WO2011099264A1 - メタノールのカルボニル化反応速度の向上方法 - Google Patents

メタノールのカルボニル化反応速度の向上方法 Download PDF

Info

Publication number
WO2011099264A1
WO2011099264A1 PCT/JP2011/000676 JP2011000676W WO2011099264A1 WO 2011099264 A1 WO2011099264 A1 WO 2011099264A1 JP 2011000676 W JP2011000676 W JP 2011000676W WO 2011099264 A1 WO2011099264 A1 WO 2011099264A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
acetic acid
carbonylation
acid
methanol
Prior art date
Application number
PCT/JP2011/000676
Other languages
English (en)
French (fr)
Inventor
志雄 游
皆見 武志
春姫 尹
梅原 洋一
哲朗 松村
智佳子 橋本
泰生 細野
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to US13/257,379 priority Critical patent/US8802893B2/en
Priority to JP2011553750A priority patent/JP5808674B2/ja
Priority to EP11742014.1A priority patent/EP2535325B1/en
Priority to BRPI1106072A priority patent/BRPI1106072A2/pt
Publication of WO2011099264A1 publication Critical patent/WO2011099264A1/ja
Priority to US14/323,437 priority patent/US20140316071A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene

Definitions

  • the present invention relates to a method for improving the reaction rate in the production of acetic acid by carbonylation of methanol.
  • Acetic acid is a basic chemical with a wide range of uses, such as raw materials for polyvinyl acetate, acetyl cellulose and acetic acid esters, and solvents for terephthalic acid production plants.
  • Patent Document 1 As a method for producing acetic acid by carbonylation of methanol, the “Monsanto method” (Patent Document 1) in which methanol and carbon monoxide are reacted in a water-containing acetic acid solvent in which a rhodium compound and methyl iodide are uniformly dissolved are known.
  • reaction rate can not be increased because the solubility of the catalytic metal in the solvent is low, and thirdly, since the dissolved catalyst is deposited in the separation and purification step, it is very difficult to separate and recover it. Cost and load are at a premium.
  • Patent Document 2 Patent Document 3, Patent Document 4, Patent Document 5
  • Patent Document 2 Patent Document 3
  • Patent Document 5 Patent Document 5
  • the reaction rate can be further enhanced, and thirdly, the catalyst can be introduced into the reactor. Containment can reduce the precipitation of rhodium in the separation and purification process.
  • Patent Document 3 it is preferable to advance the carbonylation reaction of methanol in a region where the degree of carbonylation Ca of the reaction solution is 0.8 mol / mol or more.
  • the degree of carbonylation Ca is a value defined by the following formula.
  • Ci represents the molar concentration (mol / l) of each component Mi present in the solution
  • Zi represents the carbonylation coefficient of each component Mi
  • Xi represents the raw material coefficient of each component Mi
  • n represents the total number of each component Mi present in the solution.
  • the carbonylation coefficient Zi and the raw material coefficient Xi of each component Mi are as shown in the following table.
  • the by-product water generated by this side reaction (2) (3) may generate hydroiodic acid by hydrolyzing methyl iodide as a cocatalyst (4), which may cause corrosion of the system. Furthermore, it is necessary to separate these by-product water and hydrogen iodide mixed in acetic acid, which causes an increase in the load of the purification process of the product acetic acid, resulting in a problem of high cost.
  • the present invention is a method for producing acetic acid by reacting methanol in a reaction solvent with carbon monoxide in the presence of a rhodium-containing solid catalyst and an alkyl iodide to form acetic acid in a high carbonylation degree region (Ca> 0.8 mol It is an object of the present invention to increase the reaction rate of acetic acid production in (mol / mol) and thereby achieve more efficient production of acetic acid.
  • the method of producing acetic acid by reacting methanol and carbon monoxide in a reaction solvent in the presence of a rhodium-containing solid catalyst and an alkyl iodide comprises acid dissociation from acetic acid in the reaction system wherein the coexistence of low acid of the constant (pK a).
  • the reaction rate of hydrolysis of methyl acetate which is a rate-limiting step in acetic acid formation in the high carbonylation region, can be increased. Therefore, it is possible to increase the reaction rate of the whole system, and more efficient acetic acid production becomes possible.
  • the load for separating and recovering methyl acetate can be reduced, and the cost of acetic acid production can be reduced.
  • Example 1 The graph showing the relationship between the carbonylation degree of reaction product liquid, and the carbonylation reaction rate.
  • Example 1 it is a graph showing the difference in the rate of the carbonylation reaction with respect to the degree of carbonylation of the time of giving an acid point with respect to the resin of the synthesis example 1, and not giving.
  • Example 1 it is a graph showing the difference in the rate of the carbonylation reaction with respect to the degree of carbonylation of the time of giving an acid point with respect to the resin of the synthesis example 2, and not giving.
  • Example 1 it is a graph showing the difference in the rate of the carbonylation reaction with respect to the degree of carbonylation of the time of giving an acid point with respect to the resin of the synthesis example 3, and not giving.
  • Example 1 it is a graph showing the difference in the rate of the carbonylation reaction to the degree of carbonylation of the time of adding the cation exchange resin to resin of the synthesis example 4, and not adding.
  • Example 2 it is a graph showing the difference in the rate of the carbonylation reaction to the degree of carbonylation with the time of adding Amberlist 15 and not adding it.
