WO2011099264A1 - メタノールのカルボニル化反応速度の向上方法 - Google Patents
メタノールのカルボニル化反応速度の向上方法 Download PDFInfo
- Publication number
- WO2011099264A1 WO2011099264A1 PCT/JP2011/000676 JP2011000676W WO2011099264A1 WO 2011099264 A1 WO2011099264 A1 WO 2011099264A1 JP 2011000676 W JP2011000676 W JP 2011000676W WO 2011099264 A1 WO2011099264 A1 WO 2011099264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- acetic acid
- carbonylation
- acid
- methanol
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/10—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
- C07C51/12—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F226/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
- C08F226/06—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/34—Monomers containing two or more unsaturated aliphatic radicals
- C08F212/36—Divinylbenzene
Definitions
- the present invention relates to a method for improving the reaction rate in the production of acetic acid by carbonylation of methanol.
- Acetic acid is a basic chemical with a wide range of uses, such as raw materials for polyvinyl acetate, acetyl cellulose and acetic acid esters, and solvents for terephthalic acid production plants.
- Patent Document 1 As a method for producing acetic acid by carbonylation of methanol, the “Monsanto method” (Patent Document 1) in which methanol and carbon monoxide are reacted in a water-containing acetic acid solvent in which a rhodium compound and methyl iodide are uniformly dissolved are known.
- reaction rate can not be increased because the solubility of the catalytic metal in the solvent is low, and thirdly, since the dissolved catalyst is deposited in the separation and purification step, it is very difficult to separate and recover it. Cost and load are at a premium.
- Patent Document 2 Patent Document 3, Patent Document 4, Patent Document 5
- Patent Document 2 Patent Document 3
- Patent Document 5 Patent Document 5
- the reaction rate can be further enhanced, and thirdly, the catalyst can be introduced into the reactor. Containment can reduce the precipitation of rhodium in the separation and purification process.
- Patent Document 3 it is preferable to advance the carbonylation reaction of methanol in a region where the degree of carbonylation Ca of the reaction solution is 0.8 mol / mol or more.
- the degree of carbonylation Ca is a value defined by the following formula.
- Ci represents the molar concentration (mol / l) of each component Mi present in the solution
- Zi represents the carbonylation coefficient of each component Mi
- Xi represents the raw material coefficient of each component Mi
- n represents the total number of each component Mi present in the solution.
- the carbonylation coefficient Zi and the raw material coefficient Xi of each component Mi are as shown in the following table.
- the by-product water generated by this side reaction (2) (3) may generate hydroiodic acid by hydrolyzing methyl iodide as a cocatalyst (4), which may cause corrosion of the system. Furthermore, it is necessary to separate these by-product water and hydrogen iodide mixed in acetic acid, which causes an increase in the load of the purification process of the product acetic acid, resulting in a problem of high cost.
- the present invention is a method for producing acetic acid by reacting methanol in a reaction solvent with carbon monoxide in the presence of a rhodium-containing solid catalyst and an alkyl iodide to form acetic acid in a high carbonylation degree region (Ca> 0.8 mol It is an object of the present invention to increase the reaction rate of acetic acid production in (mol / mol) and thereby achieve more efficient production of acetic acid.
- the method of producing acetic acid by reacting methanol and carbon monoxide in a reaction solvent in the presence of a rhodium-containing solid catalyst and an alkyl iodide comprises acid dissociation from acetic acid in the reaction system wherein the coexistence of low acid of the constant (pK a).
- the reaction rate of hydrolysis of methyl acetate which is a rate-limiting step in acetic acid formation in the high carbonylation region, can be increased. Therefore, it is possible to increase the reaction rate of the whole system, and more efficient acetic acid production becomes possible.
- the load for separating and recovering methyl acetate can be reduced, and the cost of acetic acid production can be reduced.
- Example 1 The graph showing the relationship between the carbonylation degree of reaction product liquid, and the carbonylation reaction rate.
- Example 1 it is a graph showing the difference in the rate of the carbonylation reaction with respect to the degree of carbonylation of the time of giving an acid point with respect to the resin of the synthesis example 1, and not giving.
- Example 1 it is a graph showing the difference in the rate of the carbonylation reaction with respect to the degree of carbonylation of the time of giving an acid point with respect to the resin of the synthesis example 2, and not giving.
