2g씩 3회 투입하였다. 상기 중합반응이 90% 진행되었을 때 2,2'-dithiodibenzoic acid 25g 첨가하고 10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 1시간 반응을 진행한 후 종료하여, 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 7의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 1600 내지 1800cm-1의 카르복시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 1600 내지 1800cm-1 의 피크의 상대적 높이 강도는 약 1.9 %임이 확인되었다.
실시예 8: 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오드벤젠(p-DIB) 5130g, 황 450g, 반응개시제로 1,3-디요오드-4-니트로벤젠 4g을 포함한 반응물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다. 상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는 "(현재점도/목표점도)*100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조트리아졸을 25g 첨가하고 1시간 반응을 진행하였다. 이어서, 디설파이드의 함량을 조절하기 위해 황을 1시간 단위로 0.2g씩 3회 투입하였다. 상기 중합반응이 90% 진행되었을 때 4,4'-dithiodianiline 25g 첨가하고 10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 1시간 반응을 진행한 후 종료하여, 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 8의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3500cm-1의 카르복시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3500cm-1 의 피크의 상대적 높이 강도는 약 1.0 %임이 확인되었다.
실시예 9: 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오드벤젠(p-DIB) 5130g, 황 450g, 반응개시제로 1,3-디요오드-4-니트로벤젠 4g을 포함한 반응물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다. 상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는 "(현재점도/목표점도)*100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조트리아졸을 25g을 5g씩 10분 간격으로 단계적으로 첨가하고 최종분 투입 후 1시간 반응을 진행하였다. 이어서, 디설파이드의 함량을 조절하기 위해 황을 1시간 단위로 0.2g씩 3회 투입하였다. 상기 중합반응이 90% 진행되었을 때 4-Iodobenzoic acid 25g 첨가하고 10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 1시간 반응을 진행한 후 종료하여, 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 9의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3500cm-1의 카르복시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3500cm-1 의 피크의 상대적 높이 강도는 약 2.2 %임이 확인되었다.
실시예 10: 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오드벤젠(p-DIB) 5130g, 황 450g, 반응개시제로 1,3-디요오드-4-니트로벤젠 4g을 포함한 반응물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃ 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반응온도는 300℃, 압력은 1Torr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하면서 중합반응을 진행하였다. 상기 중합반응이 80% 진행되었을 때(이러한 중합반응의 진행 정도는 "(현재점도/목표점도)*100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조트리아졸을 25g을 5g씩 10분 간격으로 단계적으로 첨가하고 최종분 투입 후 1시간 반응을 진행하였다. 이어서, 디설파이드의 함량을 조절하기 위해 황을 1시간 단위로 0.2g씩 3회 투입하였다. 상기 중합반응이 90% 진행되었을 때 4-Iodoaniline 25g 첨가하고 10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 1시간 반응을 진행한 후 종료하여, 카르복시기 또는 아민기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 10의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3500cm-1의 카르복시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3500cm-1 의 피크의 상대적 높이 강도는 약 1.3 %임이 확인되었다.
비교예 1
맥컬럼 공정으로 제조된 폴리아릴렌 설파이드를 준비하였다.(Celanese) 준비된 고분자는 MV 2000 포이즈, Tm 282 ℃ 였다.
비교예 2
비교예 1과는 다른 회사에서 제조한 맥컬럼 공정으로 제조된 폴리아릴렌 설파이드를 준비하였다.(Deyang) 준비된 고분자는 MV 2300 포이즈, Tm 281 ℃ 였다.
비교예 3
맥컬럼 공정으로 제조된 폴리아릴렌 설파이드와, 엘라스토머가 컴파운딩된 DIC사의 Z200 제품을 입수하여 비교예 3로 하였다.
시험예 1: 폴리아릴렌 설파이드의 기본 물성 평가
실시예 1 내지 10, 비교예 1 및 2의 폴리아릴렌 설파이드의 제반 물성을 다음의 방법으로 평가하였다:
융점(Tm)
시차주사 열량분석기(Differential Scanning Calorimeter; DSC)를 이용하여 30 ℃에서 320 ℃까지 10 ℃/min의 속도로 승온 후 30 ℃까지 냉각 후에 다시 30 ℃에서 320 ℃까지 10 ℃/min 의 속도로 승온하면서 융점을 측정하였다.
수평균 분자량(Mn) 및 분자량 분포(PDI)
1-chloronaphthalene에 0.4wt%의 농도로 250℃에서 25분간 교반 용해한 샘플을 고온 GPC(Gel permeation chromatography)시스템(210℃)에서 1-chloronaphthalene을 1 mL/min의 유속으로 흘려주면서 분자량이 다른 폴리아릴렌 설파이드를 순차적으로 컬럼 내에서 분리하면서, RI detector를 이용하여 분리된 폴리아릴렌 설파이드의 분자량별 강도(Intensity)를 측정하며, 미리 분자량을 알고 있는 표준시료(Polystyrene)로 검량선을 작성하여, 측정 샘플의 상대적인 수평균 분자량(Mn) 및 분자량 분포(PDI)를 계산하였다.
용융점도(Poise)
용융점도(melt viscosity, 이하 'MV')는 회전 원판 점도계(rotating disk viscometer)로 300℃에서 측정하였다. Frequency sweep 방법으로 측정함에 있어, angular frequency를 0.6부터 500 rad/s까지 측정하였고, 1.84rad/s에서의 점도를 용융점도(M.V.)로 정의하였다.
고분자의 흐름성 측정
반응 중합된 고분자의 흐름을 측정하기 위해 보편적으로 사용되는 스파이럴 테스트(Spiral test) 방법이 사용되었다. 하기의 테스트 진행을 위하여, 모든 중합 시료에 대하여 중합 반응기에서 반응기 밖으로 나오는 동안 직경 1 ~ 2 mm, 길이 2 ~ 4 mm 정도의 일정한 펠렛타입의 형태로 절단하였고, 사출기 내에 최대 사출압, 사출 충진량, 사출 속도, 사출시의 압력 및 보압의 크기를 일정하게 하였으며, 사출시의 온도는 베럴(barrel 기준, 320 ℃로 고정하였다. 스파이럴 테스트 후 금형에서 분리된 성형품의 최종 길이를 측정하였으며, 측정 값은 표 1 에 나타낸 바와 같다.
성형품 제작 시 형성된 바리 측정
한편, 비교예들 및 실시예들의 고분자를 이용하여, 스파이럴 테스트(spiral test) 방법이 사용되었으며, 바리는 스파이럴 테스트에 사용된 몰드의 주된 형태를 제외하고, 몰드의 앞판과 뒷판 사이에 끼어든 얇은 부분에 대하여 절단하고 무게로 측정하였다.
위와 같은 방법으로 측정된 물성을 하기 표 1에 정리하여 나타내었다:
구분 융점
(℃)
수평균 분자량 분자량 분포
(PDI)
용융점도
(Poise)
흐름성
(cm)
바리발생양
(g)
실시예1 278.6 17,667 2.9 2,940 48 0.01
실시예2 278.3 17,614 2.9 2,200 58 0.15
실시예3 278.8 17,435 2.8 2,830 50 0.04
실시예4 278.6 17,224 2.8 2,770 52 0.08
실시예5 277.5 17,338 2.9 2,350 58 0.12
실시예6 277.7 17,152 2.9 2,930 49 0.01
실시예7 278.3 17,531 2.8 2,470 57 0.15
실시예8 278.7 17,582 2.8 2,530 55 0.10
실시예9 279.1 17,884 2.8 2,450 58 0.08
실시예10 279.0 17,912 2.8 2,360 59 0.12
비교예1 282.0 15,237 3.1 2000 62 0.54
비교예2 281.0 10,543 3.3 2300 57 0.42
상기 표 1을 참고하면, 제조 과정 중에 황이 추가 투입되어 폴리아릴렌 디설파이드 반복 단위를 포함하게 얻어진 실시예의 폴리아릴렌 설파이드는 흐름성이 최적화되고 바리 발생양이 적어, 특히 높은 정밀도가 요구되는 제품의 성형시에 뛰어난 가공성을 나타내는 것으로 확인되었다. 이에 비해, 비교예 1 및 2의 폴리아릴렌 설파이드는 바리 발생양이 상대적으로 많아 실시예에 비해 가공성이 열악한 것으로 확인되었다.
시험예 2: 폴리아릴렌 설파이드의 기계적 물성 평가
실시예 1 내지 10, 비교예 1 및 2의 폴리아릴렌 설파이드의 기계적 물성을 다음의 방법으로 평가하였다:
인장강도 및 신율
ASTM D 638법에 따라, 실시예 1 내지 10, 비교예 1 및 2 에 따라 제조된 폴리아릴렌 설파이드 시편의 인장강도 및 신율을 측정하였다.
굴곡강도
ASTM D 790법에 따라, 실시예 1 내지 10, 비교예 1 및 2에 따라 제조된 폴리아릴렌 설파이드 시편의 굴곡강도를 측정하였다
충격강도(Izod)
ASTM D 256법에 따라, 실시예 1 내지 10, 비교예 1 및 2 에 따라 제조된 폴리아릴렌 설파이드 시편의 충격강도를 측정하였다.
위와 같은 방법으로 측정된 기계적 물성을 하기 표 2에 정리하여 나타내었다:
구분 인장강도
(kgf/cm2)
신율
(%)
굴곡강도
(kgf/cm2)
충격강도
(J/m, Notched)
실시예1 612 2.2 1,430 17
실시예2 602 1.2 1,422 20
실시예3 622 2.1 1,433 18
실시예4 614 1.3 1,442 17
실시예5 628 2.2 1,455 18
실시예6 605 1.2 1,428 17
실시예7 611 2.3 1,435 17
실시예8 618 1.3 1,447 19
실시예9 630 2.4 1,475 22
실시예10 625 1.5 1,465 20
비교예1 650 3.4 1,490 27
비교예2 647 2.8 1,475 25
다음의 방법으로, 실시예 1 내지 10, 비교예 1 및 2 의 폴리아릴렌 설파이드를 다른 성분과 컴파운딩한 시편을 제조하였다:
폴리아릴렌 설파이드와 GF(유리섬유)의 컴파운딩
중합한 수지를 각각 건조하고, 소형 이축 압출기를 이용하여, 압출 Die 온도 330 ℃, Screw rpm 200 조건 하에서 상기 수지 60 중량부에 Glass Fiber 40 중량부 첨가하며 컴파운딩을 실시하였다.
폴리아릴렌 설파이드와 Elastomer의 컴파운딩
압출 Die 온도 300 ℃, Screw rpm 200 조건 하에서 상기 수지 90 중량부에 엘라스토머인 Lotader (Grade AX-8840, Arkema제)를 10 중량부 첨가하며 혼합 압출을 실시하였다.
상기 컴파운딩 시편의 기계적 물성을 폴리아릴렌 설파이드 시편에 대해서와 마찬가지 방법으로 평가하여 하기 표 3에 정리하여 나타내었다. 또한 이러한 기계적 물성을 비교예 3의 상용화된 컴파운딩 시편과 비교하여 함께 나타내었다:
구분 인장강도
(kgf/cm2)
신율
(%)
굴곡강도
(kgf/cm2)
충격강도
(J/m, Notched)
실시예1+
엘라스토머 10%
583 25.2 1,030 54
실시예2+GF40%
1,750 1.8 2,440 85
실시예3+
엘라스토머 10%
577 20.5 1,010 48
실시예4+GF40%
1,740 1.8 2,400 83
실시예5+
엘라스토머 10%
564 24.3 1,010 52
실시예6+GF40%
1,770 1.8 2,480 86
실시예7+
엘라스토머 10%
568 18.7 1,005 45
실시예8+GF40%
1,750 1.8 2,420 82
실시예9+
엘라스토머 10%
603 27.5 1,130 60
실시예10+GF40%
1,840 2.2 2,650 92
비교예3(엘라스토머 컴파운딩) 660 15.7 940 76
상기 표 2 및 3에 따르면, 주쇄 말단에 카르복시기 또는 아민기가 도입된 실시예 1 내지 10의 폴리아릴렌 설파이드를 열가소성 엘라스토머와 컴파운딩함에 따라, 신율 및 충격강도가 크게 향상됨이 확인되었다. 또, 실시예 1 내지 10의 폴리아릴렌 설파이드를 유리 섬유와 컴파운딩함에 따라, 인장 강도가 크게 향상됨이 확인되었다. 또한, 중합중지제를 단계적으로 투입하여 제조한 실시예 9의 폴리아릴렌 설파이드를 열가소성 엘라스토머와 컴파운딩함에 따라, 신율 및 충격강도가 크게 향상됨이 확인되었다. 또, 실시예 10의 폴리아릴렌 설파이드를 유리 섬유와 컴파운딩함에 따라, 인장 강도 및 충격강도가 크게 향상됨이 확인되었다. 이러한 컴파운딩에 따른 물성의 향상으로부터 실시예의 폴리아릴렌 설파이드가 다양한 다른 고분자 소재나 충진재 등과 우수한 상용성을 나타내고 이에 따라 컴파운딩된 수지 조성물이 뛰어난 상승 효과를 나타낼 수 있음이 확인되었다. 이에 비해, 비교예의 폴리아릴렌 설파이드는 다른 고분자 소재나 충진재와의 상용성이 열악하여 컴파운딩에 따른 상승 효과가 그리 크지 않음이 확인되었다.