  • Example 3 it is a graph showing the change of the rate of carbonylation reaction when the amount of addition of Amberlyst 15 is changed.
  • a region having a carbonylation degree of 0.8 mol / mol or more (hereinafter, high carbonyl
  • the present invention is characterized by coexistence of an acid as a catalyst in the reaction system.
  • the inventors of the present invention conducted intensive studies on the reduction of the reaction rate in the high carbonylation region, and as a result of the hydrolysis of methyl acetate, the amount of water present in the whole system was reduced, and the hydrolysis of methyl acetate (the reaction formula (2) The left-pointing arrow in) was found to be the rate-limiting step in this reaction system.
  • the use of the base as a catalyst in this system does not promote the hydrolysis of methyl acetate. Therefore, it is preferable to use an acid as a catalyst, and it is particularly preferable to use an acid having a smaller acid dissociation constant (pK a ) than acetic acid in order to accelerate the hydrolysis by raising the hydrogen ion concentration.
  • pK a of the acid to be used is preferably ⁇ 8 to 4, and more preferably ⁇ 5 to 2.
  • the method for causing an acid to coexist in the reaction system in the present invention includes, but is not limited to, a method for imparting an acid point to a resin carrier supporting a catalyst for carbonylation reaction, a method for causing an acid to coexist in a reaction solution, and the like.
  • an acidic group such as a sulfonic acid group as it is to a 4-vinylpyridine / divinylbenzene copolymer usually used as a pyridine resin. It is. This is because, for 4-vinylpyridine, an acid-base reaction occurs between a basic pyridine group and an acid, and for divinylbenzene, vinyl groups not used for polymerization undergo sulfonation. It is considered to be due to steric hindrance.
  • the degree of crosslinking of the 4-vinylpyridine / styrene / divinylbenzene copolymer is preferably 10% or more.
  • any known method such as using a sulfonation agent such as concentrated sulfuric acid, chlorosulfonic acid or sulfuric anhydride may be employed.
  • the reaction solution When an acid is allowed to coexist in the reaction solution, the reaction proceeds under high temperature and high pressure conditions. Therefore, if a volatile acid is used, equipment may be corroded due to evaporation of the acid at the time of separation and recovery of acetic acid, etc. . Therefore, in order to prevent the corrosion of the apparatus, it is preferable to use a non-volatile acid such as sulfuric acid or an acidic cation exchange resin. In addition, if a non-volatile acid or an acidic cation exchange resin is used, the reaction solution can be circulated and reused without newly adding an acid, and acetic acid can be more efficiently generated. Become. Among these, it is more preferable to use an acidic cation exchange resin because separation from the reaction solution is easy.
  • a non-volatile acid such as sulfuric acid or an acidic cation exchange resin.
  • the acidic cation exchange resin is not particularly limited, but it is preferable to use a strongly acidic cation exchange resin in order to promote the hydrolysis by increasing the hydrogen ion concentration.
  • any acidic cation exchange resin of porous type (including porous type, high porous type and MR type) having macropores and gel type having no macropores can be used.
  • a strongly acidic cation exchange resin of porous type MSC-1, Dowex (made by Dow), PK-208, PK-212, PK-216, PK-220, PK-228, SK-104 (Mitsubishi Chemical Industries, Ltd.
  • HCR-S As a gel type strong acid cation exchange resin, HCR-S, HCR-W2, HGR-W2 (made by Dow), SK-1B, SK-106, SK-110 (made by Mitsubishi Chemical), Duolite C20H C255 LFH, Amberlyst-31 (manufactured by Rohm and Haas), K1221, K1431 (manufactured by Bayer), and the like.
  • the crosslinking degree of the acidic cation exchange resin to be used is preferably 1 to 60%, more preferably 5 to 50%, and the average particle diameter is 0.1 to 10 mm, further preferably 0.25 to 0.85 mm. Is preferred.
  • the addition amount of the acidic cation exchange resin is preferably 1 to 30 wt% with respect to the amount of the reaction solution.
  • the quantity of the said reaction liquid means the quantity of the liquid introduce
  • the addition amount is less than this range, the hydrolysis of methyl acetate is not sufficiently promoted, and an effective effect can not be obtained.
  • the addition amount is larger than this range, the fluidity of the reaction solution is impaired, and the relative amount of reaction solution in the reactor is lowered, so that the efficiency of acetic acid production is also lowered.
  • the reaction temperature is preferably in the range of 100 ° C. to 250 ° C. to prevent thermal decomposition of the resin.
  • the acid is added to the reaction solution before introducing the reaction solution into the reactor or in the reactor.
  • the acid added to the reaction solution can also be circulated and reused together with the reaction solution.
  • an acid may be newly added as needed.
  • the carbonylation reaction proceeds in the catalyst pore in which many active sites (rhodium complexes) exist.
  • the equilibrium of the reaction formula (2) shifts to the right, so the amount of methanol in the whole reaction solution decreases, and the concentration difference of methanol between the reaction solution and the inside of the pores decreases. Therefore, methanol is not supplied from the reaction solution into the pore, and the methanol supply rate to the active site in the pore depends on the hydrolysis rate of methyl acetate.
  • the methyl acetate concentration in the reaction solution is sufficiently high even in the high carbonylation region, and the diffusion of methyl acetate from the reaction solution into the pores proceeds rapidly.