- Example 1 it is a graph showing the difference in the rate of the carbonylation reaction with respect to the degree of carbonylation of the time of giving an acid point with respect to the resin of the synthesis example 3, and not giving.
- Example 1 it is a graph showing the difference in the rate of the carbonylation reaction to the degree of carbonylation of the time of adding the cation exchange resin to resin of the synthesis example 4, and not adding.
- Example 2 it is a graph showing the difference in the rate of the carbonylation reaction to the degree of carbonylation with the time of adding Amberlist 15 and not adding it.
- Example 3 it is a graph showing the change of the rate of carbonylation reaction when the amount of addition of Amberlyst 15 is changed.
- a region having a carbonylation degree of 0.8 mol / mol or more (hereinafter, high carbonyl
- the present invention is characterized by coexistence of an acid as a catalyst in the reaction system.
- the inventors of the present invention conducted intensive studies on the reduction of the reaction rate in the high carbonylation region, and as a result of the hydrolysis of methyl acetate, the amount of water present in the whole system was reduced, and the hydrolysis of methyl acetate (the reaction formula (2) The left-pointing arrow in) was found to be the rate-limiting step in this reaction system.
- the use of the base as a catalyst in this system does not promote the hydrolysis of methyl acetate. Therefore, it is preferable to use an acid as a catalyst, and it is particularly preferable to use an acid having a smaller acid dissociation constant (pK a ) than acetic acid in order to accelerate the hydrolysis by raising the hydrogen ion concentration.
- pK a of the acid to be used is preferably ⁇ 8 to 4, and more preferably ⁇ 5 to 2.
- the method for causing an acid to coexist in the reaction system in the present invention includes, but is not limited to, a method for imparting an acid point to a resin carrier supporting a catalyst for carbonylation reaction, a method for causing an acid to coexist in a reaction solution, and the like.
- an acidic group such as a sulfonic acid group as it is to a 4-vinylpyridine / divinylbenzene copolymer usually used as a pyridine resin. It is. This is because, for 4-vinylpyridine, an acid-base reaction occurs between a basic pyridine group and an acid, and for divinylbenzene, vinyl groups not used for polymerization undergo sulfonation. It is considered to be due to steric hindrance.
- the degree of crosslinking of the 4-vinylpyridine / styrene / divinylbenzene copolymer is preferably 10% or more.
- any known method such as using a sulfonation agent such as concentrated sulfuric acid, chlorosulfonic acid or sulfuric anhydride may be employed.
- the reaction solution When an acid is allowed to coexist in the reaction solution, the reaction proceeds under high temperature and high pressure conditions. Therefore, if a volatile acid is used, equipment may be corroded due to evaporation of the acid at the time of separation and recovery of acetic acid, etc. . Therefore, in order to prevent the corrosion of the apparatus, it is preferable to use a non-volatile acid such as sulfuric acid or an acidic cation exchange resin. In addition, if a non-volatile acid or an acidic cation exchange resin is used, the reaction solution can be circulated and reused without newly adding an acid, and acetic acid can be more efficiently generated. Become. Among these, it is more preferable to use an acidic cation exchange resin because separation from the reaction solution is easy.
- a non-volatile acid such as sulfuric acid or an acidic cation exchange resin.
- the acidic cation exchange resin is not particularly limited, but it is preferable to use a strongly acidic cation exchange resin in order to promote the hydrolysis by increasing the hydrogen ion concentration.
- any acidic cation exchange resin of porous type (including porous type, high porous type and MR type) having macropores and gel type having no macropores can be used.
- a strongly acidic cation exchange resin of porous type MSC-1, Dowex (made by Dow), PK-208, PK-212, PK-216, PK-220, PK-228, SK-104 (Mitsubishi Chemical Industries, Ltd.
- HCR-S As a gel type strong acid cation exchange resin, HCR-S, HCR-W2, HGR-W2 (made by Dow), SK-1B, SK-106, SK-110 (made by Mitsubishi Chemical), Duolite C20H C255 LFH, Amberlyst-31 (manufactured by Rohm and Haas), K1221, K1431 (manufactured by Bayer), and the like.
