WO2011108542A1 - ポリイミドフィルム及びそれを用いた積層体、並びにフレキシブル薄膜系太陽電池 - Google Patents

ポリイミドフィルム及びそれを用いた積層体、並びにフレキシブル薄膜系太陽電池 Download PDF

Info

Publication number
WO2011108542A1
WO2011108542A1 PCT/JP2011/054634 JP2011054634W WO2011108542A1 WO 2011108542 A1 WO2011108542 A1 WO 2011108542A1 JP 2011054634 W JP2011054634 W JP 2011054634W WO 2011108542 A1 WO2011108542 A1 WO 2011108542A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
film
polyimide
mol
self
Prior art date
Application number
PCT/JP2011/054634
Other languages
English (en)
French (fr)
Inventor
健 川岸
久野 信治
山口 裕章
健 上木戸
暢 飯泉
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Publication of WO2011108542A1 publication Critical patent/WO2011108542A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polyimide film that can withstand high-temperature heat treatment and is suitable for lamination with inorganic metals and semiconductors, and a method for producing the same.
  • the present invention also relates to a laminate using the polyimide film and a flexible thin film solar cell having high conversion efficiency.
  • Polyimide film is a highly harmonious material in mechanical, electrical, thermal and chemical properties, and is mainly used in the electrical / electronic industry and aerospace field as a highly functional polymer material. .
  • copper wiring but also other inorganic metals and semiconductors are laminated on polyimide film, and application to compound semiconductor-based flexible thin-film solar cells such as amorphous silicon and CIS, and flexible TFT substrates is also progressing.
  • Patent Documents 1 and 2 Patent Documents 1 and 2
  • the linear expansion coefficient (hereinafter referred to as “CTE”) of a polymer has temperature dependence and increases as the temperature rises. In particular, when the glass transition temperature is exceeded, molecular mobility increases and CTE generally rises greatly. Also in a polyimide film, for example, if the average linear expansion coefficient at 50 ° C. to 200 ° C. is defined as ⁇ 1 and the average linear expansion coefficient at 350 ° C. to 450 ° C. is defined as ⁇ 2, the value of ⁇ 2 / ⁇ 1 is generally around 2. there were.
  • the CTE of inorganic metals and semiconductors laminated on polyimide is about 4 to 16 ppm, and there is almost no temperature dependence in the temperature range from room temperature to about 500 ° C. That is, the value of ⁇ 2 / ⁇ 1 of inorganic metals and semiconductors is approximately 1. For this reason, even if the CTE of polyimide at room temperature to around 200 ° C. is the same as that of an inorganic metal or a semiconductor, CTE mismatch occurs in a high temperature region, and problems such as cracks and warpage due to thermal stress may occur.
  • Patent Document 3 proposes a polyimide in which a change in CTE of 350 ° C. or less is reduced.
  • the CTE greatly increased in a high temperature range exceeding 350 ° C., and was insufficient for use in a further high temperature range.
  • Non-Patent Document 1 includes 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter referred to as “s-BPDA”), pyromellitic dianhydride (hereinafter referred to as “PMDA”), A coating film composed of a three-component system of paraphenylenediamine (hereinafter referred to as “PPD”) and having a thickness of 9 to 11 ⁇ m has been proposed.
  • the polyimide thin film disclosed as this coating film also has an insufficient CTE in the high temperature range because the CTE significantly increases in the high temperature range.
  • An object of the present invention is to provide a polyimide film that can withstand high-temperature heat treatment and is particularly suitable for lamination with inorganic metals and semiconductors and a method for producing the same. Moreover, it is providing the flexible thin film type solar cell which has the laminated body using the said polyimide film, and high conversion efficiency.
  • the present inventors have intensively studied the chemical composition, the conditions of the production method, the physical properties of the polyimide film, etc., and completed the present invention. That is, the present invention relates to the following matters.
  • a polyimide film having a ratio ( ⁇ 2 / ⁇ 1) of 1.4 or less of an average linear expansion coefficient ( ⁇ 1) at 350 ° C. to an average linear expansion coefficient ( ⁇ 2) at 350 ° C. to 450 ° C.
  • a step of mixing an aromatic tetracarboxylic dianhydride containing 85 mol% or more of s-BPDA and PMDA and an aromatic diamine containing 85 mol% or more of PPD into a polyimide precursor, and the polyimide precursor A step of forming a self-supporting film by partially imidizing the body, a step of stretching the self-supporting film in at least one direction to 1.05 times or more and 2 times or less, and imidizing the stretched film
  • the manufacturing method of the polyimide film of said (1) which has a process and the process of annealing the film after the said imidation.
  • a flexible thin film solar cell including the laminate of (3).
  • the polyimide film of the present invention has a positive average linear expansion coefficient ( ⁇ 1) at 50 ° C. to 200 ° C., and an average linear expansion coefficient ( ⁇ 1) at 50 ° C. to 200 ° C. and an average linear coefficient at 350 ° C. to 450 ° C. It is a polyimide film whose ratio ( ⁇ 2 / ⁇ 1) to expansion coefficient ( ⁇ 2) is 1.4 or less.
  • This polyimide film shows a value close to the linear expansion coefficient of an inorganic metal or a semiconductor because the ratio of the average linear expansion coefficient ( ⁇ 2 / ⁇ 1) between the high temperature region and the low temperature region is smaller than that of the conventional film.
  • the polyimide film of the present invention can be suitably used as a base material for flexible thin film solar cells, particularly CIS solar cells and flexible TFT substrates, which require high temperature treatment in the production process.
  • the polyimide film of the present invention has a positive average linear expansion coefficient ( ⁇ 1) at 50 ° C. to 200 ° C. and an average linear expansion coefficient ( ⁇ 1) at 50 ° C. to 200 ° C. and 350 ° C. to 450 ° C.
  • the ratio ( ⁇ 2 / ⁇ 1) to the average linear expansion coefficient ( ⁇ 2) at ° C. is 1.4 or less.
  • the average linear expansion coefficient ( ⁇ 1) at 50 ° C. to 200 ° C. is usually preferably larger than 0 and 16 ppm / ° C. or less, more preferably about 3 to 16 ppm / ° C.
  • the average linear expansion coefficient ( ⁇ 2) at 350 ° C. to 450 ° C. is usually preferably ⁇ 10 to 20 ppm / ° C., more preferably about 3 to 16 ppm / ° C.
  • the ratio ( ⁇ 2 / ⁇ 1) of the average linear expansion coefficient ( ⁇ 1) at 50 ° C. to 200 ° C. and the average linear expansion coefficient ( ⁇ 2) at 350 ° C. to 450 ° C. is usually about ⁇ 6 to 1.4. Preferably, it is about ⁇ 5.54 to 1.4, more preferably about 0.2 to 1.4.
  • the weight reduction rate after heat treatment at 500 ° C. for 20 minutes is preferably 1% by mass or less, and more preferably 0.5% by mass or less. Thereby, it can be used more suitably also in a high temperature field.
  • the 5% thermal weight loss temperature in the air is 600 ° C. or higher.
  • the shrinkage ratio after heat treatment at 500 ° C. is preferably 0.3% or less, more preferably 0.25% or less, based on the dimension before heat treatment, and more preferably from ⁇ 0.15 to 0.00. More preferably, it is about 21%.
  • Such a polyimide film is not particularly limited, but, for example, a self-supporting film obtained from an aromatic tetracarboxylic dianhydride containing s-BPDA and PMDA and an aromatic diamine containing PPD is stretched. And can be obtained by imidization.
  • the thickness of the polyimide film is not particularly limited, but is about 12 to 250 ⁇ m, preferably about 12 to 150 ⁇ m, more preferably about 12 to 125 ⁇ m, and further preferably about 12 to 100 ⁇ m.
  • the polyimide film of the present invention can be produced as follows. First, an aromatic tetracarboxylic acid component and an aromatic diamine component are reacted to synthesize a polyimide precursor (polyamic acid). Next, this polyimide precursor solution is cast-coated on a support and heated to produce a self-supporting film of the polyimide precursor solution. Next, this self-supporting film is stretched, heated and imidized.
  • a polyimide precursor polyamic acid
  • this polyimide precursor solution is cast-coated on a support and heated to produce a self-supporting film of the polyimide precursor solution. Next, this self-supporting film is stretched, heated and imidized.
  • the polyimide precursor is preferably prepared from an aromatic tetracarboxylic dianhydride and an aromatic diamine.
  • an aromatic tetracarboxylic dianhydride containing PMDA particularly an aromatic containing PMDA and s-BPDA.
  • Preferred is one produced from an aromatic tetracarboxylic dianhydride and an aromatic diamine containing PPD.
  • aromatic tetracarboxylic dianhydride used in the present invention those containing PMDA and s-BPDA as main components are preferable. Specifically, it is preferable that s-BPDA and PMDA are combined as an aromatic acid dianhydride in an amount of 85 mol% or more, more preferably 95 mol% or more, and in particular, PMDA is 5 mol% or more and 50 mol% or less, and s-BPDA is 50 mol%. % To 95 mol%, more preferably 5 mol% to 40 mol% PMDA and 60 mol% to 95 mol% s-BPDA from the viewpoint of reducing CTE in the high temperature range and suppressing thermal decomposition at high temperature. More preferred. Furthermore, other aromatic tetracarboxylic dianhydride components can be used in combination as long as the characteristics of the present invention are not impaired.
  • the aromatic diamine used in the present invention preferably contains PPD as a main component. More specifically, it is preferable to contain 85 mol% or more of PPD as an aromatic diamine, and more preferably 95 mol% or more. Furthermore, other diamines can be used in combination as long as the characteristics of the present invention are not impaired.
  • Aromatic diamine components that can be used in combination with PPD include metaphenylenediamine, 2,4-diaminotoluene, 2,6-diaminotoluene, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,4 ' -Diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4 ' -Diaminobiphenyl, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-bis (4-aminophenyl) sulfide, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminobenz Anilide, 1,4-bis (4-
  • the synthesis of the polyimide precursor is achieved by random polymerization or block polymerization of approximately equimolar aromatic tetracarboxylic dianhydride and aromatic diamine in an organic solvent. May also be mixed with the reaction conditions was keep two or more polyimide precursors in which either of these two components is excessive, the respective polyimide precursor solution together.
  • the aromatic tetracarboxylic dianhydride preferably contains 85 mol% or more of s-BPDA and PMDA as the aromatic tetracarboxylic dianhydride, and PPD as the aromatic diamine is preferably 85 mol. It is preferable to mix with an aromatic diamine containing at least% to obtain a polyimide precursor.
  • the polyimide precursor solution thus obtained can be used as it is, or if necessary, the organic solvent can be removed, or a new organic solvent can be added to produce the next self-supporting film.
  • organic solvent used in random polymerization or block polymerization and the newly added organic solvent examples include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide and the like. Can be mentioned. These organic solvents may be used alone or in combination of two or more.
