WO2011101906A1 - 車両の前面衝突エネルギー吸収構造 - Google Patents

車両の前面衝突エネルギー吸収構造 Download PDF

Info

Publication number
WO2011101906A1
WO2011101906A1 PCT/JP2010/001060 JP2010001060W WO2011101906A1 WO 2011101906 A1 WO2011101906 A1 WO 2011101906A1 JP 2010001060 W JP2010001060 W JP 2010001060W WO 2011101906 A1 WO2011101906 A1 WO 2011101906A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
length direction
main frame
collision energy
energy absorption
Prior art date
Application number
PCT/JP2010/001060
Other languages
English (en)
French (fr)
Inventor
赤木宏行
山田秀人
菊池荘吉
大野修実
Original Assignee
フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー, マツダ株式会社 filed Critical フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー
Priority to PCT/JP2010/001060 priority Critical patent/WO2011101906A1/ja
Priority to CN201080063955.1A priority patent/CN102939235B/zh
Priority to JP2012500388A priority patent/JP5367152B2/ja
Priority to US13/579,550 priority patent/US8807597B2/en
Priority to DE112010005284T priority patent/DE112010005284T5/de
Publication of WO2011101906A1 publication Critical patent/WO2011101906A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • B62D21/152Front or rear frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/02Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/082Engine compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/088Details of structures as upper supports for springs or dampers