  • Table 2 although the methanol concentration of the reaction solution largely varies depending on the degree of carbonylation, methyl acetate maintains a certain concentration even if the degree of carbonylation increases.
  • Example 1 the effect of coexistence of an acid in the reaction system on the carbonylation reaction rate is verified. Further, in Examples 2 to 4, effects of coexistence of an acid in the reaction liquid under various conditions are verified.
  • Synthesis Example 1 [Preparation of resin] As an aqueous phase, 6250 g of a solution of 10 wt% sodium chloride, 0.3 wt% sodium nitrite, 0.064 wt% gelatin, and 0.009 wt% sodium dodecylbenzene sulfonate dissolved in deionized water was prepared .
  • the recovered resin was subjected to extraction washing with a solvent to remove the porous agent, followed by classification using a sieve to obtain a resin having a styrene / 4-vinylbenzene molar ratio of 1 / 4.0 and a crosslinking degree of 30%.
  • the obtained resin was dried, and the specific surface area was measured by BET method using AUTOSORB-1 (Yuasa Ionics Co., Ltd.). The specific surface area was 70 m 2 / g, pore volume 0.24 ml / g, average fine The pore size was 13.9 nm.
  • methanol washing was performed to obtain a sulfonated resin.
  • 100 ml of the obtained resin was packed in a glass column, 500 ml of 2N HCL was passed, 250 ml of demineralized water was passed, regeneration and washing were performed. Further, 250 ml of a 5% aqueous sodium chloride solution was passed through the resin, and the eluate was recovered. The obtained eluent was titrated with 1N NaOH, and the total cation exchange capacity of this resin was 1.15 mmol / ml.
  • Synthesis Example 2 36.4 wt% of 4-vinylpyridine in the oil phase, 13.6 wt% of styrene, 30.0 wt% of a mixture of divinylbenzene and ethylvinylbenzene (proportion of divinylbenzene: 80 wt%), and 20 wt% of isooctane Preparation of resin and sulfonation treatment were performed in the same manner as in Synthesis Example 1 except for the above.
  • the obtained resin had a styrene / 4-vinylbenzene molar ratio of 1 / 2.7 and a degree of crosslinking of 30%.
  • the specific surface area is 55 m 2 / g
  • the pore volume is 0 It was .26 ml / g and average pore diameter 19.1 nm.
  • the total cation exchange capacity of the sulfonated resin was 1.37 mmol / ml.
  • Synthesis Example 3 36.4 wt% of 4-vinylpyridine in oil phase, 7.3 wt% of styrene, 20.4 w% of a mixture of divinylbenzene and ethylvinylbenzene (proportion of divinylbenzene: 55 wt%), divinylbenzene and ethylvinylbenzene Preparation and sulfonation treatment of a resin were carried out in the same manner as in Synthesis Example 1 except that the mixture thereof (proportion of divinylbenzene: 80 wt%) was 20.4 w% and isooctane was 20 wt%.
  • the obtained resin had a styrene / 4-vinylbenzene molar ratio of 1 / 5.0 and a degree of crosslinking of 30%. Furthermore, when the obtained resin is dried before sulfonation treatment and the specific surface area is measured by BET method using AUTOSORB-1 (Yuasa Ionics Co., Ltd.), the specific surface area is 57 m 2 / g, and the pore volume is 0 It was .28 ml / g, average pore diameter 20.0 nm. Also, the total cation exchange capacity of the sulfonated resin was 1.18 mmol / ml.
  • Synthesis Example 4 The same as in Synthesis Example 1 except that 36.4 wt% of 4-vinylpyridine in the oil phase, 43.6 wt% of a mixture of divinylbenzene and ethylvinylbenzene (proportion of divinylbenzene: 55 wt%), and 20 wt% of isooctane Adjustment of the resin.
  • the obtained resin did not contain styrene, and the degree of crosslinking was 30%.
  • the specific surface area is 67 m 2 / g
  • the pore volume is 0.27 ml / g
  • the average pore diameter was 15.8 nm.
  • Table 3 shows the carbonylation reaction rates obtained by measuring the CO consumption rate when reacting at different carbonyl degrees. Table 3 shows the respective reaction rate ratios when the reaction rate is 1 when the resin of Synthesis Example 4 is reacted without addition of a cation exchange resin.
  • 2A shows the resin of Synthesis Example 1
  • FIG. 2B shows the resin of Synthesis Example 2
  • FIG. 2C shows the resin of Synthesis Example 3
  • FIG. 2D shows the resin of Synthesis Example 4 with an acid point (solid line)
  • the carbonylation reaction rates when reacted at different degrees of carbonylation when not applied are shown for each resin in comparison.
  • the total amount of the above catalyst, the reaction solution (20 g of methanol, 50 g of acetic acid, 10 g of methyl iodide) and a predetermined cation exchange resin were charged into a 200 ml zirconium autoclave and reacted for 1 hour at a reaction speed of 180 ° C. and a CO pressure of 5.0 MPaG. .
  • Table 4 shows the results of adding Amber List 31 (gel type) and Amber List 35 (MR type). It was found that any cation exchange resin showed almost the same effect as Amberlyst 15.
  • Example 1 In order to investigate the relationship between the addition amount of cation exchange resin and the reaction rate, in Example 1, the addition amount of Amberlyst 15 used is changed, and the carbonylation in the range of the degree of carbonylation of 9.0 mol / mol The reaction rates were compared.
  • the space-time yield is about 15 mol / L ⁇ h when H 2 O is added at 10 wt% or more (when the hydrolysis of methyl acetate is not rate-limiting). It was found that as the addition amount of Amberlyst 15 approaches 30%, the carbonylation reaction rate also approaches this space-time yield.
  • Table 5 shows the results.
  • the addition of sulfuric acid and P.toluenesulfonic acid also confirmed a marked improvement in the reaction rate with a high degree of carbonylation, as with the cation exchange resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 反応系に酢酸より酸解離定数(pK)の小さい酸を共存させることを特徴とするメタノールのカルボニル化による酢酸の製造方法によれば、ロジウム含有固体触媒及びヨウ化アルキルの存在下で反応溶媒中のメタノールと一酸化炭素とを反応させて酢酸を生成させる方法において、高カルボニル化度領域(Ca>0.8mol/mol)におけるメタノールのカルボニル化による酢酸製造の反応速度を高め、もって酢酸製造のさらなる効率化を達成することが可能となる。

Description

メタノールのカルボニル化反応速度の向上方法
 本発明は、メタノールのカルボニル化による酢酸の製造において、反応速度を向上させる方法に関する。
 酢酸はポリ酢酸ビニル、アセチルセルロース及び酢酸エステル類の原料、並びにテレフタル酸製造プラントの溶媒等、幅広い用途を持つ基礎化学品である。
 化学工業上利用される酢酸の製造方法としては、メタノールのカルボニル化、アセトアルデヒドの部分酸化、並びにブタン及びプロパン等の酸化などによる方法が公知であるが、現在、その大部分はメタノールのカルボニル化によってなされている。
 メタノールのカルボニル化による酢酸の製造方法としては、ロジウム化合物とヨウ化メチルとを均一に溶解した水含有酢酸溶媒中でメタノールと一酸化炭素とを反応させる「モンサント法」(特許文献1)がよく知られている。
 この方法はメタノールから酢酸を高収率で製造し得る点で優れているが、一方で以下に挙げるような問題が存在していた。
 第1に、カルボニル化反応速度と酢酸選択率を高く保持するためには高濃度の水を共存させる必要があるが、この高濃度の水は、助触媒であるヨウ化メチルを加水分解することによってヨウ化水素酸を多量に生成するという問題があった。このヨウ化水素酸は装置系を腐食させてしまい、さらには、酢酸中に混入したこれらの水やヨウ化水素を分離する必要があるために製品酢酸の精製工程の負荷が上昇し、製造コストが高くなってしまっていた。第2に、溶媒に対する触媒金属の溶解度が低いために反応速度を上げられず、また、第3には、溶解している触媒が分離精製工程で析出するため、これを分離回収するために多大なコストと負荷がかかっているという問題があった。
 これらの問題を解決するため、改良された方法として、ピリジン樹脂担体にロジウムを担持させた不均一系で反応を進行させるという技術(特許文献2、特許文献3、特許文献4、特許文献5)が提案され、実用化も図られている。
 これらの技術によれば、第1に、反応生成液の水分濃度が5wt%以下という低水分濃度の条件においてもカルボニル化反応速度と酢酸選択率を高く維持することが可能である。水分濃度が低い条件で酢酸を製造できるため、助触媒であるヨウ化メチルの加水分解によって生成されるヨウ化水素酸の量も少なくなり、装置系の材料が腐食する危険性を低減することができる。さらには、生成した酢酸の分離回収及び精製が容易となるため、製品酢酸の精製工程の負荷を減少することができ、コストを抑えることができるという利点も有する。また、第2に、溶解度の低いロジウム錯体を固定化することによって触媒の高濃度化が達成されるため、反応速度をより高めることができ、そして、第3には、触媒を反応器内に封じ込めることで分離精製工程におけるロジウムの析出を減少させることができる。
 ここで、前記特許文献3によれば、反応生成液のカルボニル化度Caが0.8mol/mol以上の領域でメタノールのカルボニル化反応を進行させることが好ましい。
 カルボニル化度Caとは、次の式で定義される値である。
Figure JPOXMLDOC01-appb-M000001
 上記式中、Ciは溶液中に存在する各成分Miのモル濃度(mol/l)、Ziは各成分Miのカルボニル化係数、Xiは各成分Miの原料係数をそれぞれ示す。nは溶液中に存在する各成分Miの合計数を示す。各成分Miのカルボニル化係数Zi及び原料係数Xiは次表の通りである。
Figure JPOXMLDOC01-appb-T000001
 メタノールのカルボニル化反応においては、下記反応式(1)の主反応とともに、下記反応式(2)(3)の副反応が生じる。
CHOH+CO       ←→ CHCOOH        (1)
CHCOOH+CHOH  ←→ CHCOOCH+HO   (2)
2CHOH         ←→ CHOCH+HO     (3)
CHI+HO       ←→ CHOH+HI       (4)
 この副反応(2)(3)により生じた副生水は、助触媒であるヨウ化メチルを加水分解することによってヨウ化水素酸を生成し(4)、装置系を腐食させるおそれがある。さらに、酢酸中に混入したこれらの副生水やヨウ化水素を分離する必要があり、そのために製品酢酸の精製工程の負荷が上昇し、コストが高くなるという問題も生ずる。
 これに対し、前記のカルボニル化度が高い領域で反応を進行させることにより、上記式(2)(3)の副反応を抑制し、(4)のヨウ化水素の生成を抑えることができる。さらには、副生物である水と酢酸メチルの生成を抑えることにより反応生成物中の酢酸濃度を向上させ、精製コストを低減できる利点もある。
特公昭47-3334号 特開昭63-253047号 特開平5-306253号 特開平5-306254号 特開平6-315637号
 しかし、特許文献3において望ましいとされるカルボニル化度の範囲(Ca>0.8mol/mol)では、反応速度を高く維持することができず、効率的に酢酸製造を行うことができない。
 そのため、本発明は、ロジウム含有固体触媒及びヨウ化アルキルの存在下で反応溶媒中のメタノールと一酸化炭素とを反応させて酢酸を生成させる方法において、高カルボニル化度領域(Ca>0.8mol/mol)における酢酸製造の反応速度を高め、もって酢酸製造のさらなる効率化を達成することを課題とする。
 上記課題に鑑み、本発明に係るロジウム含有固体触媒及びヨウ化アルキルの存在下において、反応溶媒中でメタノールと一酸化炭素とを反応させて酢酸を生成させる方法は、反応系に酢酸より酸解離定数(pK)の小さい酸を共存させることを特徴とする。
 上記方法により、高カルボニル化度領域での酢酸生成における律速段階である酢酸メチルの加水分解の反応速度を高めることができる。そのため、系全体の反応速度を高めることが可能となり、より効率的な酢酸製造が可能となる。また、製造された酢酸に同伴する酢酸メチルの量が低減されるため、酢酸メチルを分離回収するための負荷を低減することができ、酢酸製造のコストを削減することが可能となる。
 さらに、本発明の副次的効果として、高いCa条件下でカルボニル化反応を行うことにより、酢酸メチル及び水の濃度が低い条件での酢酸製造が可能となり、触媒担体であるビニルピリジン樹脂からの含窒素化合物の分離脱離が抑制される。これにより含窒素化合物除去装置の負荷が低減でき、結果的に含窒素化合物とイオン結合しているロジウムの反応器外への流出を防止できる。
反応生成液のカルボニル化度とカルボニル化反応速度との関係を表すグラフ。 実施例1において、合成例1の樹脂に対して酸性点を付与したときと付与しないときとのカルボニル化度に対するカルボニル化反応の速度の違いを表すグラフ。 実施例1において、合成例2の樹脂に対して酸性点を付与したときと付与しないときとのカルボニル化度に対するカルボニル化反応の速度の違いを表すグラフ。 実施例1において、合成例3の樹脂に対して酸性点を付与したときと付与しないときとのカルボニル化度に対するカルボニル化反応の速度の違いを表すグラフ。 実施例1において、合成例4の樹脂に対して陽イオン交換樹脂を添加したときと添加しないときとのカルボニル化度に対するカルボニル化反応の速度の違いを表すグラフ。 実施例2において、アンバーリスト15を添加したときと添加しないときとのカルボニル化度に対するカルボニル化反応の速度の違いを表すグラフ。 実施例3において、アンバーリスト15の添加量を変化させたときのカルボニル化反応の速度の変化を表すグラフ。
 ロジウム含有固体触媒及びヨウ化アルキルの存在下で反応溶媒中のメタノールと一酸化炭素とを反応させて酢酸を生成させる方法において、カルボニル化度が0.8mol/mol以上の領域(以降、高カルボニル化度領域とする)におけるカルボニル化反応速度を高めるため、本発明は、反応系に触媒としての酸を共存させることを特徴とする。
 高カルボニル化度領域では、カルボニル化の副反応による副生水の生成を抑えることが可能であるが、その一方で図1に示すようにカルボニル化反応の反応速度が低下するため、酢酸の製造は通常、遷移領域であるCaが0.7から0.8の間の条件で行われる。しかし、この領域では反応器内の酢酸メチルと水の生成量が多いため、反応系の有効率が低減するほかに、製品酢酸の精製負荷が大きくなり、多大なコストがかかる問題が存在している。
 この高カルボニル化度領域における反応速度の低下について、本発明者らは鋭意研究の結果、酢酸メチルの加水分解により系全体に存在する水分が少なくなり酢酸メチルの加水分解(上記反応式(2)における左向きの矢印)がこの反応系における律速段階となるために生じるものであることを見出した。
 そのため、律速段階となっている酢酸メチルの加水分解を促進するための触媒を反応系に添加することにより、高カルボニル化度領域における反応速度の低下を防ぐことができる。また、カルボニル化反応の段階で酢酸メチルの加水分解を促進することで、生成液内の酢酸メチルを酢酸から分離回収するために必要な負担が減少するため、酢酸の製造工程全体の効率化及び低コスト化が図れる。
 酢酸メチルをはじめとするエステルの加水分解は、酸または塩基を触媒として添加することで促進されることが知られている。
 これらのうち、塩基は酢酸と反応してしまうため、本系においては塩基を触媒として使用しても酢酸メチルの加水分解は促進されない。そのため、触媒として酸を使用することが好ましく、水素イオン濃度を上昇させて加水分解が促進されるためには酢酸より酸解離定数(pK)の小さい酸を使用することが特に好ましい。このとき、使用する酸のpKは-8~4であることが好ましく、さらには-5~2であることが好ましい。
本発明で反応系に酸を共存させる方法としては、限定されないが、カルボニル化反応の触媒を担持させる樹脂担体に酸性点を付与する方法や、反応液に酸を共存させる方法などが挙げられる。
 樹脂担体に酸性点を付与する方法としては、ロジウムを担持させるピリジン樹脂へのスルホン基等の酸性基の付加が挙げられる。
 本発明者らの知見によれば、このとき、ピリジン樹脂として通常用いられる4-ビニルピリジン/ジビニルベンゼン共重合体に対して、そのままではスルホン酸基等の酸性基を十分に付加することは困難である。これは、4-ビニルピリジンについては、塩基性であるピリジン基と酸との間で酸塩基反応が生じてしまうためであり、ジビニルベンゼンについては、重合に用いられないビニル基がスルホン化に際しての立体障害となるためであると考えられる。
 そのため、ピリジン樹脂に酸性基を付加する場合は、ビニル基から見てパラ位に置換基を有しないモノマーを添加してピリジンと共重合させることが好ましい。このようなモノマーとして、例えばスチレンを用いれば、スチレン基に酸性基としてのスルホン酸基を導入することができる。このとき共重合させる4-ビニルピリジン、スチレン及びジビニルベンゼンのモノマーの比率としては、重量比で4-ビニルピリジンが5~60%、スチレンが1~50%、ジビニルベンゼンが5~40%であることが好ましい。4-ビニルピリジンの割合が少ないと十分な触媒活性が得られず、スチレンの割合が少ないと酸性点が十分に付与されないため酢酸メチルの加水分解が促進されない。また、ジビニルベンゼンの割合が少ないと、十分な架橋度が得られず、カルボニル化反応が進行する高温高圧条件下でのピリジン樹脂の強度が不足することになる。なお、4-ビニルピリジン/スチレン/ジビニルベンゼン共重合体の架橋度は、10%以上であることが好ましい。
 スルホン化の方法としては、濃硫酸、クロロスルホン酸又は無水硫酸等のスルホン化剤を用いる等の、いかなる公知の方法を採用してもよい。
 反応液に酸を共存させる場合、本系は高温高圧条件下で反応が進行するため、揮発性の酸を使用すると、酢酸の分離回収時等における酸の揮発によって装置の腐食が生じるおそれがある。そのため、装置の腐食を防止するためには、硫酸等の不揮発性の酸や酸性陽イオン交換樹脂等を使用することが好ましい。また、不揮発性の酸や酸性陽イオン交換樹脂等を使用すると、酸を新たに添加することなく反応液を循環させて再利用することができ、より効率的に酢酸を生成することが可能となる。これらのうち、反応液との分離が容易であるため、酸性陽イオン交換樹脂を使用することがより好ましい。
 酸性陽イオン交換樹脂としては、特に限定されないが、水素イオン濃度を高くして加水分解を促進するためには強酸性陽イオン交換樹脂を使用することが好ましい。
 本発明においては、マクロポアを有するポーラスタイプ(ポーラス型、ハイポーラス型、MR型のいずれをも含む)、及びマクロポアを持たないゲルタイプのいずれの酸性陽イオン交換樹脂をも使用することができる。ポーラスタイプの強酸性陽イオン交換樹脂としては、MSC-1、ダウエックス(ダウ社製)、PK-208、PK-212、PK-216、PK-220、PK-228、SK-104(三菱化学社製)、アンバーリスト-15、アンバーリスト-16、アンバーリスト-35、IR-116、IR-118、IR-122、C-26、C-26TR、C-264、C-265(ローム・アンド・ハース社製)、SPC-108、SPC-112(バイエル社製)、KC-470(住友化学社製)等が挙げられる。ゲルタイプの強酸性陽イオン交換樹脂としては、HCR-S、HCR-W2、HGR-W2(ダウ社製)、SK-1B、SK-106、SK-110(三菱化学社製)、デュオライトC20H、C255LFH、アンバーリスト-31(ローム・アンド・ハース社製)、K1221、K1431(バイエル社製)等が挙げられる。
 使用する酸性陽イオン交換樹脂の架橋度は1~60%、さらには5~50%であることが好ましく、平均粒径が0.1~10mm、さらには0.25~0.85mmであることが好ましい。
 酸性陽イオン交換樹脂の添加量は、反応液の量に対して1~30wt%であることが好ましい。
 なお、上記反応液の量とは、メタノール、ヨウ化アルキル及び水等の反応系に導入される液体の量を意味する。そのため、ロジウム含有固体触媒や酸性陽イオン交換樹脂等の固体触媒の量は上記反応液の量には含まれない。
 添加量がこの範囲より少ないと酢酸メチルの加水分解が充分に促進されず、有効な効果が得られない。一方で添加量がこの範囲より大きいと、反応液の流動性が損なわれ、また、反応器内の相対的な反応液量が低下するため酢酸生成の効率も低下する。
 また、樹脂が熱分解することを防ぐため、反応温度は100℃~250℃の範囲内であることが好ましい。
 本発明においては、酸は反応器に反応液を導入する以前か、または反応器内において反応液に添加する。反応液を循環させる場合は、反応液に添加した酸も反応液とともに循環させて再利用することができる。また、必要に応じて酸を新たに添加してもよい。
なお、反応系に酸を共存させるこれらの方法のうちでは、カルボニル化反応の触媒を担持させる樹脂担体への酸性点の付与が、より高カルボニル化度領域での反応速度を増加させことができるため好ましい。これは、以下の理由によると考えられる。
 カルボニル化反応は活性点(ロジウム錯体)が多く存在する触媒細孔内で進行している。特に高カルボニル化度領域では、上記反応式(2)の平衡が右側にずれるため、反応液全体でメタノールが少なくなり、反応液と細孔内との間でのメタノールの濃度差が小さくなる。そのため、反応液から細孔内へのメタノールの供給はされず、細孔内の活性点へのメタノール供給速度は、酢酸メチルの加水分解速度に依存することになる。一方で高カルボニル化度領域でも反応液の酢酸メチル濃度は十分に高く、反応液から細孔内への酢酸メチルの拡散は速やかに進行するものと考えられる。例えば、本発明者らの知見によれば、表2のように、反応液のメタノール濃度はカルボニル化度によって大きく異なるが、酢酸メチルはカルボニル化度が高くなってもある程度の濃度を保つ。
Figure JPOXMLDOC01-appb-T000002
 ここで、カルボニル化反応が進行すればさらにメタノールが消費されるため、酢酸メチルの加水分解によるメタノール生成がカルボニル化反応の速度へ寄与する程度はさらに大きくなる。このとき、カルボニル化反応の活性点(ロジウム錯体)の近傍に酸性点を付与すれば、細孔内で酢酸メチルの加水分解を触媒することにより、生成したメタノールを効率よくカルボニル化反応に供給することができる。そのため、カルボニル化反応速度もより効率的に増加させることができる。
 以下の実施例1では、反応系に酸を共存させることがカルボニル化反応速度に与える効果について検証する。また、実施例2~4では反応液に様々な条件で酸を共存させた場合の効果について検証する。
 本実施例では、スチレンを加えて重合したピリジン樹脂(合成例1~3)について、スルホン化処理によってカルボニル化反応速度が変化するかを調べ、スチレン樹脂に酸性点を付与した場合の効果を検証した。また、従来の製法により調整されたピリジン樹脂(合成例4)について、陽イオン交換樹脂を用いて反応液に酸性点を付与した場合の効果も検証した。
[合成例1]
[樹脂の調整]
 水相として、塩化ナトリウムを10wt%、亜硝酸ナトリウムを0.3wt%、ゼラチンを0.064wt%、及びドデシルベンゼンスルホン酸ナトリウムを0.009wt%をイオン交換水に溶解させた液を6250g調整した。油相として、4-ビニルピリジンを29.1wt%、スチレンを7.3wt%、ジビニルベンゼンとエチルビニルベンゼンとの混合物(ジビニルベンゼンの割合:55wt%)を43.6w%、及びイソオクタン20wt%を混合した液を3750g調整した。油相に過酸化ベンゾイル1.2wt%を溶解させ、ジャケットつき10L懸濁混合反応器に入れた。次いで水相を反応器下部から供給し、油滴が均一に分散するまで緩やかに攪拌を行った。その後、ジャケットの周囲に温水を流して昇温し、60℃で2時間、続けて90℃で4時間保持した後、常温まで冷却し、ろ過により固液分離を行い、樹脂を回収した。回収した樹脂は、溶剤による抽出洗浄によりポーラス剤を除去した後、篩により分級を行い、スチレン/4-ビニルベンゼンのモル比が1/4.0、架橋度30%の樹脂を得た。得られた樹脂を乾燥して、AUTOSORB-1(ユアサアイオニクス株式会社)を用いて比表面積をBET法で測定したところ、比表面積70m/g、細孔容積0.24ml/g、平均細孔径13.9nmだった。
[樹脂のスルホン化処理]
 攪拌機及び冷却器を備えたセパラブルフラスコに0.2gの硫酸銀と150mlの濃硫酸を添加して80~90℃まで加熱した後、上記調整した樹脂20g(乾燥基準)を水湿潤状態にして、数回に分けてゆっくりと三口フラスコに投入した。その後、100℃で3時間保持した後、室温まで冷却し、セパラブルフラスコの内容物を500mlの冷水中にゆっくりと注ぎ、石英綿を詰めたカラムでろ過を行った。さらに純水で十分に洗浄した後、メタノール洗浄を行い、スルホン化した樹脂を得た。得られた樹脂100mlをガラスカラムに充填し、2N HCL 500mlを通液した後、脱塩水250mlを通液して再生及び水洗した。さらにこの樹脂に5%塩化ナトリウム水溶液250mlを通液し、溶離液を回収した。得られた溶離液を1N NaOHで滴定したところ、この樹脂の陽イオン総交換容量は1.15mmol/mlであった。
[合成例2]
 油相の4-ビニルピリジンを36.4wt%、スチレンを13.6wt%、ジビニルベンゼンとエチルビニルベンゼンとの混合物(ジビニルベンゼンの割合:80wt%)を30.0w%、イソオクタンを20wt%とした以外は合成例1と同様に樹脂の調整及びスルホン化処理を行った。
 得られた樹脂はスチレン/4-ビニルベンゼンのモル比が1/2.7、架橋度が30%であった。さらに、得られた樹脂をスルホン化処理前に乾燥して、AUTOSORB-1(ユアサアイオニクス株式会社)を用いて比表面積をBET法で測定したところ、比表面積55m/g、細孔容積0.26ml/g、平均細孔径19.1nmだった。また、スルホン化した樹脂の陽イオン総交換容量は1.37mmol/mlであった。
[合成例3]
 油相の4-ビニルピリジンを36.4wt%、スチレンを7.3wt%、ジビニルベンゼンとエチルビニルベンゼンとの混合物(ジビニルベンゼンの割合:55wt%)を20.4w%、ジビニルベンゼンとエチルビニルベンゼンとの混合物(ジビニルベンゼンの割合:80wt%)を20.4w%、イソオクタンを20wt%とした以外は合成例1と同様に樹脂の調整及びスルホン化処理を行った。
 得られた樹脂はスチレン/4-ビニルベンゼンのモル比が1/5.0、架橋度が30%であった。さらに、得られた樹脂をスルホン化処理前に乾燥して、AUTOSORB-1(ユアサアイオニクス株式会社)を用いて比表面積をBET法で測定したところ、比表面積57m/g、細孔容積0.28ml/g、平均細孔径20.0nmだった。また、スルホン化した樹脂の陽イオン総交換容量は1.18mmol/mlであった。
[合成例4]
 油相の4-ビニルピリジンを36.4wt%、ジビニルベンゼンとエチルビニルベンゼンとの混合物(ジビニルベンゼンの割合:55wt%)を43.6w%、イソオクタンを20wt%とした以外は合成例1と同様に樹脂の調整を行った。
 得られた樹脂はスチレンを含まず、架橋度は30%であった。さらに、得られた樹脂を乾燥して、AUTOSORB-1(ユアサアイオニクス株式会社)を用いて比表面積をBET法で測定したところ、比表面積67m/g、細孔容積0.27ml/g、平均細孔径15.8nmだった。
[カルボニル化反応試験]
 スルホン化処理後の合成例1~3の樹脂、スルホン化未処理の合成例1~3の樹脂及び合成例4の樹脂それぞれ8.5g(dry基準)と酢酸ロジウム0.197g、反応液(メタノール25g、ヨウ化メチル17.2g、酢酸37.5g)を200mlジルコニウム製オートクレーブに仕込み、反応温度180℃、CO圧力5.0MPaGで1時間反応させ、触媒化した。触媒中のRh担持量は0.85wt%だった。
 これらの触媒の全量と反応液(メタノール20g、酢酸50g、ヨウ化メチル10g)とを200mlジルコニウム製オートクレーブに仕込み、反応温度180℃、CO圧力5.0MPaGで1時間反応させた。
 さらに、合成例4の樹脂については、さらに陽イオン交換樹脂(アンバーリスト15)を10wt%オートクレーブに追加して、同様に反応させた。
 表3に、異なるカルボニル度で反応させたときの、CO消費速度を測定して得られたカルボニル化反応速度を示す。なお、表3では、合成例4の樹脂について陽イオン交換樹脂を加えずに反応させたときの反応速度を1としたときのそれぞれの反応速度比を表している。また、図2Aに合成例1の樹脂、図2Bに合成例2の樹脂、図2Cに合成例3の樹脂、図2Dに合成例4の樹脂、のそれぞれに酸性点を付与した場合(実線)と付与しなかった場合(点線)の、異なるカルボニル化度で反応させたときのカルボニル化反応速度を、それぞれの樹脂について比較して示す。
 

 
Figure JPOXMLDOC01-appb-T000003
 表3並びに図2A、図2B、図2C及び図2Dから明らかなように、いずれの樹脂も、従来(合成例4で酸性点を付与しない場合)に比べて、酸性点を付与した場合に高カルボニル化度領域(Ca>0.8mol/mol)でのカルボニル化反応速度が上昇していた。また、図2A、図2B、図2C及び図2Dから明らかなように、反応液に酸性点を付与する場合と比較すると、ピリジン樹脂に酸性点を付与した場合にカルボニル化反応速度はより大きく上昇していた。
 
 ビニルピリジン樹脂8.5g(dry基準)と、酢酸ロジウム0.197g、反応液(メタノール25g、ヨウ化メチル17.2g、酢酸37.5g)を200mlジルコニウム製オートクレーブに仕込み、反応速度180℃、CO圧力5.0MPaGで1時間反応させ、触媒化した。触媒中のRh担持量は0.85%だった。
 上記触媒の全量と反応液(メタノール20g、酢酸50g、ヨウ化メチル10g)及び所定の陽イオン交換樹脂を200mlジルコニウム製オートクレーブに仕込み、反応速度180℃、CO圧力5.0MPaGで1時間反応させた。
 ローム・アンド・ハース社製陽イオン交換樹脂アンバーリスト15を反応液に対して10wt%添加した時のカルボニル化度とカルボニル化反応速度との関係を図3に示す。陽イオン交換樹脂10wt%を添加することにより、特に高カルボニル化度で著しい反応速度の増加が観察された。
 また、表4にアンバーリスト31(ゲルタイプ)、アンバーリスト35(MRタイプ)を添加した結果を示す。いずれの陽イオン交換樹脂もアンバーリスト15とほぼ同等の効果を示すことがわかった。
Figure JPOXMLDOC01-appb-T000004
 陽イオン交換樹脂の添加量と反応速度との関係を調べるため、実施例1において、使用するアンバーリスト15の添加量を変化させて、カルボニル化度が9.0mol/molの領域でのカルボニル化反応速度を比較した。
 図4にその結果を示す。この条件下で、HOを10wt%以上加えたとき(酢酸メチルの加水分解が律速とならないとき)の空時収量は約15mol/L・hである。アンバーリスト15の添加量が30%に近づくにつれ、カルボニル化反応速度もこの空時収量に近づくことがわかった。
 陽イオン交換樹脂以外の酸の効果を確認するため、実施例1で使用したアンバーリスト15の代わりに硫酸2wt%及びP・トルエンスルホン酸4wt%を添加してカルボニル化度とカルボニル化反応速度との関係を調べた。なお、添加した酸以外は実施例1と同一条件で試験を行った。
 表5にその結果を示す。硫酸及びP・トルエンスルホン酸の添加によっても陽イオン交換樹脂と同様に高カルボニル化度での著しい反応速度の向上が確認された。
Figure JPOXMLDOC01-appb-T000005
 この出願は2010年2月9日に出願された日本国特許出願番号第2010-026293からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。

 

Claims (8)

  1.  ロジウム含有固体触媒及びヨウ化アルキルの存在下で反応溶媒中のメタノールと一酸化炭素とを反応させて酢酸を生成させる方法であって、反応系に酢酸より酸解離定数(pK)の小さい酸を共存させることを特徴とするメタノールのカルボニル化による酢酸の製造方法。
  2.  ロジウムを、4-ビニルピリジン、スチレン、ジビニルベンゼンの共重合体をスルホン化したロジウム固定化用担体に担持させることを特徴とする、請求項1に記載の酢酸の製造方法。
  3. 前記共重合体を構成する4-ビニルピリジンの重量比が5~60%、スチレンの重量比が1~50%、ジビニルベンゼンの重量比が5~40%であることを特徴とする、請求項2に記載の酢酸の製造方法。
  4.  強酸性陽イオン交換樹脂を反応液に添加することを特徴とする、請求項1に記載の酢酸の製造方法。
  5.  前記陽イオン交換樹脂の添加量が反応液の量に対して1~30wt%であることを特徴とする、請求項4に記載の酢酸の製造方法。
  6. 4-ビニルピリジン、スチレン、ジビニルベンゼンの共重合体をスルホン化したメタノールのカルボニル化反応触媒用担体。
  7. 4-ビニルピリジンの重量比が5~60%、スチレンの重量比が1~50%、ジビニルベンゼンの重量比が5~40%であることを特徴とする、請求項6に記載のメタノールのカルボニル化反応触媒用担体。
  8.  架橋度が10%以上であることを特徴とする、請求項6又は7に記載のメタノールのカルボニル化反応触媒用担体。
     
     

     
PCT/JP2011/000676 2010-02-09 2011-02-08 メタノールのカルボニル化反応速度の向上方法 WO2011099264A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/257,379 US8802893B2 (en) 2010-02-09 2011-02-08 Method of accelerating methanol carbonylation
JP2011553750A JP5808674B2 (ja) 2010-02-09 2011-02-08 メタノールのカルボニル化反応速度の向上方法
EP11742014.1A EP2535325B1 (en) 2010-02-09 2011-02-08 Method for enhancing the carbonylation rate of methanol
BRPI1106072A BRPI1106072A2 (pt) 2010-02-09 2011-02-08 método para produzir ácido acético, e, veículo a ser usado em um catalisador para a reação de carbonilação de metanol
US14/323,437 US20140316071A1 (en) 2010-02-09 2014-07-03 Method of accelerating methanol carbonylation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-026293 2010-02-09
JP2010026293 2010-02-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/257,379 A-371-Of-International US8802893B2 (en) 2010-02-09 2011-02-08 Method of accelerating methanol carbonylation
US14/323,437 Division US20140316071A1 (en) 2010-02-09 2014-07-03 Method of accelerating methanol carbonylation

Publications (1)

Publication Number Publication Date
WO2011099264A1 true WO2011099264A1 (ja) 2011-08-18

Family

ID=44367552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000676 WO2011099264A1 (ja) 2010-02-09 2011-02-08 メタノールのカルボニル化反応速度の向上方法

Country Status (5)

Country Link
US (2) US8802893B2 (ja)
EP (1) EP2535325B1 (ja)
JP (1) JP5808674B2 (ja)
BR (1) BRPI1106072A2 (ja)
WO (1) WO2011099264A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203692A (ja) * 2012-03-28 2013-10-07 Mitsubishi Chemicals Corp 精製フェノール系化合物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014214226B2 (en) * 2013-02-05 2018-07-05 Siemens Energy Global GmbH & Co. KG Method and device for work-up of an amino acid salt solution that has been contaminated with carbon dioxide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253047A (ja) 1987-02-05 1988-10-20 ヘキスト・セラニーズ・コーポレーション メタノールのカルボニル化による酢酸の製造方法及びそのための触媒
JPH05306254A (ja) 1992-04-24 1993-11-19 Chiyoda Corp メタノールのカルボニル化による酢酸の製造方法
JPH05306253A (ja) 1992-04-24 1993-11-19 Chiyoda Corp メタノールのカルボニル化による酢酸の製造方法
JPH06315637A (ja) 1993-04-30 1994-11-15 Chiyoda Corp カルボニル化反応用固体触媒及びそれを用いる酢酸の製造方法
JPH06345680A (ja) * 1992-04-03 1994-12-20 China Petrochem Dev Corp アルコールのカルボニル化によるカルボン酸の改良製造法
JP2003530218A (ja) * 2000-04-05 2003-10-14 イーストマン ケミカル カンパニー 炭化ポリスルホン化ジビニルベンゼン−スチレンコポリマーに担持されたカルボニル化触媒
JP2008524179A (ja) * 2004-12-17 2008-07-10 ビーピー ケミカルズ リミテッド 酢酸を製造するための方法および触媒

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2540985A (en) * 1949-12-06 1951-02-06 Monsanto Chemicals Quaternary ammonium derivatives of vinylpyridine-polyinylbenzene copolymers
JPS5032203Y2 (ja) 1971-02-02 1975-09-19
US4100359A (en) * 1977-01-12 1978-07-11 Uop Inc. Carbonylation of alcohols
IT1166581B (it) * 1979-01-17 1987-05-05 Oronzio De Nora Impianti Membrane cationiche a base di copolimeri solfonati di stirene divinilbenzene e 2- o 4-vinilpiridina o acido acrilico, procedimento per la loro preparazione ed uso in celle di elettrolisi
US5334755A (en) * 1992-04-24 1994-08-02 Chiyoda Corporation Process for the production of acetic acid from methanol and carbon monoxide using supported rhodium catalyst
US5679837A (en) * 1992-09-10 1997-10-21 Daicel Chemical Industries, Ltd. Process for producing acetic acid or methyl acetate and catalyst therefor
US5364963A (en) * 1993-04-30 1994-11-15 Chiyoda Corporation Supported rhodium catalyst, method of preparing same and process of producing acetic acid by methanol carbonylation using same
EP1091981B1 (en) * 1998-06-12 2007-08-22 Waters Investments Limited Novel ion exchange porous resins for solid phase extraction and chromatography
US6420304B1 (en) * 2000-04-20 2002-07-16 China Petrochemical Development Corporation Polymer-supported carbonylation catalyst and its use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253047A (ja) 1987-02-05 1988-10-20 ヘキスト・セラニーズ・コーポレーション メタノールのカルボニル化による酢酸の製造方法及びそのための触媒
JPH06345680A (ja) * 1992-04-03 1994-12-20 China Petrochem Dev Corp アルコールのカルボニル化によるカルボン酸の改良製造法
JPH05306254A (ja) 1992-04-24 1993-11-19 Chiyoda Corp メタノールのカルボニル化による酢酸の製造方法
JPH05306253A (ja) 1992-04-24 1993-11-19 Chiyoda Corp メタノールのカルボニル化による酢酸の製造方法
JPH06315637A (ja) 1993-04-30 1994-11-15 Chiyoda Corp カルボニル化反応用固体触媒及びそれを用いる酢酸の製造方法
JP2003530218A (ja) * 2000-04-05 2003-10-14 イーストマン ケミカル カンパニー 炭化ポリスルホン化ジビニルベンゼン−スチレンコポリマーに担持されたカルボニル化触媒
JP2008524179A (ja) * 2004-12-17 2008-07-10 ビーピー ケミカルズ リミテッド 酢酸を製造するための方法および触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIMAZU ET AL.: "Methanol Carbonylation Catalyzed by Polymer-Suppo rted Rhodium Complexes", APPL. CATAL., vol. 35, no. 2, 1987, pages 279 - 288, XP002583408 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203692A (ja) * 2012-03-28 2013-10-07 Mitsubishi Chemicals Corp 精製フェノール系化合物の製造方法

Also Published As

Publication number Publication date
US20140316071A1 (en) 2014-10-23
US8802893B2 (en) 2014-08-12
BRPI1106072A2 (pt) 2016-05-03
US20120010371A1 (en) 2012-01-12
EP2535325A4 (en) 2015-10-28
JP5808674B2 (ja) 2015-11-10
EP2535325B1 (en) 2018-04-25
JPWO2011099264A1 (ja) 2013-06-13
EP2535325A1 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP3320728B2 (ja) 高分子カルボニル化触媒系
TWI544963B (zh) 醛吸附材、醛的除去方法、乙酸之製造方法及醛吸附材之再生方法
JPS5843384B2 (ja) 酢酸エチルの製造法
KR100371761B1 (ko) 가용성이리듐기재촉매의존재하에서,카르복실산또는그의해당에스테르의제조방법
WO2011099264A1 (ja) メタノールのカルボニル化反応速度の向上方法
EP3431177B1 (en) Vinylpyridine resin for catalyst carriers, production method therefor, and catalyst for methanol carbonylation reaction
TW201700168A (zh) 觸媒系統及方法
KR20170076708A (ko) 메틸 메타크릴레이트를 제조하기 위한 산화성 에스테르화 방법
JPS63118305A (ja) アクリルアミドポリマーの製造方法
JPH07309800A (ja) 有機カルボン酸の製造方法
KR20120024310A (ko) 프로필렌 글리콜 모노메틸 에테르 아세테이트의 제조방법
JP7061798B2 (ja) 陰イオン交換体を触媒とする糖脂肪酸エステルの製造方法
TWI694985B (zh) 由甲醛製造乙醇酸或其衍生物之方法
JPS58198442A (ja) メタクリル酸メチル又はアクリル酸メチルの改良製造方法
CN101396670A (zh) 脱除醋酸中碘化物的吸附剂及其制备方法与应用
JPH08151346A (ja) ケトマロン酸の製造方法
CN114507165B (zh) 固体酸催化合成4,4′-二氯二苯砜的方法
WO2023182349A1 (ja) サリチル酸エステルの製造方法
CN105503528A (zh) 碳酸乙烯酯水解生产乙二醇的方法
KR20120037204A (ko) 중형기공 실리카 합성 과정에 헤테로폴리산을 도입한 담체에 팔라듐이 담지된 촉매, 이의 제조 방법 및 상기 촉매를 이용하는 과산화수소의 제조방법
JP2002520380A (ja) エステル合成
JP4395695B2 (ja) イオン交換樹脂の使用方法
JP3218125B2 (ja) トリオキサンの製造法
SU1377139A1 (ru) Способ приготовлени катализатора дл окислени п-ксилола и/или п-метилтолуилата
JP3009978B2 (ja) トリオキサンの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13257379

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011742014

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553750

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1106072

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1106072

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111005