WO2011108703A1 - 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法 - Google Patents

多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法 Download PDF

Info

Publication number
WO2011108703A1
WO2011108703A1 PCT/JP2011/055066 JP2011055066W WO2011108703A1 WO 2011108703 A1 WO2011108703 A1 WO 2011108703A1 JP 2011055066 W JP2011055066 W JP 2011055066W WO 2011108703 A1 WO2011108703 A1 WO 2011108703A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal substrate
multilayer film
layer
substrate
Prior art date
Application number
PCT/JP2011/055066
Other languages
English (en)
French (fr)
Inventor
英雄 会田
奈津子 青田
仁志 星野
健次 古田
友三郎 浜元
慶司 本庄
Original Assignee
並木精密宝石株式会社
株式会社ディスコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社, 株式会社ディスコ filed Critical 並木精密宝石株式会社
Priority to EP11750812.7A priority Critical patent/EP2544219A4/en
Priority to JP2012503286A priority patent/JP5674759B2/ja
Priority to KR1020127022612A priority patent/KR101495581B1/ko
Priority to US13/582,570 priority patent/US20130082358A1/en
Priority to CN201180009701.6A priority patent/CN102770940B/zh
Publication of WO2011108703A1 publication Critical patent/WO2011108703A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a single crystal substrate with a multilayer film, a method for manufacturing a single crystal substrate with a multilayer film, and a device manufacturing method.
  • Nitride semiconductors typified by gallium nitride have a wide band gap and can emit blue light, and thus are widely used in LEDs (light emitting diodes), LDs (semiconductor lasers), and the like. In recent years, efforts have been actively made to further increase luminous efficiency and increase brightness.
  • a general nitride semiconductor light emitting device structure includes a sapphire substrate, a buffer layer made of GaN, an n-type contact layer made of n-type GaN, an n-type cladding layer made of n-type AlGaN, an active layer made of n-type InGaN, It has a double hetero structure in which a p-type cladding layer made of p-type AlGaN and a p-type contact layer made of p-type GaN are sequentially stacked.
  • the active layer is a single quantum well (SQW: Single Quantum Well) structure consisting of only a well layer made of InxGa1-xN (0 ⁇ X ⁇ 1), or a well layer made of InxGa1-xN (0 ⁇ X ⁇ 1), It is configured to include a multiple quantum well structure (MQW: In) with a barrier layer made of InyGa1-yN (0 ⁇ y ⁇ 1, y ⁇ x) (see Patent Document 1).
  • SQW Single Quantum Well
  • Non-Patent Document 1 investigates how an AlN buffer layer and a GaN layer are epitaxially grown on a sapphire substrate, and how thermal stress generated by the film formation is relieved depending on the film thickness of the GaN layer. Results are disclosed.
  • the warpage of the substrate increases, and accordingly, interface defects, microcracks, dislocations, and macrocracks occur. It is clarified that stress is relieved.
  • FIG. 4 discloses an analysis method for in-situ observation of the warpage of a substrate that occurs through a process of epitaxially growing a GaN-based LED structure on a sapphire substrate. According to this, it is shown that the curvature of the sapphire substrate greatly changes due to changes in film forming material, film forming temperature, and film thickness in a series of film forming steps. Furthermore, it has been clarified that the emission wavelength in the substrate plane is made uniform by adopting a film forming process in which the curvature of the sapphire substrate becomes substantially zero at the growth stage of the InGaN layer as the active layer.
  • the warpage of the sapphire substrate changes greatly through a series of film forming steps, which affects the quality of the nitride semiconductor film and the uniformity of the emission wavelength.
  • the warp shape and the warp amount of the sapphire substrate are set so that the substrate curvature is substantially zero in the InGaN-based active layer using the difference in thermal expansion coefficient with the substrate. From such a background, various polishing techniques have been studied in order to control the shape and the amount of warpage of the sapphire substrate (see Patent Document 2, etc.).
  • Patent Document 3 when dividing a light emitting device in which a nitride semiconductor is laminated on a sapphire substrate, a pulsed laser is focused inside the sapphire substrate having a thickness of about 80 to 90 ⁇ m to form a division planned line of the light emitting device.
  • a technique for forming a corresponding altered region is known (Patent Document 3).
  • the technique disclosed in Patent Document 3 is a method for processing a sapphire substrate that can suppress a decrease in luminance of the light emitting element even when the sapphire substrate is irradiated with a laser beam and divided into individual light emitting elements. It is aimed.
  • a multilayer film corresponding to the element structure is formed on a single crystal substrate such as a sapphire substrate.
  • the attached single crystal substrate is usually warped.
  • various post-processes are usually performed on the single crystal substrate with a multilayer film.
  • the post-process is performed in a state where the multilayer film-coated substrate is warped, the quality of the elements and the yield are reduced.
  • the following problem occurs. That is, when patterning a multilayer film, the resist formed on the multilayer film is exposed using a photomask. At this time, the single crystal substrate with the multilayer film is warped. Therefore, when the light irradiated for exposure is focused on the surface of the multilayer film located in the center of the single crystal substrate, the surface of the multilayer film located near the edge of the single crystal substrate is focused. Will be blurred. In this case, exposure unevenness occurs in the plane of the multilayer film, which leads to variations in the quality of elements manufactured through subsequent processes and a decrease in yield.
  • the multilayer film of the single crystal substrate with the multilayer film was formed. It is necessary to affix the surface to a flat polishing machine and fix it.
  • a large pressure is applied to the single crystal substrate with a multilayer film during the pasting process to flatten the surface to be backlapped. Need to do.
  • the greater the warp the greater the pressure that must be applied.
  • cracks are likely to occur in the substrate with a multilayer film, leading to a decrease in yield.
  • the amount of polishing required for the back wrap process increases and the polishing time becomes longer, so the productivity is lowered and lacks practicality.
  • the warpage caused by the formation of the multilayer film is corrected before the subsequent process is performed so that the single crystal substrate with the multilayer film is as flat as possible. I can say that.
  • the present invention has been made in view of the above circumstances, and a single crystal substrate with a multilayer film in which warpage caused by the formation of the multilayer film is corrected, a method for producing the same, and an element production method using the production method It is an issue to provide.
  • the single crystal substrate with a multilayer film of the present invention includes a single crystal substrate and a multilayer film having two or more layers formed on one side of the single crystal substrate, and the single crystal substrate is divided into two in the thickness direction. Among the two regions obtained by dividing, a heat-denatured layer is provided in at least a region on the surface side opposite to the surface on which the multilayer film of the single crystal substrate is formed.
  • the heat-denatured layer is preferably formed by laser irradiation on the single crystal substrate.
  • the heat-denatured layer is preferably provided in parallel with the multilayer film.
  • the relative position in the thickness direction of the single crystal substrate is assumed to be 0% on the surface on which the multilayer film is provided, and the surface on which the multilayer film is provided Assuming that the surface on the opposite side is 100%, the heat-denatured layer is preferably provided in the range of more than 50% and not more than 95% in the thickness direction of the single crystal substrate.
  • the heat-denatured layer is in a plane direction of the single crystal substrate. i) a shape in which a plurality of polygons having the same shape and the same size are regularly arranged; ii) a shape in which a plurality of circles or ellipses having the same shape and the same size are regularly arranged; iii) concentric circles, iv) a shape formed substantially point-symmetrically with respect to the center point of the single crystal substrate; v) a shape formed substantially symmetrical with respect to a straight line passing through the center point of the single crystal substrate; vi) stripe shape, and vii) Spiral shape It is preferable that it is provided in at least any one pattern shape selected from.
  • the shape in which a plurality of polygons having the same shape and the same size are regularly arranged is preferably a lattice shape.
  • the pitch of the lines constituting the pattern having a lattice shape is in the range of 50 ⁇ m to 2000 ⁇ m.
  • the relative position in the thickness direction of the single crystal substrate is assumed to be 0% on the surface on which the multilayer film is provided, and the surface on which the multilayer film is provided Assuming that the surface on the opposite side is 100%, the second heat-denatured layer is preferably provided in a range of 0% or more and less than 50% in the thickness direction of the single crystal substrate.
  • the material of the single crystal substrate is preferably sapphire.
  • the single crystal substrate preferably has a diameter of 50 mm or more and 300 mm or less.
  • the thickness of the single crystal substrate is preferably 0.05 mm or more and 5.0 mm or less.
  • the single crystal substrate with a multilayer film of the present invention it is preferable that at least one of the layers constituting the multilayer film is a nitride semiconductor crystal layer.
  • an element selected from a light-emitting element, a photovoltaic element, and a semiconductor element can be produced by performing at least a patterning process on the multilayer film.
  • the method for producing a single crystal substrate with a multilayer film according to the present invention includes a single crystal substrate on which a multilayer film having two or more layers and a multilayer film having compressive stress is formed on one side.
  • a single-crystal substrate with a multilayer film is manufactured by performing at least a heat-denaturing layer forming step after forming a multilayer film to form a heat-denaturing layer in a region on the opposite surface side.
  • One embodiment of the method for producing a single crystal substrate with a multilayer film according to the present invention is preferably carried out so that the laser irradiation satisfies the irradiation conditions described in at least one of the following A to B.
  • ⁇ Irradiation condition A> ⁇ Laser wavelength: 200 nm to 350 nm ⁇ Pulse width: nanosecond order ⁇ Irradiation condition B> ⁇ Laser wavelength: 350 nm to 2000 nm ⁇ Pulse width: femtosecond order to picosecond order
  • the heat-denatured layer is preferably formed so as to be parallel to the multilayer film.
  • the relative position in the thickness direction of the single crystal substrate is assumed to be 0% on the surface on which the multilayer film is provided.
  • the heat-denatured layer is preferably formed so as to be located in the range of more than 50% and not more than 95% in the thickness direction of the single crystal substrate. .
  • the heat-denatured layer is in the plane direction of the single crystal substrate, i) a shape in which a plurality of polygons having the same shape and the same size are regularly arranged; ii) a shape in which a plurality of circles or ellipses having the same shape and the same size are regularly arranged; iii) concentric circles, iv) a shape formed substantially point-symmetrically with respect to the center point of the single crystal substrate; v) a shape formed substantially symmetrical with respect to a straight line passing through the center point of the single crystal substrate; vi) stripe shape, and vii) Spiral shape Preferably, it is formed so as to draw at least one pattern shape selected from the above.
  • the shape in which a plurality of polygons having the same shape and the same size are regularly arranged is preferably a lattice shape.
  • a pitch of lines constituting a pattern having a lattice shape is in a range of 50 ⁇ m to 2000 ⁇ m.
  • Other embodiments of the method for producing a single crystal substrate with a multilayer film of the present invention include: (1) By irradiating a laser from one side of the single crystal substrate, When the relative position in the thickness direction of the single crystal substrate is assumed that the surface on the side irradiated with the laser is 0% and the surface opposite to the surface irradiated with the laser is 100%, A heat-denatured layer forming step before the multilayer film is formed so that the heat-denatured layer is positioned in a range of 0% or more and less than 50% in the thickness direction of the single crystal substrate; (2) a multilayer film forming step of forming a multilayer film having two or more layers and having a compressive stress on the surface of the single crystal substrate on which the heat-denatured layer is formed, on the side irradiated with the laser; (3) a heat-denatured layer forming step after forming the multilayer film; It is preferable to manufacture a single crystal substrate with a multilayer film by passing through at least this order.
  • the material of the single crystal substrate is preferably sapphire.
  • the diameter of the single crystal substrate is preferably 50 mm or more and 300 mm or less.
  • the thickness of the single crystal substrate is preferably 0.05 mm or more and 5.0 mm or less.
  • At least one of the layers constituting the multilayer film is a nitride semiconductor crystal layer.
  • the surface side opposite to the surface side on which the multilayer film of the single crystal substrate having two or more layers on one surface and the multilayer film having compressive stress is formed is formed. From the two regions obtained by irradiating the single crystal substrate into two equal parts in the thickness direction by laser irradiation, at least the surface side opposite to the surface side on which the multilayer film of the single crystal substrate is formed A single crystal substrate with a multilayer film is manufactured through at least a heat-denaturing layer forming step after forming a multilayer film in the region to form a heat-denatured layer, and further, the multilayer film of the single crystal substrate with the multilayer film is formed.
  • FIG. 3A is a plan view showing a stripe shape in which a plurality of lines are formed perpendicular to the orientation flat surface of the substrate
  • FIG. 3B is a plan view showing the plurality of lines in the orientation flat of the substrate.
  • FIG.3 (c) is a top view which shows the lattice shape which combined the arrangement pattern shape shown to Fig.3 (a) and FIG.3 (b).
  • regular hexagons of the same size are regularly arranged so that all six vertices of the regular hexagon overlap with any one of the regular hexagons adjacent to the regular hexagon.
  • FIG.3 (e) is a top view which shows a concentric circular shape. It is model explanatory drawing which shows the other example of the manufacturing method of the single crystal substrate with a multilayer film of this embodiment.
  • FIG. 6A is a diagram showing a state before the start of film formation
  • FIG. 6B is a diagram showing a state after the low-temperature buffer layer is formed
  • FIG. 6C is an n ⁇
  • FIG. 6D is a diagram showing a state after the GaN layer is formed
  • FIG. 6D is a diagram showing a state after the InGaN-based active layer having a multiple quantum well structure is formed.
  • FIG. 9A is a diagram showing an element part forming step
  • FIG. 9B is a diagram showing a polishing step
  • FIG. 9C is a diagram showing a division-scheduled line forming step
  • FIG. 9D is a diagram showing the dividing step.
  • 5 is a graph showing the amount of warpage caused by laser irradiation for a single crystal substrate with a multilayer film having the same warpage amount after the multilayer film was formed under the experimental conditions of Example A1 to Example A5 shown in Table 2. It is a graph which shows the result evaluated about the relationship of the curvature variation
  • Substrate with film before laser processing 10A Substrate with film before second laser treatment 12 Substrate with film after laser treatment (single crystal substrate with multilayer film) 12A Substrate with film after the second laser treatment (single crystal substrate with multilayer film) 20 Single crystal substrate 20A single crystal substrate after polishing 20D Non-deposition surface side area 20U Deposition side area 22, 22A, 22B, 22C, 22D Heat-denatured layer (first heat-denatured layer) 24 Non-deposition surface 24A Non-deposition surface after polishing 26 Deposition surface 28, 28A, 28B, 28C, 28D Second heat-denatured layer 30 multilayer film 32 element parts 40 Laser irradiation equipment 50 Sapphire substrate (single crystal substrate) 52 Deposition surface 54 Non-deposition surface 60 Low temperature buffer layer 62 n-GaN layer 64 InGaN-based active layer 70 multilayer film 80 Polishing machine 90 Scheduled line 100 elements
  • the single crystal substrate with a multilayer film of the present embodiment includes a single crystal substrate, a multilayer film having two or more layers formed on one side of the single crystal substrate, and having compressive stress before the heat-denatured layer is formed.
  • a modified layer is provided.
  • a multilayer film having a compressive stress is provided on one side of the single crystal substrate. Therefore, in order to release this compressive stress, a force that tends to extend in the plane direction of the single crystal substrate always acts on the multilayer film. Therefore, normally, the single crystal substrate with a multilayer film is greatly warped so as to protrude toward the side on which the multilayer film is provided.
  • the single crystal substrate with a multilayer film of the present embodiment at least a surface side of the single crystal substrate on which the multilayer film is formed, out of two regions obtained by dividing the single crystal substrate into two in the thickness direction.
  • a heat-denatured layer is provided in the region on the opposite surface side.
  • the multilayer of the present embodiment is compared with the case of using a conventional single crystal substrate with a multilayer film.
  • the “thermally modified layer” is a layer formed by locally heating a partial region of the single crystal substrate.
  • the heat-denatured layer is formed in one of two regions divided by a line that bisects the single crystal substrate in the thickness direction, the heat-denatured layer is formed on the one region side.
  • the single crystal substrate is warped so as to be convex. From this, it is presumed that the heat-denatured layer also has a compressive stress like the multilayer film.
  • the method for forming this heat-denatured layer is not particularly limited, but a method of irradiating a single crystal substrate with a laser is usually used. In this case, due to multiphoton absorption of atoms present in the laser irradiated region, the region is locally heated, and some modification such as a change in crystal structure or crystallinity occurs in the surrounding region. Thus, a heat-denatured layer is formed. That is, the single crystal substrate with a multilayer film of the present embodiment has a surface on which the multilayer film of the single crystal substrate having two or more layers on one side and a multilayer film having compressive stress is formed.
  • the surface side on which the multilayer film of at least the single crystal substrate is formed out of two regions obtained by dividing the single crystal substrate into two equal parts in the thickness direction by irradiating laser from the opposite surface side It can be manufactured by at least a heat-denaturing layer forming step after forming a multilayer film in the region on the opposite surface side to form a heat-denaturing layer.
  • the laser irradiation may be carried out under any irradiation conditions as long as a heat-denatured layer can be formed. However, in general, energy can be concentrated in a short time width, so that a high peak can be obtained. It is preferable to carry out within the ranges shown in 1) and 2) below by using a pulse laser that emits laser light intermittently in that an output can be obtained.
  • Pulse width femtosecond order to nanosecond order (1 fs to 1000 ns)
  • the laser wavelength and pulse width are the light transmittance / light absorption due to the material of the single crystal substrate that is the target of laser irradiation, the size and pattern accuracy of the heat-denatured layer formed in the single crystal substrate, It is appropriately selected in consideration of a laser device that can be used practically.
  • irradiation conditions shown in the following A to B.
  • ⁇ Irradiation condition A> Laser wavelength: 200 nm to 350 nm -Pulse width: nanosecond order (1 ns to 1000 ns). More preferably, it is 10 ns to 15 ns.
  • the irradiation condition A uses a laser having a shorter wavelength than that of the irradiation condition B. For this reason, when laser irradiation is carried out under the same conditions other than the laser wavelength and pulse width, the laser necessary for obtaining the same degree of warp correction effect in the irradiation condition A than in the irradiation condition B. Processing time can be shortened.
  • the wavelength of the laser to be used is preferably selected to be longer than the absorption edge wavelength of the single crystal substrate that is the target of laser irradiation.
  • the irradiation conditions A and B can be used.
  • ⁇ Repetition frequency 50 kHz to 500 kHz
  • Laser power 0.05W ⁇ 0.8W
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m (more preferably around 2 ⁇ m)
  • Sample stage scanning speed 100 mm / s to 1000 mm / s
  • the irradiation condition B can be used.
  • ⁇ Pulse width 50ns to 200ns
  • Repetition frequency 10 kHz to 500 kHz
  • Irradiation energy 3 ⁇ J-12 ⁇ J
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m
  • Sample stage scanning speed 50 mm / s to 1000 mm / s (more preferably 100 mm / s to 1000 mm / s)
  • the irradiation condition B can be used.
  • ⁇ Pulse width 30 ns to 80 ns
  • Repetition frequency 10 kHz to 500 kHz
  • Irradiation energy 8 ⁇ J ⁇ 20 ⁇ J
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m
  • Sample stage scanning speed 50 mm / s to 1000 mm / s (more preferably 100 mm / s to 1000 mm / s)
  • the irradiation condition B can be used.
  • ⁇ Pulse width 200 fs to 800 fs
  • Repetition frequency 10 kHz to 500 kHz
  • Irradiation energy 3 ⁇ J ⁇ 6 ⁇ J
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m
  • Sample stage scanning speed 50 mm / s to 1000 mm / s (more preferably 100 mm / s to 1000 mm / s)
  • Table 1 shows an example of laser irradiation conditions when a heat-denatured layer is formed on a Si substrate, a GaAs substrate, and a quartz substrate.
  • the surface of the single crystal substrate on the laser irradiation side is particularly preferably in a mirror state (surface roughness Ra is about 1 nm or less).
  • mirror polishing can be performed.
  • FIG. 1 and FIG. 2 are schematic explanatory views showing an example of a method for manufacturing a single crystal substrate with a multilayer film according to the present embodiment. Specifically, a schematic diagram illustrating an example of a heat-denatured layer forming step after the multilayer film is formed. It is explanatory drawing.
  • FIG. 1 is a schematic cross-sectional view showing the state of warpage of the single crystal substrate with a multilayer film before and after the thermal denaturation layer forming step after the multilayer film is formed, and the upper part of FIG.
  • FIG. 1 shows a state in which the heat-denatured layer forming step is being performed after the multilayer film is formed, that is, a state in which the laser is irradiated from the surface of the single crystal substrate where the multilayer film is not formed. It is a schematic cross section shown. In FIG. 1 and FIG. 2, the description of each layer constituting the multilayer film is omitted.
  • a single crystal substrate with a multilayer film (substrate with a film before laser treatment) 10 before the heat-denaturing layer forming step after the multilayer film is formed is composed of a single crystal substrate 20 And the formed multilayer film 30. And the board
  • the single crystal substrate with a multilayer film (substrate 12 with a film after laser treatment) after the heat-denaturing layer forming step after the multilayer film formation shown in the lower part of FIG. 1 is warped as shown in the upper part of FIG. Has been corrected and is closer to being almost flat.
  • a plurality of heat-denatured layers 22 having a constant thickness are formed at equal intervals in the plane direction of the single crystal substrate 20 in the surface side region (non-deposition surface side region) 20D.
  • the substrate 10 with the film before laser processing is placed on the side where the multilayer film 30 is provided on the lower surface side. This is performed in a state of being fixed to a sample stage (not shown). Fixing is preferably performed so that the warpage of the pre-laser-treated substrate 10 can be corrected, for example, by vacuum suction. When the warp is too large to allow vacuum suction, the shape of the surface of the pre-laser-coated substrate 10 can be monitored to make the laser irradiation region parallel to the pre-laser-coated substrate 10 surface.
  • the laser irradiation device 40 irradiates the laser from the surface (non-deposition surface) 24 side opposite to the surface on which the multilayer film of the pre-laser-coated substrate 10 fixed to the sample stage is provided.
  • the laser is condensed in the non-film-formation surface side region 20D of the single crystal substrate 20, and the laser irradiation device 40 and the substrate 10 with a film before laser treatment are relatively moved in the horizontal direction, thereby generating heat.
  • the modified layer 22 is formed.
  • the size and degree of modification of the thermally denatured layer 22 in the planar direction and thickness direction of the single crystal substrate 20 can be controlled.
  • the relative moving speed of the laser irradiation device 40 with respect to the pre-laser-coated substrate 10 for example, when the sample stage is movable, the scanning speed of the sample stage
  • the laser repetition frequency for example, the relative moving speed of the laser irradiation device 40 with respect to the pre-laser-coated substrate 10
  • the spacing between the individual heat-denatured layers 22A, 22B, 22C, and 22D with respect to the plane direction of the crystal substrate 20 can be controlled.
  • the multilayer film 30 is caused by the compressive stress.
  • the warp of the single crystal substrate 20 can be corrected.
  • the heat-denatured layer 22 is provided at a position that is deviated with respect to the thickness direction or the plane direction of the single crystal substrate 20, is irregularly arranged, or is asymmetrically arranged, it is caused by the multilayer film 30. In some cases, it is difficult to correct the warpage that occurs, or the shape of the substrate 12 with the film after laser processing is distorted.
  • the heat-denatured layer 22 is provided in parallel with the multilayer film 30 in the thickness direction of the single crystal substrate 20.
  • the relative position in the thickness direction of the single crystal substrate 20 is assumed to be 0% on the surface on which the multilayer film 30 is provided, and the surface opposite to the surface on which the multilayer film 30 is provided (non-formed).
  • the heat-denatured layer 22 is preferably provided in the range of more than 50% in the thickness direction of the single crystal substrate 20 and not more than 95%. More preferably, it is provided within the following range.
  • the warp of the single crystal substrate 20 due to the compressive stress of the multilayer film 30 can be more effectively corrected, and laser processing can be performed.
  • the deformation of the substrate 12 with the back film can also be suppressed.
  • the heat-denatured layers 22 are present in the same position in the thickness direction of the single crystal substrate 20, but the individual heat-denatured layers 22A, 22B, 22C, and 22D are all present at the same position. May be.
  • the arrangement of the individual heat-denatured layers 22A, 22B, 22C, and 22D with respect to the planar direction of the single crystal substrate 20 is also taken into consideration, and the shape of the substrate 12 with the film after laser processing is distorted,
  • the individual heat-denatured layers 22A, 22B, 22C, and 22D may be arranged at different positions with respect to the thickness direction of the single crystal substrate 20 so as not to significantly reduce the warping correction effect due to the provision.
  • the length of the thermally denatured layer 22 with respect to the thickness direction of the single crystal substrate 20 is determined depending on the laser spot size, irradiation energy (laser power / repetition frequency), and pulse width, and is usually several ⁇ m to several It is in the range of 10 ⁇ m.
  • the heat-denatured layer 22 is provided in the pattern shape shown below in the planar direction of the single crystal substrate 20. That is, the heat-denatured layer 22 is preferably provided in at least one pattern shape selected from the following i) to vii) with respect to the planar direction of the single crystal substrate 20. In this case, the warp of the single crystal substrate 20 caused by the compressive stress of the multilayer film 30 can be more effectively corrected, and the deformation can be suppressed. i) A shape in which a plurality of polygons having the same shape and the same size are regularly arranged.
  • the warp of the single crystal substrate 20 due to the compressive stress of the multilayer film 30 can be more uniformly corrected, and the distortion of the shape can be further reduced.
  • To iv) are more preferable.
  • the pattern shape is preferably i) a shape in which a plurality of polygons having the same shape and the same size are regularly arranged. Further, i) as a shape in which a plurality of polygons having the same shape and the same size are regularly arranged, any one of a plurality of the same shapes and the same size quadrangles adjacent to each other on four sides constituting each quadrangle.
  • the shape is regularly arranged so as to overlap one side, that is, a lattice shape.
  • laser scanning may be performed only in two directions, ie, the vertical direction and the horizontal direction. Laser processing becomes easier, and the warpage amount control and shape control design of the substrate 12 with a film after laser processing become easier.
  • the pitch of the lines constituting the pattern having the lattice shape is preferably in the range of 50 ⁇ m to 2000 ⁇ m, and more preferably in the range of 100 ⁇ m to 1000 ⁇ m.
  • the pitch is preferably in the range of 50 ⁇ m to 2000 ⁇ m, and more preferably in the range of 100 ⁇ m to 1000 ⁇ m.
  • FIG. 3 is a plan view showing an example of the arrangement pattern shape of the thermally denatured layer with respect to the planar direction of the single crystal substrate.
  • the planar shape of the single crystal substrate 20 is a circular shape having an orientation flat surface.
  • An example of the arrangement pattern shape of the heat-denatured layer 22 is shown.
  • the arrangement pattern shape of the heat-denatured layer 22 is, for example, a stripe shape in which a plurality of lines are formed perpendicularly or parallel to the orientation flat surface of the substrate (FIGS. 3A and 3B). )), A lattice shape combining both of them (FIG. 3C), and the like.
  • regular hexagons of the same size are regularly arranged so that all six vertices of the regular hexagon overlap with any one of the regular hexagons adjacent to the regular hexagon.
  • FIG. 3D concentric circular shape
  • FIG. 3E concentric circular shape
  • the width W shown in FIG. 3A means a pitch between lines.
  • the degree of warpage caused by the compressive stress of the multilayer film 30 is determined by the compressive stress determined by the layer configuration and film thickness of the multilayer film 30 and the thickness and material of the single crystal substrate 20. It varies depending on the rigidity. However, depending on the degree of warpage, as described above, i) the length of the heat-denatured layer 22 in the thickness direction of the single crystal substrate 20, ii) the position of the heat-denatured layer 22 in the thickness direction of the single crystal substrate 20 And iii) by appropriately selecting and combining the arrangement pattern shapes of the heat-denatured layers 22 in the plane direction of the single crystal substrate 20, the substrate 12 with a film after laser processing is multilayered with respect to the substrate 10 with a film after laser processing. Not only can the warp due to the film 30 be corrected, but also the substrate 12 with the film after laser processing can be made substantially flat.
  • the first merit is the first merit that i) the degree of freedom of the film forming process of the multilayer film 30, that is, the choices of the film forming method and film forming conditions that can be adopted can be further increased in relation to the subsequent process. And ii) The second merit is that the layer configuration of the multilayer film 30 can be selected without considering the occurrence of warpage after the multilayer film 30 is formed and the magnitude of the warp.
  • the single crystal substrate with a multilayer film according to the present embodiment is (1) irradiating a laser from one side of the single crystal substrate, so that the relative position in the thickness direction of the single crystal substrate is 0 on the side irradiated with the laser. %, And assuming that the surface opposite to the laser-irradiated surface is 100%, the thermally denatured layer is located within the range of 0% or more and less than 50% in the thickness direction of the single crystal substrate.
  • the heat-denatured layer formed by the heat-denatured layer forming step before forming the multilayer film is referred to as a “second heat-denatured layer” and is formed by the heat-denatured layer forming step after forming the multilayer film.
  • the heat-denatured layer may be referred to as “first heat-denatured layer”.
  • the heat-denatured layer forming step before forming the multilayer film is performed in advance to form the second heat-denatured layer in the single crystal substrate.
  • the second heat-denatured layer formed in the heat-denatured layer forming step before forming the multilayer film may be formed so as to be located within a range of 0% to less than 50% in the thickness direction of the single crystal substrate. is necessary.
  • the region for forming the first heat-denatured layer formed in the heat-denatured layer forming step after the multilayer film is formed is limited in the thickness direction of the single crystal substrate. This is because it may be difficult to correct the warp of the single crystal substrate 20 after the multilayer film 30 is formed.
  • the second heat-denatured layer formed in the heat-denatured layer forming step before forming the multilayer film is formed so as to be located in the range of 0% to less than 50% in the thickness direction of the single crystal substrate as described above.
  • the lower limit is preferably 3% or more.
  • the layer (lowermost layer) that is in direct contact with the film formation surface is a crystalline film
  • the influence of the change in the crystal plane exposed to the film formation surface As a result, the crystal structure and crystallinity of the lowermost layer are likely to change.
  • these other crystalline layers change depending on the crystal structure and crystallinity of the lowermost layer as the base. It becomes easy to do. Therefore, this is hindered when crystal growth of the lowermost layer is attempted using the original crystal plane of the single crystal substrate.
  • the second heat-denatured layer is formed so as to be positioned in the range of 5% to 30%, more preferably in the thickness direction of the single crystal substrate.
  • the second heat-denatured layer is provided on the side where the multilayer film is provided with respect to the line that bisects the single crystal substrate in the thickness direction, the single crystal substrate is warped. Then, it acts similarly to the multilayer film.
  • the second heat-denatured layer promotes warping so as to form a protrusion on the side of the single crystal substrate on which the multilayer film is provided immediately after the multilayer film is formed.
  • a first heat-denaturing layer and a second heat-denaturing layer are provided at positions that are symmetric with respect to the thickness direction of the single crystal substrate with respect to a line that bisects the single crystal substrate.
  • the length of the first heat-denatured layer and the length of the second heat-denatured layer in the thickness direction of the substrate are the same, and the first heat-denatured layer and the second heat-denatured layer in the plane direction of the single crystal substrate It is assumed that the arrangement pattern shape is similar. In this case, since the direction and amount of warping of the single crystal substrate simply depend on the difference in the total area of the two heat-denatured layers, the total of the second heat-denatured layers in the plane direction of the single crystal substrate is the same.
  • the second heat-denatured layer may be formed in the single crystal substrate so that the area is smaller than the total area of the first heat-denatured layer.
  • the laser irradiation conditions and the laser processing method for forming the second heat-denatured layer, and the arrangement pattern shape of the second heat-denatured layer in the plane direction of the single crystal substrate can be appropriately selected as in the case of the first heat-denatured layer.
  • FIG. 4 is a schematic explanatory view showing another example of the method for manufacturing a single crystal substrate with a multilayer film according to the present embodiment. Specifically, the single crystal substrate is not subjected to any laser processing or film formation process.
  • FIG. 5 is a schematic cross-sectional view showing another example of the single crystal substrate with a multilayer film according to the present embodiment. Specifically, after the manufacturing process shown in FIG. 4 is performed, the manufacturing process shown in FIG. It is a figure which shows an example of the cross-section of the single crystal substrate with a multilayer film obtained by implementing.
  • FIG. 4 and FIG. 5 those having the same functions and configurations as those shown in FIG. 1 and FIG.
  • the single crystal substrate 20 in a substantially flat state without any laser processing and film forming process, This is performed in a state where the non-deposition surface 24 is fixed to a sample stage (not shown) so that the non-film formation surface 24 is on the lower surface side. Then, the single crystal substrate 20 fixed to the sample stage is irradiated with a laser from the surface opposite to the non-film formation surface 24 (film formation surface 26) by the laser irradiation device 40.
  • the laser is applied to a region (film formation surface side region 20U) opposite to the non-film formation surface side region 20D of the line indicated by a one-dot chain line in the drawing that bisects the single crystal substrate 20 in the thickness direction. While condensing, the laser irradiation apparatus 40 and the single crystal substrate 20 are relatively moved in the horizontal direction. As a result, as shown in the middle part of FIG. 4, the second heat-denatured layer 28 is formed in the film formation surface side region 20 ⁇ / b> U of the single crystal substrate 20.
  • the single crystal substrate 20 after the heat-denaturing layer forming step before forming the multi-layer film is completed, since the second heat-denaturing layer 28 is formed in the film-forming surface side region 20U.
  • the film-formed surface 26 is warped so as to be slightly convex.
  • the size and degree of modification of the second heat-denatured layer 28 in the planar direction and thickness direction of the single crystal substrate 20 can be controlled.
  • the relative movement speed of the laser irradiation apparatus 40 with respect to the single crystal substrate 20 (for example, the scanning speed of the sample stage when the sample stage is movable) and the repetition frequency of the laser are appropriately selected, whereby the single crystal substrate 20 is selected.
  • the distance between the individual second heat-denatured layers 28A, 28B, 28C, and 28D with respect to the planar direction can be controlled.
  • a multilayer film forming step for forming the multilayer film 30 is performed on the film formation surface 26 side of the single crystal substrate 20 on which the second heat-denatured layer 28 is formed.
  • the second pre-laser film-coated substrate in which the multilayer film 30 is formed on the film-forming surface 26 side of the single crystal substrate 20 on which the second thermally denatured layer 28 is formed. 10A can be obtained.
  • the multilayer film forming step is performed, the second heat-denatured layer 28 is formed, so that in the arbitrary process of the warp behavior of the single crystal substrate 20 during the multilayer film forming step, the single crystal substrate 20 Warpage can be set to zero. Note that the substrate 10A with a film before laser processing for the second time is warped so as to protrude toward the film formation surface 26 due to the influence of the compressive stress of the multilayer film 30.
  • the multilayer film is formed in the same manner as illustrated in FIG. 2 except that the second substrate 10A with laser film is used instead of the substrate 10 with laser film before laser processing.
  • a heat-denatured layer forming step before film formation is performed.
  • a first heat-denatured layer 22 is further formed in the non-deposition surface side region 20D of the single crystal substrate 20, and the first heat-denatured layer 22 is formed in the single crystal substrate 20 as illustrated in FIG.
  • a single crystal substrate with the multilayer film 30 on which the second heat-denatured layer 28 is formed can be obtained.
  • the first heat-modified layer 22 formed in the non-film-forming surface side region 20D of the single crystal substrate 20 is formed by the influence of the compressive stress of the multilayer film 30.
  • the force that warps so as to be convex toward the film surface 26 side is canceled out.
  • the thickness of the single crystal substrate 20 is positioned symmetrically with respect to the thickness direction of the single crystal substrate 20 with reference to a line L that bisects the single crystal substrate 20 in the thickness direction.
  • a first heat-denatured layer 22 and a second heat-denatured layer 28 having the same length in the direction are provided.
  • the arrangement pattern of the first heat-denatured layer 22 and the second heat-denatured layer 28 in the plane direction of the single crystal substrate 20 is the same, but the first heat-denatured layer in the plane direction of the single crystal substrate 20 is the same.
  • the total area 22 is set to be larger than the total area of the second heat-denatured layer 28.
  • the single crystal substrate 20 used for manufacturing the single crystal substrate with a multilayer film of the present embodiment any known single crystal material capable of forming the heat-denatured layers 22 and 28 by laser irradiation is used.
  • any known single crystal material capable of forming the heat-denatured layers 22 and 28 by laser irradiation is used.
  • sapphire, nitride semiconductor, Si, GaAs, quartz, SiC, and the like can be used.
  • the single crystal substrate with a multilayer film of the present embodiment uses a substrate made of a single crystal material.
  • a substrate made of a polycrystalline material for example, a quartz substrate
  • a substrate made of an amorphous material for example, a glass substrate
  • the single crystal substrate 20 is usually one having at least one surface mirror-polished.
  • the multilayer film 30 is formed on the mirror-polished surface side.
  • a single crystal substrate 20 whose both surfaces are mirror-polished may be used as necessary.
  • any one surface can be arbitrarily used as the film formation surface 26.
  • any heat-denatured layer by laser processing or ion implantation or the like is used as the single crystal substrate 20 used for the production of the single crystal substrate with a multilayer film according to the present embodiment. In the state where the composition-modified layer is not formed and no film is formed, the amount of warpage is generally zero, that is, a substantially flat layer.
  • the shape of the single crystal substrate 20 in the planar direction is not particularly limited, and may be, for example, a square shape. However, from the viewpoint of easy application in a production line of various known elements, the single crystal substrate 20 is a circular shape. In particular, a circular shape provided with an orientation flat surface is preferable.
  • the diameter of the single crystal substrate 20 is preferably 50 mm or more, more preferably 75 mm or more, and 100 mm or more. More preferably.
  • the diameter is 50 mm or more, when the single crystal substrate 20 is warped during and after the formation of the multilayer film 30, it is assumed that the single crystal substrate 20 is placed on a flat surface as the diameter increases.
  • the height difference (warpage amount) between the vicinity of the central portion and the vicinity of the end portion of single crystal substrate 20 with respect to the vertical direction becomes large.
  • the first heat-denatured layer 22 is formed after the multilayer film 30 is formed, such a large warp can be corrected and the amount of warp can be easily reduced, so that adverse effects on the subsequent processes are reduced. can do.
  • the second heat-denatured layer 28 is formed before the multilayer film 30 is formed.
  • the warp after the multilayer film 30 is formed is more effective as the diameter of the single crystal substrate 20 is larger than the conventional one. Can be suppressed.
  • the upper limit of the diameter is not particularly limited, but is preferably 300 mm or less from a practical viewpoint.
  • the thickness of the single crystal substrate 20 is preferably 5.0 mm or less, preferably 3.0 mm or less, and more preferably 2.0 mm or less.
  • the thickness is 5.0 mm or less, since the thickness is small, the rigidity of the single crystal substrate 20 is reduced and the film is easily deformed. In this case, the amount of warpage of the single crystal substrate 20 tends to increase after the multilayer film 30 is formed.
  • the first heat-denatured layer 22 is formed after the multilayer film 30 is formed, such a large warp can be corrected and the amount of warp can be easily reduced, so that the adverse effect on the subsequent process can be reduced. it can.
  • the adverse effect on the subsequent process does not increase.
  • the multilayer film 30 can be formed using the single crystal substrate 20 having a smaller thickness so that the polishing allowance becomes smaller. In this case, the time required for polishing in the post process can be shortened, and the productivity in the post process can be improved.
  • the lower limit value of the thickness is not particularly limited, but is preferably 0.05 mm or more and preferably 0.1 mm or more from the viewpoint of securing a region where the heat-denatured layers 22 and 28 can be formed.
  • the shape of the single crystal substrate 20 is a circular shape or a circular shape provided with an orientation flat surface
  • the thickness is preferably 0.3 mm or more, and the diameter is 100 mm.
  • the thickness is more than 0.5 mm, the thickness is preferably 0.5 mm or more.
  • the “multilayer film” includes two or more layers and has a compressive stress before forming the heat-denatured layer (that is, before forming the heat-denatured layer after forming the multilayer film).
  • each of the layers constituting the multilayer film means a film having no step that penetrates the outermost layer film composed of continuous layers having the same film thickness with respect to the planar direction of the substrate.
  • the layer configuration of the multilayer film 30 and the film thickness, material, and crystallinity / non-crystallinity of each layer constituting the multilayer film 30 are produced by further post-processing using the single crystal substrate with the multilayer film of this embodiment.
  • the element is appropriately selected according to the type of the element to be manufactured and the manufacturing process applied when manufacturing the element.
  • At least one layer constituting the multilayer film 30 is a crystalline layer. Further, from the viewpoint that the epitaxial growth can be performed using the crystal plane exposed on the film formation surface 26 of the single crystal substrate 20, at least the film formation surface of the single crystal substrate 20 among the respective layers constituting the multilayer film 30. 26 is preferably a crystalline layer, and all layers constituting the multilayer film 30 may be crystalline layers. Note that the epitaxial growth includes homoepitaxial growth and heteroepitaxial growth including the same composition or mixed crystal.
  • each layer constituting the multilayer film 30 is also appropriately selected according to the element to be manufactured, but considering that the single crystal substrate 20 is made of an inorganic material such as a sapphire substrate, the material constituting each layer.
  • an inorganic material such as a metal material, a metal oxide material, or an inorganic semiconductor material, and it is desirable that all layers be composed of these inorganic materials.
  • an organic material derived from an organic metal may be contained in the inorganic material of the layer.
  • each layer constituting the multilayer film 30 includes various nitride semiconductors such as a light emitting element used for a surface emitting laser, a light receiving element used for an optical sensor or a solar cell, and a semiconductor element used for an electronic circuit.
  • suitable semiconductor device manufacturing include GaN-based, AlGaN-based, and InGaN-based nitride semiconductor crystal layers. In this case, it is preferable to use a sapphire substrate as the single crystal substrate 20.
  • a sapphire substrate is used as the single crystal substrate 20, 1) a buffer layer made of GaN, an n-type contact layer made of n-type GaN, an n-type cladding layer made of n-type AlGaN, an active layer made of n-type InGaN, a p-type cladding layer made of p-type AlGaN, and a p-type GaN
  • a buffer layer made of GaN an n-type contact layer made of n-type GaN, an n-type cladding layer made of n-type AlGaN, an active layer made of n-type InGaN, a p-type cladding layer made of p-type AlGaN, and a p-type GaN
  • the film thickness of the multilayer film 30 is appropriately selected according to the element to be manufactured. Generally, as the film thickness of the multilayer film 30 increases, the amount of warpage of the single crystal substrate 20 after the multilayer film 30 is formed also increases. . Conventionally, the influence on the variation in the quality of the elements and the yield becomes remarkable, and the warpage behavior during the formation of the multilayer film 30 tends to become larger. In this case, the multilayer film 30 is easily cracked due to brittle fracture caused by warpage. However, the amount of warpage can be reduced by correcting the warp caused by the formation of the multilayer film 30 by forming the first heat-denatured layer 22 in the single crystal substrate 20 after the multilayer film 30 is formed. can do. In addition, the upper limit of the film thickness of the multilayer film 30 is not specifically limited. In addition, the number of layers in the multilayer film may be two or more, and the number of layers can be appropriately selected according to the type of element to be manufactured.
  • a method for forming the multilayer film 30 is not particularly limited, and a known film formation method can be used, and film formation is performed by employing different film formation methods and / or film formation conditions for each layer constituting the multilayer film 30. You can also.
  • the film forming method include a liquid phase film forming method such as a plating method, but it is preferable to use a vapor phase film forming method such as a sputtering method or a CVD method (Chemical Vapor Deposition).
  • MOCVD method Metal Organic Chemical Vapor Deposition
  • HVPE method Hydride vapor phase epitaxy
  • MBE method Molecular It is more preferable to use a vapor deposition method such as Beam Epitaxy.
  • the surface of the single crystal substrate 20 on which the multilayer film 30 is formed is particularly preferably in a mirror state (surface roughness Ra is about 1 nm or less). In order to make the surface on which the multilayer film 30 is formed into a mirror surface state, for example, mirror polishing can be performed.
  • the first heat-denatured layer 22 is formed in the single crystal substrate 20 after the multilayer film 30 is formed, so that the single crystal substrate produced after the multilayer film 30 is formed is formed.
  • the warp of the crystal substrate 20 can be corrected. Therefore, in comparison with the conventional method, in the method for manufacturing a single crystal substrate with a multilayer film according to this embodiment, the multilayer film formation step can be performed without considering the occurrence of warpage after the multilayer film 30 is formed. The degree of freedom of the film forming process of the multilayer film 30 is great.
  • the single crystal substrate 20 is allowed to be warped in the multilayer film forming step.
  • film thickness variations and film quality variations occur within the substrate surface.
  • Such variation in the substrate surface generally tends to increase in proportion to the warp of the single crystal substrate 20.
  • the quality variation of elements obtained by post-processing the single crystal substrate with a multilayer film according to this embodiment increases and the yield decreases.
  • the surface on which the multilayer film 30 of the single crystal substrate 20 is formed during the formation of at least one of the layers constituting the multilayer film 30. Is preferably in the range of ⁇ 30 km ⁇ 1 , more preferably in the range of ⁇ 20 km ⁇ 1 .
  • the curvature range shown above is ideally satisfied by all the layers constituting the multilayer film 30.
  • the single crystal substrate 20 exhibits a complicated warping behavior, and therefore it is practical that all the layers constituting the multilayer film 30 satisfy the above-described curvature range. ,Have difficulty.
  • the curvature range shown above is the layer (the highest in the layer that has the greatest influence on the quality variation and the yield of the device when the warp of the single crystal substrate 20 becomes large among the layers constituting the multilayer film 30.
  • the critical layer is satisfied.
  • Such most important layers vary depending on the type of element and the configuration of the multilayer film 30 corresponding to the type of element.
  • the most important layer when the device is a light emitting device using a nitride semiconductor, at least one of the layers constituting the multilayer film 30 can function as a light emitting layer.
  • An example is a semiconductor crystal layer.
  • the method of controlling the curvature of the surface of the single crystal substrate 20 on which the multilayer film 30 is formed during the deposition of at least one of the layers constituting the multilayer film 30 within the above range is not particularly limited.
  • a method of forming the second heat-denatured layer 28 in the single crystal substrate 20 before the multilayer film 30 is formed.
  • any of the methods 1) to 3) described above greatly affects device performance and device productivity / yield. There are many.
  • 4) a method of forming the second heat-denatured layer 28 in the single crystal substrate 20 before the multilayer film 30 is formed. Most preferably, it is adopted.
  • the reason is as follows. That is, in this method, the multilayer film 30 is formed in accordance with the film formation process of the multilayer film 30 by appropriately selecting the formation position and the size of the formation region of the second heat-denatured layer 28 in the single crystal substrate 20. The degree of curvature (curvature) and rigidity of the single crystal substrate 20 before film formation can be easily controlled. For this reason, this method is because it is easy to control the curvature of the single crystal substrate 20 without adversely affecting element performance, element productivity, and yield.
  • FIG. 6 is a schematic explanatory view showing an example of the multilayer film forming step, and specifically shows a process of forming a multilayer film by laminating a nitride semiconductor layer or the like on a sapphire substrate.
  • FIG. 6A is a diagram showing a state before the start of film formation
  • FIG. 6B is a diagram showing a state after the low-temperature buffer layer is formed
  • FIG. 6C is an n ⁇
  • FIG. 6D is a diagram showing a state after the GaN layer is formed
  • FIG. 6D is a diagram showing a state after the InGaN-based active layer having a multiple quantum well structure is formed.
  • a multilayer film 70 (multilayer film 30) composed of three layers is formed on one surface of the sapphire substrate 50.
  • light emitting elements such as an LED chip, can be obtained by performing predetermined post-processing thereafter.
  • Each layer constituting the multilayer film 70 can be formed using, for example, the MOCVD method, the HVPE method, the MBE method, or the like.
  • FIG. 7 is a graph showing an example of the warping behavior of the single crystal substrate in the multilayer film forming step, specifically, a graph showing the warping behavior of the sapphire substrate during the formation of the multilayer film 70 shown in FIG. .
  • the horizontal axis represents time
  • the vertical axis represents the curvature of the sapphire substrate 50 on the film formation surface 52.
  • the positive direction on the vertical axis means that the sapphire substrate 50 is warped so that the film-forming surface 52 side is convex
  • the negative direction on the vertical axis means that the sapphire substrate is concave on the film-forming surface 52 side. This means that 50 is warped.
  • FIG. 8 is a schematic explanatory view for explaining a method of calculating the amount of warpage of the substrate from the curvature of the circular substrate.
  • the radius of curvature of the substrate is R
  • and the diameter of the substrate are approximately D.
  • the spectrum A shows the change in the warping behavior when the multilayer film 70 is formed using the sapphire substrate 50 on which the second heat-denatured layer is not formed. Is shown.
  • spectrum B and spectrum C show the warping behavior when the multilayer film 70 is formed under the same conditions as the measurement of spectrum A, except that the second heat-denatured layer is previously formed on the sapphire substrate 50. It shows a change. Note that the difference between the spectrum B and the spectrum C is that the sapphire substrate used for the measurement of the spectrum C is more than the curvature of the sapphire substrate 50 used for the measurement of the spectrum B (relative value is about +50 km ⁇ 1 in FIG. 7).
  • the second heat-denatured layer is formed in the sapphire substrate 50 so that the curvature of the single 50 (in FIG. 7, the relative value is about +150 km ⁇ 1 ) becomes larger. That is, the sapphire substrate 50 on which the second heat-denatured layer used for measuring the spectrum B is formed in advance is provided with the second heat-denatured layer rather than the sapphire substrate 50 used for measuring the spectrum A. It can be said that the rigidity is improved.
  • the second heat-denatured layer provided in the sapphire substrate 50 used for the spectrum B measurement and the second heat-modified layer provided in the sapphire substrate 50 used for the spectrum C measurement is provided at the same depth position from the film-forming surface 52 side with respect to the thickness direction of the sapphire substrate 50, and the second heat-denatured layer in the plane direction of the sapphire substrate 50 is a lattice pattern. Is provided. However, by making the pitches of the lines constituting the lattice pattern different, the total area of the second heat-denatured layer in the plane direction of the sapphire substrate 50 is larger than that of the sapphire substrate 50 used for the spectrum B measurement. The sapphire substrate 50 used for the measurement of the spectrum C is made larger. For this reason, the curvature of the sapphire substrate 50 used for the measurement of the spectrum C is larger than that of the sapphire substrate 50 used for the measurement of the spectrum B.
  • the sections shown as (a) to (e) along the horizontal axis in FIG. 7 correspond to the respective processes sequentially performed in the multilayer film forming step.
  • the process (a) corresponds to the process of thermally cleaning the film formation surface 52 of the sapphire substrate 50
  • the process (b) corresponds to the process of forming the low temperature buffer layer 60
  • the process (c) Corresponding to the process of forming the n-GaN layer 62
  • the process (d) corresponds to the process of forming the InGaN-based active layer 64
  • the process (e) corresponds to the process of cooling down.
  • the temperature of the sapphire substrate 50 is raised again to about 1000 ° C. to form the n-GaN layer 62.
  • the film formation surface 52 warps in a direction to form a concave surface, and the absolute value of curvature increases. Further, as the film formation proceeds and the film thickness increases, the absolute value of the curvature increases. For this reason, the uniformity of the film thickness and film quality within the substrate surface is remarkably deteriorated.
  • the temperature of the sapphire substrate 50 is lowered to about 700 to 800 ° C., and the InGaN-based active layer 64 is formed.
  • the thickness of the InGaN-based active layer 64 and the uniformity of the In composition in the InGaN-based active layer 64 affects the in-plane uniformity of the emission wavelength, and consequently affects the manufacturing yield of the light-emitting elements.
  • the film thickness of the InGaN-based active layer 64 and the uniformity of the In composition in the InGaN-based active layer 64 are affected by the deposition temperature. For this reason, in the process of forming the (d) InGaN-based active layer 64, it is desirable that the curvature of the sapphire substrate 50 during film formation be as close to 0 as possible in order to improve the temperature uniformity within the substrate surface. In the example shown as spectrum A, the curvature in process (d) is maintained in the vicinity of 0.
  • the sapphire substrate 50 protrudes toward the film formation surface 52 due to a difference in thermal expansion coefficient between the multilayer film 70 and the sapphire substrate 50. Warp in the direction of, and the absolute value of the curvature also increases. In addition, since compressive stress is generated in the multilayer film 70 in the process of being cooled to near room temperature, the sapphire substrate 50 warps so as to protrude toward the film formation surface 52 even after the cool-down is completed in order to release this. Maintained.
  • warpage can be corrected by performing a heat-denatured layer forming step after the multilayer film is formed, and further, by optimizing the arrangement pattern of the first heat-denatured layer 22, the curvature can be reduced. It can also be in the vicinity of zero.
  • a light-emitting element such as an LED chip
  • various post-processes such as a patterning process and a back-wrap process are performed, it is possible to reliably suppress variations in the quality of the light-emitting elements and a decrease in yield due to warping. Can do.
  • the device can be manufactured by further performing various post-processes on the single crystal substrate with a multilayer film of the present embodiment manufactured through the manufacturing process described above.
  • an element portion for producing an element portion that functions as any one element selected from a light-emitting element, a photovoltaic element, and a semiconductor element by performing at least a patterning process on the multilayer film 30 in a subsequent process.
  • an element including an element portion and a single crystal substrate having a size substantially corresponding to the element portion can be manufactured.
  • the layer structure of the multilayer film 30 is appropriately selected according to the type of element to be finally produced.
  • the polishing process, the division planned line forming process, and the dividing process may be performed in this order.
  • the element manufacturing method using the single crystal substrate with a multilayer film according to the present embodiment specifically performs the steps shown in the following (1) to (4) at least in sequence, so that the element portion and the element An element including a single crystal substrate having a size substantially corresponding to the portion can be manufactured.
  • (2) Element of single crystal substrate with element part in which element part is formed on one side Polishing step of polishing a surface where no part is formed until at least the first heat-denatured layer formed in the heat-denatured layer forming step after the multilayer film is formed is removed.
  • the first heat-denatured layer remaining in the single crystal substrate is polished to such an extent that the first heat-denatured layer is not completely removed in the polishing step.
  • the multilayer film is individualized into individual element portions, alignment for laser irradiation cannot be performed after confirming the existence positions of the element portions. For this reason, it is difficult to accurately form the planned division lines corresponding to the individual element portions by the above-described method of forming the heat-denatured layer that also functions as the planned division lines before the individual element portions are manufactured. It is.
  • the division line formation process it is particularly preferable to select the irradiation condition B described above as the laser irradiation condition.
  • the irradiation condition A in which the laser wavelength is in the ultraviolet region the energy of the laser due to the laser wavelength is large, so that the width of the planned division line to be formed is thick and the thickness is also likely to vary with respect to the length direction of the line. For this reason, it may be difficult to perform linear and accurate division in the division step.
  • FIG. 9 is a schematic explanatory view showing an example of the element manufacturing method of the present embodiment. Specifically, using the post-laser-coated substrate 12 shown in the lower part of FIG. 9 (a)), (2) Polishing step (FIG. 9 (b)), (3) Divided line forming step (FIG. 9 (c)), and (4) Dividing step (FIG. 9 (d)). An example of implementation in this order is shown. In the figure, components having the same functions and configurations as those shown in FIG. 1 are denoted by the same reference numerals, and the presence or absence of warpage of the single crystal substrate 20 and the degree thereof are omitted. .
  • a patterning process is performed on the multilayer film 30 of the post-laser-treated substrate 12 shown in the lower part of FIG. 1, whereby the multilayer film 30 is individualized to form a plurality of element portions 32.
  • the patterning process can be performed as follows, for example. First, after forming a resist film on the multilayer film 30, this resist film is developed after exposure using a photomask, and is patterned to be partially removed. Thereafter, the element film 32 is formed by removing the portion of the multilayer film 30 from which the resist film has been removed by etching (FIG. 9A).
  • the surface on which the element portion 32 is formed and the flat polishing plate 80 are bonded together, thereby fixing the single crystal substrate 20 on which the element portion 32 is formed on the polishing plate 80, and the non-deposition surface 24 side.
  • This polishing is performed until at least the first heat-denatured layer 22 is completely removed (FIG. 9B).
  • segmentation scheduled line 90 is formed by irradiating a laser from the non-film-forming surface 24A side after grinding
  • the division line 90 is formed between two adjacent element portions 32 with respect to the planar direction of the polished single crystal substrate 20A (FIG. 9C).
  • the single crystal substrate 20 is divided for each element portion 32 to obtain a plurality of elements 100 (FIG. 9D).
  • the reason for this is as follows. First, it is assumed that the warp by the laser processing is not corrected in the single crystal substrate 20 with the element portion 32 shown in FIG. In this case, the single crystal substrate 20 with the element portion 32 is greatly warped. Even if the warped single crystal substrate 20 with the element portion 32 is attached to the polishing plate 80 using liquefied wax, the single crystal substrate 20 with the element portion 32 fixed to the polishing plate 80 is used. The outer edge side of the non-film-forming surface 24 is warped significantly, or the non-film-forming surface 24 is greatly undulated. In this case, the amount of polishing in the plane of the single crystal substrate 20 is likely to vary during the back lapping process. Such a phenomenon is generally seen when the pre-laser film-coated substrate 10 in which the warp correction by the laser process is not performed at all as shown in the upper part of FIG. 1 is used.
  • the single crystal substrate 20 with the element portion 32 having no warpage is attached to the polishing board 80, it exists at the interface between the single crystal substrate 20 with the element part 32 and the polishing board 80 after bonding. Air bubbles easily remain in the solidified wax layer. As a result, the non-film-formation surface 24 of the single crystal substrate 20 with the element portion 32 fixed to the polishing board 80 is likely to swell, although not as remarkable as when the single crystal substrate 20 with the warped element portion 32 is used. .
  • the reason why bubbles remain in the solidified wax layer is estimated as follows.
  • the liquid wax existing between the single crystal substrate 20 and the polishing plate 80 at the time of attachment is It flows so that it may be extruded from the center part of a bonding interface to the outer edge part side.
  • the single crystal substrate 20 with the element portion 32 is attached to the polishing board 80 and fixed, the warpage of the single crystal substrate 20 with the element portion 32 is flattened so that the single crystal substrate 20 with the element portion 32 is not formed. This is because a pressing force is applied to the entire film surface 24.
  • bubbles entrained at the bonding interface at the time of bonding can easily move to the outer edge side of the bonding interface together with the flow of the liquid wax. Therefore, after the wax is solidified at the bonding interface, it is difficult for bubbles to remain in the solidified wax layer.
  • the single crystal substrate 20 with the element portion 32 is preferably in a state where the non-film-formation surface 24 is slightly warped so as to form a dent rather than a state where there is no warpage.
  • the non-film-forming surface 24 is greatly warped so as to form a dent, and the non-film-forming surface 24 is completely flat. Both problems caused by the state can be solved. That is, due to the large warp of the non-film-forming surface 24, the problem is that the outer edge side of the non-film-forming surface 24 is warped significantly after bonding, or the non-film-forming surface 24 is greatly undulated, and bubbles are generated. Both of the problems that the non-film-formation surface 24 easily swells due to remaining in the solidified wax layer can be solved.
  • the non-film-forming surface 24 of the single crystal substrate 20 with the element portion 32 is slightly warped so as to form a recess, it is very easy to flatten the non-film-forming surface 24 at the time of bonding. .
  • the liquid wax existing between the single crystal substrate 20 and the polishing board 80 flows so as to be pushed out from the center of the bonding interface to the outer edge side. For this reason, at the time of bonding, it is difficult for bubbles entrained at the bonding interface to remain in the wax layer solidified after bonding.
  • laser irradiation when forming the first heat-denatured layer 22 is performed. This can be easily realized by appropriately selecting the conditions and laser irradiation conditions for forming the second heat-denatured layer 28 provided as necessary.
  • the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
  • the first heat-modified layer is formed by laser irradiation (an example of one-time laser irradiation), and the sapphire having the second heat-modified layer formed by laser irradiation.
  • laser irradiation an example of one-time laser irradiation
  • the sapphire having the second heat-modified layer formed by laser irradiation An example will be described roughly when the first heat-denatured layer is formed by laser irradiation after the multilayer film is formed on the substrate (example of twice laser irradiation).
  • Example of one-time laser irradiation A sample in which a multilayer film 70 having a three-layer structure was formed on one surface of a sapphire substrate 50 similar to that shown in FIG. First, after forming the multilayer film 70 on the film formation surface 52 of the sapphire substrate 50, the multilayer film obtained by forming the first heat-denatured layer 22 in a lattice pattern by laser irradiation from the non-film formation surface 54 side. An attached sapphire substrate was produced.
  • the sapphire substrate 50 As the sapphire substrate 50, a circular sapphire substrate with an orientation flat surface (diameter: 4 inches (100 mm), thickness: 650 ⁇ m) was used.
  • the sapphire substrate has one surface mirror-polished, and the multilayer film 70 is formed with the mirror-polished surface as a film formation surface 52. Further, the amount of warpage of the sapphire substrate 50 in a state where no film forming process or laser irradiation process is performed is within a range of ⁇ 30 ⁇ m.
  • a multilayer film 70 having a three-layer structure was formed on the film formation surface 52 of the sapphire substrate 50.
  • the specific film formation conditions are as follows, and the processes were performed in the order of (1) to (5) shown below.
  • (2) Formation of the low temperature buffer layer 60 The substrate temperature during film formation was set to 530 ° C., and the low temperature buffer layer 60 was formed at a film formation rate of 0.16 nm / s until the film thickness reached 30 nm.
  • n-GaN layer 62 Formation of n-GaN layer 62
  • the n-GaN layer 62 was formed at a film formation temperature of 1050 ° C. and a film formation rate of 2000 nm / s until the film thickness reached 3500 nm.
  • (4) Formation of InGaN-based active layer 64 The InGaN-based active layer 64 was formed at a film formation rate of 10 nm / s at a film formation rate of 10 nm / s until the film thickness reached 408 nm.
  • Cool down The sapphire substrate 50 having the low-temperature buffer layer 60, the n-GaN layer 62, and the InGaN-based active layer 64 formed in this order on one side was cooled to near room temperature.
  • the non-film-forming surface 54 of the single crystal substrate 50 on which the multilayer film 70 was formed was mirror-polished.
  • the sapphire substrate 50 was fixed by vacuum suction with the surface on which the multilayer film 70 was formed as the lower surface side.
  • the first thermally denatured layer 22 was formed by performing laser irradiation under the following irradiation conditions from the non-deposition surface 54 side where the multilayer film 70 of the sapphire substrate 50 was not formed.
  • the sapphire substrate 50 was fixed on the sample stage so that the vertical scanning direction of the sample stage coincided with the orientation flat of the sapphire substrate 50.
  • the sample stage was scanned in the vertical direction and the horizontal direction with respect to the laser irradiation apparatus, and the first heat-denatured layer 22 was formed so as to form a lattice pattern in the planar direction of the sapphire substrate.
  • a sample in which the pitch between lines of the lattice pattern was changed by changing the scanning speed of the sample stage was also produced.
  • ⁇ Laser wavelength 1045 nm
  • Pulse width 500 fs
  • Repetition frequency 100 kHz
  • Spot size 1.6-3.5 ⁇ m
  • Laser power 0.3W
  • Sample stage scanning speed 400 mm / s (select as appropriate within the range shown on the left according to the pitch between lines)
  • the warpage amount of the sapphire substrate 50 after the multilayer film formation is any value, by appropriately selecting the formation region of the first heat-denatured layer 22 in the plane direction of the sapphire substrate 50, etc. It has been found that the amount of warpage caused by the formation of the multilayer film 70 can be offset by a desired amount. Therefore, from the results shown in FIG. 10, for example, when the amount of warpage after the multilayer film is formed is about 100 ⁇ m, the warp caused by the film formation of the multilayer film 70 is applied to the sapphire substrate 50 by laser irradiation. If correction is desired until the surface becomes substantially flat, it can be said that the pitch between the lines is set to 150 ⁇ m and laser irradiation is performed.
  • Example of twice laser irradiation A sample in which a multilayer film 70 having a three-layer structure was formed on one surface of a sapphire substrate 50 similar to that shown in FIG. First, the second heat-denatured layer 28 is formed in a lattice pattern by laser irradiation from the film-forming surface 52 side of the sapphire substrate 50. Next, the multilayer film 70 is formed on the film-forming surface 52, and then non-deformed. A sapphire substrate with a multilayer film obtained by forming the first thermally denatured layer 22 in a lattice pattern by laser irradiation from the film surface 54 side was produced.
  • the amount of warpage before and after the laser irradiation before the multilayer film formation and the direction of the warp viewed from the film forming surface side, and the amount of warpage before and after the laser irradiation after the multilayer film formation and the film surface side viewed The relationship between the direction of warpage, the change in the amount of warpage before and after laser irradiation with respect to the pitch between lines during laser irradiation after multilayer film formation, and the maximum and minimum values of curvature of the sapphire substrate during multilayer film formation The difference was evaluated. Details of test conditions and evaluation results will be described below.
  • the sapphire substrate 50 As the sapphire substrate 50, a circular sapphire substrate with an orientation flat surface (diameter: 2 inches (50.8 mm), thickness: 430 ⁇ m) was used. The sapphire substrate 50 is mirror-polished on one side, and the multilayer film 70 is formed with the mirror-polished surface as a film-forming surface 52. In addition, the amount of warpage of the sapphire substrate 50 in a state where no film forming process or laser irradiation process is performed is within a range of ⁇ 10 ⁇ m.
  • the second heat-denatured layer 28 is formed by placing the sapphire substrate 50 on the flat sample stage so that the film-forming surface 52 becomes the upper surface, and fixing the sapphire substrate 50 by vacuum suction.
  • the laser irradiation was performed from the 52 side under the following irradiation conditions.
  • the sapphire substrate 50 was fixed on the sample stage so that the vertical scanning direction of the sample stage coincided with the orientation flat of the sapphire substrate 50.
  • the sample stage was scanned in the vertical direction and the horizontal direction with respect to the laser irradiation apparatus, and the second heat-denatured layer 28 was formed so as to have a lattice pattern in the plane direction of the sapphire substrate 50.
  • the pitch between lines was changed by changing the scanning speed of the sample stage.
  • ⁇ Laser wavelength 1045 nm
  • Pulse width 500 fs
  • Repetition frequency 100 kHz
  • Spot size 1.6-3.5 ⁇ m
  • Laser power 0.3W
  • Sample stage scanning speed 400 mm / s (select as appropriate within the range shown on the left according to the pitch between lines)
  • a multilayer film 70 having a three-layer structure was formed on the film formation surface 52 of the sapphire substrate 50 on which the second heat-denatured layer 28 was formed.
  • the specific film formation conditions are as follows, and the processes were performed in the order of (1) to (5) shown below.
  • (2) Formation of the low temperature buffer layer 60 The substrate temperature during film formation was set to 530 ° C., and the low temperature buffer layer 60 was formed at a film formation rate of 0.16 nm / s until the film thickness reached 30 nm.
  • n-GaN layer 62 Formation of n-GaN layer 62
  • the n-GaN layer 62 was formed at a film formation temperature of 1050 ° C. and a film formation rate of 2000 nm / s until the film thickness reached 3500 nm.
  • (4) Formation of InGaN-based active layer 64 The InGaN-based active layer 64 was formed at a film formation rate of 10 nm / s at a film formation rate of 10 nm / s until the film thickness reached 408 nm.
  • Cool down The sapphire substrate 50 having the low-temperature buffer layer 60, the n-GaN layer 62, and the InGaN-based active layer 64 formed in this order on one side was cooled to near room temperature.
  • the non-film-forming surface 54 of the single crystal substrate 50 on which the multilayer film 70 was formed was mirror-polished.
  • the sapphire substrate 50 was fixed by vacuum suction with the surface on which the multilayer film 70 was formed as the lower surface side.
  • the first thermally denatured layer 22 was formed by performing laser irradiation under the following irradiation conditions from the non-deposition surface 54 side where the multilayer film 70 of the sapphire substrate 50 was not formed.
  • the sapphire substrate 50 was fixed on the sample stage so that the vertical scanning direction of the sample stage coincided with the orientation flat of the sapphire substrate 50.
  • the sample stage was scanned in the vertical direction and the horizontal direction with respect to the laser irradiation apparatus, and the first heat-denatured layer 22 was formed so as to form a lattice pattern in the plane direction of the sapphire substrate 50.
  • a sample in which the pitch between lines of the lattice pattern was changed by changing the scanning speed of the sample stage was also produced.
  • ⁇ Laser wavelength 1045 nm
  • Pulse width 500 fs
  • Repetition frequency 100 kHz
  • Spot size 1.6-3.5 ⁇ m
  • Laser power 0.3W
  • Sample stage scanning speed 400 mm / s (select as appropriate within the range shown on the left according to the pitch between lines)
  • the amount of warpage after the second laser irradiation after the multilayer film formation is larger than the amount of warpage before the first laser irradiation before the multilayer film formation, but after the first laser irradiation before the multilayer film formation.
  • the amount of warpage was smaller. From this result, the second laser irradiation after the multilayer film formation completely cancels the warp caused by the multilayer film deposition, and further, the first laser before the multilayer film deposition. It was found that the warpage caused by irradiation could be offset to some extent.
  • Table 4 shows the measurement results of the difference between the maximum value and the minimum value of the curvature of the sapphire substrate during the multilayer film formation of Examples B1 to B4 and Comparative Example B1 shown in Table 3.
  • Table 4 it was found that the warpage behavior during the multilayer film formation was suppressed in any of the Examples compared to Comparative Example B1. Further, as shown in Examples B1 to B4, it was found that the warping behavior during the multilayer film formation is further suppressed as the pitch between the lines at the first laser irradiation is reduced.
  • the sapphire substrate 50 As the sapphire substrate 50, a circular sapphire substrate with an orientation flat surface (diameter: 4 inches (100 mm), thickness: 650 ⁇ m) was used.
  • the sapphire substrate has one surface mirror-polished, and the multilayer film 70 is formed with the mirror-polished surface as a film formation surface 52. Further, the amount of warpage of the sapphire substrate 50 in a state where no film forming process or laser irradiation process is performed is within a range of ⁇ 30 ⁇ m.
  • a multilayer film 70 having a three-layer structure was formed on the film formation surface 52 of the sapphire substrate 50.
  • the specific film formation conditions are as follows, and the processes were performed in the order of (1) to (5) shown below.
  • (2) Formation of the low temperature buffer layer 60 The substrate temperature during film formation was set to 530 ° C., and the low temperature buffer layer 60 was formed at a film formation rate of 0.16 nm / s until the film thickness reached 30 nm.
  • n-GaN layer 62 Formation of n-GaN layer 62
  • the n-GaN layer 62 was formed at a film formation temperature of 1050 ° C. and a film formation rate of 2000 nm / s until the film thickness reached 3500 nm.
  • (4) Formation of InGaN-based active layer 64 The InGaN-based active layer 64 was formed at a film formation rate of 10 nm / s at a film formation rate of 10 nm / s until the film thickness reached 408 nm.
  • Cool down The sapphire substrate 50 having the low-temperature buffer layer 60, the n-GaN layer 62, and the InGaN-based active layer 64 formed in this order on one side was cooled to near room temperature.
  • the non-film-forming surface 54 of the single crystal substrate 50 on which the multilayer film 70 was formed was mirror-polished.
  • the sapphire substrate 50 was fixed by vacuum suction with the surface on which the multilayer film 70 was formed as the lower surface side.
  • the first thermally denatured layer 22 was formed by performing laser irradiation under the following irradiation conditions from the non-deposition surface 54 side where the multilayer film 70 of the sapphire substrate 50 was not formed.
  • the sapphire substrate 50 was fixed on the sample stage so that the vertical scanning direction of the sample stage coincided with the orientation flat of the sapphire substrate 50.
  • the sample stage was scanned in the vertical direction and the horizontal direction with respect to the laser irradiation apparatus, and the first heat-denatured layer 22 was formed so as to form a lattice pattern in the planar direction of the sapphire substrate.
  • the pitch between the lines of the lattice pattern was 500 ⁇ m.
  • ⁇ Laser wavelength 1045 nm
  • Pulse width 500 fs
  • Repetition frequency 100 kHz
  • Spot size 1.6-3.5 ⁇ m
  • Laser power 0.3W
  • Sample stage scanning speed 400 mm / s (select as appropriate within the range shown on the left according to the pitch between lines)
  • the sapphire substrate 50 As the sapphire substrate 50, a circular sapphire substrate with an orientation flat surface (diameter: 4 inches (100 mm), thickness: 650 ⁇ m) was used.
  • the sapphire substrate has one surface mirror-polished, and the multilayer film 70 is formed with the mirror-polished surface as a film formation surface 52. Further, the amount of warpage of the sapphire substrate 50 in a state where no film forming process or laser irradiation process is performed is within a range of ⁇ 30 ⁇ m.
  • a multilayer film 70 having a three-layer structure was formed on the film formation surface 52 of the sapphire substrate 50.
  • the specific film formation conditions are as follows, and the processes were performed in the order of (1) to (5) shown below.
  • (2) Formation of the low temperature buffer layer 60 The substrate temperature during film formation was set to 530 ° C., and the low temperature buffer layer 60 was formed at a film formation rate of 0.16 nm / s until the film thickness reached 30 nm.
  • n-GaN layer 62 Formation of n-GaN layer 62
  • the n-GaN layer 62 was formed at a film formation temperature of 1050 ° C. and a film formation rate of 2000 nm / s until the film thickness reached 3500 nm.
  • (4) Formation of InGaN-based active layer 64 The InGaN-based active layer 64 was formed at a film formation rate of 10 nm / s at a film formation rate of 10 nm / s until the film thickness reached 408 nm.
  • Cool down The sapphire substrate 50 having the low-temperature buffer layer 60, the n-GaN layer 62, and the InGaN-based active layer 64 formed in this order on one side was cooled to near room temperature.
  • the non-film-forming surface 54 of the single crystal substrate 50 on which the multilayer film 70 was formed was mirror-polished.
  • the sapphire substrate 50 was fixed by vacuum suction with the surface on which the multilayer film 70 was formed as the lower surface side.
  • the first thermally denatured layer 22 was formed by performing laser irradiation under the following irradiation conditions from the non-deposition surface 54 side where the multilayer film 70 of the sapphire substrate 50 was not formed.
  • the sapphire substrate 50 was fixed on the sample stage so that the vertical scanning direction of the sample stage coincided with the orientation flat of the sapphire substrate 50.
  • the sample stage was scanned in the vertical direction and the horizontal direction with respect to the laser irradiation apparatus, and the first heat-denatured layer 22 was formed so as to form a lattice pattern in the planar direction of the sapphire substrate.
  • a sample in which the pitch between lines of the lattice pattern was changed by changing the scanning speed of the sample stage was also produced.
  • ⁇ Laser wavelength 1045 nm
  • Pulse width 500 fs
  • Repetition frequency 100 kHz
  • Spot size 1.6-3.5 ⁇ m
  • Laser power 0.3W
  • Sample stage scanning speed 400 mm / s (select as appropriate within the range shown on the left according to the pitch between lines)
  • Table 5 shows the amount of warpage before and after laser irradiation of the single crystal substrate with the multilayer film 70 used for the evaluation (sample C1 to sample C5), the direction of warpage seen from the non-deposition surface 54 side, and after the multilayer film is formed.
  • the outline of the laser irradiation conditions is shown.
  • the amount of warpage of samples C1 to C4 subjected to laser treatment is smaller than that of sample C5 not subjected to laser treatment, and warpage caused by the formation of the multilayer film 70 was found to have been corrected.
  • about the curvature amount shown in Table 5 it measured with the linear gauge.
  • the amount of warpage was verified and confirmed with a laser interferometer.
  • the direction of warping as seen from the non-deposition surface 54 side shown in Table 5 was measured with a laser interferometer.
  • the patterning process of the multilayer film 70 was abbreviate
  • the polishing plate 80 an alumina plate having a diameter of 140 mm and a thickness of 20 mm and flat on both sides was used. The amount of warpage of both surfaces of this polishing disk measured with a linear gauge and a laser interferometer is ⁇ 1.5 ⁇ m or less, respectively, even in the method of measuring the chair.
  • a wax heated to a liquid state (melting point: about 120 degrees) is applied thinly and uniformly on the entire surface of one side of the polishing board 80, and then a sample is placed on the polishing board 80 and bonded together. Furthermore, another polishing disk 80 was placed on the sample as a weight. Subsequently, a load of 20 kg was uniformly applied to the entire surface of the bonding interface through the polishing disk 80 used as a weight. In this state, the sample (a single crystal substrate with a multilayer film) was attached on the polishing board 80 by solidifying the wax by natural cooling.
  • Example C3 and Example C4 in which the warpage amount before bonding is controlled to about 40 ⁇ m to 55 ⁇ m, compared to Example C1 and Example C2 in which the warpage amount before bonding is controlled to about 40 ⁇ m or less, the bonding is not performed. Generation of bubbles at the mating interface was not confirmed. Furthermore, in Example C3 in which the amount of warpage before bonding was smaller than that in Example C4, the amount of warpage after bonding could be reduced to the same extent as in Examples C1 and C2.
  • the warpage before bonding is slightly more than flattened by laser irradiation treatment. It can be said that it is preferable to keep the warped state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Laser Beam Processing (AREA)

Abstract

 多層膜の成膜により生じた反りを矯正すること。 単結晶基板20と、単結晶基板20の片面に形成された2つ以上の層を有しかつ圧縮応力を有する多層膜30とを含み、単結晶基板20をその厚み方向において2等分して得られる2つの領域20U、20Dのうち、少なくとも単結晶基板20の多層膜30が形成された面側と反対側の面側の領域20D内に、熱変性層22が設けられている多層膜付き単結晶基板、その製造方法および当該製造方法を用いた素子製造方法。

Description

多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法
 本発明は、多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法に関するものである。 
 窒化ガリウムに代表される窒化物半導体は、バンドギャップが広く、青色系の発光が可能であることから、LED(発光ダイオード)やLD(半導体レーザ)等に広く用いられている。近年は、更なる発光効率アップや高輝度化への取り組みが盛んに行われている。
 一般的な窒化物半導体発光素子構造は、サファイア基板上に、GaNより成るバッファ層、n型GaNより成るn型コンタクト層、n型AlGaNより成るn型クラッド層、n型InGaNより成る活性層、p型AlGaNよりなるp型クラッド層、p型GaNより成るp型コンタクト層が順に積層されたダブルヘテロ構造を有している。活性層は、InxGa1-xN(0≦X≦1)よりなる井戸層のみの単一量子井戸(SQW:Single Quantum Well)構造もしくは、InxGa1-xN(0≦X≦1)よりなる井戸層と、InyGa1-yN(0≦y≦1、y<x)よりなる障壁層との多重量子井戸構造(MQW:Multi Quantum Well)のInを含む構成となっている(特許文献1参照)。
 サファイア基板上に上述した多層膜を形成すると、多層膜とサファイアとの熱膨張係数差及び格子定数差に起因して、成膜後のサファイア基板に反りが発生することが知られている。たとえば、非特許文献1には、サファイア基板上に、AlNバッファ層とGaN層とをエピタキシャル成長させ、成膜により発生する熱応力がGaN層膜厚に依存してどのように緩和されるかを調べた結果が開示されている。この非特許文献1では、膜厚が厚くなるに従って基板の反りが大きくなり、それに伴って界面欠陥(Interference Defects)、マイクロクラック(Microcracks)や転位(Dislocation)、マクロクラック(Macrocracks)が発生することで応力を緩和するということが明らかにされている。
 また、非特許文献2のFig.4には、サファイア基板上にGaN系LED構造をエピタキシャル成長させる工程を通して発生する基板の反りを、In-situ観察する解析手法が開示されている。これによると、一連の成膜工程において、成膜物質、成膜温度、膜厚の変化によりサファイア基板の曲率が大きく変化することが示されている。さらに、活性層であるInGaN層の成長段階でサファイア基板の曲率がほぼ0となるような成膜工程とすることによって、基板面内における発光波長を均一化することが明らかにされている。
 以上に説明したように、一連の成膜工程を通してサファイア基板の反りが大きく変化し、窒化物半導体膜の品質や発光波長の均一性に影響を与えることが知られている。なお、実際には、基板との熱膨張係数差を利用して、InGaN系活性層において基板曲率がほぼ0となるように、サファイア基板の反り形状及び反り量が設定されることが多い。このような背景から、サファイア基板の形状及び反り量を制御するために、様々な研磨加工技術が検討されている(特許文献2等参照)。
 一方で、サファイア基板上に窒化物半導体が積層された発光素子を分割する際に、80~90μm程度の厚みを有するサファイア基板の内部に、パルスレーザを集光し、発光素子の分割予定ラインに対応する変質領域を形成する技術が知られている(特許文献3)。特許文献3に開示される技術は、サファイア基板にレーザ光線を照射して個々の発光素子に分割しても発光素子の輝度低下を抑制し得るサファイア基板の加工方法であり、発光素子の分割を目的としている。
特許第3250438号公報 特開2006-347776号公報 特開2008-6492号公報
Jpn.J. Appl. Phys. Vol. 32 (1993) pp. 1528-1533 J. Cryst. Growth, Vol.272, Issues 1-4, (2004), pp.94-99
 以上に説明したように、発光素子などの各種素子を作製するために、サファイア基板などの単結晶基板上に、素子の構成に応じた多層膜を成膜すると、成膜後の基板(多層膜付き単結晶基板)は、通常は、反ってしまう。一方、素子を製造する上では、多層膜付き単結晶基板に対して、通常は、さらに種々の後工程が実施される。しかしながら、多層膜付き基板が反った状態で、後工程を実施する場合、素子の品質ばらつきや歩留まり低下などを招いていた。
 たとえば、後工程において多層膜をパターニング処理しようとした場合、以下に説明する問題が発生する。すなわち、多層膜をパターニング処理する場合、フォトマスクを用いて、多層膜上に形成されたレジストを露光することになる。この際、多層膜付き単結晶基板は反った状態である。それゆえ、単結晶基板の中央部に位置する多層膜の表面に対して露光のために照射される光の焦点を合わせると、単結晶基板の端部近傍に位置する多層膜の表面では、焦点がぼけることになる。この場合、多層膜の面内において露光ムラが生じるため、後工程を経て製造される素子の品質ばらつきや、歩留まりの低下を招くことになる。
 また、後工程において、多層膜付き単結晶基板の多層膜が形成された面と反対側の面を研磨(バックラップ処理)しようとした場合、多層膜付き単結晶基板の多層膜が形成された面を平坦な研磨盤に貼り付けて固定する必要がある。しかし、この場合、多層膜付き単結晶基板が反っていると、バックラップ処理する面を平坦にするために、貼り付け時に、多層膜付き単結晶基板に対して大きな圧力を加えて貼り付け処理を行う必要がある。しかしながら、反りが大きいほど、大きな圧力を加えなければならなくなるため、結果として、多層膜付き基板にクラックが生じ易くなり、歩留まりの低下を招くことになる。なお、このような問題の発生を回避するために、より厚みのある単結晶基板を用いることも考えられる。しかしながら、この方法では、バックラップ処理に必要な研磨量が増大し、研磨時間がより長時間となるため、生産性が低下し実用性に欠ける。
 上述した事情を考慮すれば、多層膜付き単結晶基板は、出来る限り平坦な状態となるように、後工程実施前において、多層膜の成膜により生じた反りが矯正されていることが好ましいといえる。
 本発明は、上記事情に鑑みてなされたものであり、多層膜の成膜により生じた反りが矯正された多層膜付き単結晶基板、その製造方法、および、当該製造方法を利用した素子製造方法を提供することを課題とする。
 上記課題は以下の本発明により達成される。すなわち、 
 本発明の多層膜付き単結晶基板は、単結晶基板と、該単結晶基板の片面に形成された2つ以上の層を有する多層膜と、を含み、単結晶基板をその厚み方向において2等分して得られる2つの領域のうち、少なくとも単結晶基板の多層膜が形成された面側と反対側の面側の領域内に、熱変性層が設けられていることを特徴とする。
 本発明の多層膜付き単結晶基板の一実施態様は、熱変性層が、単結晶基板に対するレーザ照射により形成されることが好ましい。
 本発明の多層膜付き単結晶基板の他の実施態様は、熱変性層が、多層膜と平行に設けられていることが好ましい。
 本発明の多層膜付き単結晶基板の他の実施態様は、単結晶基板の厚み方向の相対位置を、多層膜が設けられた側の面を0%と仮定し、多層膜が設けられた面と反対側の面を100%とし仮定した際に、熱変性層が、単結晶基板の厚み方向の50%を超え95%以下の範囲内に設けられていることが好ましい。
 本発明の多層膜付き単結晶基板の他の実施態様は、熱変性層が、単結晶基板の平面方向に対して、
i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、
ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、
iii)同心円状、 
iv)単結晶基板の中心点に対して略点対称に形成された形状、 
v)単結晶基板の中心点を通じる直線に対して略線対称に形成された形状、
vi)ストライプ形状、ならびに、 
vii)らせん形状 
 から選択される少なくともいずれか1つのパターン形状で設けられていることが好ましい。
 本発明の多層膜付き単結晶基板の他の実施態様は、複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることが好ましい。
 本発明の多層膜付き単結晶基板の他の実施態様は、格子形状を成すパターンを構成するラインのピッチが、50μm~2000μmの範囲内であることが好ましい。
 本発明の多層膜付き単結晶基板の他の実施態様は、単結晶基板の厚み方向の相対位置を、多層膜が設けられた側の面を0%と仮定し、多層膜が設けられた面と反対側の面を100%とし仮定した際に、第2の熱変性層が、単結晶基板の厚み方向の0%以上50%未満の範囲内に設けられていることが好ましい。
 本発明の多層膜付き単結晶基板の他の実施態様は、単結晶基板の材質が、サファイアであることが好ましい。
 本発明の多層膜付き単結晶基板の他の実施態様は、単結晶基板の直径が50mm以上300mm以下であることが好ましい。
 本発明の多層膜付き単結晶基板の他の実施態様は、単結晶基板の厚みが0.05mm以上5.0mm以下であることが好ましい。
 本発明の多層膜付き単結晶基板の他の実施態様は、多層膜を構成する少なくともいずれか1層が、窒化物半導体結晶層であることが好ましい。
 本発明の多層膜付き単結晶基板の他の実施態様は、多層膜に対して、少なくともパターニング処理を施すことにより、発光素子、光発電素子、半導体素子から選択される素子が作製できることが好ましい。
 本発明の多層膜付き単結晶基板の製造方法は、片面に、2つ以上の層を有し、かつ、圧縮応力を有する多層膜が形成された単結晶基板の多層膜が形成された面側と反対側の面側から、レーザを照射することにより、単結晶基板をその厚み方向において2等分して得られる2つの領域のうち、少なくとも単結晶基板の多層膜が形成された面側と反対側の面側の領域内に、熱変性層を形成する多層膜成膜後熱変性層形成工程を、少なくとも経ることにより、多層膜付き単結晶基板を製造することを特徴とする。
 本発明の多層膜付き単結晶基板の製造方法の一実施態様は、レーザの照射が、下記A~Bに示す少なくともいずれか1つに記載の照射条件を満たすように実施されることが好ましい。
<照射条件A> 
・レーザ波長:200nm~350nm 
・パルス幅:ナノ秒オーダー 
<照射条件B> 
・レーザ波長:350nm~2000nm 
・パルス幅:フェムト秒オーダー~ピコ秒オーダー 
 本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、熱変性層が、多層膜と平行となるように形成されることが好ましい。
 本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、単結晶基板の厚み方向の相対位置を、多層膜が設けられた側の面を0%と仮定し、多層膜が設けられた面と反対側の面を100%と仮定した際に、熱変性層が、単結晶基板の厚み方向の50%を超え95%以下の範囲内に位置するように形成されることが好ましい。
 本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、 
 熱変性層が、単結晶基板の平面方向に対して、 
i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、
ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、
iii)同心円状、 
iv)単結晶基板の中心点に対して略点対称に形成された形状、 
v)単結晶基板の中心点を通じる直線に対して略線対称に形成された形状、
vi)ストライプ形状、ならびに、 
vii)らせん形状 
 から選択される少なくともいずれか1つのパターン形状を描くように形成されることを特徴とすることが好ましい。
 本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることが好ましい。
 本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、格子形状を成すパターンを構成するラインのピッチが、50μm~2000μmの範囲内であることが好ましい。
 本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、 
(1)単結晶基板の片面側からレーザを照射することにより、 
 単結晶基板の厚み方向の相対位置を、レーザが照射される側の面を0%と仮定し、レーザが照射される側の面と反対側の面を100%と仮定した際に、
 熱変性層が、単結晶基板の厚み方向の0%以上50%未満の範囲内に位置するように形成する多層膜成膜前熱変性層形成工程と、
(2)熱変性層が形成された単結晶基板のレーザが照射された側の面に、2つ以上の層を有し、かつ、圧縮応力を有する多層膜を形成する多層膜形成工程と、
(3)多層膜成膜後熱変性層形成工程と、 
を、この順に少なくとも経ることにより、多層膜付き単結晶基板を製造することが好ましい。
 本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、単結晶基板の材質が、サファイアであることが好ましい。
 本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、単結晶基板の直径が50mm以上300mm以下であることが好ましい。
 本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、単結晶基板の厚みが0.05mm以上5.0mm以下であることが好ましい。
 本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、多層膜を構成する少なくともいずれか1層が、窒化物半導体結晶層であることが好ましい。
 本発明の素子製造方法は、片面に、2つ以上の層を有し、かつ、圧縮応力を有する多層膜が形成された単結晶基板の多層膜が形成された面側と反対側の面側から、レーザを照射することにより、単結晶基板をその厚み方向において2等分して得られる2つの領域のうち、少なくとも単結晶基板の多層膜が形成された面側と反対側の面側の領域内に、熱変性層を形成する多層膜成膜後熱変性層形成工程を、少なくとも経ることにより、多層膜付き単結晶基板を製造し、さらに、当該多層膜付き単結晶基板の多層膜に対して、少なくともパターニング処理を施すことにより、発光素子、光発電素子、半導体素子から選択されるいずれか1つの素子として機能する素子部分を作製する素子部分形成工程を少なくとも経て、素子部分と当該素子部分に略対応するサイズを有する単結晶基板とを含む素子を製造することを特徴とする。
 以上に説明したように本発明によれば、多層膜の成膜により生じた反りが矯正された多層膜付き単結晶基板、その製造方法、および、当該製造方法を利用した素子製造方法を提供することができる。
本実施形態の多層膜付き単結晶基板の製造方法の一例を示す模式説明図である。 図1に示すものと対応関係にある本実施形態の多層膜付き単結晶基板の製造方法の一例を示す模式説明図である。 単結晶基板の平面方向に対する熱変性層の配置パターン形状の一例を示す平面図である。ここで、図3(a)は、複数本のラインを基板のオリフラ面に対して垂直に形成したストライプ形状を示す平面図であり、図3(b)は、複数本のラインを基板のオリフラ面に対して水平に形成したストライプ形状を示す平面図であり、図3(c)は、図3(a)および図3(b)に示す配置パターン形状を組み合わせた格子形状を示す平面図であり、図3(d)は、同一サイズの複数の正六角形を、正六角形の6つの頂点全てが当該正六角形に隣接する正六角形のいずれか一つの頂点と必ず重なり合うように規則的に配置した形状を示す平面図であり、図3(e)は、同心円形状を示す平面図である。 本実施形態の多層膜付き単結晶基板の製造方法の他の例を示す模式説明図である。 本実施形態の多層膜付き単結晶基板の他の例を示す模式断面図である。 多層膜形成工程の一例を示す模式説明図である。ここで、図6(a)は成膜開始前の状態を示す図であり、図6(b)は低温バッファ層を形成した後の状態を示す図であり、図6(c)はn-GaN層を形成した後の状態を示す図であり、図6(d)は多重量子井戸構造を有するInGaN系活性層を形成した後の状態を示す図である。 多層膜形成工程における単結晶基板の反り挙動の一例を示すグラフである。 円形状基板の曲率から基板の反り量を計算する方法を説明する模式説明図である。 本実施形態の素子製造方法の一例を示す模式説明図である。ここで、図9(a)は素子部分形成工程を示す図であり、図9(b)は研磨工程を示す図であり、図9(c)は分割予定ライン形成工程を示す図であり、図9(d)は分割工程を示す図である。 表2に示す実施例A1~実施例A5の実験条件において、多層膜成膜後に同等のそり量を有する多層膜付き単結晶基板について、レーザ照射によって生じた反り量を示すグラフである。 第1の熱変性層形成位置であるサファイア基板の厚み方向に対する、前記サファイア基板の曲率変化量の関係について評価した結果を示すグラフである。
10 レーザ処理前膜付き基板 
10A 2回目のレーザ処理前膜付き基板 
12 レーザ処理後膜付き基板(多層膜付き単結晶基板) 
12A 2回目のレーザ処理後膜付き基板(多層膜付き単結晶基板) 
20 単結晶基板 
20A 研磨後の単結晶基板 
20D 非成膜面側領域 
20U 成膜面側領域 
22、22A、22B、22C、22D 熱変性層(第1の熱変性層) 
24 非成膜面 
24A 研磨後の非成膜面 
26 成膜面 
28、28A、28B、28C、28D 第2の熱変性層 
30 多層膜 
32 素子部分 
40 レーザ照射装置 
50 サファイア基板(単結晶基板) 
52 成膜面 
54 非成膜面 
60 低温バッファ層 
62 n-GaN層 
64 InGaN系活性層 
70 多層膜 
80 研磨盤 
90 分割予定ライン 
100 素子 
(多層膜付き単結晶基板およびその製造方法) 
 本実施形態の多層膜付き単結晶基板は、単結晶基板と、単結晶基板の片面に形成された2つ以上の層を有し、かつ、熱変性層形成前に圧縮応力を有する多層膜と、を含み、単結晶基板をその厚み方向において2等分して得られる2つの領域のうち、少なくとも単結晶基板の多層膜が形成された面側と反対側の面側の領域内に、熱変性層が設けられていることを特徴とする。
 本実施形態の多層膜付き単結晶基板では、単結晶基板の片面に圧縮応力を有する多層膜が設けられている。それゆえ、この圧縮応力を解放するために、多層膜には、単結晶基板の平面方向に対して伸びようとする力が常に作用する。従って、通常であれば、多層膜付き単結晶基板は、多層膜が設けられた側に凸を成すように大きく反ってしまうことになる。
 しかしながら、本実施形態の多層膜付き単結晶基板においては、単結晶基板をその厚み方向において2等分して得られる2つの領域のうち、少なくとも単結晶基板の多層膜が形成された面側と反対側の面側の領域内に、熱変性層が設けられている。このため、単結晶基板をその厚み方向において2等分するラインの多層膜が設けられた側の領域内おいて、多層膜中の圧縮応力を解放する力(単結晶基板の平面方向に広がろうとする力)が、単結晶基板の多層膜が形成された面側と反対側の面側の領域内において、熱変性層に起因して生じる単結晶基板の平面方向に広がろうとする力により相殺される。その結果、多層膜の成膜に起因して生じる反りが矯正される。この場合、この反りが矯正されることで単結晶基板ができるだけ平坦な状態に近づくことが基本的に望ましいが、多層膜の成膜に起因して生じた反りの向きは同じままで、反りの程度が多少小さくなっているだけでもよく、あるいは、多層膜の成膜に起因して生じた反りの向きを反転させて逆向きに反らせるように、多層膜の成膜に起因して生じた反りを矯正してもよい。なお、多層膜の形成に起因する反りが矯正されることで単結晶基板が略平坦な状態に近づいた場合、従来の多層膜付き単結晶基板を用いる場合と比較して、本実施形態の多層膜付き単結晶基板を用いて、後工程を実施して素子を作製するときは、素子の品質ばらつきを抑制したり、歩留まりを向上させることがより容易となる。
 なお、「熱変性層」は、単結晶基板の一部の領域を局所的に加熱することにより形成される層である。この熱変性層は、単結晶基板をその厚み方向において2等分するラインで分割される2つの領域のうちの一方の領域内に、この熱変性層を形成した場合に、当該一方の領域側に凸を成すように単結晶基板を反らす作用を有する。このことから、熱変性層も、多層膜と同様に圧縮応力を有しているものと推定される。
 この熱変性層の形成方法としては特に限定されるものではないが、通常は、単結晶基板に対してレーザ照射する方法が用いられる。この場合、レーザ照射された領域に存在する原子の多光子吸収により、当該領域が局所的に加熱され、周囲の領域に対して結晶構造や結晶性の変化などの何がしかの変性が生じることで、熱変性層が形成される。すなわち、本実施形態の多層膜付き単結晶基板は、片面に、2つ以上の層を有し、かつ、圧縮応力を有する多層膜が形成された単結晶基板の多層膜が形成された面側と反対側の面側から、レーザを照射することにより、単結晶基板をその厚み方向において2等分して得られる2つの領域のうち、少なくとも単結晶基板の多層膜が形成された面側と反対側の面側の領域内に、熱変性層を形成する多層膜成膜後熱変性層形成工程を、少なくとも経ることにより製造することができる。
-レーザ照射条件- 
 なお、レーザの照射は、熱変性層が形成できるのであれば、如何様な照射条件で実施してもよいが、一般には、短い時間幅の中にエネルギーを集中させることが出来るため、高いピーク出力が得ることができるという点で、断続的にレーザ光を出すパルスレーザを用いて、下記1)および2)に示す範囲内で実施することが好ましい。
1)レーザ波長:200nm~5000nm 
2)パルス幅:フェムト秒オーダー~ナノ秒オーダー(1fs~1000ns)
 ここで、レーザ波長やパルス幅は、レーザ照射の対象となる単結晶基板の材質に起因する光透過性/光吸収性や、単結晶基板内に形成される熱変性層のサイズ・パターン精度、実用上利用可能なレーザ装置などを考慮して適宜選択される。しかしながら、レーザ照射に際しては、特に下記A~Bに示す照射条件を選択することが好ましい。
<照射条件A> 
・レーザ波長:200nm~350nm 
・パルス幅:ナノ秒オーダー(1ns~1000ns)。なお、より好ましくは、10ns~15ns。
<照射条件B> 
・レーザ波長:350nm~2000nm 
・パルス幅:フェムト秒オーダー~ピコ秒オーダー(1fs~1000ps)。なお、より好ましくは、200fs~800fs。
 なお、照射条件Aは、照射条件Bよりも、レーザ波長がより短波長域のレーザを利用する。このため、レーザ波長およびパルス幅以外のその他の条件を同一として、レーザ照射を実施した場合、照射条件Bよりも、照射条件Aの方が、同程度の反り矯正効果を得るために必要なレーザ加工時間を短縮できる。また、使用するレーザの波長は、レーザ照射の対象となる単結晶基板の吸収端波長よりも長波長域の波長を選択することが好適である。
 ここで、単結晶基板がサファイア基板である場合は、上記照射条件A、Bを利用できる。この場合、レーザ波長およびパルス幅以外のその他の条件としては、たとえば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。
・繰り返し周波数:50kHz~500kHz 
・レーザパワー:0.05W~0.8W 
・レーザのスポットサイズ:0.5μm~4.0μm(より好ましくは2μm前後)
・試料ステージの走査速度:100mm/s~1000mm/s 
 また、単結晶基板が、Si基板の場合は、上記照射条件Bが利用できる。この場合、レーザ波長以外のその他の条件としては、たとえば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。
・パルス幅:50ns~200ns 
・繰り返し周波数:10kHz~500kHz 
・照射エネルギー:3μJ~12μJ 
・レーザのスポットサイズ:0.5μm~4.0μm 
・試料ステージの走査速度:50mm/s~1000mm/s(より好ましくは100mm/s~1000mm/s)
 また、単結晶基板が、GaAs基板の場合は、上記照射条件Bが利用できる。この場合、レーザ波長以外のその他の条件としては、たとえば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。
・パルス幅:30ns~80ns 
・繰り返し周波数:10kHz~500kHz 
・照射エネルギー:8μJ~20μJ 
・レーザのスポットサイズ:0.5μm~4.0μm 
・試料ステージの走査速度:50mm/s~1000mm/s(より好ましくは100mm/s~1000mm/s)
 また、単結晶基板が、水晶基板の場合は、上記照射条件Bが利用できる。この場合、レーザ波長以外のその他の条件としては、たとえば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。
・パルス幅:200fs~800fs 
・繰り返し周波数:10kHz~500kHz 
・照射エネルギー:3μJ~6μJ 
・レーザのスポットサイズ:0.5μm~4.0μm 
・試料ステージの走査速度:50mm/s~1000mm/s(より好ましくは100mm/s~1000mm/s)
 なお、表1に、Si基板、GaAs基板および水晶基板に対して熱変性層を形成する場合のレーザ照射条件の一例を示す。また、レーザ照射する場合、単結晶基板のレーザ照射される側の面は鏡面状態(表面粗さRaで1nm以下程度)であることが特に好ましい。レーザ照射される面を鏡面状態とするためには、たとえば、鏡面研磨を実施することができる。
Figure JPOXMLDOC01-appb-T000001
-多層膜成膜後熱変性層形成工程の具体例- 
 次に、多層膜成膜後熱変性層形成工程の具体例を図面を用いて説明する。図1および図2は本実施形態の多層膜付き単結晶基板の製造方法の一例を示す模式説明図であり、具体的には、多層膜成膜後熱変性層形成工程の一例を説明する模式説明図である。ここで、図1は、多層膜成膜後熱変性層形成工程の実施前後での多層膜付き単結晶基板の反りの状態を示す模式断面図であり、図1の上段は、多層膜成膜後熱変性層形成工程を実施する前の多層膜付き単結晶基板を表し、図1の下段は、多層膜成膜後熱変性層形成工程を実施した後の多層膜付き単結晶基板を表すものである。また、図2は多層膜成膜後熱変性層形成工程を実施している最中の状態、すなわち、単結晶基板の多層膜が形成されていない側の面からレーザを照射している状態を示す模式断面図である。なお、図1および図2中、多層膜を構成する各層については記載を省略してある。
 図1の上段に示すように、多層膜成膜後熱変性層形成工程を実施する前の多層膜付き単結晶基板(レーザ処理前膜付き基板)10は、単結晶基板20と、この片面に形成された多層膜30とを有している。そして、レーザ処理前膜付き基板10は、多層膜30が設けられた面側に凸を成すように反っている。これに対して、図1の下段に示す多層膜成膜後熱変性層形成工程を実施した後の多層膜付き単結晶基板(レーザ処理後膜付き基板12)は、図1の上段に示す反りが矯正され、略平坦な状態により近づいている。そして、単結晶基板20をその厚み方向において、一点鎖線Lにより2等分して得られる2つの領域20U、20Dのうち、少なくとも単結晶基板20の多層膜30が形成された面側と反対側の面側の領域(非成膜面側領域)20D内に、一定の厚みを有する複数の熱変性層22が、単結晶基板20の平面方向に対して等間隔に形成されている。
 ここで、多層膜成膜後熱変性層形成工程は、図2に一例を示すように、レーザ処理前膜付き基板10を、多層膜30が設けられた側の面が下面側となるように不図示の試料ステージに固定した状態で実施される。なお、固定は、たとえば、真空吸着などにより、レーザ処理前膜付き基板10の反りを矯正できるように実施することが好ましい。反りが大きすぎて真空吸着ができない場合には、レーザ処理前膜付き意基板10表面の形状をモニタリングして、レーザ照射領域をレーザ処理前膜付き基板10表面と平行にすることができる。そして、試料ステージに固定されたレーザ処理前膜付き基板10の多層膜が設けられた側の面と反対側の面(非成膜面)24側から、レーザ照射装置40によりレーザを照射する。この際、単結晶基板20の非成膜面側領域20D内にレーザを集光させると共に、レーザ照射装置40とレーザ処理前膜付き基板10とを水平方向に相対的に移動させることで、熱変性層22を形成する。ここで、レーザのスポットサイズ、レーザパワー、パルス幅などを適宜選択することで、単結晶基板20の平面方向や厚み方向に対する熱変性層22のサイズや変性度合などを制御できる。また、レーザ処理前膜付き基板10に対するレーザ照射装置40の相対的な移動速度(たとえば試料ステージが移動可能な場合は、試料ステージの走査速度)、レーザの繰り返し周波数を適宜選択することにより、単結晶基板20の平面方向に対する個々の熱変性層22A、22B、22C、22D間の間隔を制御することができる。
-熱変性層の配置パターン- 
 なお、本実施形態の多層膜付き単結晶基板では、図1に例示したように、少なくとも非成膜面側領域20D内に熱変性層22を設ければ、多層膜30の圧縮応力に起因する単結晶基板20の反りを矯正できる。しかしながら、熱変性層22が、単結晶基板20の厚み方向や平面方向に対して、偏った位置に設けられたり、不規則に配置されたり、非対称的に配置されたりすると、多層膜30に起因して発生する反りを矯正することが困難となったり、あるいは、レーザ処理後膜付き基板12の形状が歪んでしまう場合がある。
 上述した問題の発生を回避するためには、単結晶基板20の厚み方向については、熱変性層22は、多層膜30と平行に設けられていることが好ましい。なお、この場合、単結晶基板20の厚み方向の相対位置を、多層膜30が設けられた側の面を0%と仮定し、多層膜30が設けられた面と反対側の面(非成膜面24)を100%とし仮定した際に、熱変性層22が、単結晶基板20の厚み方向の50%を超え95%以下の範囲内に設けられていることが好ましく70%以上95%以下の範囲内に設けられていることがより好ましい。単結晶基板20の厚み方向に対して熱変性層22を上記数値範囲内に設けることにより、多層膜30の圧縮応力に起因する単結晶基板20の反りをより効果的に矯正して、レーザ処理後膜付き基板12の変形も抑制できる。なお、単結晶基板20の厚み方向に対する熱変性層22の存在位置は、個々の熱変性層22A、22B、22C、22Dが、全て同じ位置に存在することが好ましいが、異なる位置に存在していてもよい。この場合は、単結晶基板20の平面方向に対する個々の熱変性層22A、22B、22C、22Dの配置位置も考慮の上、レーザ処理後膜付き基板12の形状が歪んだり、熱変性層22を設けたことに起因する反りの矯正効果を著しく損失しないように、個々の熱変性層22A、22B、22C、22Dを、単結晶基板20の厚み方向に対して異なる位置に配置してもよい。また、単結晶基板20の厚み方向に対する熱変性層22の長さは、レーザのスポットサイズ、照射エネルギー(レーザパワー/繰り返し周波数)、パルス幅に依存して決定され、通常は、数μm~数十μmの範囲内である。
 また、上述した問題の発生を回避するためには、単結晶基板20の平面方向については、熱変性層22は、以下に示されるパターン形状で設けられることが好ましい。すなわち、熱変性層22は、単結晶基板20の平面方向に対して、下記i)~vii)から選択される少なくともいずれか1つのパターン形状で設けられていることが好ましい。この場合、多層膜30の圧縮応力に起因する単結晶基板20の反りをより効果的に矯正して、その変形も抑制できる。
i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状 
ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状
iii)同心円状 
iv)単結晶基板の中心点に対して略点対称に形成された形状 
v)単結晶基板の中心点を通じる直線に対して略線対称に形成された形状 
vi)ストライプ形状 
vii)らせん形状 
 なお、上記i)~vii)に示されるパターン形状のうち、多層膜30の圧縮応力に起因する単結晶基板20の反りをより均一に矯正でき、形状の歪みもより小さくできる観点からは、i)~iv)に示されるパターン形状がより好ましい。
 また、熱変性層22の形成に際して、レーザ走査、すなわち、レーザ処理前膜付き基板10に対するレーザ照射装置40の相対的な移動が、他のパターン形状と比べて比較的単純でレーザ加工が容易となる観点からは、パターン形状は、i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状であることが好ましい。さらに、i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状としては、複数個の同一形状および同一サイズの四角形を個々の四角形を構成する4辺が隣接する四角形のいずれか1辺と互いに重なり合うように規則的に配置した形状、すなわち、格子形状であることが特に好ましい。この場合、レーザ走査が縦方向および横方向の2方向のみでよく、レーザ加工がより容易となる上に、レーザ処理後膜付き基板12の反り量制御や形状制御の設計もより容易となる。
 ここで、格子形状を成すパターンを構成するラインのピッチは、50μm~2000μmの範囲内であることが好ましく、100μm~1000μmの範囲内であることがより好ましい。ピッチを50μm以上とすることにより、レーザ加工に要する時間が必要以上に増大するのを抑制でき、また、ピッチを2000μm以下とすることにより、多層膜30の圧縮応力に起因する単結晶基板20の反りをより確実に矯正できる。
 図3は、単結晶基板の平面方向に対する熱変性層の配置パターン形状の一例を示す平面図であり、具体的には、単結晶基板20の平面形状がオリフラ面を有する円形状である場合における熱変性層22の配置パターン形状の一例を示したものである。熱変性層22の配置パターン形状は、図3に示すように、たとえば、複数本のラインを基板のオリフラ面に対して垂直又は平行に形成したストライプ形状(図3(a)、図3(b))、それら両方を組み合わせた格子形状(図3(c))などが挙げられる。また、この他の配置パターン形状として、同一サイズの複数の正六角形を、正六角形の6つの頂点全てが当該正六角形に隣接する正六角形のいずれか一つの頂点と必ず重なり合うように規則的に配置した形状(図3(d))、同心円形状(図3(e))なども挙げられる。なお、図3(a)に示す幅Wは、ライン間のピッチを意味する。
 なお、多層膜30の圧縮応力に起因して発生する反りの程度は、多層膜30の層構成や膜厚などにより決定される圧縮応力や、単結晶基板20の厚みや材質などにより決定される剛性等により様々である。しかしながら、この反りの程度に応じて、以上に説明した、i)熱変性層22の単結晶基板20の厚み方向における長さ、ii)単結晶基板20の厚み方向における熱変性層22の配置位置、および、iii)単結晶基板20の平面方向における熱変性層22の配置パターン形状を適宜選択して組み合わせることで、レーザ処理前膜付き基板10に対して、レーザ処理後膜付き基板12において多層膜30に起因する反りを矯正できるのみならず、レーザ処理後膜付き基板12を略平坦状とすることもできる。
-多層膜成膜前の熱変性層の形成- 
 本実施形態の多層膜付き単結晶基板の製造方法では、基本的に、多層膜30の成膜を終えた後に、レーザ照射によって単結晶基板20内に熱変性層22を形成することで、多層膜30の成膜に起因する基板12の反りを矯正している。それゆえ、このレーザ処理後膜付き基板12を用いて後工程を実施した際の反りに起因する品質ばらつきや歩留まり低下などの弊害を抑制できる。よって、多層膜30の成膜プロセス中において、単結晶基板20が、如何様に反ったとしても、後工程への悪影響は非常に小さい。このことは、後工程との関係で、i)多層膜30の成膜プロセスの自由度、すなわち、採用可能な成膜方法・成膜条件の選択肢をより大きくすることができるという第一のメリット、および、ii)多層膜30成膜後の反りの発生や、反りの大きさを考慮することなく多層膜30の層構成を選択できるという第二のメリットをもたらす。
 本実施形態の多層膜付き単結晶基板は、(1)単結晶基板の片面側からレーザを照射することにより、単結晶基板の厚み方向の相対位置を、レーザが照射される側の面を0%と仮定し、レーザが照射される側の面と反対側の面を100%とし仮定した際に、熱変性層が、単結晶基板の厚み方向の0%以上50%未満の範囲内に位置するように形成する多層膜成膜前熱変性層形成工程と、(2)熱変性層が形成された単結晶基板のレーザが照射された側の面に、2つ以上の層を有し、かつ、圧縮応力を有する多層膜を形成する多層膜形成工程と、(3)多層膜成膜後熱変性層形成工程とを、この順に少なくとも経ることにより、製造することができる。なお、以下の説明において、多層膜成膜前熱変性層形成工程により形成される熱変性層を「第2の熱変性層」と称し、多層膜成膜後熱変性層形成工程により形成される熱変性層を「第1の熱変性層」と称す場合がある。
 上述したように多層膜形成工程の実施前に、単結晶基板内に予め第2の熱変性層を形成する多層膜成膜前熱変性層形成工程をする。なお、多層膜成膜前熱変性層形成工程において形成される第2の熱変性層は、単結晶基板の厚み方向の0%以上50%未満の範囲内に位置するように形成されることが必要である。上記以外の範囲に第2の熱変性層を形成した場合、多層膜成膜後熱変性層形成工程において形成される第1の熱変性層を形成する領域が、単結晶基板の厚み方向において制限されるため、多層膜30の成膜後における単結晶基板20の反りの矯正が困難となる場合があるためである。
 多層膜成膜前熱変性層形成工程において形成される第2の熱変性層は、上述したように単結晶基板の厚み方向の0%以上50%未満の範囲内に位置するように形成されることが必要であるが、その下限値は3%以上であることが好ましい。単結晶基板の厚み方向の0%近傍、すなわち、多層膜が成膜される成膜面の近傍に第2の熱変性層が形成された場合、成膜面に露出する結晶面に変化が生じ易くなる。このため、特に、多層膜30を構成する各層のうち、成膜面と直接接触する層(最下層)が、結晶性の膜である場合は、成膜面に露出する結晶面の変化の影響を受けて、最下層の結晶構造や結晶性に変化が生じ易くなる。また、最下層上に連続して他の結晶性の層を順次積層する場合においても、これらの他の結晶性の層は、下地である最下層の結晶構造や結晶性の影響を受けて変化しやすくなる。それゆえ、単結晶基板の成膜面本来の結晶面を利用して最下層を結晶成長させようとする場合、これが阻害されることになる。しかしながら、下限値を3%以上とすることにより、第2の熱変性層の形成による成膜面に露出する結晶面の変化を抑制できるため、上述した問題の発生を回避することができる。なお、第2の熱変性層は、単結晶基板の厚み方向に対して、より好ましくは5%以上30%以下の範囲内に位置するように形成される。
 また、第2の熱変性層は、単結晶基板をその厚み方向に対して2等分するラインに対して、多層膜が設けられた側に設けられるため、単結晶基板の反りの発生という点では、多層膜と同様に作用する。すなわち、第2の熱変性層は、多層膜成膜直後における単結晶基板の多層膜が設けられた側に凸を成すように反ることを促進する。たとえば、単結晶基板の厚み方向に対して、この単結晶基板を2等分するラインを基準として線対称となる位置に第1の熱変性層および第2の熱変性層が設けられ、単結晶基板の厚み方向における第1の熱変性層の長さと第2の熱変性層の長さとが同一で、かつ、単結晶基板の平面方向における第1の熱変性層および第2の熱変性層の配置パターン形状も相似形である場合を仮定する。この場合、単結晶基板の反りの向き・反り量は、単純に2つの熱変性層の総面積の差に依存することになるため、単結晶基板の平面方向における第2の熱変性層の総面積が、第1の熱変性層の総面積よりも小さくなるように、単結晶基板内に第2の熱変性層を形成すればよい。
 なお、以上に説明した点を除けば、第2の熱変性層を形成する際のレーザ照射条件およびレーザ加工の方法、ならびに、第2の熱変性層の単結晶基板の平面方向における配置パターン形状は、第1の熱変性層の場合と同様に適宜選択することができる。
 図4は、本実施形態の多層膜付き単結晶基板の製造方法の他の例を示す模式説明図であり、具体的には、なんらのレーザ加工および成膜処理がなされていない単結晶基板に対して、多層膜成膜前熱変性層形成工程、多層膜形成工程および多層膜成膜後熱変性層形成工程をこの順に実施して多層膜付き単結晶基板を作製する場合について説明する図である。また、図5は、本実施形態の多層膜付き単結晶基板の他の例を示す模式断面図であり、具体的には図4に示す製造プロセスを実施した後に、図2に示す製造プロセスを実施することにより得られた多層膜付き単結晶基板の断面構造の一例を示す図である。ここで、図4および図5中、図1および図2に示すものと同様の機能・構成を有するものについては同様の符号が付してある。
 ここで、図4の上段に示すように、多層膜成膜前熱変性層形成工程の実施に際しては、何らのレーザ加工および成膜処理がなされていない略平坦な状態の単結晶基板20を、非成膜面24が下面側となるように不図示の試料ステージに固定した状態で実施される。そして、試料ステージに固定された単結晶基板20に対して、非成膜面24と反対側の面(成膜面26)側から、レーザ照射装置40によりレーザを照射する。この際、単結晶基板20をその厚み方向に2等分する図中1点鎖線で示されるラインの非成膜面側領域20Dと反対側の領域(成膜面側領域20U)内にレーザを集光させると共に、レーザ照射装置40と単結晶基板20とを水平方向に相対的に移動させる。これにより、図4の中段に示されるように、単結晶基板20の成膜面側領域20U内に第2の熱変性層28が形成される。なお、多層膜成膜前熱変性層形成工程を終えた後の単結晶基板20は、第2の熱変性層28が成膜面側領域20U内に形成されたことにより、多層膜成膜前熱変性層形成工程実施前と比較して、成膜面26側に若干凸を成すように反ることになる。ここで、レーザのスポットサイズ、レーザパワー、パルス幅などを適宜選択することで、単結晶基板20の平面方向や厚み方向に対する第2の熱変性層28のサイズや変性度合などを制御できる。また、単結晶基板20に対するレーザ照射装置40の相対的な移動速度(たとえば試料ステージが移動可能な場合は、試料ステージの走査速度)、レーザの繰り返し周波数を適宜選択することにより、単結晶基板20の平面方向に対する個々の第2の熱変性層28A、28B、28C、28D間の間隔を制御することができる。
 次に、第2の熱変性層28が形成された単結晶基板20の成膜面26側に、多層膜30を形成する多層膜形成工程を実施する。これにより、図4の下段に示すように、第2の熱変性層28が形成された単結晶基板20の成膜面26側に多層膜30が形成された2回目のレーザ処理前膜付き基板10Aを得ることができる。この多層膜形成工程の実施に際しては、第2の熱変性層28が形成されることで、多層膜形成工程の実施中における単結晶基板20の反り挙動の任意の過程において、単結晶基板20の反りを零に設定ことが可能となる。なお、2回目のレーザ処理前膜付き基板10Aは、多層膜30の有する圧縮応力の影響により、成膜面26側に凸を成すように反ることになる。
 多層膜形成工程を終えた後は、レーザ処理前膜付き基板10の代わりに、2回目のレーザ処理前膜付き基板10Aを用いることを除いて、図2に例示したものと同様にして、多層膜成膜前熱変性層形成工程を実施する。これにより、単結晶基板20の非成膜面側領域20D内に第1の熱変性層22がさらに形成され、図5に例示するような、単結晶基板20内に第1の熱変性層22および第2の熱変性層28が形成された多層膜30付きの単結晶基板(2回目レーザ処理後膜付き基板12A)を得ることができる。この2回目レーザ処理後膜付き基板12Aにおいては、単結晶基板20の非成膜面側領域20D内に形成された第1の熱変性層22により、多層膜30の有する圧縮応力の影響により成膜面26側に凸を成すように反る力が相殺される。なお、図5に示す例では、単結晶基板20をその厚み方向に2等分するラインLを基準として、単結晶基板20の厚み方向に対して線対称な位置に、単結晶基板20の厚み方向の長さが同一である第1の熱変性層22および第2の熱変性層28が設けられている。また、単結晶基板20の平面方向に対する第1の熱変性層22および第2の熱変性層28の配置パターンは同一とされているが、単結晶基板20の平面方向における第1の熱変性層22の総面積は第2の熱変性層28の総面積よりも大きくなるように設定されている。
-単結晶基板- 
 本実施形態の多層膜付き単結晶基板の作製に用いられる単結晶基板20を構成する材質としては、レーザ照射により熱変性層22、28の形成が可能な公知の単結晶材料であればいずれも利用できるが、たとえば、サファイア、窒化物半導体、Si、GaAs、水晶、SiCなどが挙げられる。なお、本実施形態の多層膜付き単結晶基板は、単結晶材料からなる基板を利用するものである。しかしながら、このような基板の代わりに、多結晶材料からなる基板(たとえば石英基板)や、非晶質材料からなる基板(たとえばガラス基板)を用いても、多層膜に起因する反りの発生が矯正された平坦な多層膜付き基板を得ることもできる。
 また、単結晶基板20は、通常、少なくとも片面が鏡面研磨されたものが用いられる。この場合、多層膜30は、鏡面研磨された面側に形成される。なお、必要に応じて両面が鏡面研磨された単結晶基板20を用いてもよい。この場合、任意にいずれか一方の面を成膜面26として利用できる。また、本実施形態の多層膜付き単結晶基板の作製に用いられる単結晶基板20としては、基板の製造および入手容易性の観点から、レーザ加工などによる何らの熱変性層やイオン打ち込みなどによる何らの組成変性層も形成されておらず、かつ、何らの膜も成膜されていない状態では、通常、その反り量はほぼゼロ、すなわち略平坦なものが用いられる。
 単結晶基板20の平面方向の形状は特に限定されるものではなく、たとえば、方形などでもよいが、公知の各種素子の製造ラインでの適用が容易であるという観点からは、円形状であることが好ましく、特にオリフラ面が設けられた円形状であることが好ましい。
 単結晶基板20の形状が円形状またはオリフラ面が設けられた円形状である場合、単結晶基板20の直径は50mm以上であることが好ましく、75mm以上であることがより好ましく、100mm以上であることが更に好ましい。直径を50mm以上とした場合、多層膜30の成膜中および成膜後に単結晶基板20が反った際に、直径の増大と共に単結晶基板20を平坦な面に静置したと仮定した際の鉛直方向に対する単結晶基板20の中央部付近と端部付近との高低差(反り量)が大きくなる。しかしながら、多層膜30の成膜後に第1の熱変性層22を形成すれば、このような大きな反りを矯正して、反り量を容易に小さくすることができるので、後工程への悪影響を小さくすることができる。これに加えて多層膜30の成膜前に第2の熱変性層28を形成する。また、上述した理由から、本実施形態の多層膜付き単結晶基板を製造する場合、従来と比較して、単結晶基板20の直径が大きいほど多層膜30の成膜後の反りをより効果的に抑制できることになる。なお、直径の上限値は特に限定されるものではないが、実用上の観点からは300mm以下が好ましい。
 また、単結晶基板20の厚みは、5.0mm以下であることが好ましく、3.0mm以下であることが好ましく、2.0mm以下であることがより好ましい。厚みを5.0mm以下とした場合、厚みが薄いため単結晶基板20の剛性が低下し、変形しやすくなる。この場合、多層膜30の成膜後においては、単結晶基板20の反り量が増大しやすくなる。しかしながら、多層膜30の成膜後に第1の熱変性層22を形成すれば、このような大きな反りを矯正して、反り量を容易に小さくできるので、後工程への悪影響を小さくすることができる。さらに、以上に説明した事情から、後工程において非成膜面24側の研磨により、単結晶基板20を所定の厚みとなるまで研磨する必要がある場合には、後工程への悪影響が増大しない範囲で、研磨代がより小さくなるように厚みのより薄い単結晶基板20を用いて多層膜30を形成することができる。この場合、後工程での研磨に要する時間を短縮でき、後工程における生産性を向上させることができる。
 厚みの下限値は特に限定されるものではないが、熱変性層22、28を形成できる領域を確保する観点から0.05mm以上であることが好ましく、0.1mm以上であることが好ましい。なお、単結晶基板20の形状が、円形状またはオリフラ面が設けられた円形状である場合、直径が50mm以上100mm以下のときは、厚みは0.3mm以上であることが好ましく、直径が100mmを超えるときは、厚みは0.5mm以上が好ましい。
-多層膜- 
 本願明細書において「多層膜」とは、2つ以上の層を含み、かつ、熱変性層形成前(即ち、多層膜成膜後熱変性層形成工程前)に圧縮応力を有するものである。これに加えて、この多層膜を構成する各層が基板の平面方向に対して同一の膜厚を有する連続した層から構成された最表層の膜を貫通する段差を持たない膜を意味する。多層膜30の層構成、ならびに、多層膜30を構成する各層の膜厚、材料および結晶性/非結晶性は、本実施形態の多層膜付き単結晶基板を用いて更に後加工することにより作製される素子の種類や、素子を製造する際に適用する製造プロセスに応じて適宜選択される。
 しかしながら、多層膜30を構成する少なくともいずれか1層が、結晶性の層であることが好ましい。また、単結晶基板20の成膜面26に露出する結晶面を利用してエキタピシャル成長させることができるという観点からは、多層膜30を構成する各層のうち、少なくとも単結晶基板20の成膜面26に直接接触する層が結晶性の層であることが好ましく、多層膜30を構成する全ての層が結晶性の層であってもよい。なお、エキタピシャル成長とは、同一組成または混晶を含むホモエキタピシャル成長、ヘテロエキタピシャル成長を含む。また、多層膜30を構成する各層の材料も、作製する素子に応じて適宜選択されるが、単結晶基板20がサファイア基板などの無機材料で構成されることを考慮すると、各層を構成する材料も、金属材料、金属酸化物材料、無機半導体材料などの無機材料とすることが好ましく、全ての層がこれらの無機材料から構成されることが望ましい。ただし、MOCVD法を成膜法として用いた場合、層の無機材料中に有機金属由来の有機物を含有することがある。
 多層膜30を構成する各層の具体例としては、たとえば、面発光レーザなどに用いる発光素子、光センサや太陽電池などに用いる受光素子、電子回路などに用いる半導体素子などの各種の窒化物半導体を利用した素子の製造に適したものとして、GaN系、AlGaN系、InGaN系などの窒化物半導体結晶層を挙げることができる。なお、この場合、単結晶基板20として、サファイア基板を用いることが好適である。また、多層膜30の層構成の具体例としては、たとえば、素子として窒化物半導体を利用した発光素子を作製するのであれば、単結晶基板20としてサファイア基板を用い、このサファイア基板側から、(1)GaNより成るバッファ層、n型GaNより成るn型コンタクト層、n型AlGaNより成るn型クラッド層、n型InGaNより成る活性層、p型AlGaNよりなるp型クラッド層、p型GaNより成るp型コンタクト層をこの順に積層した層構成を採用することができる。
 多層膜30の膜厚としては、作製する素子に応じて適宜選択され、一般的に、多層膜30の膜厚が大きくなるほど多層膜30の成膜後における単結晶基板20の反り量も増大する。従来であれば、素子の品質ばらつきや歩留まりへの影響が顕著となってくる上に、多層膜30の成膜中の反り挙動もより大きくなりやすい。また、この場合、多層膜30には、反りに起因する脆性破壊によりクラックが発生しやすくなる。しかしながら、単結晶基板20内に、多層膜30の成膜後に第1の熱変性層22を形成することで多層膜30の成膜に起因して生じた反りを矯正することで反り量を小さくすることができる。なお、多層膜30の膜厚の上限は特に限定されるものではない。また、多層膜の層数は2層以上であればよく、作製する素子の種類に応じて層数が適宜選択できる。
 多層膜30の成膜方法としては特に限定されず、公知の成膜方法が利用でき、多層膜30を構成する各層毎に異なる成膜方法および/または成膜条件を採用して成膜することもできる。成膜法としてはメッキ法などの液相成膜法も挙げられるが、スパッタリング法やCVD法(Chemical Vapor Deposition)などの気相成膜法を用いることが好ましい。なお、発光素子などの作製を目的として窒化物半導体結晶層などの半導体結晶層を成膜する場合、MOCVD法(Metal Organic Chemical Vapor Deposition)、HVPE法(Hydride vapor phase epitaxy)、MBE法(Molecular
Beam Epitaxy)などの気相成膜法を利用することがより好ましい。なお、単結晶基板20の多層膜30が成膜される側の面は、鏡面状態(表面粗さRaで1nm以下程度)であることが特に好ましい。多層膜30が形成される面を鏡面状態とするためには、たとえば、鏡面研磨を実施することができる。
-多層膜成膜時の単結晶基板の反り(曲率)の制御- 
 本実施形態の多層膜付き単結晶基板の製造方法では、多層膜30の成膜後に単結晶基板20内に第1の熱変性層22を形成することで、多層膜30の成膜後に生じる単結晶基板20の反りを矯正できる。このため、従来と比べて、本実施形態の多層膜付き単結晶基板の製造方法では、多層膜30の成膜が終了した後の反りの発生を考慮することなく、多層膜形成工程を実施でき、多層膜30の成膜プロセスの自由度が大きい。この観点からは、多層膜形成工程において、単結晶基板20が如何様に反った状態となることも許容されるといえる。しかしながら、多層膜30を構成する各層の成膜に際して、単結晶基板20が大きく反った状態にある場合、基板面内における膜厚ばらつきや膜質ばらつきが発生する。そしてこのような基板面内におけるばらつきは、一般的には、単結晶基板20の反りに比例して大きくなる傾向にある。そして、上記の基板面内におけるばらつきが増大すると、本実施形態の多層膜付き単結晶基板を後加工して得られる素子の品質ばらつきの増大や、歩留まりの低下を招くことになる。以上に説明した事情を考慮すれば、多層膜形成工程においては、多層膜30を構成する各層のうち、少なくともいずれか1層の成膜中における単結晶基板20の多層膜30が形成される面の曲率が、±30km-1の範囲内であることが好ましく、±20km-1の範囲内であることがより好ましい。
 なお、上記に示す曲率範囲は、多層膜30を構成する全ての層で満たされていることが理想的である。しかし、一般的に多層膜30を成膜する過程において、単結晶基板20は複雑な反り挙動を示すため、多層膜30を構成する全ての層において、上記に示す曲率範囲を満たすことは事実上、困難である。この点を考慮すれば、上記に示す曲率範囲は、多層膜30を構成する各層のうち、単結晶基板20の反りが大きくなった場合に素子の品質ばらつきや歩留まりに最も大きく影響する層(最重要層)において満たされるようにすることが特に好ましい。このような最重要層は、素子の種類や、素子の種類に応じた多層膜30の構成により様々である。なお、最重要層の一例としては、素子が窒化物半導体を用いた発光素子である場合、多層膜30を構成する各層のうち、少なくとも1層が、発光層として機能することが可能な窒化物半導体結晶層が挙げられる。
 多層膜30を構成する各層のうち、少なくともいずれか1層の成膜中における単結晶基板20の多層膜30が形成される面の曲率を上記範囲内に制御する方法としては、特に限定されず、たとえば、1)多層膜30を構成する各層の成膜方法・成膜条件を変更する方法、2)単結晶基板20のサイズを変更する方法、3)単結晶基板20の厚みを変更する方法、4)多層膜30の成膜前に、単結晶基板20内に第2の熱変性層28を形成する方法などが挙げられる。しかしながら、素子の量産を考慮した場合、上記1)~上記3)に示す方法いずれも、素子の性能や、素子の生産性・歩留まりにも大きく影響するため、大幅な変更は実用上困難な場合が多い。このため、これら1)~3)に示す方法を採用しても曲率を上記範囲内に制御することが困難となる場合もある。以上に説明した事情を考慮すると、曲率を上記範囲内に制御する方法としては、4)多層膜30の成膜前に、単結晶基板20内に第2の熱変性層28を形成する方法を採用することが最も好ましい。この理由は以下の通りである。すなわち、当該方法は、第2の熱変性層28の単結晶基板20内における形成位置・形成領域の大きさを適宜選択することで、多層膜30の成膜プロセスに合わせて、多層膜30を成膜する前の単結晶基板20の反りの程度(曲率)や、剛性を容易に制御できる。このため、当該方法は、素子の性能や、素子の生産性・歩留まりに悪影響を与えることなく、単結晶基板20の曲率の制御することが容易であるためである。
-多層膜形成工程の具体例- 
 次に、多層膜30を成膜する場合の具体例として、単結晶基板20としてサファイア基板を用い、このサファイア基板の片面に、エピタキシャル成長により窒化物半導体層を複数層積層して多層膜30を形成する場合を図面を用いて説明する。図6は、多層膜形成工程の一例を示す模式説明図であり、具体的には、サファイア基板上に窒化物半導体層等を積層することで多層膜を形成するプロセスを示した図である。ここで、図6(a)は成膜開始前の状態を示す図であり、図6(b)は低温バッファ層を形成した後の状態を示す図であり、図6(c)はn-GaN層を形成した後の状態を示す図であり、図6(d)は多重量子井戸構造を有するInGaN系活性層を形成した後の状態を示す図である。なお、図中、多層膜成膜中および多層膜成膜後のサファイア基板の反りの有無や反りの程度、第1の熱変性層、ならびに、必要に応じて設けられる第2の熱変性層については記載を省略してある。
 まず、サファイア基板50(単結晶基板20)の成膜面52側を成膜開始前にサーマルクリーニングする(図6(a))。次に、成膜面52上に、低温バッファ層60(図6(b))、n-GaN層62(図6(c))、多重量子井戸構造を有するInGaN系活性層64(図6(d))をこの順に成長させる。これによりサファイア基板50の片面に3層からなる多層膜70(多層膜30)が形成される。なお、この後、所定の後加工を行うことでLEDチップなどの発光素子を得ることができる。なお、多層膜70を構成する各層は、たとえばMOCVD法、HVPE法、MBE法等を利用して形成できる。
 次に、多層膜形成工程における単結晶基板20の反り挙動について説明する。図7は、多層膜形成工程における単結晶基板の反り挙動の一例を示すグラフであり、具体的には図6に示す多層膜70を成膜中のサファイア基板の反り挙動を示したグラフである。ここで、図7中、横軸は時間を表し、縦軸は成膜面52におけるサファイア基板50の曲率を表す。なお、縦軸の正の方向が成膜面52側が凸を成すようにサファイア基板50が反っている状態を意味し、縦軸の負の方向が成膜面52側が凹を成すようにサファイア基板50が反っている状態を意味する。
 なお、図7に例示したような多層膜形成工程の実施中におけるサファイア基板50の反り挙動は、非特許文献2に開示されるIn-situ観察方法を利用することで把握することができる。また、図7の縦軸として例示する基板の曲率からは、基板の反り量を計算することができる。図8は円形状基板の曲率から基板の反り量を計算する方法を説明する模式説明図である。図8においては、基板の曲率半径をR、曲率1/Rを有する基板の反り量X、基板の直径を近似的にDとして示した。これらの値の関係性として、三平方の定理を用いることで,(1/R)2=((1/R)-X)2+(D/2)2と示すことができる。この式から、基板の直径が50mmの場合は、0.322×曲率(km-1)、基板の直径が100mmの場合は、1.250×曲率(km-1)としてそり量(um)を求めることができる。 
 図7に示される反り挙動の変化を示す3つのスペクトルのうち、スペクトルAは、第2の熱変性層が形成されていないサファイア基板50を用いて多層膜70を形成した場合の反り挙動の変化を示したものある。また、スペクトルBおよびスペクトルCは、サファイア基板50に対して予め第2の熱変性層を形成したことを除いては、スペクトルAの測定と同じ条件で多層膜70を形成した場合の反り挙動の変化を示したものである。なお、スペクトルBおよびスペクトルCの違いは、スペクトルBの測定に用いたサファイア基板50単体の曲率(図7中では、相対値で+50km-1程度)よりも、スペクトルCの測定に用いたサファイア基板50単体の曲率(図7中では、相対値で+150km-1程度)がより大きくなるように、サファイア基板50内に第2の熱変性層を形成したことに起因するものである。すなわち、スペクトルAの測定に用いたサファイア基板50よりも、スペクトルBの測定に用いた第2の熱変性層が予め形成されたサファイア基板50の方が、この第2の熱変性層を設けたことにより剛性が向上していると言える。
 なお、図7に示す例では、スペクトルBの測定に用いたサファイア基板50内に設けられた第2の熱変性層と、スペクトルCの測定に用いたサファイア基板50内に設けられた第2の熱変性層とは、共に、サファイア基板50の厚み方向に対して成膜面52側から同じ深さ位置に設けられ、かつ、サファイア基板50の平面方向における第2の熱変性層は格子状パターンで設けられている。しかし、格子状パターンを構成するラインのピッチを異なるものとすることで、サファイア基板50の平面方向における第2の熱変性層の総面積は、スペクトルBの測定に用いたサファイア基板50よりも、スペクトルCの測定に用いたサファイア基板50の方がより大きくしてある。このため、スペクトルBの測定に用いたサファイア基板50よりも、スペクトルCの測定に用いたサファイア基板50の方が、曲率が大きくなっている。
 また、図7の横軸に沿って(a)~(e)として示される区間は、多層膜形成工程において順次実施される各プロセスに対応している。ここで、プロセス(a)は、サファイア基板50の成膜面52をサーマルクリーニングするプロセスに対応し、プロセス(b)は、低温バッファ層60を形成するプロセスに対応し、プロセス(c)は、n-GaN層62を形成するプロセスに対応し、プロセス(d)は、InGaN系活性層64を形成するプロセスに対応し、プロセス(e)はクールダウンするプロセスに対応している。
 次に、図7に示されるスペクトルAの反り挙動の変化を説明する。まず、(a)成膜面52のサーマルクリーニングプロセスでは、サファイア基板50の成膜面52と非成膜面54との温度差により、成膜面52が凹面を成そうとする方向(図7中の縦軸におけるマイナス側)に反り、曲率が大きく変化する。次に、(b)低温バッファ層60を形成するプロセスでは、サファイア基板50の温度が、(a)成膜面52のサーマルクリーニングプロセスを実施中の温度よりも降下し、通常は、500~600℃程度の温度に維持される。このため、成膜面52が凸面を成そうとする方向(図7中の縦軸におけるプラス側)に反り、曲率の絶対値は小さくなる。
 次に、(c)n-GaN層62を形成するプロセスでは、サファイア基板50の温度を再び1000℃程度まで上昇させて、n-GaN層62を形成する。このプロセスでは、窒化ガリウムとサファイアの格子定数差に起因して、成膜面52が凹面を成そうとする方向に反り、曲率の絶対値は増大する。さらに成膜が進行し、膜厚が大きくなるほど曲率の絶対値が増大する。このため、膜厚および膜品質の基板面内における均一性は著しく悪化する。なお、膜の基板面内における均一性を、成膜条件のみによって大幅に改善することは、成膜する膜の組成・膜厚に変更が無い限り、技術的には極めて困難である。また、スペクトルAのプロセス(c)に例示されるように、基板の反りが増大した場合、窒化物半導体結晶層の内部に応力が発生する。そして、この応力を緩和するために窒化物半導体結晶層内で転位が発生し膜品質が悪化することが問題とされている。
 次に、(d)InGaN系活性層64を形成するプロセスでは、サファイア基板50の温度を700~800℃程度に下降させて、InGaN系活性層64を形成する。ここで、図6(d)に示す多層膜70付きのサファイア基板50を用いて、所定の後加工を行うことにより、LEDチップなどの発光素子を製造する場合、InGaN系活性層64の膜厚およびInGaN系活性層64中のIn組成の均一性が、発光波長の面内均一性に影響し、ひいては、発光素子の製造歩留まりにも影響する。InGaN系活性層64の膜厚およびInGaN系活性層64中のIn組成の均一性は成膜温度に影響を受ける。このため、(d)InGaN系活性層64を形成するプロセスでは、基板面内の温度均一性を向上させるために、成膜中のサファイア基板50の曲率はできるだけ0に近づけることが望ましい。なお、スペクトルAとして示す例では、プロセス(d)における曲率はほぼ0近傍に維持されている。
 次に、多層膜70が形成されたサファイア基板50を、(e)クールダウンするプロセスでは、多層膜70とサファイア基板50との熱膨張係数差により、サファイア基板50が成膜面52側に凸を成す方向に反り、曲率の絶対値も増大する。また、常温近傍に冷却される過程で多層膜70中には圧縮応力が生じるため、これを解放するために、クールダウン終了後もサファイア基板50が成膜面52側に凸を成すように反った状態が維持される。しかしながら、このような反りは、多層膜成膜後熱変性層形成工程を実施することで矯正することができ、さらに、第1の熱変性層22の配置パターンを最適化することで、曲率を0近傍とすることもできる。この場合、LEDチップ等の発光素子を得るために、パターニング処理やバックラップ処理などの各種の後工程を実施しても、反りに起因する発光素子の品質ばらつきや歩留まり低下を確実に抑制することができる。
(素子製造方法) 
 以上に説明した製造プロセスを経て作製された本実施形態の多層膜付き単結晶基板に対して、さらに各種の後工程を実施することにより素子を作製することができる。この場合、後工程において、多層膜30に対して、少なくともパターニング処理を施すことにより、発光素子、光発電素子、半導体素子から選択されるいずれか1つの素子として機能する素子部分を作製する素子部分形成工程を少なくとも経て、素子部分と当該素子部分に略対応するサイズを有する単結晶基板とを含む素子を製造することができる。ここで、多層膜30の層構成は、最終的に作製する素子の種類に応じて適宜選択される。また、素子の製造に際して、後工程として、素子部分形成工程以外に、研磨工程、分割予定ライン形成工程および分割工程をこの順に実施してもよい。
 この場合、本実施形態の多層膜付き単結晶基板を用いた素子製造方法は、具体的には以下の(1)~(4)に示す工程を少なくとも順次実施することで、素子部分と当該素子部分に略対応するサイズを有する単結晶基板とを含む素子を作製することができる。
 (1)本実施形態の多層膜付き単結晶基板の多層膜をパターニングして個々の素子部分を形成する素子部分形成工程
 (2)素子部分が片面に形成された素子部分付き単結晶基板の素子部分が形成されていない面を、少なくとも、多層膜成膜後熱変性層形成工程において形成された第1の熱変性層が除去されるまで研磨する研磨工程
 (3)研磨工程において研磨された面側から、個々の素子部分の境界ラインに沿って、レーザを照射することで分割予定ラインを形成する分割予定ライン形成工程
 (4)分割予定ライン形成工程において形成された分割予定ラインに沿って外力を加えることで、素子部分付きの単結晶基板を素子部分単位で分割する分割工程
 ここで、(3)分割予定ライン形成工程、および、(4)分割工程を実施する場合、特許文献3に記載の技術を利用することができる。
 なお、第1の熱変性層を格子状パターンに形成した場合、研磨工程において第1の熱変性層が完全に除去されない程度に研磨した上で、単結晶基板内に残留している第1の熱変性層を分割予定ラインとして利用することで分割工程を実施することも原理的には可能である。しかしながら、多層膜が個々の素子部分に個別化された後でないと、素子部分の存在位置を確認した上でレーザ照射のための位置合わせを行うことができない。このため、個々の素子部分を作製する前に、分割予定ラインの機能も兼ねる熱変性層を形成する上記の方法では、個々の素子部分に対応させて正確に分割予定ラインを形成することが困難である。すなわち、上記の方法では、分割予定ラインは隣接する2つの素子部分間の境界線からずれてしまう可能性が大きくなるため、実用性に欠けやすい。このため、レーザ照射により形成された熱変性層を利用して分割工程を実施する場合、上記(1)~(4)に示す工程をこの順に実施することが特に好ましいといえる。
 また、分割予定ライン形成工程を実施する場合、レーザの照射条件としては、既述した照射条件Bを選択することが特に望ましい。レーザ波長が紫外域の照射条件Aでは、レーザ波長に起因するレーザのエネルギーが大きいために、形成される分割予定ラインの幅が太く、その太さもラインの長さ方向に対してばらつきやすくなる。このため、分割工程において、直線的かつ正確な分割が困難となる場合があるためである。
 図9は、本実施形態の素子製造方法の一例を示す模式説明図であり、具体的には図1の下段に示すレーザ処理後膜付き基板12を用いて、(1)素子部分形成工程(図9(a))、(2)研磨工程(図9(b))、(3)分割予定ライン形成工程(図9(c))、および(4)分割工程(図9(d))をこの順に実施した場合の一例を示したものである。なお、図中、図1に示すものと同様の機能・構成を有するものには同じ符号が付してあり、また、単結晶基板20の反りの有無やその程度については記載を省略してある。
 まず、図1の下段に示すレーザ処理後膜付き基板12の多層膜30に対してパターニング処理を行うことで、多層膜30を個別化して複数の素子部分32を形成する。ここで、パターニング処理は、たとえば以下のように実施できる。まず、多層膜30上にレジスト膜を形成後、フォトマスクを用いてこのレジスト膜を露光後に現像することでパターニングしてレジスト膜を部分的に除去する。その後、レジスト膜が除去された部分の多層膜30をエッチングにより除去することで素子部分32を形成する(図9(a))。次に、素子部分32が形成された面と平坦な研磨盤80とを貼り合わせることで、研磨盤80上に素子部分32が形成された単結晶基板20を固定し、非成膜面24側を研磨する。この研磨は、少なくとも第1の熱変性層22が完全に除去されるまで実施する(図9(b))。その後、研磨後の非成膜面24A側からレーザ照射することにより、分割予定ライン90を形成する。この分割予定ライン90は、研磨後の単結晶基板20Aの平面方向に対して、隣接する2つの素子部分32間に形成される(図9(c))。最後に、この分割予定ライン90に沿って外力を加えることで、個々の素子部分32毎に単結晶基板20を分割し、複数の素子100を得る(図9(d))。
 なお、非成膜面24の研磨(バックラップ処理)を容易とし、かつ、歩留まりを確保する観点から、図9(a)に示す素子部分32が形成された単結晶基板20の反りは、基本的には小さければ小さい程好ましい。
 この理由は、以下の通りである。まず、図9(a)に示す素子部分32付きの単結晶基板20において、レーザ処理による反りの矯正が行われていないと仮定する。この場合、素子部分32付きの単結晶基板20は大きく反った状態になる。そして、この反った状態の素子部分32付きの単結晶基板20を、液状化したワックスを用いて研磨盤80に貼り付けても、研磨盤80に固定された素子部分32付きの単結晶基板20の非成膜面24の外縁側が著しく反り上がったり、あるいは、非成膜面24が大きくうねったりすることになる。この場合、バックラップ処理する際に、単結晶基板20の面内における研磨量にばらつきが生じ易くなる。このような現象は、図1の上段に示すようなレーザ処理による反りの矯正が全く行われないレーザ処理前膜付き基板10を用いた場合に一般的に見られる。
 しかしながら、全く反りの無い素子部分32付きの単結晶基板20を研磨盤80に貼り付けた場合には、貼り合わせ後の素子部分32付きの単結晶基板20と研磨盤80との界面に存在する固化したワックス層中に気泡が残り易くなる。その結果、反った素子部分32付き単結晶基板20を用いた場合程に顕著では無いものの、研磨盤80に固定された素子部分32付きの単結晶基板20の非成膜面24がうねり易くなる。なお、固化したワックス層中に気泡が残留する理由は、以下の通りであると推定される。
 まず、素子部分32付き単結晶基板20の非成膜面24が凹みを成すように大きく反っている場合、貼り付けに際して単結晶基板20と研磨盤80との間に存在する液状のワックスは、貼り合わせ界面の中央部から外縁部側へと押し出されるように流動することになる。素子部分32付き単結晶基板20を研磨盤80に貼り付けて固定する際に、素子部分32付き単結晶基板20の反りが平坦化されるように、素子部分32付き単結晶基板20の非成膜面24の全面に対して押圧力が加えられるためである。この場合、貼り付けに際して貼り合わせ界面に巻き込まれた気泡は液状のワックスの流動と共に、貼り合わせ界面の外縁部側へと容易に移動できる。それゆえ、貼り合わせ界面においてワックスが固化した後に、この固化したワックス層中に気泡が残留し難い。
 しかしながら、全く反りの無い素子部分32付きの単結晶基板20を研磨盤80に貼り付けた場合には、貼り合わせを開始してから、液状のワックスが固化して貼り合わせが完了するまでの全期間において、貼り合わせ界面全面に均一な押圧力が加わることになる。このため、貼り合わせ界面に存在する液状のワックスの平面方向に対する流動性は、低くなる。したがって、貼り付けに際して貼り合わせ界面に巻き込まれた気泡は、貼り合わせ界面の中央部側から外縁部側へと移動することが困難となる。それゆえ、貼り合わせ界面においてワックスが固化した後に、この固化したワックス層中に気泡が残留し易い。