Definitions

  • the present invention belongs to a technical field related to a frontal collision energy absorption structure for a vehicle including a chassis frame.
  • a small truck or a vehicle called an SUV Sports Utility Vehicle
  • a ladder-like chassis frame as described in Patent Documents 1 and 2, for example.
  • the chassis frame is formed in a ladder shape by a pair of left and right main frames (also called side frames) extending in the vehicle length direction (vehicle longitudinal direction) and a plurality of cross members connecting the main frames.
  • Each main frame is provided with an engine mount bracket for mounting an engine, a cab mount bracket for mounting a vehicle body member constituting a cabin on which a passenger enters.
  • a suspension tower for supporting the top of the strut of the front wheel suspension device may be attached to the front portion of each main frame.
  • the suspension tower When the suspension tower is attached to the front portion of the main frame as described above, the suspension tower, the engine mount bracket, and one or more cross members are attached to the front portion of the main frame.
  • the suspension tower, the engine mount bracket, and one or more cross members are attached to the front portion of the main frame.
  • the front and rear base ends branched to the front and rear of the lower arm in the front wheel suspension device are respectively supported by two cross members located on the front and rear sides of the suspension tower, the suspension tower, the engine mount bracket, and The two cross members are attached to a relatively narrow range in the vehicle length direction of the main frame (the length direction of the main frame). These are difficult to compress and deform in the vehicle length direction and become a deformation inhibiting member that inhibits the compressive deformation of the main frame in the vehicle length direction at the time of a frontal collision of the vehicle.
  • the length of the main frame is limited by the preset total vehicle length, the amount of compressive deformation in the vehicle length direction in the main frame cannot be secured sufficiently, and collision energy is absorbed by the main frame compressive deformation. It is disadvantageous in terms of.
  • a plurality of the deformation inhibiting members are arranged so as to overlap each other in the vehicle length direction, so that a portion of the main frame where the deformation inhibiting members are not arranged, that is, reliably Collision energy was absorbed by taking as long as possible the part that compresses and deforms.
  • the mounting portions of the plurality of deformation inhibiting members in the main frame are more difficult to compress and deform, and a single deformation in the main frame The deformation space (possibility) of the attachment portion of the obstruction member is lost.
  • the mounting portions of the plurality of deformation inhibiting members that are difficult to compress and deform reduce the deceleration acceleration of the vehicle body generated by the compression deformation of the main frame. As a result, it becomes difficult to control the impact load acting on the cabin.
  • the present invention has been made in view of such a point, and an object of the present invention is to ensure the amount of absorption of collision energy at the time of a frontal collision of a vehicle (particularly at the time of a full-wrap frontal collision) and to act on the cabin.
  • the goal is to reduce the impact force as much as possible.
  • the chassis frame includes a pair of left and right main frames extending in a vehicle length direction, and the pair of pairs.
  • a pair of suspension towers respectively attached to the main frame, and front and rear cross members disposed on the front side and the rear side of the suspension tower apart from the suspension tower and connecting the pair of main frames;
  • a pair of engine mount brackets mounted between the front and rear cross members of the pair of main frames, and the engine mount brackets are connected to the suspension towers of the main frames.
  • the front and It is attached to the respective main frame spaced in the vehicle longitudinal direction with respect to the connecting portion of the rear cross member, and a configuration.
  • a plurality of deformation inhibiting members that inhibit compression deformation of the main frame in the vehicle length direction at the time of a frontal collision of the vehicle are distributed and arranged in the vehicle length direction (front-rear direction) on the main frame.
  • the main frame is reliably compressed and deformed in the vehicle length direction between these deformation inhibiting members.
  • the attachment portion of the single deformation inhibiting member in the main frame does not compress at all in the vehicle length direction, or It is possible to compress and deform to some extent. Therefore, the amount of collision energy absorbed at the time of a frontal collision of the vehicle can be ensured by stacking these compression deformations. Further, since there are a plurality of dispersed locations where the main frame is reliably compressed and deformed in the vehicle length direction, the level of the impact force acting on the cabin can be easily controlled.
  • a front leg portion and a rear leg portion branched so as to be separated from each other in the vehicle length direction are provided at a lower portion of each suspension tower, and a lower portion of the front leg portion and the rear leg portion is provided. It is preferable that they are attached to the main frame apart from each other in the vehicle length direction.
  • the portion of the main frame between the front leg portion and the rear leg portion is reliably compressed and deformed in the vehicle length direction, and the amount of compressive deformation of the main frame in the vehicle length direction is Can be secured even more. Therefore, it is possible to absorb more of the collision energy at the time of the frontal collision of the vehicle and to further alleviate the impact force acting on the cabin.
  • a weak portion that promotes deformation of the main frame in the vehicle length direction at the time of a frontal collision of the vehicle is provided at a position between the front leg portion and the rear leg portion in the main frame.
  • the portion of the main frame between the front leg portion and the rear leg portion can be more easily and reliably compressed and deformed in the vehicle length direction.
  • the fragile portion is composed of a recess formed in the upper portion of the main frame.
  • the concave portion is formed at corners on both sides in the vehicle width direction at the upper portion of the main frame.
  • each engine mount bracket may be disposed between the suspension tower and the rear cross member in the vehicle length direction.
  • each engine mount is inclined downward toward the vehicle front so that a gap is formed between the vehicle front end and the suspension tower. It is preferable.
  • the deformation of the mainframe in the vehicle length direction of the mainframe is promoted at the position overlapping the engine mount bracket in the mainframe in the vehicle length direction at the time of the frontal collision of the vehicle. It is preferable that the weak part is provided.
  • each engine mount bracket is provided with a bracket fragile portion that promotes deformation of each engine mount bracket in the vehicle length direction at the time of frontal collision of the vehicle. .
  • the engine mount bracket is easily compressed and deformed in the vehicle length direction at the time of a frontal collision of the vehicle, and as a result, the mounting portion of the engine mount bracket in the main frame is also easily compressed and deformed in the vehicle length direction. .
  • the deformation of each mainframe in the vehicle length direction is promoted at the position overlapping the rear cross member in the mainframe in the vehicle length direction at the time of the frontal collision of the vehicle. It is preferable that the weak part is provided.
  • each engine mount bracket has an upper member and a lower member that are attached to the inner surface of each main frame in the vehicle width direction and project from the surface to the inner side in the vehicle width direction.
  • the upper member has a substantially inverted U-shaped cross section cut along the vehicle length direction
  • the lower member has a substantially U-shaped cross section cut along the vehicle length direction
  • Side ends on both sides of the upper member in the vehicle length direction and side ends on both sides of the lower member in the vehicle length direction are joined together, and an engine mount is attached to the upper surface of the upper member, and the lower member
  • a notch portion that is open to the inside in the vehicle width direction is formed in the bottom surface portion of the vehicle, and the vehicle is located at a position overlapping the engine mount bracket in the vehicle length direction on the vehicle width direction inner surface of the main frame. Long hole extending in the longitudinal direction is formed, it is preferable.
  • the lower member of the engine mount bracket is compressed and deformed in the vehicle length direction, and the compression deformation and the long hole of the main frame allow the mounting portion of the engine mount bracket on the main frame to be It becomes easy to compressively deform in the length direction. Therefore, the amount of compressive deformation of the main frame in the vehicle length direction can be further ensured.
  • Another aspect of the present invention is a vehicle frontal collision energy absorption structure that connects a pair of main frames extending in a vehicle length direction, the main frames, and a front portion of a front wheel suspension device of the vehicle.
  • a front side and a rear side cross member that respectively support the rear side part, and a suspension tower and an engine mount bracket that are respectively attached to the main frames; the front side cross member, the rear side cross member, the suspension tower, and the Engine mount brackets are spaced apart from each other on the main frame.
  • This configuration makes it possible to secure the amount of collision energy absorbed during a frontal collision of the vehicle within a limited vehicle length and to easily control the level of impact force acting on the cabin.
  • the vehicle on the mainframe of the plurality of deformation inhibiting members that inhibit the compression deformation of the mainframe in the vehicle length direction at the time of the frontal collision of the vehicle.
  • the distributed arrangement in the length direction allows the amount of collision energy absorbed during a frontal collision of the vehicle to be secured within a limited vehicle length, and the main frame is controlled in the vehicle length direction. Deformation makes it easy to control the level of impact force acting on the cabin.
  • FIG. 1 is a perspective view showing an entire vehicle to which a frontal collision energy absorption structure according to an embodiment of the present invention is applied. It is the perspective view seen from the vehicle left diagonal front side and the upper side which shows the whole chassis frame of the said vehicle. It is a top view of the said chassis frame. It is the perspective view seen from the vehicle left diagonal rear side and the upper side which shows the vehicle front side part of the said chassis frame. It is the perspective view seen from the vehicle left diagonal rear side and the lower side which shows the vehicle front side part of the said chassis frame. It is a perspective view which shows the suspension tower vicinity in the vehicle width direction outer side part of the main frame of the left side of the said chassis frame.
  • FIG. 18 is a sectional view taken along line XIX-XIX in FIG. 17.
  • FIG. 15 is a sectional view taken along line XXI-XXI in FIG. 14 (however, most of the mounted components shown in FIG. 20 are omitted). It is a perspective view which shows the bump stopper vicinity in the vehicle width direction outer side part of the main frame of the left side of the chassis frame which mounts the said components.
  • FIG. 23 is a sectional view taken along line XXIII-XXIII in FIG. 22. It is a bottom view which shows the vehicle rear side part of the chassis frame which mounts the said components.
  • FIG. 1 shows the entirety of a vehicle 1 (in this embodiment, a small truck) to which a frontal collision energy absorbing structure according to an embodiment of the present invention is applied.
  • 2 to 12 show the whole or a part of the chassis frame 9 of the vehicle 1, and
  • FIGS. 13 to 24 show a state in which various components (including units) are mounted on the chassis frame 9.
  • FIG. 1 shows the entirety of a vehicle 1 (in this embodiment, a small truck) to which a frontal collision energy absorbing structure according to an embodiment of the present invention is applied.
  • 2 to 12 show the whole or a part of the chassis frame 9 of the vehicle 1
  • FIGS. 13 to 24 show a state in which various components (including units) are mounted on the chassis frame 9.
  • the vehicle 1 includes an engine room 2, a cabin 3, and a loading platform 4 in order from the front side.
  • the front, rear, left and right of the vehicle 1 are simply referred to as front, rear, left and right, respectively.
  • FIGS. 2 to 18, 20 to 22 and 24 the front side of the vehicle 1 is described as Fr.
  • the vehicle 1 has a chassis frame 9 at the lower part thereof.
  • the chassis frame 9 includes a pair of left and right main frames 10 (also referred to as side frames) extending in the vehicle length direction (front-rear direction) and a plurality (in this embodiment) extending in the vehicle width direction connecting the main frames 10. , 7) (hereinafter, referred to as first to seventh cross members 11 to 17 in order from the front) and has a ladder shape in plan view.
  • Each main frame 10 is formed in a substantially rectangular cross section by an inner panel 20 on the inner side in the vehicle width direction and an outer panel 21 on the outer side in the vehicle width direction, and a closed cross-sectional space is formed between these panels 20 and 21. .
  • the first cross member 11 is attached to the front ends of both main frames 10 and functions as a bumper reinforcement that reinforces the front bumper 5 (see FIG. 1).
  • the second cross member 12 is attached to the left and right main frames 10 via cross member brackets 23 welded to the left and right main frames 10 at both ends thereof.
  • the third cross member 13 is also attached to the left and right main frames 10 via cross member brackets 24 welded to the left and right main frames 10 at both ends thereof.
  • the cross member bracket 23 can be regarded as a part of the second cross member 12, and the cross member bracket 24 can be regarded as a part of the third cross member 13.
  • the fourth cross member 15 is attached to the left and right main frames 10 via large gussets 25 respectively welded to the left and right main frames 10 at both ends thereof.
  • the gusset 25 has a role of a bracket and a role of reinforcement, and can be regarded as a part of the fourth cross member 15. Both end portions of the fifth to seventh cross members 15 to 17 are directly attached to the left and right
  • Each main frame 10 is located at both ends of the lower part of the engine room 2 in the vehicle width direction and has a narrow width portion 10a where the distance between the main frames 10 is small, and is located below the cabin 3 and the loading platform 4 and both.
  • the space between the main frames 10 is located between the wide portion 10b where the interval between the main frames 10 is larger than the narrow portion 10a, and between the narrow portion 10a and the wide portion 10b (the rear end portion of the engine room 2).
  • each wide portion 10b itself is larger than the width (that is, the cross-sectional area) of each narrow portion 10a itself.
  • Each widened portion 10c extends from the rear end (near the rear side of the third cross member) of each narrow-width portion 10a so as to be inclined rearward in the vehicle width direction, and the width of the widened portion 10c itself toward the rear side. (Cross sectional area) becomes large and is connected to the front end (near the front side of the fourth cross member 14) of the wide portion 10b.
  • the widened portion 10c and the third and fourth cross members 13 and 14 of both main frames 10 have a trapezoidal shape in plan view.
  • the wide width portion 10b is formed so that the width (cross-sectional area) of the wide width portion 10b itself is the largest at the connecting portion with the fourth cross member 14 or in the vicinity thereof.
  • the fourth cross member 14 is connected to a portion having a large width (cross-sectional area) in the wide width portion 10 b, and the connection portion is reinforced by the large gusset 25.
  • a portion of the wide frame portion 10b of each main frame 10 located below the cabin 3 is at a lower height than the narrow width portion 10a, and the wide width portion 10c is inclined downward toward the rear. Yes.
  • the portion located below the loading platform 4 in the wide portion 10b of each main frame 10 (the portion behind the sixth cross member 16) is more than the portion located below the cabin 3 in the wide portion 10b.
  • the rear portion of the portion located on the upper side and positioned on the lower side of the cabin 3 in the wide portion 10b is inclined upward (see FIG. 14).
  • a cab mount bracket 26 is attached in the vicinity of the front side of the fourth cross member 14 in the widened portion 10c of each main frame 10 and in the vicinity of the front side of the sixth cross member 16 in the wide width portion 10b.
  • a vehicle body member constituting the cabin 3 is placed on each cab mount bracket 26 via a cab mount having a rubber member.
  • the cab mount bracket 26 is attached to the outer surface and the lower surface of the main frame 10 in the vehicle width direction by welding.
  • the vehicle body member constituting the floor of the cabin 3 is a floor panel 28, and the vehicle body member that partitions the engine room 2 and the cabin 3 is a dash. Panel 29.
  • the lower end of the dash panel 29 is connected to the front end of the floor panel 28.
  • the rear end portion of the floor panel 28 is bent upward to partition the cabin 3 and the loading platform 4.
  • the drive system of the vehicle 1 includes an engine 32, a transmission 33, a power transfer unit 34, a front wheel propeller shaft 35, a front differential gear unit 36, a rear wheel propeller shaft 37, and a rear differential gear.
  • a unit 38 is included.
  • the vehicle 1 is a four-wheel drive vehicle (4WD vehicle) that drives the front wheels 6 and the rear wheels 7, but may be a 2WD vehicle that drives only the rear wheels 7.
  • the power transfer unit 34, the front wheel propeller shaft 35, and the front differential gear unit 36 do not exist.
  • the engine 32 is a vertical engine having a plurality of (in this embodiment, five) cylinders arranged in a row in the vehicle length direction, and a transmission 33 is connected to the rear side of the engine 32.
  • brackets 40 are attached to the left and right side surfaces of the engine 32 so as to protrude to the left and right sides, respectively.
  • An engine mount 41 having a cylindrical rubber bush 41a is held at the tip of each bracket 40 so that the central axis of the rubber bush 41a extends in the vehicle length direction.
  • the engine mount 41 further includes a central shaft 41b that penetrates the central portion of the rubber bush 41a in the vehicle length direction, and support members 41c that support both ends of the central shaft 41b.
  • the engine mount bracket 27 is attached to the narrow portion 10a of both main frames 10 so as to be positioned below the support member 41c.
  • a support member 41 c is attached on the engine mount bracket 27, whereby the engine 32 is elastically supported on the engine mount bracket 27 via the bracket 40 and the engine mount 41.
  • each engine mount bracket 27 is welded to the inner surface of each main frame 10 in the vehicle width direction (the inner panel 20 of each main frame 10), and the vehicle width from the surface. It has an upper member 27a and a lower member 27b that protrude inward in the direction.
  • the upper member 27a is formed such that a cross section cut along the vehicle length direction has a substantially inverted U shape
  • the lower member 27b has a cross section cut along the vehicle length direction having a substantially U shape. It is formed to make.
  • the side end portions on both sides in the vehicle length direction of the upper member 27a and the side end portions on both sides in the vehicle length direction of the lower member 27b are joined to each other.
  • the front side end of the upper member 27a and the front side end of the lower member 27b are joined together, and the rear side end of the upper member 27a and the rear side end of the lower member 27b. Are joined together.
  • a space is formed between the two members 27a and 27b, and the inside of the space in the vehicle width direction is open.
  • a support member 41c of the engine mount 41 is attached to the upper surface of the upper member 27a via a reinforcing member 27c.
  • a substantially U-shaped cutout portion 27d opened in the vehicle width direction is formed on the bottom surface portion (a portion extending horizontally) of the lower member 27b (see FIG. 9 and FIG. 9). (See FIG. 21).
  • the notch 27d is formed so that the engine mount bracket 27 is compressed and deformed in the vehicle length direction as much as possible when the vehicle 1 collides with the front. That is, the notch 27d constitutes a bracket weak portion that is provided in the engine mount bracket 27 and promotes deformation of the engine mount bracket 27 in the vehicle length direction at the time of a frontal collision of the vehicle 1.
  • the vehicle length is located at a position (position corresponding to the space) that overlaps each engine mount bracket 27 in the vehicle length direction on the vehicle width direction inner surface of each main frame 10 (inner panel 20 of each main frame 10).
  • a long hole 128 extending in the direction is formed (see FIG. 9).
  • the long hole 128 constitutes a fragile portion that promotes deformation of the main frame 10 in the vehicle length direction at the time of a frontal collision of the vehicle 1.
  • the power transfer unit 34 is connected to the rear side of the transmission 33 and distributes the output of the transmission 33 to the front wheels 6 and the rear wheels 7.
  • This power transfer unit 34 is supported via a rubber mount on a mount mounting portion 14a provided at the center in the vehicle width direction on the upper surface of the fourth cross member 14.
  • the rear wheel propeller shaft 37 is elongated to the front side and connected to the rear end of the transmission 33. Further, an extension extended rearward so as to reach the lower part of the transmission 33 (the part below the connecting part with the rear wheel propeller shaft 37) on the mount mounting part 14a on the upper surface of the fourth cross member 14. An extension portion is formed, and the transmission 33 is supported by the mount attachment portion 14a via the rubber mount at the extension portion.
  • a rear end of a front wheel propeller shaft 35 extending in the vehicle length direction is connected to the left side of the power transfer unit 34 (the portion protruding to the left), and the power transfer unit 34
  • the rear end of 34 is connected to the front end of a propeller shaft 37 for rear wheels extending in the vehicle length direction.
  • the rear end of the front wheel propeller shaft 35 is connected to the power transfer unit 34 via a constant velocity joint 44, and the front end of the front wheel propeller shaft 35 is connected to a front differential gear unit 36 (in detail, via a constant velocity joint 45). , which will be described later).
  • the front differential gear unit 36 includes a case 131 that accommodates a differential gear and the like.
  • the case 131 includes a gear housing portion 131a in which a differential gear is housed, a left output shaft housing portion 131b in which a left output shaft extending in the vehicle width direction is housed, and a right side in which a right output shaft extending in the vehicle width direction is housed. It has an output shaft housing portion 131c and an input shaft housing portion 131d in which an input shaft connected to the front wheel propeller shaft 35 and extending in the vehicle length direction is housed.
  • the left and right output shaft accommodating portions 131b and 131c have a cylindrical shape covering the periphery of the left and right output shafts, respectively, and extend from the gear accommodating portion 131a to both sides in the vehicle width direction.
  • the input shaft housing portion 131d extends rearward from the gear housing portion 131a, and the rear end portion (constant velocity joint 45) of the input shaft protrudes from the rear end thereof.
  • the gear housing 131a is located on the left side of the engine 32.
  • the right output shaft accommodating portion 131c is longer in the vehicle width direction than the left output shaft accommodating portion 131b, and reaches the vicinity of the right main frame 10 through the lower side of the engine 32.
  • the output shafts are connected to left and right front wheel drive shafts 47 extending in the vehicle width direction through constant velocity joints housed in a boot 46, respectively.
  • the shaft 47 is connected to a hub 50 that holds the wheels of the left and right front wheels 6 via a constant velocity joint accommodated in the boot 48. With these constant velocity joints, it is possible to cope with the movement of each front wheel 6 in the vertical direction with respect to the output shaft and the movement by steering described later.
  • the power of the engine 32 is transmitted to the left and right front wheels 6 via the transmission 33, the power transfer unit 34, the front wheel propeller shaft 35, the front differential gear unit 36, and the left and right front wheel drive shafts 47. Is done.
  • the front differential gear unit 36 is elastically supported by the chassis frame 9 at three locations. Specifically, a first mount bracket 57 that supports a first mount 53 having a cylindrical rubber bush 53a is provided at a position on the left side of the rear surface of the second cross member 12 (FIGS. 3 and 5). (See FIGS. 6, 20, and 21). Further, a second mount bracket 58 for supporting the second mount 54 having a cylindrical rubber bush 54 a is provided at the right end portion (in practice, the upper surface of the cross member bracket 24) on the upper surface of the third cross member 13. (See FIGS. 3, 4 and 15 to 17).
  • a third mount bracket 59 for supporting a third mount 55 having a cylindrical rubber bush 55a is provided at an upper position of the third cross member 13 on the inner surface in the vehicle width direction of the left main frame 10. (See FIGS. 3, 4, 7-9, 17, and 20).
  • the third mount bracket 59 is divided into two parts, a front divided part 59a and a rear divided part 59b.
  • the first mount 53 further has a central shaft 53b that penetrates the central portion of the rubber bush 53a. Both end portions of the central shaft 53 b are supported by the first mount bracket 57.
  • the second mount 54 further has a central shaft 54b that penetrates the central portion of the rubber bush 54a.
  • One end portion (lower end portion) of the central shaft 54b is a male screw portion that is screwed with a female screw portion of a weld nut provided on the lower surface of the second mount bracket 58, and the other end portion (upper end portion) is the male screw portion. It has a hexagonal shape for engaging with a tool to be fastened to the female thread portion. In this fastened state, the second mount 54 is supported on the second mount bracket 58.
  • the third mount 55 further has a central shaft 55b that penetrates the central portion of the rubber bush 55a. Both end portions of the central shaft 55b have a plate shape extending in the horizontal direction, and are fastened to the front divided portion 59a and the rear divided portion 59b from above by bolts 60 (see FIGS. 9 and 20).
  • a front portion of the gear housing portion 131a of the front differential gear unit 36 is formed with a first mount holding portion 131e that protrudes forward and holds the periphery of the rubber bush 53a of the first mount 53 (FIG. 20). reference). Further, a second mount holding portion 131f that protrudes rearward and holds the periphery of the rubber bush 54a of the second mount 54 is formed at the tip end portion (right end portion) of the right output shaft housing portion 131c. (See FIGS. 15 and 17). Further, a third mount holding portion 131g that protrudes to the upper left side and holds the periphery of the rubber bush 55a of the third mount 55 is formed at the rear portion of the input shaft accommodating portion 131d (FIGS. 17 and 20). reference).
  • the front differential gear unit 36 is attached to the chassis frame 9 via the first to third mounts 53 to 55 and the first to third mount brackets 57 to 59.
  • the rear wheel propeller shaft 37 includes a front shaft 37a and a rear shaft 37b which are connected to each other via a joint (in this embodiment, a universal joint 65).
  • the front end of the front shaft 37a is connected to the rear end of the power transfer unit 34 via a universal joint 64, and the rear end of the front shaft 37a is a universal joint 65 (see FIG. 24) located below the fifth cross member 15. )
  • the front shaft 37a extends straight from the universal joint 64 to the rear side through the center in the vehicle width direction between the main frames 10 in plan view.
  • the front shaft 37a is inclined downward toward the rear.
  • the rear shaft 37b extends from the universal joint 65 to the rear side through the universal joint 66, as shown in FIG. It is connected to a rear differential gear unit 38 (more specifically, an input shaft described later).
  • the rear shaft 37b is inclined downward toward the rear and slightly inclined toward the right (opposite side to a fuel tank 83 described later) toward the rear in plan view.
  • the rear wheel propeller shaft 37 has a universal joint 65 on the left side with respect to a straight line connecting both ends of the rear wheel propeller shaft 37 (the front end of the front shaft 37a and the rear end of the rear shaft 37b) in a plan view. It bends in the location of the universal joint 65 so that it may be located in FIG.
  • the rear wheel propeller shaft 37 is supported by a propeller shaft center bearing 67 (hereinafter, simply referred to as a center bearing 67) at an intermediate portion in the longitudinal direction. Specifically, the vicinity of the rear end of the front shaft 37a (the vicinity of the universal joint 65 in the front shaft 37a) is supported by the center bearing 67.
  • the center bearing 67 is supported by two bearing brackets 68 attached to the fifth cross member 15 and is located in the vicinity of the front side of the fifth cross member 15.
  • the rear differential gear unit 38 includes an axle housing 132 that houses a differential gear and the like.
  • the axle housing 132 includes a gear housing portion 132a in which a differential gear is housed, a left drive shaft housing portion 132b in which a left rear wheel drive shaft that extends in the vehicle width direction and drives the left rear wheel 7 is housed, and a vehicle width.
  • the right drive shaft housing portion 132c that houses the right rear wheel drive shaft that extends in the direction and drives the right rear wheel 7, and the input shaft that houses the input shaft connected to the rear shaft 37b and extending in the vehicle length direction
  • Both drive shaft accommodating portions 132b and 132c have a cylindrical shape that covers the periphery of both rear wheel drive shafts, and extend from the gear accommodating portion 132a to both sides in the vehicle width direction.
  • Both drive shaft accommodating portions 132b and 132c are supported by leaf springs 71 attached to the rear portions of the wide width portions 10b of both main frames 10 (see FIG. 14). Further, between the left drive shaft accommodating portion 132b and the rear portion of the left main frame 10 with respect to the left drive shaft accommodating portion 132b, and between the right drive shaft accommodating portion 132c and the right drive shaft accommodating portion 132c in the right main frame 10. Also, shock absorbers 72 are respectively disposed between the front side portions (see FIGS. 13, 14, and 24).
  • the exhaust device 75 of the engine 32 is disposed on the right side of the engine 32 (see FIGS. 13 and 24).
  • the exhaust device 75 has an exhaust pipe 76 extending to the vicinity of the rear end of the vehicle 1.
  • an upstream side exhaust purification device 77, a flexible joint 78, a downstream side exhaust purification device 79, and a muffler 80 are sequentially arranged from the upstream side.
  • the upstream side and downstream side exhaust purification devices 77 and 79 have a three-way catalyst and purify the exhaust of the engine 1.
  • the upstream side exhaust purification device 77 is disposed in the vicinity of the engine 1 in order to purify HC and CO particularly when the engine 1 is cold.
  • the flexible joint 78 suppresses the vibration of the engine 32 from being transmitted to a portion of the exhaust pipe 76 downstream of the flexible joint 78.
  • the muffler 80 is disposed on the right side of the rear shaft 37 b of the rear wheel propeller shaft 37 and between the fifth and sixth cross members 15 and 16.
  • a resin fuel tank 83 for storing fuel supplied to the engine 32 is disposed on the left side of the rear shaft 37b (see FIGS. 13, 14, and 24).
  • the fuel tank 83 is basically located between the fifth and sixth cross members 15 and 16.
  • a portion of the fuel tank 83 positioned between the fifth and sixth cross members 15 and 16 is referred to as a tank main body portion 83a.
  • On the front side of the tank body 83a there is provided a front extension 83b that extends in front of the fifth cross member 15 and is aligned with the center bearing 67 in the vehicle width direction.
  • a rear extension 83c that extends rearward from the cross member 16 is provided.
  • the boundary between the tank body 83a and the front extension 83b and the boundary between the tank body 83a and the rear extension 83c are confined in the vehicle width direction.
  • the fuel tank 83 is attached to and fixed to the lower surfaces of the fifth and sixth cross members 15 and 16 via a band-shaped tank attachment member 84 (see FIG. 24) at these two constricted portions.
  • an insulator made of a thin iron plate for blocking heat from the exhaust pipe 76 and the muffler 80 is provided on the right side surface of the fuel tank 83.
  • An under guard made of a thin iron plate is provided on the lower surface of the fuel tank 83. Such an under guard is also provided on the lower side of the engine 32, between the first and second cross members, and on the lower side of the power transfer unit 34.
  • the left and right front wheels 6 are steered via a steering mechanism that is interlocked with a steering wheel operated by an occupant.
  • a steering mechanism that is interlocked with a steering wheel operated by an occupant.
  • a pinion is rotated by an operation of a steering wheel, and a rack that meshes with the pinion is accommodated in a steering gear box 87 (see FIGS. 13 and 15 to 18).
  • the rack extends in the vehicle width direction, and both ends thereof are connected to the left and right steering rods 88 (see FIGS. 16 and 18).
  • Each steering rod 88 is connected to a knuckle 91 provided on the inner side of the hub 50 in the vehicle width direction.
  • each front wheel suspension device 90 is a high-mount type double wishbone suspension, and includes the knuckle 91, lower arm 92, upper arm 93, coil spring 94 (shown only in FIG. 20), and shock absorber 95.
  • the stabilizer which the front-wheel suspension apparatus 90 has is abbreviate
  • the lower arm 92 has a shape in which its base end side (inner side in the vehicle width direction) is bifurcated into the front and rear, and the front base end 92a of the lower arm 92 is attached to the second cross member 12 via the cross member bracket 23.
  • the rear base end portion 92 b is attached to the third cross member 13 via the cross member bracket 24. That is, the second and third cross members 12 and 13 support the front portion (front base end portion 92a) and the rear side portion (rear base end portion 92b) of the front wheel suspension device 90 (specifically, the lower arm 92), respectively.
  • the front base end portion 92a is rotatably attached to a lower arm pivot shaft 98 (see FIGS.
  • a lower arm pivot 99 (see FIGS. 6 and 22) provided on the member bracket 24 so as to extend in the vehicle length direction is rotatably attached. As a result, the lower arm 92 can swing in the vertical direction about the lower arm pivots 98 and 99.
  • the upper arm 93 also has a shape in which the base end side is bifurcated into the front and rear.
  • the front and rear base ends 93a and 93b of the upper arm are provided on an upper arm pivot 106 (see FIGS. 15 to 17 and 19) provided on an inner panel 102 of a suspension tower 101 described later so as to extend in the vehicle length direction. It is attached to both ends so as to be rotatable. As a result, the upper arm 93 can swing in the vertical direction about the upper arm pivot 106.
  • the lower arm 92 extends from the front and rear base end portions 92a and 92b to the outer side in the vehicle width direction than the main frame 10, and a ball is attached to the lower end portion of the knuckle 91 at the tip portion (end portion in the vehicle width direction). It is connected via a joint 110 (see FIGS. 19 and 22).
  • the upper arm 93 extends from the front and rear base end portions 93a, 93b to the outside in the vehicle width direction from the main frame 10, and is located above the knuckle 91 at the tip end portion (end portion outside in the vehicle width direction). It connects with the upper end part of the extending arm part 91a via the ball joint 111 (refer FIG.15, FIG.17 and FIG.19). Accordingly, the knuckle 91, the lower arm 92, and the upper arm 93 swing in the vertical direction in conjunction with the vertical movement of the front wheel 6.
  • a bump stopper 115 (see FIGS. 2 to 6, 15, 17, and 19 to 23) is attached to the outer surface of each main frame 10 in the vehicle width direction (the outer panel 21 of the main frame 10) by welding. ing. Each bump stopper 115 is in contact with a contact portion 92c provided in the vicinity of the rear base end portion 92b on the upper surface of the lower arm 92, and restricts the lower arm 92 from moving upward from the contacted position. is there.
  • the lower arm 92 is composed of two upper and lower plate members 92d and 92e (a space is formed between both plate members 92d and 92e), but the abutting portion 92c is further increased in order to increase its strength.
  • a sheet of plate material 92f is welded (see FIG. 22).
  • Each bump stopper 115 includes a stopper main body 116 attached to the outer surface in the vehicle width direction of each main frame 10 so as to protrude outward in the vehicle width direction.
  • the stopper main body 116 is formed such that a cross section cut along the horizontal direction forms a bag shape (substantially U-shaped in this embodiment) having an opening on the inner side in the vehicle width direction and has openings at both upper and lower ends. It is made up of panels.
  • stopper main body 116 is attached to the main frame 10 via the end portions (front and rear attachment portions 116c and 116d) on both sides of the U shape in the cross section.
  • the opening at the upper end of the panel of the stopper main body 116 is referred to as an upper opening 116a
  • the opening at the lower end of the panel is referred to as a lower opening 116b.
  • the stopper main body 116 is attached to the main frame 10 via the front and rear attachment portions 116c and 116d, so that the inner opening in the vehicle width direction of the panel is closed. It becomes the shape like a cylindrical member which extends up and down and has an opening in both upper and lower ends.
  • the upper and lower openings are an upper opening 116a and a lower opening 116b. Therefore, it can be said that the upper opening 116a is formed between the upper end portion of the stopper main body 116 and the outer surface of the main frame 10 in the vehicle width direction. It can also be said that the lower opening 116b is formed between the lower end of the stopper main body 116 and the outer surface in the vehicle width direction of the main frame 10 (actually, the cross member bracket 24).
  • the amount of protrusion of the stopper main body 116 from the main frame 10 to the outer side in the vehicle width direction is increased toward the lower side. For this reason, when viewed from the vehicle length direction, the tip of the stopper main body 116 is inclined outward in the vehicle width direction toward the lower side. Further, the opening area of the lower opening 116b is larger than the opening area of the upper opening 116a.
  • the closing member 117 Of the upper opening 116a and the lower opening 116b, only the lower opening 116b is covered with the closing member 117 (see FIGS. 4, 6, 22 and 23).
  • An abutting member 118 with which the lower arm 92 abuts is attached to a portion of the lower surface of the closing member 117 on the outer side in the vehicle width direction.
  • the abutting member 118 has an inverted dish-shaped base portion 118a fixed to the closing member 117 and a conical shape that is vulcanized and bonded to the base portion 118a and pointed downward.
  • the rubber abutting portion 118b is formed, and the abutting portion 92c of the lower arm 92 abuts on the rubber abutting portion 118b.
  • a stud bolt 119 is welded to the center of the base portion 118a so as to protrude upward, and a weld nut 120 that is screwed to the stud bolt 119 is welded to the upper surface of the closing member 117.
  • a through hole 117a is formed at a position corresponding to the weld nut 120 of the closing member 117 (see FIGS. 6 and 23).
  • the rear mounting portion 116d of the stopper main body 116 overlaps the third cross member 13 in the vehicle length direction, and the entire vertical direction of the surface on the outer side in the vehicle width direction of the main frame 10 and the third cross member 13 (actually Is attached to the cross member bracket 24). Further, the front mounting portion 116c of the stopper main body 116 is located at a position between the engine mount bracket 27 and the third cross member 13 in the vehicle length direction, and on the entire vertical direction of the outer surface of the main frame 10 in the vehicle width direction. It is attached.
  • the vicinity of the rear base end portion 92b of the lower arm 92 (the portion that comes into contact with the contact member 118) is inclined forward toward the outer side in the vehicle width direction.
  • the member 118 protrudes outward in the vehicle width direction from the surface on the outer side in the vehicle width direction of the main frame 10 in a state inclined toward the front side toward the outer side in the vehicle width direction.
  • the bump stopper 115 Due to the configuration and arrangement of the bump stopper 115, the bump stopper 115 is easily compressed and deformed in the vehicle length direction when the vehicle 1 collides with the front. For this reason, the bump stopper 115 does not hinder the compressive deformation of the main frame 10 in the vehicle length direction at the time of a frontal collision of the vehicle. Further, in the present embodiment, a plurality (two) of recesses 125 (FIGS. 4, 7, and 7) are disposed at positions (two locations on the upper surface and the lower surface) overlapping with the upper opening 116a in the main frame 10 in the vehicle length direction.
  • the recess 125 may be formed anywhere as long as it overlaps the upper opening 116a in the main frame 10 in the vehicle length direction, and may not be formed at a plurality of locations, and may be formed only at one location. Good.
  • the small holes act as holes for taking in and out the electrodeposition liquid in the closed cross section of the main frame 10, which is required in the painting process of the main frame.
  • the recess 125 is provided at a position overlapping with the third cross member 13 in the vehicle length direction in the main frame 10 as a fragile portion that promotes deformation of the main frame 10 in the vehicle length direction at the time of a frontal collision of the vehicle 1. It also has a role. That is, even if the bump stopper 115 is not in the above position, the concave portion 125 is provided at the same position as described above (position overlapping the third cross member 13 in the main frame 10 in the vehicle length direction). At the time of a frontal collision, the attachment portion of the third cross member 13 in the main frame 10 can be easily compressed and deformed in the vehicle length direction.
  • each main frame 10 Between the second and third cross members 12 and 13 in the narrow width portion 10a of each main frame 10, the top portion of the strut 96 (that is, the coil spring 94 and the shock absorber 95) extending in the vertical direction of the front wheel suspension device 90 is supported. Suspension towers 101 are attached respectively (see FIGS. 6 to 8, FIGS. 10 to 12, FIGS. 15 to 17, and FIG. 19). The lower end of the strut 96 (the lower end of the shock absorber 95) is connected to the lower arm 92 so as to be rotatable about an axis extending in the vehicle length direction.
  • Each suspension tower 101 includes an inner panel 102 on the inner side in the vehicle width direction, an outer panel 103 on the outer side in the vehicle width direction coupled to the inner panel 102, and a suspension tower reinforcement provided between the panels 102 and 103. 104 (see FIGS. 10 to 12 and the like).
  • a front leg portion 101a and a rear leg portion 101b branched from each other in the vehicle length direction are provided below the suspension towers 101.
  • the upper end portion of the outer panel 103 has a strut receiving portion 103a that supports the top portion of the strut 96, and the top portions of the coil spring 94 and the shock absorber 95 are fixed and supported by the strut receiving portion 103a.
  • the outer panel 103 includes an outer panel front leg portion 103b and an outer panel rear leg portion 103c that extend downward from the front and rear edge portions of the upper end portion, respectively.
  • the suspension tower reinforcement 104 is welded to the outer panel 103 so as to cover an opening in the vehicle width direction between the outer panel front leg portion 103b and the outer panel rear leg portion 103c of the outer panel 103.
  • a space that is surrounded by the outer panel front leg portion 103b, the outer panel rear leg portion 103c, and the suspension tower reinforcement 104 and that opens to the outside in the vehicle width direction is a space in which the strut 96 is accommodated.
  • the suspension panel reinforcement 104 may not be provided, and a portion corresponding to the suspension tower reinforcement 104 may be integrally formed with the outer panel 103.
  • the outer panel 103 to which the suspension tower reinforcement 104 is welded is welded to the inner panel 102.
  • a closed cross-sectional space is formed between the inner panel 102 and the suspension tower reinforcement 104.
  • a portion corresponding to the suspension tower reinforcement 104 is formed integrally with the outer panel 103, a closed cross-sectional space is formed between the inner panel 102 and the outer panel.
  • the inner panel 102 protrudes above the outer panel 103, and the outer panel 103 protrudes below the inner panel 102.
  • An upper arm pivot 106 that supports the upper arm 93 is provided on the upper protruding portion of the inner panel so as to extend in the vehicle length direction.
  • the upper arm pivot 106 is inserted into a support sleeve 107 (see FIGS. 10 and 11) provided on the inner panel 102.
  • a stiffener 108 (see FIGS. 10 and 11) is provided on the outer side of the support sleeve 107 in the vehicle width direction (the upper position of the outer panel 103).
  • the stiffener 108 provides the upper arm pivot 106 in the inner panel 102. Part is reinforced.
  • the reason why the upper arm pivot 106 is provided on the inner panel 102 is that the arm length of the upper arm 93 can be made longer than that provided on the outer panel 103.
  • An inner panel front leg portion 102a and an inner panel rear leg portion 102b that are branched so as to be separated from each other in the vehicle length direction are provided at the lower portion of the inner panel 102, and the vehicle length is mutually below the suspension tower reinforcement 104.
  • a reinforcement front leg portion 104a and a reinforcement rear leg portion 104b branched off in the vertical direction are provided.
  • the reinforcement front leg 104a is connected to the outer panel front leg 103b by welding, and the reinforcement rear leg 104b is connected to the outer panel rear leg 103c by welding.
  • the inner panel front leg portion 102a, the outer panel front leg portion 103b, and the reinforcement front leg portion 104a constitute the front leg portion 101a of the suspension tower 101, and the inner panel rear leg portion 102b, the outer panel rear leg portion 103c, and the reinforcement rear leg portion 104b. Constitutes the rear leg portion 101 b of the suspension tower 101.
  • each suspension tower 101 The front leg portion 101a and the rear leg portion 101b of each suspension tower 101 are attached to each main frame 10 by welding so as to be separated from each other in the vehicle length direction.
  • the inner panel front leg portion 102 a and the inner panel rear leg portion 102 b of the inner panel 102 are mutually in the vehicle length direction on the vehicle width direction inner side portion (the inner panel 20 of the main frame 10) of the upper surface of the main frame 10. Attached by welding.
  • the outer panel front leg portion 103b and the outer panel rear leg portion 103c of the outer panel are mutually connected to the vehicle length direction outer side portion of the upper surface of the main frame and the entire vertical direction of the vehicle width direction outer side surface (the outer panel 21 of the main frame 10).
  • the reinforcement front leg portion 104a and the reinforcement rear leg portion 104b of the suspension tower reinforcement 104 are arranged on the vehicle width direction outer side surface (the outer panel 21 of the main frame 10) of the main frame 10 with respect to each other in the vehicle length direction. Attached by welding. Therefore, the lower portion of the suspension tower 101 is not attached to the main frame 10 over the entire vehicle length direction, but is attached to the main frame 10 at the middle portion of the lower portion of the suspension tower 101 in the vehicle length direction. There is a part that can not be.
  • the suspension tower 101 is arranged on the inner side in the vehicle width direction with the inner panel front leg part 102a and the inner panel rear leg. It is attached to the main frame 10 at the portion 102b, and at the outer side in the vehicle width direction, it is attached to the main frame 10 at the outer panel front leg portion 103b, the outer panel rear leg portion 103c, the reinforcement front leg portion 104a, and the reinforcement rear leg portion 104b.
  • the attachment strength of the suspension tower 101 to the main frame 10 can be made sufficiently strong to withstand the force received from the strut 96.
  • Parts between the front leg portion 101a and the rear leg portion 101b in each main frame 10 (corner portions (corner portions on both sides in the vehicle width direction in the upper portion)) and lower surfaces between the upper surface of the main frame 10 and the surfaces on both sides in the vehicle width direction And a plurality of (four) concave portions as weak portions that promote deformation of the main frame 10 in the vehicle length direction at the time of a frontal collision of the vehicle 1.
  • 126 see FIGS. 6 to 9 and FIGS. 20 to 22 is formed. Due to the plurality of recesses 126, the location of the recesses 126 in each main frame 10 during the frontal collision of the vehicle 1 (particularly during a full-wrap frontal collision) is easily compressed and deformed in the vehicle length direction.
  • each main frame 10 with respect to the suspension tower 101 is normally difficult to compress and deform, but the front leg portion 101a branched off in the vehicle length direction in the suspension tower 101 and By attaching the rear leg portion 101b to the main frame 10, a portion between the front leg portion 101a and the rear leg portion 101b in the main frame 10 is easily compressed and deformed in the vehicle length direction at the time of a frontal collision of the vehicle, By forming the concave portion 126 in the portion, the portion is more easily compressed and deformed.
  • the concave portion 126 may be formed anywhere as long as it is a portion between the front leg portion 101 a and the rear leg portion 101 b in the main frame 10, but in particular, the main frame 10 is compressed and deformed by the attachment of the suspension tower 101. It is good to form in the upper part (especially corner) which becomes difficult. Moreover, the recessed part 126 does not need to be formed in several places, and may be formed only in one place. Furthermore, the fragile portion is not limited to the concave portion, and may be a hole.
  • the second cross member 12 corresponds to a front cross member disposed on the front side of the suspension tower 101 and is provided at a position away from the suspension tower 101.
  • the third cross member 13 corresponds to a rear cross member disposed on the rear side of the suspension tower 101, and is provided at a position away from the suspension tower 101.
  • the engine mount brackets 27 are connected to the connection portions of the main frames 10 to the suspension tower 101 and the connection portions to the second and third cross members 12 and 13 (connection portions to the cross member brackets 23 and 24). On the other hand, they are separated from each other in the vehicle length direction and are attached by welding between the second and third cross members 12 and 13 on the inner side surface (inner panel 20 of the main frame 10) of each main frame 10. .
  • the separation of the engine mount bracket 27 in the vehicle length direction with respect to the connection portion includes that the engine mount bracket 27 is separated from the connection portion in the vehicle length direction at the same height position of the main frame 10.
  • the front end of the engine mount bracket 27 is inclined forward toward the lower side.
  • the upper portion of the front end of the engine mount bracket 27 is separated from the rear leg portion 101b of the suspension tower 101 in the vehicle length direction.
  • the lower part of the front end of the engine mount bracket 27 is spaced apart in the vertical direction with respect to the rear leg part 101b.
  • the front end of the engine mount bracket 27 is inclined frontward toward the lower side so that a gap of a predetermined width is formed with the suspension tower 101 (rear leg portion 101b).
  • the main frame 10 is compressed and deformed in the vehicle length direction.
  • each engine mount bracket 27 is attached to a portion of each main frame 10 between the suspension tower 101 and the third cross member 13. That is, each engine mount bracket 27 is disposed between the suspension tower 101 and the third cross member 13 in the vehicle length direction.
  • the engine 32 can be disposed relatively rearward in the front portion of the main frame 10, it is possible to delay the timing at which the engine 32 moves backward during a frontal collision of the vehicle 1. As a result, the amount of energy absorbed by the compressive deformation at the front portion of the main frame 10 before the engine 32 starts to retract can be increased.
  • Each engine mount bracket 27 is attached to a portion of each main frame 10 between the suspension tower 101 and the second cross member 12 (that is, between the suspension tower 101 and the second cross member 12 in the vehicle length direction). It is also possible to arrange them). Also in this case, the engine mount brackets 27 are separated in the vehicle length direction from the connection portions of the main frames 10 to the suspension tower 101 and the connection portions to the second and third cross members 12 and 13. Are attached to each main frame 10. However, since the engine 32 tends to be disposed relatively forward in the front portion of the main frame 10, the timing at which the engine 32 moves backward in the frontal collision of the vehicle 1 is accelerated. As a result, the amount of energy absorption due to compression deformation of the main frame 10 before the engine 32 starts retreating is reduced, so that energy absorption engineering that incorporates the retreat of the engine 32 whose behavior is unstable is required. .
  • the value of F2 varies greatly depending on the amount of compressive deformation of the main frames 10 in the vehicle length direction. By increasing the amount of compression deformation, the value of F2 can be reduced.
  • a portion of the main frame 10 between the second and third cross members 12 and 13 includes the second and third cross members 12 and 13, the suspension tower 101, and the engine mount bracket 27.
  • Many deformation-inhibiting members that inhibit compression deformation in the vehicle length direction of the main frame 10 at the time of a frontal collision are attached. Since the bump stopper 115 is formed in a shape that is easy to compress and deform as described above, it does not correspond to the deformation inhibiting member.
  • the engine mount bracket 27 is separated in the vehicle length direction from the connection portion of the main frame 10 with the suspension tower 101 and the connection portions with the second and third cross members 12 and 13. Thus, it is attached to the main frame 10. That is, the second cross member 12, the third cross member 13, the suspension tower 101, and the engine mount bracket 27 are separated from each other on the main frame 10. As a result, the plurality of deformation inhibiting members are dispersedly arranged in the vehicle length direction on the main frame 10 so that the deformation inhibiting members in the main frame 10 are reliably compressed and deformed in the vehicle length direction.
  • the attachment portion of the single deformation inhibiting member in the main frame 10 is not compressed and deformed at all in the vehicle length direction. It is possible to compress and deform to some extent.
  • a front leg portion 101a and a rear leg portion 101b that are branched so as to be separated from each other in the vehicle length direction are provided at the lower portion of the suspension tower 101. 10 and are separated from each other in the vehicle length direction, and a recess 126 is formed in a portion between the front leg portion 101a and the rear leg portion 101b in the main frame 10, so that the front leg portion 101a and the rear leg portion 101b in the main frame 10 are formed.
  • the portion between is reliably compressed and deformed in the vehicle length direction.
  • the engine mount bracket 27 is easily compressed and deformed in the vehicle length direction due to the formation of the cutout portion 27d, and coupled with the long hole 128 formed in the main frame 10, the engine in the main frame 10 is provided.
  • the mounting portion of the mount bracket 27 is more likely to be compressed and deformed in the vehicle length direction.
  • the recessed portion 125 formed in the main frame 10 increases the possibility that the mounting portion of the third cross member 13 in the main frame 10 is also compressed and deformed in the vehicle length direction. Therefore, the amount of collision energy absorbed at the time of a frontal collision of the vehicle 1 can be secured by the accumulation of the compression deformation, and an excessive impact force can be prevented from instantaneously acting on the cabin 3. it can. Further, since there are a plurality of dispersed locations where the main frame 10 is reliably compressed and deformed in the vehicle length direction, the impact force G can be easily controlled.
  • the main frame 10 on the colliding side is compressed and deformed in the vehicle length direction as in the case of the full-wrap frontal collision, but as shown in FIG. 26, the second and third cross members 12, 13, the engine 32, the front wheel drive shaft 47, and the like do not recede straight to the rear side, and the colliding side largely recedes to the rear side relative to the non-collision side.
  • the front wheel 6 (hub 50) on the collision side may press the main frame 10 on the collision side inward in the vehicle width direction.
  • symbol 200 of FIG. 26 is an obstruction which the vehicle 1 collided front.
  • the narrow portion 10a of the main frame 10 on the collision side a strong backward force is generated in the narrow portion 10a of the main frame 10 on the collision side, while a reaction force against the backward movement of the narrow portion 10a is generated in the wide portion 10b.
  • the narrow portion 10a and the wide portion 10b are shifted from each other in the vehicle width direction. Therefore, coupled with the pressing by the hub 50, the narrow width portion 10a tends to bend outward in the vehicle width direction starting from the connection portion with the wide width portion 10c. If the narrow portion 10a is bent at this position, the narrow portion 10a cannot be effectively compressed and deformed in the vehicle length direction, and the collision energy absorbing function is not sufficiently exhibited. Therefore, it is required to prevent the narrow portion 10a from being broken during the entire period of the offset frontal collision.
  • the width is increased from the widened portion 10c to the widened portion 10b in each main frame 10, and the width (in the vicinity of the connecting portion with the fourth cross member 14 in the widened portion 10b ( The cross-sectional area is maximized.
  • the connecting portion between the fourth cross member 14 and the wide width portion 10 b of each main frame 10 is reinforced by a large gusset 25.
  • the rigidity of the trapezoidal portion formed by the widened portion 10c and the third and fourth cross members 13 and 14 is increased, so that the widened portion 10c is bent inward in the vehicle width direction due to the retreating force of the narrow-width portion 10a.
  • the deformation / displacement toward the outside can be suppressed, and the main frame 10 can be prevented from being bent due to the displacement.
  • the narrow portion 10a of the main frame 10 on the collision side (hereinafter referred to as the collision-side narrow portion 10a) is compressed and deformed in the vehicle length direction from the front end, but at that time, it is pushed by the obstacle 200.
  • the collision-side narrow portion 10a tends to be bent outward in the vehicle width direction via the lower arm 92.
  • the strong frame-like body formed by the second and third cross members 12, 13 and the left and right lower arms 92 suppresses the folding of the collision side narrow portion 10a.
  • the obstacle 200 collides with one side of the front portion of the engine 32.
  • the engine 32, the transmission 33, and the power transfer unit 34 (which are combined with each other, hereinafter referred to as a power unit) rotate so that the rear end side is displaced to the non-collision side. try to. If the rotation is not suppressed, the power unit cannot prevent the obstacle 200 from entering. Therefore, even at this stage, the collision side narrow portion 10a is responsible for absorbing the collision load, and the narrow portion 10a. There is a tendency for the main frame 10 to be bent due to a shift in the vehicle width direction between the main frame 10 and the wide portion 10b.
  • the fourth cross member 14 is moved by the load that displaces the rear end side of the power unit to the non-collision side.
  • the main frame 10 on the non-collision side is pushed outward in the vehicle width direction to try to fold the main frame 10 outward in the vehicle width direction.
  • the fourth cross member 14 since the fourth cross member 14 is coupled to the maximum cross section having the highest bending strength in the main frame 10, the load does not cause the main frame 10 to be bent. Therefore, the rotation of the power unit is suppressed, and the power unit is also responsible for absorbing the collision load together with the collision side narrow portion 10a. Therefore, the collision-side narrow portion 10a is prevented from being bent, and the collision-side narrow portion 10a is compressed and deformed in the vehicle length direction from the front end to the rear portion to effectively increase the energy absorption amount.
  • the collision energy can be absorbed by the compression deformation of the main frame 10 on the collision side, and the impact force G acting on the cabin 3 can be reduced.
  • FIGS. 27 to 30 show deformation simulation results when the right main frame 10 of the chassis frame 9 collides with the front side of the vehicle. Although the simulation is performed in a state including all the components of the vehicle, only the right main frame 10 is shown in FIGS. 27 to 30 from the viewpoint of easy viewing.
  • FIG. 27 shows the right main frame 10 in the vehicle width direction at a timing when the elapsed time from the collision is short (a timing at which substantially the entire front portion of the main frame 10 is compressed and deformed in the vehicle length direction). The state of deformation when viewed from the outside is shown.
  • FIG. 28 shows a state of deformation when the right main frame 10 is viewed from the inside in the vehicle width direction at the same timing as FIG. FIG.
  • FIG. 29 shows a state of deformation when the right main frame 10 is viewed from the outside in the vehicle width direction at a timing when the elapsed time is longer than that in FIG.
  • FIG. 30 shows a state of deformation when the right main frame 10 is viewed from the inside in the vehicle width direction at the same timing as FIG.
  • the color intensity represents the magnitude of the distortion (compression deformation amount) generated in the main frame 10, and the darker the color, the greater the distortion.
  • a large strain means that the collision energy is effectively absorbed in that portion.
  • the entire vehicle length direction of the lower end part of the suspension tower 101 may be attached to the main frame 10. Further, even when the lower portion of the suspension tower 101 is branched into the front leg portion 101a and the rear leg portion 101b, it is necessary to form the recess 126 in the portion of the main frame 10 between the front leg portion 101a and the rear leg portion 101b. Is not necessarily. Further, the long hole 128 can be eliminated.
  • the present invention is particularly useful for a vehicle having a ladder-like chassis frame, such as a small truck or a vehicle called SUV (Sports Utility Vehicle).
  • a ladder-like chassis frame such as a small truck or a vehicle called SUV (Sports Utility Vehicle).