Claims (13)

  1. 주쇄의 반복 단위 중에 디설파이드 반복 단위를 포함하는 폴리아릴렌 설파이드; 및
    열가소성 수지, 열가소성 엘라스토머 및 충진재로 이루어진 군에서 선택된 1종 이상을 포함하고,
    상기 폴리아릴렌 설파이드는 주쇄의 말단기(End Group) 중 적어도 일부에 카르복시기 (-COOH)가 결합되어 있고, 나머지 주쇄의 말단기에는 요오드 또는 비치환 아릴기가 결합되어 있고,
    상기 폴리아릴렌 설파이드는 FT-IR 스펙트럼 상에서, 1600 내지 1800cm-1의 피크를 나타내며,
    상기 FT-IR 스펙트럼 상에서, 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 1600 내지 1800cm-1의 피크의 상대적 높이 강도는 0.5 내지 10%인 폴리아릴렌 설파이드계 수지 조성물.
  2. 제 1 항에 있어서, 상기 디설파이드 반복 단위는 전체 폴리아릴렌 설파이드에 대해 3 중량% 이하로 포함되는 폴리아릴렌 설파이드계 수지 조성물.
  3. 제 1 항에 있어서, 상기 폴리아릴렌 설파이드는 중합중지제를 2 회 이상으로 나누어 투입하면서, 디요오드 방향족 화합물과 황 원소를 포함하는 반응물을 용융중합하여 제조된 것인 폴리아릴렌 설파이드계 수지 조성물.
  4. 삭제
  5. 삭제
  6. 제 1 항에 있어서, 상기 열가소성 수지는 폴리비닐알코올계 수지, 염화비닐계 수지, 폴리아미드계 수지, 폴리올레핀계 수지 및 폴리에스테르계 수지로 이루어진 군에서 선택된 1종 이상이고,
    상기 열가소성 엘라스토머는 폴리염화비닐계 엘라스토머, 폴리올레핀계 엘라스토머, 폴리우레탄계 엘라스토머, 폴리에스테르계 엘라스토머, 폴리아미드계 엘라스토머 및 폴리부타디엔계 엘라스토머로 이루어진 군에서 선택된 1종 이상며,
    상기 충진재는 섬유, 비드, 플레이크, 또는 분말 형태의 유기 또는 무기 충진재인 폴리아릴렌 설파이드계 수지 조성물.
  7. 제 6 항에 있어서, 상기 충진재는 유리 섬유, 탄소 섬유, 붕소 섬유, 유리 비드, 유리 플레이크, 탈크 및 탄산칼슘으로 이루어진 군에서 선택된 1종 이상인 폴리아릴렌 설파이드계 수지 조성물.
  8. 제 1 항에 있어서, 상기 폴리아릴렌 설파이드는 수평균 분자량이 5,000 내지 50,000인 폴리아릴렌 설파이드계 수지 조성물.
  9. 제 1 항에 있어서, 상기 폴리아릴렌 설파이드의 5 내지 95 중량%와, 상기 열가소성 수지, 열가소성 엘라스토머 및 충진재로 이루어진 군에서 선택된 1종 이상의 5 내지 95 중량%를 포함하는 폴리아릴렌 설파이드계 수지 조성물.
  10. 제 1 항의 폴리아릴렌설파이드계 수지 조성물을 압출하는 단계를 포함하는 성형품의 제조 방법.
  11. 제 1 항에 따른 폴리아릴렌 설파이드계 수지 조성물을 포함하는 성형품.
  12. 제 11 항에 있어서, 필름, 시트, 또는 섬유 형태인 성형품.
  13. 제 11 항에 있어서, 자동차 부품, 전기,전자 부품, 건축 부재, 기계 부품 또는 산업용 내화학성 섬유로 사용되는 성형품.
KR1020190170655A 2012-09-19 2019-12-19 폴리아릴렌 설파이드계 수지 조성물 및 성형품 KR102210480B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120104007 2012-09-19
KR20120104007 2012-09-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130111550A Division KR20140037776A (ko) 2012-09-19 2013-09-17 폴리아릴렌 설파이드계 수지 조성물 및 성형품