 以上の点を考慮すれば、素子部分32付きの単結晶基板20は、全く反りが無い状態よりも、非成膜面24が凹みを成すように僅かに反っている状態であることが好ましい。この場合、反り矯正のためにレーザ処理を施していないが故に、非成膜面24が凹みを成すように大きく反っている状態に起因する問題点、および、非成膜面24が全く平坦面である状態に起因する問題点の双方を解消できる。すなわち、非成膜面24の大きな反りに起因して、貼り合わせ後に、非成膜面24の外縁側が著しく反り上がったり、あるいは、非成膜面24が大きくうねるという問題点、および、気泡が固化したワックス層中に残留することにより非成膜面24がうねり易くなるという問題点の双方を解消できる。
 この場合、素子部分32付きの単結晶基板20の非成膜面24が凹みを成すように僅かに反っているため、貼り合わせに際して、非成膜面24を平坦化することが極めて容易である。これに加えて、貼り合わせに際して、単結晶基板20と研磨盤80との間に存在する液状のワックスは、貼り合わせ界面の中央部から外縁部側へと押し出されるように流動することになる。このため、貼り合わせに際して、貼り合わせ界面に巻き込まれた気泡が、貼り合わせ後に固化したワックス層中に残留し難しい。
 ここで、素子部分32付きの単結晶基板20の非成膜面24が凹みを成すように僅かに反っている状態とするためには、第1の熱変性層22を形成する際のレーザ照射条件や、必要に応じて設けられる第2の熱変性層28を形成する際のレーザ照射条件を適宜選択することで容易に実現することができる。
 以下に、本発明を実施例を挙げて説明するが、本発明は以下の実施例にのみ限定されるものではない。以下に、サファイア基板に多層膜を形成した後、レーザ照射により第1の熱変性層を形成した場合(1回レーザ照射の実施例)と、レーザ照射により第2の熱変性層を形成したサファイア基板に多層膜を形成した後、レーザ照射により第1の熱変性層を形成した場合(2回レーザ照射の実施例)とに大別して実施例を説明する。
<<1回レーザ照射の実施例>> 
(評価用サンプルの作製) 
 評価用サンプルとして図6(d)に示すものと同様のサファイア基板50の片面に3層構成の多層膜70が形成されたものを以下の手順で作製した。まず、サファイア基板50の成膜面52に多層膜70を形成した後、非成膜面54側からのレーザ照射により格子状パターンで第1の熱変性層22を形成して得られた多層膜付きサファイア基板を作製した。この際、多層膜成膜後におけるレーザ照射前後での反り量および成膜面側から見た反りの方向、ならびに、レーザ照射時のライン間のピッチに対するレーザ照射前後での反り量の変化量の関係について評価した。以下に、テスト条件および評価結果の詳細を説明する。
-サファイア基板- 
 サファイア基板50としては、オリフラ面付きの円形状のサファイア基板(直径:4インチ(100mm)、厚み:650μm)を用いた。なお、このサファイア基板は、片面が鏡面研磨されたものであり、多層膜70はこの鏡面研磨された面を成膜面52として形成される。また、何らの成膜処理やレーザ照射処理を行わない状態でのこのサファイア基板50の反り量は、±30μmの範囲内である。
-多層膜の層構成および成膜条件- 
 サファイア基板50の成膜面52には、3層構成の多層膜70を形成した。なお、具体的な成膜条件は以下の通りであり、以下に示す(1)~(5)の順にプロセスを実施した。
(1)サーマルクリーニング 
 サファイア基板50をMOCVD装置内に配置した後、成膜面52のサーマルクリーニングを、基板温度1100℃にて約120秒間実施した。
(2)低温バッファ層60の形成 
 成膜時の基板温度を530℃とし、成膜レート0.16nm/sにて膜厚が30nmとなるまで低温バッファ層60を形成した。
(3)n-GaN層62の形成 
 成膜時の基板温度を1050℃とし、成膜レート2000nm/sにて膜厚が3500nmとなるまでn-GaN層62を形成した。
(4)InGaN系活性層64の形成 
 成膜時の基板温度を750℃とし、成膜レート10nm/sにて、膜厚が408nmとなるまでInGaN系活性層64を形成した。
(5)クールダウン 
 片面に低温バッファ層60、n-GaN層62およびInGaN系活性層64をこの順に形成したサファイア基板50を常温近傍まで冷却した。
-第1の熱変性層形成条件- 
 まず、多層膜70が形成された単結晶基板50の非成膜面54を鏡面研磨した。次に、平坦な試料ステージ上に、多層膜70が形成された面を下面側として、真空吸着によりサファイア基板50を固定した。この状態で、サファイア基板50の多層膜70が形成されていない非成膜面54側から、以下の照射条件にてレーザ照射を行うことで第1の熱変性層22を形成した。なお、レーザ照射に際しては、試料ステージの縦方向の走査方向がサファイア基板50のオリフラと一致するように、試料ステージ上にサファイア基板50を固定した。そして、レーザ照射装置に対して、試料ステージを縦方向および横方向に走査し、サファイア基板の平面方向に対して格子状パターンとなるように第1の熱変性層22を形成した。ここで、試料ステージの走査速度を変えることにより格子状パターンのライン間ピッチを変化させたサンプルも作製した。
・レーザ波長:1045nm 
・パルス幅:500fs 
・繰り返し周波数:100kHz 
・スポットサイズ:1.6~3.5μm 
・レーザパワー:0.3W 
・試料ステージ走査速度:400mm/s(ライン間のピッチに応じて左記範囲内で適宜選択)
(評価結果) 
-反り量および反りの方向の評価- 
 表2に、多層膜成膜後におけるレーザ照射前後での反り量および成膜面側から見た反りの方向について評価した結果を、上記に示した以外のレーザ照射条件と共に示す。表2に示されるように多層膜70の成膜により反り量が70μm前後まで増大したが、レーザ照射によりサファイア基板50内に第1の熱変性層22を形成することにより、多層膜70の成膜に起因する反りが矯正され、反り量は5μm前後まで減少することが判った。
Figure JPOXMLDOC01-appb-T000002
-レーザ照射前後での反り量の変化量- 
 また、図10に、表2に示す実施例A1~実施例A5の実験条件において、ライン間のピッチのみを変えた場合の多層膜成膜後におけるレーザ照射前後での反り量の変化量(μm、レーザ照射前の反り量-レーザ照射後の反り量)を示す。図10から明らかなように、ライン間のピッチを小さくすることにより、すなわち、サファイア基板50の平面方向における第1の熱変性層22の形成領域をより大きくすることにより、レーザ照射前後での反り量の変化量は増大することが判った。このことから、多層膜成膜後のサファイア基板50の反り量が如何様な値であっても、サファイア基板50の平面方向における第1の熱変性層22の形成領域を適宜選択するなどにより、多層膜70の成膜に起因して生じる反り量を所望量だけ相殺できることが判った。よって、図10に示す結果からは、たとえば、多層膜成膜後の反り量が100μm前後である場合において、この多層膜70の成膜に起因して生じた反りをレーザ照射によりサファイア基板50をほぼ平坦な状態となるまで矯正したい場合には、ライン間のピッチを150μmに設定してレーザ照射すればよいと言える。
(評価方法) 
 表2および図10に示す反り量については、リニアゲージで測定した。なお、反り量はレーザ干渉計でも検証・確認した。また、表2に示す成膜面側から見た反りの方向はレーザ干渉計により測定した。
<<2回レーザ照射の実施例>> 
(評価用サンプルの作製) 
 評価用サンプルとして図6(d)に示すものと同様のサファイア基板50の片面に3層構成の多層膜70が形成されたものを以下の手順で作製した。まず、サファイア基板50の成膜面52側からのレーザ照射により格子状パターンで第2の熱変性層28を形成し、次に、成膜面52に多層膜70を形成し、その後、非成膜面54側からのレーザ照射により格子状パターンで第1の熱変性層22を形成して得られた多層膜付きサファイア基板を作製した。この際、多層膜成膜前におけるレーザ照射前後での反り量および成膜面側から見た反りの方向と、多層膜成膜後におけるレーザ照射前後での反り量および成膜面側から見た反りの方向と、多層膜成膜後におけるレーザ照射時のライン間のピッチに対するレーザ照射前後での反り量変化の関係と、多層膜成膜中におけるサファイア基板の曲率の最大値と最小値との差とについて評価した。以下に、テスト条件および評価結果の詳細を説明する。
-サファイア基板- 
 サファイア基板50としては、オリフラ面付きの円形状のサファイア基板(直径:2インチ(50.8mm)、厚み:430μm)を用いた。なお、このサファイア基板50は、片面が鏡面研磨されたものであり、多層膜70はこの鏡面研磨された面を成膜面52として形成される。また、何らの成膜処理やレーザ照射処理を行わない状態でのこのサファイア基板50の反り量は、±10μmの範囲内である。
-第2の熱変性層形成条件- 
 第2の熱変性層28の形成は、平坦な試料ステージ上に、成膜面52が上面となるようにサファイア基板50を配置し、真空吸着によりサファイア基板50を固定した状態で、成膜面52側から、以下の照射条件にてレーザ照射を行うことで実施した。なお、レーザ照射に際しては、試料ステージの縦方向の走査方向がサファイア基板50のオリフラと一致するように、試料ステージ上にサファイア基板50を固定した。そして、レーザ照射装置に対して、試料ステージを縦方向および横方向に走査し、サファイア基板50の平面方向に対して格子状パターンとなるように第2の熱変性層28を形成した。ここで、ライン間ピッチは、試料ステージの走査速度を変えることで変化させた。
・レーザ波長:1045nm 
・パルス幅:500fs 
・繰り返し周波数:100kHz 
・スポットサイズ:1.6~3.5μm 
・レーザパワー:0.3W 
・試料ステージ走査速度:400mm/s(ライン間のピッチに応じて左記範囲内で適宜選択)
-多層膜の層構成および成膜条件- 
 第2の熱変性層28の形成が形成されたサファイア基板50の成膜面52には、3層構成の多層膜70を形成した。なお、具体的な成膜条件は以下の通りであり、以下に示す(1)~(5)の順にプロセスを実施した。
(1)サーマルクリーニング 
 サファイア基板50をMOCVD装置内に配置した後、成膜面52のサーマルクリーニングを、基板温度1100℃にて約120秒間実施した。
(2)低温バッファ層60の形成 
 成膜時の基板温度を530℃とし、成膜レート0.16nm/sにて膜厚が30nmとなるまで低温バッファ層60を形成した。
(3)n-GaN層62の形成 
 成膜時の基板温度を1050℃とし、成膜レート2000nm/sにて膜厚が3500nmとなるまでn-GaN層62を形成した。
(4)InGaN系活性層64の形成 
 成膜時の基板温度を750℃とし、成膜レート10nm/sにて、膜厚が408nmとなるまでInGaN系活性層64を形成した。
(5)クールダウン 
 片面に低温バッファ層60、n-GaN層62およびInGaN系活性層64をこの順に形成したサファイア基板50を常温近傍まで冷却した。
-第1の熱変性層形成条件- 
 まず、多層膜70が形成された単結晶基板50の非成膜面54を鏡面研磨した。次に、平坦な試料ステージ上に、多層膜70が形成された面を下面側として、真空吸着によりサファイア基板50を固定した。この状態で、サファイア基板50の多層膜70が形成されていない非成膜面54側から、以下の照射条件にてレーザ照射を行うこと第1の熱変性層22を形成した。なお、レーザ照射に際しては、試料ステージの縦方向の走査方向がサファイア基板50のオリフラと一致するように、試料ステージ上にサファイア基板50を固定した。そして、レーザ照射装置に対して、試料ステージを縦方向および横方向に走査し、サファイア基板50の平面方向に対して格子状パターンとなるように第1の熱変性層22を形成した。ここで、試料ステージの走査速度を変えることにより格子状パターンのライン間ピッチを変化させたサンプルも作製した。
・レーザ波長:1045nm 
・パルス幅:500fs 
・繰り返し周波数:100kHz 
・スポットサイズ:1.6~3.5μm 
・レーザパワー:0.3W 
・試料ステージ走査速度:400mm/s(ライン間のピッチに応じて左記範囲内で適宜選択)
(評価結果) 
-反り量および反りの方向の評価- 
 表3に、多層膜成膜前におけるレーザ照射前後での反り量および成膜面52側から見た反りの方向と、多層膜成膜後におけるレーザ照射前後での反り量および成膜面側から見た反りの方向と、について評価した結果を示す。表3に示すようにいずれの実施例においても、多層膜成膜前における1回目のレーザ照射により反り量が増大し、この反り量を基準として多層膜成膜後にはさらに反り量が増大した。しかし、多層膜成膜後における2回目のレーザ照射後の反り量は、多層膜成膜前における1回目のレーザ照射前の反り量よりは大きいものの多層膜成膜前における1回目のレーザ照射後の反り量よりも小さくなった。この結果からは、多層膜成膜後における2回目のレーザ照射によって、多層膜の成膜に起因して生じた反りを完全に相殺した上で、さらに、多層膜成膜前における1回目のレーザ照射に起因して生じた反りもある程度相殺できたことが判った。
Figure JPOXMLDOC01-appb-T000003
-多層膜成膜中における曲率の最大値と最小値との差- 
 表4に、表3に示した実施例B1~B4および比較例B1の多層膜成膜中におけるサファイア基板の曲率の最大値と最小値との差の測定結果を示す。表4に示すように、比較例B1に対していずれの実施例も多層膜成膜中における反り挙動が抑制されていることが判った。さらに、実施例B1~B4に示すように1回目のレーザ照射時のライン間のピッチを小さくするに伴い、多層膜成膜中における反り挙動がより一層抑制されることが判った。
Figure JPOXMLDOC01-appb-T000004
(評価方法) 
 表3に示す反り量については、リニアゲージで測定した。なお、反り量はレーザ干渉計でも検証・確認した。また、表3に示す成膜面52側から見た反りの方向はレーザ干渉計により測定した。また、表4に示す多層膜成膜中の曲率の最大値および最小値は、(1)サーマルクリーニング開始直後~(5)クールダウン終了までの期間において、非特許文献2に開示されるIn-situ観察方法を利用して測定した。
<<1回レーザ照射、単結晶基板厚み方向における曲率変化量の実施例>>
(評価用サンプルの作製) 
 評価用サンプルとして図6(d)に示すものと同様のサファイア基板50の片面に3層構成の多層膜70が形成されたものを以下の手順で作製した。まず、サファイア基板50の成膜面52に多層膜70を形成した後、非成膜面54側からのレーザ照射により格子状パターンで第1の熱変性層22を形成して得られた多層膜付きサファイア基板を作製した。この際、熱変性層22形成位置であるサファイア基板50の厚み方向に対する、前記サファイア基板50の曲率変化量の関係について評価した。以下に、テスト条件および評価結果の詳細を説明する。
-サファイア基板- 
 サファイア基板50としては、オリフラ面付きの円形状のサファイア基板(直径:4インチ(100mm)、厚み:650μm)を用いた。なお、このサファイア基板は、片面が鏡面研磨されたものであり、多層膜70はこの鏡面研磨された面を成膜面52として形成される。また、何らの成膜処理やレーザ照射処理を行わない状態でのこのサファイア基板50の反り量は、±30μmの範囲内である。
-多層膜の層構成および成膜条件- 
 サファイア基板50の成膜面52には、3層構成の多層膜70を形成した。なお、具体的な成膜条件は以下の通りであり、以下に示す(1)~(5)の順にプロセスを実施した。
(1)サーマルクリーニング 
 サファイア基板50をMOCVD装置内に配置した後、成膜面52のサーマルクリーニングを、基板温度1100℃にて約120秒間実施した。
(2)低温バッファ層60の形成 
 成膜時の基板温度を530℃とし、成膜レート0.16nm/sにて膜厚が30nmとなるまで低温バッファ層60を形成した。
(3)n-GaN層62の形成 
 成膜時の基板温度を1050℃とし、成膜レート2000nm/sにて膜厚が3500nmとなるまでn-GaN層62を形成した。
(4)InGaN系活性層64の形成 
 成膜時の基板温度を750℃とし、成膜レート10nm/sにて、膜厚が408nmとなるまでInGaN系活性層64を形成した。
(5)クールダウン 
 片面に低温バッファ層60、n-GaN層62およびInGaN系活性層64をこの順に形成したサファイア基板50を常温近傍まで冷却した。
-第1の熱変性層形成条件- 
 まず、多層膜70が形成された単結晶基板50の非成膜面54を鏡面研磨した。次に、平坦な試料ステージ上に、多層膜70が形成された面を下面側として、真空吸着によりサファイア基板50を固定した。この状態で、サファイア基板50の多層膜70が形成されていない非成膜面54側から、以下の照射条件にてレーザ照射を行うことで第1の熱変性層22を形成した。なお、レーザ照射に際しては、試料ステージの縦方向の走査方向がサファイア基板50のオリフラと一致するように、試料ステージ上にサファイア基板50を固定した。そして、レーザ照射装置に対して、試料ステージを縦方向および横方向に走査し、サファイア基板の平面方向に対して格子状パターンとなるように第1の熱変性層22を形成した。ここで、格子状パターンのライン間ピッチは500μmとした。
・レーザ波長:1045nm 
・パルス幅:500fs 
・繰り返し周波数:100kHz 
・スポットサイズ:1.6~3.5μm 
・レーザパワー:0.3W 
・試料ステージ走査速度:400mm/s(ライン間のピッチに応じて左記範囲内で適宜選択)
(評価結果) 
-サファイア基板の厚み方向に対する、前記サファイア基板の曲率変化量の評価-
 図11に、サファイア基板50の厚み方向に対する、前記サファイア基板50の曲率変化量について評価した結果を示す。図11に示されるように第1の熱変性層22の形成位置が80%を超えたあたりから、急激にサファイア基板50の曲率変化量が増大していることが判った。
(評価方法) 
 図11に示す曲率変化量については、リニアゲージで測定した。 なお、曲率変化量はレーザ干渉計でも検証・確認した。
<<多層膜付き単結晶基板の研磨盤に対する貼り合わせ評価>>
(評価用サンプルの作製) 
 評価用サンプルとして図6(d)に示すものと同様のサファイア基板50の片面に3層構成の多層膜70が形成されたものを以下の手順で作製した。まず、サファイア基板50の成膜面52に多層膜70を形成した後、非成膜面54側からのレーザ照射により格子状パターンで第1の熱変性層22を形成して得られた多層膜付きサファイア基板を作製した。この際、多層膜成膜後におけるレーザ照射前後での反り量および成膜面側から見た反りの方向、ならびに、レーザ照射時のライン間のピッチに対するレーザ照射前後での反り量の変化量の関係について評価した。以下に、テスト条件および評価結果の詳細を説明する。
-サファイア基板- 
 サファイア基板50としては、オリフラ面付きの円形状のサファイア基板(直径:4インチ(100mm)、厚み:650μm)を用いた。なお、このサファイア基板は、片面が鏡面研磨されたものであり、多層膜70はこの鏡面研磨された面を成膜面52として形成される。また、何らの成膜処理やレーザ照射処理を行わない状態でのこのサファイア基板50の反り量は、±30μmの範囲内である。
-多層膜の層構成および成膜条件- 
 サファイア基板50の成膜面52には、3層構成の多層膜70を形成した。なお、具体的な成膜条件は以下の通りであり、以下に示す(1)~(5)の順にプロセスを実施した。
(1)サーマルクリーニング 
 サファイア基板50をMOCVD装置内に配置した後、成膜面52のサーマルクリーニングを、基板温度1100℃にて約120秒間実施した。
(2)低温バッファ層60の形成 
 成膜時の基板温度を530℃とし、成膜レート0.16nm/sにて膜厚が30nmとなるまで低温バッファ層60を形成した。
(3)n-GaN層62の形成 
 成膜時の基板温度を1050℃とし、成膜レート2000nm/sにて膜厚が3500nmとなるまでn-GaN層62を形成した。
(4)InGaN系活性層64の形成 
 成膜時の基板温度を750℃とし、成膜レート10nm/sにて、膜厚が408nmとなるまでInGaN系活性層64を形成した。
(5)クールダウン 
 片面に低温バッファ層60、n-GaN層62およびInGaN系活性層64をこの順に形成したサファイア基板50を常温近傍まで冷却した。
-第1の熱変性層形成条件- 
 まず、多層膜70が形成された単結晶基板50の非成膜面54を鏡面研磨した。次に、平坦な試料ステージ上に、多層膜70が形成された面を下面側として、真空吸着によりサファイア基板50を固定した。この状態で、サファイア基板50の多層膜70が形成されていない非成膜面54側から、以下の照射条件にてレーザ照射を行うことで第1の熱変性層22を形成した。なお、レーザ照射に際しては、試料ステージの縦方向の走査方向がサファイア基板50のオリフラと一致するように、試料ステージ上にサファイア基板50を固定した。そして、レーザ照射装置に対して、試料ステージを縦方向および横方向に走査し、サファイア基板の平面方向に対して格子状パターンとなるように第1の熱変性層22を形成した。ここで、試料ステージの走査速度を変えることにより格子状パターンのライン間ピッチを変化させたサンプルも作製した。
・レーザ波長:1045nm 
・パルス幅:500fs 
・繰り返し周波数:100kHz 
・スポットサイズ:1.6~3.5μm 
・レーザパワー:0.3W 
・試料ステージ走査速度:400mm/s(ライン間のピッチに応じて左記範囲内で適宜選択)
-評価用サンプルの仕様-
 表5に、評価に用いた多層膜70付き単結晶基板(サンプルC1~サンプルC5)のレーザ照射前後の反り量および非成膜面54側から見た反りの方向、ならびに、多層膜成膜後のレーザ照射条件の概略を示す。表5から明らかなように、レーザ処理を行ったサンプルC1~サンプルC4は、レーザ処理を行っていないサンプルC5に対して反り量がより小さくなっており、多層膜70の成膜に起因する反りが矯正されていることが判った。なお、表5に示す反り量については、リニアゲージで測定した。この反り量は、レーザ干渉計でも検証・確認した。また、表5に示す非成膜面54側から見た反りの方向はレーザ干渉計により測定した。
Figure JPOXMLDOC01-appb-T000005
-研磨盤への貼り付け-
 各サンプルについては、多層膜70のパターニング処理を省略して、多層膜70が設けられた面を研磨盤に貼り付けた。ここで、研磨盤80としては、直径140mm、厚み 20mmの両面が平坦なアルミナ盤を用いた。リニアゲージおよびレーザ干渉計で測定したこの研磨盤の両面の反り量は、いすれの測定方法でも各々±1.5μm以下である。
 次に、この研磨盤80の片面全面に、加熱して液状にしたワックス(融点:約120度)を薄く均一に塗布した後、研磨盤80上に、サンプルを配置して貼り合わせた後、さらに、このサンプル上に、重しとしてもう一枚の研磨盤80を配置した。続いて、重しとして用いた研磨盤80を介して、貼り合わせ界面の全面に対して20kgの荷重を均一に印加した。そして、この状態で、自然冷却によりワックスを固化させることで、研磨盤80上に、サンプル(多層膜付き単結晶基板)を貼り付けた。
(評価結果)
 研磨盤80上に貼り付けられたサンプルについては、このサンプルの非成膜面54について、オリフラ面と水平な方向の反り量および非成膜面54側から見た反りの向き、ならびに、オリフラ面と直交する方向の反り量および非成膜面54側から見た反りの向き、を評価した。また、貼り合わせ界面を、研磨盤80側から目視観察することにより、貼り合わせ界面に気泡が存在するか否かを評価した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6から明らかなように、実施例C1~実施例C4のいずれにおいても、研磨盤80に貼り合わせた後の反り量は10μm以下となり、比較例C1の反り量よりも小さくなっていることが確認された。また、貼り合わせ前の反り量を40μm程度以下に制御した実施例C1および実施例C2に対して、貼り合わせ前の反り量を40μm~55μm程度に制御した実施例C3および実施例C4では、貼り合わせ界面に気泡の発生も確認されなかった。さらに、実施例C4に対して貼り合わせ前の反り量をより小さくした実施例C3では、貼り合わせ後の反り量も実施例C1および実施例C2と同程度に小さくすることができた。以上のことから、貼り合わせ後の反り量の抑制および貼り合わせ界面における気泡の発生防止の両立という観点では、貼り合わせ前の反りについては、レーザ照射処理によってほぼ完全に平坦化するよりも、多少、反った状態としておくことが好ましいと言える。
(評価方法) 
 表6に示す反り量については、リニアゲージで測定した。なお、反り量は、レーザ干渉計でも検証・確認した。また、表6に示す非成膜面54側から見た反りの方向はレーザ干渉計により測定した。

Claims (26)

  1.  単結晶基板と、 
     該単結晶基板の片面に形成された2つ以上の層を有する多層膜と、を含み、
     上記単結晶基板をその厚み方向において2等分して得られる2つの領域のうち、少なくとも上記単結晶基板の上記多層膜が形成された面側と反対側の面側の領域内に、熱変性層が設けられていることを特徴とする多層膜付き単結晶基板。
  2.  請求項1に記載の多層膜付き単結晶基板において 
     前記熱変性層が、前記単結晶基板に対するレーザ照射により形成されたことを特徴とする多層膜付き単結晶基板。
  3.  請求項1または請求項2に記載の多層膜付き単結晶基板において、  
     前記熱変性層が、前記多層膜と平行に設けられていることを特徴とする多層膜付き単結晶基板。
  4.  請求項1~3のいずれか1つに記載の多層膜付き単結晶基板において、 
     前記単結晶基板の厚み方向の相対位置を、前記多層膜が設けられた側の面を0%と仮定し、前記多層膜が設けられた面と反対側の面を100%とし仮定した際に、
     前記熱変性層が、前記単結晶基板の厚み方向の50%を超え95%以下の範囲内に設けられていることを特徴とする多層膜付き単結晶基板。
  5.  請求項1~4のいずれか1つに記載の多層膜付き単結晶基板において、 
     前記熱変性層が、前記単結晶基板の平面方向に対して、 
    i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、
    ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、
    iii)同心円状、 
    iv)前記単結晶基板の中心点に対して略点対称に形成された形状、 
    v)前記単結晶基板の中心点を通じる直線に対して略線対称に形成された形状、
    vi)ストライプ形状、ならびに、 
    vii)らせん形状 
     から選択される少なくともいずれか1つのパターン形状で設けられていることを特徴とすることを特徴とする多層膜付き単結晶基板。
  6.  請求項5に記載の多層膜付き単結晶基板において、 
     前記複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることを特徴とする多層膜付き単結晶基板。
  7.  請求項6に記載の多層膜付き単結晶基板において、 
     前記格子形状を成すパターンを構成するラインのピッチが、50μm~2000μmの範囲内であることを特徴とする多層膜付き単結晶基板。
  8.  請求項1~7のいずれか1つに記載の多層膜付き単結晶基板において、 
     前記単結晶基板の厚み方向の相対位置を、前記多層膜が設けられた側の面を0%と仮定し、前記多層膜が設けられた面と反対側の面を100%とし仮定した際に、
     第2の熱変性層が、前記単結晶基板の厚み方向の0%以上50%未満の範囲内に設けられていることを特徴とする多層膜付き単結晶基板。
  9.  請求項1~8のいずれか1つに記載の多層膜付き単結晶基板において、 
     前記単結晶基板の材質が、サファイアであることを特徴とする多層膜付き単結晶基板。
  10.  請求項1~9のいずれか1つに記載の多層膜付き単結晶基板において、 
     前記単結晶基板の直径が50mm以上300mm以下であることを特徴とする多層膜付き単結晶基板。
  11.  請求項1~10のいずれか1つに記載の多層膜付き単結晶基板において、
     前記単結晶基板の厚みが0.05mm以上5.0mm以下であることを特徴とする多層膜付き単結晶基板。
  12.  請求項1~11のいずれか1つに記載の多層膜付き単結晶基板において、
     前記多層膜を構成する少なくともいずれか1層が、窒化物半導体結晶層であることを特徴とする多層膜付き単結晶基板。
  13.  請求項1~12のいずれか1つに記載の多層膜付き単結晶基板において、
     前記多層膜に対して、少なくともパターニング処理を施すことにより、発光素子、光発電素子、半導体素子から選択される素子が作製できることを特徴とする多層膜付き単結晶基板。
  14.  片面に、2つ以上の層を有し、かつ、圧縮応力を有する多層膜が形成された単結晶基板の上記多層膜が形成された面側と反対側の面側から、レーザを照射することにより、  上記単結晶基板をその厚み方向において2等分して得られる2つの領域のうち、少なくとも上記単結晶基板の上記多層膜が形成された面側と反対側の面側の領域内に、熱変性層を形成する多層膜成膜後熱変性層形成工程を、少なくとも経ることにより、多層膜付き単結晶基板を製造することを特徴とする多層膜付き単結晶基板の製造方法。
  15.  請求項14に記載の多層膜付き単結晶基板の製造方法において、 
     前記レーザの照射が、下記A~Bに示す少なくともいずれか1つに記載の照射条件を満たすように実施されることを特徴とする多層膜付き単結晶基板の製造方法。
    <照射条件A> 
    ・レーザ波長:200nm~350nm 
    ・パルス幅:ナノ秒オーダー 
    <照射条件B> 
    ・レーザ波長:350nm~2000nm 
    ・パルス幅:フェムト秒オーダー~ピコ秒オーダー 
  16.  請求項14または請求項15に記載の多層膜付き単結晶基板の製造方法において、 
     前記熱変性層が、前記多層膜と平行となるように形成されることを特徴とする多層膜付き単結晶基板の製造方法。
  17.  請求項14~16のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記単結晶基板の厚み方向の相対位置を、前記多層膜が設けられた側の面を0%と仮定し、前記多層膜が設けられた面と反対側の面を100%と仮定した際に、
     前記熱変性層が、前記単結晶基板の厚み方向の50%を超え95%以下の範囲内に位置するように形成されることを特徴とする多層膜付き単結晶基板の製造方法。
  18.  請求項14~17のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記熱変性層が、前記単結晶基板の平面方向に対して、 
    i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、
    ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、
    iii)同心円状、 
    iv)前記単結晶基板の中心点に対して略点対称に形成された形状、 
    v)前記単結晶基板の中心点を通じる直線に対して略線対称に形成された形状、
    vi)ストライプ形状、ならびに、 
    vii)らせん形状 
     から選択される少なくともいずれか1つのパターン形状を描くように形成されることを特徴とすることを特徴とする多層膜付き単結晶基板の製造方法。
  19.  請求項18に記載の多層膜付き単結晶基板の製造方法において、 
     前記複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることを特徴とする多層膜付き単結晶基板の製造方法。
  20.  請求項19に記載の多層膜付き単結晶基板の製造方法において、 
     前記格子形状を成すパターンを構成するラインのピッチが、50μm~2000μmの範囲内であることを特徴とする多層膜付き単結晶基板の製造方法。
  21.  請求項14~20のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
    (1)単結晶基板の片面側からレーザを照射することにより、 
     単結晶基板の厚み方向の相対位置を、上記レーザが照射される側の面を0%と仮定し、上記レーザが照射される側の面と反対側の面を100%と仮定した際に、
     熱変性層が、上記単結晶基板の厚み方向の0%以上50%未満の範囲内に位置するように形成する多層膜成膜前熱変性層形成工程と、
    (2)上記熱変性層が形成された単結晶基板の上記レーザが照射された側の面に、2つ以上の層を有し、かつ、圧縮応力を有する多層膜を形成する多層膜形成工程と、
    (3)前記多層膜成膜後熱変性層形成工程と、 
    を、この順に少なくとも経ることにより、多層膜付き単結晶基板を製造することを特徴とする多層膜付き単結晶基板の製造方法。
  22.  請求項14~21のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記単結晶基板の材質が、サファイアであることを特徴とする多層膜付き単結晶基板の製造方法。
  23.  請求項14~22のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記単結晶基板の直径が50mm以上300mm以下であることを特徴とする多層膜付き単結晶基板の製造方法。
  24.  請求項14~23のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記単結晶基板の厚みが0.05mm以上5.0mm以下であることを特徴とする多層膜付き単結晶基板の製造方法。
  25.  請求項14~24のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記多層膜を構成する少なくともいずれか1層が、窒化物半導体結晶層であることを特徴とする多層膜付き単結晶基板の製造方法。
  26.  片面に、2つ以上の層を有し、かつ、圧縮応力を有する多層膜が形成された単結晶基板の上記多層膜が形成された面側と反対側の面側から、レーザを照射することにより、上記単結晶基板をその厚み方向において2等分して得られる2つの領域のうち、少なくとも上記単結晶基板の上記多層膜が形成された面側と反対側の面側の領域内に、熱変性層を形成する多層膜成膜後熱変性層形成工程を、少なくとも経ることにより、多層膜付き単結晶基板を製造し、
     さらに、当該多層膜付き単結晶基板の上記多層膜に対して、少なくともパターニング処理を施すことにより、発光素子、光発電素子、半導体素子から選択されるいずれか1つの素子として機能する素子部分を作製する素子部分形成工程を少なくとも経て、上記素子部分と当該素子部分に略対応するサイズを有する単結晶基板とを含む素子を製造することを特徴とする素子製造方法。
PCT/JP2011/055066 2010-03-05 2011-03-04 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法 WO2011108703A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11750812.7A EP2544219A4 (en) 2010-03-05 2011-03-04 MONOCRYSTALLINE SUBSTRATE WITH MULTI-LAYER FILM, PROCESS FOR PRODUCING MONOCRYSTALLINE SUBSTRATE WITH MULTI-LAYER FILM, AND DEVICE PRODUCTION METHOD
JP2012503286A JP5674759B2 (ja) 2010-03-05 2011-03-04 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法
KR1020127022612A KR101495581B1 (ko) 2010-03-05 2011-03-04 다층막이 형성된 단결정 기판, 다층막이 형성된 단결정 기판의 제조 방법 및 소자 제조 방법
US13/582,570 US20130082358A1 (en) 2010-03-05 2011-03-04 Single crystal substrate with multilayer film, manufacturing method for single crystal substrate with multilayer film, and element manufacturing method
CN201180009701.6A CN102770940B (zh) 2010-03-05 2011-03-04 带多层膜的单晶衬底、带多层膜的单晶衬底的制造方法以及元件制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-049858 2010-03-05
JP2010049858 2010-03-05

Publications (1)

Publication Number Publication Date
WO2011108703A1 true WO2011108703A1 (ja) 2011-09-09

Family

ID=44542347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055066 WO2011108703A1 (ja) 2010-03-05 2011-03-04 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法

Country Status (7)

Country Link
US (1) US20130082358A1 (ja)
EP (1) EP2544219A4 (ja)
JP (2) JP2011201759A (ja)
KR (1) KR101495581B1 (ja)
CN (1) CN102770940B (ja)
TW (1) TWI550690B (ja)
WO (1) WO2011108703A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014123171A1 (ja) * 2013-02-08 2017-02-02 並木精密宝石株式会社 GaN基板及びGaN基板の製造方法
JP2018041080A (ja) * 2016-09-05 2018-03-15 東京エレクトロン株式会社 半導体プロセッシング中のオーバレイを制御するための湾曲を制御する応力の位置特定チューニング

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI508327B (zh) * 2010-03-05 2015-11-11 Namiki Precision Jewel Co Ltd An internal modified substrate for epitaxial growth, a multilayer film internal modified substrate, a semiconductor device, a semiconductor bulk substrate, and the like
TWI525664B (zh) * 2010-03-05 2016-03-11 Namiki Precision Jewel Co Ltd A crystalline film, a device, and a method for producing a crystalline film or device
JP5732684B2 (ja) * 2010-03-05 2015-06-10 並木精密宝石株式会社 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法
US9718249B2 (en) 2012-11-16 2017-08-01 Apple Inc. Laminated aluminum oxide cover component
EP2778252A3 (en) * 2013-03-15 2014-12-10 Apple Inc. Layered Coatings For Sapphire Structure
DE102013004558B4 (de) * 2013-03-18 2018-04-05 Apple Inc. Verfahren zur Herstellung einer oberflächenverspannten Saphirscheibe, oberflächenverspannte Saphirscheibe und elektrisches Gerät mit einer transparenten Abdeckung
JP6119712B2 (ja) * 2014-10-08 2017-04-26 トヨタ自動車株式会社 半導体装置の製造方法
JP2016143766A (ja) * 2015-02-02 2016-08-08 株式会社ディスコ 単結晶部材の加工方法
JP6281537B2 (ja) * 2015-08-07 2018-02-21 信越半導体株式会社 半導体ウェーハの製造方法
US10205303B1 (en) * 2017-10-18 2019-02-12 Lumentum Operations Llc Vertical-cavity surface-emitting laser thin wafer bowing control
JP2020047617A (ja) * 2018-09-14 2020-03-26 キオクシア株式会社 基板処理装置、半導体装置の製造方法、および被加工基板
US11269374B2 (en) 2019-09-11 2022-03-08 Apple Inc. Electronic device with a cover assembly having an adhesion layer
CN112054099A (zh) * 2020-09-09 2020-12-08 福建晶安光电有限公司 一种衬底的回收工艺
US20220336226A1 (en) * 2021-04-15 2022-10-20 Tokyo Electron Limited Method of correcting wafer bow using a direct write stress film
CN115803882A (zh) 2021-06-30 2023-03-14 长江存储科技有限责任公司 三维存储器装置及其形成方法
WO2023272638A1 (en) 2021-06-30 2023-01-05 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and methods for forming the same
WO2023028729A1 (en) * 2021-08-30 2023-03-09 Yangtze Memory Technologies Co., Ltd. Wafer stress control and semiconductor structure
CN117882180A (zh) * 2021-11-02 2024-04-12 Ev 集团 E·索尔纳有限责任公司 用于补偿变形的方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794408A (ja) * 1990-04-13 1995-04-07 Thomson Csf 2つの結晶化半導体材料を整合させる方法及び半導体素子
JPH1140849A (ja) * 1997-07-17 1999-02-12 Mitsubishi Cable Ind Ltd GaN系結晶成長用基板およびその用途
JP3250438B2 (ja) 1995-03-29 2002-01-28 日亜化学工業株式会社 窒化物半導体発光素子
JP2002324758A (ja) * 2001-04-26 2002-11-08 Nichia Chem Ind Ltd 窒化物半導体基板、及びそれを用いた窒化物半導体素子の製造方法
JP2006196558A (ja) * 2005-01-12 2006-07-27 Namiki Precision Jewel Co Ltd 窒化物半導体基板の製造方法
JP2006347776A (ja) 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd サファイア基板およびその製造方法
JP2008006492A (ja) 2006-06-30 2008-01-17 Disco Abrasive Syst Ltd サファイア基板の加工方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201262B1 (en) * 1997-10-07 2001-03-13 Cree, Inc. Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure
JP3788037B2 (ja) 1998-06-18 2006-06-21 住友電気工業株式会社 GaN単結晶基板
JP4659300B2 (ja) * 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
JP2002192371A (ja) * 2000-09-13 2002-07-10 Hamamatsu Photonics Kk レーザ加工方法及びレーザ加工装置
JP4050534B2 (ja) * 2002-03-12 2008-02-20 浜松ホトニクス株式会社 レーザ加工方法
US7034330B2 (en) * 2002-10-22 2006-04-25 Showa Denko Kabushiki Kaisha Group-III nitride semiconductor device, production method thereof and light-emitting diode
KR100952015B1 (ko) * 2002-12-10 2010-04-08 엘지이노텍 주식회사 반도체 소자 제조방법
CN100362710C (zh) * 2003-01-14 2008-01-16 松下电器产业株式会社 氮化物半导体元件及其制造方法和氮化物半导体基板的制造方法
KR100550491B1 (ko) * 2003-05-06 2006-02-09 스미토모덴키고교가부시키가이샤 질화물 반도체 기판 및 질화물 반도체 기판의 가공 방법
US8134223B2 (en) * 2003-05-08 2012-03-13 Sumitomo Electric Industries, Ltd. III-V compound crystal and semiconductor electronic circuit element
JP2005012203A (ja) * 2003-05-29 2005-01-13 Hamamatsu Photonics Kk レーザ加工方法
US7026261B2 (en) * 2003-06-16 2006-04-11 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor device
CN1826207B (zh) * 2003-07-18 2010-06-16 浜松光子学株式会社 激光加工方法、激光加工装置以及加工产品
JP4563097B2 (ja) * 2003-09-10 2010-10-13 浜松ホトニクス株式会社 半導体基板の切断方法
JP4232605B2 (ja) * 2003-10-30 2009-03-04 住友電気工業株式会社 窒化物半導体基板の製造方法と窒化物半導体基板
EP1709670B1 (en) * 2004-01-26 2012-09-12 Showa Denko K.K. Group iii nitride semiconductor multilayer structure
JP4536407B2 (ja) * 2004-03-30 2010-09-01 浜松ホトニクス株式会社 レーザ加工方法及び加工対象物
JP4917257B2 (ja) * 2004-11-12 2012-04-18 浜松ホトニクス株式会社 レーザ加工方法
JP2006173520A (ja) * 2004-12-20 2006-06-29 Canon Inc レーザ割断方法および該方法により割断可能な被割断部材
JP2006245062A (ja) * 2005-02-28 2006-09-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子の製造方法及び発光素子
JP2007087973A (ja) * 2005-09-16 2007-04-05 Rohm Co Ltd 窒化物半導体素子の製法およびその方法により得られる窒化物半導体発光素子
JP2007165850A (ja) * 2005-11-16 2007-06-28 Denso Corp ウェハおよびウェハの分断方法
JP2007142000A (ja) * 2005-11-16 2007-06-07 Denso Corp レーザ加工装置およびレーザ加工方法
KR100735532B1 (ko) * 2006-03-21 2007-07-04 삼성전자주식회사 기판 내에 팽창부를 포함하는 포토마스크 및 포토마스크의표면 평탄화 방법
JP2007317935A (ja) * 2006-05-26 2007-12-06 Canon Inc 半導体基板、基板割断方法、および素子チップ製造方法
US7897487B2 (en) * 2006-07-03 2011-03-01 Hamamatsu Photonics K.K. Laser processing method and chip
JP5183892B2 (ja) * 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
JP2008108792A (ja) * 2006-10-23 2008-05-08 Disco Abrasive Syst Ltd ウエーハの加工方法
JP5125098B2 (ja) * 2006-12-26 2013-01-23 信越半導体株式会社 窒化物半導体自立基板の製造方法
JP4402708B2 (ja) * 2007-08-03 2010-01-20 浜松ホトニクス株式会社 レーザ加工方法、レーザ加工装置及びその製造方法
JP5184927B2 (ja) * 2008-03-21 2013-04-17 パナソニック株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
US20090278287A1 (en) * 2008-05-12 2009-11-12 Yun Wang Substrate processing with reduced warpage and/or controlled strain
US8900715B2 (en) * 2008-06-11 2014-12-02 Infineon Technologies Ag Semiconductor device
JP5552627B2 (ja) * 2009-01-15 2014-07-16 並木精密宝石株式会社 エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
US8728914B2 (en) * 2009-02-09 2014-05-20 Hamamatsu Photonics K.K. Workpiece cutting method
JP5446325B2 (ja) * 2009-03-03 2014-03-19 豊田合成株式会社 レーザ加工方法および化合物半導体発光素子の製造方法
JP5639997B2 (ja) * 2009-04-07 2014-12-10 浜松ホトニクス株式会社 レーザ加工装置
JP5476063B2 (ja) * 2009-07-28 2014-04-23 浜松ホトニクス株式会社 加工対象物切断方法
TWI525664B (zh) * 2010-03-05 2016-03-11 Namiki Precision Jewel Co Ltd A crystalline film, a device, and a method for producing a crystalline film or device
JP5732684B2 (ja) * 2010-03-05 2015-06-10 並木精密宝石株式会社 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法
TWI508327B (zh) * 2010-03-05 2015-11-11 Namiki Precision Jewel Co Ltd An internal modified substrate for epitaxial growth, a multilayer film internal modified substrate, a semiconductor device, a semiconductor bulk substrate, and the like
JP5370262B2 (ja) * 2010-05-18 2013-12-18 豊田合成株式会社 半導体発光チップおよび基板の加工方法
US8877612B2 (en) * 2010-06-16 2014-11-04 Toyoda Gosei Co., Ltd. Laser processing method
JP2012000636A (ja) * 2010-06-16 2012-01-05 Showa Denko Kk レーザ加工方法
JP5480169B2 (ja) * 2011-01-13 2014-04-23 浜松ホトニクス株式会社 レーザ加工方法
JP2013042119A (ja) * 2011-07-21 2013-02-28 Hamamatsu Photonics Kk 発光素子の製造方法
US20140353705A1 (en) * 2012-03-23 2014-12-04 Sharp Kabushiki Kaisha Semiconductor light emitting element, method of manufacturing semiconductor light emitting element, semiconductor light emitting device and substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794408A (ja) * 1990-04-13 1995-04-07 Thomson Csf 2つの結晶化半導体材料を整合させる方法及び半導体素子
JP3250438B2 (ja) 1995-03-29 2002-01-28 日亜化学工業株式会社 窒化物半導体発光素子
JPH1140849A (ja) * 1997-07-17 1999-02-12 Mitsubishi Cable Ind Ltd GaN系結晶成長用基板およびその用途
JP2002324758A (ja) * 2001-04-26 2002-11-08 Nichia Chem Ind Ltd 窒化物半導体基板、及びそれを用いた窒化物半導体素子の製造方法
JP2006196558A (ja) * 2005-01-12 2006-07-27 Namiki Precision Jewel Co Ltd 窒化物半導体基板の製造方法
JP2006347776A (ja) 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd サファイア基板およびその製造方法
JP2008006492A (ja) 2006-06-30 2008-01-17 Disco Abrasive Syst Ltd サファイア基板の加工方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. CRYST. GROWTH, vol. 272, no. 1-4, 2004, pages 94 - 99
JPN. J. APPL. PHYS., vol. 32, 1993, pages 1528 - 1533
See also references of EP2544219A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014123171A1 (ja) * 2013-02-08 2017-02-02 並木精密宝石株式会社 GaN基板及びGaN基板の製造方法
JP2018041080A (ja) * 2016-09-05 2018-03-15 東京エレクトロン株式会社 半導体プロセッシング中のオーバレイを制御するための湾曲を制御する応力の位置特定チューニング
JP7164289B2 (ja) 2016-09-05 2022-11-01 東京エレクトロン株式会社 半導体プロセッシング中のオーバレイを制御するための湾曲を制御する応力の位置特定チューニング

Also Published As

Publication number Publication date
US20130082358A1 (en) 2013-04-04
TW201203324A (en) 2012-01-16
JP5674759B2 (ja) 2015-02-25
TWI550690B (zh) 2016-09-21
JPWO2011108703A1 (ja) 2013-06-27
EP2544219A4 (en) 2015-06-03
CN102770940A (zh) 2012-11-07
JP2011201759A (ja) 2011-10-13
KR101495581B1 (ko) 2015-02-25
EP2544219A1 (en) 2013-01-09
KR20120120383A (ko) 2012-11-01
CN102770940B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5674759B2 (ja) 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法
JP5732684B2 (ja) 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法
JP5802943B2 (ja) エピタキシャル成長用内部改質基板の製造方法および多層膜付き内部改質基板の製造方法
JP5552627B2 (ja) エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
US8809981B2 (en) Method for manufacturing semiconductor device and apparatus for manufacturing same
TWI525664B (zh) A crystalline film, a device, and a method for producing a crystalline film or device
US20130022773A1 (en) Single-crystal substrate,single-crystal substrate having crystalline film,crystalline film,method for producing single-crystal substrate having crystalline film,method for producing crystlline substrate,and method for producing element
JP2010232609A (ja) Iii族窒化物半導体複合基板、iii族窒化物半導体基板、及びiii族窒化物半導体複合基板の製造方法
US20160265140A1 (en) Single crystal substrate, manufacturing method for single crystal substrate, manufacturing method for single crystal substrate with multilayer film, and element manufacturing method
JP6405767B2 (ja) 窒化ガリウム基板
JP2010278470A (ja) Iii族窒化物半導体成長用基板、iii族窒化物半導体エピタキシャル基板、iii族窒化物半導体素子およびiii族窒化物半導体自立基板、ならびに、これらの製造方法
JP2017095343A (ja) 化合物半導体膜構造
JP2007049180A (ja) Iii族窒化物半導体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009701.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1934/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012503286

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127022612

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011750812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13582570

Country of ref document: US