Abstract

 シャーシフレーム(9)を備えた車両1の前面衝突エネルギー吸収構造において、エンジンマウントブラケット(27)を、シャーシフレーム(9)の車両長さ方向に延びるメインフレーム(10)におけるサスペンションタワー(101)との接続部、並びに、サスペンションタワー(101)の前側及び後側にそれそれ該サスペンションタワー(101)から離れて配設された前側及び後側クロスメンバ(12,13)との接続部に対して、車両長さ方向に離間して該メインフレーム(10)に取り付ける。

Description

車両の前面衝突エネルギー吸収構造
 本発明は、シャーシフレームを備えた車両の前面衝突エネルギー吸収構造に関する技術分野に属する。
 従来より、小型トラックや、SUV(スポーツ・ユーティリティ・ビークル)と呼ばれる車両においては、例えば特許文献1及び2に記載されているように、梯子状のシャーシフレームが設けられている。このシャーシフレームは、車両長さ方向(車両前後方向)に延びる左右一対のメインフレーム(サイドフレームとも呼ばれる)と、これらメインフレーム間を接続する複数のクロスメンバとによって梯子状に形成されている。
 上記各メインフレームには、エンジンを取り付けるためのエンジンマウントブラケットや、乗員が乗り込むキャビンを構成する車体部材を取り付けるためのキャブマウントブラケット等が設けられる。
 また、上記各メインフレームの前部には、特許文献1及び2に記載されているように、前輪サスペンション装置のストラットの頂部を支持するためのサスペンションタワーが取り付けられる場合がある。
英国特許出願公開第2390581号明細書 国際公開第2004/002808号パンフレット
 上記のようにメインフレームの前部にサスペンションタワーが取り付けられる場合、メインフレームの前部には、サスペンションタワー、エンジンマウントブラケット及び1つ又は複数のクロスメンバが取り付けられることになる。特に、前輪サスペンション装置におけるロアアームの前後に分岐した前側及び後側基端部を、サスペンションタワーの前後両側に位置する2つのクロスメンバによりそれぞれ支持する場合には、サスペンションタワー、エンジンマウントブラケット、及び、2つのクロスメンバが、メインフレームの車両長さ方向(メインフレームの長さ方向)において比較的狭い範囲に取り付けられることになる。これらは、車両長さ方向に圧縮変形し難くて、車両の前面衝突時におけるメインフレームの車両長さ方向の圧縮変形を阻害する変形阻害部材となる。一方、メインフレームを長くすることは、予め設定された車両全長により制限されるため、メインフレームにおける車両長さ方向の圧縮変形量が十分に確保できず、メインフレームの圧縮変形による衝突エネルギーの吸収の点で不利になる。
 そこで、従来では、複数の上記変形阻害部材同士(例えばサスペンションタワー及びクロスメンバ)を車両長さ方向に重ねて配置し、これにより、メインフレームにおける変形阻害部材が配置されていない部分、つまり確実に圧縮変形する部分を出来るだけ長く取ることにより、衝突エネルギーを吸収するようにしていた。
 しかし、上記複数の変形阻害部材同士を車両長さ方向に重ねて配置した場合には、メインフレームにおける該複数の変形阻害部材の取付部は更に圧縮変形し難くなり、メインフレームにおける単一の変形阻害部材の取付部が有している変形余地(可能性)が奪われてしまう。さらに、前面衝突時のメインフレームの前端からの圧縮変形シーケンス(連続挙動)において、圧縮変形し難い上記複数の変形阻害部材の取付部が、メインフレームの圧縮変形により生成される車体の減速加速度を乱し、その結果、キャビンに作用する衝撃荷重のコントロールが困難になる。
 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、車両の前面衝突時(特にフルラップ前面衝突時)の衝突エネルギーの吸収量を確保するとともに、キャビンに作用する衝撃力を出来る限り緩和しようとすることにある。
 上記の目的を達成するために、この発明では、シャーシフレームを備えた車両の前面衝突エネルギー吸収構造を対象として、上記シャーシフレームは、車両長さ方向に延びる左右一対のメインフレームと、上記一対のメインフレームにそれぞれ取り付けられた一対のサスペンションタワーと、上記サスペンションタワーの前側及び後側にそれそれ該サスペンションタワーから離れて配設され、上記一対のメインフレーム間を接続する前側及び後側クロスメンバと、上記一対のメインフレームにおける上記前側及び後側クロスメンバ間にそれぞれ取り付けられた一対のエンジンマウントブラケットと、を有し、上記各エンジンマウントブラケットは、上記各メインフレームにおける上記サスペンションタワーとの接続部、並びに、上記前側及び後側クロスメンバとの接続部に対して車両長さ方向に離間して該各メインフレームに取り付けられている、構成とした。
 上記の構成により、車両の前面衝突時におけるメインフレームの車両長さ方向の圧縮変形を阻害する複数の変形阻害部材が、メインフレーム上で車両長さ方向(前後方向)に分散配置されることになり、メインフレームは、これら変形阻害部材間で車両長さ方向に確実に圧縮変形する。また、複数の変形阻害部材同士を車両長さ方向に重ねて配置する場合とは異なり、メインフレームにおける単独の変形阻害部材の取付部が車両長さ方向に全く圧縮変形しないということはなく、或る程度圧縮変形するようにすることは可能である。したがって、これら圧縮変形の積み重なりにより、車両の前面衝突時の衝突エネルギーの吸収量を確保することができる。また、メインフレームが車両長さ方向に確実に圧縮変形する箇所が、複数分散して存在することにより、キャビンに作用する衝撃力のレベルをコントロールし易くなる。
 上記車両の前面衝突エネルギー吸収構造において、上記各サスペンションタワーの下部に、互いに車両長さ方向に離れるように分岐した前脚部及び後脚部が設けられ、上記前脚部及び後脚部の下部が、上記メインフレームに、互いに車両長さ方向に離れて取り付けられている、ことが好ましい。
 このことにより、車両の前面衝突時に、メインフレームにおける前脚部と後脚部との間の部分が車両長さ方向に確実に圧縮変形することになり、メインフレームの車両長さ方向の圧縮変形量をより一層多く確保することができる。よって、車両の前面衝突時の衝突エネルギーをより一層多く吸収することができるとともに、キャビンに作用する衝撃力をより一層緩和することができる。
 上記メインフレームにおける上記前脚部と上記後脚部との間の位置に、上記車両の前面衝突時にメインフレームの車両長さ方向の変形を促進する脆弱部が設けられている、ことが好ましい。
 このことで、車両の前面衝突時に、メインフレームにおける前脚部と後脚部との間の部分を車両長さ方向により一層容易にかつ確実に圧縮変形するようにすることができる。
 上記脆弱部は、上記メインフレームの上部に形成された凹部で構成されている、ことが好ましい。
 これにより、メインフレームに好適な脆弱部を容易に設けることができる。また、メインフレームの特に上部がサスペンションタワーの取付けにより圧縮変形し難くなるので、メインフレームの上部に凹部を形成することで、車両の前面衝突時に、メインフレームにおける前脚部と後脚部との間の部分を車両長さ方向により一層圧縮変形し易くすることができる。
 上記凹部は、上記メインフレームの上部における車幅方向両側の角部に形成されている、ことが好ましい。
 このことで、メインフレームにおいて特に圧縮変形し難い角部を圧縮変形し易くすることができる。
 上記車両の前面衝突エネルギー吸収構造において、上記各エンジンマウントブラケットは、車両長さ方向において上記サスペンションタワーと上記後側クロスメンバとの間に配設されていてもよい。
 このことにより、メインフレームの前部におけるエンジンと前輪サスペンション装置とを適正位置に保ったまま、メインフレーム上での変形阻害部材の分散配置を可能とする。
 このようなエンジンマウントブラケットの配置の場合、上記各エンジンマウントの車両前側端は、該車両前側端と上記サスペンションタワーとの間に隙間が形成されるように、下側に向かって車両前側に傾斜している、ことが好ましい。
 このことで、サスペンションタワーとの間に隙間を形成しながら、エンジンマウントブラケットのメインフレームへの取付強度を向上させることができる。
 上記車両の前面衝突エネルギー吸収構造において、上記各メインフレームにおける上記各エンジンマウントブラケットと車両長さ方向において重なる位置に、上記車両の前面衝突時に該各メインフレームの車両長さ方向の変形を促進する脆弱部が設けられている、ことが好ましい。
 このことにより、車両の前面衝突時に、メインフレームにおけるエンジンマウントブラケットの取付部を、車両長さ方向に圧縮変形し易くすることができる。
 上記車両の前面衝突エネルギー吸収構造において、上記各エンジンマウントブラケットに、上記車両の前面衝突時に該各エンジンマウントブラケットの車両長さ方向の変形を促進するブラケット脆弱部が設けられている、ことが好ましい。
 こうすることで、車両の前面衝突時に、エンジンマウントブラケットが車両長さ方向に圧縮変形し易くなり、この結果、メインフレームにおけるエンジンマウントブラケットの取付部分も、車両長さ方向に圧縮変形し易くなる。
 上記車両の前面衝突エネルギー吸収構造において、上記各メインフレームにおける上記後側クロスメンバと車両長さ方向において重なる位置に、上記車両の前面衝突時に該各メインフレームの車両長さ方向の変形を促進する脆弱部が設けられている、ことが好ましい。
 このことにより、車両の前面衝突時に、メインフレームにおける前側クロスメンバの取付部を、車両長さ方向に圧縮変形し易くすることができる。
 上記車両の前面衝突エネルギー吸収構造において、上記各エンジンマウントブラケットは、上記各メインフレームの車幅方向内側の面に取り付けられかつ該面から車幅方向内側へ突出する上側部材及び下側部材を有し、上記上側部材は、車両長さ方向に沿って切断した断面が略逆U字状をなし、上記下側部材は、車両長さ方向に沿って切断した断面が略U字状をなし、上記上側部材の車両長さ方向両側の側端部と上記下側部材の車両長さ方向両側の側端部とが互いに接合され、上記上側部材の上面にエンジンマウントが取り付けられ、上記下側部材の底面部に、車幅方向内側に開放された切欠き部が形成され、上記各メインフレームの車幅方向内側の面における上記各エンジンマウントブラケットと車両長さ方向において重なる位置に、車両長さ方向に延びる長孔が形成されている、ことが好ましい。
 このことにより、車両の前面衝突時に、エンジンマウントブラケットの下側部材が車両長さ方向に圧縮変形し、この圧縮変形とメインフレームの長孔とにより、メインフレームにおけるエンジンマウントブラケットの取付部が車両長さ方向に圧縮変形し易くなる。よって、メインフレームの車両長さ方向の圧縮変形量をより一層多く確保することができる。
 本発明の別の態様は、車両の前面衝突エネルギー吸収構造であって、車両長さ方向に延びる一対のメインフレームと、上記両メインフレーム同士を連結し、上記車両の前輪サスペンション装置の前側部分及び後側部分をそれぞれ支持する前側及び後側クロスメンバと、上記各メインフレームにそれぞれ取り付けられたサスペンションタワー及びエンジンマウントブラケットとを備え、上記前側クロスメンバ、上記後側クロスメンバ、上記サスペンションタワー及び上記エンジンマウントブラケットが、上記メインフレーム上で互いに離間している、ものである。
 この構成によって、車両の前面衝突時の衝突エネルギーの吸収量を、限られた車両長さの中で確保することができるとともに、キャビンに作用する衝撃力のレベルをコントロールし易くなる。
 以上説明したように、本発明の車両の前面衝突エネルギー吸収構造によると、車両の前面衝突時におけるメインフレームの車両長さ方向の圧縮変形を阻害する複数の変形阻害部材のメインフレーム上での車両長さ方向の分散配置により、車両の前面衝突時の衝突エネルギーの吸収量を、限られた車両長さの中で確保することができるとともに、メインフレームがコントロールされた態様で車両長さ方向に変形するので、キャビンに作用する衝撃力のレベルをコントロールし易くなる。
本発明の実施形態に係る前面衝突エネルギー吸収構造が適用された車両の全体を示す斜視図である。 上記車両のシャーシフレームの全体を示す、車両左斜め前側かつ上側から見た斜視図である。 上記シャーシフレームの平面図である。 上記シャーシフレームの車両前側部分を示す、車両左斜め後側かつ上側から見た斜視図である。 上記シャーシフレームの車両前側部分を示す、車両左斜め後側かつ下側から見た斜視図である。 上記シャーシフレームの左側のメインフレームの車幅方向外側部分におけるサスペンションタワー近傍を示す斜視図である。 上記シャーシフレームの左側のメインフレームの車幅方向内側部分におけるサスペンションタワー近傍を示す斜視図である。 上記シャーシフレームの左側のメインフレームの車幅方向内側部分におけるサスペンションタワー近傍を示す分解斜視図である。 上記シャーシフレームの左側のメインフレームの車幅方向内側部分におけるエンジンマウントブラケット近傍を示す斜視図である。 上記左側のメインフレームのサスペンションタワーを示す斜視図である。 図10のサスペンションタワーのインナパネル及びスティフナーを示す斜視図である。 図10のサスペンションタワーのアウタパネル及びサスペンションタワーレインフォースメントを示す斜視図である。 上記シャーシフレームに種々の部品(ユニットを含む)を搭載した状態を示す平面図である。 上記部品を搭載したシャーシフレームを車両左側から見た側面図である。 上記部品を搭載したシャーシフレームの車両前側部分を示す、車両左斜め後側かつ上側から見た斜視図である。 上記部品を搭載したシャーシフレームの車両前側部分を示す、車両左斜め前側かつ下側から見た斜視図である。 上記部品を搭載したシャーシフレームの車両前側部分を示す平面図である。 上記部品を搭載したシャーシフレームの車両前側部分を示す底面図である。 図17のXIX-XIX線断面図である。 図14のXX-XX線断面図である。 図14のXXI-XXI線断面図である(但し、図20に示す搭載部品の大部分を省略)。 上記部品を搭載したシャーシフレームの左側のメインフレームの車幅方向外側部分におけるバンプストッパ近傍を示す斜視図である。 図22のXXIII-XXIII線断面図である。 上記部品を搭載したシャーシフレームの車両後側部分を示す底面図である。 車両の前面衝突時における該車両の圧縮変形ストローク(車両が前面衝突した障害物の該車両への食い込み量)とキャビンに作用する衝撃力Gとの関係を示すグラフである。 上記車両のオフセット前面衝突時における車両前側部分の状態を示す車両底面図である。 シャーシフレームにおける右側のメインフレームの車両前面衝突時の変形シミュレーション結果であって、衝突からの経過時間が短いタイミングで右側のメインフレームを車幅方向外側から見たときの変形の様子を示す図である。 図27と同じタイミングで右側のメインフレームを車幅方向内側から見たときの変形の様子を示す図である。 図27よりも上記経過時間が長いタイミングで右側のメインフレームを車幅方向外側から見たときの変形の様子を示す図である。 図29と同じタイミングで右側のメインフレームを車幅方向内側から見たときの変形の様子を示す図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 図1は、本発明の実施形態に係る前面衝突エネルギー吸収構造が適用された車両1(本実施形態では、小型トラック)の全体を示す。また、図2~図12は、車両1のシャーシフレーム9の全体又は一部を示し、図13~図24は、シャーシフレーム9に種々の部品(ユニットを含む)を搭載した状態を示す。
 図1及び図14に示すように、車両1は、前側から順に、エンジンルーム2、キャビン3及び荷台4を備える。以下、車両1についての前、後、左及び右を、それぞれ単に前、後、左及び右という。また、図2~図18、図20~図22及び図24においては、車両1の前側をFrと記載している。
 車両1は、その下部に、シャーシフレーム9を備えている。このシャーシフレーム9は、車両長さ方向(前後方向)に延びる左右一対のメインフレーム10(サイドフレームとも呼ばれる)と、これらメインフレーム10間を接続する、車幅方向に延びる複数(本実施形態では、7つ)のクロスメンバ(以下、前から順に、第1~第7クロスメンバ11~17という)とで構成されていて、平面視で梯子状をなしている。各メインフレーム10は、車幅方向内側のインナパネル20と、車幅方向外側のアウタパネル21とで断面略矩形状に形成され、これら両パネル20,21の間に閉断面空間が形成されている。
 第1クロスメンバ11は、両メインフレーム10の前端に取り付けられていて、フロントバンパー5(図1参照)を補強するバンパーレインフォースメントとして機能する。第2クロスメンバ12は、その両端部で、左右のメインフレーム10にそれぞれ溶接されたクロスメンバブラケット23を介して、左右のメインフレーム10に取り付けられている。また、第3クロスメンバ13も、その両端部で、左右のメインフレーム10にそれぞれ溶接されたクロスメンバブラケット24を介して、左右のメインフレーム10に取り付けられている。クロスメンバブラケット23は、第2クロスメンバ12の一部と見做すことができ、クロスメンバブラケット24は、第3クロスメンバ13の一部と見做すことができる。第4クロスメンバ15は、その両端部で、左右のメインフレーム10にそれぞれ溶接された大型のガセット25を介して、左右のメインフレーム10に取り付けられている。このガセット25は、ブラケットの役割と補強の役割とを有するものであって、第4クロスメンバ15の一部と見做すことができる。第5乃至第7クロスメンバ15~17の両端部は、左右のメインフレーム10にそれぞれ直接取り付けられている。
 各メインフレーム10は、エンジンルーム2下部の車幅方向両側の端部に位置しかつ両メインフレーム10間の間隔が小さい狭幅部10aと、キャビン3及び荷台4の下側に位置しかつ両メインフレーム10間の間隔が狭幅部10aよりも大きい広幅部10bと、狭幅部10aと広幅部10bとの間(エンジンルーム2の後端部)に位置しかつ両メインフレーム10間の間隔が後側ほど大きくなる拡幅部10cとを有する(各メインフレーム10の各部10a,10b,10cと、エンジンルーム2、キャビン3及び荷台4との位置関係については、図14を参照)。各広幅部10b自体の幅(つまり断面積)は、各狭幅部10a自体の幅(つまり断面積)よりも大きい。各拡幅部10cは、各狭幅部10aの後端(第3クロスメンバの後側近傍)から、後方に向かって車幅方向外側に傾斜して延びるとともに、後側ほど拡幅部10c自体の幅(断面積)が大きくなって、広幅部10bの前端(第4クロスメンバ14の前側近傍)に繋がる。こうして両メインフレーム10の拡幅部10c並びに第3及び第4クロスメンバ13,14は、平面視で台形状をなしている。
 広幅部10bは、第4クロスメンバ14との接続部ないしその近傍で広幅部10b自体の幅(断面積)が最も大きく形成されており、広幅部10bにおける第4クロスメンバ14から第6クロスメンバ14までの部分では、幅(断面積)が徐々に小さくなり、広幅部10bにおける第6クロスメンバ16よりも後側の部分では、幅(断面積)が略一定である。このように第4クロスメンバ14は、広幅部10bにおいて幅(断面積)が大きい部分に接続されているとともに、その接続部が大型のガセット25により補強されている。
 各メインフレーム10の広幅部10bにおけるキャビン3の下側に位置する部分は、狭幅部10aよりも下側の高さ位置にあり、拡幅部10cは、後方に向かって下側に傾斜している。また、各メインフレーム10の広幅部10bにおける荷台4の下側に位置する部分(第6クロスメンバ16よりも後側の部分)は、広幅部10bにおけるキャビン3の下側に位置する部分よりも上側の高さ位置にあり、広幅部10bにおけるキャビン3の下側に位置する部分の後部は、後方に向かって上側に傾斜している(図14参照)。
 各メインフレーム10の拡幅部10cにおける第4クロスメンバ14の前側近傍、及び、広幅部10bにおける第6クロスメンバ16の前側近傍には、キャブマウントブラケット26がそれぞれ取り付けられている。各キャブマウントブラケット26上には、ゴム部材を有するキャブマウントを介して、キャビン3を構成する車体部材が載せられる。キャブマウントブラケット26は、メインフレーム10の車幅方向外側の面及び下面に溶接により取り付けられる。
 尚、図14に示すように、キャビン3を構成する車体部材のうち、キャビン3のフロアを構成する車体部材は、フロアパネル28であり、エンジンルーム2とキャビン3とを仕切る車体部材は、ダッシュパネル29である。ダッシュパネル29の下端がフロアパネル28の前端と接続される。フロアパネル28の後端部は上方に折れ曲がって、キャビン3と荷台4とを仕切る。
 図13に示すように、車両1の駆動系は、エンジン32、変速機33、パワートランスファーユニット34、前輪用プロペラシャフト35、フロントディファレンシャルギヤユニット36、後輪用プロペラシャフト37、及び、リヤディファレンシャルギヤユニット38を有する。尚、本実施形態では、車両1は、前輪6及び後輪7を駆動する4輪駆動車(4WD車)であるが、後輪7のみを駆動する2WD車であってもよい。この2WD車の場合には、パワートランスファーユニット34、前輪用プロペラシャフト35及びフロントディファレンシャルギヤユニット36は存在しない。
 エンジン32は、複数(本実施形態では、5つ)の気筒を車両長さ方向に列状に有する縦置きエンジンであり、エンジン32の後側に変速機33が接続されている。図15に示すように、エンジン32の左右両側の側面には、それぞれ左側及び右側へ突出するブラケット40が取り付けられている。各ブラケット40の先端部には、円筒状のゴムブッシュ41aを有するエンジンマウント41が、該ゴムブッシュ41aの中心軸が車両長さ方向に延びるように保持されている。このエンジンマウント41は、ゴムブッシュ41aの中心部を車両長さ方向に貫通する中心軸41bと、該中心軸41bの両端を支持する支持部材41cとを更に有する。一方、両メインフレーム10の狭幅部10aには、エンジンマウントブラケット27が支持部材41cの下側に位置するように取り付けられている。そして、エンジンマウントブラケット27上に支持部材41cが取り付けられ、これにより、エンジン32が、ブラケット40及びエンジンマウント41を介して、エンジンマウントブラケット27上に弾性支持される。
 各エンジンマウントブラケット27は、図7~図9及び図21に示すように、各メインフレーム10における車幅方向内側の面(各メインフレーム10のインナパネル20)に溶接されかつ該面から車幅方向内側へ突出する上側部材27a及び下側部材27bを有している。上側部材27aは、車両長さ方向に沿って切断した断面が略逆U字状をなすように形成され、下側部材27bは、車両長さ方向に沿って切断した断面が略U字状をなすように形成されている。上側部材27aの車両長さ方向両側の側端部と下側部材27bの車両長さ方向両側の側端部とは互いに接合されている。すなわち、上側部材27aの前側の側端部と下側部材27bの前側の側端部とが互いに接合され、上側部材27aの後側の側端部と下側部材27bの後側の側端部とが互いに接合されている。これら両部材27a,27b間には空間が形成され、この空間の車幅方向内側は開放されている。上側部材27aの上面には、補強部材27cを介してエンジンマウント41の支持部材41cが取り付けられるようになっている。一方、下側部材27bの底面部(水平に延びている部分)には、車幅方向内側に開放された、平面視で略U字状の切欠き部27dが形成されている(図9及び図21参照)。この切欠き部27dは、車両1の前面衝突時にエンジンマウントブラケット27が車両長さ方向に出来る限り圧縮変形するようにするために形成したものである。すなわち、切欠き部27dは、エンジンマウントブラケット27に設けられかつ車両1の前面衝突時にエンジンマウントブラケット27の車両長さ方向の変形を促進するブラケット脆弱部を構成する。
 また、各メインフレーム10の車幅方向内側の面(各メインフレーム10のインナパネル20)における各エンジンマウントブラケット27と車両長さ方向において重なる位置(上記空間に対応する位置)に、車両長さ方向に延びる長孔128が形成されている(図9参照)。この長孔128により、車両1の前面衝突時に、エンジンマウントブラケット27と共に、メインフレーム10における該エンジンマウントブラケット27の取付部も車両長さ方向に出来る限り圧縮変形するようにしている。すなわち、長孔128は、車両1の前面衝突時にメインフレーム10の車両長さ方向の変形を促進する脆弱部を構成する。
 パワートランスファーユニット34は、変速機33の後側に接続されて、変速機33の出力を前輪6と後輪7とに分配する。このパワートランスファーユニット34は、第4クロスメンバ14の上面の車幅方向中央部に設けたマウント取付部14aにゴムマウントを介して支持される。
 尚、上記2WD車の場合には、パワートランスファーユニット34が存在しないので、その分だけ後輪用プロペラシャフト37が前側に長くなって変速機33の後端に接続される。また、変速機33の下部(後輪用プロペラシャフト37との接続部よりも下側の部分)に、第4クロスメンバ14上面のマウント取付部14a上に達するように後側に延長された延設部が形成され、この延設部にて変速機33がマウント取付部14aに上記ゴムマウントを介して支持される。
 パワートランスファーユニット34の左側の側部(左側に突出している部分)には、変速機33の左側の側方を車両長さ方向に延びる前輪用プロペラシャフト35の後端が接続され、パワートランスファーユニット34の後端には、車両長さ方向に延びる後輪用プロペラシャフト37の前端が接続されている。
 前輪用プロペラシャフト35の後端は、等速ジョイント44を介してパワートランスファーユニット34に接続され、前輪用プロペラシャフト35の前端は、等速ジョイント45を介してフロントディファレンシャルギヤユニット36(詳細には、後述の入力軸)に接続されている。
 フロントディファレンシャルギヤユニット36は、図15~図20に示すように、ディファレンシャルギヤ等を収容するケース131を備える。このケース131は、ディファレンシャルギヤが収容されたギヤ収容部131aと、車幅方向に延びる左側出力軸が収容された左側出力軸収容部131bと、車幅方向に延びる右側出力軸が収容された右側出力軸収容部131cと、前輪用プロペラシャフト35と連結されかつ車両長さ方向に延びる入力軸が収容された入力軸収容部131dとを有する。左側及び右側出力軸収容部131b,131cは、左側及び右側出力軸の周囲をそれぞれ覆う円筒状をなしていて、ギヤ収容部131aから車幅方向両側にそれぞれ延びている。入力軸収容部131dは、ギヤ収容部131aから後側に延び、その後端から、上記入力軸の後端部(等速ジョイント45)が突出している。
 前輪用プロペラシャフト35が変速機33の左側に位置するため、ギヤ収容部131aはエンジン32の左側に位置する。このため、右側出力軸収容部131cは、左側出力軸収容部131bよりも車幅方向の長さが長くて、エンジン32の下側を通って右側のメインフレーム10の近傍まで達する。
 上記両出力軸は、図15及び図16に示すように、ブーツ46内に収容された等速ジョイントを介して、車幅方向に延びる左右の前輪ドライブシャフト47とそれぞれ連結され、左右の前輪ドライブシャフト47は、ブーツ48内に収容された等速ジョイントを介して左右の前輪6のホイールを保持するハブ50とそれぞれ連結されている。これら等速ジョイントにより、各前輪6の上記出力軸に対する上下方向の移動及び後述の操舵による移動に対応することが可能になる。
 上記の構成により、エンジン32の動力は、変速機33、パワートランスファーユニット34、前輪用プロペラシャフト35、フロントディファレンシャルギヤユニット36、及び、左右の前輪ドライブシャフト47を介して、左右の前輪6に伝達される。
 フロントディファレンシャルギヤユニット36は、3箇所でシャーシフレーム9に弾性支持される。具体的には、第2クロスメンバ12の後面における左寄りの位置に、円筒状のゴムブッシュ53aを有する第1マウント53を支持する第1マウントブラケット57が設けられている(図3、図5、図6、図20及び図21参照)。また、第3クロスメンバ13の上面における右側の端部(実際には、クロスメンバブラケット24の上面)に、円筒状のゴムブッシュ54aを有する第2マウント54を支持する第2マウントブラケット58が設けられている(図3、図4及び図15~図17参照)。さらに、左側のメインフレーム10の車幅方向内側の面における第3クロスメンバ13の上側位置に、円筒状のゴムブッシュ55aを有する第3マウント55を支持する第3マウントブラケット59が設けられている(図3、図4、図7~図9、図17、図20参照)。第3マウントブラケット59は、前側分割部59aと後側分割部59bとに2分割されている。
 第1マウント53は、ゴムブッシュ53aの中心部を貫通する中心軸53bを更に有する。この中心軸53bの両端部が、第1マウントブラケット57により支持される。
 第2マウント54は、ゴムブッシュ54aの中心部を貫通する中心軸54bを更に有する。この中心軸54bの一端部(下端部)は、第2マウントブラケット58の下面に設けたウェルドナットの雌ねじ部と螺合する雄ねじ部とされ、他端部(上端部)は、その雄ねじ部を雌ねじ部に締結させる工具と係合するために六角形状をなしている。この締結状態で、第2マウント54が第2マウントブラケット58上に支持される。
 第3マウント55は、ゴムブッシュ55aの中心部を貫通する中心軸55bを更に有する。この中心軸55bの両端部は、水平方向に延びる板状をなしていて、それぞれ上記前側分割部59a及び後側分割部59bにボルト60(図9及び図20参照)で上側から締結される。
 フロントディファレンシャルギヤユニット36のギヤ収容部131aの前部には、前側に突出しかつその先端に第1マウント53のゴムブッシュ53aの周囲を保持する第1マウント保持部131eが形成されている(図20参照)。また、右側出力軸収容部131cの先端部(右側の端部)には、後側に突出しかつその先端に第2マウント54のゴムブッシュ54aの周囲を保持する第2マウント保持部131fが形成されている(図15及び図17参照)。さらに、入力軸収容部131dの後部には、左上側に突出しかつその先端に第3マウント55のゴムブッシュ55aの周囲を保持する第3マウント保持部131gが形成されている(図17及び図20参照)。
 したがって、フロントディファレンシャルギヤユニット36は、第1乃至第3マウント53~55及び第1乃至第3マウントブラケット57~59を介してシャーシフレーム9に取り付けられる。
 尚、2WD車の場合には、フロントディファレンシャルギヤユニット36が存在しないので、第1乃至第3マウントブラケット57~59も存在しない。
 後輪用プロペラシャフト37は、図13及び図24に示すように、ジョイント(本実施形態では、ユニバーサルジョイント65)を介して互いに接続された前側シャフト37a及び後側シャフト37bからなる。前側シャフト37aの前端は、ユニバーサルジョイント64を介してパワートランスファーユニット34の後端に連結され、前側シャフト37aの後端は、第5クロスメンバ15の下側に位置するユニバーサルジョイント65(図24参照)を介して後側シャフト37bの前端に連結される。前側シャフト37aは、平面視で、ユニバーサルジョイント64から、両メインフレーム10間の車幅方向中央を通って真っ直ぐ後側に延びている。この前側シャフト37aは、後方に向かって下側に傾斜している。
 後側シャフト37bは、図24(底面図であるため、左側及び右側が図13とは逆になっている)に示すように、ユニバーサルジョイント65から後側に延びて、ユニバーサルジョイント66を介してリヤディファレンシャルギヤユニット38(詳細には、後述の入力軸)に接続されている。この後側シャフト37bは、後方に向かって下側に傾斜しているとともに、平面視で、後方に向かって右側(後述の燃料タンク83とは反対側)に僅かに傾斜している。これにより、後輪用プロペラシャフト37は、平面視で、後輪用プロペラシャフト37の両端(前側シャフト37aの前端及び後側シャフト37bの後端)を結ぶ直線に対して、ユニバーサルジョイント65が左側に位置するように、ユニバーサルジョイント65の箇所で折れ曲がっている。
 後輪用プロペラシャフト37は、その長さ方向中間部にて、プロペラシャフトセンターベアリング67(以下、単にセンターベアリング67という)によって支持されている。具体的には、前側シャフト37aの後端近傍(前側シャフト37aにおけるユニバーサルジョイント65の近傍)が、センターベアリング67によって支持されている。このセンターベアリング67は、第5クロスメンバ15に取り付けられた2つのベアリングブラケット68に支持されていて、第5クロスメンバ15の前側近傍に位置する。尚、車両1の前面衝突時に、エンジン32の後退等により、後輪用プロペラシャフト37(前側シャフト37a)に対して前方から後方へ向かう衝撃力が作用したとき、前側シャフト37aは、センターベアリング67を後方へ押圧することで、センターベアリング67に対し前方から後方へ向かう衝撃力を作用させるようになっており、この衝撃力が過大であるときには、該衝撃力を受けたセンターベアリング67が、ベアリングブラケット68から外れるようになっている。これにより、後輪用プロペラシャフト37がセンターベアリング67と共に第5クロスメンバ15から脱落することになる。
 リヤディファレンシャルギヤユニット38は、図24に示すように、ディファレンシャルギヤ等を収容するアクスルハウジング132を備える。このアクスルハウジング132は、ディファレンシャルギヤが収容されたギヤ収容部132aと、車幅方向に延びかつ左側後輪7を駆動する左側後輪ドライブシャフトが収容された左側ドライブシャフト収容部132bと、車幅方向に延びかつ右側後輪7を駆動する右側後輪ドライブシャフトが収容された右側ドライブシャフト収容部132cと、後側シャフト37bと連結されかつ車両長さ方向に延びる入力軸が収容された入力軸収容部132dとを有する。両ドライブシャフト収容部132b,132cは、上記両後輪ドライブシャフトの周囲をそれぞれ覆う円筒状をなしていて、ギヤ収容部132aから車幅方向両側にそれぞれ延びている。
 両ドライブシャフト収容部132b,132cは、両メインフレーム10の広幅部10bの後部にそれぞれ取り付けられたリーフバネ71によって支持されている(図14参照)。また、左側ドライブシャフト収容部132bと左側メインフレーム10における左側ドライブシャフト収容部132bよりも後側部分との間、及び、右側ドライブシャフト収容部132cと右側メインフレーム10における右側ドライブシャフト収容部132cよりも前側部分との間には、ショックアブソーバ72がそれぞれ配設されている(図13、図14及び図24参照)。
 エンジン32の右側の側方には、該エンジン32の排気装置75が配設されている(図13及び図24参照)。この排気装置75は、車両1の後端近傍まで延びる排気管76を有する。この排気管76には、上流側から、上流側排気浄化装置77、フレキシブルジョイント78、下流側排気浄化装置79、及び、マフラー80が順に配設されている。上流側及び下流側排気浄化装置77,79は、三元触媒を有していて、エンジン1の排気を浄化する。上流側排気浄化装置77は、特にエンジン1の冷間時にHC及びCOの浄化を図るために、エンジン1の近傍に配設される。フレキシブルジョイント78は、エンジン32の振動を、排気管76におけるフレキシブルジョイント78よりも下流側の部分に伝達するのを抑制する。マフラー80は、後輪用プロペラシャフト37の後側シャフト37bの右側の側方でかつ第5及び第6クロスメンバ15,16間に配設されている。
 後側シャフト37bの左側の側方には、エンジン32に供給される燃料を収容する樹脂製の燃料タンク83が配設されている(図13、図14及び図24参照)。この燃料タンク83は、基本的には、第5及び第6クロスメンバ15,16間に位置している。以下、燃料タンク83における第5及び第6クロスメンバ15,16間に位置する部分をタンク本体部83aという。タンク本体部83aの前側には、第5クロスメンバ15よりも前側に延びかつセンターベアリング67と車幅方向に並ぶ前側延設部83bが設けられ、タンク本体部83aの後側には、第6クロスメンバ16よりも後側に延びる後側延設部83cが設けられている。タンク本体部83aと前側延設部83bとの境界部、及び、タンク本体部83aと後側延設部83cとの境界部は、車幅方向に括れている。燃料タンク83は、これら2箇所の括れ部分で、帯状のタンク取付部材84(図24参照)を介して第5及び第6クロスメンバ15,16の下面に取り付けられて固定されている。尚、図示は省略するが、燃料タンク83の右側の側面には、排気管76及びマフラー80からの熱を遮断するための、薄い鉄板からなるインシュレータが設けられている。また、燃料タンク83の下面には、薄い鉄板からなるアンダーガードが設けられている。このようなアンダーガードは、エンジン32の下側、第1及び第2クロスメンバ間、及び、パワートランスファーユニット34の下側にも設けられる。
 左右の前輪6は、乗員が操作するステアリングホイールと連動する操舵機構を介して、操舵される。この操舵機構は、ステアリングホイールの操作によってピニオンが回転し、このピニオンと噛み合うラックがステアリングギヤボックス87(図13及び図15~図18参照)内に収容されている。このラックは車幅方向に延びていて、その両端が左右のステアリングロッド88(図16及び図18参照)とそれぞれ連結される。各ステアリングロッド88は、ハブ50の車幅方向内側部分に設けられたナックル91に連結される。
 また、図15~図20に示すように、左右の前輪6は、左右の前輪サスペンション装置90(符号90は図15のみに示す)によってそれぞれ支持されている。各前輪サスペンション装置90は、ハイマウントタイプのダブルウィッシュボーン式サスペンションであって、上記ナックル91と、ロアアーム92と、アッパアーム93と、コイルスプリング94(図20にのみ示す)と、ショックアブソーバ95とを有する。尚、前輪サスペンション装置90が有するスタビライザは図示を省略している。
 ロアアーム92は、その基端部側(車幅方向内側)が前後二股に分岐した形状をなし、ロアアーム92の前側基端部92aがクロスメンバブラケット23を介して第2クロスメンバ12に取り付けられ、後側基端部92bがクロスメンバブラケット24を介して第3クロスメンバ13に取り付けられている。すなわち、第2及び第3クロスメンバ12,13は、前輪サスペンション装置90(詳細にはロアアーム92)の前側部分(前側基端部92a)及び後側部分(後側基端部92b)をそれぞれ支持する。前側基端部92aは、クロスメンバブラケット23に車両長さ方向に延びるように設けたロアアーム枢軸98(図6及び図22参照)に回動可能に取り付けられ、後側基端部92bも、クロスメンバブラケット24に車両長さ方向に延びるように設けたロアアーム枢軸99(図6及び図22参照)に回動可能に取り付けられている。これにより、ロアアーム92は、ロアアーム枢軸98,99を中心にして上下方向に揺動することができる。
 アッパアーム93も、その基端部側が前後二股に分岐した形状をなしている。アッパアームの前側及び後側基端部93a,93bは、後述のサスペンションタワー101のインナパネル102に車両長さ方向に延びるように設けたアッパーアーム枢軸106(図15~図17及び図19参照)の両端部にそれぞれ回動可能に取り付けられている。これにより、アッパアーム93は、アッパーアーム枢軸106を中心にして上下方向に揺動することができる。
 ロアアーム92は、前側及び後側基端部92a,92bからメインフレーム10よりも車幅方向外側に延びて、その先端部(車幅方向外側の端部)にて、ナックル91の下端部にボールジョイント110(図19及び図22参照)を介して連結されている。また、アッパアーム93は、前側及び後側基端部93a,93bからメインフレーム10よりも車幅方向外側に延びて、その先端部(車幅方向外側の端部)にて、ナックル91の上方に延びる腕部91aの上端部にボールジョイント111(図15、図17及び図19参照)を介して連結されている。これにより、前輪6の上下移動に連動して、ナックル91、ロアアーム92及びアッパアーム93が上下方向に揺動することになる。
 各メインフレーム10の車幅方向外側の面(メインフレーム10のアウタパネル21)には、バンプストッパ115(図2~図6、図15、図17、図19~図23参照)が溶接により取り付けられている。この各バンプストッパ115は、ロアアーム92の上面における後側基端部92b近傍に設けた当接部92cと当接して該ロアアーム92がその当接した位置から上側へ移動するのを規制するものである。尚、ロアアーム92は上下2枚の板材92d,92eで構成される(両板材92d,92eの間には空間が形成される)が、当接部92cは、その強度を増すべく、更にもう一枚の板材92fが溶接されている(図22参照)。
 各バンプストッパ115は、各メインフレーム10の車幅方向外側の面に、車幅方向外側に突出するように取り付けられたストッパ本体部116を備えている。ストッパ本体部116は、水平方向に沿って切断した断面が、車幅方向内側に開口を有する袋状(本実施形態では、略U字状)をなしかつ上下両端部に開口を有するように形成されたパネルからなる。このパネルにおける車幅方向内側開口の両側に位置する端部(上記断面におけるU字両側の端部)が、車両長さ方向に互いに離れた状態で、ストッパ本体部116の前側及び後側取付部116c,116d(図6、図22及び図23参照)として、各メインフレーム10の車幅方向外側の面に取り付けられる。すなわち、ストッパ本体部116は、上記断面におけるU字両側の端部(前側及び後側取付部116c,116d)を介してメインフレーム10に取り付けられる。
 以下、上記ストッパ本体部116のパネル上端部の開口を上側開口116aといい、パネル下端部の開口を下側開口116bという。ストッパ本体部116が前側及び後側取付部116c,116dを介してメインフレーム10に取り付けられることで、上記パネルの車幅方向内側開口が閉塞されることになり、ストッパ本体部116がメインフレーム10の一部と共に、上下に延びかつ上下両端に開口を有する筒状部材のような形状になる。この上下両端の開口が上側開口116a及び下側開口116bである。したがって、上側開口116aは、ストッパ本体部116の上端部とメインフレーム10の車幅方向外側の面との間に形成されているとも言える。また、下側開口116bは、ストッパ本体部116の下端部とメインフレーム10(実際には、クロスメンバブラケット24)の車幅方向外側の面との間に形成されているとも言える。
 本実施形態では、ストッパ本体部116のメインフレーム10から車幅方向外側への突出量が、下側ほど大きくされている。このため、車両長さ方向から見て、ストッパ本体部116の先端は、下側に向かって車幅方向外側に傾斜している。また、下側開口116bの開口面積が上側開口116aの開口面積よりも大きくなっている。
 上記上側開口116a及び下側開口116bのうち下側開口116bのみが閉塞部材117により覆われている(図4、図6、図22及び図23参照)。この閉塞部材117の下面における車幅方向外側の部分に、ロアアーム92が当接する当接部材118が取り付けられている。具体的には、当接部材118は、図23に示すように、閉塞部材117に固定された逆皿状の基部118aと、この基部118aに加硫接着されかつ下側に尖った円錐状をなすゴム当接部118bとを有し、このゴム当接部118bにロアアーム92の当接部92cが当接するようになっている。基部118aの中心部には、スタッドボルト119が上側へ突出するように溶接されている一方、閉塞部材117の上面には、スタッドボルト119と螺合するウェルドナット120が溶接されている。閉塞部材117のウェルドナット120に対応する位置には、貫通孔117aが形成されている(図6及び図23参照)。当接部材118を閉塞部材117の下面に取り付ける際には、スタッドボルト119を貫通孔117aに差し込んで基部118aを回転させることで、スタッドボルト119をウェルドナット120にねじ込む。
 上記ストッパ本体部116の後側取付部116dは、第3クロスメンバ13と車両長さ方向において重なる位置で、メインフレーム10の車幅方向外側の面の上下方向全体及び第3クロスメンバ13(実際にはクロスメンバブラケット24)に取り付けられている。また、ストッパ本体部116の前側取付部116cは、車両長さ方向においてエンジンマウントブラケット27と第3クロスメンバ13との間の位置で、メインフレーム10の車幅方向外側の面の上下方向全体に取り付けられている。
 ロアアーム92の後側基端部92b近傍(当接部材118に当接する部分)は、車幅方向外側に向かって前側へ傾斜しているため、この形状に合わせて、ストッパ本体部116及び当接部材118は、メインフレーム10の車幅方向外側の面から、車幅方向外側に向かって前側へ傾斜した状態で、車幅方向外側へ突出している。
 上記バンプストッパ115の構成及び配置により、車両1の前面衝突時にバンプストッパ115は車両長さ方向に容易に圧縮変形する。このため、バンプストッパ115が、車両の前面衝突時におけるメインフレーム10の車両長さ方向の圧縮変形を阻害することはない。また、本実施形態では、各メインフレーム10における上記上側開口116aと車両長さ方向において重なる位置(上面及び下面の2箇所)に、複数(2つ)の凹部125(図4、図7、図8、図15及び図20参照)がそれぞれ形成されており(各メインフレーム10の下面に形成された凹部の図示は省略)、これら複数の凹部125により、メインフレーム10はより一層圧縮変形し易くなる。さらに、バンプストッパ115のストッパ本体部116の前側取付部116cを、車両長さ方向においてエンジンマウントブラケット27と重ならないようにしているので、後述の複数の変形阻害部材の分散配置と同様の効果が得られる。尚、凹部125は、メインフレーム10における上側開口116aと車両長さ方向において重なる位置であればどこに形成してもよく、また、複数箇所に形成する必要はなく、1箇所にのみ形成してもよい。さらに、凹部125の代わりに、インナパネル20又はアウタパネル21を貫通する小孔を設けても、同等の効果が得られることが期待できる。この場合、その小孔は、メインフレームの塗装工程において求められる、電着液をメインフレーム10の閉断面内に出し入れするための孔として作用する。
 上記凹部125は、メインフレーム10における第3クロスメンバ13と車両長さ方向において重なる位置に設けられた、車両1の前面衝突時にメインフレーム10の車両長さ方向の変形を促進する脆弱部としての役割も有している。すなわち、たとえバンプストッパ115が上記の位置になくても、凹部125を、上記と同様の位置(メインフレーム10における第3クロスメンバ13と車両長さ方向において重なる位置)に設けることにより、車両1の前面衝突時に、メインフレーム10における第3クロスメンバ13の取付部を、車両長さ方向に圧縮変形し易くすることができる。
 各メインフレーム10の狭幅部10aにおける第2及び第3クロスメンバ12,13間には、前輪サスペンション装置90の上下方向に延びるストラット96(つまりコイルスプリング94及びショックアブソーバ95)の頂部を支持するためのサスペンションタワー101がそれぞれ取り付けられている(図6~図8、図10~図12、図15~図17、図19等参照)。尚、ストラット96の下端部(ショックアブソーバ95の下端部)は、ロアアーム92に、車両長さ方向に延びる軸回りに回動可能に連結されている。
 各サスペンションタワー101は、車幅方向内側のインナパネル102と、該インナパネル102と結合された車幅方向外側のアウタパネル103と、これら両パネル102,103の間に設けられたサスペンションタワーレインフォースメント104とを有している(図10~図12等参照)。そして、各サスペンションタワー101の下部には、互いに車両長さ方向に離れるように分岐した前脚部101a及び後脚部101bが設けられている。
 具体的には、アウタパネル103の上端部は、ストラット96の頂部を支持するストラット受け部103aを有し、このストラット受け部103aに、コイルスプリング94及びショックアブソーバ95の頂部が固定されて支持される。アウタパネル103は、その上端部の前側及び後側縁部からそれぞれ下側に延びるアウタパネル前脚部103b及びアウタパネル後脚部103cを有する。
 上記サスペンションタワーレインフォースメント104は、アウタパネル103のアウタパネル前脚部103bとアウタパネル後脚部103cとの間における車幅方向内側の開口を覆うように、アウタパネル103に溶接される。アウタパネル前脚部103b及びアウタパネル後脚部103cとサスペンションタワーレインフォースメント104とで囲まれる、車幅方向外側に開放された空間が、ストラット96が収容される空間となる。尚、サスペンションタワーレインフォースメント104を設けないで、サスペンションタワーレインフォースメント104に相当する部分を、アウタパネル103で一体形成してもよい。
 上記サスペンションタワーレインフォースメント104が溶接されたアウタパネル103が、インナパネル102と溶接される。この溶接された状態で、インナパネル102とサスペンションタワーレインフォースメント104との間には閉断面空間が形成される。尚、サスペンションタワーレインフォースメント104に相当する部分を、アウタパネル103で一体形成した場合には、インナパネル102とアウタパネルとの間に閉断面空間が形成されることになる。
 また、上記溶接状態で、インナパネル102は、アウタパネル103よりも上側に突出しており、アウタパネル103は、インナパネル102よりも下側に突出している。インナパネルの上記上側突出部分には、上記アッパーアーム93を支持するアッパーアーム枢軸106が、車両長さ方向に延びるように設けられる。このアッパーアーム枢軸106は、インナパネル102に設けた支持スリーブ107(図10及び図11参照)に挿通される。この支持スリーブ107の車幅方向外側(アウタパネル103の上側位置)には、スティフナー108(図10及び図11参照)が設けられて、このスティフナー108により、インナパネル102におけるアッパーアーム枢軸106が設けられる部分が補強されている。尚、アッパーアーム枢軸106をインナパネル102に設ける理由は、アウタパネル103に設ける場合に比べて、アッパーアーム93のアーム長を長くすることができるからである。
 インナパネル102の下部には、互いに車両長さ方向に離れるように分岐したインナパネル前脚部102aとインナパネル後脚部102bとが設けられ、サスペンションタワーレインフォースメント104の下部には、互いに車両長さ方向に離れるように分岐したレインフォースメント前脚部104aとレインフォースメント後脚部104bとが設けられている。レインフォースメント前脚部104aはアウタパネル前脚部103bと溶接により結合され、レインフォースメント後脚部104bはアウタパネル後脚部103cと溶接により結合されている。
 インナパネル前脚部102a、アウタパネル前脚部103b及びレインフォースメント前脚部104aは、サスペンションタワー101の前脚部101aを構成し、インナパネル後脚部102b、アウタパネル後脚部103c及びレインフォースメント後脚部104bは、サスペンションタワー101の後脚部101bを構成する。
 各サスペンションタワー101の前脚部101a及び後脚部101bは、各メインフレーム10に、互いに車両長さ方向に離れて、溶接により取り付けられている。具体的には、インナパネル102のインナパネル前脚部102a及びインナパネル後脚部102bが、メインフレーム10の上面の車幅方向内側部分(メインフレーム10のインナパネル20)に、互いに車両長さ方向に離れて、溶接により取り付けられている。また、アウタパネルのアウタパネル前脚部103b及びアウタパネル後脚部103cが、メインフレームの上面の車幅方向外側部分及び車幅方向外側の面の上下方向全体(メインフレーム10のアウタパネル21)に、互いに車両長さ方向に離れて、溶接により取り付けられている。さらに、サスペンションタワーレインフォースメント104のレインフォースメント前脚部104a及びレインフォースメント後脚部104bが、メインフレーム10の車幅方向外側の面(メインフレーム10のアウタパネル21)に、互いに車両長さ方向に離れて、溶接により取り付けられている。したがって、サスペンションタワー101の下部は、その車両長さ方向の全体に亘ってメインフレーム10に取り付けられるのではなくて、サスペンションタワー101の下部における車両長さ方向の中間部に、メインフレーム10に取り付けられない部分が存在する。このようにサスペンションタワー101の下部が、前脚部101aと後脚部101bとでメインフレーム10に取り付けられても、サスペンションタワー101は、車幅方向内側では、インナパネル前脚部102a及びインナパネル後脚部102bでメインフレーム10に取り付けられ、車幅方向外側では、アウタパネル前脚部103b、アウタパネル後脚部103c、レインフォースメント前脚部104a及びレインフォースメント後脚部104bでメインフレーム10に取り付けられるので、サスペンションタワー101のメインフレーム10への取付強度を、ストラット96から受ける力に十分に耐える強度にすることができるようになる。
 各メインフレーム10における上記前脚部101aと後脚部101bとの間の部分(メインフレーム10の上面と車幅方向両側の面との各角部(上部における車幅方向両側の角部)及び下面と車幅方向両側の面との各角部の合計4箇所)には、車両1の前面衝突時にメインフレーム10の車両長さ方向の変形を促進する脆弱部としての複数(4つ)の凹部126(図6~図9及び図20~図22参照)が形成されている。これら複数の凹部126により、車両1の前面衝突時(特にフルラップ前面衝突時)に各メインフレーム10における該凹部126の箇所が車両長さ方向に圧縮変形し易くなる。すなわち、各メインフレーム10におけるサスペンションタワー101との接続部(サスペンションタワー101の取付部)は、通常、圧縮変形し難いが、サスペンションタワー101における車両長さ方向に離れるように分岐した前脚部101a及び後脚部101bをメインフレーム10に取り付けることで、メインフレーム10における前脚部101aと後脚部101bとの間の部分が、車両の前面衝突時に車両長さ方向に圧縮変形し易くなり、しかも、その部分に凹部126を形成することで、該部分がより一層圧縮変形し易くなる。尚、凹部126は、メインフレーム10における前脚部101aと後脚部101bとの間の部分であればどこに形成してもよいが、特に、メインフレーム10において、サスペンションタワー101の取付けにより圧縮変形し難くなる上部(とりわけ角部)に形成するのがよい。また、凹部126は、複数箇所に形成する必要はなく、1箇所にのみ形成してもよい。さらに、上記脆弱部としては、凹部に限らず、孔であってもよい。
 第2クロスメンバ12は、サスペンションタワー101の前側に配設された前側クロスメンバに相当し、サスペンションタワー101から離れた位置に設けられている。また、第3クロスメンバ13は、サスペンションタワー101の後側に配設された後側クロスメンバに相当し、サスペンションタワー101から離れた位置に設けられている。
 上記各エンジンマウントブラケット27は、各メインフレーム10におけるサスペンションタワー101との接続部、並びに、第2及び第3クロスメンバ12,13との接続部(クロスメンバブラケット23,24との接続部)に対して車両長さ方向に離間して、各メインフレーム10の車幅方向内側の面(メインフレーム10のインナパネル20)における第2及び第3クロスメンバ12,13間に溶接により取り付けられている。
 尚、エンジンマウントブラケット27の上記接続部に対する車両長さ方向の離間は、メインフレーム10の同じ高さ位置において上記接続部に対して車両長さ方向に離間していることを含む。例えば図9に示すように、エンジンマウントブラケット27の前端は、下側に向かって前側に傾斜している。そして、メインフレーム10の上部の高さ位置では、エンジンマウントブラケット27の前端の上部がサスペンションタワー101の後脚部101bから車両長さ方向に離間している。エンジンマウントブラケット27の前端の下部は、後脚部101bに対して上下方向に離間している。すなわち、エンジンマウントブラケット27の前端は、サスペンションタワー101(後脚部101b)との間に所定幅の隙間が形成されるように、下側に向かって前側に傾斜しており、この隙間の部分で、後述の如くメインフレーム10が車両長さ方向に圧縮変形することになる。
 本実施形態では、各エンジンマウントブラケット27は、各メインフレーム10におけるサスペンションタワー101と第3クロスメンバ13との間の部分に取り付けられている。つまり、各エンジンマウントブラケット27は、車両長さ方向においてサスペンションタワー101と第3クロスメンバ13との間に配設されている。この場合には、エンジン32をメインフレーム10の前部において比較的後方に配置することができるため、車両1の前面衝突時にエンジン32が後退するタイミングを遅らせることが可能である。その結果、エンジン32が後退を開始する前のメインフレーム10の前部における圧縮変形によるエネルギー吸収量を拡大することができる。
 尚、各エンジンマウントブラケット27を、各メインフレーム10におけるサスペンションタワー101と第2クロスメンバ12との間の部分に取り付ける(つまり、車両長さ方向においてサスペンションタワー101と第2クロスメンバ12との間に配設する)ことも可能である。この場合も、各エンジンマウントブラケット27を、各メインフレーム10におけるサスペンションタワー101との接続部、並びに、第2及び第3クロスメンバ12,13との接続部に対して車両長さ方向に離間して、各メインフレーム10に取り付ける。但し、エンジン32が、メインフレーム10の前部において比較的前方に配置される傾向があるため、車両1の前面衝突時にエンジン32が後退するタイミングが早くなる。その結果、エンジン32が後退を開始する前のメインフレーム10の圧縮変形によるエネルギー吸収量が減少するため、挙動が不安定であるエンジン32の後退を織り込んだ、エネルギー吸収のエンジニアリングが必要とされる。
 車両1のフルラップ前面衝突時には、フロントバンパー5及び第1クロスメンバ11の車幅方向全体に対して後方への衝撃力が入力される。これにより、図25に示すように、キャビン3に作用する衝撃力Gは、F1まで増大する。
 続いて、左右の両メインフレーム10における第1及び第2クロスメンバ11,12間の部分が車両長さ方向(メインフレーム10の長さ方向)に圧縮変形する。このときの上記衝撃力Gは、F1である。
 次いで、両メインフレーム10において、第2クロスメンバ12とサスペンションタワー101との間の部分、サスペンションタワー101の前脚部101aと後脚部101bとの間の部分(凹部126が形成された部分)、サスペンションタワー101とエンジンマウントブラケット27との間の部分、及び、エンジンマウントブラケット27と第3クロスメンバ13との間の部分(バンプストッパ115を含む)が順に、車両長さ方向に圧縮変形していく。また、これら部分の圧縮変形と並行して、エンジン32が後退し、やがて、その後退するエンジン32によりダッシュパネル29が後方に変形する(変形しながら後退する)。エンジン32が後退し始めると、上記衝撃力Gは、F1から増大し始め、エンジン32の後退に起因してダッシュパネル29の後側への変形(後退)を開始する時にはF2となる。
 ここで、F2の値は、両メインフレーム10の車両長さ方向の圧縮変形量によって大きく変わる。この圧縮変形量を多くすることで、F2の値を小さくすることができる。しかし、両メインフレーム10における第2及び第3クロスメンバ12,13間の部分には、当該第2及び第3クロスメンバ12,13、サスペンションタワー101、並びに、エンジンマウントブラケット27といった、車両1の前面衝突時におけるメインフレーム10の車両長さ方向の圧縮変形を阻害する変形阻害部材が多く取り付けられている。尚、バンプストッパ115は、上述の如く圧縮変形し易い形状に形成されているので、上記変形阻害部材には該当しない。
 複数の上記変形阻害部材同士を車両長さ方向に重ねて配置することが考えられるが、このようにすると、メインフレーム10における該複数の変形阻害部材の取付部が更に圧縮変形し難くなる。このため、F2の値が瞬間的に過大になることも考えられる。
 そこで、本実施形態では、エンジンマウントブラケット27を、メインフレーム10におけるサスペンションタワー101との接続部、並びに、第2及び第3クロスメンバ12,13との接続部に対して車両長さ方向に離間してメインフレーム10に取り付けるようにしている。すなわち、第2クロスメンバ12、第3クロスメンバ13、サスペンションタワー101及びエンジンマウントブラケット27が、メインフレーム10上で互いに離間している。これにより、上記複数の変形阻害部材をメインフレーム10上で車両長さ方向に分散配置することで、メインフレーム10における該変形阻害部材間を車両長さ方向に確実に圧縮変形するようにする。
 また、上記複数の変形阻害部材同士を車両長さ方向に重ねて配置する場合とは異なり、メインフレーム10における単独の変形阻害部材の取付部が車両長さ方向に全く圧縮変形しないということはなく、或る程度圧縮変形するようにすることができる。特に本実施形態では、サスペンションタワー101の下部に、互いに車両長さ方向に離れるように分岐した前脚部101a及び後脚部101bを設け、これら前脚部101a及び後脚部101bの下部を、メインフレーム10に互いに車両長さ方向に離れて取り付けるとともに、メインフレーム10における前脚部101aと後脚部101bとの間の部分に凹部126を形成したので、メインフレーム10における前脚部101aと後脚部101bとの間の部分は車両長さ方向に確実に圧縮変形する。また、エンジンマウントブラケット27は、切欠き部27dの形成により車両長さ方向に圧縮変形し易くなっているとともに、メインフレーム10に形成された長孔128と相俟って、メインフレーム10におけるエンジンマウントブラケット27の取付部は、車両長さ方向に圧縮変形する可能性が高くなる。さらに、メインフレーム10に形成された凹部125により、メインフレーム10における第3クロスメンバ13の取付部も車両長さ方向に圧縮変形する可能性が高くなる。したがって、上記圧縮変形の積み重なりにより、車両1の前面衝突時の衝突エネルギーの吸収量を確保することができるとともに、キャビン3に対して過大な衝撃力が瞬間的に作用するのを抑制することができる。また、メインフレーム10が車両長さ方向に確実に圧縮変形する箇所が、複数分散して存在することにより、衝撃力Gをコントロールし易くなる。
 車両1のオフセット前面衝突時には、衝突した側のメインフレーム10が、フルラップ前面衝突時と同様に車両長さ方向に圧縮変形するが、図26に示すように、第2及び第3クロスメンバ12,13や、エンジン32、前輪ドライブシャフト47等が真っ直ぐ後側へ後退せず、衝突した側が非衝突側に対して大きく後側に後退する。そして、衝突した側の前輪6(ハブ50)は、衝突した側のメインフレーム10を車幅方向内側へ押圧する可能性がある。尚、図26の符号200は、車両1が前面衝突した障害物である。
 また、車両1のオフセット前面衝突時には、衝突した側のメインフレーム10の狭幅部10aに強い後退力が発生し、一方で広幅部10bには狭幅部10aの後退に対する反力が発生する。また、狭幅部10aと広幅部10bとは車幅方向に互いにずれている。したがって、上記ハブ50による押圧と相俟って、狭幅部10aは、拡幅部10cとの接続部を起点として車幅方向外側へ折れ曲がろうとする。狭幅部10aがこの位置で折れてしまうと、狭幅部10aが車両長さ方向に効果的に圧縮変形することはできず、衝突エネルギー吸収機能が十分に発揮されない。そこで、オフセット前面衝突の全期間において、狭幅部10aの折れ防止が求められる。
 図26を参照して、本実施形態におけるオフセット前面衝突時の挙動を述べる。
 本実施形態では、まず、各メインフレーム10における拡幅部10cから広幅部10bにかけて幅(断面積)を大きくしていき、広幅部10bにおける第4クロスメンバ14との接続部ないしその近傍で幅(断面積)を最も大きくなるようにしている。また、第4クロスメンバ14と各メインフレーム10の広幅部10bとの接続部を大型のガセット25により補強している。この結果、拡幅部10c並びに第3及び第4クロスメンバ13,14で構成される台形状の部分の剛性が高まるため、狭幅部10aの後退力に屈して拡幅部10cが車幅方向内側又は外側に向けて変形・変位することを抑制できるととともに、この変位に起因するメインフレーム10の折れを抑制することができる。
 衝突した側のメインフレーム10の狭幅部10a(以下、衝突側狭幅部10aという)は、その前端から車両長さ方向に圧縮変形していくが、そのときに、障害物200に押された前輪6(ハブ50)が後退することにより、衝突側狭幅部10aは、ロアアーム92を介して車幅方向外側に折れ曲がろうとする。このとき、第2及び第3クロスメンバ12,13と左右のロアアーム92とで形成された強固な枠状体が、衝突側狭幅部10aの折れを抑制する。すなわち、衝突側狭幅部10aの折れ曲がり力に抗する荷重を、上記枠状体を介して非衝突側のメインフレーム10の狭幅部10aに伝達して分散することにより、衝突側狭幅部10aに作用する折り曲げ力を低減する。
 続いて、後退した前輪6(ハブ50)が、キャブマウントブラケット26の前部に衝突して止まることにより、前輪6(ハブ50)の後退に起因する衝突側狭幅部10aの折れは効果的に抑制される。
 続いて、障害物200が、エンジン32の前面部の片側に衝突する。すると、エンジン32,変速機33及びパワートラスファーユニット34(これらは互いに結合された結合体であり、以下、この結合体をパワーユニットという)は、その後端側が非衝突側に変位するように回動しようとする。この回動を抑制しない場合には、上記パワーユニットによる障害物200の侵入阻止が図れないため、この段階においても、衝突側狭幅部10aが衝突荷重の吸収を受け持つことになり、狭幅部10aと広幅部10bとの車幅方向のずれに起因するメインフレーム10の折れ傾向が生じる。ここで、パワートラスファーユニット34は第4クロスメンバ14上にマウントを介して結合されているため、上述の、パワーユニットの後端側を非衝突側へ変位させる荷重により、第4クロスメンバ14が非衝突側のメインフレーム10を車幅方向外側へ押し、該メインフレーム10を車幅方向外側へ折ろうとする。本実施形態では、第4クロスメンバ14は、メインフレーム10において曲げ強度が最も高い最大断面部に結合されているため、上記荷重がメインフレーム10に曲げを生じさせるようなことはない。したがって、上記パワーユニットの回動が抑制されて、パワーユニットも衝突側狭幅部10aと共に衝突荷重の吸収を受け持つことになる。よって、衝突側狭幅部10aの折れが抑制され、衝突側狭幅部10aは、その前端から後部に至るまで、車両長さ方向に圧縮変形してエネルギー吸収量を効果的に増大させる。
 以上により、オフセット前面衝突時においても、その衝突エネルギーを、衝突した側のメインフレーム10の圧縮変形により吸収することができ、キャビン3に作用する衝撃力Gを低減することができる。
 ここで、上記シャーシフレーム9における右側のメインフレーム10の車両前面衝突時の変形シミュレーション結果を図27~図30に示す。尚、同シミュレーションは、車両の全構成部品を含んだ状態で行っているが、見易さの観点から、図27~図30では右側のメインフレーム10のみを示す。図27は、衝突からの経過時間が短いタイミング(メインフレーム10における第2クロスメンバ12よりも前側部分の略全体が車両長さ方向に圧縮変形するタイミング)で右側のメインフレーム10を車幅方向外側から見たときの変形の様子を示す。図28は、図27と同じタイミングで右側のメインフレーム10を車幅方向内側から見たときの変形の様子を示す。図29は、図27よりも上記経過時間が長いタイミングで右側のメインフレーム10を車幅方向外側から見たときの変形の様子を示す。図30は、図29と同じタイミングで右側のメインフレーム10を車幅方向内側から見たときの変形の様子を示す。これらの図において、色の濃さは、メインフレーム10に生じるひずみの大きさ(圧縮変形量)を表しており、色が濃いほどひずみが大きいことを示す。ひずみが大きいということは、その部分で衝突エネルギーの吸収が効果的に行われていることを意味する。メインフレーム10における第2クロスメンバ12よりも前側部分が圧縮変形した後、メインフレーム10におけるサスペンションタワー101の前脚部101aと後脚部101bとの間の部分、及び、メインフレーム10におけるエンジンマウントブラケット27の取付部が圧縮変形し始め、これらの部分が時間の経過に連れて次第に大きく圧縮変形して行くことが分かる。
 本発明は、上記実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。
 例えば、サスペンションタワー101の下部を前脚部101aと後脚部101bとに分岐する必要は必ずしもなく、サスペンションタワー101の下端部の車両長さ方向全体がメインフレーム10に取り付けられていてもよい。また、サスペンションタワー101の下部を前脚部101aと後脚部101bとに分岐した場合であっても、メインフレーム10における前脚部101aと後脚部101bとの間の部分に凹部126を形成する必要は必ずしもない。さらに、長孔128をなくすことも可能である。
 上述の実施形態は単なる例示に過ぎず、本発明の範囲を限定的に解釈してはならない。本発明の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 本発明は、特に小型トラックや、SUV(スポーツ・ユーティリティ・ビークル)と呼ばれる車両のような、梯子状のシャーシフレームを備えた車両に有用である。
  1    車両
  9    シャーシフレーム
  10   メインフレーム
  12   第2クロスメンバ(前側クロスメンバ)
  13   第3クロスメンバ(後側クロスメンバ)
  27   エンジンマウントブラケット
  27a  上側部材
  27b  下側部材
  27d  切欠き部(ブラケット脆弱部)
  101  サスペンションタワー
  101a 前脚部
  101b 後脚部
  125  凹部(脆弱部)
  126  凹部(脆弱部)
  128  長孔(脆弱部)

Claims (20)

  1.  シャーシフレームを備えた車両の前面衝突エネルギー吸収構造であって、
     上記シャーシフレームは、
      車両長さ方向に延びる左右一対のメインフレームと、
      上記一対のメインフレームにそれぞれ取り付けられた一対のサスペンションタワーと、
      上記サスペンションタワーの前側及び後側にそれそれ該サスペンションタワーから離れて配設され、上記一対のメインフレーム間を接続する前側及び後側クロスメンバと、
      上記一対のメインフレームにおける上記前側及び後側クロスメンバ間にそれぞれ取り付けられた一対のエンジンマウントブラケットと、
    を有し、
     上記各エンジンマウントブラケットは、上記各メインフレームにおける上記サスペンションタワーとの接続部、並びに、上記前側及び後側クロスメンバとの接続部に対して車両長さ方向に離間して該各メインフレームに取り付けられている、車両の前面衝突エネルギー吸収構造。
  2.  請求項1記載の車両の前面衝突エネルギー吸収構造において、
     上記各サスペンションタワーの下部に、互いに車両長さ方向に離れるように分岐した前脚部及び後脚部が設けられ、
     上記前脚部及び後脚部の下部が、上記メインフレームに、互いに車両長さ方向に離れて取り付けられている、車両の前面衝突エネルギー吸収構造。
  3.  請求項2記載の車両の前面衝突エネルギー吸収構造において、
     上記各メインフレームにおける上記前脚部と上記後脚部との間の位置に、上記車両の前面衝突時にメインフレームの車両長さ方向の変形を促進する脆弱部が設けられている、車両の前面衝突エネルギー吸収構造。
  4.  請求項3記載の車両の前面衝突エネルギー吸収構造において、
     上記脆弱部は、上記メインフレームの上部に形成された凹部で構成されている、車両の前面衝突エネルギー吸収構造。
  5.  請求項4記載の車両の前面衝突エネルギー吸収構造において、
     上記凹部は、上記メインフレームの上部における車幅方向両側の角部に形成されている、車両の前面衝突エネルギー吸収構造。
  6.  請求項1記載の車両の前面衝突エネルギー吸収構造において、
     上記各エンジンマウントブラケットは、車両長さ方向において上記サスペンションタワーと上記後側クロスメンバとの間に配設されている、車両の前面衝突エネルギー吸収構造。
  7.  請求項1記載の車両の前面衝突エネルギー吸収構造において、
     上記各エンジンマウントの車両前側端は、該車両前側端と上記サスペンションタワーとの間に隙間が形成されるように、下側に向かって車両前側に傾斜している、車両の前面衝突エネルギー吸収構造。
  8.  請求項1記載の車両の前面衝突エネルギー吸収構造において、
     上記各メインフレームにおける上記各エンジンマウントブラケットと車両長さ方向において重なる位置に、上記車両の前面衝突時に該各メインフレームの車両長さ方向の変形を促進する脆弱部が設けられている、車両の前面衝突エネルギー吸収構造。
  9.  請求項1記載の車両の前面衝突エネルギー吸収構造において、
     上記各エンジンマウントブラケットに、上記車両の前面衝突時に該各エンジンマウントブラケットの車両長さ方向の変形を促進するブラケット脆弱部が設けられている、車両の前面衝突エネルギー吸収構造。
  10.  請求項1記載の車両の前面衝突エネルギー吸収構造において、
     上記各メインフレームにおける上記後側クロスメンバと車両長さ方向において重なる位置に、上記車両の前面衝突時に該各メインフレームの車両長さ方向の変形を促進する脆弱部が設けられている、車両の前面衝突エネルギー吸収構造。
  11.  請求項1記載の車両の前面衝突エネルギー吸収構造において、
     上記各エンジンマウントブラケットは、上記各メインフレームの車幅方向内側の面に取り付けられかつ該面から車幅方向内側へ突出する上側部材及び下側部材を有し、
     上記上側部材は、車両長さ方向に沿って切断した断面が略逆U字状をなし、
     上記下側部材は、車両長さ方向に沿って切断した断面が略U字状をなし、
     上記上側部材の車両長さ方向両側の側端部と上記下側部材の車両長さ方向両側の側端部とが互いに接合され、
     上記上側部材の上面にエンジンマウントが取り付けられ、
     上記下側部材の底面部に、車幅方向内側に開放された切欠き部が形成され、
     上記各メインフレームの車幅方向内側の面における上記各エンジンマウントブラケットと車両長さ方向において重なる位置に、車両長さ方向に延びる長孔が形成されている、車両の前面衝突エネルギー吸収構造。
  12.  車両の前面衝突エネルギー吸収構造であって、
     車両長さ方向に延びる一対のメインフレームと、
     上記両メインフレーム同士を連結し、上記車両の前輪サスペンション装置の前側部分及び後側部分をそれぞれ支持する前側及び後側クロスメンバと、
     上記各メインフレームにそれぞれ取り付けられたサスペンションタワー及びエンジンマウントブラケットとを備え、
     上記前側クロスメンバ、上記後側クロスメンバ、上記サスペンションタワー及び上記エンジンマウントブラケットが、上記メインフレーム上で互いに離間している、車両の前面衝突エネルギー吸収構造。
  13.  請求項12記載の車両の前面衝突エネルギー吸収構造において、
     上記各サスペンションタワーは、該サスペンションタワーの下部において前脚部及び後脚部に分岐しており、
     上記前脚部及び後脚部は、互いに車両長さ方向に離間していて、上記各メインフレームに互いに車両長さ方向に離れて取り付けられている、車両の前面衝突エネルギー吸収構造。
  14.  請求項13記載の車両の前面衝突エネルギー吸収構造において、
     上記各メインフレームにおける上記前脚部と上記後脚部との間の位置に、脆弱部が設けられている、車両の前面衝突エネルギー吸収構造。
  15.  請求項14記載の車両の前面衝突エネルギー吸収構造において、
     上記脆弱部は、上記メインフレームに形成された凹部で構成されている、車両の前面衝突エネルギー吸収構造。
  16.  請求項15記載の車両の前面衝突エネルギー吸収構造において、
     上記凹部は、上記メインフレームの上部における角部に形成されている、車両の前面衝突エネルギー吸収構造。
  17.  請求項12記載の車両の前面衝突エネルギー吸収構造において、
     上記各エンジンマウントブラケットは、車両長さ方向において上記サスペンションタワーと上記後側クロスメンバとの間に配設されている、車両の前面衝突エネルギー吸収構造。
  18.  請求項17記載の車両の前面衝突エネルギー吸収構造において、
     上記各エンジンマウントの車両前側端は、該車両前側端と上記サスペンションタワーとの間に隙間が形成されるように、下側に向かって車両前側に傾斜している、車両の前面衝突エネルギー吸収構造。
  19.  請求項12記載の車両の前面衝突エネルギー吸収構造において、
     上記各エンジンマウントブラケットは、上記各メインフレームの車幅方向内側の面に取り付けられかつ該面から車幅方向内側へ突出する上側部材及び下側部材を有し、
     上記上側部材は、車両長さ方向に沿って切断した断面が略逆U字状をなし、
     上記下側部材は、車両長さ方向に沿って切断した断面が略U字状をなし、
     上記上側部材と上記下側部材とが互いに接合され、
     上記上側部材の上面にエンジンマウントが取り付けられ、
     上記下側部材に、切欠き部が形成され、
     上記各メインフレームの車幅方向内側の面における上記各エンジンマウントブラケットと車両長さ方向において重なる位置に、長孔が形成されている、車両の前面衝突エネルギー吸収構造。
  20.  請求項12記載の車両の前面衝突エネルギー吸収構造において、
     上記各メインフレームにおける上記各エンジンマウントブラケットと車両長さ方向において重なる位置に、脆弱部が設けられている、車両の前面衝突エネルギー吸収構造。
PCT/JP2010/001060 2010-02-18 2010-02-18 車両の前面衝突エネルギー吸収構造 WO2011101906A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/001060 WO2011101906A1 (ja) 2010-02-18 2010-02-18 車両の前面衝突エネルギー吸収構造
CN201080063955.1A CN102939235B (zh) 2010-02-18 2010-02-18 车辆的前面碰撞能量吸收构造
JP2012500388A JP5367152B2 (ja) 2010-02-18 2010-02-18 車両の前面衝突エネルギー吸収構造
US13/579,550 US8807597B2 (en) 2010-02-18 2010-02-18 Frontal collision energy absorption structure for vehicle
DE112010005284T DE112010005284T5 (de) 2010-02-18 2010-02-18 Frontaufprallenergie absorbierende Struktur für ein Fahrzeug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001060 WO2011101906A1 (ja) 2010-02-18 2010-02-18 車両の前面衝突エネルギー吸収構造

Publications (1)

Publication Number Publication Date
WO2011101906A1 true WO2011101906A1 (ja) 2011-08-25

Family

ID=44482533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001060 WO2011101906A1 (ja) 2010-02-18 2010-02-18 車両の前面衝突エネルギー吸収構造

Country Status (5)

Country Link
US (1) US8807597B2 (ja)
JP (1) JP5367152B2 (ja)
CN (1) CN102939235B (ja)
DE (1) DE112010005284T5 (ja)
WO (1) WO2011101906A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428432A1 (en) * 2010-09-14 2012-03-14 Honda Motor Co., Ltd. Front side vehicle body structure
CN102381147A (zh) * 2011-09-27 2012-03-21 奇瑞汽车股份有限公司 一种汽车上摆臂支座总成及其装配方法
WO2015087441A1 (ja) * 2013-12-13 2015-06-18 日産ライトトラック株式会社 車両のフレーム
JP2016078737A (ja) * 2014-10-20 2016-05-16 トヨタ自動車株式会社 車両下部構造
JP2019142256A (ja) * 2018-02-16 2019-08-29 スズキ株式会社 車体構造
CN110316250A (zh) * 2018-03-29 2019-10-11 丰田自动车株式会社 悬架塔
WO2022209254A1 (ja) * 2021-03-30 2022-10-06 三菱自動車工業株式会社 車両構造

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5604971B2 (ja) * 2010-05-17 2014-10-15 日産自動車株式会社 車両の衝突安全装置
ES1078070Y (es) * 2012-11-02 2013-02-15 Aloy Jordi Nadal Estructura para la construcción de un chasis de un vehículo, remolque o similar
JP6118123B2 (ja) * 2013-02-14 2017-04-19 日野自動車株式会社 車両のフレーム構造
US9180913B2 (en) 2013-03-12 2015-11-10 Nissan North America, Inc. Vehicle front end structure
US9199669B2 (en) 2013-03-12 2015-12-01 Nissan North America, Inc. Vehicle front end structure
US9016768B2 (en) 2013-03-12 2015-04-28 Nissan North America, Inc. Vehicle front end structure
GB2513563B (en) * 2013-04-29 2019-03-13 Ford Global Tech Llc A front end structure of a motor vehicle
US9079619B2 (en) * 2013-08-14 2015-07-14 Ford Global Technologies, Llc Vehicle frame component
JP5836418B2 (ja) * 2014-03-31 2015-12-24 富士重工業株式会社 車体前部構造
US8985258B1 (en) 2014-05-30 2015-03-24 Ford Global Technologies, Llc Vehicle frame component
US9233716B2 (en) * 2014-05-30 2016-01-12 Ford Global Technologies, Llc Vehicle frame component
CN104228950B (zh) * 2014-08-27 2017-06-06 徐州徐工挖掘机械有限公司 一种组合式工程机械底盘连接结构
US9296427B1 (en) * 2014-09-05 2016-03-29 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicles including targeted energy absorption structures
KR101569355B1 (ko) 2014-10-28 2015-11-17 주식회사 포스코 어퍼암 및 쇽업소버 장착 브래킷 및 이를 포함하는 차량용 프레임
JP6044624B2 (ja) * 2014-12-17 2016-12-14 マツダ株式会社 車両用フレーム構造
JP6102954B2 (ja) * 2015-01-16 2017-03-29 マツダ株式会社 車両のサブフレーム構造
JP6102953B2 (ja) * 2015-01-16 2017-03-29 マツダ株式会社 車両のサブフレーム構造
US9592724B1 (en) * 2015-04-30 2017-03-14 Horizon Hobby, LLC Chassis for a remotely controlled vehicle
US9616932B2 (en) * 2015-05-14 2017-04-11 Ford Global Technologies, Llc Chassis assembly including connector breaking feature
GB2538954A (en) * 2015-05-29 2016-12-07 Ford Global Tech Llc Engine mount assembly for a motor vehicle
US9688315B2 (en) * 2015-06-25 2017-06-27 GM Global Technology Operations LLC Vehicle and a cradle assembly for the vehicle
US9789907B2 (en) 2015-07-27 2017-10-17 Ford Global Technologies, Llc Method and apparatus for reinforcing a vehicle floor pan to prevent separation in a side impact
DE102016210880A1 (de) * 2016-06-17 2017-12-21 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug
JP6597649B2 (ja) * 2017-01-13 2019-10-30 トヨタ自動車株式会社 車体骨格構造
US10214243B2 (en) * 2017-07-11 2019-02-26 Ford Global Technologies, Llc Vehicle frame
JP6583358B2 (ja) * 2017-07-26 2019-10-02 マツダ株式会社 車両のパワートレインマウント構造
GB2570116B (en) * 2018-01-10 2021-01-13 Ford Global Tech Llc Transmission roll initiator
US10864944B2 (en) * 2018-05-14 2020-12-15 Ford Global Technologies, Llc Vehicle frame
JP7063207B2 (ja) * 2018-09-12 2022-05-09 トヨタ自動車株式会社 サスペンションサポートブラケットおよびサスペンションサポートブラケットの製造方法
JP7095519B2 (ja) * 2018-09-19 2022-07-05 マツダ株式会社 車両の前部車体構造
CN111776076A (zh) * 2019-04-03 2020-10-16 布鲁斯凯技术公司 车辆的前部结构
US10960928B2 (en) * 2019-05-14 2021-03-30 Nissan North America, Inc. Vehicle structure
JP7234903B2 (ja) 2019-11-05 2023-03-08 トヨタ自動車株式会社 車両下部構造
US11794812B2 (en) * 2021-03-08 2023-10-24 Ford Global Technologies, Llc Vehicle frame for electric vehicle
US11814100B2 (en) 2021-06-16 2023-11-14 Fca Us Llc Vehicle cradle assembly with impact detachment script

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422679A (en) * 1987-07-17 1989-01-25 Kubota Ltd Frame structure for running vehicle
JPH0330224Y2 (ja) * 1985-09-20 1991-06-26
JPH09263141A (ja) * 1996-03-27 1997-10-07 Mazda Motor Corp 自動車の前部構造
JPH11278299A (ja) * 1998-03-27 1999-10-12 Suzuki Motor Corp 自動車の前部車体構造

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869017A (en) * 1972-10-05 1975-03-04 Ford Motor Co Engine mounting and energy absorbing frame for a motor vehicle
US3860258A (en) * 1972-10-05 1975-01-14 Ford Motor Co Bumper support and energy absorbing frame system for a motor vehicle
US3815703A (en) * 1972-12-14 1974-06-11 Gen Motors Corp Automotive vehicle
US4147379A (en) * 1977-06-27 1979-04-03 United States Steel Corporation Vehicle frame
US4494723A (en) * 1982-12-28 1985-01-22 Toyota Jidosha Kabushiki Kaisha Device for mounting an engine on a vehicle body
US4813704A (en) * 1988-06-20 1989-03-21 Chrysler Motors Corporation Dual strut wheel suspension
JPH0330224A (ja) * 1989-06-27 1991-02-08 Fuji Electric Co Ltd ガス絶縁開閉装置の気密装置
JP2899983B2 (ja) * 1990-06-28 1999-06-02 日本特殊陶業株式会社 被毒防止体の製造法及び被毒防止層付触媒の製造方法
US5561902A (en) * 1994-09-28 1996-10-08 Cosma International Inc. Method of manufacturing a ladder frame assembly for a motor vehicle
DE19510763C2 (de) * 1995-03-24 2000-04-20 Daimler Chrysler Ag Fahrzeugaufbau mit einem Montagerahmen
US5915727A (en) * 1996-05-31 1999-06-29 Dana Corporation Mounting structure for vehicle frame assembly
US6374939B1 (en) * 2000-06-19 2002-04-23 General Motors Corporation Engine mount assembly
US6398262B1 (en) * 2000-09-26 2002-06-04 Dana Corporation Modular subframe assembly for a motor vehicle
US6866295B2 (en) * 2000-12-28 2005-03-15 Dana Corporation Modular cast independent front suspension subframe
JP3900048B2 (ja) * 2001-11-19 2007-04-04 日産自動車株式会社 車体前部構造
GB0214773D0 (en) 2002-06-26 2002-08-07 Ford Global Tech Inc Vehicle chassis
TW587582U (en) * 2003-06-11 2004-05-11 Razor Usa Llc Driving structure for manpower vehicle
US6830287B1 (en) * 2003-07-24 2004-12-14 Ford Global Technologies, Llc Rear rail neutralizing member
US7192081B2 (en) * 2004-02-19 2007-03-20 Metalsa Servicios S. De R.L. Automotive frame
CN100482518C (zh) * 2004-10-13 2009-04-29 日产自动车株式会社 车辆的车架结构
US6962390B1 (en) * 2004-11-23 2005-11-08 General Motors Corporation Hollow beams for incorporation in automotive vehicle frames
EP1834862B1 (en) * 2006-03-15 2010-05-05 Mazda Motor Corporation Vehicle front body structure
US7862085B2 (en) * 2006-11-28 2011-01-04 Gm Global Technologies Operations, Inc. Three-dimensional vehicle frame
JP5029262B2 (ja) * 2007-09-28 2012-09-19 三菱自動車工業株式会社 電気自動車
JP2009255665A (ja) * 2008-04-15 2009-11-05 Mitsubishi Fuso Truck & Bus Corp 車両のクロスメンバ
US7770927B2 (en) * 2008-04-18 2010-08-10 Gm Global Technology Operations, Inc. Energy absorbing system for a vehicle
DE102008020694B4 (de) * 2008-04-24 2012-11-22 Benteler Automobiltechnik Gmbh Kraftfahrzeugrahmen
US7762619B2 (en) * 2008-07-29 2010-07-27 Ford Global Technologies, Llc Sequential crash hinges in automotive frame rails
US8141904B2 (en) * 2008-08-21 2012-03-27 Ford Global Technologies, Llc Energy absorbing structure for a vehicle
JP5354154B2 (ja) * 2008-08-21 2013-11-27 マツダ株式会社 自動車のフレーム構造
US8657060B2 (en) * 2010-03-29 2014-02-25 Ford Global Technologies, Llc Support mount bracket, method for mounting front differential gear unit, and attachment structure of front differential gear unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330224Y2 (ja) * 1985-09-20 1991-06-26
JPS6422679A (en) * 1987-07-17 1989-01-25 Kubota Ltd Frame structure for running vehicle
JPH09263141A (ja) * 1996-03-27 1997-10-07 Mazda Motor Corp 自動車の前部構造
JPH11278299A (ja) * 1998-03-27 1999-10-12 Suzuki Motor Corp 自動車の前部車体構造

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428432A1 (en) * 2010-09-14 2012-03-14 Honda Motor Co., Ltd. Front side vehicle body structure
CN102381147A (zh) * 2011-09-27 2012-03-21 奇瑞汽车股份有限公司 一种汽车上摆臂支座总成及其装配方法
WO2015087441A1 (ja) * 2013-12-13 2015-06-18 日産ライトトラック株式会社 車両のフレーム
JP2016078737A (ja) * 2014-10-20 2016-05-16 トヨタ自動車株式会社 車両下部構造
JP2019142256A (ja) * 2018-02-16 2019-08-29 スズキ株式会社 車体構造
JP7006353B2 (ja) 2018-02-16 2022-01-24 スズキ株式会社 車体構造
CN110316250A (zh) * 2018-03-29 2019-10-11 丰田自动车株式会社 悬架塔
WO2022209254A1 (ja) * 2021-03-30 2022-10-06 三菱自動車工業株式会社 車両構造

Also Published As

Publication number Publication date
US20120313360A1 (en) 2012-12-13
US8807597B2 (en) 2014-08-19
JP5367152B2 (ja) 2013-12-11
CN102939235A (zh) 2013-02-20
DE112010005284T5 (de) 2012-12-20
CN102939235B (zh) 2015-11-25
JPWO2011101906A1 (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5367152B2 (ja) 車両の前面衝突エネルギー吸収構造
JP5367151B2 (ja) 車両のサスペンションタワー構造
WO2011101907A1 (ja) バンプストッパ
CN108349537B (zh) 前副车架结构
CN108349539B (zh) 前副车架结构
US8393669B2 (en) Vehicle frame structure
JP5974475B2 (ja) 自動車のフロントサブフレーム構造
EP2070805B1 (en) Front body structure of automotive vehicle
JP5453817B2 (ja) タンク搭載車体後部構造
WO2018016051A1 (ja) 車両のフレーム
WO2011121639A1 (ja) 支持マウントブラケット、フロントディファレンシャルギヤユニットの搭載方法、及び、フロントディファレンシャルギヤユニットの取付構造
US20160068191A1 (en) Vehicles Including Targeted Energy Absorption Structures
WO2011121638A1 (ja) プロペラシャフトのクロスメンバへの取付構造
JP3873818B2 (ja) 車体前部構造
WO2015193972A1 (ja) 車両のフレーム
JP2009226971A (ja) 車体下部構造
JP4423898B2 (ja) 車体構造
JP4867509B2 (ja) サブフレーム構造
JP6254858B2 (ja) 車両の車体前部構造
WO2015087441A1 (ja) 車両のフレーム
GB2598572A (en) Improved crash structure for a vehicle
GB2598571A (en) Modular crash structure for a vehicle
JPH09263141A (ja) 自動車の前部構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063955.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846049

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012500388

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13579550

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1201004159

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 112010005284

Country of ref document: DE

Ref document number: 1120100052840

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846049

Country of ref document: EP

Kind code of ref document: A1