- the crosslinking degree of the acidic cation exchange resin to be used is preferably 1 to 60%, more preferably 5 to 50%, and the average particle diameter is 0.1 to 10 mm, further preferably 0.25 to 0.85 mm. Is preferred.
- the addition amount of the acidic cation exchange resin is preferably 1 to 30 wt% with respect to the amount of the reaction solution.
- the quantity of the said reaction liquid means the quantity of the liquid introduce
- the addition amount is less than this range, the hydrolysis of methyl acetate is not sufficiently promoted, and an effective effect can not be obtained.
- the addition amount is larger than this range, the fluidity of the reaction solution is impaired, and the relative amount of reaction solution in the reactor is lowered, so that the efficiency of acetic acid production is also lowered.
- the reaction temperature is preferably in the range of 100 ° C. to 250 ° C. to prevent thermal decomposition of the resin.
- the acid is added to the reaction solution before introducing the reaction solution into the reactor or in the reactor.
- the acid added to the reaction solution can also be circulated and reused together with the reaction solution.
- an acid may be newly added as needed.
- the carbonylation reaction proceeds in the catalyst pore in which many active sites (rhodium complexes) exist.
- the equilibrium of the reaction formula (2) shifts to the right, so the amount of methanol in the whole reaction solution decreases, and the concentration difference of methanol between the reaction solution and the inside of the pores decreases. Therefore, methanol is not supplied from the reaction solution into the pore, and the methanol supply rate to the active site in the pore depends on the hydrolysis rate of methyl acetate.
- the methyl acetate concentration in the reaction solution is sufficiently high even in the high carbonylation region, and the diffusion of methyl acetate from the reaction solution into the pores proceeds rapidly.
- Table 2 although the methanol concentration of the reaction solution largely varies depending on the degree of carbonylation, methyl acetate maintains a certain concentration even if the degree of carbonylation increases.
- Example 1 the effect of coexistence of an acid in the reaction system on the carbonylation reaction rate is verified. Further, in Examples 2 to 4, effects of coexistence of an acid in the reaction liquid under various conditions are verified.
- Synthesis Example 1 [Preparation of resin] As an aqueous phase, 6250 g of a solution of 10 wt% sodium chloride, 0.3 wt% sodium nitrite, 0.064 wt% gelatin, and 0.009 wt% sodium dodecylbenzene sulfonate dissolved in deionized water was prepared .
- the recovered resin was subjected to extraction washing with a solvent to remove the porous agent, followed by classification using a sieve to obtain a resin having a styrene / 4-vinylbenzene molar ratio of 1 / 4.0 and a crosslinking degree of 30%.
- the obtained resin was dried, and the specific surface area was measured by BET method using AUTOSORB-1 (Yuasa Ionics Co., Ltd.). The specific surface area was 70 m 2 / g, pore volume 0.24 ml / g, average fine The pore size was 13.9 nm.
- methanol washing was performed to obtain a sulfonated resin.
- 100 ml of the obtained resin was packed in a glass column, 500 ml of 2N HCL was passed, 250 ml of demineralized water was passed, regeneration and washing were performed. Further, 250 ml of a 5% aqueous sodium chloride solution was passed through the resin, and the eluate was recovered. The obtained eluent was titrated with 1N NaOH, and the total cation exchange capacity of this resin was 1.15 mmol / ml.
- Synthesis Example 2 36.4 wt% of 4-vinylpyridine in the oil phase, 13.6 wt% of styrene, 30.0 wt% of a mixture of divinylbenzene and ethylvinylbenzene (proportion of divinylbenzene: 80 wt%), and 20 wt% of isooctane Preparation of resin and sulfonation treatment were performed in the same manner as in Synthesis Example 1 except for the above.
- the obtained resin had a styrene / 4-vinylbenzene molar ratio of 1 / 2.7 and a degree of crosslinking of 30%.
- the specific surface area is 55 m 2 / g
- the pore volume is 0 It was .26 ml / g and average pore diameter 19.1 nm.
- the total cation exchange capacity of the sulfonated resin was 1.37 mmol / ml.
- Synthesis Example 3 36.4 wt% of 4-vinylpyridine in oil phase, 7.3 wt% of styrene, 20.4 w% of a mixture of divinylbenzene and ethylvinylbenzene (proportion of divinylbenzene: 55 wt%), divinylbenzene and ethylvinylbenzene Preparation and sulfonation treatment of a resin were carried out in the same manner as in Synthesis Example 1 except that the mixture thereof (proportion of divinylbenzene: 80 wt%) was 20.4 w% and isooctane was 20 wt%.
- the obtained resin had a styrene / 4-vinylbenzene molar ratio of 1 / 5.0 and a degree of crosslinking of 30%. Furthermore, when the obtained resin is dried before sulfonation treatment and the specific surface area is measured by BET method using AUTOSORB-1 (Yuasa Ionics Co., Ltd.), the specific surface area is 57 m 2 / g, and the pore volume is 0 It was .28 ml / g, average pore diameter 20.0 nm. Also, the total cation exchange capacity of the sulfonated resin was 1.18 mmol / ml.
- Synthesis Example 4 The same as in Synthesis Example 1 except that 36.4 wt% of 4-vinylpyridine in the oil phase, 43.6 wt% of a mixture of divinylbenzene and ethylvinylbenzene (proportion of divinylbenzene: 55 wt%), and 20 wt% of isooctane Adjustment of the resin.
- the obtained resin did not contain styrene, and the degree of crosslinking was 30%.
- the specific surface area is 67 m 2 / g
- the pore volume is 0.27 ml / g
- the average pore diameter was 15.8 nm.
- Table 3 shows the carbonylation reaction rates obtained by measuring the CO consumption rate when reacting at different carbonyl degrees. Table 3 shows the respective reaction rate ratios when the reaction rate is 1 when the resin of Synthesis Example 4 is reacted without addition of a cation exchange resin.
- 2A shows the resin of Synthesis Example 1
- FIG. 2B shows the resin of Synthesis Example 2
- FIG. 2C shows the resin of Synthesis Example 3
- FIG. 2D shows the resin of Synthesis Example 4 with an acid point (solid line)
- the carbonylation reaction rates when reacted at different degrees of carbonylation when not applied are shown for each resin in comparison.
- the total amount of the above catalyst, the reaction solution (20 g of methanol, 50 g of acetic acid, 10 g of methyl iodide) and a predetermined cation exchange resin were charged into a 200 ml zirconium autoclave and reacted for 1 hour at a reaction speed of 180 ° C. and a CO pressure of 5.0 MPaG. .
- Table 4 shows the results of adding Amber List 31 (gel type) and Amber List 35 (MR type). It was found that any cation exchange resin showed almost the same effect as Amberlyst 15.
- Example 1 In order to investigate the relationship between the addition amount of cation exchange resin and the reaction rate, in Example 1, the addition amount of Amberlyst 15 used is changed, and the carbonylation in the range of the degree of carbonylation of 9.0 mol / mol The reaction rates were compared.
- the space-time yield is about 15 mol / L ⁇ h when H 2 O is added at 10 wt% or more (when the hydrolysis of methyl acetate is not rate-limiting). It was found that as the addition amount of Amberlyst 15 approaches 30%, the carbonylation reaction rate also approaches this space-time yield.
- Table 5 shows the results.
- the addition of sulfuric acid and P.toluenesulfonic acid also confirmed a marked improvement in the reaction rate with a high degree of carbonylation, as with the cation exchange resin.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Description
CH3OH+CO ←→ CH3COOH (1)
CH3COOH+CH3OH ←→ CH3COOCH3+H2O (2)
2CH3OH ←→ CH3OCH3+H2O (3)
CH3I+H2O ←→ CH3OH+HI (4)
[樹脂の調整]
水相として、塩化ナトリウムを10wt%、亜硝酸ナトリウムを0.3wt%、ゼラチンを0.064wt%、及びドデシルベンゼンスルホン酸ナトリウムを0.009wt%をイオン交換水に溶解させた液を6250g調整した。油相として、4-ビニルピリジンを29.1wt%、スチレンを7.3wt%、ジビニルベンゼンとエチルビニルベンゼンとの混合物(ジビニルベンゼンの割合:55wt%)を43.6w%、及びイソオクタン20wt%を混合した液を3750g調整した。油相に過酸化ベンゾイル1.2wt%を溶解させ、ジャケットつき10L懸濁混合反応器に入れた。次いで水相を反応器下部から供給し、油滴が均一に分散するまで緩やかに攪拌を行った。その後、ジャケットの周囲に温水を流して昇温し、60℃で2時間、続けて90℃で4時間保持した後、常温まで冷却し、ろ過により固液分離を行い、樹脂を回収した。回収した樹脂は、溶剤による抽出洗浄によりポーラス剤を除去した後、篩により分級を行い、スチレン/4-ビニルベンゼンのモル比が1/4.0、架橋度30%の樹脂を得た。得られた樹脂を乾燥して、AUTOSORB-1(ユアサアイオニクス株式会社)を用いて比表面積をBET法で測定したところ、比表面積70m2/g、細孔容積0.24ml/g、平均細孔径13.9nmだった。
攪拌機及び冷却器を備えたセパラブルフラスコに0.2gの硫酸銀と150mlの濃硫酸を添加して80~90℃まで加熱した後、上記調整した樹脂20g(乾燥基準)を水湿潤状態にして、数回に分けてゆっくりと三口フラスコに投入した。その後、100℃で3時間保持した後、室温まで冷却し、セパラブルフラスコの内容物を500mlの冷水中にゆっくりと注ぎ、石英綿を詰めたカラムでろ過を行った。さらに純水で十分に洗浄した後、メタノール洗浄を行い、スルホン化した樹脂を得た。得られた樹脂100mlをガラスカラムに充填し、2N HCL 500mlを通液した後、脱塩水250mlを通液して再生及び水洗した。さらにこの樹脂に5%塩化ナトリウム水溶液250mlを通液し、溶離液を回収した。得られた溶離液を1N NaOHで滴定したところ、この樹脂の陽イオン総交換容量は1.15mmol/mlであった。
油相の4-ビニルピリジンを36.4wt%、スチレンを13.6wt%、ジビニルベンゼンとエチルビニルベンゼンとの混合物(ジビニルベンゼンの割合:80wt%)を30.0w%、イソオクタンを20wt%とした以外は合成例1と同様に樹脂の調整及びスルホン化処理を行った。
得られた樹脂はスチレン/4-ビニルベンゼンのモル比が1/2.7、架橋度が30%であった。さらに、得られた樹脂をスルホン化処理前に乾燥して、AUTOSORB-1(ユアサアイオニクス株式会社)を用いて比表面積をBET法で測定したところ、比表面積55m2/g、細孔容積0.26ml/g、平均細孔径19.1nmだった。また、スルホン化した樹脂の陽イオン総交換容量は1.37mmol/mlであった。
油相の4-ビニルピリジンを36.4wt%、スチレンを7.3wt%、ジビニルベンゼンとエチルビニルベンゼンとの混合物(ジビニルベンゼンの割合:55wt%)を20.4w%、ジビニルベンゼンとエチルビニルベンゼンとの混合物(ジビニルベンゼンの割合:80wt%)を20.4w%、イソオクタンを20wt%とした以外は合成例1と同様に樹脂の調整及びスルホン化処理を行った。
得られた樹脂はスチレン/4-ビニルベンゼンのモル比が1/5.0、架橋度が30%であった。さらに、得られた樹脂をスルホン化処理前に乾燥して、AUTOSORB-1(ユアサアイオニクス株式会社)を用いて比表面積をBET法で測定したところ、比表面積57m2/g、細孔容積0.28ml/g、平均細孔径20.0nmだった。また、スルホン化した樹脂の陽イオン総交換容量は1.18mmol/mlであった。
油相の4-ビニルピリジンを36.4wt%、ジビニルベンゼンとエチルビニルベンゼンとの混合物(ジビニルベンゼンの割合:55wt%)を43.6w%、イソオクタンを20wt%とした以外は合成例1と同様に樹脂の調整を行った。
得られた樹脂はスチレンを含まず、架橋度は30%であった。さらに、得られた樹脂を乾燥して、AUTOSORB-1(ユアサアイオニクス株式会社)を用いて比表面積をBET法で測定したところ、比表面積67m2/g、細孔容積0.27ml/g、平均細孔径15.8nmだった。
スルホン化処理後の合成例1~3の樹脂、スルホン化未処理の合成例1~3の樹脂及び合成例4の樹脂それぞれ8.5g(dry基準)と酢酸ロジウム0.197g、反応液(メタノール25g、ヨウ化メチル17.2g、酢酸37.5g)を200mlジルコニウム製オートクレーブに仕込み、反応温度180℃、CO圧力5.0MPaGで1時間反応させ、触媒化した。触媒中のRh担持量は0.85wt%だった。
これらの触媒の全量と反応液(メタノール20g、酢酸50g、ヨウ化メチル10g)とを200mlジルコニウム製オートクレーブに仕込み、反応温度180℃、CO圧力5.0MPaGで1時間反応させた。
さらに、合成例4の樹脂については、さらに陽イオン交換樹脂(アンバーリスト15)を10wt%オートクレーブに追加して、同様に反応させた。
Claims (8)
- ロジウム含有固体触媒及びヨウ化アルキルの存在下で反応溶媒中のメタノールと一酸化炭素とを反応させて酢酸を生成させる方法であって、反応系に酢酸より酸解離定数(pKa)の小さい酸を共存させることを特徴とするメタノールのカルボニル化による酢酸の製造方法。
- ロジウムを、4-ビニルピリジン、スチレン、ジビニルベンゼンの共重合体をスルホン化したロジウム固定化用担体に担持させることを特徴とする、請求項1に記載の酢酸の製造方法。
- 前記共重合体を構成する4-ビニルピリジンの重量比が5~60%、スチレンの重量比が1~50%、ジビニルベンゼンの重量比が5~40%であることを特徴とする、請求項2に記載の酢酸の製造方法。
- 強酸性陽イオン交換樹脂を反応液に添加することを特徴とする、請求項1に記載の酢酸の製造方法。
- 前記陽イオン交換樹脂の添加量が反応液の量に対して1~30wt%であることを特徴とする、請求項4に記載の酢酸の製造方法。
- 4-ビニルピリジン、スチレン、ジビニルベンゼンの共重合体をスルホン化したメタノールのカルボニル化反応触媒用担体。
- 4-ビニルピリジンの重量比が5~60%、スチレンの重量比が1~50%、ジビニルベンゼンの重量比が5~40%であることを特徴とする、請求項6に記載のメタノールのカルボニル化反応触媒用担体。
- 架橋度が10%以上であることを特徴とする、請求項6又は7に記載のメタノールのカルボニル化反応触媒用担体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/257,379 US8802893B2 (en) | 2010-02-09 | 2011-02-08 | Method of accelerating methanol carbonylation |
JP2011553750A JP5808674B2 (ja) | 2010-02-09 | 2011-02-08 | メタノールのカルボニル化反応速度の向上方法 |
EP11742014.1A EP2535325B1 (en) | 2010-02-09 | 2011-02-08 | Method for enhancing the carbonylation rate of methanol |
BRPI1106072A BRPI1106072A2 (pt) | 2010-02-09 | 2011-02-08 | método para produzir ácido acético, e, veículo a ser usado em um catalisador para a reação de carbonilação de metanol |
US14/323,437 US20140316071A1 (en) | 2010-02-09 | 2014-07-03 | Method of accelerating methanol carbonylation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-026293 | 2010-02-09 | ||
JP2010026293 | 2010-02-09 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/257,379 A-371-Of-International US8802893B2 (en) | 2010-02-09 | 2011-02-08 | Method of accelerating methanol carbonylation |
US14/323,437 Division US20140316071A1 (en) | 2010-02-09 | 2014-07-03 | Method of accelerating methanol carbonylation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011099264A1 true WO2011099264A1 (ja) | 2011-08-18 |
Family
ID=44367552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/000676 WO2011099264A1 (ja) | 2010-02-09 | 2011-02-08 | メタノールのカルボニル化反応速度の向上方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US8802893B2 (ja) |
EP (1) | EP2535325B1 (ja) |
JP (1) | JP5808674B2 (ja) |
BR (1) | BRPI1106072A2 (ja) |
WO (1) | WO2011099264A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013203692A (ja) * | 2012-03-28 | 2013-10-07 | Mitsubishi Chemicals Corp | 精製フェノール系化合物の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2014214226B2 (en) * | 2013-02-05 | 2018-07-05 | Siemens Energy Global GmbH & Co. KG | Method and device for work-up of an amino acid salt solution that has been contaminated with carbon dioxide |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63253047A (ja) | 1987-02-05 | 1988-10-20 | ヘキスト・セラニーズ・コーポレーション | メタノールのカルボニル化による酢酸の製造方法及びそのための触媒 |
JPH05306254A (ja) | 1992-04-24 | 1993-11-19 | Chiyoda Corp | メタノールのカルボニル化による酢酸の製造方法 |
JPH05306253A (ja) | 1992-04-24 | 1993-11-19 | Chiyoda Corp | メタノールのカルボニル化による酢酸の製造方法 |
JPH06315637A (ja) | 1993-04-30 | 1994-11-15 | Chiyoda Corp | カルボニル化反応用固体触媒及びそれを用いる酢酸の製造方法 |
JPH06345680A (ja) * | 1992-04-03 | 1994-12-20 | China Petrochem Dev Corp | アルコールのカルボニル化によるカルボン酸の改良製造法 |
JP2003530218A (ja) * | 2000-04-05 | 2003-10-14 | イーストマン ケミカル カンパニー | 炭化ポリスルホン化ジビニルベンゼン−スチレンコポリマーに担持されたカルボニル化触媒 |
JP2008524179A (ja) * | 2004-12-17 | 2008-07-10 | ビーピー ケミカルズ リミテッド | 酢酸を製造するための方法および触媒 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2540985A (en) * | 1949-12-06 | 1951-02-06 | Monsanto Chemicals | Quaternary ammonium derivatives of vinylpyridine-polyinylbenzene copolymers |
JPS5032203Y2 (ja) | 1971-02-02 | 1975-09-19 | ||
US4100359A (en) * | 1977-01-12 | 1978-07-11 | Uop Inc. | Carbonylation of alcohols |
IT1166581B (it) * | 1979-01-17 | 1987-05-05 | Oronzio De Nora Impianti | Membrane cationiche a base di copolimeri solfonati di stirene divinilbenzene e 2- o 4-vinilpiridina o acido acrilico, procedimento per la loro preparazione ed uso in celle di elettrolisi |
US5334755A (en) * | 1992-04-24 | 1994-08-02 | Chiyoda Corporation | Process for the production of acetic acid from methanol and carbon monoxide using supported rhodium catalyst |
US5679837A (en) * | 1992-09-10 | 1997-10-21 | Daicel Chemical Industries, Ltd. | Process for producing acetic acid or methyl acetate and catalyst therefor |
US5364963A (en) * | 1993-04-30 | 1994-11-15 | Chiyoda Corporation | Supported rhodium catalyst, method of preparing same and process of producing acetic acid by methanol carbonylation using same |
EP1091981B1 (en) * | 1998-06-12 | 2007-08-22 | Waters Investments Limited | Novel ion exchange porous resins for solid phase extraction and chromatography |
US6420304B1 (en) * | 2000-04-20 | 2002-07-16 | China Petrochemical Development Corporation | Polymer-supported carbonylation catalyst and its use |
-
2011
- 2011-02-08 US US13/257,379 patent/US8802893B2/en not_active Expired - Fee Related
- 2011-02-08 EP EP11742014.1A patent/EP2535325B1/en not_active Not-in-force
- 2011-02-08 BR BRPI1106072A patent/BRPI1106072A2/pt not_active Application Discontinuation
- 2011-02-08 WO PCT/JP2011/000676 patent/WO2011099264A1/ja active Application Filing
- 2011-02-08 JP JP2011553750A patent/JP5808674B2/ja not_active Expired - Fee Related
-
2014
- 2014-07-03 US US14/323,437 patent/US20140316071A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63253047A (ja) | 1987-02-05 | 1988-10-20 | ヘキスト・セラニーズ・コーポレーション | メタノールのカルボニル化による酢酸の製造方法及びそのための触媒 |
JPH06345680A (ja) * | 1992-04-03 | 1994-12-20 | China Petrochem Dev Corp | アルコールのカルボニル化によるカルボン酸の改良製造法 |
JPH05306254A (ja) | 1992-04-24 | 1993-11-19 | Chiyoda Corp | メタノールのカルボニル化による酢酸の製造方法 |
JPH05306253A (ja) | 1992-04-24 | 1993-11-19 | Chiyoda Corp | メタノールのカルボニル化による酢酸の製造方法 |
JPH06315637A (ja) | 1993-04-30 | 1994-11-15 | Chiyoda Corp | カルボニル化反応用固体触媒及びそれを用いる酢酸の製造方法 |
JP2003530218A (ja) * | 2000-04-05 | 2003-10-14 | イーストマン ケミカル カンパニー | 炭化ポリスルホン化ジビニルベンゼン−スチレンコポリマーに担持されたカルボニル化触媒 |
JP2008524179A (ja) * | 2004-12-17 | 2008-07-10 | ビーピー ケミカルズ リミテッド | 酢酸を製造するための方法および触媒 |
Non-Patent Citations (1)
Title |
---|
SHIMAZU ET AL.: "Methanol Carbonylation Catalyzed by Polymer-Suppo rted Rhodium Complexes", APPL. CATAL., vol. 35, no. 2, 1987, pages 279 - 288, XP002583408 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013203692A (ja) * | 2012-03-28 | 2013-10-07 | Mitsubishi Chemicals Corp | 精製フェノール系化合物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140316071A1 (en) | 2014-10-23 |
US8802893B2 (en) | 2014-08-12 |
BRPI1106072A2 (pt) | 2016-05-03 |
US20120010371A1 (en) | 2012-01-12 |
EP2535325A4 (en) | 2015-10-28 |
JP5808674B2 (ja) | 2015-11-10 |
EP2535325B1 (en) | 2018-04-25 |
JPWO2011099264A1 (ja) | 2013-06-13 |
EP2535325A1 (en) | 2012-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3320728B2 (ja) | 高分子カルボニル化触媒系 | |
TWI544963B (zh) | 醛吸附材、醛的除去方法、乙酸之製造方法及醛吸附材之再生方法 | |
JPS5843384B2 (ja) | 酢酸エチルの製造法 | |
KR100371761B1 (ko) | 가용성이리듐기재촉매의존재하에서,카르복실산또는그의해당에스테르의제조방법 | |
WO2011099264A1 (ja) | メタノールのカルボニル化反応速度の向上方法 | |
EP3431177B1 (en) | Vinylpyridine resin for catalyst carriers, production method therefor, and catalyst for methanol carbonylation reaction | |
TW201700168A (zh) | 觸媒系統及方法 | |
KR20170076708A (ko) | 메틸 메타크릴레이트를 제조하기 위한 산화성 에스테르화 방법 | |
JPS63118305A (ja) | アクリルアミドポリマーの製造方法 | |
JPH07309800A (ja) | 有機カルボン酸の製造方法 | |
KR20120024310A (ko) | 프로필렌 글리콜 모노메틸 에테르 아세테이트의 제조방법 | |
JP7061798B2 (ja) | 陰イオン交換体を触媒とする糖脂肪酸エステルの製造方法 | |
TWI694985B (zh) | 由甲醛製造乙醇酸或其衍生物之方法 | |
JPS58198442A (ja) | メタクリル酸メチル又はアクリル酸メチルの改良製造方法 | |
CN101396670A (zh) | 脱除醋酸中碘化物的吸附剂及其制备方法与应用 | |
JPH08151346A (ja) | ケトマロン酸の製造方法 | |
CN114507165B (zh) | 固体酸催化合成4,4′-二氯二苯砜的方法 | |
WO2023182349A1 (ja) | サリチル酸エステルの製造方法 | |
CN105503528A (zh) | 碳酸乙烯酯水解生产乙二醇的方法 | |
KR20120037204A (ko) | 중형기공 실리카 합성 과정에 헤테로폴리산을 도입한 담체에 팔라듐이 담지된 촉매, 이의 제조 방법 및 상기 촉매를 이용하는 과산화수소의 제조방법 | |
JP2002520380A (ja) | エステル合成 | |
JP4395695B2 (ja) | イオン交換樹脂の使用方法 | |
JP3218125B2 (ja) | トリオキサンの製造法 | |
SU1377139A1 (ru) | Способ приготовлени катализатора дл окислени п-ксилола и/или п-метилтолуилата | |
JP3009978B2 (ja) | トリオキサンの製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 13257379 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011742014 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11742014 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011553750 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1106072 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1106072 Country of ref document: BR Kind code of ref document: A2 Effective date: 20111005 |