WO2011102295A1 - 溶接方法および超伝導加速器 - Google Patents

溶接方法および超伝導加速器 Download PDF

Info

Publication number
WO2011102295A1
WO2011102295A1 PCT/JP2011/052875 JP2011052875W WO2011102295A1 WO 2011102295 A1 WO2011102295 A1 WO 2011102295A1 JP 2011052875 W JP2011052875 W JP 2011052875W WO 2011102295 A1 WO2011102295 A1 WO 2011102295A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
superconducting
energy density
reinforcing member
welding method
Prior art date
Application number
PCT/JP2011/052875
Other languages
English (en)
French (fr)
Inventor
坪田 秀峰
仙入 克也
典亮 井上
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CA2785685A priority Critical patent/CA2785685A1/en
Priority to US13/518,575 priority patent/US8872446B2/en
Priority to EP11744582.5A priority patent/EP2537625B8/en
Publication of WO2011102295A1 publication Critical patent/WO2011102295A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • H05H7/20Cavities; Resonators with superconductive walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes

Definitions

  • the present invention relates to a welding method in the process of manufacturing a superconducting accelerator tube and a superconducting accelerator including the superconducting accelerator tube.
  • Patent Document 1 discloses a manufacturing method in which a groove is stepped in a straight pipe butt weld of a superconducting cavity, non-through welding is performed by laser light from the inside, and non-through welding is performed by laser light from the outside. A method is disclosed.
  • blowholes bubbles
  • the aspect ratio (depth / width) of the penetration shape becomes small.
  • niobium Nb, melting point: about 2500 ° C.
  • the bead width becomes narrower and blow holes are more likely to occur.
  • partial penetration welding since the curvature of the bottom of the bead is small, there is a concern that the bead penetrates the base material or a convex portion is formed on the back side of the welding surface. Therefore, the quality of the superconducting acceleration tube could not be secured stably.
  • laser welding can be performed in the air, but it has been difficult to perform high-quality welding by preventing oxidation, especially when niobium that is easily oxidized is used.
  • An object of the present invention is to provide a welding method capable of partial penetration welding and a superconducting accelerator including a superconducting acceleration tube manufactured by the welding method.
  • the welding method when welding a cylindrical reinforcing member to the outer peripheral portion of the superconducting acceleration tube main body with a laser beam in the manufacturing process of the superconducting acceleration tube,
  • the energy density distribution shape on the irradiation surface irradiated with the laser beam is a Gaussian distribution shape having a peak portion, and the energy density of the peak portion is 5.8 ⁇ 10 5 W / cm 2 or more.
  • the energy density of the laser beam is 5.8 ⁇ 10 5 W / cm 2 or more in the laser beam, even if the superconducting acceleration tube body and the reinforcing member are formed of a metal material having a high melting point, These can be sufficiently melted.
  • the laser beam has a Gaussian distribution of energy density, so that the welded area between the superconducting accelerator tube main body and the reinforcing member has a gentle shape around the keyhole, and a bead with a small aspect ratio. Is formed. This makes it easier for bubbles in the molten metal to rise and be discharged and to prevent the molten metal from flowing in and the keyhole from collapsing to entrain the bubbles. As a result, the occurrence of blow holes can be suppressed.
  • the laser beam has a Gaussian distribution of energy density, so that the bead does not penetrate the superconducting accelerating tube main body or form a convex part inside the superconducting accelerating tube main body.
  • Penetration welding can be performed. Since the metal can be melted at the peak portion, the energy on the outer edge side whose energy density is lower than that of the peak portion can also be utilized for melting the metal, so that the energy absorption characteristics can be improved.
  • the energy density of the outer peripheral portion of a region including 50% of the energy centered on the peak portion of the total energy in the energy density distribution shape is 75% of the energy density of the peak portion. It may be the following.
  • the distribution from the peak portion of the energy density toward the outer edge portion becomes gentle, and the energy absorption characteristics on the outer edge portion side can be improved.
  • the superconducting acceleration tube body and the reinforcing member may be formed of niobium.
  • the performance of the formed superconducting accelerator tube and the superconducting accelerator including this superconducting accelerator tube can be enhanced.
  • an inert gas may be supplied to the irradiation surface, the front and rear in the welding direction of the irradiation surface, and the back surface of the irradiation surface inside the superconducting acceleration tube body.
  • an inert gas may be supplied to the irradiation surface, the front and rear in the welding direction of the irradiation surface, and the back surface of the irradiation surface inside the superconducting acceleration tube body.
  • the irradiation surface, the front and back thereof, and the back surface of the irradiation surface inside the superconducting acceleration tube main body can be in an inert gas atmosphere, oxidation of the superconducting acceleration tube main body and the reinforcing member can be prevented.
  • the superconducting acceleration tube main body and the reinforcing member are formed of a metal having a large oxidation tendency, these oxidations can be prevented.
  • a center nozzle provided so as to surround the laser beam, a front nozzle provided in front in the welding direction of the center nozzle, and provided in the rear in the welding direction of the center nozzle.
  • the inert gas may be supplied from the rear nozzle formed and the back side nozzle provided toward the back surface of the irradiation surface inside the superconducting acceleration tube main body.
  • the inert gas can be stably supplied to the irradiation surface of the laser beam and the front and rear in the welding direction of the irradiation surface and the back surface of the irradiation surface inside the superconducting acceleration tube main body.
  • an inert gas may be supplied between the reinforcing member and the superconducting acceleration tube main body. In this case, oxidation of the inside of the reinforcing member and the superconducting acceleration tube main body can be prevented.
  • a partition plate that partitions a space in the circumferential direction may be provided between the superconducting acceleration tube main body and the reinforcing member.
  • a supply port for supplying an inert gas to the inside of the reinforcing member on one side in the circumferential direction with respect to the partition plate; and a discharge port for discharging the gas inside the reinforcing member on the other side in the circumferential direction with respect to the partition plate; May be provided.
  • the inert gas supplied from the supply port to the inside of the reinforcing member moves in the circumferential direction between the superconducting acceleration tube main body and the reinforcing member and is discharged from the discharge port.
  • the space between the tube body and the reinforcing member can be an inert gas atmosphere.
  • the superconducting acceleration tube main body and the reinforcing member are installed such that the central axis thereof is in a horizontal direction, and the superconducting acceleration tube main body and the reinforcing member are on the upper side than the central axis.
  • the superconducting accelerating tube main body and the reinforcing member may be rotated about the central axis in a direction opposite to the direction from the upper end of the superconducting accelerating tube to the laser beam.
  • the molten metal irradiated with the laser beam moves to the upper side by the rotation of the superconducting acceleration tube body and the reinforcing member and solidifies, and does not sag to the irradiation surface irradiated with the laser beam. Welding can be performed well.
  • the superconducting acceleration tube manufactured by the welding method in any one of said is provided.
  • the quality of a superconducting accelerator can be stabilized by providing the superconducting acceleration tube manufactured by the welding method in any one of said.
  • the metal material constituting the superconducting accelerating tube main body and the reinforcing member can be melted at the peak portion of the laser beam.
  • a bead with a gentle shape and a small aspect ratio is formed.
  • production of a blowhole is suppressed and a partial penetration welding can be performed, without a bead penetrating a superconducting acceleration tube main body, or a convex part being formed in the back side of a superconducting acceleration tube main body.
  • the superconducting acceleration tube main body and the reinforcing member can be efficiently welded, and the quality of the manufactured superconducting acceleration tube and superconducting accelerator can be stabilized.
  • (A) is a figure which shows an example of the superconducting acceleration tube by 1st embodiment of this invention
  • (b) is the sectional view on the AA line of (a).
  • (A) is a figure which shows the shape of a defocus beam
  • (b) is an enlarged view of the irradiation surface of the defocus beam of (a)
  • (c) is an enlarged view of the irradiation surface of a just focus beam.
  • (A) is a three-dimensional view showing the energy distribution shape of the irradiation surface of the defocused beam according to the first embodiment
  • (b) is a sectional view along the irradiation direction including the peak portion of (a)
  • (c) is irradiation. It is an energy distribution map of a surface.
  • (A) is a three-dimensional view showing the energy distribution shape of the irradiation surface of the just focus beam
  • (b) is a sectional view along the irradiation direction including the peak portion of (a)
  • (c) is an energy distribution diagram of the irradiation surface.
  • (A) is a figure which shows the penetration shape and keyhole at the time of welding by a defocus beam
  • (b) is a figure which shows the penetration shape and keyhole at the time of welding by a just focus beam
  • (c) is at the time of welding by a just focus beam
  • FIG. 4B is a cross-sectional view taken along line BB in FIG. 4D
  • FIG. 4D is a cross-sectional view taken along line CC in FIG.
  • (A) is a three-dimensional view showing the energy distribution shape of the irradiation surface of the defocused beam in another form
  • (b) is a sectional view along the irradiation direction including the peak portion of (a)
  • (c) is the energy of the irradiation surface.
  • It is a distribution map.
  • (A) is a three-dimensional view showing the energy distribution shape of the irradiation surface of the defocused beam according to another embodiment
  • (b) is a sectional view along the irradiation direction including the peak portion of (a)
  • (c) is the irradiation surface.
  • It is an energy distribution map. It is a figure which compares the welding state by the defocus beam from which an average output differs.
  • (A), (b) is a figure explaining the welding method by 2nd embodiment. It is a figure explaining the welding method by 3rd embodiment.
  • a superconducting acceleration tube 1 reinforces a tubular body (superconducting acceleration tube main body) 3 composed of a plurality of half cells 2 joined by welding, and the tubular body 3.
  • a strong wheel (reinforcing member) 4 is provided.
  • the half cell 2 is obtained by pressing a plate-like superconducting material such as niobium into a bowl shape having an opening at the center.
  • the end portions 2a on the small diameter side of the two half cells 2 are joined to form a dumbbell-shaped member 5 (see FIG.
  • the tubular body 3 includes a concave iris portion 6 and a convex equator portion 7 on the outer periphery, the axial cross section is corrugated (see FIG. 1A), and the radial cross section is annular (see FIG. 1B). ))).
  • the reinforcing wheel 4 is a cylindrical member made of a superconducting material such as niobium and provided so as to cover the iris portion 6, and is intended to reinforce the tubular body 3.
  • the strengthening wheel 4 is formed in a cylindrical shape by combining two semicylindrical members, and an axial end portion 4 a is welded in the vicinity of the iris portion 6.
  • the strong wheel 4 may have a configuration in which members obtained by dividing a cylinder into three or more in the radial direction are combined. Further, a gap may be provided between members constituting the strengthening wheel 4.
  • the superconducting accelerator tube 1 having the above-described configuration is used as a member of a superconducting accelerator (not shown).
  • the dumbbell-shaped member 5 and the strong wheel 4 are welded.
  • the dumbbell-shaped member 5 and the strong wheel 4 are joined to the outer peripheral surface of the dumbbell-shaped member 5 with the end 4a of the strong wheel 4 attached thereto.
  • the quality of the superconducting accelerator is lowered.
  • the dumbbell-shaped member 5 and the strong wheel 4 are welded by partial penetration welding using a laser beam from the outside, and a convex portion is not formed inside the dumbbell-shaped member 5.
  • the welding between the dumbbell-shaped member 5 and the strong wheel 4 is laser welding using a beam having an energy density distribution as shown in FIG.
  • this beam is referred to as a defocus beam (laser beam) 11, and the defocus beam 11 will be described later.
  • the defocused beam 11 is irradiated to one point of the welded portion 8 between the dumbbell-shaped member 5 and the strong wheel 4 and melted, and the dumbbell-shaped member 5 and the strongened wheel 4 are rotated about the central axis 9 to thereby weld the welded portion. 8 is irradiated with the defocused beam 11 to weld the dumbbell-shaped member 5 and the strong wheel 4 together. Then, a plurality of dumbbell-shaped members 5 to which the strengthening wheels 4 are welded are joined in the axial direction, whereby the superconducting acceleration tube 1 is completed.
  • the defocused beam 11 is converted into a beam having an energy density distribution as shown in FIG. 3 by shifting the focus of the laser beam or changing the lens shape as shown in FIGS. It is formed.
  • the defocus beam 11 is formed by shifting the focus.
  • the defocus beam 11 has a defocus amount of +5 mm when a lens with a focal length of 200 mm is used, and a laser beam diameter ⁇ of about 1.67 mm.
  • a beam having an energy distribution as shown in FIG. 4 is used for welding.
  • this beam is referred to as a just focus beam (laser beam) 12.
  • the just focus beam 12 is a beam formed with a reduced focus as shown in FIG.
  • a surface that is irradiated with the defocus beam 11 and is orthogonal to the irradiation direction is referred to as an irradiation surface 13
  • a surface that is irradiated with the just focus beam 12 and is orthogonal to the irradiation direction is referred to as an irradiation surface 14, which will be described below.
  • the central part has a Gaussian distribution shape with a high energy density E (that is, a bell shape as shown in FIG. 3A).
  • the three-dimensional shape is a bell curve as shown in FIG.
  • the just focus beam 12 represents the distribution shape of the energy density E on the irradiation surface 14, it is represented in a substantially cylindrical shape with a small difference in the energy density E as shown in FIG. All laser beams have an average output of 4500 W and a speed of 2.0 m / min.
  • the diameter of the defocus beam 11 is larger than that of the just focus beam 12, as shown in FIGS.
  • the defocus beam 11 has a peak portion 11a with an energy density E at the center, and similarly, the just focus beam 12 has a peak portion 12a with an energy density E at the center.
  • peak energy density Emax There is no big difference in the energy density of each peak part 11a, 12a (hereinafter referred to as peak energy density Emax ).
  • peak energy density Emax the energy density of the defocus beam 11 gradually decreases from the peak portion 11a toward the outer edge portion 11b, whereas the energy density E of the just focus beam 12 hardly decreases as it moves from the peak portion 12a to 12b.
  • the energy density E 50 is the energy density of the outer peripheral portion 11d of the region 11c containing 50% of the energy centered on the peak portion 11a.
  • the energy density of the outer peripheral portion 12d of the region 12c containing 50% energy centering on the peak portion 12a out of the total energy is energy density E. 50 .
  • the ratio of the energy density E 50 to the peak energy density E max of the defocus beam 11 and the just focus beam 12 is compared.
  • the defocus beam 11 has a peak energy density E max of 6.9 ⁇ 10 5 W / cm 2 , an energy density E 50 of 5.1 ⁇ 10 5 W / cm 2 , and a peak energy density E max. the proportion of the energy density E 50 becomes 73.9% against.
  • the ratio of the energy density E 50 to the peak energy density E max of the defocus beam 11 is preferably 75% or less.
  • the energy density E 86 of the defocus beam 11 is 2.4 ⁇ 10 5 W / cm 2 . Ratio of energy density E 86 to the peak energy density E max is 34.8%.
  • the energy density E 86 is the energy density of the outer peripheral portion of a region including 86% of energy centering on the peak portion 12a out of the total energy.
  • the just focus beam 12 has a peak energy density E max of 7.2 ⁇ 10 5 W / cm 2 , an energy density E 50 of 6.0 ⁇ 10 5 W / cm 2 , and a peak energy density E max with respect to the peak energy density E max .
  • the proportion of the energy density E 50 becomes 83.3%.
  • the energy density E 86 of the just focus beam 12 is 5.1 ⁇ 10 5 W / cm 2 .
  • Ratio of energy density E 86 to the peak energy density E max is 70.8%.
  • the peak energy density E max of both the defocus beam 11 and the just focus beam 12 is set to a value of 5.8 ⁇ 10 5 W / cm 2 or more, preferably 6.0 ⁇ 10 5 W. / Cm 2 or more.
  • the peak energy density E max is set to a value larger than 5.8 ⁇ 10 5 W / cm 2 , niobium having a melting point of about 2500 ° C. can be melted.
  • the peak portion 11a evaporates and melts the metal, and the outer edge portion 11b side maintains the molten state of the metal, but does not further evaporate the metal.
  • the keyhole 15 as shown in (a) is gently formed in a wide range.
  • the outer edge portion 11b side as well as the peak portion 12a melts the metal, so that a deep keyhole 16 is formed in a narrow range as shown in FIG.
  • the side surface 16a on the side and the rear side of the keyhole 16 in the welding direction (the direction of the arrow in FIG. 5D) is used.
  • the molten metal 17 is likely to move toward the bottom 16 b side of the keyhole 16, and bubbles may enter into the blowhole 18 with this movement. Further, in the welding with the just focus beam 12, since the keyhole 16 is deep, there is a possibility that the bead penetrates the metal or a convex portion is formed on the back side of the welding surface.
  • the energy density distribution shape on the irradiation surface 13 is a Gaussian distribution shape, and the ratio of the energy density E 50 to the peak energy density E max is 75% or less. 11 to perform welding. As a result, it is possible to form a bead with a small aspect ratio that can form a gentle keyhole in a wide range compared to welding with the just focus beam 12 having the same average output.
  • the defocus beam 11 can sufficiently melt a metal having a high melting point such as niobium because the peak portion 11a has a peak energy density E max of 5.8 ⁇ 10 5 W / cm 2 or more.
  • the blow hole 18 of the welded portion 8 can be suppressed, and the bead penetrates the dumbbell-shaped member 5 or the dumbbell-shaped member. 5 is not formed on the back side, and partial penetration welding can be performed. Therefore, the superconducting acceleration tube 1 can be manufactured efficiently. This also stabilizes the quality of the superconducting accelerator tube 1 and the superconducting accelerator including the superconducting accelerator tube 1. Further, since the metal can be melted at the peak portion 11a, the energy on the outer edge portion side where the energy density E is lower than that of the peak portion 11a can also be utilized for the melted metal, so that the energy absorption characteristics can be improved. it can.
  • the dumbbell-shaped member 5 made of niobium and the strong wheel 4 are welded with a defocused beam having a different energy density distribution shape from the defocused beam 11 according to the first embodiment, and the peak energy density E max , It confirmed the relationship between the ratio and the welding state of the energy density E 50 to the peak energy density E max.
  • the defocus beam 19a shown in FIG. 6 has an average output of 4500 w, a peak energy density E max of 6.6 ⁇ 10 5 W / cm 2 , and an energy density E 50 of 3.9 ⁇ 10 5 W / cm 2 . .
  • the ratio of the energy density E 50 to the peak energy density E max is 59.1%, and the ratio of the energy density E 86 to the peak energy density E max is 22.7%.
  • the dumbbell-shaped member 5 and the strong wheel 4 can be joined, and a bead penetrates the dumbbell-shaped member 5 or a convex portion is formed on the back side of the dumbbell-shaped member 5. There was nothing.
  • the defocus beam 19b shown in FIG. 7 has an average output of 4500 w, a peak energy density E max of 5.7 ⁇ 10 5 W / cm 2 , and an energy density E 50 of 3.0 ⁇ 10 5 W / cm 2.
  • E86 is 1.2 ⁇ 10 5 W / cm 2 .
  • the ratio of the energy density E 50 to the peak energy density E max is 52.6%, and the ratio of the energy density E 86 to the peak energy density E max is 21.1%.
  • the dumbbell-shaped member 5 and the strong wheel 4 were not melted and could not be joined. This is considered to be because the peak energy density E max is 5.7 ⁇ 10 5 W / cm 2 and the energy density E in the peak portion is insufficient.
  • the dumbbell-shaped member 5 made of niobium and the strong wheel 4 are welded with a defocus beam having an average output different from that of the defocus beam 11 according to the first embodiment, and the peak energy density E max and the peak energy density E are determined. It confirmed the relationship between the ratio and the welding state of the energy density E 50 for max.
  • the specimens HS-10, HS-9, and HS-8 shown in FIG. 8 were welded, HS-10 could be welded, but HS-9 and HS-8 could not be welded. From this, it can be seen that, even with defocused beams having different average outputs, if the peak energy density E max is higher than 5.8 ⁇ 10 5 W / cm 2 , depth-controlled partial penetration welding can be performed. .
  • the welding method in the welding method according to the second embodiment, laser welding is performed while supplying an inert gas G.
  • the inert gas G includes an irradiation surface 13 of the defocused beam 11, front and rear in the welding direction of the irradiation surface 13, a back surface of the irradiation surface 13 inside the tube 3 of the superconducting acceleration tube 1, and a dumbbell-shaped member. 5 and the space 25 between the strong wheels 4.
  • the dumbbell-shaped member 5 and the strong wheel 4 are rotated in the direction of arrow A in FIG.
  • the welding direction is the reverse direction of the arrow A.
  • the inert gas supply means 21 for supplying the inert gas G to the irradiation surface 13 of the defocus beam 11 and the front and rear in the welding direction of the irradiation surface 13 includes defocusing.
  • the center nozzle 22 is provided so as to surround the beam 11, the front nozzle 23 is provided in the front in the welding direction of the center nozzle 22, and the rear nozzle 24 is provided in the rear in the welding direction of the center nozzle 22.
  • the inert gas supply means 21 is provided at a predetermined distance from the strong wheel 4, and the front surfaces 23 a and 24 a of the front nozzle 23 and the rear nozzle 24 facing the strong wheel 4 have a cylindrical shape of the strong wheel 4. A corresponding curved surface is formed.
  • the inert gas G is simultaneously supplied from the center nozzle 22, the front nozzle 23, and the rear nozzle 24.
  • the supply of the inert gas G to the space 25 between the dumbbell-shaped member 5 and the strong wheel 4 is performed as follows.
  • a partition plate 26 that partitions the space 25 in the circumferential direction is provided in the space 25, and the gas in the space 25 cannot pass through the partition plate 26.
  • a discharge port 28 is formed. The supply port 27 and the discharge port 28 are provided close to each other through a partition plate 26.
  • the inert gas G When the inert gas G is supplied from the supply port 27 to the space 25, the gas in the space 25 is discharged from the discharge port 28. At this time, since the space 25 is partitioned by the partition plate 26, the supplied inert gas G moves in the circumferential direction in the space 25 and is discharged from the discharge port 28 after filling the space 25. Become. In this embodiment, one partition plate 26 is provided. However, a plurality of partition plates 26 are provided to divide the space 25 between the dumbbell-shaped member 5 and the strong wheel 4 into a plurality of parts and supply them to each. It is good also as a structure which provides the opening 27 and the discharge port 28. FIG.
  • the same effect as that of the first embodiment is achieved, and the inert gas G is stably supplied to the welded portion 8, whereby the dumbbell-shaped member 5 and the strengthening wheel are provided. 4 oxidation can be prevented.
  • the dumbbell-shaped member 5 and the strong wheel 4 to be welded can be easily replaced, and since the operation is not performed in the chamber, Matching can be performed easily.
  • the welding method by 3rd embodiment is demonstrated based on drawing.
  • the dumbbell-shaped member 5 and the strong wheel 4 are installed so that the axial direction thereof is the horizontal direction.
  • the rotation is performed around the shaft 9 in the direction of arrow A in the figure.
  • the irradiation surface 13 of the defocus beam 11 is rotated in the range of 0 ° to 90 ° in the direction opposite to the direction of the arrow A in the figure from the upper end 4b of the strong wheel 4 with the axial direction being the horizontal direction.
  • 9 is the same height or a position on the upper side of the central axis 9.
  • it is set at a position rotated from the upper end 4b of the strong wheel 4 by 5 to 45 ° in the direction opposite to the direction of arrow A in the figure.
  • the welding method according to the third embodiment has the same effects as the first embodiment. Then, the molten metal irradiated to the defocus beam 11 moves to the upper side by the rotation of the dumbbell-shaped member 5 and the strong wheel 4 and solidifies, and droops to the irradiation surface 13 to which the defocus beam 11 is irradiated. Therefore, the welding method according to the third embodiment can efficiently perform welding.
  • the superconducting acceleration tube 1 and the strong wheel 4 are formed of pure niobium, but may be formed of a metal other than pure niobium or a material containing niobium.
  • the inert gas G is supplied to the irradiation surface 13 and the front and back in the welding direction of this irradiation surface 13, it is requested
  • the inert gas G may be supplied only to the irradiation surface 13 according to the penetration depth.
  • welding may be performed by forming an inert gas atmosphere by another inert gas G supply method.
  • the metal material constituting the superconducting accelerating tube main body and the reinforcing member can be melted at the peak portion of the laser beam.
  • a bead with a gentle shape and a small aspect ratio is formed.
  • production of a blowhole is suppressed and a partial penetration welding can be performed, without a bead penetrating a superconducting acceleration tube main body, or a convex part being formed in the back side of a superconducting acceleration tube main body.
  • the superconducting acceleration tube main body and the reinforcing member can be efficiently welded, and the quality of the manufactured superconducting acceleration tube and superconducting accelerator can be stabilized.

Abstract

 超伝導加速管の製造過程において超伝導加速管本体の外周部に筒状の補強部材をレーザビームで溶接する方法であって、前記レーザビームは、前記レーザビームが照射される照射面におけるエネルギー密度の分布形状がピーク部を有するガウス分布形状であり、前記ピーク部のエネルギー密度が5.8×10W/cm以上である。

Description

溶接方法および超伝導加速器
 本発明は、超伝導加速管の製造過程における溶接方法およびその超伝導加速管を備える超伝導加速器に関する。
 本願は、2010年2月17日に日本出願された特願2010-032515に基づいて優先権を主張し、その内容をここに援用する。
 従来、超伝導加速管の製造過程において、部材を接合するために電子ビーム溶接が行われている。この電子ビーム溶接では、真空引きが必須であるため付帯作業が多く、気中での溶接と比べて位置あわせに時間を要している。
 一方、レーザ溶接は、気中での施工が可能であり、このレーザ溶接を超伝導加速管の製造過程に適用することにより製造の効率化が期待できる。
 特許文献1には、超伝導キャビティの直管の突合せ溶接部において、開先を段付き形状とし、内側からレーザ光により非貫通溶接を行った後、外側からレーザ光により非貫通溶接を行う製造方法が開示されている。
特許第3959198号公報
 部分溶け込み溶接では、溶接部分が母材を貫通しないように溶接を行うため溶接部分にブローホール(気泡)が発生しやすい。ブローホールの発生を防ぐために、溶込み形状のアスペクト比(深さ/幅)が小さくなるように、ビームをデフォーカスすることが考えられる。しかし、ニオブ(Nb、融点:約2500℃)のように融点が他の金属よりも高い金属を母材として用いる場合、ビームをデフォーカスすると金属が溶融しにくくなるため、溶接が困難であった。
 また、ニオブのような高融点金属を溶融させるために、高ピークのビームにより溶接を行うと、ビード幅が細くなり、ブローホールがさらに発生しやすくなる。部分溶込み溶接においては、ビード底部の曲率が小さくなるため、ビードが母材を貫通したり、溶接面の裏側に凸部が形成されたりする懸念がある。したがって、超伝導加速管の品質を安定して確保することができなかった。
 さらに、レーザ溶接は、気中での施工が可能だが、特に酸化しやすいニオブなどを使用する場合、酸化を防止して高品質の溶接施工を行うことが困難であった。
 本発明は、上述する問題点に鑑みてなされたもので、ブローホールの発生を防ぐと共に、ビードが母材を貫通したり溶接面の裏側に凸部が形成されたりすることなく、高品質な部分溶け込み溶接ができる溶接方法およびその溶接方法で製造された超伝導加速管を備える超伝導加速器を提供することを目的とする。
 上記目的を達成するため、本発明に係る溶接方法は、超伝導加速管の製造過程において超伝導加速管本体の外周部に筒状の補強部材をレーザビームで溶接するに際し、前記レーザビームは、前記レーザビームが照射される照射面におけるエネルギー密度の分布形状がピーク部を有するガウス分布形状であり、前記ピーク部のエネルギー密度が5.8×10W/cm以上である。
 本発明では、レーザビームは、ピーク部のエネルギー密度が5.8×10W/cm以上であるので、超伝導加速管本体および補強部材が融点の高い金属材料で形成されていても、これらを十分に溶融させることができる。
 そして、レーザビームは、エネルギー密度の分布形状がガウス分布形状であることにより、超伝導加速管本体と補強部材との溶接部は、キーホールの周面がなだらかな形状となり、アスペクト比の小さいビードが形成される。これにより、溶融した金属内の気泡が浮上して排出されやすくなると共に、溶融した金属が流入してキーホールが崩れ気泡を巻き込むことを防げる。その結果、ブローホールの発生を抑制することができる。
 また、レーザビームは、エネルギー密度の分布形状がガウス分布形状であることにより、ビードが超伝導加速管本体を貫通したり、超伝導加速管本体の内側に凸部を形成したりすることなく部分溶け込み溶接を行うことができる。
 そして、ピーク部で金属を溶融させることできるので、エネルギー密度がピーク部よりも低い外縁部側のエネルギーも金属の溶融に活用させることができるので、エネルギーの吸収特性を向上させることができる。
 本発明に係る溶接方法において、前記エネルギー密度の分布形状における全エネルギーのうち前記ピーク部を中心に50%のエネルギーが含まれる領域の外周部のエネルギー密度が、前記ピーク部のエネルギー密度の75%以下であってもよい。
 この場合、エネルギー密度のピーク部から外縁部に向かう分布がなだらかになり、外縁部側のエネルギーの吸収特性を向上させることができる。
 また、本発明に係る溶接方法では、前記超伝導加速管本体および補強部材はニオブで形成されていてもよい。
 この場合、形成される超伝導加速管およびこの超伝導加速管を備える超伝導加速器の性能を高めることができる。
 また、本発明に係る溶接方法では、前記照射面と、前記照射面の溶接方向における前方および後方と、前記超伝導加速管本体内部の前記照射面の裏面とに不活性ガスを供給してもよい。
 この場合、照射面およびその前後ならびに超伝導加速管本体内部の照射面の裏面を不活性ガス雰囲気とすることができるので、超伝導加速管本体および補強部材の酸化を防ぐことができる。また、超伝導加速管本体および補強部材が酸化傾向の大きい金属で形成されていても、これらの酸化を防ぐことができる。
 また、本発明に係る溶接方法では、前記レーザビームを囲うように設けられたセンターノズルと、前記センターノズルの溶接方向における前方に設けられた前方ノズルと、前記センターノズルの溶接方向における後方に設けられた後方ノズルと、前記超伝導加速管本体内部の前記照射面の裏面に向けて設けられた裏面側ノズルとから前記不活性ガスを供給してもよい。
 この場合、レーザビームの照射面および照射面の溶接方向の前方、後方ならびに超伝導加速管本体内部の照射面の裏面へ不活性ガスを安定して供給することができる。
 また、本発明に係る溶接方法では、前記補強部材と前記超伝導加速管本体との間に不活性ガスを供給してもよい。
 この場合、補強部材の内側および超伝導加速管本体の酸化を防ぐことができる。
 また、本発明に係る溶接方法では、前記超伝導加速管本体と前記補強部材との間には、周方向に空間を区画する仕切り板が設けられていてもよく、前記補強部材には、前記仕切板に対して周方向一方側で前記補強部材の内側に不活性ガスを供給する供給口と、前記仕切板に対して周方向他方側で前記補強部材の内側の気体を排出する排出口とが設けられていてもよい。
 この場合、供給口から補強部材の内側に供給された不活性ガスは、超伝導加速管本体と補強部材との間の空間を周方向に移動して排出口から排出されるので、超伝導加速管本体と補強部材との間の空間を不活性ガス雰囲気とすることができる。
 また、本発明に係る溶接方法では、前記超伝導加速管本体および補強部材をその中心軸が水平方向となるように設置し、前記超伝導加速管本体および補強部材の前記中心軸よりも上部側に前記レーザビームを照射して、前記超伝導加速管本体および補強部材を前記超伝導加速管の上端部から前記レーザビームに向う方向と逆方向に前記中心軸を中心に回転させてもよい。
 この場合、レーザビームに照射されて溶融した金属が、超伝導加速管本体および補強部材の回転により上部側に移動すると共に凝固し、レーザビームが照射される照射面へ垂れることがないので、効率よく溶接を行うことができる。
 また、本発明に係る超伝導加速器では、上記のいずれかに記載の溶接方法によって製造された超伝導加速管を備える。
 本発明では、上記のいずれかに記載の溶接方法によって製造された超伝導加速管を備えることにより、超伝導加速器の品質を安定させることができる。
 本発明によれば、レーザビームのピーク部で超伝導加速管本体と補強部材とを構成する金属材料を溶融することができ、超伝導加速管本体と補強部材との溶接部は、キーホールの周面がなだらかな形状で、アスペクト比の小さいビードが形成される。これにより、ブローホールの発生が抑制されると共に、ビードが超伝導加速管本体を貫通したり超伝導加速管本体の裏側に凸部が形成されたりせずに部分溶け込み溶接を行うことができる。その結果、超伝導加速管本体と補強部材と効率よく溶接でき、製造された超伝導加速管および超伝導加速器の品質を安定させることができる。
(a)は本発明の第一の実施の形態による超伝導加速管の一例を示す図、(b)は(a)のA-A線断面図である。 (a)はデフォーカスビームの形状を示す図、(b)は(a)のデフォーカスビームの照射面の拡大図、(c)ジャストフォーカスビームの照射面の拡大図である。 (a)は第一の実施の形態によるデフォーカスビームの照射面のエネルギー分布形状を示す立体図、(b)は(a)のピーク部を含む照射方向に沿う断面図、(c)は照射面のエネルギー分布図である。 (a)はジャストフォーカスビームの照射面のエネルギー分布形状を示す立体図、(b)は(a)のピーク部を含む照射方向に沿う断面図、(c)は照射面のエネルギー分布図である。 (a)はデフォーカスビームによる溶接時の溶け込み形状およびキーホールを示す図、(b)はジャストフォーカスビームによる溶接時の溶け込み形状およびキーホールを示す図、(c)はジャストフォーカスビームによる溶接時のキーホールの側面の状態を説明する図で(d)のB-B線断面図、(d)は(c)のC-C線断面図である。 (a)は他の形態のデフォーカスビームの照射面のエネルギー分布形状を示す立体図、(b)は(a)のピーク部を含む照射方向に沿う断面図、(c)は照射面のエネルギー分布図である。 (a)は更に他の形態によるデフォーカスビームの照射面のエネルギー分布形状を示す立体図、(b)は(a)のピーク部を含む照射方向に沿う断面図、(c)は照射面のエネルギー分布図である。 平均出力の異なるデフォーカスビームによる溶接状態を比較する図である。 (a)、(b)は第二の実施の形態による溶接方法を説明する図である。 第三の実施の形態による溶接方法を説明する図である。
 以下、本発明の第一の実施の形態による溶接方法について、図1乃至図8に基づいて説明する。
 まず、第一の実施の形態による超伝導加速管について説明する。
 図1(a)、(b)に示すように、超伝導加速管1は、溶接により接合された複数のハーフセル2からなる管体(超伝導加速管本体)3と、管体3を補強する強め輪(補強部材)4とを備えている。
 ハーフセル2は、ニオブ等の板状の超伝導材料を中央に開口部を有するように椀状にプレス加工したものである。2つのハーフセル2は、その小径側の端部2aが接合されてダンベル形状部材5(図1(a)参照)を構成し、このダンベル形状部材5が軸方向に複数接合されて管体3が形成される。
 管体3は、外周に凹状のアイリス部6と凸状の赤道部7とを備え、軸方向の断面が波形で(図1(a)参照)、径方向の断面が環状(図1(b)参照)である。
 強め輪4は、ニオブ等の超伝導材料で形成され、アイリス部6を覆うように設けられた円筒状の部材で、管体3の補強を目的とする。強め輪4は、2つの半円筒状の部材が組み合わされて円筒状に形成され、軸方向の端部4aがアイリス部6の近傍に溶接されている。
 強め輪4は、円筒をその径方向に3つ以上に分割した部材が組み合わされた構成としてもよい。また、強め輪4を構成する部材間に隙間が設けられていてもよい。
 上述した構成の超伝導加速管1は、超伝導加速器(不図示)の部材として使用される。
 次に、第一の実施の形態による超伝導加速管の製造方法について図面に基づいて説明する。
 まず、板状の純ニオブを中央に開口部を有するように椀状にプレス加工して図1(a)、(b)に示すハーフセル2を形成し、2つのハーフセル2の小径側の端部2aを接合してダンベル形状部材5を形成する。
 次に、ダンベル形状部材5と強め輪4とを溶接する。
 ダンベル形状部材5と強め輪4とは、ダンベル形状部材5の外周面へ強め輪4の端部4aが付着されて接合されている。
 このとき、ダンベル形状部材5の内側に溶接ビードや溶接による凸部が形成されると、超伝導加速器の品質を低下させる。そのため、ダンベル形状部材5と強め輪4との溶接は、外側からのレーザビームによる部分溶け込み溶接とし、さらにダンベル形状部材5の内側に凸部が形成されないようにする。
 ダンベル形状部材5と強め輪4との溶接は、図3(c)に示すようなエネルギー密度の分布を有するビームによるレーザ溶接とする。以下、このビームをデフォーカスビーム(レーザビーム)11と称し、このデフォーカスビーム11については後述する。
 デフォーカスビーム11をダンベル形状部材5と強め輪4との溶接部8の一点に照射して溶融させ、ダンベル形状部材5および強め輪4を、その中心軸9を中心にして回転させ、溶接部8全体にデフォーカスビーム11を照射してダンベル形状部材5と強め輪4とを溶接する。
 そして、強め輪4が溶接された複数のダンベル形状部材5を軸方向に接合して、超伝導加速管1が完成する。
 次に、第一の実施の形態による溶接方法に使用するデフォーカスビームについてジャストフォーカスビームと比較して説明する。
 デフォーカスビーム11は、図2(a)、(b)に示すようにレーザビームの焦点をずらしたり、レンズ形状を変えたりすることで、図3に示すようなエネルギー密度の分布を有するビームに形成される。本実施の形態では、焦点をずらしてデフォーカスビーム11を形成している。デフォーカスビーム11は、例えば、デフォーカス量が焦点距離200mmレンズ使用時で+5mmとし、レーザビーム径Φを1.67mm程度とする。
 従来、溶接には、図4に示すようなエネルギー分布を有するビームが使用されている。以下、このビームをジャストフォーカスビーム(レーザビーム)12と称する。ジャストフォーカスビーム12は、図2(c)に示すように焦点を絞って形成されるビームである。
 ここで、デフォーカスビーム11が照射され、照射方向に直交する面を照射面13とし、ジャストフォーカスビーム12が照射され、照射方向に直交する面を照射面14とし、以下説明する。
 デフォーカスビーム11は、照射面13におけるエネルギー密度の分布形状をあらわすと、図3に示すように中央部がエネルギー密度Eの高いガウス分布形状(つまり、図3(a)に示すような鐘形の立体形状、図3(b)に示すようなベル・カーブ)になる。これに対し、ジャストフォーカスビーム12は、照射面14におけるエネルギー密度Eの分布形状をあらわすと、図4(a)に示すようなエネルギー密度Eに差が少ない略円筒状にあらわされる。
 いずれのレーザビームも平均出力は4500W、速度は2.0m/minである。
 デフォーカスビーム11とジャストフォーカスビーム12とを比較すると、図3および図4に示すように、デフォーカスビーム11は、ジャストフォーカスビーム12よりもその径が広い。
 また、デフォーカスビーム11は、中央部にエネルギー密度Eのピーク部11aを有しており、同様にジャストフォーカスビーム12は、中央部にエネルギー密度Eのピーク部12aを有している。各ピーク部11a、12aのエネルギー密度(以下、ピークエネルギー密度Emaxとする)に大差はない。しかし、デフォーカスビーム11はピーク部11aから外縁部11bに向うにつれてエネルギー密度Eがなだらかに減少するのに対して、ジャストフォーカスビーム12はピーク部12aから12bに向うにつれてエネルギー密度Eがほとんど減少しない。
 ここで、図3(b)および図3(c)に示すように、全エネルギーのうちピーク部11aを中心に50%のエネルギーが含まれる領域11cの外周部11dのエネルギー密度をエネルギー密度E50とし、同様に図4(b)および図4(c)に示すように、全エネルギーのうちピーク部12aを中心に50%のエネルギーが含まれる領域12cの外周部12dのエネルギー密度をエネルギー密度E50とする。そして、デフォーカスビーム11およびジャストフォーカスビーム12のピークエネルギー密度Emaxに対するエネルギー密度E50の割合を比較する。
 本実施の形態によるデフォーカスビーム11は、ピークエネルギー密度Emaxが6.9×10W/cm、エネルギー密度E50が5.1×10W/cmで、ピークエネルギー密度Emaxに対するエネルギー密度E50の割合は73.9%となる。
 なお、デフォーカスビーム11のピークエネルギー密度Emaxに対するエネルギー密度E50の割合は75%以下とすることが好ましい。
 また、デフォーカスビーム11のエネルギー密度E86は、2.4×10W/cmとなる。ピークエネルギー密度Emaxに対するエネルギー密度E86の割合は34.8%である。なお、エネルギー密度E86は全エネルギーのうちピーク部12aを中心に86%のエネルギーが含まれる領域の外周部のエネルギー密度である。
 これに対し、ジャストフォーカスビーム12は、ピークエネルギー密度Emaxが7.2×10W/cm、エネルギー密度E50が6.0×10W/cmで、ピークエネルギー密度Emax に対するエネルギー密度E50の割合は83.3%となる。
 また、ジャストフォーカスビーム12のエネルギー密度E86は、5.1×10W/cmとなる。ピークエネルギー密度Emaxに対するエネルギー密度E86の割合は70.8%である。
 このとき、デフォーカスビーム11、ジャストフォーカスビーム12のいずれもピークエネルギー密度Emaxは5.8×10W/cm以上の値となるように設定し、好ましくは6.0×10W/cm以上に設定する。このように、ピークエネルギー密度Emaxを5.8×10W/cmよりも大きい値とすることで、融点が約2500℃であるニオブの溶融を行うことができる。
 上述したデフォーカスビーム11で溶接を行うと、ピーク部11aが金属を蒸発・溶融させ、外縁部11b側は、金属の溶融状態を保持するが、さらに金属を蒸発させることが無いので、図5(a)に示すようなキーホール15が広い範囲になだらかに形成される。
 これに対し、ジャストフォーカスビーム12で溶接を行うと、ピーク部12aと共に外縁部11b側も金属を溶融するため、図5(b)に示すような狭い範囲に深いキーホール16が形成される。
 このようなジャストフォーカスビーム12による溶接では、図5(c)、(d)に示すようにキーホール16の溶接方向(図5(d)の矢印の方向)の側方および後方の側面16aの溶融した金属17がキーホール16の底部16b側へ移動しやすく、この移動にともない、気泡が入り込みブローホール18となることがある。
 また、ジャストフォーカスビーム12による溶接では、キーホール16が深いため、ビードが金属を貫通したり、溶接面の裏側に凸部が形成されたりする虞がある。
 次に、上述した第一の実施の形態による溶接方法の作用について図面を用いて説明する。
 第一の実施の形態による溶接方法によれば、照射面13におけるエネルギー密度の分布形状がガウス分布形状であり、更にピークエネルギー密度Emaxに対するエネルギー密度E50の割合が75%以下のデフォーカスビーム11で溶接を行う。これにより、同じ平均出力のジャストフォーカスビーム12による溶接と比べて、広い範囲になだらかなキーホールを形成できる、アスペクト比の小さいビードを形成することができる。その結果、溶接部8の溶融した金属内の気泡が浮上して排出されやすくなると共にキーホールの側面の溶融した金属が流れて気泡が巻き込まれにくくブローホール18の発生を抑制することができる。
 また、アスペクト比の小さいビードが形成され、キーホールを形成するための蒸発反力が小さいので、キーホールおよびビードがダンベル形状部材5を貫通したり、ダンベル形状部材5の裏側に凸部が形成されたりすること無く、部分溶け込み溶接を行うことができる。
 また、デフォーカスビーム11は、ピーク部11aが5.8×10W/cm以上のピークエネルギー密度Emaxを有することにより、ニオブなどの融点の高い金属も十分に溶融させることができる。
 上述した第一の本実施の形態による溶接方法では、デフォーカスビーム11で溶接を行うことにより、溶接部8のブローホール18を抑制でき、ビードがダンベル形状部材5を貫通したり、ダンベル形状部材5の裏側に凸部が形成されたりすることが無く部分溶け込み溶接を行うことができる。そのため、超伝導加速管1を効率よく製造できる。また、これにより超伝導加速管1およびこの超伝導加速管1を備える超伝導加速器の品質が安定する。
 また、ピーク部11aで金属を溶融させることできるので、エネルギー密度Eがピーク部11aよりも低い外縁部側のエネルギーも溶融した金属に活用させることができるので、エネルギーの吸収特性を向上させることができる。
 次に、第一の実施の形態によるデフォーカスビーム11と異なるエネルギー密度の分布形状を有するデフォーカスビームでニオブからなるダンベル形状部材5と強め輪4との溶接を行い、ピークエネルギー密度Emax、ピークエネルギー密度Emaxに対するエネルギー密度E50の割合と溶接状態との関係を確認した。
 図6に示すデフォーカスビーム19aは、平均出力が4500wで、ピークエネルギー密度Emaxが6.6×10W/cm、エネルギー密度E50が3.9×10W/cmである。ピークエネルギー密度Emaxに対するエネルギー密度E50の割合は、59.1%、ピークエネルギー密度Emaxに対するエネルギー密度E86の割合は、22.7%である。
 このデフォーカスビーム19aによる溶接では、ダンベル形状部材5と強め輪4とを接合することができ、ダンベル形状部材5にビードが貫通したり、ダンベル形状部材5の裏側に凸部が形成されたりすることは無かった。
 図7に示すデフォーカスビーム19bは、平均出力が4500wで、ピークエネルギー密度Emaxが5.7×10W/cm、エネルギー密度E50が3.0×10W/cmエネルギー密度E86が1.2×10W/cmである。ピークエネルギー密度Emaxに対するエネルギー密度E50の割合は、52.6%、ピークエネルギー密度Emaxに対するエネルギー密度E86の割合は、21.1%である。
 デフォーカスビーム19bによる溶接では、ダンベル形状部材5および強め輪4が溶融しなく接合できなかった。これは、ピークエネルギー密度Emaxが5.7×10W/cmであり、ピーク部のエネルギー密度Eが不足したためであると考えられる。
 次に、第一の実施の形態によるデフォーカスビーム11と異なる平均出力のデフォーカスビームでニオブからなるダンベル形状部材5と強め輪4との溶接を行い、ピークエネルギー密度Emax、ピークエネルギー密度Emaxに対するエネルギー密度E50の割合と溶接状態との関係を確認した。
 図8に示す試験体HS-10、HS-9、HS-8について溶接を行ったところ、HS-10は溶接できたが、HS-9、HS-8については溶接できなかった。
 このことから、平均出力が異なるデフォーカスビームであっても、ピークエネルギー密度Emaxが5.8×10W/cmより高ければ、深さ制御した部分溶け込み溶接を行うことができることがわかる。
 次に、他の実施の形態について、添付図面に基づいて説明するが、上述の第一の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第一の実施の形態と異なる構成について説明する。
 図9(a)、(b)に示すように、第二の実施の形態による溶接方法では、不活性ガスGを供給しながらレーザ溶接を行う。
 不活性ガスGは、デフォーカスビーム11の照射面13と、この照射面13の溶接方向における前方および後方と、超伝導加速管1の管体3内部の照射面13の裏面と、ダンベル形状部材5と強め輪4との間の空間25とに供給される。
 本実施の形態では、ダンベル形状部材5および強め輪4が図9における矢印Aの方向に回転して溶接が行われる。ここで、溶接方向は矢印Aの逆方向となる。
 図9(a)に示すように、デフォーカスビーム11の照射面13と、この照射面13の溶接方向における前方および後方とに不活性ガスGを供給する不活性ガス供給手段21は、デフォーカスビーム11を囲うように設けられたセンターノズル22と、センターノズル22の溶接方向における前方に設けられた前方ノズル23と、センターノズル22の溶接方向における後方に設けられた後方ノズル24とから構成される。不活性ガス供給手段21は、強め輪4と所定の間隔をあけて設けられており、前方ノズル23および後方ノズル24の強め輪4と対向する面23a、24aは、強め輪4の円筒形状に対応した湾曲した面に形成されている。
 溶接作業時には、センターノズル22、前方ノズル23、後方ノズル24とから同時に不活性ガスGを供給する。
 図9(b)に示すように、超伝導加速管1の管体3内部の照射面13の裏面には、管体3内部の照射面13の裏面に向けて設けられた裏面側ノズル29から不活性ガスGを供給する。
 なお、管体3内部の照射面13の裏面のみでなく管体3内部全体を不活性ガス雰囲気として溶接を行ってもよい。
 また、図9(a)に示すように、ダンベル形状部材5と強め輪4との間の空間25への不活性ガスGの供給は以下のように行う。
 この空間25には、空間25を周方向に区画する仕切り板26が設けられていて、空間25内の気体は仕切り板26を貫通することができない構成である。強め輪4には、仕切り板26に対して周方向一方側で空間25に不活性ガスGが供給される供給口27と、仕切り板26に対して周方向他方側で空間25の空気を排出する排出口28とが形成されている。供給口27と排出口28とは、仕切り板26を介して近設されている。
 供給口27から空間25に不活性ガスGが供給されると、排出口28から空間25内の気体が排出される。このとき、空間25が仕切り板26で仕切られていることで、供給された不活性ガスGは空間25を周方向に移動し、空間25内に充満した後に排出口28から排出されることになる。
 なお、本実施の形態では、1つの仕切り板26を設けているが、複数の仕切り板26を設けてダンベル形状部材5と強め輪4との間の空間25を複数に分割し、それぞれに供給口27および排出口28を設ける構成としてもよい。
 第二の実施の形態による溶接方法では、第一の実施の形態と同様の効果を奏すると共に、溶接部8に不活性ガスGが安定して供給されることにより、ダンベル形状部材5および強め輪4の酸化を防ぐことができる。
 また、チャンバー全体を不活性ガス雰囲気にして溶接を行う方法と比べて、溶接対象であるダンベル形状部材5および強め輪4の入れ替えを容易に行うことができると共に、チャンバー内の作業でないため、位置あわせを容易に行うことができる。
 次に第三の実施の形態による溶接方法について図面に基づいて説明する。
 図10に示すように、第三の実施の形態による溶接方法では、ダンベル形状部材5および強め輪4をその軸方向が水平方向となるように設置し、ダンベル形状部材5および強め輪4の中心軸9を中心に図中の矢印Aの方向に回転させて行う。そして、デフォーカスビーム11の照射面13は、軸方向を水平方向とする強め輪4の上端部4bから図中の矢印Aの方向と逆方向に0°~90°の範囲で回転させ中心軸9と同じ高さもしくは中心軸9の上部側の位置とする。好ましくは、強め輪4の上端部4bから図中の矢印Aの方向と逆方向に5~45°回転した位置とする。
 第三の実施の形態による溶接方法では、第一の実施の形態と同様の効果を奏する。そして、デフォーカスビーム11に照射されて溶融した金属が、ダンベル形状部材5および強め輪4の回転により上部側に移動すると共に凝固し、デフォーカスビーム11が照射される照射面13へ垂れることがないので、第三の実施の形態による溶接方法では、効率よく溶接を行うことができる。
 以上、本発明による溶接方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、上述した実施の形態では、超伝導加速管1および強め輪4は、純ニオブで形成されているが、純ニオブ以外の金属や、ニオブを含む材料で形成されていてもよい。
 また、上述した第二の実施の形態では、不活性ガスGは、照射面13と、この照射面13の溶接方向における前方および後方に供給されているが、溶接速度や溶接部8に要求される溶け込み深さに応じて照射面13のみに不活性ガスGを供給してもよい。また、他の不活性ガスGの供給方法で不活性ガス雰囲気を形成して溶接を行ってもよい。
 本発明によれば、レーザビームのピーク部で超伝導加速管本体と補強部材とを構成する金属材料を溶融することができ、超伝導加速管本体と補強部材との溶接部は、キーホールの周面がなだらかな形状で、アスペクト比の小さいビードが形成される。これにより、ブローホールの発生が抑制されると共に、ビードが超伝導加速管本体を貫通したり超伝導加速管本体の裏側に凸部が形成されたりせずに部分溶け込み溶接を行うことができる。その結果、超伝導加速管本体と補強部材と効率よく溶接でき、製造された超伝導加速管および超伝導加速器の品質を安定させることができる。
 1 超伝導加速管
 3 管体(超伝導加速管本体)
 4 強め輪(補強部材)
 6 アイリス部
 8 溶接部
 9 中心軸
 11 デフォーカスビーム(レーザビーム)
 11a ピーク部
 11c 領域
 11d 外周部
 13 照射面
 21 不活性ガス供給手段
 22 センターノズル
 23 前方ノズル
 24 後方ノズル
 25 空間
 26 仕切り板
 27 供給口
 28 排出口
 29 裏面側ノズル
 G 不活性ガス

Claims (9)

  1.  超伝導加速管の製造過程において超伝導加速管本体の外周部に筒状の補強部材をレーザビームで溶接する方法であって、
     前記レーザビームは、前記レーザビームが照射される照射面におけるエネルギー密度の分布形状がピーク部を有するガウス分布形状であり、前記ピーク部のエネルギー密度が5.8×10W/cm以上である溶接方法。
  2.  前記エネルギー密度の分布形状における全エネルギーのうち前記ピーク部を中心に50%のエネルギーが含まれる領域の外周部のエネルギー密度が、前記ピーク部のエネルギー密度の75%以下である請求項1に記載の溶接方法。
  3.  前記超伝導加速管本体および補強部材はニオブで形成されている請求項1に記載の溶接方法。
  4.  前記照射面と、前記照射面の溶接方向における前方および後方と、前記超伝導加速管本体内部の前記照射面の裏面とに不活性ガスを供給する請求項1に記載の溶接方法。
  5.  前記レーザビームを囲うように設けられたセンターノズルと、前記センターノズルの溶接方向における前方に設けられた前方ノズルと、前記センターノズルの溶接方向における後方に設けられた後方ノズルと、前記超伝導加速管本体内部の前記照射面の裏面に向けて設けられた裏面側ノズルとから前記不活性ガスを供給する請求項4に記載の溶接方法。
  6.  前記補強部材と前記超伝導加速管本体との間に不活性ガスを供給する請求項1に記載の溶接方法。
  7.  超伝導加速管本体と前記補強部材との間には、周方向に空間を区画する仕切り板が設けられていて、前記補強部材には、前記仕切板に対して周方向一方側で前記補強部材の内側に不活性ガスを供給する供給口と、前記仕切板に対して周方向他方側で前記補強部材の内側の気体を排出する排出口とが設けられている請求項6に記載の溶接方法。
  8.  前記超伝導加速管本体および補強部材をその中心軸が水平方向となるように設置し、前記超伝導加速管本体および補強部材の前記中心軸よりも上部側に前記レーザビームを照射して、前記超伝導加速管本体および補強部材を前記超伝導加速管の上端部から前記レーザビームに向う方向と逆方向に前記中心軸を中心に回転させる請求項1に記載の溶接方法。
  9.  請求項1乃至8のいずれかに記載の溶接方法によって製造された超伝導加速管を備える超伝導加速器。
PCT/JP2011/052875 2010-02-17 2011-02-10 溶接方法および超伝導加速器 WO2011102295A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2785685A CA2785685A1 (en) 2010-02-17 2011-02-10 Welding method and superconducting accelerator
US13/518,575 US8872446B2 (en) 2010-02-17 2011-02-10 Welding method and superconducting accelerator
EP11744582.5A EP2537625B8 (en) 2010-02-17 2011-02-10 Welding method for a superconducting accelerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-032515 2010-02-17
JP2010032515A JP2011167709A (ja) 2010-02-17 2010-02-17 溶接方法および超伝導加速器

Publications (1)

Publication Number Publication Date
WO2011102295A1 true WO2011102295A1 (ja) 2011-08-25

Family

ID=44482882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052875 WO2011102295A1 (ja) 2010-02-17 2011-02-10 溶接方法および超伝導加速器

Country Status (5)

Country Link
US (1) US8872446B2 (ja)
EP (1) EP2537625B8 (ja)
JP (1) JP2011167709A (ja)
CA (1) CA2785685A1 (ja)
WO (1) WO2011102295A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804840B2 (ja) * 2011-08-11 2015-11-04 三菱重工業株式会社 加工装置及び加工方法
JP6005845B2 (ja) * 2013-04-04 2016-10-12 株式会社キーレックス 燃料給油管の組立方法及び給油管組立装置
JP5985011B1 (ja) * 2015-06-30 2016-09-06 三菱重工メカトロシステムズ株式会社 超伝導加速器
JP6674422B2 (ja) * 2017-09-14 2020-04-01 フタバ産業株式会社 レーザ溶接装置、及び、部材の製造方法
US11202362B1 (en) 2018-02-15 2021-12-14 Christopher Mark Rey Superconducting resonant frequency cavities, related components, and fabrication methods thereof
CN108875124B (zh) * 2018-04-26 2022-04-01 哈尔滨工业大学 提取共焦轴向响应曲线峰值位置的极大值补偿算法
US10847860B2 (en) * 2018-05-18 2020-11-24 Ii-Vi Delaware, Inc. Superconducting resonating cavity and method of production thereof
US10856402B2 (en) * 2018-05-18 2020-12-01 Ii-Vi Delaware, Inc. Superconducting resonating cavity with laser welded seam and method of formation thereof
CN109462932B (zh) * 2018-12-28 2021-04-06 上海联影医疗科技股份有限公司 一种驻波加速管
JP2021148545A (ja) * 2020-03-18 2021-09-27 株式会社ディスコ 検査装置および検査方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135000A (ja) * 1989-10-20 1991-06-07 Furukawa Electric Co Ltd:The 超伝導加速管
JP2000260599A (ja) * 1999-03-09 2000-09-22 Toshiba Corp 超電導キャビティ、その製造方法、及び超電導加速器
JP2010023047A (ja) * 2008-07-15 2010-02-04 Nisshin Steel Co Ltd 薄板のレーザー溶接方法
JP2010032515A (ja) 2008-07-25 2010-02-12 F Hoffmann-La Roche Ag サンプル管ラックの取扱方法およびその実験室システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239157A (en) * 1990-10-31 1993-08-24 The Furukawa Electric Co., Ltd. Superconducting accelerating tube and a method for manufacturing the same
JP2713000B2 (ja) 1992-03-10 1998-02-16 日本鋼管株式会社 制振鋼板のレーザ溶接方法
JPH06190575A (ja) 1992-10-23 1994-07-12 Mitsui Petrochem Ind Ltd レーザによる溶接方法および装置
JPH08224679A (ja) 1995-02-22 1996-09-03 Mazda Motor Corp レーザ溶接方法およびその装置
JPH08332582A (ja) 1995-06-05 1996-12-17 Toshiba Corp レーザ溶接方法
FR2769167B1 (fr) * 1997-09-29 1999-12-17 Centre Nat Rech Scient Materiau supraconducteur renforce, cavite supraconductrice, et procedes de realisation
US6229111B1 (en) * 1999-10-13 2001-05-08 The University Of Tennessee Research Corporation Method for laser/plasma surface alloying
JP4267378B2 (ja) * 2003-06-11 2009-05-27 トヨタ自動車株式会社 樹脂部材のレーザ溶着方法及びその装置およびレーザ溶着部材
US7491909B2 (en) * 2004-03-31 2009-02-17 Imra America, Inc. Pulsed laser processing with controlled thermal and physical alterations
FR2892328B1 (fr) * 2005-10-21 2009-05-08 Air Liquide Procede de soudage par faisceau laser avec controle de la formation du capillaire de vapeurs metalliques
WO2011055373A1 (en) * 2009-11-03 2011-05-12 The Secretary, Department Of Atomic Energy,Govt.Of India. Niobium based superconducting radio frequency (scrf) cavities comprising niobium components joined by laser welding; method and apparatus for manufacturing such cavities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135000A (ja) * 1989-10-20 1991-06-07 Furukawa Electric Co Ltd:The 超伝導加速管
JP2000260599A (ja) * 1999-03-09 2000-09-22 Toshiba Corp 超電導キャビティ、その製造方法、及び超電導加速器
JP3959198B2 (ja) 1999-03-09 2007-08-15 株式会社東芝 超電導キャビティ、その製造方法、及び超電導加速器
JP2010023047A (ja) * 2008-07-15 2010-02-04 Nisshin Steel Co Ltd 薄板のレーザー溶接方法
JP2010032515A (ja) 2008-07-25 2010-02-12 F Hoffmann-La Roche Ag サンプル管ラックの取扱方法およびその実験室システム

Also Published As

Publication number Publication date
CA2785685A1 (en) 2011-08-25
EP2537625B8 (en) 2018-01-10
JP2011167709A (ja) 2011-09-01
EP2537625A4 (en) 2015-04-22
EP2537625A1 (en) 2012-12-26
US8872446B2 (en) 2014-10-28
EP2537625B1 (en) 2017-11-29
US20120256563A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
WO2011102295A1 (ja) 溶接方法および超伝導加速器
JP5902400B2 (ja) レーザ溶接装置、レーザ溶接方法、鋼板積層体の製造方法及び積層体のレーザ溶接による溶接構造
JP5609632B2 (ja) レーザ重ね溶接方法
JP5941252B2 (ja) ハイブリッドレーザアーク溶接プロセス及び装置
JP4612076B2 (ja) 金属メッキ板のレーザー溶接方法
JP5873658B2 (ja) ハイブリッドレーザアーク溶接プロセス及び装置
CN103476536B (zh) 激光焊接钢管的制造方法
JP2012228715A5 (ja)
WO2015129231A1 (ja) レーザ溶接方法
US11931826B2 (en) Continuous welding method and device for hybrid welding, welded finished product, train body
WO2013001934A1 (ja) T型継手のレーザ溶接とアーク溶接の複合溶接方法
JP2011140053A (ja) 亜鉛めっき鋼板のレーザ重ね溶接方法
JP2008502485A (ja) プラズマとレーザーを用いた連続的な突き合せ溶接方法及びこれを用いた金属管製造方法
JP2022552696A (ja) ワークピース部分の角継手のレーザ溶接方法
JP2012045570A (ja) アルミニウム接合体の製造方法
JP7412428B2 (ja) 特に固体レーザを用いたスパッタフリー溶接のための方法
JP5413218B2 (ja) 中空電極アーク・レーザ同軸複合溶接方法
JP6607050B2 (ja) レーザ・アークハイブリッド溶接方法
KR20130124407A (ko) 레이저 용접 방법
WO2011142324A1 (ja) 超伝導加速空洞の製造方法
WO2018179923A1 (ja) コア製造方法及びコア
CN111545890B (zh) 一种镁合金构件的真空电子束焊接方法
JP2012228716A (ja) レーザ溶接装置およびレーザ溶接方法
JP2009262187A (ja) 金属メッキ板のレーザー溶接方法
JP2024034680A (ja) レーザ溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13518575

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2785685

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2011744582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011744582

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE