WO2017191834A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2017191834A1
WO2017191834A1 PCT/JP2017/017189 JP2017017189W WO2017191834A1 WO 2017191834 A1 WO2017191834 A1 WO 2017191834A1 JP 2017017189 W JP2017017189 W JP 2017017189W WO 2017191834 A1 WO2017191834 A1 WO 2017191834A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
data
channel
user terminal
control
Prior art date
Application number
PCT/JP2017/017189
Other languages
English (en)
French (fr)
Inventor
和晃 武田
一樹 武田
聡 永田
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2018515735A priority Critical patent/JP7034906B2/ja
Priority to CN201780028055.5A priority patent/CN109076393B/zh
Priority to US16/099,026 priority patent/US11588669B2/en
Publication of WO2017191834A1 publication Critical patent/WO2017191834A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( New RAT) and LTE Rel.14, 15 ⁇ ) are also being considered.
  • an existing LTE system for example, LTE Rel. 8-13
  • UL synchronization when UL synchronization is established between a radio base station and a user terminal, UL data can be transmitted from the user terminal.
  • the existing LTE system supports a random access procedure (RACH procedure: Random Access Channel Procedure, also referred to as access procedure) for establishing UL synchronization.
  • RACH procedure Random Access Channel Procedure, also referred to as access procedure
  • the user terminal acquires information (timing advance (TA)) regarding UL transmission timing by a response (random access response) from a radio base station to a randomly selected preamble (random access preamble). Then, UL synchronization is established based on the TA.
  • TA timing advance
  • the user terminal After the UL synchronization is established, the user terminal receives downlink control information (DCI: Downlink Control Information) (UL grant) from the radio base station, and then transmits UL data using the UL resource allocated by the UL grant. To do.
  • DCI Downlink Control Information
  • UL grant Downlink Control Information
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a collision of UL transmissions of a plurality of user terminals is allowed and a radio base station Transmission of UL data without UL grant (collision-type UL transmission (Contention-based UL transmission), UL grant-less (free) UL transmission, UL grant-less and collision-type UL transmission, etc.) has been studied.
  • collision-type UL transmission Contention-based UL transmission
  • UL grant-less (free) UL transmission UL grant-less and collision-type UL transmission, etc.
  • the present invention has been made in view of this point, and an object of the present invention is to provide a user terminal and a wireless communication method capable of performing UL transmission in a transmission format suitable for collision-type UL transmission.
  • a user terminal includes a transmission unit that transmits UL data without an uplink (UL) grant from a radio base station, and a control unit that controls transmission of the UL data according to a transmission format.
  • the transmission format includes an access channel that transmits a randomly selected preamble, a control channel that transmits control information of the UL data, and a data channel that transmits the UL data. It is characterized by.
  • UL transmission can be performed in a transmission format suitable for collision-type UL transmission.
  • Random access procedures are also referred to as collision-type random access (CBRA: Contention-Based Random Access, etc.) and non-collision-type random access (Non-CBRA, contention-free random access (CFRA), etc. )
  • CBRA collision-type random access
  • Non-CBRA contention-free random access
  • CBRA collision type random access
  • a user terminal selects a preamble randomly selected from a plurality of preambles (also referred to as a random access preamble, a random access channel (PRACH), a RACH preamble, etc.) defined in each cell.
  • Collision-type random access is a random access procedure led by a user terminal, and can be used, for example, at the time of initial access or at the start or restart of UL transmission.
  • Non-collision type random access (Non-CBRA, CFRA)
  • the radio base station assigns a preamble specific to the user terminal using a downlink (DL) control channel (PDCCH: Physical Downlink Control Channel, EPDCCH: Enhanced PDCCH, etc.)
  • DL downlink
  • EPDCCH Enhanced PDCCH, etc.
  • Non-collision type random access is a network-initiated random access procedure and can be used, for example, at the time of handover, when DL transmission is started or restarted (when DL retransmission control information transmission is started or restarted).
  • FIG. 1 is a diagram showing an example of collision-type random access.
  • a user terminal uses a random access channel (PRACH) based on system information (for example, MIB: Mater Information Block and / or SIB: System Information Block) or higher layer signaling (for example, RRC (Radio Resource Control) signaling).
  • PRACH configuration information indicating the configuration (PRACH configuration, RACH configuration) is received in advance.
  • the PRACH configuration information includes, for example, a plurality of preambles (for example, preamble format) defined for each cell, time resources (for example, system frame number, subframe number) used for PRACH transmission, and frequency resources (for example, 6 resource blocks) (PRB: offset (prach-FrequencyOffset) indicating the start position of Physical Resource Block) can be indicated.
  • preamble format for example, preamble format
  • time resources for example, system frame number, subframe number
  • frequency resources for example, 6 resource blocks
  • PRB offset (prach-FrequencyOffset) indicating the start position of Physical Resource Block
  • the radio base station When the radio base station detects the preamble, it transmits a random access response (RAR: Random Access Response) as a response (message 2).
  • RAR Random Access Response
  • the user terminal fails to receive the RAR within a predetermined period (RAR window) after transmitting the preamble, the user terminal increases the transmission power of the PRACH and transmits (retransmits) the preamble again. Note that increasing the transmission power during retransmission is also called power ramping.
  • the user terminal that has received the RAR adjusts the UL transmission timing based on the timing advance (TA) included in the RAR, and establishes UL synchronization.
  • the user terminal transmits a control message of a higher layer (L2 / L3: Layer 2 / Layer 3) using a UL resource specified by the UL grant included in the RAR (message 3).
  • the control message includes a user terminal identifier (UE-ID).
  • the identifier of the user terminal may be, for example, C-RNTI (Cell-Radio Network Temporary Identifier) in the RRC connection state, or S-TMSI: System Architecture Evolution-Temporary Mobile in the idle state. It may be a higher-layer UE-ID such as Subscriber Identity.
  • the radio base station transmits a collision resolution message in response to the upper layer control message (message 4).
  • the collision resolution message is transmitted based on the user terminal identifier included in the control message.
  • the user terminal that has successfully detected the collision resolution message transmits an acknowledgment (ACK: Acknowledge) in HARQ (Hybrid Automatic Repeat reQuest) to the radio base station. Thereby, the user terminal in an idle state transits to the RRC connection state.
  • ACK Acknowledge
  • HARQ Hybrid Automatic Repeat reQuest
  • the user terminal that failed to detect the collision resolution message determines that a collision has occurred, reselects the preamble, and repeats the random access procedure of messages 1 to 4.
  • the radio base station When the radio base station detects that the collision has been resolved by the ACK from the user terminal, the radio base station transmits a UL grant to the user terminal.
  • the user terminal starts UL data using the UL resource allocated by the UL grant.
  • the random access procedure can be started autonomously.
  • UL data is transmitted using UL resources allocated to the user terminal by the UL grant after UL synchronization is established, highly reliable UL transmission is possible.
  • a large number of connections e.g., a high-capacity communication (eMBB), a device (user terminal) for inter-device communication (M2M) such as IoT and MTC (user terminal)
  • M2M inter-device communication
  • IoT and MTC user terminal
  • URLLC highly reliable communication
  • the present inventors examined a transmission format suitable for collision-type UL transmission, and reached the present invention. Specifically, in the event of a new UL transmission, the radio base station needs to detect the UL transmission and identify the user terminal that performs the UL transmission, and control the preamble and the UL data. Inspired to send information with UL data.
  • the present embodiment is not limited to mMTC, and can be applied to various services (for example, background communication, small packet communication, etc.).
  • the present embodiment may be applied when UL synchronization is established.
  • the state of the user terminal in the present embodiment may be any of an idle state, an RRC connection state, and a state newly defined for collision-type UL transmission.
  • the time unit to which the transmission format of this embodiment is applied is called, for example, a symbol, a subframe interval, a subframe, a transmission time interval (TTI), a scheduling unit, or the like.
  • the resource is not limited to these, and may be a predetermined time resource.
  • the frequency unit to which the transmission format of the present embodiment is applied is called, for example, a predetermined number of resource blocks (PRB), a predetermined number of resource block groups (RBG) or the like. Any resource can be used.
  • FIG. 2 is a diagram illustrating an example of collision-type UL transmission according to the present embodiment.
  • the user terminal previously receives configuration information related to collision-type UL (CBUL) transmission through system information (eg, MIB and / or SIB) and higher layer signaling (eg, RRC signaling). May be.
  • system information eg, MIB and / or SIB
  • higher layer signaling eg, RRC signaling
  • configuration information related to collision-type UL (CBUL) transmission includes a plurality of preambles that can be selected by the user terminal, and UL resources for collision-type UL transmission ( At least one of time and / or frequency resources).
  • the UL resource may be indicated by, for example, at least one of SFN, subframe number, frequency resource number (PRB number), frequency offset, and UL resource subframe interval.
  • the user terminal starts transmitting UL data without a UL grant from the radio base station. Specifically, when transmitting UL data at a new UL transmission opportunity, the user terminal may transmit a randomly selected preamble and control information of the UL data. Further, the user terminal may transmit the control information and UL data without a response from the radio base station to the preamble.
  • the message 2-4 in the collision-type random access described above can be omitted.
  • the delay time until transmission starts can be reduced.
  • overhead can be reduced by transmitting UL data without UL grant from the radio base station.
  • the subsequent UL data may be transmitted together with the preamble and control information, or may be transmitted without the preamble and / or control information.
  • the transmission format according to the present embodiment transmits an access channel (random access channel) that transmits a randomly selected preamble, a control channel (UL control channel) that transmits UL data control information, and UL data. And a data channel (UL data channel).
  • an access channel random access channel
  • UL control channel UL data control channel
  • UL data channel UL data channel
  • an access channel, a control channel, and a data channel constituting a transmission format are respectively a random access channel (RACH), a UL control channel (UL CCH), and a UL data channel (UL Although referred to as data CH), the channel names constituting the transmission format are not limited to these. Further, the transmission format may be called a transmission frame configuration, a frame configuration, or the like.
  • FIG. 3 is a diagram illustrating an example of a transmission format according to the present embodiment.
  • the random access channel, the UL control channel, and the UL data channel may be arranged in different time resources (may be time division multiplexed).
  • the transmission period of the random access channel is configured with a time length T1
  • the transmission period of the UL control channel is configured with a time length T2
  • the transmission period of the UL data channel is configured with a time length T3.
  • each of the time lengths T1, T2, and T3 is, for example, one or more symbols, one or more subframe intervals, one or more subframes, one or more TTIs, or one or more It is assumed to be composed of scheduling units, but is not limited thereto, and may be a predetermined number of time units.
  • the radio parameters for example, at least one of subcarrier interval, transmission bandwidth, CP length, symbol length, subframe length, subframe interval, etc.
  • the random access channel, UL control channel, and UL data channel are different. Also good.
  • the transmission periods T1, T2, and T3 of the random access channel, the UL control channel, and the UL data channel are temporally continuous, but at least one transmission period may be discontinuous. Further, a non-transmission period such as a guard period may be provided within each transmission period.
  • the time length T2 is shorter than the time lengths T1 and T3, but is not limited thereto. The time length T2 may be adjusted according to the amount of control information, and the time length T3 may be appropriately adjusted according to the amount of UL data.
  • a preamble (sequence) used for detection of UL transmission in the radio base station is transmitted in the random access channel.
  • the radio base station can detect the UL transmission at the transmission timing of new UL data.
  • the preamble may be randomly selected from a plurality of preambles (for example, a plurality of preambles indicated by the CBUL configuration information) notified by system information or higher layer signaling.
  • the plurality of preambles may be provided for each cell.
  • the preamble can be used for beam search and / or UL channel estimation when beamforming is applied to UL data.
  • the preamble (sequence) may be a common preamble used for one or more applications (for example, UL transmission detection, beam search, channel estimation, etc.), or may be a unique preamble for each application. .
  • the use-specific preamble may be different in at least one of a sequence pattern, a transmission UL resource (for example, at least one of a time resource, a frequency resource, a code resource, etc.), a repetition number, and a frequency hopping pattern.
  • a first preamble for detection of UL transmission is transmitted in a first period within a transmission period of a random access channel, and for other applications (eg, beam search or channel estimation) in a second period following the first period. Of the second preamble may be transmitted.
  • the UL resource for the random access channel may be indicated by the CBUL configuration information or may be determined in advance.
  • a predetermined number for example, six
  • PRBs may be indicated as frequency resources, or may be determined in advance.
  • a time resource a subframe or a system frame number (SFN) with a predetermined index number may be indicated, or may be determined in advance.
  • SFN system frame number
  • UL data control information is transmitted on the UL control channel (CCH).
  • the control information includes, for example, identification information of a user terminal that transmits UL data, information about the UL data, information about the capability of the user terminal, information about a transmission resource of the UL data, information about retransmission control of the UL data, It may include at least one piece of information regarding the repetition of the UL data.
  • the identification information of the user terminal may be identification information of an upper layer user terminal such as C-RNTI in the RRC connection state and S-TMSI in the idle state.
  • the information related to UL data may indicate at least one of the data amount of UL data (BSR: Buffer Status Report), the modulation method, the transport block size (TBS), and the coding rate.
  • the information on the capability of the user terminal may indicate whether single tone transmission or multitone transmission is performed.
  • Information regarding transmission resources of UL data includes frequency resources (for example, subcarrier index, PRB index, number of PRBs), time resources (for example, subframe index, SFN, etc.), code resources (for example, CS cyclic shift (CS: Cyclic)). shift), scrambling patterns (at least one of orthogonal spreading codes such as OCC: Orthogonal Cover Code), spreading factor, etc., power resources (for example, when power multiplexing UL data of multiple user terminals), spatial resources ( For example, it may indicate at least one of the case where UL data of a plurality of user terminals is spatially multiplexed.
  • the information regarding the UL data retransmission control indicates the HARQ process number (HPN) of the UL data, the redundancy version (RV: Redundancy Version) of the UL data, and whether the UL data is retransmission data.
  • a new data identifier (NDI: New Data Indicator) may be included.
  • the information regarding the repetition of the UL data may indicate at least one of the number of repetitions of the UL data, a hopping pattern, and whether or not hopping is applied.
  • HARQ-ACK retransmission control information
  • CSI Channel State Information
  • UL reference signals for example, reference signals for channel estimation and sounding
  • UL reference signals may be multiplexed on the UL control channel, or UL reference signals may not be multiplexed.
  • the presence / absence of the UL reference signal may be determined in advance, or may be set by system information or higher layer signaling (for example, the CBUL configuration information).
  • UL data is transmitted on the UL data channel (data CH).
  • the UL data channel may be multiplexed with a UL reference signal (for example, a reference signal for channel estimation or sounding) or may not be multiplexed with a UL reference signal.
  • the presence / absence of the UL reference signal may be determined in advance, may be notified by a UL control channel, or may be set by system information or higher layer signaling (for example, the CBUL configuration information).
  • repeated transmission may be applied to at least one of the random access channel, the UL control channel, and the UL data channel.
  • Parameters related to the repetitive transmission may be determined based on the received power (RSRP: Reference Signal Received Power) and / or the number of re-transmissions. (For example, the CBUL configuration information) may be set.
  • FIG. 4 is a diagram showing another example of the transmission format according to the present embodiment.
  • FIG. 4A shows an example in which repeated transmission is applied to each of a random access channel, a UL control channel, and a UL data channel.
  • a preamble of the same sequence may be transmitted for each repetition, or a preamble of a different sequence may be transmitted.
  • the accuracy of the use of the preambles (for example, at least one of UL transmission detection, beam search, and channel estimation accuracy) can be improved.
  • a plurality of preambles having different uses (for example, the first preamble for detecting UL transmission at the first time, the second preamble for channel estimation at the second time, etc.) ) May be sent.
  • the same UL resource may be used for each repetition, or different UL resources may be used.
  • different UL resources at least one of a time resource, a frequency resource, a code resource, a power resource, and a spatial resource may be changed.
  • the frequency resource change for each repetition is also called frequency hopping.
  • the UL resource change pattern (hopping pattern) for each repetition may be determined in advance or may be set by the CBUL configuration information described above.
  • the same UL resource may be used for each repetition, or different UL resources may be used.
  • the same UL resource may be used for each repetition, or different UL resources may be used.
  • FIG. 4B shows an example in which repeated transmission is applied to the UL control channel and the UL data channel without applying repeated transmission to the random access channel.
  • repeated transmission may be applied only to the UL data channel, or repeated transmission may be applied only to the preamble and / or control information.
  • At least one of the random access channel, the UL control channel, and the UL data channel is orthogonally multiplexed (for example, code division multiplexing) with other user terminals on the same time and frequency resources. ) And / or non-orthogonal multiplexing (at least one of power multiplexing and spatial multiplexing).
  • a radio base station can appropriately receive UL data of the plurality of user terminals.
  • the code resource for example, an orthogonal spreading code (for example, OCC: Orthogonal Cover Code) and / or a cyclic shift (CS) can be used.
  • the radio base station can appropriately receive the UL data of the plurality of user terminals.
  • UL control channels of a plurality of user terminals are code division multiplexed, and UL data of the plurality of user terminals is non-orthogonal multiplexed (power multiplexing or spatial multiplexing).
  • information related to non-orthogonal multiplexing of UL data can be notified by the UL control channel that is orthogonally multiplexed.
  • FIG. 5 is a diagram showing another example of the transmission format according to the present embodiment.
  • UL data 0 and 1 of user terminals # 1 and # 2 are repeatedly transmitted and code division multiplexed, respectively.
  • the UL data 0 of the user terminal # 1 is multiplied by the orthogonal spreading code ⁇ 1, 1, 1, 1 ⁇
  • the UL data 1 of the user terminal # 2 is multiplied by the orthogonal spreading code ⁇ 1, Let -1,1, -1 ⁇ be multiplied.
  • the UL data 0 is transmitted due to a difference in the transmission periods of the UL data 0 and 1 of the user terminals # 1 and # 2. It is assumed that the orthogonality by one orthogonal spreading code is not maintained.
  • a predetermined guard period may be provided before or after a symbol or subframe of UL data of each user terminal.
  • a cyclic prefix (CP) of a predetermined length added to a UL data symbol can be replaced with a guard period as non-transmission.
  • the CP used as the guard period is also called zero power CP.
  • the transmission format described above includes a random access channel, a UL control channel, and a UL data channel.
  • the transmission format of the present embodiment is not limited to this, and the preamble and UL data that are randomly selected are controlled. Any channel may be used as long as it transmits information and UL data.
  • the UL data control information may be transmitted via the UL data channel in the same manner as “UCI on PUSCH”.
  • the preamble, control information, and UL data are multiplexed on different time resources, but the transmission format of the present embodiment is not limited to this.
  • at least one of preamble, control information, and UL data may be transmitted using the same time resource.
  • the preamble, control information, and UL data may be divided by frequency resources, or may be divided by code resources.
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 6 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied.
  • the wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New Rat), or the like.
  • the radio communication system 1 shown in FIG. 6 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, two or more CCs). Further, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells. In addition, it can be set as the structure by which the TDD carrier which applies shortening TTI is contained in either of several cells.
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that between the base station 11 and the base station 11 may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the UL.
  • DL channels DL data channels (PDSCH: Physical Downlink Shared Channel, also referred to as DL shared channel) shared by each user terminal 20, broadcast channels (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • L1 / L2 control channels include DL control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. .
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • a UL data channel (PUSCH: Physical Uplink Shared Channel, also referred to as a UL shared channel) shared by each user terminal 20, a UL control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of delivery confirmation information (ACK / NACK) and radio quality information (CQI) is transmitted by PUSCH or PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 7 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • DL data transmitted from the radio base station 10 to the user terminal 20 is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling for example, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing
  • other transmission processing are performed and the transmission / reception unit 103.
  • the DL control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input UL signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 includes a DL signal (for example, a DL control signal (DL control channel), a DL data signal (DL data channel, a DL shared channel), a DL reference signal (DM-RS, CSI-RS, etc.), and a discovery signal. , Synchronization signals, broadcast signals, etc.) and UL signals (eg, UL control signals (UL control channel), UL data signals (UL data channel, UL shared channel), UL reference signals, etc.) are received.
  • DL signal for example, a DL control signal (DL control channel), a DL data signal (DL data channel, a DL shared channel), a DL reference signal (DM-RS, CSI-RS, etc.
  • DM-RS DL reference signal
  • CSI-RS CSI-RS
  • the transmission / reception unit 103 transmits configuration information (CBUL configuration information) related to collision-type UL transmission using system information or higher layer signaling. Further, the transmission / reception unit 103 receives a UL signal (at least one of a preamble, control information, and UL data) transmitted from the user terminal 20 by collision-type UL transmission.
  • configuration information CBUL configuration information
  • a UL signal at least one of a preamble, control information, and UL data
  • the transmission unit and the reception unit of the present invention are configured by the transmission / reception unit 103 and / or the transmission path interface 106.
  • FIG. 8 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 8 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As shown in FIG. 8, the baseband signal processing unit 104 includes at least a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 controls scheduling (for example, resource allocation) of DL signals and / or UL signals. Specifically, the control unit 301 generates and transmits a DCI (DL assignment) including scheduling information of the DL data channel and a DCI (UL grant) including scheduling information of the UL data channel. 302, the mapping unit 303, and the transmission / reception unit 103 are controlled.
  • a DCI DL assignment
  • a DCI UL grant
  • control unit 301 may control collision type UL (CBUL) transmission in which UL data is transmitted from the user terminal 20 without a UL grant.
  • CBUL collision type UL
  • the control unit 301 may determine the above-described CBUL configuration information such as UL resources that can be used for collision-type UL transmission.
  • control unit 301 may control reception of UL data in accordance with a transmission format for collision-type UL transmission.
  • the transmission format includes an access channel (random access channel) that transmits a randomly selected preamble, a control channel (UL control channel) that transmits UL data control information, and a data channel that transmits UL data.
  • UL data channel, UL shared channel may be included (FIGS. 3 to 5).
  • control unit 301 may detect UL transmission using the preamble. Further, the control unit 301 may blind-decode the UL control channel and identify the user terminal 20 based on the detected control information. Further, the control unit 301 may control the reception processing (demodulation, decoding, etc.) of UL data from the user terminal 20 based on the control information. Further, the control unit 301 may control beam search and / or channel estimation performed based on the preamble.
  • the transmission signal generation unit 302 generates a DL signal (DL reference signal such as DL control channel, DL data channel, DM-RS, etc.) based on an instruction from the control unit 301, and outputs the DL signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, a UL signal (UL control channel, UL data channel, UL reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301.
  • the reception processing unit 304 outputs at least one of a preamble, control information, and UL data to the control unit 301.
  • the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may measure, for example, received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 301.
  • FIG. 9 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the DL data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Of the DL data, system information and higher layer control information are also transferred to the application unit 205.
  • UL data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 includes a DL signal (for example, a DL control signal (DL control channel), a DL data signal (DL data channel, a DL shared channel), a DL reference signal (DM-RS, CSI-RS, etc.), and a discovery signal.
  • a DL signal for example, a DL control signal (DL control channel), a DL data signal (DL data channel, a DL shared channel), a DL reference signal (DM-RS, CSI-RS, etc.), and a discovery signal.
  • a UL signal for example, UL control signal (UL control channel), UL data signal (UL data channel, UL shared channel), UL reference signal, etc.
  • the transmission / reception unit 203 receives configuration information (CBUL configuration information) related to collision-type UL transmission through system information or higher layer signaling.
  • the transmission / reception unit 203 transmits a UL signal (at least one of a preamble, control information, and UL data) based on the transmission format of the collision-type UL transmission.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 10 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As shown in FIG. 10, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. At least.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 acquires the DL control channel and the DL data channel transmitted from the radio base station 10 from the received signal processing unit 404. Specifically, the control unit 401 blindly decodes the DL control channel to detect DCI, and controls the transmission / reception unit 203 and the received signal processing unit 404 to receive the DL data channel based on the DCI. Further, the control unit 401 estimates the channel gain based on the DL reference signal, and demodulates the DL data channel based on the estimated channel gain.
  • the control unit 401 controls transmission of retransmission control information (for example, HARQ-ACK) transmitted on the UL control channel or the UL data channel based on the result of determining whether or not retransmission control is required for the DL data channel. May be. Moreover, the control part 401 may control transmission of the channel state information (CSI: Channel State Information) generated based on the DL reference signal.
  • CSI Channel State Information
  • control unit 401 controls collision type UL (CBUL) transmission.
  • control unit 401 may control transmission of UL data without a UL grant according to a transmission format for collision-type UL transmission.
  • the transmission format includes a random access channel that transmits a randomly selected preamble, a control channel that transmits control information used to receive the UL data, and a data channel that transmits the UL data. (FIGS. 3-5).
  • control unit 401 may determine a UL resource used for at least one of the random access channel, the UL control channel, and the UL data channel based on the CBUL configuration information.
  • the UL resource may be at least one of a time resource, a frequency resource, a code resource, a power resource, and a spatial resource.
  • control unit 401 may select a preamble to be transmitted in the transmission format at random from a plurality of preambles indicated by the CBUL configuration information. Further, the control unit 401 may determine a UL resource for a random access channel based on the CBUL configuration information. Similarly, the control unit 401 may determine UL resources for the control channel and / or UL data channel based on the CBUL configuration information.
  • control unit 401 may control at least one repetitive transmission of the random access channel, the UL control channel, and the UL data channel. Specifically, the control unit 401 determines parameters related to the repetitive transmission (for example, the number of repetitions, presence / absence of repetitive transmission, etc.) based on the received power (RSRP: Reference Signal Received Power) and / or the number of retransmissions. Also good. Alternatively, the control unit 401 may determine the parameter based on the CBUL configuration information.
  • RSRP Reference Signal Received Power
  • the control unit 401 when repeatedly transmitting at least one of the random access channel, the UL control channel, and the UL data channel, the control unit 401 changes the UL resource (at least one of a time resource, a frequency resource, and a code resource) for each repetition. May be.
  • the change of frequency resource is also called frequency hopping.
  • the control unit 401 may transmit the same preamble or transmit different preambles for each repetition.
  • control unit 401 may provide a guard period for each predetermined transmission time unit to which repeated transmission is applied. For example, as illustrated in FIG. 5, the control unit 401 may provide a predetermined guard period before and after each transmission period (for example, a symbol or a subframe). For example, a cyclic prefix (CP) having a predetermined length added to a symbol for UL data can be replaced with a guard period. CP used as a guard period is also called zero power CP.
  • CP cyclic prefix
  • the transmission signal generation unit 402 generates a UL signal (UL control channel, UL data channel, UL reference signal, etc.) based on an instruction from the control unit 401, and outputs the UL signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a TPC command based on an instruction from the control unit 401, for example. Further, the transmission signal generation unit 402 generates a UL data channel based on an instruction from the control unit 401. For example, when the UL grant is included in the DL control channel notified from the radio base station 10, the transmission signal generation unit 402 is instructed by the control unit 401 to generate a UL data channel.
  • the mapping unit 403 maps the UL signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs it to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a DL signal (DL control channel, DL data channel, DL reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the received signal processing unit 404 performs blind decoding on the DL control channel that schedules transmission and / or reception of the DL data channel based on an instruction from the control unit 401, and performs DL data channel reception processing based on the DCI.
  • Received signal processing section 404 estimates the channel gain based on DM-RS or CRS, and demodulates the DL data channel based on the estimated channel gain.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 may output the data decoding result to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may measure, for example, the received power (for example, RSRP), DL reception quality (for example, RSRQ), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 401.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • the radio base station, user terminal, and the like in this embodiment may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the present embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • each function in the radio base station 10 and the user terminal 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004.
  • predetermined software program
  • it is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal.
  • Different names may be used for the radio frame, the subframe, the slot, and the symbol.
  • one subframe may be referred to as a transmission time interval (TTI)
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot may be referred to as a TTI.
  • the subframe or TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. Also good.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), or may be a processing unit such as scheduling or link adaptation.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a shortened subframe, a short subframe, or the like.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of one slot, one subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • the RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, symbol, and the like is merely an example.
  • the configuration such as the cyclic prefix (CP) length can be changed in various ways.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • mathematical formulas and the like using these parameters may differ from those explicitly disclosed herein.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limiting in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory), or may be managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • cell e.g., a fixed station
  • eNodeB eNodeB
  • cell group e.g., a cell
  • carrier femtocell
  • component carrier e.g., a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • the terms “connected”, “coupled”, or any variation thereof refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

衝突型上りリンク(UL)送信に適する送信フォーマットでUL送信を行うこと。本発明のユーザ端末は、無線基地局からのULグラントなしにULデータを送信する送信部と、送信フォーマットに従って前記ULデータの送信を制御する制御部と、を具備し、当該送信フォーマットは、ランダムに選択されるプリアンブルを送信するアクセスチャネルと、当該ULデータの制御情報を送信する制御チャネルと、当該ULデータを送信するデータチャネルと、を含んで構成される。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、LTE Rel.14、15~、などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)では、無線基地局とユーザ端末との間でUL同期が確立されている場合に、ユーザ端末からのULデータの送信が可能となる。このため、既存のLTEシステムでは、UL同期を確立するためのランダムアクセス手順(RACH手順:Random Access Channel Procedure、アクセス手順ともいう)がサポートされている。
 ランダムアクセス手順において、ユーザ端末は、ランダムに選択されるプリアンブル(ランダムアクセスプリアンブル)に対する無線基地局から応答(ランダムアクセスレスポンス)によりULの送信タイミングに関する情報(タイミングアドバンス(TA:Timing Advance))を取得し、当該TAに基づいてUL同期を確立する。
 ユーザ端末は、UL同期の確立後、無線基地局からの下り制御情報(DCI:Downlink Control Information)(ULグラント)を受信してから、ULグラントにより割り当てられるULリソースを用いて、ULデータを送信する。
 将来の無線通信システム(例えば、5G、NRなど)では、高速で大容量の通信(eMBB:enhanced Mobile Broad Band)、IoT(Internet of Things)やMTC(Machine Type Communication)などの機器間通信(M2M:Machine-to-Machine)用のデバイス(ユーザ端末)からの大量接続(mMTC:massive MTC)、低遅延で高信頼の通信(URLLC:Ultra-reliable and low latency communication)など、多様なサービスを単一のフレームワークで収容することが望まれている。
 このような将来の無線通信システムにおいて、ULデータを送信する前に既存のLTEシステムと同様のランダムアクセス手順を行う場合、ULデータの送信を開始するまでの遅延時間が問題となることが想定される。また、将来の無線通信システムでは、無線基地局からのULグラントによるオーバヘッドの増大が問題となることが想定される。
 したがって、将来の無線通信システムでは、ULデータの送信を開始するまでの遅延時間を短縮するとともにオーバヘッドの増大を抑制するため、複数のユーザ端末のUL送信の衝突を許容して無線基地局からのULグラントなしにULデータを送信すること(衝突型UL送信(Contention-based UL transmission)、ULグラントレス(フリー)UL送信、ULグラントレス及び衝突型UL送信等ともいう)が検討されている。このような衝突型UL送信では、どのような送信フォーマットを用いるかが問題となる。
 本発明はかかる点に鑑みてなされたものであり、衝突型UL送信に適する送信フォーマットでUL送信を行うことが可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。
 本発明の一態様に係るユーザ端末は、無線基地局からの上りリンク(UL)グラントなしにULデータを送信する送信部と、送信フォーマットに従って前記ULデータの送信を制御する制御部と、を具備し、前記送信フォーマットは、ランダムに選択されるプリアンブルを送信するアクセスチャネルと、前記ULデータの制御情報を送信する制御チャネルと、前記ULデータを送信するデータチャネルと、を含んで構成されることを特徴とする。
 本発明によれば、衝突型UL送信に適する送信フォーマットでUL送信を行うことができる。
衝突型ランダムアクセス手順の一例を示す図である。 本実施の形態に係る衝突型UL送信の一例を示す図である。 本実施の形態に係る送信フォーマットの一例を示す図である。 図4A及び4Bは、本実施の形態に係る送信フォーマットの他の例を示す図である。 本実施の形態に係る送信フォーマットの他の例を示す図である。 本実施の形態に係る無線通信システムの概略構成図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 既存のLTEシステム(例えば、LTE Rel.8-13)では、UL同期を確立するためのランダムアクセス手順がサポートされている。ランダムアクセス手順には、衝突型ランダムアクセス(CBRA:Contention-Based Random Access等ともいう)と非衝突型ランダムアクセス(Non-CBRA、コンテンションフリーランダムアクセス(CFRA:Contention-Free Random Access)等ともいう)とが含まれる。
 衝突型ランダムアクセス(CBRA)では、ユーザ端末は、各セルに定められる複数のプリアンブル(ランダムアクセスプリアンブル、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)、RACHプリアンブル等ともいう)からランダムに選択したプリアンブルを送信する。また、衝突型ランダムアクセスは、ユーザ端末主導のランダムアクセス手順であり、例えば、初期アクセス時、UL送信の開始又は再開時などに用いることができる。
 一方、非衝突型ランダムアクセス(Non-CBRA、CFRA)では、無線基地局は、下りリンク(DL)制御チャネル(PDCCH:Physical Downlink Control Channel、EPDCCH:Enhanced PDCCHなど)によりプリアンブルをユーザ端末固有に割り当て、ユーザ端末は、無線基地局から割り当てられたプリアンブルを送信する。非衝突型ランダムアクセスは、ネットワーク主導のランダムアクセス手順であり、例えば、ハンドオーバ時、DL送信の開始又は再開時(DL用再送制御情報のULにおける送信の開始又は再開時)などに用いることができる。
 図1は、衝突型ランダムアクセスの一例を示す図である。図1において、ユーザ端末は、システム情報(例えば、MIB:Mater Information Block及び/又はSIB:System Information Block)や上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング)により、ランダムアクセスチャネル(PRACH)の構成(PRACH configuration、RACH configuration)を示す情報(PRACH構成情報)を予め受信する。
 当該PRACH構成情報は、例えば、各セルに定められる複数のプリアンブル(例えば、プリアンブルフォーマット)、PRACH送信に用いられる時間リソース(例えば、システムフレーム番号、サブフレーム番号)及び周波数リソース(例えば、6リソースブロック(PRB:Physical Resource Block)の開始位置を示すオフセット(prach-FrequencyOffset))などを示すことができる。
 図1に示すように、ユーザ端末は、アイドル(RRC_IDLE)状態からRRC接続(RRC_CONNECTED)状態に遷移する場合(例えば、初期アクセス時)、RRC接続状態であるがUL同期が確立されていない場合(例えば、UL送信の開始又は再開時)などにおいて、PRACH構成情報が示す複数のプリアンブルの一つをランダムに選択し、選択されたプリアンブルをPRACHにより送信する(メッセージ1)。
 無線基地局は、プリアンブルを検出すると、その応答としてランダムアクセスレスポンス(RAR:Random Access Response)を送信する(メッセージ2)。ユーザ端末は、プリアンブルの送信後、所定期間(RAR window)内にRARの受信に失敗する場合、PRACHの送信電力を上げてプリアンブルを再度送信(再送)する。なお、再送時に送信電力を増加させることは、パワーランピングとも呼ばれる。
 RARを受信したユーザ端末は、RARに含まれるタイミングアドバンス(TA)に基づいて、ULの送信タイミングを調整し、ULの同期を確立する。また、ユーザ端末は、RARに含まれるULグラントが指定するULリソースで、上位レイヤ(L2/L3:Layer 2/Layer 3)の制御メッセージを送信する(メッセージ3)。当該制御メッセージには、ユーザ端末の識別子(UE-ID)が含まれる。当該ユーザ端末の識別子は、例えば、RRC接続状態であればC-RNTI(Cell-Radio Network Temporary Identifier)であってもよいし、又は、アイドル状態であればS-TMSI:System Architecture Evolution-Temporary Mobile Subscriber Identityなど上位レイヤのUE-IDであってもよい。
 無線基地局は、上位レイヤの制御メッセージに応じて、衝突解決用メッセージを送信する(メッセージ4)。当該衝突解決用メッセージは、上記制御メッセージに含まれるユーザ端末の識別子宛に基づいて送信される。衝突解決用メッセージの検出に成功したユーザ端末は、HARQ(Hybrid Automatic Repeat reQuest)における肯定応答(ACK:Acknowledge)を無線基地局に送信する。これにより、アイドル状態のユーザ端末はRRC接続状態に遷移する。
 一方、当該衝突解決用メッセージの検出に失敗したユーザ端末は、衝突が発生したと判断し、プリアンブルを再選択し、メッセージ1から4のランダムアクセス手順を繰り返す。
 無線基地局は、ユーザ端末からのACKにより衝突が解決されたことを検出すると、当該ユーザ端末に対して、ULグラントを送信する。ユーザ端末は、ULグラントにより割り当てられるULリソースを用いてULデータを開始する。
 以上のような衝突型ランダムアクセスでは、ユーザ端末が、ULデータの送信を望む場合に、自発的(autonomous)にランダムアクセス手順を開始できる。また、UL同期が確立されてから、ULグラントによりユーザ端末固有に割り当てられるULリソースを用いてULデータが送信されるため、信頼性の高いUL送信が可能となる。
 ところで、将来の無線通信システム(例えば、5G、NRなど)では、高速で大容量の通信(eMBB)、IoTやMTCなどの機器間通信(M2M)用のデバイス(ユーザ端末)からの大量接続(mMTC)、低遅延で高信頼の通信(URLLC)など、多様なサービスを単一のフレームワークで収容することが望まれている。
 このような将来の無線通信システムにおいて、ULデータを送信する前に既存のLTEシステムと同様の衝突型ランダムアクセスを行う場合、ULデータの送信を開始するまでの遅延時間が問題となることが想定される。また、将来の無線通信システムにおいて、ULデータを送信する前に、ユーザ端末からのULリソースの割り当て要求(スケジューリング要求(SR))や無線基地局からの当該ULリソースの割り当て(ULグラント)を必要とする場合、オーバヘッドの増大が問題となることが想定される。
 例えば、mMTCなどの大量接続では、ユーザ端末間でのプリアンブルの衝突頻度が増加し、ULデータの送信を開始するまでの遅延時間が増大する恐れがある。上述の衝突型ランダムアクセスでは、複数のユーザ端末間でプリアンブルの衝突が発生すると、当該複数のユーザ端末の少なくとも一つでランダムアクセス手順を再度行う必要があるためである。
 また、mMTCなどの大量接続において、無線基地局からの各ユーザ端末に対するULグラントが大量に送信される場合、ULデータに対するオーバヘッドの割合が相対的に増加する。このため、mMTCでは、DL制御チャネルの容量が逼迫したり、周波数利用効率が低下したりする恐れがある。
 したがって、将来の無線通信システムでは、ULデータの送信を開始するまでの遅延時間を短縮するとともにオーバヘッドの増大を抑制するため、複数のユーザ端末のUL送信の衝突を許容して無線基地局からのULグラントなしにULデータを送信する衝突型UL送信が検討されている。このような衝突型UL送信では、どのような送信フォーマットを用いるかが問題となる。
 そこで、本発明者等は、衝突型UL送信に適する送信フォーマットを検討し、本発明に至った。具体的には、新たなUL送信の契機では、無線基地局は、当該UL送信を検出するとともに当該UL送信を行うユーザ端末を識別する必要があることに着目し、プリアンブルと、ULデータの制御情報とを、ULデータとともに送信することを着想した。
 以下、本発明の一実施の形態について図面を参照して詳細に説明する。なお、本実施の形態は、mMTCに限られず、多様なサービス(例えば、バックグラウンド通信、スモールパケット通信など)に適用可能である。
 また、以下では、UL同期が確立されていない場合を想定して説明するが、本実施の形態は、UL同期が確立されている場合に適用されてもよい。また、本実施の形態におけるユーザ端末の状態は、アイドル状態、RRC接続状態、衝突型UL送信用に新たに規定される状態のいずれであってもよい。
 また、本実施の形態の送信フォーマットが適用される時間単位は、例えば、シンボル、又は、サブフレーム間隔、又は、サブフレーム、或いは、伝送時間間隔(TTI:Transmission Time Interval)、スケジューリングユニット等と呼ばれるが、これらに限られず、所定の時間リソースであればよい。また、本実施の形態の送信フォーマットが適用される周波数単位は、例えば、所定数のリソースブロック(PRB)、所定数のリソースブロックグループ(RBG)等と呼ばれるが、これらに限られず、所定の周波数リソースであればよい。
(衝突型UL送信)
 図2は、本実施の形態に係る衝突型UL送信の一例を示す図である。図2に示すように、ユーザ端末は、システム情報(例えば、MIB及び/又はSIB)や上位レイヤシグナリング(例えば、RRCシグナリング)により、衝突型UL(CBUL)送信に関する構成(configuration)情報を予め受信してもよい。
 ここで、衝突型UL(CBUL)送信に関する構成情報(以下、CBUL構成情報という。ULリソース構成情報等ともいう)は、ユーザ端末が選択可能な複数のプリアンブル、衝突型UL送信用のULリソース(時間及び/又は周波数リソース)の少なくとも一つを示してもよい。当該ULリソースは、例えば、SFN、サブフレーム番号、周波数リソース数(PRB数)、周波数オフセット、ULリソースのサブフレーム間隔の少なくとも一つにより示されてもよい。
 図2に示すように、ユーザ端末は、無線基地局からのULグラントなしにULデータの送信を開始する。具体的には、ユーザ端末は、新たなUL送信の契機においてULデータを送信する場合、ランダムに選択されるプリアンブルと、当該ULデータの制御情報とを送信してもよい。また、ユーザ端末は、プリアンブルに対する無線基地局からの応答なしに、上記制御情報及びULデータを送信してもよい。
 図2に示す衝突型UL送信では、複数のユーザ端末からのULデータの衝突を許容することで、上述の衝突型ランダムアクセスにおけるメッセージ2-4(図1参照)を省略できるため、ULデータの送信を開始するまでの遅延時間を短縮できる。また、無線基地局からのULグラントなしにULデータを送信することで、オーバヘッドを軽減できる。
 なお、後続のULデータは、プリアンブル及び制御情報とともに送信されてもよいし、プリアンブル及び/又は制御情報を省略して送信されてもよい。
(送信フォーマット)
 次に、本実施の形態に係る衝突型UL送信の送信フォーマットについて説明する。本実施の形態に係る送信フォーマットは、ランダムに選択されるプリアンブルを送信するアクセスチャネル(ランダムアクセスチャネル)と、ULデータの制御情報を送信する制御チャネル(UL制御チャネル)と、ULデータを送信するデータチャネル(ULデータチャネル)と、を含んで構成されてもよい。
 以下では、説明の便宜上、本実施の形態に係る送信フォーマットを構成するアクセスチャネル、制御チャネル、データチャネルを、それぞれ、ランダムアクセスチャネル(RACH)、UL制御チャネル(UL CCH)、ULデータチャネル(ULデータCH)と呼ぶが、当該送信フォーマットを構成するチャネル名称はこれらに限られるものではない。また、送信フォーマットは、送信フレーム構成、フレーム構成等と呼ばれてもよい。
 図3は、本実施の形態に係る送信フォーマットの一例を示す図である。図3に示すように、ランダムアクセスチャネルとUL制御チャネルとULデータチャネルとは、異なる時間リソースに配置されてもよい(時分割多重されてもよい)。
 例えば、図3では、ランダムアクセスチャネルの送信期間が時間長T1で構成され、UL制御チャネルの送信期間が時間長T2で構成され、ULデータチャネルの送信期間が時間長T3で構成される。ここで、時間長T1、T2、T3は、それぞれ、例えば、1以上のシンボル、又は、1以上のサブフレーム間隔、又は、1以上のサブフレーム、又は、1以上のTTI、又は、一以上のスケジューリングユニットで構成されるものとするが、これらに限られず、所定数の時間単位であればよい。また、ランダムアクセスチャネル、UL制御チャネル及びULデータチャネルの無線パラメータ(例えば、サブキャリア間隔、送信帯域幅、CP長、シンボル長、サブフレーム長、サブフレーム間隔等の少なくとも一つ)は異なっていても良い。
 なお、図3では、ランダムアクセスチャネル、UL制御チャネル及びULデータチャネルの送信期間T1、T2及びT3が時間的に連続するが、少なくとも一つの送信期間は不連続であってもよい。また、各送信期間内にガード期間などの非送信期間が設けられてもよい。また、図3では、時間長T2が、時間長T1、T3よりも短いが、これに限られない。時間長T2は、制御情報の量に応じて調整されればよく、時間長T3は、ULデータの量に応じて適宜調整されればよい。
 図3において、ランダムアクセスチャネルでは、無線基地局でのUL送信の検出に用いられるプリアンブル(系列)が送信される。ULデータチャネルよりも前にランダムアクセスチャネル(プリアンブル)を送信することで、無線基地局は、新たなULデータの送信契機において、当該UL送信を検出できる。
 当該プリアンブル(系列)は、システム情報又は上位レイヤシグナリングにより通知される複数のプリアンブル(例えば、上記CBUL構成情報が示す複数のプリアンブル)からランダムに選択されてもよい。当該複数のプリアンブルは、セル毎に設けられてもよい。
 また、当該プリアンブル(系列)は、ULデータにビームフォーミングを適用する場合のビームサーチ及び/又はULのチャネル推定に用いることができる。当該プリアンブル(系列)は、一以上の用途(例えば、UL送信の検出、ビームサーチ、チャネル推定など)に用いられる共通のプリアンブルであってもよいし、用途毎の固有のプリアンブルであってもよい。
 用途固有のプリアンブルは、系列パターン、送信用のULリソース(例えば、時間リソース、周波数リソース、符号リソース等の少なくとも一つ)、繰り返し数、周波数ホッピングパターンの少なくとも一つが異なっていてもよい。例えば、ランダムアクセスチャネルの送信期間内の第1期間でUL送信の検出用の第1のプリアンブルを送信し、第1期間に続く第2期間で他の用途(例えば、ビームサーチ又はチャネル推定)用の第2のプリアンブルが送信されてもよい。
 また、ランダムアクセスチャネル用のULリソースは、上記CBUL構成情報により指示されてもよいし、予め定められていてもよい。例えば、周波数リソースとして、所定数(例えば、6個)のPRBが指示されてもよいし、予め定められてもよい。また、時間リソースとして、所定のインデックス番号のサブフレームやシステムフレーム番号(SFN)が指示されてもよいし、予め定められてもよい。
 また、図3において、UL制御チャネル(CCH)では、ULデータの制御情報が送信される。当該制御情報は、例えば、ULデータを送信するユーザ端末の識別情報、当該ULデータに関する情報、当該ユーザ端末の能力に関する情報、当該ULデータの送信リソースに関する情報、当該ULデータの再送制御に関する情報、当該ULデータの繰り返しに関する情報の少なくとも一つを含んでもよい。
 上記ユーザ端末の識別情報は、例えば、RRC接続状態であればC-RNTI、アイドル状態ではS-TMSIなど上位レイヤのユーザ端末の識別情報であってもよい。また、ULデータに関する情報は、ULデータのデータ量(BSR:Buffer Status Report)、変調方式、トランスポートブロックサイズ(TBS)、符号化率の少なくとも一つを示してもよい。
 また、上記ユーザ端末の能力に関する情報は、シングルトーン送信又はマルチトーン送信を行うかなどを示してもよい。ULデータの送信リソースに関する情報は、周波数リソース(例えば、サブキャリアインデックス、PRBインデックス、PRB数)、時間リソース(例えば、サブフレームインデックス、SFNなど)、符号リソース(例えば、CS巡回シフト(CS:Cyclic shift)、スクランブリングパターン(OCC:Orthogonal Cover Code)などの直交拡散符号、拡散率などの少なくとも一つ)、電力リソース(例えば、複数のユーザ端末のULデータを電力多重する場合)、空間リソース(例えば、複数のユーザ端末のULデータを空間多重する場合)の少なくとも一つを示してもよい。
 また、上記ULデータの再送制御に関する情報は、ULデータのHARQプロセス番号(HPN:HARQ Process Number)、ULデータの冗長バージョン(RV:Redundancy Version)、ULデータが再送データであるか否かを示す新規データ識別子(NDI:New Data Indicator)を含んでもよい。また、当該ULデータの繰り返しに関する情報は、ULデータの繰り返し回数、ホッピングパターン、ホッピングの適用有無の少なくとも一つを示してもよい。
 また,UL制御チャネルでは、SPS(Semi Persistent Scheduling)送信に関する情報や、ULデータチャネルにおけるUCI(Uplink Control Information)(例えば、再送制御情報(HARQ-ACK)、チャネル状態情報(CSI:Channel State Information)などの少なくとも一つ)の有無等、その他の制御情報を通知しても良い。
 また、UL制御チャネルでは、以上の制御情報に加えて、巡回冗長検査(CRC:Cyclic Redundancy Check)と誤り検出のためのパディングビットとの少なくとも一つが送信されてもよい。また、UL制御チャネルには、UL参照信号(例えば、チャネル推定やサウンディングのための参照信号)が多重されてもよいし、UL参照信号が多重されなくともよい。当該UL参照信号の有無は、予め定められてもいし、システム情報や上位レイヤシグナリング(例えば、上記CBUL構成情報)により設定されてもよい。
 また、図3において、ULデータチャネル(データCH)では、ULデータが送信される。当該ULデータチャネルには、UL参照信号(例えば、チャネル推定やサウンディングのための参照信号)が多重されてもよいし、UL参照信号が多重されなくともよい。当該UL参照信号の有無は、予め定められてもいし、UL制御チャネルにより通知されてもよいし、システム情報や上位レイヤシグナリング(例えば、上記CBUL構成情報)により設定されてもよい。
 また、本実施の形態に係る送信フォーマットでは、ランダムアクセスチャネルとUL制御チャネルとULデータチャネルの少なくとも一つに対して、繰り返し送信が適用されてもよい。当該繰り返し送信に関するパラメータ(例えば、繰り返し回数、繰り返し送信の有無など)は、受信電力(RSRP:Reference Signal Received Power)及び/又は再送回数に基づいて決定されてもよいし、システム情報や上位レイヤシグナリング(例えば、上記CBUL構成情報)により設定されてもよい。
 図4は、本実施の形態に係る送信フォーマットの他の例を示す図である。図4Aでは、ランダムアクセスチャネル、UL制御チャネル及びULデータチャネルのそれぞれに対して繰り返し送信が適用される例が示される。例えば、図4Aでは、ランダムアクセスチャネルとUL制御チャネルとULデータチャネルとが、それぞれ、N回(ここでは、N=2)ずつ繰り返し送信される。
 ランダムアクセスチャネルの繰り返し送信においては、繰り返し毎に同じ系列(パターン)のプリアンブルが送信されてもよいし、異なる系列のプリアンブルが送信されてもよい。図4Aに示すように、同じ系列のプリアンブルが送信される場合、当該プリアンブルの用途(例えば、UL送信の検出、ビームサーチ、チャネル推定精度の少なくとも一つ)の精度を向上させることができる。図示しないが、異なる系列のプリアンブルが送信される場合、用途が異なる複数のプリアンブル(例えば、初回は、UL送信の検出用の第1のプリアンブル、2回目は、チャネル推定用の第2のプリアンブルなど)が送信されてもよい。
 また、ランダムアクセスチャネルの繰り返し送信においては、繰り返し毎に同じULリソースが用いられてもよいし、異なるULリソースが用いられてもよい。異なるULリソースが用いられる場合、時間リソース、周波数リソース、符号リソース、電力リソース、空間リソースの少なくとも一つが変更されてもよい。繰り返し毎の周波数リソースの変更は、周波数ホッピングとも呼ばれる。繰り返し毎のULリソースの変更パターン(ホッピングパターン)は、予め定められてもよいし、上述のCBUL構成情報により設定されてもよい。
 同様に、UL制御チャネルの繰り返し送信では、繰り返し毎に同じULリソースが用いられてもよいし、異なるULリソースが用いられてもよい。また、ULデータチャネルの繰り返し送信では、繰り返し毎に同じULリソースが用いられてもよいし、異なるULリソースが用いられてもよい。
 図4Bでは、ランダムアクセスチャネルに繰り返し送信が適用されずに、UL制御チャネルとULデータチャネルとに繰り返し送信が適用される例が示される。なお、図示しないが、ULデータチャネルだけに繰り返し送信が適用されてもよいし、プリアンブル及び/又は制御情報だけに繰り返し送信が適用されてもよい。
 また、本実施の形態に係る送信フォーマットでは、ランダムアクセスチャネルとUL制御チャネルとULデータチャネルの少なくとも一つは、他のユーザ端末と、同一の時間及び周波数リソースに直交多重(例えば、符号分割多重)及び/又は非直交多重(電力多重、空間多重の少なくとも一つ)されてもよい。
 例えば、複数のユーザ端末のUL制御チャネルを異なる符号リソース、電力リソース、空間リソースの少なくとも一つを用いて同一の時間及び周波数リソースに多重する場合、プリアンブルの衝突が発生する場合でも、無線基地局は、当該複数のユーザ端末のULデータを適切に受信できる。ここで、符号リソースとしては、例えば、直交拡散符号(例えば、OCC:Orthogonal Cover Code)及び/又は巡回シフト(CS:Cyclic Shift)を用いることができる。
 また、複数のユーザ端末のULデータチャネルを、符号リソース(例えば、OCC、CS)、電力リソース及び空間リソースの少なくとも一つを用いて同一の時間及び周波数リソースに多重する場合、プリアンブルの衝突が発生する場合でも、無線基地局は、当該複数のユーザ端末のULデータを適切に受信できる。
 例えば、図4A及び4Bでは、複数のユーザ端末のUL制御チャネルが符号分割多重され、複数のユーザ端末のULデータが非直交多重(電力多重又は空間多重)される。この場合、直交多重されるUL制御チャネルにより、ULデータの非直交多重に関する情報(例えば、電力リソース、空間リソースに関する除法)を通知することができる。
 ところで、既存のLTEシステムでは、上述のランダムアクセス手順によりUL同期が確立されてからULデータの送信が開始される。一方、本実施の形態に係る衝突型UL送信では、UL同期が確立されずに、ULデータを送信することが想定される。衝突型UL送信において複数のユーザ端末を多重する場合、ガード期間を用いて当該複数のユーザ端末間の直交性を保ってもよい。
 図5は、本実施の形態に係る送信フォーマットの他の例を示す図である。図5では、ユーザ端末#1及び#2のULデータ0及び1がそれぞれ繰り返し送信されるとともに、符号分割多重される。例えば、ユーザ端末#1のULデータ0に対しては、直交拡散符号{1,1,1,1}が乗算され、ユーザ端末#2のULデータ1に対しては、直交拡散符号{1,-1,1,-1}が乗算されるものとする。
 図5に示すように、UL同期が確立されていない場合でULデータの繰り返し送信が適用されると、ユーザ端末#1及び#2のULデータ0、1の送信期間のずれにより、ULデータ0、1の直交拡散符号による直交性が維持されなくなることが想定される。
 そこで、UL同期が確立されていない複数のユーザ端末のULデータの重複を防止するため、各ユーザ端末のULデータのシンボル又はサブフレームの前後に所定のガード期間が設けられてもよい。例えば、ULデータ用のシンボルに付加される所定長のサイクリックプリフィクス(CP)を非送信として、ガード期間に置き換えることができる。当該ガード期間として利用されるCPは、ゼロパワーCPなどとも呼ばれる。
(その他の送信フォーマット)
 以上の送信フォーマットは、ランダムアクセスチャネル、UL制御チャネル、ULデータチャネルを含んで構成されるが、本実施の形態の送信フォーマットは、これに限られず、ランダムに選択されるプリアンブル、ULデータの制御情報、ULデータを送信するものであれば、どのようなチャネルで構成されてもよい。例えば、ULデータの制御情報は、「UCI on PUSCH」と同様にULデータチャネルを介して送信されてもよい。
 また、以上の送信フォーマットでは、プリアンブル、制御情報、ULデータがそれぞれ異なる時間リソースに多重されるが、本実施の形態の送信フォーマットは、これに限られない。例えば、プリアンブル、制御情報、ULデータの少なくとも一つは、同一の時間リソースで送信されてもよい。この場合、プリアンブル、制御情報、ULデータは周波数リソースで分割されていても良いし、符号リソースで分割されていても良い。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図6は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New Rat)などと呼ばれても良い。
 図6に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、あるRATにおける信号のデザインや、RATのデザインを特徴付ける通信パラメータのセットのことをいう。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。なお、複数のセルのいずれかに短縮TTIを適用するTDDキャリアが含まれる構成とすることができる。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。
 無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有されるDLデータチャネル(PDSCH:Physical Downlink Shared Channel、DL共有チャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 L1/L2制御チャネルは、DL制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有されるULデータチャネル(PUSCH:Physical Uplink Shared Channel、UL共有チャネル等ともいう)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。送達確認情報(ACK/NACK)や無線品質情報(CQI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
<無線基地局>
 図7は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 無線基地局10からユーザ端末20に送信されるDLデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、DLデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、DL制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力されたUL信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、DL信号(例えば、DL制御信号(DL制御チャネル)、DLデータ信号(DLデータチャネル、DL共有チャネル)、DL参照信号(DM-RS、CSI-RSなど)、ディスカバリ信号、同期信号、ブロードキャスト信号など)を送信し、UL信号(例えば、UL制御信号(UL制御チャネル)、ULデータ信号(ULデータチャネル、UL共有チャネル)、UL参照信号など)を受信する。
 具体的には、送受信部103は、システム情報又は上位レイヤシグナリングにより衝突型UL送信に関する構成情報(CBUL構成情報)を送信する。また、送受信部103は、ユーザ端末20から衝突型UL送信されるUL信号(プリアンブル、制御情報、ULデータの少なくとも一つ)を受信する。
 本発明の送信部及び受信部は、送受信部103及び/又は伝送路インターフェース106により構成される。
 図8は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図8では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図8に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。
 制御部301は、DL信号及び/又はUL信号のスケジューリング(例えば、リソース割り当て)を制御する。具体的には、制御部301は、DLデータチャネルのスケジューリング情報を含むDCI(DLアサインメント)、ULデータチャネルのスケジューリング情報を含むDCI(ULグラント)を生成及び送信するように、送信信号生成部302、マッピング部303、送受信部103を制御する。
 また、制御部301は、ULグラントなしにユーザ端末20からULデータが送信される衝突型UL(CBUL)送信を制御してもよい。例えば、制御部301は、衝突型UL送信に利用可能なULリソースなど、上述のCBUL構成情報を決定してもよい。
 また、制御部301は、衝突型UL送信用の送信フォーマットに従って、ULデータの受信を制御してもよい。ここで、当該送信フォーマットは、ランダムに選択されるプリアンブルを送信するアクセスチャネル(ランダムアクセスチャネル)と、ULデータの制御情報を送信する制御チャネル(UL制御チャネル)と、ULデータを送信するデータチャネル(ULデータチャネル、UL共有チャネル)と、を含んで構成されてもよい(図3~5)。
 例えば、制御部301は、上記プリアンブルによりUL送信を検出してもよい。また、制御部301は、UL制御チャネルをブラインド復号し、検出された制御情報によりユーザ端末20を識別してもよい。また、制御部301は、上記制御情報により、ユーザ端末20からのULデータの受信処理(復調、復号など)を制御してもよい。また、制御部301は、上記プリアンブルに基づいて行われるビームサーチ及び/又はチャネル推定を制御してもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DL制御チャネル、DLデータチャネル、DM-RSなどのDL参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信されるUL信号(UL制御チャネル、ULデータチャネル、UL参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、受信処理部304は、プリアンブル、制御情報、ULデータの少なくとも一つを制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図9は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、DLデータのうち、システム情報や上位レイヤ制御情報もアプリケーション部205に転送される。
 一方、ULデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、DL信号(例えば、DL制御信号(DL制御チャネル)、DLデータ信号(DLデータチャネル、DL共有チャネル)、DL参照信号(DM-RS、CSI-RSなど)、ディスカバリ信号、同期信号、報知信号など)を受信し、UL信号(例えば、UL制御信号(UL制御チャネル)、ULデータ信号(ULデータチャネル、UL共有チャネル)、UL参照信号など)を送信する。
 具体的には、送受信部203は、システム情報又は上位レイヤシグナリングにより衝突型UL送信に関する構成情報(CBUL構成情報)を受信する。また、送受信部203は、衝突型UL送信の送信フォーマットに基づくUL信号(プリアンブル、制御情報、ULデータの少なくとも一つ)を送信する。
 図10は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図10においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図10に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。
 制御部401は、無線基地局10から送信されたDL制御チャネル及びDLデータチャネルを、受信信号処理部404から取得する。具体的には、制御部401は、DL制御チャネルをブラインド復号してDCIを検出し、DCIに基づいてDLデータチャネルを受信するよう、送受信部203及び受信信号処理部404を制御する。また、制御部401は、DL参照信号に基づいてチャネル利得を推定し、推定されたチャネル利得に基づいて、DLデータチャネルを復調する。
 制御部401は、DLデータチャネルに対する再送制御の要否を判定した結果などに基づいて、UL制御チャネル又はULデータチャネルで送信される再送制御情報(例えば、HARQ-ACKなど)の送信を制御してもよい。また、制御部401は、DL参照信号に基づいて生成されるチャネル状態情報(CSI:Channel State Information)の送信を制御してもよい。
 また、制御部401は、衝突型UL(CBUL)送信を制御する。具体的には、制御部401は、衝突型UL送信用の送信フォーマットに従って、ULグラントなしでのULデータの送信を制御してもよい。当該送信フォーマットは、ランダムに選択されるプリアンブルを送信するランダムアクセスチャネルと、前記ULデータの受信に用いられる制御情報を送信する制御チャネルと、前記ULデータを送信するデータチャネルと、を含んで構成されてもよい(図3~5)。
 また、制御部401は、上記CBUL構成情報に基づいて、上記ランダムアクセスチャネルと上記UL制御チャネルと上記ULデータチャネルの少なくとも一つに用いられるULリソースを決定してもよい。当該ULリソースは、時間リソース、周波数リソース、符号リソース、電力リソース、空間リソースの少なくとも一つであってもよい。
 例えば、制御部401は、上記CBUL構成情報が示す複数のプリアンブルからランダムに、上記送信フォーマットで送信されるプリアンブルを選択してもよい。また、制御部401は、上記CBUL構成情報に基づいて、ランダムアクセスチャネル用のULリソースを決定してもよい。同様に、制御部401は、上記CBUL構成情報に基づいて、制御チャネル用及び/又はULデータチャネル用のULリソースを決定してもよい。
 また、制御部401は、ランダムアクセスチャネルとUL制御チャネルとULデータチャネルの少なくとも一つの繰り返し送信を制御してもよい。具体的には、制御部401は、当該繰り返し送信に関するパラメータ(例えば、繰り返し回数、繰り返し送信の有無など)を、受信電力(RSRP:Reference Signal Received Power)及び/又は再送回数に基づいて決定してもよい。或いは、制御部401は、当該パラメータをCBUL構成情報に基づいて決定してもよい。
 また、制御部401は、ランダムアクセスチャネルとUL制御チャネルとULデータチャネルの少なくとも一つを繰り返し送信する場合、繰り返し毎にULリソース(時間リソース、周波数リソース、符号リソースの少なくとも一つ)を変更してもよい。周波数リソースの変更は、周波数ホッピングとも呼ばれる。また、制御部401は、ランダムアクセスチャネルの繰り返し送信を行う場合、繰り返し毎に同一のプリアンブルを送信してもよいし、異なるプリアンブルを送信してもよい。
 また、制御部401は、繰り返し送信が適用される所定の送信時間単位毎にガード期間を設けてもよい。例えば、図5に示すように、制御部401は、各送信期間(例えば、シンボル又はサブフレーム)の前後に所定のガード期間を設けもよい。例えば、ULデータ用のシンボルに付加される所定長のサイクリックプリフィクス(CP)をガード期間に置き換えることができる。ガード期間として利用されるCPは、ゼロパワーCPなどとも呼ばれる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号(UL制御チャネル、ULデータチャネル、UL参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、TPCコマンドを生成する。また、送信信号生成部402は、制御部401からの指示に基づいてULデータチャネルを生成する。例えば、送信信号生成部402は、無線基地局10から通知されるDL制御チャネルにULグラントが含まれている場合に、制御部401からULデータチャネルの生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信されるDL信号(DL制御チャネル、DLデータチャネル、DL参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、制御部401の指示に基づいて、DLデータチャネルの送信及び/又は受信をスケジューリングするDL制御チャネルをブラインド復号し、当該DCIに基づいてDLデータチャネルの受信処理を行う。また、受信信号処理部404は、DM-RS又はCRSに基づいてチャネル利得を推定し、推定されたチャネル利得に基づいて、DLデータチャネルを復調する。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。受信信号処理部404は、データの復号結果を制御部401に出力してもよい。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、DL受信品質(例えば、RSRQ)やチャネル状態などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。
 無線フレーム、サブフレーム、スロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットがTTIと呼ばれてもよい。つまり、サブフレームやTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅や送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。TTIは、チャネル符号化されたデータパケット(トランスポートブロック)の送信時間単位であってもよいし、スケジューリングやリンクアダプテーションなどの処理単位となってもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、短縮サブフレーム、又はショートサブフレームなどと呼ばれてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」や「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は特許請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2016年5月6日出願の特願2016-093480に基づく。この内容は、全てここに含めておく。

Claims (6)

  1.  無線基地局からの上りリンク(UL)グラントなしにULデータを送信する送信部と、
     送信フォーマットに従って前記ULデータの送信を制御する制御部と、を具備し、
     前記送信フォーマットは、ランダムに選択されるプリアンブルを送信するアクセスチャネルと、前記ULデータの制御情報を送信する制御チャネルと、前記ULデータを送信するデータチャネルと、を含んで構成されることを特徴とするユーザ端末。
  2.  前記ULデータの送信に関する構成情報を受信する受信部を更に具備し、
     前記制御部は、前記構成情報に基づいて、前記ランダムアクセスチャネルと前記制御チャネルと前記データチャネルの少なくとも一つに用いられるULリソースを決定することを特徴とする請求項1に記載のユーザ端末。
  3.  前記ULリソースは、時間リソース、周波数リソース、符号リソース、電力リソース、空間リソースの少なくとも一つであることを特徴とする請求項2に記載のユーザ端末。
  4.  前記制御部は、前記ランダムアクセスチャネルと前記制御チャネルと前記データチャネルとの少なくとも一つの繰り返し送信を制御することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記制御部は、繰り返し送信が適用される所定の送信時間単位毎にガード期間を設けることを特徴とする請求項4に記載のユーザ端末。
  6.  ユーザ端末における無線通信方法であって、
     無線基地局からの上りリンク(UL)グラントなしにULデータを送信する工程と、
     送信フォーマットに従って前記ULデータの送信を制御する工程と、を有し、
     前記送信フォーマットは、ランダムに選択されるプリアンブルを送信するアクセスチャネルと、前記ULデータの制御情報を送信する制御チャネルと、前記ULデータを送信するデータチャネルと、を含んで構成されることを特徴とする無線通信方法。
PCT/JP2017/017189 2016-05-06 2017-05-01 ユーザ端末及び無線通信方法 WO2017191834A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018515735A JP7034906B2 (ja) 2016-05-06 2017-05-01 端末、無線通信方法、基地局及びシステム
CN201780028055.5A CN109076393B (zh) 2016-05-06 2017-05-01 用户终端以及无线通信方法
US16/099,026 US11588669B2 (en) 2016-05-06 2017-05-01 User terminal and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016093480 2016-05-06
JP2016-093480 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017191834A1 true WO2017191834A1 (ja) 2017-11-09

Family

ID=60203543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017189 WO2017191834A1 (ja) 2016-05-06 2017-05-01 ユーザ端末及び無線通信方法

Country Status (4)

Country Link
US (1) US11588669B2 (ja)
JP (1) JP7034906B2 (ja)
CN (1) CN109076393B (ja)
WO (1) WO2017191834A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513172A (ja) * 2017-02-28 2020-04-30 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. ランダムアクセス方法、端末装置、及びネットワーク装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10904826B2 (en) * 2016-09-15 2021-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for autonomous device selection of transmission resources
CN109845374B (zh) * 2016-10-17 2023-05-26 高通股份有限公司 半自主传输
US11039478B2 (en) * 2016-11-03 2021-06-15 Lg Electronics Inc. Method for performing initial access in wireless communication system, and apparatus therefor
CN108024359B (zh) * 2016-11-04 2022-01-14 华为技术有限公司 上行接入方法、基站和用户设备
EP3616375A1 (en) * 2017-04-28 2020-03-04 Nokia Technologies Oy Frequency-domain transmitters and receivers which adapt to different subcarrier spacing configurations
US11228992B2 (en) * 2017-05-05 2022-01-18 Qualcomm Incorporated Uplink transmissions without timing synchronization in wireless communication
US11202322B2 (en) * 2017-07-20 2021-12-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method and terminal device
EP3905828A4 (en) * 2018-12-28 2022-02-23 Panasonic Intellectual Property Corporation of America TRANSMISSION DEVICE, RECEIVING DEVICE, TRANSMISSION METHOD AND RECEIVING METHOD
CN111586861B (zh) * 2019-02-15 2022-11-18 华为技术有限公司 一种随机接入方法、设备及系统
BR112021013928A2 (pt) * 2019-02-26 2021-09-21 Ntt Docomo, Inc. Terminal e método de comunicação
MX2021010094A (es) * 2019-03-27 2021-09-21 Panasonic Ip Corp America Terminal y metodo de transmision.
WO2021026739A1 (zh) * 2019-08-12 2021-02-18 华为技术有限公司 一种无线网络临时标识rnti更新方法及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284298A1 (en) * 2008-01-21 2010-11-11 Huawei Technologies Co., Ltd. Method and Apparatus for Transmitting Information by Using Cyclic Prefix Timeslots
WO2015129985A1 (ko) * 2014-02-28 2015-09-03 엘지전자(주) 무선 통신 시스템에서 낮은 지연을 가지는 상향링크 데이터 전송 방법 및 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015517A1 (ko) * 2011-07-26 2013-01-31 엘지전자 주식회사 무선 통신 시스템에서 기지국이 제어 정보를 송신하는 방법 및 이를 위한 장치
CN102548014B (zh) * 2011-12-07 2014-11-05 北京邮电大学 机器与机器的通信终端接入网络的方法
CN103582073B (zh) * 2012-07-31 2018-07-27 中兴通讯股份有限公司 一种mtc ue接入lte系统的方法、演进的基站
EP2899234B1 (en) * 2012-09-19 2019-06-19 SK Chemicals Co., Ltd. Polyarylene sulfide resin composition and formed article
US9398612B2 (en) * 2012-10-22 2016-07-19 Futurewei Technologies, Inc. Signaling for random access in time division duplexed (TDD) systems with traffic adaptation
US9572171B2 (en) * 2013-10-31 2017-02-14 Intel IP Corporation Systems, methods, and devices for efficient device-to-device channel contention
WO2015083994A1 (en) * 2013-12-04 2015-06-11 Lg Electronics Inc. Method and apparatus for performing random access procedure for coverage enhancement user equipments in wireless communication system
CN111867120B (zh) * 2014-04-04 2024-05-31 北京三星通信技术研究有限公司 数据传输的方法、基站及终端
CN107211451B (zh) 2014-11-26 2022-08-26 Idac控股公司 高频无线系统中的初始接入
US10159092B2 (en) * 2015-02-26 2018-12-18 Hfi Innovation Inc. Uplink contention based multiple access for cellular IoT
AR105705A1 (es) * 2015-08-14 2017-11-01 ERICSSON TELEFON AB L M (publ) Procedimiento de acceso aleatorio para operación de mtc
US10582360B2 (en) * 2015-10-27 2020-03-03 Apple Inc. Personal area network communication for wearable devices
EP3393069B1 (en) * 2015-12-18 2021-03-17 LG Electronics Inc. -1- Method and wireless device for transmitting random-access preamble by means of single-tone method
WO2017124433A1 (zh) * 2016-01-22 2017-07-27 富士通株式会社 随机接入与数据传输的装置、方法以及通信系统
US10341994B2 (en) * 2016-03-25 2019-07-02 Nokia Of America Corporation Autonomous wireless transmissions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284298A1 (en) * 2008-01-21 2010-11-11 Huawei Technologies Co., Ltd. Method and Apparatus for Transmitting Information by Using Cyclic Prefix Timeslots
WO2015129985A1 (ko) * 2014-02-28 2015-09-03 엘지전자(주) 무선 통신 시스템에서 낮은 지연을 가지는 상향링크 데이터 전송 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Overview of mMTC and URLLC for NR access technology", 3GPP TSG-RAN WG1#84B R1-163106, 2 April 2016 (2016-04-02), XP051080544 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513172A (ja) * 2017-02-28 2020-04-30 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. ランダムアクセス方法、端末装置、及びネットワーク装置
US11134422B2 (en) 2017-02-28 2021-09-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method, terminal device and network device
JP6994041B2 (ja) 2017-02-28 2022-01-14 オッポ広東移動通信有限公司 ランダムアクセス方法、端末装置、及びネットワーク装置
US11736993B2 (en) 2017-02-28 2023-08-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method, terminal device and network device

Also Published As

Publication number Publication date
CN109076393A (zh) 2018-12-21
US11588669B2 (en) 2023-02-21
US20190141728A1 (en) 2019-05-09
CN109076393B (zh) 2022-08-16
JP7034906B2 (ja) 2022-03-14
JPWO2017191834A1 (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
JP7034905B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7034906B2 (ja) 端末、無線通信方法、基地局及びシステム
US20210204328A1 (en) Terminal, radio communication method, base station, and system
JP7111612B2 (ja) 端末、無線通信方法、基地局及びシステム
JP6917983B2 (ja) 端末、無線通信方法及び基地局
WO2018012618A1 (ja) ユーザ端末及び無線通信方法
JP7272791B2 (ja) 端末、無線通信方法及びシステム
WO2018084208A1 (ja) ユーザ端末及び無線通信方法
US20190150202A1 (en) User terminal and radio communication method
WO2018143396A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2019159370A1 (ja) ユーザ端末及び無線通信方法
WO2019150486A1 (ja) ユーザ端末及び無線通信方法
WO2018124030A1 (ja) ユーザ端末及び無線通信方法
CN109156004B (zh) 用户终端以及无线通信方法
WO2019159243A1 (ja) ユーザ端末及び無線通信方法
WO2019159244A1 (ja) 無線基地局及び無線通信方法
WO2017199984A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018515735

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792766

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792766

Country of ref document: EP

Kind code of ref document: A1