Publications (2)

Publication Number Publication Date
KR20200002731A KR20200002731A (ko) 2020-01-08
KR102210480B1 true KR102210480B1 (ko) 2021-02-01

Family

ID=50341703

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020130111550A KR20140037776A (ko) 2012-09-19 2013-09-17 폴리아릴렌 설파이드계 수지 조성물 및 성형품
KR1020190170655A KR102210480B1 (ko) 2012-09-19 2019-12-19 폴리아릴렌 설파이드계 수지 조성물 및 성형품

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020130111550A KR20140037776A (ko) 2012-09-19 2013-09-17 폴리아릴렌 설파이드계 수지 조성물 및 성형품

Country Status (9)

Country Link
US (2) US10494526B2 (ko)
EP (1) EP2899234B1 (ko)
JP (1) JP6397412B2 (ko)
KR (2) KR20140037776A (ko)
CN (1) CN104640929B (ko)
ES (1) ES2745636T3 (ko)
HK (1) HK1207875A1 (ko)
TW (2) TWI623585B (ko)
WO (1) WO2014046483A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397412B2 (ja) 2012-09-19 2018-09-26 エスケー ケミカルズ カンパニー リミテッド ポリアリーレンスルフィド系樹脂組成物および成形品
CN107001798A (zh) * 2015-01-26 2017-08-01 帝人株式会社 树脂组合物
JP6845403B2 (ja) * 2015-02-26 2021-03-17 Dic株式会社 ポリアリーレンスルフィド樹脂及びその製造方法、並びに、ポリ(アリーレンスルホニウム塩)及びその製造方法
WO2016136738A1 (ja) * 2015-02-26 2016-09-01 Dic株式会社 ポリアリーレンスルフィド樹脂及びその製造方法、並びに、ポリ(アリーレンスルホニウム塩)及びその製造方法
KR102289864B1 (ko) * 2015-05-14 2021-08-13 에스케이케미칼 주식회사 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
TWI740858B (zh) * 2015-11-23 2021-10-01 南韓商Sk化學公司 聚芳硫醚樹脂組合物及成形物件
KR20170059897A (ko) 2015-11-23 2017-05-31 에스케이케미칼주식회사 폴리아릴렌 설파이드 수지 및 그의 제조 방법
KR20180104317A (ko) 2016-02-12 2018-09-20 사빅 글로벌 테크놀러지스 비.브이. 본질적 치유성 폴리카보네이트 수지
KR20170105269A (ko) * 2016-03-09 2017-09-19 이니츠 주식회사 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물
WO2017187279A1 (en) * 2016-04-29 2017-11-02 Sabic Global Technologies B.V. Healable thermoplastic resins
WO2017191834A1 (ja) * 2016-05-06 2017-11-09 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP6816408B2 (ja) * 2016-08-30 2021-01-20 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及びその成形品
KR20210141891A (ko) * 2020-05-15 2021-11-23 에스케이케미칼 주식회사 워터섹션 부품용 수지 조성물 및 이를 포함하는 워터섹션 부품
KR20220055346A (ko) * 2020-10-26 2022-05-03 에이치디씨폴리올 주식회사 폴리아릴렌 설파이드 멀티 필라멘트 섬유
CN112693191B (zh) * 2020-12-19 2023-08-15 帝高力装饰材料(江苏)有限公司 环保仿木塑pvc地板革
KR20230015732A (ko) * 2021-07-23 2023-01-31 에이치디씨폴리올 주식회사 폴리아릴렌 설파이드 모노필라멘트 섬유
KR20230022007A (ko) * 2021-08-06 2023-02-14 에이치디씨폴리올 주식회사 폴리아릴렌 설파이드 스테이플 섬유 및 이의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175243A (en) 1990-11-14 1992-12-29 Phillips Petroleum Company Process for preparing arylene sulfide polymers with halo benzene containing deactivating group

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2583941A (en) 1946-11-13 1952-01-29 Jr Thurlow M Gordon Device for detecting variations in fluid pressure
US2513188A (en) 1948-09-10 1950-06-27 Macallum Alexander Douglas Mixed phenylene sulfide resins
US4552676A (en) * 1982-09-29 1985-11-12 Norris Henry F Composition and method for lubricating insulated electrical conductors
US4746758A (en) 1986-09-29 1988-05-24 Eastman Kodak Company Processes for preparing iodinated aromatic compounds
US4786713A (en) 1987-11-06 1988-11-22 Eastman Kodak Company Copoly(arylene sulfidex-disulfide)
US4792600A (en) * 1987-11-09 1988-12-20 Eastman Kodak Company Process for the preparation of copoly(arylene sulfide) with aromatic nitro compound catalyst
US4952671A (en) * 1988-07-15 1990-08-28 Eastman Kodak Company Terminated copoly(arylene sulfide)
JP2732891B2 (ja) * 1989-04-28 1998-03-30 東ソー株式会社 アミノ基含有ポリフェニレンスルフィルドの製造方法
US4977236A (en) * 1989-06-12 1990-12-11 Eastman Kodak Company Terminated copoly(arylene sulfide) of low molecular weight
US5015703A (en) * 1989-06-29 1991-05-14 General Electric Company Reactively capped polyarylene sulfide and method and intermediates for their preparation
US5247030A (en) * 1989-08-22 1993-09-21 Bayer Aktiengesellschaft Acid modified polyarylene sulphide
JP2736279B2 (ja) * 1990-04-25 1998-04-02 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物
JPH04153262A (ja) * 1990-10-17 1992-05-26 Tosoh Corp 耐衝撃性ポリフェニレンスルフィド樹脂組成物
WO1992019682A1 (en) * 1991-05-06 1992-11-12 Eastman Kodak Company Blends of copoly (arylene sulfide) and polyamide
US5155176A (en) * 1991-05-06 1992-10-13 Eastman Kodak Company Blends of copoly(arylene sulfide) and polyamide
US5182345A (en) * 1991-07-12 1993-01-26 Eastman Kodak Company Blends of copoly(arylene sulfide) and polcarbonate
US5180775A (en) * 1991-09-03 1993-01-19 Eastman Kodak Company Blends of copoly(arylene sulfide) and ethylene-propylene rubber
EP0549977A1 (en) * 1991-12-25 1993-07-07 Mitsubishi Petrochemical Co., Ltd. Carboxyl-containing polyphenylene sulfide, process for producing the same, and resin composition containing the same
JP3970374B2 (ja) * 1997-04-08 2007-09-05 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物
US6001934A (en) * 1997-09-03 1999-12-14 Tonen Chemical Co. Process for the preparation of a functional group-containing polyarylene sulfide resin
CN101501105B (zh) 2006-08-17 2011-01-26 Dic株式会社 含酸基的聚芳硫醚树脂的制造方法
KR101196415B1 (ko) * 2007-01-04 2012-11-02 에스케이케미칼주식회사 백색도가 높은 폴리아릴렌설파이드 수지 및 이의 제조방법
CN101578322A (zh) * 2007-01-05 2009-11-11 Sk化学株式会社 具有出色发光度的聚亚芳基硫醚树脂的制备方法以及聚亚芳基硫醚树脂
KR100894884B1 (ko) * 2008-04-30 2009-04-30 제일모직주식회사 난연성 열가소성 수지 조성물
KR101549205B1 (ko) * 2008-12-23 2015-09-02 에스케이케미칼 주식회사 폴리아릴렌 설파이드의 제조 방법
KR101554010B1 (ko) * 2008-12-31 2015-09-18 에스케이케미칼 주식회사 유리 요오드 저감 폴리아릴렌 설파이드의 제조 방법
CN102652153B (zh) * 2009-12-10 2014-10-08 宝理塑料株式会社 聚芳硫醚系树脂组合物及嵌入成型品
WO2011111983A2 (ko) * 2010-03-10 2011-09-15 에스케이케미칼주식회사 아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법
KR101750014B1 (ko) * 2010-05-12 2017-06-23 에스케이케미칼 주식회사 가공성이 우수한 폴리아릴렌 설파이드 및 이의 제조 방법
KR101944898B1 (ko) * 2012-06-11 2019-02-01 에스케이케미칼 주식회사 폴리아릴렌 설파이드 수지 조성물 및 이의 제조 방법
CN108178926B (zh) * 2012-08-07 2020-12-25 Sk化学株式会社 聚亚芳基硫醚树脂及其制备方法
JP6397412B2 (ja) 2012-09-19 2018-09-26 エスケー ケミカルズ カンパニー リミテッド ポリアリーレンスルフィド系樹脂組成物および成形品

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175243A (en) 1990-11-14 1992-12-29 Phillips Petroleum Company Process for preparing arylene sulfide polymers with halo benzene containing deactivating group

Also Published As

Publication number Publication date
KR20140037776A (ko) 2014-03-27
TW201418365A (zh) 2014-05-16
JP6397412B2 (ja) 2018-09-26
EP2899234A1 (en) 2015-07-29
CN104640929A (zh) 2015-05-20
WO2014046483A1 (ko) 2014-03-27
US20150218376A1 (en) 2015-08-06
CN104640929B (zh) 2018-01-23
TWI648344B (zh) 2019-01-21
TW201734134A (zh) 2017-10-01
US20200056040A1 (en) 2020-02-20
TWI623585B (zh) 2018-05-11
EP2899234B1 (en) 2019-06-19
JP2015528525A (ja) 2015-09-28
KR20200002731A (ko) 2020-01-08
EP2899234A4 (en) 2016-06-22
US10494526B2 (en) 2019-12-03
ES2745636T3 (es) 2020-03-03
HK1207875A1 (en) 2016-02-12
US11370915B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
KR102210480B1 (ko) 폴리아릴렌 설파이드계 수지 조성물 및 성형품
KR102210479B1 (ko) 폴리아릴렌 설파이드 수지 및 그의 제조 방법
KR101944898B1 (ko) 폴리아릴렌 설파이드 수지 조성물 및 이의 제조 방법
JP6901480B2 (ja) ポリアリーレンスルフィドおよび成形品
JP7100222B2 (ja) ポリアリーレンスルフィド系樹脂組成物および成形品
KR20220007274A (ko) 폴리아릴렌 설파이드 공중합체, 이의 제조방법, 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant