WO2011111495A1 - ゲル化電解質、この電解質を用いた活物質-電解質複合体及びその作製方法、並びにこの電解質を用いた全固体リチウムイオン二次電池 - Google Patents

ゲル化電解質、この電解質を用いた活物質-電解質複合体及びその作製方法、並びにこの電解質を用いた全固体リチウムイオン二次電池 Download PDF

Info

Publication number
WO2011111495A1
WO2011111495A1 PCT/JP2011/053381 JP2011053381W WO2011111495A1 WO 2011111495 A1 WO2011111495 A1 WO 2011111495A1 JP 2011053381 W JP2011053381 W JP 2011053381W WO 2011111495 A1 WO2011111495 A1 WO 2011111495A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
active material
gelled
clay mineral
lithium ion
Prior art date
Application number
PCT/JP2011/053381
Other languages
English (en)
French (fr)
Inventor
尚希 塚原
裕彦 村上
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2012504386A priority Critical patent/JP5455136B2/ja
Publication of WO2011111495A1 publication Critical patent/WO2011111495A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a gelled electrolyte, an active material-electrolyte complex using the electrolyte, a method for producing the same, and an all-solid lithium ion secondary battery using the electrolyte, and in particular, the electrolyte by gelling the electrolyte
  • the present invention relates to an all solid-state lithium ion secondary battery that is used and has improved safety while maintaining contact between electrode active material particles and an electrolyte.
  • Lithium ion secondary batteries have characteristics such as high energy density and high output compared to other types of batteries, and are often used as batteries for mobile phones and laptop computers.
  • active research has been conducted with the aim of popularizing hybrid vehicles and electric vehicles. With the research on hybrid vehicles and electric vehicles, the characteristics of lithium ion secondary batteries for use in these vehicles have also been improved.
  • Research and development is actively underway. Since lithium metal reacts violently with water, at present, an aqueous solution system cannot be used for the electrolyte of the lithium ion secondary battery. Therefore, an organic electrolytic solution in which a compound containing a lithium salt is dissolved in an organic solvent is generally used.
  • Organic / inorganic solid electrolytes have also been proposed, but there is difficulty in contact between the electrode active material particles and the electrolyte.
  • a step of preparing a mixture slurry containing an active material capable of reversibly inserting and extracting lithium, an organic solvent, and a thixotropic agent, and the mixture A manufacturing method having a step of applying a slurry to a current collector is known (for example, see Patent Document 1).
  • This technology relates to an electrode manufacturing method, and a mixture of an active material, an organic solvent, a binder, a conductive additive, and a thixotropic agent (preferably smectite) suppresses precipitation and is uniformly applied.
  • a thixotropic agent preferably smectite
  • this battery uses an electrolytic solution and is not an all solid type.
  • an electrode mixture containing an electrode active material in order to increase the mechanical strength of the electrode mixture and improve the impregnation property of the electrolytic solution, a clay mineral such as smectite is 5 based on the total weight of the electrode mixture.
  • An electrode mixture contained in a range of not more than% by weight is known (for example, see Patent Document 2).
  • the clay mineral is contained in the electrode mixture, and is used as a slurry to improve the wettability of the electrolytic solution in addition to improving the mechanical strength and impregnating the electrolytic solution.
  • a solid electrolyte composed of a mixture of an electrolytic solution in which an electrolyte is dissolved in an organic compound, a polymer material that forms a gel by mixing with the electrolytic solution, and layered clay compound particles that exhibit swelling properties.
  • a polymer material such as polyvinylidene fluoride (PVDF) is used to form a gel.
  • An object of the present invention is to solve the above-described problems of the prior art, and a gelled electrolyte that can prevent leakage of an electrolytic solution, and particles of an electrode active material and an electrolyte using the gelled electrolyte, It is an object to provide an active material-electrolyte complex maintaining its contact property, a method for producing the same, and a highly safe all solid-state lithium ion secondary battery using the complex.
  • the present inventors have studied about gelation (solidification) of an electrolytic solution by adding a swellable layered clay mineral to an organic electrolytic solution, and as a result, the present invention is completed. It came to.
  • an organic solvent is applied on an electrode formed by providing an electrode material obtained by mixing an active material, a conductive additive, and a binder at a predetermined ratio on a current collector.
  • the gelled electrolyte comprising a mixture of a lithium ion conductive electrolyte and a swellable layered clay mineral is applied, and then the strength of the gelled electrolyte is liquefied to the electrode coated with the gelled electrolyte. It is characterized in that an active material-electrolyte complex is produced by applying vibration and liquefying the gelled electrolyte and allowing it to penetrate into the electrode.
  • the swellable layered clay mineral is a smectite-based layered clay mineral or a mica-based layered clay mineral.
  • the amount of the swellable layered clay mineral added to the gelled electrolyte is 2 wt% to 10 wt%.
  • the electrolyte When the amount of the swellable layered clay mineral is less than 2 wt%, the electrolyte is in a liquid state and thixotropic properties are not observed. When the amount exceeds 10 wt%, the electrolyte is in a solid state and thixotropic properties are observed. Not.
  • the active material-electrolyte composite of the present invention comprises a lithium ion containing an organic solvent on an electrode provided with an electrode material obtained by mixing an active material, a conductive additive, and a binder in a predetermined ratio on a current collector.
  • a gelled electrolyte made of a mixture of a conductive electrolytic solution and a swellable lamellar clay mineral is provided, and the electrode is subjected to vibration of strength that liquefies the gelled electrolyte.
  • the swellable layered clay mineral is a smectite-based layered clay mineral or a mica-based layered clay mineral.
  • the amount of the swellable layered clay mineral added to the gelled electrolyte is 2 wt% to 10 wt%.
  • the all solid-state lithium ion secondary battery of the present invention is characterized by using the active material-electrolyte complex.
  • the active material-electrolyte complex is a positive electrode active material-electrolyte complex.
  • the active material-electrolyte complex is a negative electrode active material-electrolyte complex.
  • the active material-electrolyte complex is a positive electrode active material-electrolyte complex and a negative electrode active material-electrolyte complex.
  • the gelled electrolyte of the present invention is characterized by comprising a mixture of a lithium ion conductive electrolyte and a swellable layered clay mineral containing an organic solvent.
  • the swellable lamellar clay mineral is a smectite lamellar clay mineral or a mica lamellar clay mineral.
  • the amount of the swellable layered clay mineral added to the gelled electrolyte is 2 wt% to 10 wt%.
  • the all solid-state lithium ion secondary battery of the present invention is also characterized in that the gelled electrolyte is infiltrated into a positive electrode material on a current collector and used as a positive electrode composite.
  • the all solid-state lithium ion secondary battery of the present invention is further characterized in that the gelled electrolyte is infiltrated into the negative electrode material on the current collector and used as a negative electrode composite.
  • the all-solid-state lithium ion secondary battery of the present invention further uses the gelled electrolyte as a positive electrode composite by impregnating the gelled electrolyte into the positive electrode material on the current collector, and uses the gelled electrolyte as a negative electrode on the current collector. Penetration into the material is used as a negative electrode composite.
  • FIG. 1 is a schematic diagram for explaining the state of an electrode using an active material-electrolyte complex of the present invention, wherein (a) is a case where vibration is produced according to the present invention, and (b) is a comparative example. Therefore, when it is manufactured without giving vibration.
  • the active material-electrolyte complex is a current collector made of an electrode material in which an active material, a conductive additive, and a binder are mixed at a predetermined ratio.
  • a lithium ion conductive electrolyte containing an organic solvent and a predetermined amount of a swellable layered clay mineral selected from a smectite-based layered clay mineral or a mica-based layered clay mineral on an electrode provided on the body The gelled electrolyte is provided, and the electrode is subjected to physical vibration of the strength at which the gelled electrolyte liquefies, and the amount of the swellable lamellar clay mineral added to the gelled electrolyte is 2 wt. % To 10 wt%.
  • the vibration method is not particularly limited as long as the gelled electrolyte is liquefied.
  • the vibration is carried by holding it in the hand or by applying vibrations such as ultrasonic waves, the gelled electrolyte is liquefied and penetrates into the electrode, thereby covering all the active materials.
  • This active material-electrolyte complex can be used for both the positive electrode and the negative electrode.
  • lithium cobalt oxide for example, LiCoO 2
  • lithium nickel oxide for example, LiNiO 2
  • LiMnO Li 1 + x Mn 2 ⁇ x O 4
  • Lithium manganese oxides such as 3 , lithium copper oxides (eg Li 2 CuO 2 ), and Li-containing compounds such as lithium transition metal oxides, and vanadium oxides (eg V 2 O 5 etc.) and transition metal sulfides
  • Known positive electrode active materials selected from Li-free compounds such as TiS 2 and MoS 2 , carbon materials such as carbon and carbon black, silicon materials, tin materials, silicon-carbon materials
  • a known negative electrode active material selected from lithium titanium oxide for example, Li 4 Ti 5 O 12 or the like), Li metal, Li—Al alloy, or the like is included.
  • any material can be used as long as it has conductivity without causing a chemical change in the target lithium ion secondary battery, and is not particularly limited.
  • graphite various carbon blacks, conductive fibers, metal powders such as copper powder and iron powder, and the like can be used.
  • the binder is not particularly limited as long as it is a substance that acts as a binder without causing a chemical change in the target lithium ion secondary battery.
  • PVdF polyvinylidene fluoride
  • polyethylene polyethylene
  • polypropylene polypropylene
  • polytetrafluoroethylene PTFE
  • any material can be used as long as it has conductivity without causing a chemical change in the target lithium ion secondary battery, and is not particularly limited.
  • a positive electrode current collector selected from stainless steel, aluminum, nickel, titanium and the like, and a negative electrode current collector selected from copper, stainless steel, aluminum, nickel, titanium and the like can be used.
  • the gelled electrolyte used in the present invention contains a predetermined amount of a swellable lamellar clay mineral selected from a lithium ion conductive electrolyte and a smectite lamellar clay mineral or a mica lamellar clay mineral containing an organic solvent. And a mixture thereof.
  • the gelled electrolyte is obtained by adding a swellable lamellar clay mineral in an organic solvent and sufficiently swelling the clay mineral, and adding it to the electrolyte solution as described below, or It is preferable to prepare it by mixing with an electrolyte, but it is not limited to such a method, and the order of addition is not limited as long as the gelled electrolyte of the present invention can be prepared.
  • organic solvent a known solvent used in a lithium ion secondary battery can be used and is not particularly limited.
  • ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate, dipropyl carbonate, dimethoxymethane, diethoxyethane, propylene carbonate, and the like can be used.
  • any known electrolytic solution having lithium ion conductivity used in a lithium ion secondary battery can be used and is not particularly limited.
  • LiPF 6 LiAsF 6
  • LiN CF 3 SO 2
  • LiBF 4 LiCF 3 SO 3
  • LiSbF 6 and the like can be used that is dissolved in an organic solvent.
  • the smectite layered clay mineral can be used as long as it exhibits thixotropic properties, and is not particularly limited.
  • bentonite, laponite, hectorite, gibbsite, chlorite, kaolinite, halloysite, pyrophyllite, talc, montmorillonite, vermiculite, illite, beidellite, nontronite, polcon score and the like can be used.
  • Hectorite, bentonite Montmorillonite and the like are preferable.
  • the mica-based layered clay mineral can be used as long as it exhibits thixotropic properties, and is not particularly limited.
  • mica, brittle mica, muscovite, soda mica, phlogopite, biotite, etc. can be used, and mica is preferred.
  • the swellable layered clay mineral used in the present invention exhibits thixotropic properties when added to a solvent.
  • the thixotropy is a phenomenon in which the viscosity gradually decreases and becomes liquid when it continues to receive shear stress (vibration), and the viscosity gradually increases when it is stationary, and finally becomes solid.
  • the gelled electrolyte is first liquefied, and the gelled electrolyte is spread over the entire electrode so as to sufficiently cover the periphery of the active material, and only the electrolyte is used.
  • the present invention provides an electrode surface while applying physical vibrations such as ultrasonic waves to an electrode in which an electrode material containing an electrode active material is provided on a current collector (for example, Al foil, Cu foil, etc.).
  • a current collector for example, Al foil, Cu foil, etc.
  • this production method comprises a predetermined ratio (preferably, a weight ratio) of the active material, the conductive additive, and the binder.
  • 8: 1: 1) the gelled electrolyte is coated on the electrode obtained by coating the current collector on the current collector, and then the gelled electrolyte is applied to the electrode coated with the gelled electrolyte.
  • the above-described vibration preferably ultrasonic vibration of the strength at which the electrolyte liquefies is applied, the liquefied gelled electrolyte is uniformly infiltrated into the electrode, and the active material is covered with the electrolyte. Is.
  • the secondary battery uses the gelled electrolyte, and the gelled electrolyte penetrates into the positive electrode material on the current collector. It is used as a positive electrode composite and / or this gelled electrolyte is infiltrated into a negative electrode material on a current collector and used as a negative electrode composite.
  • the gelled electrolyte of the present invention the electrolyte liquefied by vibration automatically penetrates into the positive electrode (negative electrode) material applied to the Al foil (positive electrode) or Cu foil (negative electrode) as the current collector.
  • the electrolyte covers the entire periphery of the active material, the contact resistance at the active material-electrolyte interface decreases, and the performance as a battery is improved.
  • an electrode material in which an active material 11, a binder 12, and a conductive additive 13 are mixed at a predetermined ratio is applied on a current collector 14, and the electrode is formed.
  • An active material is obtained by applying an organic solvent-containing gelled electrolyte 15 containing a lithium ion conductive electrolyte and a swellable layered clay mineral to the electrode, and applying vibration (for example, ultrasonic vibration).
  • vibration for example, ultrasonic vibration
  • -An electrolyte composite electrolyte composite
  • a lithium ion secondary battery can be assembled by a known method.
  • lipophilic hectorite (trade name: Lucentite STN, manufactured by Coop Chemical Co., Ltd.), which is a swellable layered clay mineral, was added to diethyl carbonate (2 g), which is an organic solvent, and was sufficiently swollen.
  • diethyl carbonate 2 g
  • the ultrasonic vibration was given to the gelled electrolyte produced in Example 1. While applying vibration, it was confirmed that the gelled electrolyte was liquefied, stopped vibrating, and then allowed to stand to gel (solidify).
  • LiCoO 2 (manufactured by Kishida Chemical Co., Ltd.) is used as a positive electrode active material, carbon black is used as a conductive additive, PVdF is used as a binder, and a positive electrode material obtained by mixing these at a weight ratio of 8: 1: 1 is used as a current collector. It apply
  • the gelled electrolyte produced in Example 1 was applied on the surface of the positive electrode, and ultrasonic vibration was applied to liquefy the gelled electrolyte, so that it penetrated into the positive electrode as shown in FIG. A substance-electrolyte complex was prepared. As shown in FIG. 1A, the surfaces of all the active materials were covered with the electrolyte.
  • a 2032 type lithium ion secondary battery was assembled using the positive electrode composite thus produced as a positive electrode and Li metal as a negative electrode, and a charge / discharge test was performed.
  • the charge / discharge current value was 32.08 ⁇ A / cm 2 (corresponding to a 0.1 C rate), and the cut-off voltage was 3-4.2 V.
  • Example 1 A lithium ion secondary battery was assembled according to the method described in Example 3 except that ultrasonic vibration was not applied, and a charge / discharge test was performed. In this case, the charge / discharge current value was 25.08 ⁇ A / cm 2 (corresponding to a 0.1 C rate).
  • the discharge curves of the first cycle of the lithium ion secondary batteries produced in Example 3 and Comparative Example 1 are shown in FIG.
  • the vertical axis represents E / V (Li / Li + ), and the horizontal axis represents discharge capacity (mAh / g (active material)).
  • the discharge capacity is 133 mAh / g
  • the discharge capacity is 58 mAh / g. Therefore, the lithium ion secondary battery produced by applying vibration using the gelled electrolyte of the present invention is sufficiently penetrated into the positive electrode, and compared with the lithium ion secondary battery produced without applying vibration. Thus, a high energy density was obtained.
  • Example 2 the amount of hectorite used in Example 1 was changed, and an electrolyte was prepared according to the method described in Example 1 in the following proportions (1) to (6). According to Example 2, ultrasonic vibration was applied and the state was observed.
  • (1) is in a liquid state and no thixotropic property is observed, (2) has thixotropic properties, and (3) has the above (2)
  • the gelation progressed more than the above, but it has thixotropic properties, and (4) is more gelled than (3) above and is almost solid, no thixotropic property is seen, and (5) It was solid and thixotropic property was not seen, and (6) was almost solid and thixotropic property was not seen.
  • the amount of the swellable layered clay mineral is preferably in the range of about 2 wt% to 10 wt% from the viewpoint of thixotropy.
  • the present invention it is possible to provide a lithium ion secondary battery with improved safety while maintaining a high energy density without requiring a complicated manufacturing process. Therefore, the present invention can be used in various industries that use lithium ion secondary batteries. Is possible. *

Abstract

活物質、導電助材、及び結着材を所定の割合で混合した電極材料を集電体上に設けてなる電極上に、有機溶媒を含む、リチウムイオン伝導性電解液と膨潤性層状粘土鉱物との混合物からなるゲル化電解質を塗布し、次いでゲル化電解質の塗布された電極に対して、このゲル化電解質が液状化する強さの振動を与え、ゲル化電解質を液状化して電極内へ浸透せしめ活物質-電解質複合体を作製する。

Description

ゲル化電解質、この電解質を用いた活物質-電解質複合体及びその作製方法、並びにこの電解質を用いた全固体リチウムイオン二次電池
 本発明は、ゲル化電解質、この電解質を用いた活物質-電解質複合体及びその作製方法、並びにこの電解質を用いた全固体リチウムイオン二次電池に関し、特に電解液をゲル化させることにより電解液の漏洩を抑制するゲル化電解質、このゲル化電解質を用いた、電極活物質粒子と電解質との接触性を維持した活物質-電解質複合体及びその作製方法、並びにこの活物質-電解質複合体を用い、電極活物質粒子と電解質との接触性を維持したまま安全性を高めた全固体型リチウムイオン二次電池に関する。
 リチウムイオン二次電池は、他のタイプの電池と比べて高エネルギー密度、高出力といった特徴を持っており、携帯電話やノートパソコン等のバッテリーとして多く用いられている。また、近年、ハイブリット車や電気自動車の普及を目指し、盛んに研究が行われており、そのハイブリット車や電気自動車の研究に伴い、これらに使用するためのリチウムイオン二次電池の特性改善についても、盛んに研究開発が進められている。リチウム金属は水と激しく反応してしまうため、現状では、リチウムイオン二次電池の電解液には、溶媒に水溶液系を用いることはできない。そのため、有機溶媒にリチウム塩を含む化合物を溶解させた有機系電解液が一般的に使われている。また、有機・無機固体電解質も提案されているが、電極活物質粒子と電解質との接触性に難がある。
 非水電解質二次電池用電極の製造法として、可逆的にリチウムの吸蔵・放出が可能な活物質材料、有機溶媒およびチキソトロピー性付与剤を含有する合剤スラリーを調製する工程、および前記合剤スラリーを集電体に塗布する工程を有する製造法が知られている(例えば、特許文献1参照)。この技術は、電極の製造法に係るものであり、活物質、有機溶媒、結着材、導電助材、及びチキソトロピー性付与剤(好ましくは、スメクタイト)の混合物は、沈殿を抑え、均一に塗布して均一な極板を得るために、正極スラリーとして用いられている。すなわち、チキソトロピー性付与剤は電解液と混合するのではない。また、この電池では、電解液を使用しており、全固体型ではない。
 また、電極活物質を含む電極合剤として、電極合剤の機械的強度を高めて電解液の含浸性を向上させるために、スメクタイト等の粘土鉱物が電極合剤の全体重量を基準にして5重量%以下の範囲で含まれている電極合剤が知られている(例えば、特許文献2参照)。この場合、粘土鉱物は、電極合剤に含有させて、機械的強度の向上、電解液の含浸性に加えて、電解液の濡れ性を向上させるためにスラリーとして用いられている。
 さらに、電解質を有機化合物に溶解した電解液と、該電解液との混合によりゲルを形成する高分子材料と、膨潤性を示す層状粘土化合物粒子との混合体からなる固体状電解質が知られている(例えば、特許文献3参照)。この技術では、ゲルを形成するために、ポリフッ化ビニリデン(PVDF)等の高分子材料を使用している。
特開2001-266855号公報 特開2008-71757号公報 特開平10-269844号公報
 しかし、有機系電解液を用いたリチウムイオン二次電池では、電池からの液漏れや電池の繰り返し使用による負極からの樹枝状リチウム(デンドライト)の析出によって生じる短絡による発火現象といったことが、安全面から指摘されている。リチウムイオン二次電池が種々の用途に用いられることを考慮すると、液漏れの抑制や安全性等をさらに重視しなくてはならない。そのため、電池自体の構造の検討、燃えない電解液の開発、無機固体電解質の開発などのような、液漏れの抑制や安全性等を高めたリチウムイオン二次電池の開発が急務となっている。
 本発明の課題は、上述の従来技術の問題点を解決することにあり、電解液の漏洩を防止することができるゲル化電解質、このゲル化電解質を用いた、電極活物質の粒子と電解質との接触性を維持した活物質-電解質複合体及びその作製方法、並びにこの複合体を用いた安全性の高い全固体型リチウムイオン二次電池を提供することにある。
 上記課題に鑑み、本発明者らは、有機系電解液に膨潤性層状粘土鉱物を添加することで電解液をゲル化(固体化)することについて検討を行い、その結果、本発明を完成させるに至った。
 本発明の活物質-電解質複合体の作製方法は、活物質、導電助材、及び結着材を所定の割合で混合した電極材料を集電体上に設けてなる電極上に、有機溶媒を含む、リチウムイオン伝導性電解液と膨潤性層状粘土鉱物との混合物からなるゲル化電解質を塗布し、次いでゲル化電解質の塗布された電極に対して、このゲル化電解質が液状化する強さの振動を与え、ゲル化電解質を液状化して電極内へ浸透せしめ活物質-電解質複合体を作製することを特徴とする。
 本発明の活物質-電解質複合体の作製方法において、膨潤性層状粘土鉱物は、スメクタイト系層状粘土鉱物、又は雲母系層状粘土鉱物であることを特徴とする。
 本発明の活物質-電解質複合体の作製方法において、前記膨潤性層状粘土鉱物の前記ゲル化電解質に対する添加量が、2wt%~10wt%であることを特徴とする。
 前記膨潤性層状粘土鉱物の添加量が2wt%未満であると、電解質が液体状態であり、チキソトロピー性が観察されず、また、10wt%を超えると、電解質が固体状態であり、チキソトロピー性が観察されない。
 本発明の活物質-電解質複合体は、活物質、導電助材、及び結着材を所定の割合で混合した電極材料を集電体上に設けた電極上に、有機溶媒を含む、リチウムイオン伝導性電解液と膨潤性層状粘土鉱物との混合物からなるゲル化電解質を設け、この電極に対して、このゲル化電解質が液状化する強さの振動を与えてなることを特徴とする。
 本発明の活物質-電解質複合体において、膨潤性層状粘土鉱物は、スメクタイト系層状粘土鉱物、又は雲母系層状粘土鉱物であることを特徴とする。
 本発明の活物質-電解質複合体において、前記膨潤性層状粘土鉱物の前記ゲル化電解質に対する添加量が、2wt%~10wt%であることを特徴とする。
 本発明の全固体型リチウムイオン二次電池は、前記活物質-電解質複合体を用いたことを特徴とする。
 本発明の全固体型リチウムイオン二次電池において、前記活物質-電解質複合体が、正極活物質-電解質複合体であることを特徴とする。
 本発明の全固体型リチウムイオン二次電池において、前記活物質-電解質複合体が、負極活物質-電解質複合体であることを特徴とする。
 本発明の全固体型リチウムイオン二次電池において、前記活物質-電解質複合体が、正極活物質-電解質複合体及び負極活物質-電解質複合体であることを特徴とする。
 本発明のゲル化電解質は、有機溶媒を含む、リチウムイオン伝導性電解液と膨潤性層状粘土鉱物との混合物からなることを特徴とする。
 本発明のゲル化電解質において、前記膨潤性層状粘土鉱物は、スメクタイト系層状粘土鉱物、又は雲母系層状粘土鉱物であることを特徴とする。
 本発明のゲル化電解質において、前記膨潤性層状粘土鉱物のゲル化電解質に対する添加量が、2wt%~10wt%であることを特徴とする。
 本発明の全固体型リチウムイオン二次電池はまた、前記ゲル化電解質を集電体上の正極材料内に浸透せしめ、正極複合体として用いることを特徴とする。
 本発明の全固体型リチウムイオン二次電池はさらに、前記ゲル化電解質を集電体上の負極材料内に浸透せしめ、負極複合体として用いることを特徴とする。
 本発明の全固体型リチウムイオン二次電池はさらにまた、前記ゲル化電解質を集電体上の正極材料内に浸透せしめ、正極複合体として用いると共に、このゲル化電解質を集電体上の負極材料内に浸透せしめ、負極複合体として用いることを特徴とする。
 本発明によれば、ゲル化電解質を用いることにより、電解液の漏洩を抑制し、かつ電極活物質の粒子と電解質との接触性を維持したまま、安全性を高めた全固体型リチウムイオン二次電池を提供できるという効果を奏することができる。
本発明の活物質-電解質複合体を用いた電極の状態を説明するための概略模式図であって、(a)は、本発明に従って振動を与えて作製した場合、(b)は、比較のために振動を与えずに作製した場合。 実施例3及び比較例1で得られたリチウムイオン二次電池の放電曲線を示すグラフ。
 以下、本発明の実施の形態について説明する。
 本発明に係る活物質-電解質複合体の実施の形態によれば、この活物質-電解質複合体は、活物質、導電助材、及び結着材を所定の割合で混合した電極材料を集電体上に設けた電極上に、有機溶媒を含む、リチウムイオン伝導性電解液と、スメクタイト系層状粘土鉱物、又は雲母系層状粘土鉱物から選ばれた所定量の膨潤性層状粘土鉱物との混合物からなるゲル化電解質を設け、この電極に対して、ゲル化電解質が液状化する強さの物理的振動を与えてなるものであって、膨潤性層状粘土鉱物のゲル化電解質に対する添加量が、2wt%~10wt%である。ゲル化電解質が液状化する程度の振動であれば、その振動の方法には特に制限はない。例えば、手に持って振動を与え、又は超音波等による振動を与えれば、ゲル化電解質は液状化し、電極内へ浸透し、全ての活物質の周囲を覆うことができる。なお、この活物質-電解質複合体は、正極にも負極にも使用可能である。
 上記活物質には、リチウムコバルト酸化物(例えば、LiCoO等)、リチウムニッケル酸化物(例えば、LiNiO等)、式Li1+xMn2-x(x=0~0.33)やLiMnO等のリチウムマンガン酸化物、リチウム銅酸化物(例えば、LiCuO)、及びリチウム遷移金属酸化物等のLi含有化合物、並びにバナジウム酸化物(例えば、V等)及び遷移金属硫化物(例えば、TiS、MoS等)のLi非含有化合物から選ばれた既知正極活物質、また、カーボンやカーボンブラック等の炭素系物質、シリコン系物質、スズ系物質、シリコン-炭素系物質、リチウムチタン酸化物(例えば、LiTi12等)、Li金属、Li-Al合金等から選ばれた既知負極活物質が含まれる。
 導電助材としては、目的とするリチウムイオン二次電池に化学的変化を生じさせずに導電性を有する物質であれば用いることができ、特に制限されない。例えば、黒鉛、各種カーボンブラック、導電性繊維や、銅粉末、鉄粉末等の金属粉末等を用いることができる。
 結着材としては、目的とするリチウムイオン二次電池に化学的変化を生じさせずに結着材としての作用を有する物質であれば用いることができ、特に制限されない。例えば、ポリフッ化ビニリデン(PVdF)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等を用いることができる。
 集電体としては、目的とするリチウムイオン二次電池に化学的変化を生じさせずに導電性を有する物質であれば用いることができ、特に制限されない。例えば、ステンレススチール、アルミニウム、ニッケル、チタン等から選ばれた正極集電体、また、銅、ステンレススチール、アルミニウム、ニッケル、チタン等から選ばれた負極集電体を用いることができる。
 本発明で用いるゲル化電解質は、上記したように、有機溶媒を含む、リチウムイオン伝導性電解液とスメクタイト系層状粘土鉱物、又は雲母系層状粘土鉱物から選ばれた所定量の膨潤性層状粘土鉱物との混合物からなるものである。この場合、ゲル化電解質は、有機溶媒中に膨潤性層状粘土鉱物を添加し、この粘土鉱物を充分に膨潤させた上で、これを、以下述べるように、電解液中に添加して、又は電解質と混合して作製するのが好ましいが、このような方法に制限されるわけではなく、本発明のゲル化電解質が作製できれば、その添加順序には制限はない。
 上記有機溶媒としては、リチウムイオン二次電池で用いられている既知の溶媒を用いることができ、特に制限されない。例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート、ジプロピルカーボネート、ジメトキシメタン、ジエトキシエタン、プロピレンカーボネート等を用いることができる。
 電解液としては、リチウムイオン二次電池で用いられているリチウムイオン伝導性の既知電解液であれば用いることができ、特に制限されない。例えば、LiClO(例えば、溶媒として、EC:DEC=1:1vol%)、LiPF、LiAsF、LiN(CFSO)、LiBF、LiCFSO、LiSbF等から選ばれた電解質を有機溶媒に溶解したものを用いることができる。
 上記スメクタイト系層状粘土鉱物としては、チキソトロピー性を示すものであれば用いることができ、特に制限されない。例えば、ベントナイト、ラポナイト、ヘクトライト、ギブサイト、クロライト、カオリナイト、ハロイサイト、ピロフィライト、タルク、モンモリロナイト、バーミキュライト、イライト、バイデライト、ノントロナイト、及びポルコンスコアイト等を用いることができ、ヘクトライト、ベントナイト、モンモリロナイト等が好ましい。
 上記雲母系層状粘土鉱物としては、チキソトロピー性を示すものであれば用いることができ、特に制限されない。例えば、マイカ、ブリトルマイカ、白雲母、ソーダ雲母、金雲母、及び黒雲母等を用いることができ、マイカ等が好ましい。
 本発明で用いる膨潤性層状粘土鉱物は、溶媒に添加することでチキソトロピーという性質を示す。チキソトロピーとは、剪断応力(振動)を受け続けると粘度が次第に低下し、液状になり、また、静止させると粘度が次第に上昇し、最終的に固体状になる現象をいう。本発明では、このチキソトロピーという性質を利用して、ゲル化電解質を初め液状化せしめ、電極全体にゲル化電解質を行き渡らせて、活物質の周囲を充分に覆うようにし、電解液のみを用いた時と同様に活物質-電解質の界面の接触抵抗を下げ、その後、固体化させることで、安全性の向上と電池性能を上げることを目的としている。すなわち、本発明は、集電体(例えば、Al箔、Cu箔等)上に電極活物質を含む電極材料を設けてなる電極に対して超音波等の物理的振動を与えながら、電極の表面に塗布したゲル化電解質を電極内部へ浸透せしめることにより、全ての活物質の表面を電解質で均一に覆い、活物質-電解質の界面の接触抵抗低の減少を図ったものである。
 本発明に係る活物質-電解質複合体の作製方法の実施の形態によれば、この作製方法は、上記活物質、上記導電助材、及び上記結着材を所定の割合(好ましくは、重量比8:1:1)で混合した電極材料を上記集電体上に塗布してなる電極上に、上記ゲル化電解質を塗布し、次いでゲル化電解質の塗布された電極に対して、このゲル化電解質が液状化する強さの上記した振動(好ましくは、超音波振動)を与え、液状化したゲル化電解質を電極内へ均一に浸透せしめ、活物質の周りを電解質で覆うようにして作製するものである。
 本発明に係るリチウムイオン二次電池の実施の形態によれば、この二次電池は、上記ゲル化電解質を用いたものであって、このゲル化電解質を集電体上の正極材料内に浸透せしめ、正極複合体として用い、及び/又はこのゲル化電解質を集電体上の負極材料内に浸透せしめ、負極複合体として用いるものである。本発明のゲル化電解質を用いると、振動により液状化した電解質は、集電体となるAl箔(正極)やCu箔(負極)に塗布された正極(負極)材料内に自動的に浸透していき、電解質が活物質の全ての周囲を覆うことにより、活物質-電解質の界面の接触抵抗が低下し、電池としての性能が向上する。
 本発明によれば、図1(a)に示すように、活物質11、結着材12、導電助材13を所定の割合で混合した電極材料を集電体14上に塗布し、電極を得、この電極上に、有機溶媒含有の、リチウムイオン伝導性電解液と膨潤性層状粘土鉱物からなるゲル化電解質15を塗布し、振動(例えば、超音波振動等)を与えることで、活物質-電解質複合体(電極複合体)を作製することができる。かくして作製した活物質-電解液複合体を電極として用い、既知の方法でリチウムイオン二次電池を組み立てることができる。ゲル化電解質に対して振動を与えることにより、図1(a)に示すように、ゲル化電解質15は液状化し、活物質11の全ての周囲を覆うようになる。
 一方、図1(b)に示すように、ゲル化電解質15に振動を与えないと、電極上に塗布されたゲル化電解質15は電極表面だけにとどまって、内部へと浸透せず、表面層の活物質11の周囲を覆うだけである。そのため、所期の目的を達成することができない。図1(b)における参照数字11、12、13、及び14は、図1(a)の場合と同じである。
 以下、実施例を挙げて、本発明を具体的に説明する。
 有機溶媒であるジエチルカーボネート(2g)中に、膨潤性層状粘土鉱物である親油性のヘクトライト(コープケミカル(株)製、商品名:ルーセンタイトSTN)を100mg添加し、充分に膨潤させた。電解液には1mol/LのLiClO(EC:DEC=1:1vol%)を用いた。上記充分に膨潤させたスメクタイト含有ジエチルカーボネート溶液に対して、電解液を567mg添加し、ゲル化電解質を作製した。
 実施例1で作製したゲル化電解質に超音波振動を与えた。振動を与えている間は、ゲル化電解質が液状化し、振動を停止し、その後放置することで、ゲル化(固体化)することを確認した。
 正極活物質としてLiCoO(キシダ化学(株)製)、導電助材としてカーボンブラック、結着材としてPVdFを用い、これらを重量比8:1:1で混合した正極材料を集電体となるAl箔上に塗布し、正極を得た。実施例1で作製したゲル化電解質を正極表面上に塗布し、超音波振動を与えることにより、ゲル化電解質を液状化せしめて、図1(a)に示すように正極内に浸透せしめ、活物質-電解質複合体を作製した。図1(a)に示すように、全ての活物質の表面が電解質で覆われていた。かくして作製した正極複合体を正極として用い、負極としてLi金属を用いて2032型リチウムイオン二次電池を組み立て、充放電試験を行った。この場合、充放電の電流値は32.08μA/cm(0.1Cレートに相当)とし、カットオフ電圧を3-4.2Vとした。
(比較例1)
 超音波振動を与えないこと以外は、実施例3記載の方法に従ってリチウムイオン二次電池を組み立て、充放電試験を行った。この場合、充放電の電流値は25.08μA/cm(0.1Cレートに相当)とした。
 実施例3及び比較例1で作製したリチウムイオン二次電池のそれぞれの1サイクル目の放電曲線を図2に示す。図2において、縦軸はE/V(Li/Li)であり、横軸は放電容量(mAh/g(活物質))である。図2から明らかなように、実施例3の場合、放電容量は133mAh/gであり、比較例1の場合、放電容量は58mAh/gであることが分かる。従って、本発明のゲル化電解質を用い、振動を与えて作製したリチウムイオン二次電池は、正極内に電解質が充分に浸透しており、振動を与えずに作製したリチウムイオン二次電池に比べて、高いエネルギー密度が得られた。
 本実施例では実施例1で用いたヘクトライトの添加量を変え、実施例1記載の方法に従って、以下(1)~(6)の配合割合で電解質を作製し、得られた電解質に対して、実施例2に従って超音波振動を与えて、その状態を観察した。
(1)ヘクトライト:50mg+DEC:2g+電解液:567mg(ヘクトライト添加量:1.91wt%)
(2)ヘクトライト:100mg+DEC:2g+電解液:567mg(ヘクトライト添加量:3.75wt%)
(3)ヘクトライト:200mg+DEC:2g+電解液:567mg(ヘクトライト添加量:7.23wt%)
(4)ヘクトライト:300mg+DEC:2g+電解液:567mg(ヘクトライト添加量:10.5wt%)
(5)ヘクトライト:450mg+DEC:2g+電解液:567mg(ヘクトライト添加量:14.9wt%)
(6)ヘクトライト:650mg+DEC:2g+電解液:567mg(ヘクトライト添加量:20.2wt%)
 上記作製物(1)~(6)のうち、(1)は、液体状態であり、チキソトロピー性は見られず、(2)は、チキソトロピー性を有し、(3)は、上記(2)よりもゲル化は進行したが、チキソトロピー性を有し、(4)は、上記(3)よりもゲル化が進行し、ほぼ固体に近く、チキソトロピー性は見られず、(5)は、ほぼ固体であり、チキソトロピー性は見られず、(6)は、ほぼ固体であり、チキソトロピー性は見られなかった。
 上記(1)~(6)の結果から考えて、チキソトロピー性の点からは、膨潤性層状粘土鉱物の添加量は、2wt%~10wt%程度の範囲であることが好ましい。
 本発明によれば、複雑な作製プロセスを必要とせずに、高エネルギー密度を維持したまま安全性を高めたリチウムイオン二次電池を提供できるので、リチウムイオン二次電池を使用する各種産業において利用可能である。 
11 活物質              12 結着材
13 導電助材             14 集電体
15 ゲル化電解質 

Claims (16)

  1. 活物質、導電助材、及び結着材を所定の割合で混合した電極材料を集電体上に設けてなる電極上に、有機溶媒を含む、リチウムイオン伝導性電解液と膨潤性層状粘土鉱物との混合物からなるゲル化電解質を塗布し、次いでゲル化電解質の塗布された電極に対して、このゲル化電解質が液状化する強さの振動を与え、ゲル化電解質を液状化して電極内へ浸透せしめ、活物質-電解質複合体を作製することを特徴とする活物質-電解質複合体の作製方法。
  2. 請求項1記載の活物質-電解質複合体の作製方法において、膨潤性層状粘土鉱物は、スメクタイト系層状粘土鉱物、又は雲母系層状粘土鉱物であることを特徴とする活物質-電解質複合体の作製方法。
  3. 請求項1又は2記載の活物質-電解質複合体の作製方法において、前記膨潤性層状粘土鉱物の前記ゲル化電解質に対する添加量が、2wt%~10wt%であることを特徴とする活物質-電解質複合体の作製方法。
  4. 活物質、導電助材、及び結着材を所定の割合で混合した電極材料を集電体上に設けた電極上に、有機溶媒を含む、リチウムイオン伝導性電解液と膨潤性層状粘土鉱物との混合物からなるゲル化電解質を設け、この電極に対して、このゲル化電解質が液状化する強さの振動を与えてなることを特徴とする活物質-電解質複合体。
  5. 請求項4記載の活物質-電解質複合体において、膨潤性層状粘土鉱物は、スメクタイト系層状粘土鉱物、又は雲母系層状粘土鉱物であることを特徴とする活物質-電解質複合体。
  6. 請求項4又は5記載の活物質-電解質複合体において、前記膨潤性層状粘土鉱物の前記ゲル化電解質に対する添加量が、2wt%~10wt%であることを特徴とする活物質-電解質複合体。
  7. 請求項4~6項のいずれか一項に記載の活物質-電解質複合体を用いたことを特徴とする全固体型リチウムイオン二次電池。
  8. 請求項4~6項のいずれか一項に記載の活物質-電解質複合体が、正極活物質-電解質複合体であることを特徴とする全固体型リチウムイオン二次電池。
  9. 請求項4~6のいずれか一項に記載の活物質-電解質複合体が、負極活物質-電解質複合体であることを特徴とする全固体型リチウムイオン二次電池。
  10. 請求項4~6のいずれか一項に記載の活物質-電解質複合体が、正極活物質-電解質複合体及び負極活物質-電解質複合体であることを特徴とする全固体型リチウムイオン二次電池。
  11. 有機溶媒を含む、リチウムイオン伝導性電解液と膨潤性層状粘土鉱物との混合物からなることを特徴とするゲル化電解質。
  12. 請求項11記載のゲル化電解質において、前記膨潤性層状粘土鉱物は、スメクタイト系層状粘土鉱物、又は雲母系層状粘土鉱物であることを特徴とするゲル化電解質。
  13. 請求項11又は12記載のゲル化電解質において、前記膨潤性層状粘土鉱物のゲル化電解質に対する添加量が、2wt%~10wt%であることを特徴とするゲル化電解質。
  14. 請求項11~13のいずれか一項に記載のゲル化電解質を集電体上の正極材料内に浸透せしめ、正極複合体として用いることを特徴とする全固体型リチウムイオン二次電池。
  15. 請求項11~13のいずれか一項に記載のゲル化電解質を集電体上の負極材料内に浸透せしめ、負極複合体として用いることを特徴とする全固体型リチウムイオン二次電池。
  16. 請求項11~13のいずれか一項に記載のゲル化電解質を集電体上の正極材料内に浸透せしめ、正極複合体として用いると共に、このゲル化電解質を集電体上の負極材料内に浸透せしめ、負極複合体として用いることを特徴とする全固体型リチウムイオン二次電池。
PCT/JP2011/053381 2010-03-10 2011-02-17 ゲル化電解質、この電解質を用いた活物質-電解質複合体及びその作製方法、並びにこの電解質を用いた全固体リチウムイオン二次電池 WO2011111495A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012504386A JP5455136B2 (ja) 2010-03-10 2011-02-17 ゲル化電解質を用いた活物質−電解質複合体及びその作製方法、並びにこの電解質を用いた全固体リチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010053822 2010-03-10
JP2010-053822 2010-03-10

Publications (1)

Publication Number Publication Date
WO2011111495A1 true WO2011111495A1 (ja) 2011-09-15

Family

ID=44563318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053381 WO2011111495A1 (ja) 2010-03-10 2011-02-17 ゲル化電解質、この電解質を用いた活物質-電解質複合体及びその作製方法、並びにこの電解質を用いた全固体リチウムイオン二次電池

Country Status (3)

Country Link
JP (1) JP5455136B2 (ja)
TW (1) TW201205921A (ja)
WO (1) WO2011111495A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190030176A (ko) * 2017-09-13 2019-03-21 주식회사 엘지화학 고체 전해질을 포함하는 전고체 전지용 전극
WO2019078130A1 (ja) * 2017-10-19 2019-04-25 三菱瓦斯化学株式会社 全固体電池の製造方法
CN111430725A (zh) * 2020-05-22 2020-07-17 南京邮电大学 一种可压缩及回复锂离子电池电极

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210007149A (ko) 2019-07-10 2021-01-20 현대자동차주식회사 전고체 전지용 복합 음극

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10269844A (ja) * 1997-03-27 1998-10-09 Tdk Corp 固体状電解質とリチウム二次電池と電気二重層キャパシタ
JPH10289730A (ja) * 1997-02-17 1998-10-27 Ricoh Co Ltd 二次電池
JP2001266855A (ja) * 2000-03-23 2001-09-28 Matsushita Battery Industrial Co Ltd 非水電解質二次電池用電極の製造法および非水電解質二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289730A (ja) * 1997-02-17 1998-10-27 Ricoh Co Ltd 二次電池
JPH10269844A (ja) * 1997-03-27 1998-10-09 Tdk Corp 固体状電解質とリチウム二次電池と電気二重層キャパシタ
JP2001266855A (ja) * 2000-03-23 2001-09-28 Matsushita Battery Industrial Co Ltd 非水電解質二次電池用電極の製造法および非水電解質二次電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190030176A (ko) * 2017-09-13 2019-03-21 주식회사 엘지화학 고체 전해질을 포함하는 전고체 전지용 전극
KR102170305B1 (ko) 2017-09-13 2020-10-26 주식회사 엘지화학 고체 전해질을 포함하는 전고체 전지용 전극
WO2019078130A1 (ja) * 2017-10-19 2019-04-25 三菱瓦斯化学株式会社 全固体電池の製造方法
JPWO2019078130A1 (ja) * 2017-10-19 2020-11-05 三菱瓦斯化学株式会社 全固体電池の製造方法
JP7269571B2 (ja) 2017-10-19 2023-05-09 三菱瓦斯化学株式会社 全固体電池の製造方法
US11961971B2 (en) 2017-10-19 2024-04-16 Mitsubishi Gas Chemical Company, Inc. Production method for all-solid-state battery
CN111430725A (zh) * 2020-05-22 2020-07-17 南京邮电大学 一种可压缩及回复锂离子电池电极

Also Published As

Publication number Publication date
JP5455136B2 (ja) 2014-03-26
JPWO2011111495A1 (ja) 2013-06-27
TW201205921A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
CN107743659B (zh) 离子液体型高能锂离子电池
JP5349427B2 (ja) 硫化物固体電解質材料、正極体およびリチウム固体電池
JP5560337B2 (ja) 活物質−電解質複合体及びその作製方法、並びに全固体型リチウム−硫黄二次電池
JP2014154407A (ja) 複合活物質及びその製造方法
WO2014115538A1 (ja) リチウムイオン二次電池用正極とその製造方法及びリチウムイオン二次電池
JPWO2011052533A1 (ja) リチウム二次電池
JP2009218065A (ja) リチウム二次電池及びその製造方法
JP6319632B2 (ja) リチウムイオン二次電池用正極とその製造方法及びリチウムイオン二次電池
KR102329654B1 (ko) 전극용 조성물, 전극, 그 제조 방법 및 전지
JP2008027782A (ja) リチウム二次電池
JPWO2019088196A1 (ja) 固体電解質、電極、蓄電素子及び固体電解質の製造方法
KR102655290B1 (ko) 전해질 조성물 및 이차 전지
JP4362992B2 (ja) 非水電解質電池
JP5455136B2 (ja) ゲル化電解質を用いた活物質−電解質複合体及びその作製方法、並びにこの電解質を用いた全固体リチウムイオン二次電池
JP2001266855A (ja) 非水電解質二次電池用電極の製造法および非水電解質二次電池
WO2014162529A1 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池、およびそれらの製造方法
JP4168241B2 (ja) 非水電解質電池
Jiang et al. Polymer electrolytes shielded by 2D Li0. 46Mn0. 77PS3 Li+-conductors for all-solid-state lithium-metal batteries
JP2012014973A (ja) 二次電池用電解質組成物および二次電池
JPWO2019088197A1 (ja) 固体電解質、電極、蓄電素子及び固体電解質の製造方法
JP5062505B2 (ja) 非水電解質電池
JP4258711B2 (ja) 非水電解質電池
JP6067511B2 (ja) 硫化物固体電解質材料、正極体およびリチウム固体電池
Swiderska-Mocek Properties of LiMn 2 O 4 cathode in electrolyte based on ionic liquid with and without gamma-butyrolactone
JP2002367675A (ja) 非水電解質電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504386

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753157

Country of ref document: EP

Kind code of ref document: A1