  • the polyimide precursor solution may contain an imidization catalyst, an organic phosphorus-containing compound, inorganic fine particles, and the like as necessary.
  • the imidization catalyst examples include a substituted or unsubstituted nitrogen-containing heterocyclic compound, an N-oxide compound of the nitrogen-containing heterocyclic compound, a substituted or unsubstituted amino acid compound, an aromatic hydrocarbon compound having a hydroxyl group, or an aromatic heterocyclic compound.
  • Cyclic compounds such as 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, etc.
  • Benzimidazoles such as alkylimidazole and N-benzyl-2-methylimidazole, isoquinoline, 3,5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, 4-n- Substituted pyridines such as propylpyridine It can be used to apply.
  • the amount of the imidization catalyst used is preferably about 0.01-2 times equivalent, particularly about 0.02-1 times equivalent to the amic acid unit of the polyamic acid.
  • organic phosphorus-containing compounds examples include monocaproyl phosphate, monooctyl phosphate, monolauryl phosphate, monomyristyl phosphate, monocetyl phosphate, monostearyl phosphate, triethylene glycol monotridecyl Monophosphate of ether, monophosphate of tetraethylene glycol monolauryl ether, monophosphate of diethylene glycol monostearyl ether, dicaproyl phosphate, dioctyl phosphate, dicapryl phosphate, dilauryl phosphate, dimyristyl phosphate, Dicetyl phosphate, distearyl phosphate, diethylene phosphate of tetraethylene glycol mononeopentyl ether, trie Diphosphate of glycol mono tridecyl ether, diphosphate of tetraethyleneglycol monolauryl ether, and phosphoric acid esters such as diphosphate esters of diethylene glycol monostearyl
  • amine ammonia, monomethylamine, monoethylamine, monopropylamine, monobutylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, monoethanolamine, diethanolamine, triethanolamine Etc.
  • Inorganic fine particles include fine particle titanium dioxide powder, silicon dioxide (silica) powder, magnesium oxide powder, aluminum oxide (alumina) powder, inorganic oxide powder such as zinc oxide powder, fine particle silicon nitride powder, and titanium nitride powder.
  • Inorganic nitride powder such as silicon carbide powder, inorganic carbide powder such as silicon carbide powder, and inorganic salt powder such as particulate calcium carbonate powder, calcium sulfate powder, and barium sulfate powder.
  • These inorganic fine particles may be used in combination of two or more. In order to uniformly disperse these inorganic fine particles, a means known per se can be applied.
  • a self-supporting film is produced by partially imidizing the polyimide precursor obtained above. Partial imidization may be performed by any of imidation by heat (thermal imidization), chemical imidization (chemical imidization), or a method in which thermal imidization and chemical imidization are used in combination.
  • the self-supporting film of the polyimide precursor solution is a support of the polyimide precursor organic solvent solution as described above or a polyimide precursor solution composition in which an imidization catalyst, an organic phosphorus-containing compound, inorganic fine particles, and the like are added. It is manufactured by being casted on top and heated to such a degree that it becomes self-supporting and partially imidized.
  • the degree of self-supporting refers to a state where it can be peeled from the support.
  • the polyimide precursor solution preferably contains about 10 to 30% by mass of the polyimide precursor.
  • the polyimide precursor solution preferably has a polyimide concentration after imidization of about 8 to 25% by mass.
  • the heating temperature and heating time during the production of the self-supporting film can be appropriately determined.
  • the heating may be performed at a temperature of 100 to 180 ° C. for about 3 to 60 minutes.
  • a smooth base material such as a stainless steel substrate, a stainless steel belt, or a glass plate.
  • the self-supporting film has a loss on heating in the range of 20 to 50% by mass, a loss on heating in the range of 20 to 50% by mass, and an imidization ratio in the range of 8 to 55%, more preferably 10 to 10.
  • a range of 50% is preferable from the viewpoint of stretching because the mechanical properties of the self-supporting film are sufficient.
  • the imidization ratio of the partially imidized self-supporting film is obtained by measuring the IR (ATR) of the self-supporting film and the full-cure product, and using the ratio of the vibration band peak area or height, The imidization rate can be calculated.
  • the vibration band peak a symmetric stretching vibration band of an imidecarbonyl group, a benzene ring skeleton stretching vibration band, or the like is used.
  • a solution of a surface treatment agent such as a coupling agent or a chelating agent may be applied to one side or both sides of the self-supporting film thus obtained, if necessary.
  • various coupling agents such as silane coupling agents, borane coupling agents, aluminum coupling agents, aluminum chelating agents, titanate coupling agents, iron coupling agents, copper coupling agents, and chelating agents.
  • examples thereof include a treatment agent that improves adhesiveness and adhesion of the agent.
  • an excellent effect can be obtained when a coupling agent such as a silane coupling agent is used as the surface treatment agent.
  • silane coupling agents include epoxy silanes such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and vinyltrichloro.
  • Silane vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane and other vinylsilanes, ⁇ -methacryloxypropyltrimethoxysilane and other acrylic silanes, N- ⁇ - (aminoethyl) - ⁇ - Aminosilanes such as aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercapto Propyltri Tokishishiran, .gamma.-chloropropyl trimethoxy silane and the like.
  • N- ⁇ - (aminoethyl) - ⁇ - Aminosilanes such as aminopropyltrimethoxysilane, N
  • titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, isopropyl tris (dioctylpyrophosphate) titanate, tetraisopropylbis (dioctyl phosphite) titanate, tetra (2,2-diallyloxy) Methyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyltricumylphenyl titanate, etc. .
  • silane coupling agents especially ⁇ -aminopropyl-triethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyl-triethoxysilane, N- (aminocarbonyl) - ⁇ -aminopropyl
  • silane coupling agents especially ⁇ -aminopropyl-triethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyl-triethoxysilane, N- (aminocarbonyl) - ⁇ -aminopropyl
  • aminosilane coupling agents are preferred, and N-phenyl- ⁇ -aminopropyltrimethoxysilane is particularly preferred.
  • Examples of the solvent for the solution of the surface treatment agent such as a coupling agent and a chelating agent include the same organic solvents (solvents contained in the self-supporting film) of the polyimide precursor solution.
  • the organic solvent is preferably a solvent that is compatible with the polyimide precursor solution, and is preferably the same as the organic solvent of the polyimide precursor solution.
  • the organic solvent may be a mixture of two or more.
  • the organic solvent solution of the surface treatment agent such as a coupling agent or a chelating agent has a surface treatment agent content of 0.5% by mass or more, more preferably 1 to 100% by mass, particularly preferably 3 to 60% by mass, A content of 5 to 55% by mass is preferable.
  • the water content is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
  • the rotational viscosity (solution viscosity measured with a rotational viscometer at a measurement temperature of 25 ° C.) of the organic solvent solution of the surface treatment agent is preferably 0.8 to 50000 centipoise.
  • the surface treatment agent is particularly uniformly dissolved in the amide solvent at a concentration of 0.5% by mass or more, particularly preferably 1 to 60% by mass, and more preferably 3 to 55% by mass. Those having a low viscosity (particularly a rotational viscosity of 0.8 to 5000 centipoise) are preferred.
  • the coating amount of the surface treating agent solution can be appropriately determined. For example, 1 to 50 g / m 2 is preferable, 2 to 30 g / m 2 is more preferable, and 3 to 20 g / m 2 is particularly preferable.
  • the amount applied may be the same on both sides or different.
  • the surface treatment agent solution can be applied by a known method, for example, gravure coating method, spin coating method, silk screen method, dip coating method, spray coating method, bar coating method, knife coating method, roll coating method. And publicly known coating methods such as blade coating and die coating.
  • Chemical imidization can be performed according to a known method.
  • a polyimide precursor is synthesized in the same manner as in the case of thermal imidization to prepare a polyamic acid solution that is a polyimide precursor solution.
  • a dehydrating agent and a catalyst are added to the polyamic acid solution.
  • inorganic fine particles as described in thermal imidization may be added to the polyamic acid solution.
  • the solution is cast on a suitable support (for example, a metal belt) to form a film, and the film is heated to 200 ° C. or lower using a heat source such as hot air or infrared rays.
  • a self-supporting film is produced by heating to a level that is self-supporting at a temperature, preferably 40-200 ° C.
  • the dehydrating agent examples include organic acid anhydrides such as aliphatic acid anhydrides, aromatic acid anhydrides, alicyclic acid anhydrides, heterocyclic acid anhydrides, or a mixture of two or more thereof.
  • organic acid anhydride examples include, for example, acetic anhydride, propionic anhydride, butyric anhydride, formic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, picolinic anhydride, and the like.
  • Acetic anhydride is preferred. It is preferable that the usage-amount of a dehydrating agent is 0.5 mol or more with respect to 1 mol of amic acid bonds of the aromatic polyamic acid in a solution.
  • the catalyst examples include organic tertiary amines such as aliphatic tertiary amines, aromatic tertiary amines, heterocyclic tertiary amines, or mixtures of two or more thereof.
  • organic tertiary amine include, for example, trimethylamine, triethylamine, dimethylaniline, pyridine, ⁇ -picoline, isoquinoline, quinoline and the like, and isoquinoline is preferable. It is preferable that the usage-amount of a catalyst is 0.1 mol or more with respect to 1 mol of amic acid bonds of the aromatic polyamic acid in a solution.
  • a solution of a surface treatment agent such as a coupling agent or a chelating agent is applied to one side or both sides of the self-supporting film before imidization. It may be applied.
  • the draw ratio is appropriately determined so as to obtain the desired physical properties, but is usually 1.05 to 2 times, preferably 1.05 times to 1.2 times, more preferably 1.1 times to 1.2 times. It is.
  • the stretching ratio refers to the ratio of stretching the film, and 1 times means that no active stretching is performed.
  • the ratio of the average linear expansion coefficient between the high temperature region and the low temperature region ( ⁇ 2 / ⁇ 1) can be made smaller than before, and the stretching conditions such as the stretching ratio are determined from a practical viewpoint.
  • the ratio ( ⁇ 2 / ⁇ 1) of the average linear expansion coefficient ( ⁇ 1) at 50 ° C. to 200 ° C. and the average linear expansion coefficient ( ⁇ 2) at 350 ° C. to 450 ° C. is 1 or less. Can be.
  • At least one end of the self-supporting film is fixed with a gripping member such as a pin tenter or a clip, and then introduced into a heating furnace, and a predetermined stretching ratio in a uniaxial or biaxial direction, usually 1 Stretch in the range of 05 to 2 times. Stretching may be sequential or simultaneous.
  • a gripping member such as a pin tenter or a clip
  • the stretching temperature is preferably from 100 ° C. to 280 ° C., more preferably from 130 ° C. to 250 ° C. from the viewpoint of ease of stretching and stretching efficiency.
  • the stretched product obtained above is imidized by heating to obtain a polyimide film.
  • the heat treatment it is appropriate to gradually perform imidization of the polymer and evaporation / removal of the solvent at a temperature of about 100 to 550 ° C. for about 0.05 to 5 hours, particularly 0.05 to 3 hours.
  • the heat treatment is stepwise subjected to a primary heat treatment at a relatively low temperature of about 100-170 ° C. for about 0.5-30 minutes, and then at a temperature of 170-220 ° C. for about 0.5-30 minutes.
  • the polyimide film can be produced by a batch method or a continuous method.
  • the above self-supporting film can be stretched in a heating furnace dedicated to stretching, or in the first half of the heating / imidation heating furnace (for example, the stage of the primary heat treatment described above). it can.
  • a heating furnace for imidization stretching is performed by fixing both ends of the film in the direction perpendicular to the longitudinal direction of the long solid film, that is, the width direction of the film, using a pin tenter, a clip, or the like.
  • stretching may be performed by any method of uniaxial stretching, sequential biaxial stretching, or simultaneous biaxial stretching as necessary.
  • the annealing treatment refers to heating the polyimide film at a high temperature to relieve the stress remaining on the film.
  • the annealing method it is preferable to heat-treat the polyimide film at 400 ° C. or higher, preferably 500 ° C. or higher, with substantially no stress.
  • the state where no stress is applied means a state where no external force (tension) is applied.
  • one end or both ends of the polyimide film are not fixed.
  • This heat treatment may be performed subsequent to the quaternary heat treatment for imidization described above, or may be performed in a state where substantially no stress is applied at the stage of the quaternary heat treatment. Good. After cooling the polyimide film obtained after imidation, it may be heated again (reheated). In addition, it is preferable to perform the cooling after the heat treatment in a state where no stress is applied.
  • the temperature of this heat treatment is 400 ° C. or higher, preferably 500 ° C. or higher, more preferably 500 ° C. or higher and 550 ° C. or lower, particularly preferably 500 ° C. or higher and 520 ° C. or lower.
  • the heat treatment time is preferably 5 seconds to 10 minutes, preferably 30 seconds to 10 minutes, more preferably 1 minute to 5 minutes.
  • Examples of the heat source for the annealing treatment include hot air or far infrared rays.
  • CTE hardly increases in the temperature range exceeding the glass transition temperature. It is also possible to make the CTE in the high temperature range smaller than the CTE in the low temperature range by increasing the draw ratio, and it is also possible to obtain a polyimide that expresses negative CTE in the high temperature range by increasing the draw ratio. It is.
  • the polyimide film of the present invention has a relatively low value of the ratio of the average linear expansion coefficient ( ⁇ 2 / ⁇ 1) between the high temperature region and the low temperature region, and is relatively close to the linear expansion coefficient of inorganic metals and semiconductors. Indicates the value. Therefore, it is possible to suppress warpage and cracks during lamination with inorganic metals and semiconductors and in subsequent heat treatment steps.
  • the CTE in the high temperature region smaller than the CTE in the low temperature region, it is possible to reduce the total dimensional change rate up to the high temperature region, and to reduce the total thermal stress in the high temperature treatment process of the laminate. It can be reduced.
  • a conductive layer can be formed on the polyimide film of the present invention by a known method to obtain a laminate.
  • the conductive layer here refers to a layer that conducts current, and specifically, a metal, a metal oxide, an organic conductor, or the like.
  • the conductive layer is preferably a molybdenum layer from the viewpoints of heat resistance, chemical resistance, thermal conductivity, workability, economy, and the like.
  • the polyimide film of the present invention has a small weight loss rate at 500 ° C. and can be used in a higher temperature range, a laminate requiring a heat treatment at a high temperature in the production process and a flexible TFT using the same It can be suitably used for a substrate or a flexible solar cell.
  • it can be suitably used for a CIS solar cell in which a chalcopyrite compound semiconductor layer is formed on the laminate of the present invention.
  • the CIS solar cell of the present invention can be produced according to the method described in WO2009 / 142248, for example. Since heat treatment at a high temperature of 500 ° C. or higher necessary for forming a high-quality CIS semiconductor thin film with few defects is possible, according to the present invention, a high-quality CIS solar cell with high conversion efficiency can be manufactured. .
  • the evaluation method of the physical property of a polyimide film is as follows. (1) Heat loss measurement method of self-supporting film The self-supporting film was heated in an oven at 480 ° C for 5 minutes. The weight loss after heating was calculated according to the following formula (1), where the original weight was W1 and the weight after heating was W2.
  • Imidation ratio (%) (a1 / a2 + b1 / b2) ⁇ 50 (2)
  • the maximum value of the peak near 1772 cm ⁇ 1 is X1
  • the maximum value of the peak near 1517 cm ⁇ 1 is X2
  • the area ratio X1 / X2 on the A side of the self-supporting film is a1
  • the area ratio X1 / X2 on the B side of the self-supporting film is b1
  • the area ratio X1 / X2 on the A side of the film that has been completely imidized is a2
  • the area ratio X1 / X2 on the B side of the film that has been completely imidized is defined as b2.
  • the thermal shrinkage after heating at 500 ° C. was determined by comparing the dimensions after cooling to 25 ° C. with the initial dimensions.
  • Measuring device TMA / SS6100 manufactured by SII Technology Measurement mode: tensile mode, load 2g, Sample length: 15 mm, Sample width: 4 mm Temperature rising start temperature: 25 ° C. Temperature rise end temperature: 500 ° C Temperature drop end temperature: 25 ° C Temperature increase / decrease rate: 20 ° C./min, Measurement atmosphere: air.
  • Weight reduction rate (%) (W 0 ⁇ W) / W 0 ⁇ 100
  • a polyimide precursor solution was obtained.
  • the rotational viscosity at 30 ° C. of the obtained polyamic acid solution was 2500 poise.
  • Table 1 shows the molar ratio of each raw material used in the polymerization.
  • Example 1 Manufacture of polyimide film
  • This polyamic acid solution composition is cast on glass, heated at 80 ° C. for 2.5 minutes, and then heated at 135 ° C. for 2.5 minutes, and then peeled off from the glass and partially imidized polyamic acid self-supporting film (raw film) )
  • the imidation rate of the obtained self-supporting film was 18.5%, and the heat loss was 37% by mass.
  • the self-supporting film was gripped at both ends in one direction, and stretched in the direction gripped in an oven at an atmospheric temperature of 150 ° C. over 1.05 times over 20 seconds.
  • the polyimide film was subjected to heat treatment (annealing) at 500 ° C. for 2.5 minutes in a state where stress was not applied by removing the pins holding the four sides.
  • Table 2 shows the measurement results for the obtained polyimide film.
  • Examples 2 to 6 Other than the polyamic acid solution obtained by using the aromatic acid dianhydride and the aromatic diamine in the ratio (mol%) shown in Table 1 in the same procedure as in Reference Example 1, the film was drawn at the draw ratio shown in Table 1. Performed the same operation as Example 1 to obtain a polyimide film. Table 2 shows the measurement results for the obtained polyimide film.
  • Example 7 In a polyamic acid solution obtained by using the aromatic dianhydride and the aromatic diamine in the ratio (molar ratio) shown in Table 1 in the same procedure as in Reference Example 1, 0.24 against 100 parts by mass of the polyamic acid. Monostearyl phosphate triethanolamine salt was added at a ratio of parts by mass and mixed uniformly to obtain a polyamic acid solution composition.
  • the obtained polyamic acid solution composition was continuously cast from a slit of a T-die mold onto a smooth endless belt-like stainless steel support in a casting / drying furnace, and then 125 ° C. (set temperature), 8 It dried for minutes and obtained the elongate self-supporting film.
  • the imidation ratio was 14.2%, and the heat loss was 40.6% by mass.
  • the self-supporting film was stretched 1.1 times in the running direction (MD) at an ambient temperature of 135 ° C.
  • MD running direction
  • TD width direction
  • both ends in the width direction are gripped and inserted into a continuous heating furnace (curing furnace), and further stretched substantially 1.06 times in the width direction (TD) of the film within a range of 125 ° C. to 270 ° C.
  • it was heated to 480 ° C. for 5 minutes to obtain a polyimide film.
  • the polyimide film was heat-treated at 500 ° C. for 2.5 minutes in a heating furnace in a state where no stress was applied to the gripping portions at both ends in the width direction of the film (no stress state).
  • Table 2 shows the measurement results for the obtained polyimide film.
  • Example 8 In a polyamic acid solution obtained by using the aromatic dianhydride and the aromatic diamine in the ratio (molar ratio) shown in Table 1 in the same procedure as in Reference Example 1, 0.24 against 100 parts by mass of the polyamic acid. Monostearyl phosphate triethanolamine salt is added at a ratio of parts by mass, and 0.05 equivalent of 1,2-dimethylimidazole (imidation catalyst) is added to the amic acid unit of polyamic acid. To obtain a polyamic acid solution composition. Then, a long self-supporting film was obtained in the same manner as in Example 7 except that the temperature of the casting / drying furnace was 130 ° C. The loss on heating was 39.9% by mass.
  • a polyimide film was prepared in the same manner as in Example 7 except that the stretch ratio in the running direction (MD) was 1.07 times and the stretch ratio in the width direction (TD) was 1.11 times. Got.
  • the polyimide film thus obtained was heat-treated at 400 ° C. for 2 minutes in another heating furnace. At the time of the heat treatment, both directions of MD and TD of the polyimide film were not gripped at both ends, and substantially no stress was applied. Table 2 shows the measurement results for the obtained polyimide film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、芳香族テトラカルボン酸二無水物と芳香族ジアミンから得られるポリイミドフィルムであって、50℃~200℃における平均線膨張係数(α1)が正の値であり、かつ50℃~200℃における平均線膨張係数(α1)と350℃~450℃における平均線膨張係数(α2)との比(α2/α1)の値が1.4以下であることを特徴とするポリイミドフィルムに関する。

Description

ポリイミドフィルム及びそれを用いた積層体、並びにフレキシブル薄膜系太陽電池
 本発明は、高温の熱処理に耐えられ、さらに無機金属や半導体との積層に好適なポリイミドフィルム及びその製造方法に関する。また、本発明は前記ポリイミドフィルムを用いた積層体および高い変換効率を有するフレキシブル薄膜系太陽電池に関する。
 ポリイミドフィルムは、機械的、電気的、熱的、化学的特性において、高度に調和のとれた材料であり、高機能性高分子材料として主に電気・電子産業や航空宇宙分野において利用されている。近年銅配線だけでなく、その他の無機金属や半導体をポリイミドフィルム上に積層し、アモルファスシリコン系やCIS系等の化合物半導体系のフレキシブル薄膜系太陽電池や、フレキシブルTFT基板等への応用も進んでいる(特許文献1、2)。
 ところで、一般的にポリマーの線膨張係数(以下「CTE」という)は温度依存性を有し、温度が上昇するにつれて増加する。特に、ガラス転移温度を超えると分子の運動性が増加し、CTEは大きく上昇するのが一般的である。ポリイミドフィルムにおいても、例えば50℃~200℃における平均線膨張係数をα1、350℃~450℃における平均線膨張係数をα2と定義すると、α2/α1の値は2前後である事が一般的であった。これに対して、ポリイミド上に積層される無機金属や半導体のCTEは概ね4~16ppm程度であり、室温から500℃程度の温度域では温度依存性は殆どない。すなわち、無機金属や半導体のα2/α1の値は概ね1である。このため、室温から200℃付近におけるポリイミドのCTEを無機金属又は半導体のそれと同じにしても、高温域でCTEのミスマッチが生じ、熱応力によるクラックや反り等の問題が生じる事があった。
 特許文献3には、350℃以下のCTEの変化を低減したポリイミドが提案されている。しかし、このポリイミドフィルムも350℃を超える高温域ではCTEは大きく上昇し、さらなる高温域での使用には不十分であった。
 また、非特許文献1には、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下「s-BPDA」という)、ピロメリット酸二無水物(以下「PMDA」という)、パラフェニレンジアミン(以下「PPD」という)の3成分系からなり、膜厚が9~11μmのコーティング膜が提案されている。しかし、このコーティング膜として開示されているポリイミド薄膜も高温域ではCTEが大きく上昇することから、高温域での使用には不十分であった。
特開2003-179238号公報 特開2007-317834号公報 特開2006-199740号公報 特開2010-1468号公報 特開2010-4029号公報 特開2010-4030号公報
Journal of Polymer Science:Part B:Polymer Physics,Vol.39,796-810(2001)
 本発明の目的は、高温の熱処理に耐えられる、無機金属や半導体との積層に特に好適なポリイミドフィルムおよびその製造方法を提供することである。また、上記ポリイミドフィルムを用いた積層体および高い変換効率を有するフレキシブル薄膜系太陽電池を提供することである。
 本発明者らは、化学組成や製造方法の条件、ポリイミドフィルムの物性等を鋭意研究し本発明を完成させた。
即ち、本発明は以下の事項に関する。
(1)芳香族テトラカルボン酸二無水物と芳香族ジアミンから得られるポリイミドフィルムであって、50℃~200℃における平均線膨張係数(α1)が正の値であり、かつ50℃~200℃における平均線膨張係数(α1)と350℃~450℃における平均線膨張係数(α2)との比(α2/α1)の値が1.4以下であるポリイミドフィルム。
(2)s-BPDAとPMDAとを合わせて85mol%以上含む芳香族テトラカルボン酸二無水物と、PPDを85mol%以上含む芳香族ジアミンとを混合しポリイミド前駆体とする工程と、前記ポリイミド前駆体を部分イミド化することにより自己支持性フィルムとする工程と、前記自己支持性フィルムを少なくとも一方向に1.05倍以上、2倍以下に延伸する工程と、前記延伸したフィルムをイミド化する工程と、前記イミド化後のフィルムをアニール処理する工程とを有する前記(1)のポリイミドフィルムの製造方法。
(3)前記(1)のポリイミドフィルム上に導電層を有する積層体。
(4)前記(3)の積層体を含むフレキシブル薄膜系太陽電池。
(5)前記(3)の積層体上にカルコパイライト系化合物半導体層を有するCIS系太陽電池。
 本発明のポリイミドフィルムは、50℃~200℃における平均線膨張係数(α1)が正の値であり、かつ50℃~200℃における平均線膨張係数(α1)と350℃~450℃における平均線膨張係数(α2)との比(α2/α1)の値が1.4以下であるポリイミドフィルムである。このポリイミドフィルムは、高温域と低温域の平均線膨張係数の比(α2/α1)の値が従来に比べて小さく、無機金属や半導体の線膨張係数に近い値を示す。そのため、無機金属や半導体との積層時及びその後の熱処理工程における反りやクラックを抑制することが可能である。本発明のポリイミドフィルムは、その製造工程上、高温の処理が必要となるフレキシブル薄膜系太陽電池、特にCIS系太陽電池やフレキシブルTFT基板用基材として好適に利用することができる。
 このような高温域と低温域の平均線膨張係数の比(α2/α1)の値が小さいポリイミドフィルムは従来にはなかったものである。
 [ポリイミドフィルム]
 本発明のポリイミドフィルムは、前述の通り、50℃~200℃における平均線膨張係数(α1)が正の値であり、かつ50℃~200℃における平均線膨張係数(α1)と350℃~450℃における平均線膨張係数(α2)との比(α2/α1)の値が1.4以下である。
 50℃~200℃における平均線膨張係数(α1)は、通常、0より大きく16ppm/℃以下であることが好ましく、3~16ppm/℃程度であることがより好ましい。
 350℃~450℃における平均線膨張係数(α2)は、通常、-10~20ppm/℃であることが好ましく、3~16ppm/℃程度であることがより好ましい。
 50℃~200℃における平均線膨張係数(α1)と350℃~450℃における平均線膨張係数(α2)との比(α2/α1)は、通常、-6~1.4程度であることが好ましく、-5.54~1.4程度であることがより好ましく、0.2~1.4程度であることがさらに好ましい。
 また、500℃で20分間熱処理後の重量減少率が1質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。これにより、高温場においても、より好適に使用することができる。
 また、大気中における5%熱重量減少温度が600℃以上であることが好ましい。
 さらに、500℃で熱処理後の収縮率が熱処理前の寸法を基準にして、0.3%以下であることが好ましく、0.25%以下であることがより好ましく、-0.15~0.21%程度であることがさらに好ましい。
 このようなポリイミドフィルムは、特に限定されるものではないが、例えば、s-BPDAおよびPMDAを含む芳香族テトラカルボン酸二無水物と、PPDを含む芳香族ジアミンから得られる自己支持性フィルムを延伸し、イミド化することで得ることができる。
 ポリイミドフィルムの厚みは特に限定されるものではないが、12~250μm程度、好ましくは12~150μm程度、より好ましくは12~125μm程度、さらに好ましくは12~100μm程度である。
 [ポリイミドフィルムの製造方法]
 本発明のポリイミドフィルムは、次のように作製することができる。まず、芳香族テトラカルボン酸成分と芳香族ジアミン成分とを反応させてポリイミド前駆体(ポリアミック酸)を合成する。次に、このポリイミド前駆体の溶液を支持体上に流延塗布し、加熱してポリイミド前駆体溶液の自己支持性フィルムを製造する。次に、この自己支持性フィルムを延伸し加熱、イミド化する。
 [ポリイミド前駆体(ポリアミック酸)]
 ポリイミド前駆体としては、芳香族テトラカルボン酸二無水物と芳香族ジアミンとから製造されるものが好ましく、例えば、PMDAを含む芳香族テトラカルボン酸二無水物、特にPMDAとs-BPDAを含む芳香族テトラカルボン酸二無水物とPPDを含む芳香族ジアミンとから製造されるものが好ましい。
 本発明において用いられる芳香族テトラカルボン酸二無水物としては、PMDAとs-BPDAを主成分として含有するものが好ましい。具体的には、芳香族酸二無水物としてs-BPDAとPMDAを合わせて85mol%以上、さらに好ましくは95mol%以上含むことが好ましく、特にPMDAを5mol%以上50mol%以下、s-BPDAを50mol%以上95mol%以下、さらに好ましくはPMDAを5mol%以上40mol%以下、s-BPDAを60mol%以上95mol%以下含むことが、高温域のCTEの低減及び高温での熱分解の抑制の点から、より好ましい。さらに、本発明の特性を損なわない範囲で、他の芳香族テトラカルボン酸二無水物成分を併用することもできる。
 本発明において上記s-BPDA及びPMDAと併用が可能な芳香族テトラカルボン酸二無水物成分としては、2,3’,3,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物などが挙げられる。
 本発明において用いられる芳香族ジアミンとしては、PPDを主成分として含有するものが好ましい。より具体的には、芳香族ジアミンとしてPPDを85mol%以上含むことが好ましく、95mol%以上含むことがより好ましい。さらに、本発明の特性を損なわない範囲で、他のジアミンを併用することもできる。PPDと併用可能な芳香族ジアミン成分としては、メタフェニレンジアミン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4-アミノフェノキシフェニル)プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパンなどが挙げられる。
 ポリイミド前駆体の合成は、有機溶媒中で、略等モルの芳香族テトラカルボン酸二無水物と芳香族ジアミンとをランダム重合またはブロック重合することによって達成される。また、予めどちらかの成分が過剰である2種類以上のポリイミド前駆体を合成しておき、各ポリイミド前駆体溶液を一緒にした後反応条件下で混合してもよい。この際、前述したとおり、芳香族テトラカルボン酸二無水物としてs-BPDAとPMDAとを好ましくは合わせて85mol%以上含む芳香族テトラカルボン酸二無水物と、芳香族ジアミンとしてPPDを好ましくは85mol%以上含む芳香族ジアミンとを混合しポリイミド前駆体とすることが好ましい。このようにして得られたポリイミド前駆体溶液はそのまま、あるいは必要であれば有機溶媒を除去し、または、新たに有機溶媒を加えて、次の自己支持性フィルムの製造に使用することができる。
 ランダム重合またはブロック重合において用いる有機溶媒と、前記新たに加える有機溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミドなどが挙げられる。これらの有機溶媒は単独で用いてもよく、2種以上を併用してもよい。
 ポリイミド前駆体溶液には、必要に応じてイミド化触媒、有機リン含有化合物、無機微粒子などを加えてもよい。
 イミド化触媒としては、置換もしくは非置換の含窒素複素環化合物、該含窒素複素環化合物のN-オキシド化合物、置換もしくは非置換のアミノ酸化合物、ヒドロキシル基を有する芳香族炭化水素化合物または芳香族複素環状化合物が挙げられ、特に1,2-ジメチルイミダゾール、N-メチルイミダゾール、N-ベンジル-2-メチルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、5-メチルベンズイミダゾールなどの低級アルキルイミダゾール、N-ベンジル-2-メチルイミダゾールなどのベンズイミダゾール、イソキノリン、3,5-ジメチルピリジン、3,4-ジメチルピリジン、2,5-ジメチルピリジン、2,4-ジメチルピリジン、4-n-プロピルピリジンなどの置換ピリジンなどを好適に使用することができる。イミド化触媒の使用量は、ポリアミド酸のアミド酸単位に対して0.01-2倍当量、特に0.02-1倍当量程度であることが好ましい。イミド化触媒を使用することによって、自己支持性フィルムの延伸が容易なる場合や、加熱イミド化時の結晶化によるフィルムの白化抑制に効果がある場合がある。また、得られるポリイミドフィルムの物性、特に伸びや端裂抵抗が向上することがある。
 有機リン含有化合物としては、例えば、モノカプロイルリン酸エステル、モノオクチルリン酸エステル、モノラウリルリン酸エステル、モノミリスチルリン酸エステル、モノセチルリン酸エステル、モノステアリルリン酸エステル、トリエチレングリコールモノトリデシルエーテルのモノリン酸エステル、テトラエチレングリコールモノラウリルエーテルのモノリン酸エステル、ジエチレングリコールモノステアリルエーテルのモノリン酸エステル、ジカプロイルリン酸エステル、ジオクチルリン酸エステル、ジカプリルリン酸エステル、ジラウリルリン酸エステル、ジミリスチルリン酸エステル、ジセチルリン酸エステル、ジステアリルリン酸エステル、テトラエチレングリコールモノネオペンチルエーテルのジリン酸エステル、トリエチレングリコールモノトリデシルエーテルのジリン酸エステル、テトラエチレングリコールモノラウリルエーテルのジリン酸エステル、ジエチレングリコールモノステアリルエーテルのジリン酸エステル等のリン酸エステルや、これらリン酸エステルのアミン塩が挙げられる。アミンとしてはアンモニア、モノメチルアミン、モノエチルアミン、モノプロピルアミン、モノブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が挙げられる。
 無機微粒子としては、微粒子状の二酸化チタン粉末、二酸化ケイ素(シリカ)粉末、酸化マグネシウム粉末、酸化アルミニウム(アルミナ)粉末、酸化亜鉛粉末などの無機酸化物粉末、微粒子状の窒化ケイ素粉末、窒化チタン粉末などの無機窒化物粉末、炭化ケイ素粉末などの無機炭化物粉末、および微粒子状の炭酸カルシウム粉末、硫酸カルシウム粉末、硫酸バリウム粉末などの無機塩粉末を挙げることができる。これらの無機微粒子は二種以上を組合せて使用してもよい。これらの無機微粒子を均一に分散させるために、それ自体公知の手段を適用することができる。
 尚、ポリイミド前駆体を作製する工程と、後述する前記ポリイミド前駆体を部分イミド化することにより自己支持性フィルムとする工程とを独立した工程として説明するが、前記2つの工程を一体連続的に実施することも、本発明の形態に含まれるのは当然である。
[自己支持性フィルム]
 上記で得られたポリイミド前駆体を部分イミド化することにより、自己支持性フィルムを製造する。部分イミド化は、熱によるイミド化(熱イミド化)、化学的にイミド化(化学イミド化)、または熱イミド化と化学イミド化とを併用した方法のいずれで行ってもよい。
 まず、熱イミド化による自己支持性フィルムの製造方法について説明する。ポリイミド前駆体溶液の自己支持性フィルムは、上記のようなポリイミド前駆体の有機溶媒溶液、あるいはこれにイミド化触媒、有機リン含有化合物、無機微粒子などを加えたポリイミド前駆体溶液組成物を支持体上に流延塗布し、自己支持性となる程度に加熱して部分イミド化することにより製造される。ここで、自己支持性となる程度とは、支持体から剥離可能な状態をいう。
 ポリイミド前駆体溶液は、ポリイミド前駆体を10~30質量%程度含むものが好ましい。また、ポリイミド前駆体溶液としては、イミド化後のポリイミドの濃度が8~25質量%程度であるものが好ましい。
 自己支持性フィルムの製造時の加熱温度および加熱時間は適宜決めることができ、例えば、温度100~180℃で3~60分間程度加熱すればよい。
 支持体としては、平滑な基材を用いることが好ましく、例えばステンレス基板、ステンレスベルト、ガラス板などが使用される。
 自己支持性フィルムは、その加熱減量が20~50質量%の範囲にあること、さらに加熱減量が20~50質量%の範囲で且つイミド化率が8~55%の範囲、より好ましくは10~50%の範囲にあることが、自己支持性フィルムの力学的性質が十分であり、延伸を行う観点から好ましい。
 なお、上記の自己支持性フィルムの加熱減量とは、自己支持性フィルムの質量W1とキュア後のフィルムの質量W2とから次式によって求めた値である。
加熱減量(%)=(W1-W2)/W1×100
 また、上記の部分イミド化された自己支持性フィルムのイミド化率は、自己支持性フィルムとフルキュア品のIR(ATR)を測定し、その振動帯ピーク面積または高さの比を利用して、イミド化率を算出することができる。振動帯ピークとしては、イミドカルボニル基の対称伸縮振動帯やベンゼン環骨格伸縮振動帯などを利用する。
 本発明においては、このようにして得られた自己支持性フィルムの片面または両面に、必要に応じて、カップリング剤やキレート剤などの表面処理剤の溶液を塗布してもよい。
 表面処理剤としては、シランカップリング剤、ボランカップリング剤、アルミニウム系カップリング剤、アルミニウム系キレート剤、チタネート系カップリング剤、鉄カップリング剤、銅カップリング剤などの各種カップリング剤やキレート剤などの接着性や密着性を向上させる処理剤を挙げることができる。特に表面処理剤としてシランカップリング剤などのカップリング剤を用いる場合に優れた効果が得られる。
 シラン系カップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン系、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニルシラン系、γ-メタクリロキシプロピルトリメトキシシラン等のアクリルシラン系、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノシラン系、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン等が例示される。また、チタネート系カップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート等が挙げられる。
 カップリング剤としてはシラン系カップリング剤、特にγ-アミノプロピル-トリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピル-トリエトキシシラン、N-(アミノカルボニル)-γ-アミノプロピルトリエトキシシラン、N-[β-(フェニルアミノ)-エチル]-γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシランなどのアミノシランカップリング剤が好適で、その中でも特にN-フェニル-γ-アミノプロピルトリメトキシシランが好ましい。
 カップリング剤やキレート剤など、表面処理剤の溶液の溶媒としては、ポリイミド前駆体溶液の前記有機溶媒(自己支持性フィルムに含有されている溶媒)と同じものを挙げることができる。有機溶媒は、ポリイミド前駆体溶液と相溶する溶媒であることが好ましく、ポリイミド前駆体溶液の有機溶媒と同じものが好ましい。有機溶媒は2種以上の混合物であってもよい。
 カップリング剤やキレート剤などの表面処理剤の有機溶媒溶液は、表面処理剤の含有量が0.5質量%以上、より好ましくは1~100質量%、特に好ましくは3~60質量%、さらに好ましくは5~55質量%であるものが好ましい。また、水分の含有量は20質量%以下、より好ましくは10質量%以下、特に好ましくは5質量%以下であることが好ましい。表面処理剤の有機溶媒溶液の回転粘度(測定温度25℃で回転粘度計によって測定した溶液粘度)は0.8~50000センチポイズであることが好ましい。
 表面処理剤の有機溶媒溶液としては、特に、表面処理剤が0.5質量%以上、特に好ましくは1~60質量%、さらに好ましくは3~55質量%の濃度でアミド系溶媒に均一に溶解している、低粘度(特に、回転粘度0.8~5000センチポイズ)のものが好ましい。
 表面処理剤溶液の塗布量は適宜決めることができ、例えば、1~50g/mが好ましく、2~30g/mがさらに好ましく、3~20g/mが特に好ましい。塗布量は、両方の面が同じであってもよいし、異なっていてもよい。
 表面処理剤溶液の塗布は、公知の方法を用いることができ、例えば、グラビアコート法、スピンコート法、シルクスクリーン法、ディップコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法などの公知の塗布方法を挙げることができる。
 次に、化学イミド化による自己支持性フィルムの製造方法について説明する。化学イミド化は公知の方法に従って行うことができる。例えば、熱イミド化の場合と同様にしてポリイミド前駆体を合成して、ポリイミド前駆体溶液であるポリアミック酸溶液を調製する。これに脱水剤および触媒を加える。必要に応じて、熱イミド化で記載したような無機微粒子などをポリアミック酸溶液に加えてもよい。そして、この溶液を適当な支持体(例えば、金属ベルトなど)上に流延塗布して膜状物に形成し、この膜状物を熱風、赤外線等の熱源を利用して、200℃以下の温度、好ましくは40~200℃の温度で自己支持性となる程度にまで加熱することによって自己支持性フィルムを製造する。
 脱水剤としては、有機酸無水物、例えば、脂肪族酸無水物、芳香族酸無水物、脂環式酸無水物、複素環式酸無水物、またはそれらの二種以上の混合物が挙げられる。この有機酸無水物の具体例としては、例えば、無水酢酸、無水プロピオン酸、無水酪酸、ギ酸無水物、無水コハク酸、無水マレイン酸、無水フタル酸、安息香酸無水物、無水ピコリン酸等が挙げられ、無水酢酸が好ましい。脱水剤の使用量は、溶液中の芳香族ポリアミック酸のアミック酸結合1モルに対して0.5モル以上であることが好ましい。
 触媒としては、有機第三級アミン、例えば、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン、またはそれらの二種以上の混合物が挙げられる。この有機第三級アミンの具体例としては、例えば、トリメチルアミン、トリエチルアミン、ジメチルアニリン、ピリジン、β-ピコリン、イソキノリン、キノリン等が挙げられ、イソキノリンが好ましい。触媒の使用量は、溶液中の芳香族ポリアミック酸のアミック酸結合1モルに対して0.1モル以上であることが好ましい。
 化学イミド化の場合も、熱イミド化の場合と同様に、必要に応じて、イミド化する前に自己支持性フィルムの片面または両面に、カップリング剤やキレート剤などの表面処理剤の溶液を塗布してもよい。
[自己支持性フィルムの延伸]
 次いで、自己支持性フィルムを延伸する。延伸倍率は、目的の物性が得られるように適宜決められるが、通常、1.05~2倍、好ましくは1.05倍~1.2倍、より好ましくは1.1倍~1.2倍である。ここで延伸倍率とは、フィルムを延伸する倍率をいい、1倍とは積極的な延伸を行っていないことをいう。延伸することで、高温域と低温域の平均線膨張係数の比(α2/α1)の値を従来に比べて小さくする事ができ、延伸倍率等の延伸条件は実用上の観点から決定される。延伸倍率が1.1倍以上の場合は、50℃~200℃における平均線膨張係数(α1)と350℃~450℃における平均線膨張係数(α2)との比(α2/α1)を1以下にすることができる。
 具体的な延伸方法としては、自己支持性フィルムの少なくとも一方の端をピンテンタ、クリップなどの把持部材で固定後、加熱炉中に導入し、一軸方向又は二軸方向に所定の延伸倍率、通常1.05~2倍の範囲で延伸する。延伸は逐次的であっても同時であってもよい。
 延伸温度は100℃~280℃、より好ましくは130℃~250℃であることが延伸のし易さ、延伸効率の点から好ましい。
[イミド化]
 上記で得られた延伸物を加熱することによりイミド化し、ポリイミドフィルムを得る。加熱処理は、約100~550℃の温度においてポリマーのイミド化および溶媒の蒸発・除去を約0.05~5時間、特に0.05~3時間で徐々に行うことが適当である。特に、この加熱処理は段階的に、約100~170℃の比較的低い温度で約0.5~30分間第一次加熱処理し、次いで170~220℃の温度で約0.5~30分間第二次加熱処理して、その後、220~400℃の高温で約0.5~30分間第三次加熱処理し、さらに400~550℃の高い温度で第四次高温加熱処理することが好ましい。
 ポリイミドフィルムの製造は、バッチ法でも連続法でも行うことができる。上記の自己支持性フィルムの延伸は延伸専用の加熱炉で行うこともでき、また、加熱・イミド化用の加熱炉の前半工程(例えば、上記の第一次加熱処理の段階)で行うこともできる。イミド化用の加熱炉を用いる場合は、ピンテンタ、クリップ等で少なくとも長尺の固化フィルムの長手方向に直角の方向、すなわちフィルムの幅方向の両端縁を固定して延伸を行う。この場合も、上記の通り、延伸は必要に応じて一軸延伸、逐次二軸延伸または同時二軸延伸のいずれの方法を用いてもよい。
[アニール処理]
 本発明においては、通常、得られたポリイミドフィルムをアニール処理することが好ましい。ここで、アニール処理とは、高温でポリイミドフィルムを加熱し、フィルムに残存する応力を緩和することをいう。具体的なアニール処理の方法としては、ポリイミドフィルムを実質的に応力が殆どかからない状態で、400℃以上、好ましくは500℃以上で加熱処理することが好ましい。
 実質的に応力がかからない状態とは、外力(張力)が加えられていない状態をいう。例えば、ポリイミドフィルムの片端または両端が固定されていない状態である。また、フィルムの寸法変化に応じて固定端を適宜拡縮する方法を用いてもよい。
 この熱処理は、上で説明したイミド化のための第四次加熱処理に続けて行ってもよいし、第四次加熱処理の段階で実質的に応力がかからない状態にして加熱処理を行ってもよい。イミド化後に得られたポリイミドフィルムを冷却した後、再度加熱(再加熱)してもよい。なお、熱処理後の冷却も、実質的に応力がかからない状態で行うことが好ましい。
 この熱処理の温度は、400℃以上、好ましくは500℃以上であり、さらに好ましくは500℃以上550℃以下、特に好ましくは500℃以上520℃以下である。熱処理の時間については、5秒~10分間、好ましくは30秒~10分間、より好ましくは1分~5分間行うことが好ましい。アニール処理の加熱源としては、熱風または遠赤外線などが挙げられる。このようにアニール処理することによって、残留応力によるガラス転移温度以上の高温域での熱収縮を低減し、実質的に450℃までの昇温過程及び降温過程において可逆的に膨張、収縮するポリイミドフィルムを得る事が可能となる。これにより、例えば500℃以上の高温の熱処理における寸法変化率、特に降温時のフィルムの収縮が小さいポリイミドフィルムを得ることができる。
 連続法でポリイミドフィルムを製造する場合、実際に両端が固定されていない状態でフィルムを500℃以上で搬送することは、フィルムの安定生産の面で障害となるおそれがある。この場合、両端を固定しているピンテンタやクリップの幅をフィルムの収縮に合わせて縮めることで実質的に殆ど応力がかからない状態を作ることができる。
 このようにして、上記のような本発明のポリイミドフィルムを得ることができる。
 本発明のポリイミドフィルムは、ガラス転移温度を超える温度域で、CTEが殆ど上昇しない。また、延伸倍率を上げることで高温域のCTEを低温域のCTEよりも小さくする事も可能であり、さらに、延伸倍率を上げることで高温域において負のCTEを発現するポリイミドを得る事も可能である。本発明のポリイミドフィルムは、高温域と低温域の平均線膨張係数の比(α2/α1)の値が従来に比べて比較的小さいものであり、無機金属や半導体の線膨張係数に比較的近い値を示す。したがって、無機金属や半導体との積層時及びその後の熱処理工程における反りやクラックを抑制することが可能となる。また、場合によっては高温域のCTEを低温域のCTEよりも小さくする事で、高温域までのトータルの寸法変化率を小さくする事が可能となり、積層体の高温処理工程におけるトータルの熱応力を低減させる事が可能となる。
 [積層体およびCIS系太陽電池]
 本発明のポリイミドフィルム上に公知の方法により導電層を形成して積層体を得ることができる。ここでいう導電層とは、電流を伝導する層を指し、具体的には金属、金属酸化物、有機導電体等である。導電層はモリブデン層であることが耐熱性、耐薬品性、熱伝導性、加工性、経済性等の観点から好ましい。
 本発明のポリイミドフィルムは、500℃での重量減少率も小さく、より高い温度域での使用が可能であるため、製造工程上、高温での熱処理が必要な積層体及びそれを用いたフレキシブルTFT基板やフレキシブル太陽電池に好適に用いることができる。特に、本発明の積層体上にカルコパイライト系化合物半導体層が形成されたCIS系太陽電池に好適に用いることができる。本発明のCIS系太陽電池は、例えばWO2009/142248などに記載の方法に準じて製造することができる。欠陥の少ない高品質なCIS系半導体薄膜の形成に必要な500℃以上の高温での熱処理が可能なので、本発明によれば、変換効率が高い高品質のCIS系太陽電池を製造することができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 ポリイミドフィルムの物性の評価方法は以下の通りである。
(1)自己支持性フィルムの加熱減量測定法
 自己支持性フィルムを480℃で5分間、オーブンで加熱した。元の重量をW1、加熱後の重量をW2として、次式(1)に従って、加熱減量を算出した。
  加熱減量(%)=(W1-W2)/W1×100     (1)
(2)自己支持性フィルムのイミド化率測定方法
 Jasco社製FT/IR-4100を使用して、ZnSeを用いてATR-IRを測定した。1772cm-1付近のピークの最大値をX1、1517cm-1付近のピークの最大値をX2としたときの自己支持性フィルムの面積比X1/X2と、完全にイミド化が進んだフィルムの面積比X1/X2とを用いて、次式(2)に従い、自己支持性フィルムのイミド化率を算出した。イミド化率の測定では、フィルムの両面を測定し、両面の平均をイミド化率とした。完全にイミド化が進んだフィルムは、自己支持性フィルムを480℃、5分間加熱したものを用いた。フィルムは、流延した支持体側をA面、気体側をB面とする。
  イミド化率(%)=(a1/a2+b1/b2)×50    (2)
但し式(2)において
1772cm-1付近のピークの最大値をX1、
1517cm-1付近のピークの最大値をX2、
自己支持性フィルムのA面側の面積比X1/X2をa1、
自己支持性フィルムのB面側の面積比X1/X2をb1、
完全にイミド化が進んだフィルムのA面側の面積比X1/X2をa2、
完全にイミド化が進んだフィルムのB面側の面積比X1/X2をb2とする。
(3)ポリイミドフィルムの平均線膨張係数および500℃加熱後の熱収縮率
 測定対象のポリイミドフィルムについて、TMAにより、下記の条件で、昇温過程における50℃~200℃及び350℃~450℃の寸法変化から、平均線膨張係数α1及びα2を求め、平均線膨張係数の比α2/α1の値を計算した。
 また、降温過程の寸法変化についても測定し、450℃以下では実質的に昇温過程の寸法変化と重なる事で残留応力が除去されている事を確認した。
 さらに、25℃に冷却後の寸法を、初期の寸法と比較することで、500℃加熱後の熱収縮率を求めた。
  測定装置:エスアイアイ・テクノロジー社製 TMA/SS6100
  測定モード:引張モード、荷重2g、
  試料長さ:15mm、
  試料幅:4mm、
  昇温開始温度:25℃、
  昇温終了温度:500℃、
  降温終了温度:25℃、
  昇温および降温速度:20℃/min、
  測定雰囲気:大気。
(4)ポリイミドフィルムの500℃、20分間熱処理後の重量減少率
 島津製作所製TGA-50を用いて、測定対象のポリイミドフィルムについて、室温から500℃まで50℃/分で昇温し、500℃になった時点でポリイミドフィルムの重量Wを測定した。そして、そのまま500℃で20分間保持した後にポリイミドフィルムの重量Wを測定して、次式から重量減少率を求めた。
  重量減少率(%)=(W-W)/W×100 
(5)熱重量分析(ポリイミドフィルムの5%重量減少温度)
 島津製作所製TGA-50を用いて、測定対象のポリイミドフィルムを大気中、10℃/minで600℃まで昇温した。そして、得られた熱重量減少曲線から、5%重量減少温度(Td5)を求めた。なお、600℃における重量減少率が5%以下の場合はTd5>600℃と示した。
 〔参考例1〕
 (ポリアミック酸溶液の調製)
 500mlのセパラブルフラスコにN,N-ジメチルアセトアミド273.3gを入れ、ここにp-フェニレンジアミン(PPD)16.532g(0.1529モル)を投入して撹拌した。さらにピロメリット酸二無水物(PMDA)4.335g(0.0199モル)を投入し、常温常圧中で1時間反応させた。次いで3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)39.133g(0.1330モル)を投入し、30℃で10時間重合反応させて、ポリアミック酸溶液(ポリイミド前駆体溶液)を得た。得られたポリアミック酸溶液の30℃での回転粘度は2500ポイズであった。重合で用いた各原料のモル比を表1に示した。
 〔実施例1〕
 (ポリイミドフィルムの製造)
 参考例1で得られたポリアミック酸溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合してポリアミック酸溶液組成物を得た。このポリアミック酸溶液組成物をガラス上に流延し、80℃で2.5分、その後135℃で2.5分加熱した後、ガラスから剥がして部分イミド化ポリアミド酸自己支持性フィルム(生フィルム)を得た。得られた自己支持性フィルムのイミド化率は18.5%、加熱減量は37質量%であった。
 次いで、この自己支持性フィルムを一方向の両端を把持し、雰囲気温度150℃のオーブン中で把持した方向に1.05倍に20秒間かけて延伸し、延伸終了後、フィルムの四方の端部をピンで把持して150℃~480℃まで16分間で加熱、イミド化して膜厚約35μmのポリイミドフィルムを得た。続けて四方を把持していたピンをはずして実質的に応力がかからない状態で、500℃で2.5分間ポリイミドフィルムを加熱処理(アニール処理)した。得られたポリイミドフィルムについての測定結果を表2に示す。
〔実施例2~6〕
 参考例1と同様の手順で芳香族酸二無水物及び芳香族ジアミンを表1に示す割合(モル%)で用いて得られたポリアミック酸溶液を用い、表1に示す延伸倍率で延伸した他は実施例1と同様の操作を行い、ポリイミドフィルムを得た。得られたポリイミドフィルムについての測定結果を表2に示す。
〔実施例7〕
 参考例1と同様の手順で芳香族酸二無水物及び芳香族ジアミンを表1に示す割合(モル比)で用いて得られたポリアミック酸溶液に、ポリアミック酸100質量部に対して0.24質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合してポリアミック酸溶液組成物を得た。得られたポリアミック酸溶液組成物をTダイ金型のスリットから連続的にキャスティング・乾燥炉の平滑なエンドレスベルト状のステンレス製の支持体上に流延した後、125℃(設定温度)、8分間乾燥し、長尺状の自己支持性フィルムを得た。イミド化率は14.2%、加熱減量は40.6質量%であった。
 この自己支持性フィルムを走行方向(MD)に雰囲気温度135℃で1.1倍に延伸した。次いで幅方向の両端を把持して連続加熱炉(キュア炉)へ挿入し、さらに125℃~270℃の範囲内でフィルムの幅方向(TD)に実質的に1.06倍に延伸し、最終的に480℃まで5分間加熱してポリイミドフィルムを得た。続けて、加熱炉内で、フィルムの幅方向の両端把持部に実質的に応力がかからない状態(無応力状態)で、500℃で2.5分間、ポリイミドフィルムを加熱処理した。得られたポリイミドフィルムについての測定結果を表2に示す。
〔実施例8〕
 参考例1と同様の手順で芳香族酸二無水物及び芳香族ジアミンを表1に示す割合(モル比)で用いて得られたポリアミック酸溶液に、ポリアミック酸100質量部に対して0.24質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、さらに、ポリアミック酸のアミック酸単位に対して0.05当量の1,2-ジメチルイミダゾール(イミド化触媒)を添加し、均一に混合してポリアミック酸溶液組成物を得た。そして、キャスティング・乾燥炉の温度を130℃にした以外は実施例7と同様にして、長尺状の自己支持性フィルムを得た。加熱減量は39.9質量%であった。
 この自己支持性フィルムを用いて、走行方向(MD)の延伸倍率を1.07倍、幅方向(TD)の延伸倍率を1.11倍とした以外は実施例7と同様にして、ポリイミドフィルムを得た。このようにして得られたポリイミドフィルムを、別の加熱炉内で、400℃で2分間、加熱処理した。その加熱処理時、ポリイミドフィルムのMD、TD、いずれの方向も、両端を把持せずに、実質的に応力がかからない状態とした。得られたポリイミドフィルムについての測定結果を表2に示す。
〔比較例1~7〕
 参考例1と同様の手順で芳香族酸二無水物及び芳香族ジアミンを表1に示す割合(モル%)で用いて得られたポリアミック酸溶液を用い、表1に示す延伸倍率で延伸した他は実施例1と同様の操作を行い、ポリイミドフィルムを得た。比較例5~7については、延伸を行っていない(延伸倍率1)。得られたポリイミドフィルムについての測定結果を表2に示す。
 PMDAを含まない場合、自己支持性フィルムを延伸しても高温域のCTEは相対的に下がらず、α2/α1の値は1.4を超えていた。また、PMDAを含む場合においても延伸を行わないと高温域のCTEは相対的に下がらず、α2/α1の値は1.4を超えていた。
〔比較例8および9〕
 市販品のポリイミドフィルムの物性を測定した。ポリイミドフィルムとして、アピカル(登録商標)(株式会社カネカ製、NPI)〔比較例8〕とカプトン(登録商標)(東レ・デュポン株式会社製、EN-C)〔比較例9〕を用いた。その結果を表2に示す。α1とα2は、シート状のポリイミドフィルムの横方向と縦方向の数値の両方を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (16)

  1.  芳香族テトラカルボン酸二無水物と芳香族ジアミンから得られるポリイミドフィルムであって、50℃~200℃における平均線膨張係数(α1)が正の値であり、かつ50℃~200℃における平均線膨張係数(α1)と350℃~450℃における平均線膨張係数(α2)との比(α2/α1)の値が1.4以下であることを特徴とするポリイミドフィルム。
  2.  500℃で20分間熱処理後の重量減少率が1質量%以下であることを特徴とする請求項1記載のポリイミドフィルム。
  3.  大気中における5%熱重量減少温度が600℃以上であることを特徴とする請求項1または2記載のポリイミドフィルム。
  4.  50℃~200℃における平均線膨張係数(α1)が0より大きく16ppm/℃以下であることを特徴とする請求項1から3のいずれか1項に記載のポリイミドフィルム。
  5.  500℃で熱処理後の収縮率が熱処理前の寸法を基準にして、0.3%以下であることを特徴とする請求項1から4のいずれか1項に記載のポリイミドフィルム。
  6.  厚みが12~100μmである請求項1から5のいずれか1項に記載のポリイミドフィルム。
  7.  前記芳香族テトラカルボン酸二無水物は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)とピロメリット酸二無水物(PMDA)とを合わせて85mol%以上含み、前記芳香族ジアミンは、パラフェニレンジアミン(PPD)を85mol%以上含む請求項1から6のいずれか1項に記載のポリイミドフィルム。
  8.  s-BPDAとPMDAとを合わせて85mol%以上含む芳香族テトラカルボン酸二無水物と、PPDを85mol%以上含む芳香族ジアミンとを混合しポリイミド前駆体とする工程と、
     前記ポリイミド前駆体を部分イミド化することにより自己支持性フィルムとする工程と、
     前記自己支持性フィルムを少なくとも一方向に1.05倍以上、2倍以下に延伸する工程と、
     前記延伸したフィルムをイミド化する工程と、
     前記イミド化後のフィルムをアニール処理する工程と
    を有する請求項1から7のいずれか1項に記載のポリイミドフィルムの製造方法。
  9.  前記芳香族テトラカルボン酸二無水物がPMDAを5mol%以上50mol%以下、s-BPDAを50mol%以上95mol%以下含む請求項8記載のポリイミドフィルムの製造方法。
  10.  前記自己支持性フィルムのイミド化率が10~50%である請求項9記載のポリイミドフィルムの製造方法。
  11.  前記自己支持性フィルムを延伸する際の温度が100℃~280℃の範囲内である請求項8から10のいずれか1項に記載のポリイミドフィルムの製造方法。
  12.  前記アニール処理は、イミド化後のポリイミドフィルムを実質的に応力が殆どかからない状態で、400℃以上で加熱処理する工程である請求項8から11のいずれか1項に記載のポリイミドフィルムの製造方法。
  13.  請求項1から7のいずれか1項に記載のポリイミドフィルム上に導電層を有する積層体。
  14.  前記導電層がモリブデン層である請求項13記載の積層体。
  15.  請求項13または14に記載の積層体を含むフレキシブル薄膜系太陽電池。
  16.  請求項13または14に記載の積層体上にカルコパイライト系化合物半導体層を有するCIS系太陽電池。
PCT/JP2011/054634 2010-03-03 2011-03-01 ポリイミドフィルム及びそれを用いた積層体、並びにフレキシブル薄膜系太陽電池 WO2011108542A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-046145 2010-03-03
JP2010046145A JP2013100379A (ja) 2010-03-03 2010-03-03 ポリイミドフィルム及びそれを用いた積層体、並びにフレキシブル薄膜系太陽電池

Publications (1)

Publication Number Publication Date
WO2011108542A1 true WO2011108542A1 (ja) 2011-09-09

Family

ID=44542192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054634 WO2011108542A1 (ja) 2010-03-03 2011-03-01 ポリイミドフィルム及びそれを用いた積層体、並びにフレキシブル薄膜系太陽電池

Country Status (3)

Country Link
JP (1) JP2013100379A (ja)
TW (1) TW201202305A (ja)
WO (1) WO2011108542A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503652A (ja) * 2011-12-27 2015-02-02 コーロン インダストリーズ インク ポリアミド酸溶液
WO2018221607A1 (ja) * 2017-05-31 2018-12-06 宇部興産株式会社 ポリイミドフィルム
JP2018204034A (ja) * 2018-09-28 2018-12-27 宇部興産株式会社 ポリイミドフィルム
EP3680282A4 (en) * 2017-09-04 2020-11-25 LG Chem, Ltd. POLYIMIDE FILM FOR FLEXIBLE DISPLAY DEVICE SUBSTRATE

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580712B (zh) * 2012-06-08 2017-05-01 東麗 杜邦股份有限公司 聚亞醯胺膜
JP6467774B2 (ja) * 2014-02-28 2019-02-13 味の素株式会社 プリント配線板の製造方法
JP6539965B2 (ja) * 2014-09-16 2019-07-10 宇部興産株式会社 フレキシブルデバイスの製造方法
JP2016102147A (ja) * 2014-11-27 2016-06-02 Jxエネルギー株式会社 ポリイミドフィルム、それを用いた基板、及び、ポリイミドフィルムの製造方法
KR20170038175A (ko) * 2015-09-29 2017-04-06 신닛테츠 수미킨 가가쿠 가부시키가이샤 폴리이미드 필름의 제조 방법
KR20170115339A (ko) * 2016-04-07 2017-10-17 주식회사 엘지화학 내열성이 개선된 폴리이미드 필름 및 그 제조방법
CN107482073A (zh) * 2017-07-19 2017-12-15 旭科新能源股份有限公司 一种铜铟镓硒柔性薄膜电池的钼层制备方法
JP7320254B2 (ja) * 2019-08-21 2023-08-03 河村産業株式会社 面状発熱体
KR102248979B1 (ko) * 2019-09-11 2021-05-07 피아이첨단소재 주식회사 다층 폴리이미드 필름 및 이의 제조방법
WO2023096340A1 (ko) * 2021-11-24 2023-06-01 피아이첨단소재 주식회사 다층 구조의 폴리이미드 필름 및 이의 제조방법
TWI836750B (zh) * 2021-11-29 2024-03-21 南韓商聚酰亞胺先端材料有限公司 多層聚醯亞胺膜、包含其的可撓性覆金屬箔層壓板及電子部件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129645A (ja) * 1997-07-11 1999-02-02 Ube Ind Ltd 芳香族ポリイミドフィルム、積層体および太陽電池
JP2007162005A (ja) * 2005-11-16 2007-06-28 Du Pont Toray Co Ltd ポリイミドフィルムおよびその製造方法
JP2007194603A (ja) * 2005-12-19 2007-08-02 Du Pont Toray Co Ltd フレキシブルプリント配線板およびその製造方法
JP2008248067A (ja) * 2007-03-30 2008-10-16 Du Pont Toray Co Ltd ポリイミドフィルムおよびフレキシブル回路基板
JP2009021351A (ja) * 2007-07-11 2009-01-29 Du Pont Toray Co Ltd カバーレイ
JP2010001468A (ja) * 2008-05-20 2010-01-07 Ube Ind Ltd 芳香族ポリイミドフィルム、積層体および太陽電池
JP2010004030A (ja) * 2008-05-20 2010-01-07 Ube Ind Ltd ポリイミド金属積層体および太陽電池
JP2010004029A (ja) * 2008-05-20 2010-01-07 Ube Ind Ltd ポリイミド金属積層体および太陽電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129645A (ja) * 1997-07-11 1999-02-02 Ube Ind Ltd 芳香族ポリイミドフィルム、積層体および太陽電池
JP2007162005A (ja) * 2005-11-16 2007-06-28 Du Pont Toray Co Ltd ポリイミドフィルムおよびその製造方法
JP2007194603A (ja) * 2005-12-19 2007-08-02 Du Pont Toray Co Ltd フレキシブルプリント配線板およびその製造方法
JP2008248067A (ja) * 2007-03-30 2008-10-16 Du Pont Toray Co Ltd ポリイミドフィルムおよびフレキシブル回路基板
JP2009021351A (ja) * 2007-07-11 2009-01-29 Du Pont Toray Co Ltd カバーレイ
JP2010001468A (ja) * 2008-05-20 2010-01-07 Ube Ind Ltd 芳香族ポリイミドフィルム、積層体および太陽電池
JP2010004030A (ja) * 2008-05-20 2010-01-07 Ube Ind Ltd ポリイミド金属積層体および太陽電池
JP2010004029A (ja) * 2008-05-20 2010-01-07 Ube Ind Ltd ポリイミド金属積層体および太陽電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503652A (ja) * 2011-12-27 2015-02-02 コーロン インダストリーズ インク ポリアミド酸溶液
WO2018221607A1 (ja) * 2017-05-31 2018-12-06 宇部興産株式会社 ポリイミドフィルム
JPWO2018221607A1 (ja) * 2017-05-31 2020-04-02 宇部興産株式会社 ポリイミドフィルム
JP7072140B2 (ja) 2017-05-31 2022-05-20 Ube株式会社 ポリイミドフィルム
EP3680282A4 (en) * 2017-09-04 2020-11-25 LG Chem, Ltd. POLYIMIDE FILM FOR FLEXIBLE DISPLAY DEVICE SUBSTRATE
US11485859B2 (en) 2017-09-04 2022-11-01 Lg Chem, Ltd. Polyimide film for flexible display device substrate
JP2018204034A (ja) * 2018-09-28 2018-12-27 宇部興産株式会社 ポリイミドフィルム

Also Published As

Publication number Publication date
TW201202305A (en) 2012-01-16
JP2013100379A (ja) 2013-05-23

Similar Documents

Publication Publication Date Title
WO2011108542A1 (ja) ポリイミドフィルム及びそれを用いた積層体、並びにフレキシブル薄膜系太陽電池
JP5278160B2 (ja) 芳香族ポリイミドフィルム、積層体および太陽電池
JP5594289B2 (ja) ポリイミドフィルムおよびポリイミドフィルムの製造方法
JP4968493B2 (ja) ポリイミドフィルム、およびポリイミドフィルムの製造方法
JP5652403B2 (ja) 芳香族ポリイミドフィルム、積層体および太陽電池
WO2009142244A1 (ja) ポリイミド金属積層体および太陽電池
TWI673321B (zh) 聚醯亞胺膜
WO2011145696A1 (ja) ポリイミドフィルムの製造方法、ポリイミドフィルム、およびそれを用いた積層体
KR20230157271A (ko) 폴리이미드 필름
JP5481929B2 (ja) ポリイミド金属積層体および太陽電池
JP5391905B2 (ja) ポリイミドフィルムおよびポリイミドフィルムの製造方法
WO2011071087A1 (ja) ポリイミドフィルムの製造方法、およびポリイミドフィルム
JP6036361B2 (ja) ポリイミドフィルムおよびそれを用いたポリイミド金属積層体
JP5515414B2 (ja) ポリイミド金属積層体および太陽電池
JP5621297B2 (ja) ポリイミドフィルムのカール制御方法、およびポリイミドフィルムの製造方法
JP2012201860A (ja) ポリイミドフィルムの製造方法およびポリイミドフィルム
JP5830896B2 (ja) ポリイミドフィルムの製造方法、およびポリイミドフィルム
JP7101352B2 (ja) ポリイミド、ポリイミドフィルム、ポリイミド金属積層体及び、ポリアミド酸
JP2008118069A (ja) 半導体装置
JP5699746B2 (ja) ポリイミドフィルムの製造方法、およびポリイミドフィルム
KR20240095398A (ko) 폴리이미드 필름
JP2011213923A (ja) ポリイミドフィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP