WO2011099255A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2011099255A1
WO2011099255A1 PCT/JP2011/000581 JP2011000581W WO2011099255A1 WO 2011099255 A1 WO2011099255 A1 WO 2011099255A1 JP 2011000581 W JP2011000581 W JP 2011000581W WO 2011099255 A1 WO2011099255 A1 WO 2011099255A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
pipe
heat transfer
refrigerant pipe
Prior art date
Application number
PCT/JP2011/000581
Other languages
English (en)
French (fr)
Inventor
好男 織谷
善治 道辻
英樹 澤水
芳正 菊池
正憲 神藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN2011900003368U priority Critical patent/CN202927961U/zh
Publication of WO2011099255A1 publication Critical patent/WO2011099255A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0323Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0616Outlets that have intake openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/14Details or features not otherwise provided for mounted on the ceiling

Definitions

  • the present invention relates to an air conditioner.
  • a cross fin type heat exchanger As a heat exchanger for an air conditioner, a cross fin type heat exchanger has been widely used.
  • This heat exchanger includes a plurality of fins arranged at predetermined intervals, and a plurality of refrigerant tubes (heat transfer tubes) penetrating these fins.
  • refrigerant tubes heat transfer tubes
  • Patent Document 1 discloses a heat exchanger provided with a pass number changing means for changing the number of passes on the side having a higher liquid refrigerant ratio when functioning as an evaporator and when functioning as a condenser. .
  • Patent Document 1 describes that a heat exchanger having an efficient heat exchange performance can be provided in both cooling and heating operations.
  • a drain pan for storing water droplets generated in the heat exchanger is disposed below the heat exchanger in a general indoor unit.
  • This drain pan has a dish shape extending along the lower end of the heat exchanger.
  • the drain pan has a bottom portion on which the lower end portion of the heat exchanger is placed and a pair of side wall portions extending upward from both sides of the bottom portion.
  • the heat exchanger is arranged in a state of standing upward from the drain pan.
  • the lower part of the heat exchanger is disposed so as to face the side wall of the drain pan. Therefore, the side wall of the drain pan prevents a smooth flow of air in the lower part of the heat exchanger.
  • the wind speed when air passes through the heat exchanger is smaller than other parts (for example, near the center in the height direction), and the efficiency of heat exchange tends to be low.
  • the present invention has been made in view of such a point, and the object of the present invention is to improve the air flow in the lower part of the heat exchanger arranged along the drain pan, An object of the present invention is to provide an air conditioner equipped with an efficient heat exchanger.
  • An air conditioner of the present invention includes a heat exchanger, a drain pan having a bottom portion extending along a lower end portion of the heat exchanger, and a pair of side wall portions extending upward from both sides of the bottom portion. ing.
  • the heat exchanger includes a plurality of fins, a plurality of refrigerant tubes, and a flow divider.
  • the plurality of fins are arranged side by side so as to face each other with a gap therebetween.
  • Each refrigerant pipe in the plurality of refrigerant pipes has a pair of open end portions serving as refrigerant inlets and outlets.
  • Each refrigerant tube includes at least one of a plurality of heat transfer tube portions extending along the direction in which the plurality of fins are arranged in contact with the plurality of fins.
  • the shunt has a plurality of branch pipes. Each branch pipe is connected to one of the open ends of the corresponding refrigerant pipe.
  • the plurality of heat transfer tube portions are arranged in a plurality of stages in the height direction of the heat exchanger and in a plurality of rows in the thickness direction (D4) of the heat exchanger.
  • the lower part of the heat exchanger located between the pair of side wall portions has a smaller number of rows of the heat transfer tube portions than other portions.
  • the lower portion of the heat exchanger is recessed at the downstream side in the flow direction at a position facing the upstream side wall portion in the air flow direction, and the height from the bottom portion is the upstream side wall. It has a recessed part (72) larger than the part.
  • the lower refrigerant pipe including the heat transfer pipe portion located at the lower part of the heat exchanger has a smaller average value of the refrigerant flow rate than refrigerant pipes other than the lower refrigerant pipe.
  • FIG. 1 It is a block diagram of the air conditioner containing the indoor unit and outdoor unit which concern on one Embodiment of this invention. It is sectional drawing which shows the said indoor unit. It is a bottom view which shows the positional relationship of the impeller in the said indoor unit, a heat exchanger, and a blower outlet. It is a bottom view which shows the said heat exchanger. It is the VV sectional view taken on the line of FIG. It is sectional drawing which shows the positional relationship of the heat exchanger and drain pan in the said indoor unit.
  • (A) is the schematic for demonstrating the example 1 of arrangement
  • (b) is the schematic for demonstrating the example 2 of arrangement
  • the air conditioner 81 includes an indoor unit 31 and an outdoor unit 82.
  • This air conditioner 81 includes a heat exchanger 71 disposed in the indoor unit 31, a compressor 83, a heat exchanger 84 and an expansion valve 85 disposed in the outdoor unit 82, and pipes 61 to 61 connecting them. 64 is provided.
  • the air conditioner 81 can be switched between a cooling operation and a heating operation by switching the flow direction of the refrigerant with a four-way switching valve 86 disposed in a part of the piping of the refrigerant circuit.
  • the indoor unit 31 includes a blower 51
  • the outdoor unit 82 includes a blower 87.
  • the indoor unit 31 is a ceiling-embedded type, and includes a substantially rectangular parallelepiped housing 33 embedded in an opening provided in the ceiling, and a decorative panel 47 attached to the lower portion of the housing 33.
  • the decorative panel 47 has a rectangular suction grill 39 provided in the center thereof, and four elongated rectangular outlets 37 provided along each side of the suction grill 39.
  • the indoor unit 31 includes a centrifugal blower (turbo fan) 51, a heat exchanger 71, a drain pan 45, an air filter 41, a bell mouth 25, and the like in a housing 33.
  • the centrifugal blower 51 includes the impeller 23 and the fan motor 11.
  • the fan motor 11 is fixed to the approximate center of the top plate of the housing 33.
  • the heat exchanger 71 is disposed so as to surround the periphery of the impeller 23 in a state of rising upward from a dish-shaped drain pan 45 extending along the lower end portion thereof.
  • the detailed structure of the heat exchanger 71 will be described later.
  • the drain pan 45 stores water droplets generated in the heat exchanger 71.
  • the stored water is discharged through a drainage path (not shown).
  • the drain pan 45 has a bottom portion 45a and a pair of side wall portions 45b and 45c extending upward from both sides of the bottom portion 45a.
  • the lower part of the heat exchanger 71 is disposed so as to face the side wall portions 45 b and 45 c of the drain pan 45.
  • the air filter 41 has a size that covers the entrance of the bell mouth 25 and is provided between the bell mouth 25 and the suction grill 39 along the suction grill 39.
  • the impeller 23 includes a hub 15, a shroud 19, and a plurality of blades 21.
  • the hub 15 is fixed to the lower end portion of the rotating shaft 13 of the fan motor 11.
  • the shroud 19 is disposed opposite to the hub 15 on the front F side in the axial direction A of the rotary shaft 13.
  • the shroud 19 has an air suction port 19 a that opens in a circle around the rotation shaft 13.
  • the plurality of blades 21 are arranged between the hub 15 and the shroud 19 at a predetermined interval along the circumferential direction of the air suction port 19a.
  • the bell mouth 25 is disposed opposite to the shroud 19 on the front F side in the axial direction A.
  • the bell mouth 25 includes a bell mouth main body 251 and a flange portion 252 projecting from the periphery on the front F side of the bell mouth main body 251 around the bell mouth main body 251.
  • the bell mouth main body 251 has a through hole 25a penetrating in the front-rear direction.
  • the heat exchanger 71 has a plurality of thin plate-like fins 73 and a plurality of heat transfer tube portions P inserted through unillustrated through holes formed in the fins 73.
  • This is a cross fin type heat exchanger.
  • the plurality of fins 73 are arranged side by side so that the adjacent sides face each other with a gap therebetween.
  • Each heat transfer tube portion P extends along the direction in which the plurality of fins 73 are juxtaposed. Each heat transfer tube portion P is in contact with the plurality of fins 73. As shown in FIGS. 5 and 6, the plurality of heat transfer tube portions P are arranged in a plurality of stages in the height direction D ⁇ b> 3 of the heat exchanger 71 and in three rows in the thickness direction D ⁇ b> 4 of the heat exchanger 71. .
  • the heat exchanger 71 has a recess 72 that is recessed downstream in the air flow direction at a portion facing the side wall 45b of the drain pan 45 on the upstream side in the air flow direction (the direction indicated by the one-dot chain line arrow in FIG. 6).
  • the recess 72 is formed by making the number of heat transfer tube portions P in the first row L1 on the upstream side smaller than the other second rows L2 and third rows L3.
  • the plurality of fins 73 have a shape cut out in accordance with the shape of the recess 72.
  • the heat transfer tube portion P is provided only in the second row L2 and the third row L3.
  • the heat transfer tube part P is provided in the first row L1, the second row L2, and the third row L3.
  • the first row L1 on the upstream side is shorter than the other two rows L2 and L3.
  • the lower end of the first row L1 on the upstream side is located above the lower ends of the other rows L2 and L3.
  • a plurality of heat transfer tube portions P are arranged in a height direction between a position above the side wall portion 45b (a position slightly above the side wall portion 45b) and the upper end portion of the heat exchanger 71.
  • the heat transfer tube portions P are not arranged in a portion facing the upstream side wall portion 45b and in the vicinity thereof.
  • the height h1 of the recess 72 from the bottom 45a of the drain pan 45 is greater than the height h2 of the side wall 45b from the bottom 45a.
  • the recess dimension (the dimension in the thickness direction D4) of the recess 72 is approximately 1/3 of the thickness of the heat exchanger 71 (the thickness of the portion where the three heat transfer tube portions P are provided). Thus, a gap is formed between the heat exchanger 71 and the upper end portion of the side wall portion 45b of the drain pan 45 so that air can flow smoothly.
  • the heat exchanger 71 is a plate-shaped front plate disposed substantially parallel to the fins 73 located at one end in the juxtaposition direction of the plurality of fins 73 and covering the fins 73.
  • a tube plate 77 is provided.
  • the heat exchanger 71 has a plate-like rear tube plate 79 arranged so as to be substantially parallel to the fin 73 positioned at the other end portion in the juxtaposed direction and to cover the fin 73.
  • the heat exchanger 71 further includes a flow divider 94 and a header 91.
  • the shunt 94 includes a shunt main body 95 and a plurality of capillary tubes (branch pipes) 96 branched from the shunt main body 95.
  • the shunt 94 is connected to the piping 64 of the refrigerant circuit.
  • the header 91 has a header main body 92 and a plurality of branch pipes 93 branched from the header main body 92.
  • the header 91 is connected to the piping 61 of the refrigerant circuit.
  • a part of the plurality of capillary tubes 96 in the flow divider 94 is connected to an opening end E1 (described later) provided in the rear tube plate 79, and the remaining part of the plurality of capillary tubes 96 is provided in the front tube plate 77. It is connected to an opening end E1 described later.
  • the number of heat transfer pipe portions P used for the refrigerant pipe (refrigerant path) R provided in the lower part of the heat exchanger 71 is made larger than that of other parts. This will be described below.
  • FIG. 7A is a schematic diagram for explaining an arrangement example 1 of the refrigerant pipe R in the heat exchanger 71.
  • FIG. 7A is a schematic side view of a part of the rear tube plate 79 as viewed from the direction D1 in FIG. 4 on the left side, and FIG. 7A shows a part of the front tube plate 77 in FIG. It is the schematic side view seen from the direction D2 side.
  • FIG. 7A shows four refrigerant pipes R (R1, R2, R3, R4).
  • Each refrigerant pipe R is a metal pipe having a pair of open end portions E1 and E2 that serve as refrigerant inlets and outlets and a refrigerant flow path that is continuous inside.
  • the plurality of refrigerant tubes R provided in the heat exchanger 71 include, for example, two heat transfer tube portions P and one bent tube portion U that connects these end portions, or three or more heat transfer tube portions P. And a plurality of bent pipe portions U connecting these in series may be included.
  • what consists of one heat-transfer pipe part P, ie, the thing formed by one straight pipe, may be contained in the some refrigerant
  • Each refrigerant pipe R may be formed by using a so-called hairpin in which one pipe is bent in a U-shape near the center, and ends of straight pipes are connected by a U-shaped U-shaped pipe. May be formed.
  • the heat transfer tube portion P refers to a portion of the refrigerant tube R other than the bent tube portion U.
  • the heat transfer pipe part P is a part of the straight pipe
  • the bent pipe part U is formed of the U-shaped pipe. Part.
  • the bent pipe portion U is a folded portion bent at a predetermined radius of curvature
  • the heat transfer tube portion P is a portion other than the folded portion.
  • the heat transfer tube portion P is extended between the front tube plate 77 and the rear tube plate 79.
  • the length of one heat transfer tube portion P is substantially equal to the flow path length of the refrigerant tube R from the front tube plate 77 to the rear tube plate 79. Therefore, the flow path length of the refrigerant pipe R is a value obtained by multiplying the length of the heat transfer pipe part P by the number of the heat transfer pipe parts P, and a value obtained by multiplying the length of the bent pipe part U by the number of the bent pipe parts U.
  • the total value is obtained by adding
  • Refrigerant pipes R1, R2, and R3 shown in FIG. 7 (a) are odd-numbered refrigerant pipes composed of three (odd number) heat transfer pipe portions P and two bent pipe portions U. This is an even-numbered refrigerant tube composed of six (even number) heat transfer tube portions P and five bent tube portions U.
  • the refrigerant tube R1 includes the heat transfer tube portions P11, P12, P13, the bent portion U that connects the ends of the heat transfer tube portion P11 and the heat transfer tube portion P12 on the front tube plate 77 side, and the rear tube plate. On the 79th side, the heat transfer tube portion P12 and the bent portion U connecting the ends of the heat transfer tube portion P13 are configured.
  • the refrigerant tube R2 includes heat transfer tube portions P21, P22, P23, a bent portion U connecting the ends of the heat transfer tube portion P21 and the heat transfer tube portion P22 on the front tube plate 77 side, and a heat transfer tube on the rear tube plate 79 side. It is comprised from the bending part U which connects the edge parts of part P22 and the heat exchanger tube part P23.
  • the refrigerant tube R3 includes heat transfer tube portions P31, P32, P33, a bent portion U connecting the ends of the heat transfer tube portion P31 and the heat transfer tube portion P32 on the front tube plate 77 side, and a heat transfer tube on the rear tube plate 79 side. It is comprised from the bending part U which connects the edge parts of the part P32 and the heat exchanger tube part P33.
  • the refrigerant pipe (lower refrigerant pipe) R4 includes the heat transfer pipe portions P41, P42, P43, P44, P45, and P46, the ends of the heat transfer pipe portion P41 and the heat transfer pipe portion P42 on the rear tube plate 79 side, and the heat transfer pipe portion P43. And the end portions of the heat transfer tube portion P42 and the heat transfer tube portion P43 on the front tube plate 77 side, and the bent portion U connecting the ends of the heat transfer tube portion P44 and the heat transfer tube portions P45 and P46, respectively. And bent portions U that connect the end portions of the heat transfer tube portion P44 and the heat transfer tube portion P45 to each other.
  • one capillary tube 96a is connected to the open end E1 of the refrigerant pipe R4 provided on the front tube plate 77 (see FIG. 4).
  • the other capillary tube 96 includes an open end E1 of the refrigerant pipe R1 provided on the rear tube plate 79, an open end E1 of the refrigerant pipe R2, an open end E1 of the refrigerant pipe R3, and an unillustrated refrigerant pipe R. Each is connected to the open end E1.
  • the plurality of branch pipes 93 of the header 91 are respectively connected to the opening ends E2 of the refrigerant pipes R1, R2, R3, and R4 provided on the front pipe plate 77, and the opening ends E2 of the other refrigerant pipes R not shown. It is connected. All the open ends E ⁇ b> 2 of the refrigerant tubes R are provided on the front tube plate 77.
  • the refrigerant tube R4 has an even number (six) of heat transfer tube portions P, and the other refrigerant tubes R have an odd number of heat transfer tube portions P.
  • the refrigerant pipe R that is an odd multiple of the effective length L and the refrigerant pipe R that is an even multiple of the effective length L are mixed. be able to.
  • each refrigerant pipe R1, R2, R3, R4 in FIG. the refrigerant is sent to the heat exchanger 71 through the pipe 64 of FIG.
  • the refrigerant sent through the pipe 64 flows into the flow divider main body 95, branches into a plurality of capillary tubes 96, and opens at the open end E ⁇ b> 1 to which each branch pipe 96 is connected.
  • the refrigerant that has reached the opening end E1 of each refrigerant pipe R reaches the opening end E2 of each refrigerant pipe R through the heat transfer pipe portion P and the bent portion U, and the header 91 connected to each opening end E2. It merges with the header body 92 through the branch pipe 93.
  • This refrigerant flows to the four-way switching valve 86 side through the pipe 61 connected to the header main body 92.
  • FIG. 7B is a schematic diagram for explaining an arrangement example 2 of the refrigerant pipe R in the heat exchanger 71.
  • This arrangement example 2 is different from the arrangement example 1 described above in the connection order of the heat transfer pipe portions P41 to P46 constituting the refrigerant pipe R4.
  • the other refrigerant pipes R1 to R3 in Arrangement Example 2 are the same as in Arrangement Example 1, and will not be described.
  • the end portions of the heat transfer tube portion P43 and the heat transfer tube portion P46 and the end portions of the heat transfer tube portion P44 and the heat transfer tube portion P45 are respectively connected by the bent tube portion U on the rear tube plate 79 side.
  • the heat transfer tube portion P45 and the heat transfer tube portion P46 are connected by a bent tube portion U.
  • the opening end E2 on the front tube plate 77 side is an end of the heat transfer tube P44.
  • the capillary tube 96a connected to the opening end E1 of the refrigerant pipe R4 having a large flow path length is connected to the opening end E1 of the refrigerant pipes R1, R2, and R3 having a small flow path length.
  • the pressure loss during refrigerant circulation is larger than that of the branch pipe 96.
  • the refrigerant pipe R having a larger flow path length is arranged in the portion with a small number of rows (two rows) than the portion with a large number of rows (three rows). The ratio is high.
  • the refrigerant pipe R4 using the six heat transfer pipe portions P is provided in the portion where the number of rows is small, and the number of rows is large.
  • the refrigerant pipes R1, R2, R3 using the three heat transfer pipe portions P and the other refrigerant pipe R (not shown) are provided in the portion is illustrated, it is not limited to this.
  • FIG. 8 is a cross-sectional view showing a modification of the heat exchanger 71.
  • the recess 72 includes a first recess 72a and a second recess 72b formed in a stepped shape.
  • the first recess 72a is formed by reducing the number of heat transfer tube portions P in the first row L1 on the upstream side from the other two rows L2, L3, and the second recess 72b It is formed by making the number of heat transfer tube portions P in the second row L2 smaller than that in the third row L3 on the downstream side.
  • the plurality of fins 73 have a shape that is cut out in accordance with the shapes of the first recess 72a and the second recess 72b.
  • the first row L1 on the upstream side is shorter than the other two rows L2 and L3, and the second row L2 at the center is shorter than the third row L3 on the downstream side.
  • the lower end of the first row L1 on the upstream side is located above the lower ends of the other rows L2, L3, and the lower end of the second row L2 at the center is located above the third row L3 on the downstream side. is doing.
  • the height of the first recess 72a from the bottom 45a of the drain pan 45 is greater than the height of the side wall 45b from the bottom 45a. Further, the height of the second recess 72b from the bottom 45a of the drain pan 45 is preferably set to be higher than the height of the side wall 45b from the bottom 45a.
  • the recess size of the first recess 72a is approximately 1/3 of the thickness of the heat exchanger 71 (the thickness of the portion where the heat transfer tube portions P are provided in three rows).
  • the recess size of the second recess 72 b is approximately 1/3 of the thickness of the heat exchanger 71.
  • the lower part of the heat exchanger located between the pair of side wall portions has a smaller number of rows of the heat transfer tube portions than other portions. Further, the lower portion of the heat exchanger is recessed at the downstream side in the flow direction at a position facing the side wall portion on the upstream side in the air flow direction, and the height from the bottom portion is on the upstream side. A concave portion larger than the side wall portion is provided.
  • the air flow is improved as compared with the conventional one.
  • the lower part of the heat exchanger is at a position facing the side wall of the drain pan, The wind speed of air still tends to be small compared to the central part in the vertical direction.
  • the lower refrigerant pipe including the heat transfer pipe portion located in the lower part of the heat exchanger has a smaller average value of the refrigerant flow rate than refrigerant pipes other than the lower refrigerant pipe.
  • the “average value of the refrigerant flow rate” in this aspect means, for example, when there are a plurality of lower refrigerant pipes, the total value obtained by adding the refrigerant flow quantity of each lower refrigerant pipe is the number of lower refrigerant pipes.
  • the refrigerant circulation amount of the lower refrigerant pipe is meant.
  • the branch pipe connected to the lower refrigerant pipe including the heat transfer pipe portion located at the lower part of the heat exchanger is more than the branch pipe connected to the refrigerant pipe other than the lower refrigerant pipe.
  • the average value of pressure loss is large. That is, in this aspect, the circulation amount (circulation amount) of the refrigerant flowing to the refrigerant pipe to which the branch pipe is connected is adjusted by adjusting the pressure loss in the branch pipe.
  • the circulation amount of the refrigerant (circulation amount) can be made relatively smaller than other refrigerant pipes.
  • the “average value of pressure loss values” in this aspect is, for example, a total value obtained by adding the pressure loss values of branch pipes connected to each lower refrigerant pipe when there are a plurality of lower refrigerant pipes. Is divided by the number of lower refrigerant pipes, and when there is one lower refrigerant pipe, it means the pressure loss value of the branch pipe connected to the lower refrigerant pipe. Similarly, when there are a plurality of refrigerant pipes other than the lower refrigerant pipe, the total value obtained by adding the pressure loss values of the branch pipes connected to the respective refrigerant pipes other than the lower refrigerant pipe is used as the refrigerant other than the lower refrigerant pipe. It means a value divided by the number of pipes, and when there is one refrigerant pipe other than the lower refrigerant pipe, it means a pressure loss value of a branch pipe connected to the refrigerant pipe.
  • the lower refrigerant pipe including the heat transfer pipe portion located at the lower portion of the heat exchanger has a larger average flow path length than refrigerant pipes other than the lower refrigerant pipe. That is, in this aspect, the flow amount (circulation amount) of the refrigerant flowing to each refrigerant tube is adjusted by adjusting the flow length of the refrigerant tube to adjust the pressure loss of the refrigerant tube itself. In the lower refrigerant pipe, since the average value of the flow path length is increased, the flow resistance during the flow of the refrigerant is larger than that of other refrigerant pipes other than the lower refrigerant pipe.
  • the circulation amount of the refrigerant (circulation amount) can be made relatively smaller than other refrigerant pipes. Therefore, in the lower refrigerant pipe disposed at the lower part of the heat exchanger having a lower wind speed than other parts, the flow rate of the refrigerant can be adjusted to an amount that can sufficiently change the phase. It becomes possible to suppress the change from becoming insufficient.
  • the “average value of the flow path length” in this aspect means, for example, when there are a plurality of lower refrigerant tubes, the total value obtained by adding the flow lengths of the respective lower refrigerant tubes is the number of lower refrigerant tubes.
  • the number of the lower refrigerant pipe is one, it means the flow length of the lower refrigerant pipe.
  • the plurality of heat transfer tube portions are arranged in at least three rows, and the lower portion of the heat exchanger moves from the first row on the upstream side toward the third row on the downstream side.
  • the number of columns may be reduced stepwise, and the recesses may be formed in a step shape.
  • the concave portion is formed in a step shape, a space between the upstream side wall portion and the lower portion of the heat exchanger can be further increased between the pair of side wall portions, and the air It becomes possible to improve the flow.
  • one of the plurality of capillary tubes of the flow divider is connected to the opening end provided in the front tube plate is described as an example.
  • two or more capillary tubes are connected. It may be connected to the open end of the front tube plate, or all capillary tubes may be connected to the open end of the rear tube plate.
  • the lower refrigerant pipe has been described as an example in which the average value of the pressure loss is larger than the other refrigerant pipes, and the average value of the flow path length is larger. It is not limited to this. That is, the lower refrigerant pipe may have a form in which only the average value of the pressure loss values is larger among the average pressure loss value and the average flow path length than the refrigerant pipes other than the lower refrigerant pipe. Only the average value of the channel lengths may be large.

Abstract

 複数の伝熱管部Pは、熱交換器71の高さ方向D3に複数段並び、前記熱交換器71の厚み方向D4に複数列並ぶように配列されている。一対の側壁部45b,45cの間に位置する熱交換器71の下部は、他の部位よりも伝熱管部Pの列数が少ない。熱交換器71の前記下部は、空気の流れ方向の上流側の側壁部45bに対向する位置に、前記流れ方向の下流側に凹み、底部45aからの高さが前記上流側の側壁部45bよりも大きい凹部72を有している。熱交換器71の前記下部に位置する伝熱管部Pを含む下部冷媒管R4は、下部冷媒管R4以外の冷媒管Rよりも、冷媒の流通量の平均値が小さい。

Description

空気調和機
 本発明は、空気調和機に関するものである。
 従来から、空気調和機の熱交換器としては、クロスフィン型の熱交換器が広く用いられている。この熱交換器は、所定の間隔をあけて並べられた複数のフィンと、これらのフィンを貫通する複数の冷媒管(伝熱管)とを備えている。空気調和機の筐体内に吸い込まれた空気は、熱交換器のフィン同士の隙間を通過する際に冷媒管内を流通する冷媒との間で熱交換されて温度が調節される。
 例えば特許文献1には、蒸発器として機能する場合と凝縮器として機能する場合とで液冷媒の比率が高い側のパス数を変更するパス数変更手段を備えた熱交換器が開示されている。この特許文献1には、冷房及び暖房のいずれの運転においても効率的な熱交換性能を有する熱交換器を提供できる、と記載されている。
特開2007-278676号公報
 ところで、一般の室内機における熱交換器の下方には、熱交換器において生じる水滴を収容するためのドレンパンが配設されている。このドレンパンは、熱交換器の下端部に沿って延びる皿形状を有している。ドレンパンは、熱交換器の下端部が載置される底部とこの底部の両サイドから上方に延びる一対の側壁部とを有している。熱交換器は、ドレンパンから上方に起立した状態で配置されている。熱交換器の下部は、ドレンパンの側壁部に対向するように配置されている。したがって、ドレンパンの側壁部は、熱交換器の下部における空気の円滑な流れを妨げる。その結果、熱交換器の下部では、他の部位(例えば高さ方向の中央付近)に比べて空気が熱交換器を通過するときの風速が小さくなり、熱交換の効率が低くなりやすい。
 しかし、特許文献1に開示されている熱交換器では、ドレンパンの近傍における空気の円滑な流れを改善するのは困難である。
 そこで、本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、ドレンパンに沿って配置された熱交換器の下部における空気の流れを改善することができ、熱交換の効率に優れた熱交換器を備えた空気調和機を提供することにある。
 本発明の空気調和機は、熱交換器と、前記熱交換器の下端部に沿って延設された底部及びこの底部の両サイドから上方にそれぞれ延びる一対の側壁部を有するドレンパンと、を備えている。
 前記熱交換器は、複数のフィンと、複数の冷媒管と、分流器とを備えている。前記複数のフィンは、隣同士が互いに隙間をあけた状態で対面するように並設されている。前記複数の冷媒管における各冷媒管は、冷媒の出入口となる一対の開口端部を有している。各冷媒管は、前記複数のフィンに接した状態で前記複数のフィンの並設方向に沿って延設された複数の伝熱管部の少なくとも1つを含む。前記分流器は、複数の分岐管を有している。各分岐管は、対応する冷媒管の一方の前記開口端部に接続されている。
 前記複数の伝熱管部は、前記熱交換器の高さ方向に複数段並び、前記熱交換器の厚み方向(D4)に複数列並ぶように配列されている。
 前記一対の側壁部の間に位置する前記熱交換器の下部は、他の部位よりも前記伝熱管部の列数が少ない。前記熱交換器の前記下部は、空気の流れ方向の上流側の前記側壁部に対向する位置に、前記流れ方向の下流側に凹み、かつ、前記底部からの高さが前記上流側の前記側壁部よりも大きい凹部(72)を有している。
 前記熱交換器の前記下部に位置する前記伝熱管部を含む下部冷媒管は、前記下部冷媒管以外の冷媒管よりも、冷媒の流通量の平均値が小さい。
本発明の一実施形態に係る室内機と室外機とを含む空気調和機の構成図である。 前記室内機を示す断面図である。 前記室内機における羽根車、熱交換器及び吹出口の位置関係を示す底面図である。 前記熱交換器を示す底面図である。 図4のV-V線断面図である。 前記室内機における熱交換器とドレンパンの位置関係を示す断面図である。 (a)は、前記熱交換器における冷媒管の配設例1を説明するための概略図であり、(b)は、前記冷媒管の配設例2を説明するための概略図である。 前記熱交換器の変形例を示す断面図である。
 以下、本発明の一実施形態に係る空気調和機81について図面を参照して説明する。
 <空気調和機の全体構造>
 図1に示すように、空気調和機81は、室内機31と室外機82とを備えている。この空気調和機81は、室内機31に配設された熱交換器71と、室外機82に配設された圧縮機83、熱交換器84および膨張弁85と、これらを接続する配管61~64とを含む冷媒回路を備えている。この空気調和機81は、冷媒回路の配管の一部に配設された四路切換弁86により冷媒の流れ方向を切り換えることによって、冷房運転と暖房運転を切り換えることができる。室内機31は送風機51を備え、室外機82は送風機87を備えている。
 <室内機の構造>
 図2に示すように、室内機31は、天井埋込型であり、天井に設けられた開口に埋め込まれる略直方体の筐体33と、筐体33の下部に取り付けられた化粧パネル47とを備えている。化粧パネル47は、その中央部に設けられた矩形状の吸込グリル39と、この吸込グリル39の各辺に沿って設けられた細長い矩形状の4つの吹出口37とを有している。
 図2及び図3に示すように、室内機31は、筐体33内に、遠心送風機(ターボファン)51、熱交換器71、ドレンパン45、エアフィルタ41、ベルマウス25などを備えている。遠心送風機51は、羽根車23とファンモータ11とを含む。ファンモータ11は、筐体33の天板の略中央に固定されている。
 熱交換器71は、その下端部に沿って延設された皿状のドレンパン45から上方に起立した状態で羽根車23の周囲を囲むように配置されている。熱交換器71の詳細構造については後述する。
 ドレンパン45は、熱交換器71において生じる水滴を収容する。収容された水は図略の排水経路を通じて排出される。ドレンパン45は、底部45aとこの底部45aの両サイドから上方に延びる一対の側壁部45b,45cとを有している。熱交換器71の下部は、ドレンパン45の側壁部45b,45cに対向するように配置されている。
 エアフィルタ41は、ベルマウス25の入口を覆う大きさを有し、ベルマウス25と吸込グリル39との間に吸込グリル39に沿って設けられている。
 羽根車23は、ハブ15と、シュラウド19と、複数の羽根21とを含む。ハブ15は、ファンモータ11の回転軸13の下端部に固定されている。シュラウド19は、ハブ15に対して回転軸13の軸方向Aの前方F側に対向配置されている。シュラウド19は、回転軸13を中心として円形に開口する空気吸込口19aを有している。複数の羽根21は、ハブ15とシュラウド19との間に空気吸込口19aの周方向に沿って所定の間隔をあけて配列されている。
 ベルマウス25は、シュラウド19に対して軸方向Aの前方F側に対向配置されている。ベルマウス25は、ベルマウス本体251とこのベルマウス本体251の前方F側の周縁からベルマウス本体251の周囲に張り出したフランジ部252とを含む。ベルマウス本体251は、前後方向に貫通する貫通口25aを有している。
 <熱交換器の構造>
 図4及び図5に示すように、熱交換器71は、薄板状の複数のフィン73と、各フィン73に形成された図略の貫通孔に挿通された複数の伝熱管部Pとを有するクロスフィン型の熱交換器である。複数のフィン73は、隣同士が互いに隙間をあけた状態で対面するように並設されている。
 各伝熱管部Pは、複数のフィン73の並設方向に沿って延設されている。各伝熱管部Pは、複数のフィン73に接している。図5及び図6に示すように、複数の伝熱管部Pは、熱交換器71の高さ方向D3に複数段並び、熱交換器71の厚み方向D4に3列並ぶように配列されている。
 熱交換器71は、空気の流れ方向(図6に一点鎖線の矢印で示す方向)の上流側のドレンパン45の側壁部45bに対向する部位に、空気の流れ方向の下流側に凹む凹部72を有している。この凹部72は、上流側の第1列L1の伝熱管部Pの数を他の第2列L2及び第3列L3よりも少なくすることにより形成されたものである。複数のフィン73は、凹部72の形状に合わせて切り欠かれた形状を有している。
 一対の側壁部45b,45cの間及びその近傍に位置する熱交換器71の下部においては、伝熱管部Pは、第2列L2と第3列L3にのみ設けられている。一方、前記下部より上部、すなわちドレンパン45の側壁部45b,45cに対向していない部分においては、伝熱管部Pは、第1列L1、第2列L2及び第3列L3に設けられている。
 上流側の第1列L1は他の2列L2,L3よりも短い。上流側の第1列L1の下端は、他の列L2,L3の下端よりも上方に位置している。上流側の第1列L1においては、側壁部45bよりも上方の位置(側壁部45bの少し上の位置)から熱交換器71の上端部までの間に複数の伝熱管部Pが高さ方向D3に沿って並べられており、上流側の側壁部45bに対向する部分及びその近傍には伝熱管部Pが並べられていない。
 ドレンパン45の底部45aからの凹部72の高さh1は、底部45aからの側壁部45bの高さh2よりも大きい。凹部72の凹み寸法(厚み方向D4の寸法)は、熱交換器71の厚み(伝熱管部Pが3列設けられた部分の厚み)のほぼ1/3程度の大きさである。これにより、熱交換器71とドレンパン45の側壁部45bの上端部との間に、空気が円滑に流れ込むことが可能な隙間が形成されている。
 図4に示すように、熱交換器71は、複数のフィン73の並設方向の一方の端部に位置するフィン73に略平行で、このフィン73を覆うように配置された板状の前管板77を有している。また、熱交換器71は、前記並設方向の他方の端部に位置するフィン73に略平行で、このフィン73を覆うように配置された板状の後管板79を有している。
 熱交換器71は、分流器94とヘッダ91とをさらに備えている。分流器94は、分流器本体95と、この分流器本体95から分岐した複数のキャピラリーチューブ(分岐管)96とを有している。分流器94は、冷媒回路の配管64に接続されている。ヘッダ91は、ヘッダ本体92と、このヘッダ本体92から分岐した複数の分岐管93とを有している。ヘッダ91は、冷媒回路の配管61に接続されている。
 分流器94における複数のキャピラリーチューブ96の一部は、後管板79に設けられた後述の開口端部E1に接続されており、複数のキャピラリーチューブ96の残部は、前管板77に設けられた後述の開口端部E1に接続されている。
 本実施形態では、熱交換器71の下部に設けられる冷媒管(冷媒パス)Rに用いる伝熱管部Pの数を他の部位よりも多くしている。この点について以下に説明する。
 図7(a)は、熱交換器71における冷媒管Rの配設例1を説明するための概略図である。この図7(a)は、左側の図が後管板79の一部を図4の方向D1側から見た概略の側面図であり、右側の図が前管板77の一部を図4の方向D2側から見た概略の側面図である。図7(a)には、4つの冷媒管R(R1,R2,R3,R4)が示されている。
 各冷媒管Rは、冷媒の出入口となる一対の開口端部E1,E2を有し、内部に連続する冷媒流路を有する金属管である。熱交換器71に設けられる複数の冷媒管Rには、例えば2つの伝熱管部Pとこれらの端部同士をつなぐ1つの屈曲管部Uとからなるものや、3つ以上の伝熱管部Pとこれらを直列につなぐ複数の屈曲管部Uとからなるものなどが含まれていてもよい。また、複数の冷媒管Rには、1つの伝熱管部Pからなるもの、すなわち1つの直管により形成されるものが含まれていてもよい。各冷媒管Rは、1本の配管を中央付近でU字形状に折り曲げた、いわゆるヘアピンを用いて形成してもよく、また、直管同士の端部をU字形状のU字管で接続して形成してもよい。
 ここで、伝熱管部Pとは、冷媒管Rのうちの屈曲管部U以外の部分をいう。例えば、直管同士の端部をU字管で接続して形成された冷媒管Rの場合、伝熱管部Pは、前記直管の部分であり、屈曲管部Uは、前記U字管の部分である。また、ヘアピンを用いて形成された冷媒管Rの場合、屈曲管部Uは、所定の曲率半径で折り曲げられた折り返し部分であり、伝熱管部Pは、前記折り返し部分以外の部分である。
 また、伝熱管部Pは、前管板77と後管板79との間に延設されている。1つの伝熱管部Pの長さは、前管板77から後管板79までの冷媒管Rの流路長とほぼ等しいものとなる。したがって、冷媒管Rの流路長は、伝熱管部Pの長さに伝熱管部Pの本数を乗じた値と、屈曲管部Uの長さに屈曲管部Uの本数を乗じた値とを足した合計値となる。
 図7(a)に示す冷媒管R1,R2,R3は、3本(奇数本)の伝熱管部Pと2つの屈曲管部Uとから構成された奇数冷媒管であり、冷媒管R4は、6本(偶数本)の伝熱管部Pと5つの屈曲管部Uとから構成された偶数冷媒管である。
 具体的には、冷媒管R1は、伝熱管部P11,P12,P13と、前管板77側において伝熱管部P11と伝熱管部P12の端部同士を接続する屈曲部Uと、後管板79側において伝熱管部P12と伝熱管部P13の端部同士を接続する屈曲部Uとから構成されている。
 冷媒管R2は、伝熱管部P21,P22,P23と、前管板77側において伝熱管部P21と伝熱管部P22の端部同士を接続する屈曲部Uと、後管板79側において伝熱管部P22と伝熱管部P23の端部同士を接続する屈曲部Uとから構成されている。
 冷媒管R3は、伝熱管部P31,P32,P33と、前管板77側において伝熱管部P31と伝熱管部P32の端部同士を接続する屈曲部Uと、後管板79側において伝熱管部P32と伝熱管部P33の端部同士を接続する屈曲部Uとから構成されている。
 冷媒管(下部冷媒管)R4は、伝熱管部P41,P42,P43,P44,P45,P46と、後管板79側において伝熱管部P41と伝熱管部P42の端部同士、伝熱管部P43と伝熱管部P44の端部同士、及び伝熱管部P45と伝熱管部P46の端部同士をそれぞれ接続する屈曲部Uと、前管板77側において伝熱管部P42と伝熱管部P43の端部同士、及び伝熱管部P44と伝熱管部P45の端部同士をそれぞれ接続する屈曲部Uとから構成されている。
 分流器94における複数のキャピラリーチューブ96のうち、1つのキャピラリーチューブ96aは、前管板77に設けられた冷媒管R4の開口端部E1に接続されている(図4参照)。他のキャピラリーチューブ96は、後管板79に設けられた冷媒管R1の開口端部E1、冷媒管R2の開口端部E1、冷媒管R3の開口端部E1、及び図略の冷媒管Rの開口端部E1にそれぞれ接続されている。ヘッダ91の複数の分岐管93は、前管板77に設けられた冷媒管R1,R2,R3,R4の各開口端部E2、及び図略の他の冷媒管Rの開口端部E2にそれぞれ接続されている。各冷媒管Rの開口端部E2は、すべて前管板77に設けられている。
 したがって、冷媒管R4のみが偶数本(6本)の伝熱管部Pを有し、他の冷媒管Rは奇数本の伝熱管部Pを有している。この熱交換器71では、1本の伝熱管部Pの有効長をLとするとき、この有効長Lの奇数倍の冷媒管Rと、有効長Lの偶数倍の冷媒管Rとを混在させることができる。
 次に、図7(a)の各冷媒管R1,R2,R3,R4における冷媒の流れについて、冷房運転の場合を例に挙げて具体的に説明する。冷房運転の場合、冷媒は図1の配管64を通じて熱交換器71に送られる。図1及び図4に示すように、配管64を通じて送られてきた冷媒は、分流器本体95に流入し、複数のキャピラリーチューブ96に分岐し、各分岐管96が接続された開口端部E1に達する。各冷媒管Rの開口端部E1に達した冷媒は、伝熱管部P及び屈曲部Uを通って各冷媒管Rの開口端部E2に達し、各開口端部E2に接続されたヘッダ91の分岐管93を通じてヘッダ本体92に合流する。この冷媒は、ヘッダ本体92に接続された配管61を通じて四路切換弁86側に流れる。
 図7(b)は、熱交換器71における冷媒管Rの配設例2を説明するための概略図である。この配設例2は、冷媒管R4を構成している伝熱管部P41~P46の接続順序が前記した配設例1と異なっている。配設例2における他の冷媒管R1~R3については、配設例1と同様であるので、説明を省略する。
 冷媒管R4では、後管板79側において伝熱管部P43と伝熱管部P46の端部同士、及び伝熱管部P44と伝熱管部P45の端部同士が屈曲管部Uによりそれぞれ接続され、前管板77側において伝熱管部P45と伝熱管部P46が屈曲管部Uにより接続されている。前管板77側の開口端部E2は伝熱管部P44の端部である。このように本実施形態の熱交換器71では、空気の流れを円滑にするための凹部を設けている下部においても少なくとも2列の伝熱管部Pを有しているので、複数の伝熱管部Pの接続順序(パス取り)の自由度を確保できる。
 また、本実施形態では、流路長の大きい冷媒管R4の開口端部E1に接続されるキャピラリーチューブ96aは、流路長の小さい冷媒管R1,R2,R3の開口端部E1に接続される分岐管96よりも冷媒流通時の圧力損失が大きい。分岐管96の圧力損失を大きくするには、例えば分岐管96自体の長さを大きくする方法、分岐管自体の内径を小さくする方法などが挙げられる。
 さらに、本実施形態の熱交換器71では、列数が少ない部位(2列の部位)は、列数が多い部位(3列の部位)に比べて、流路長の大きな冷媒管Rが配設されている割合が高い。図7(a),(b)に示す配設例1,2では、列数が少ない部位には、6本の伝熱管部Pを用いた冷媒管R4のみが設けられており、列数が多い部位には、3本の伝熱管部Pを用いた冷媒管R1,R2,R3及び図略の他の冷媒管Rが設けられている場合を例示したが、これに限定されない。
 (熱交換器の変形例)
 図8は、熱交換器71の変形例を示す断面図である。この熱交換器71では、凹部72は、階段状に形成された第1凹部72aと第2凹部72bとを含む。第1凹部72aは、上流側の第1列L1の伝熱管部Pの数を他の2列L2,L3よりも少なくすることにより形成されたものであり、第2凹部72bは、中央の第2列L2の伝熱管部Pの数を下流側の第3列L3よりも少なくすることにより形成されたものである。複数のフィン73は、第1凹部72a及び第2凹部72bの形状に合わせて切り欠かれた形状を有している。
 上流側の第1列L1は他の2列L2,L3よりも短く、中央の第2列L2は下流側の第3列L3よりも短い。上流側の第1列L1の下端は、他の列L2,L3の下端よりも上方に位置しており、中央の第2列L2の下端は、下流側の第3列L3よりも上方に位置している。
 ドレンパン45の底部45aからの第1凹部72aの高さは、底部45aからの側壁部45bの高さよりも大きい。さらに、ドレンパン45の底部45aからの第2凹部72bの高さは、底部45aからの側壁部45bの高さよりも大きく設定されているのが好ましい。第1凹部72aの凹み寸法は、熱交換器71の厚み(伝熱管部Pが3列設けられた部分の厚み)のほぼ1/3程度の大きさである。同様に、第2凹部72bの凹み寸法は、熱交換器71の厚みのほぼ1/3程度の大きさである。これにより、図6の熱交換器71に比べて、図8の熱交換器71では、ドレンパン45の側壁部45bの上端部との間に、空気が円滑に流れ込むことが可能なより大きな隙間が形成される。
 <実施形態の概要>
 上記実施形態をまとめると、以下の通りである。
 (1) 前記空気調和機では、前記一対の側壁部の間に位置する前記熱交換器の下部は、他の部位よりも前記伝熱管部の列数が少ない。また、前記熱交換器の前記下部は、空気の流れ方向の上流側の前記側壁部に対向する位置に、前記流れ方向の下流側に凹み、かつ、前記底部からの高さが前記上流側の前記側壁部よりも大きい凹部を有している。
 この態様では、熱交換器の下部に前記凹部が設けられているので、熱交換器とドレンパンにおける上流側の側壁部の上端部との間に、空気が円滑に流れ込むことが可能な隙間が形成されている。これにより、ドレンパンに沿って配置された熱交換器の下部における空気の流れが改善されるので、熱交換の効率が向上する。
 ところで、前記熱交換器の下部は、前記凹部を有していることにより従来に比べて空気の流れが改善されているが、ドレンパンの側壁部に対向する位置にあるので、熱交換器の高さ方向の中央部などと比べると依然として空気の風速は小さくなりやすい。
 そこで、この態様では、前記熱交換器の前記下部に位置する前記伝熱管部を含む下部冷媒管は、前記下部冷媒管以外の冷媒管よりも、冷媒の流通量の平均値が小さい。このように下部冷媒管における冷媒の流通量を小さくすることにより、他の部位に比べて風速の小さい熱交換器の下部に配設された下部冷媒管において、その内部を流通する冷媒が相変化しやすくなる。これにより、冷媒の相変化が不十分になるのを抑制することが可能になる。
 なお、この態様でいう「冷媒の流通量の平均値」とは、例えば下部冷媒管が複数存在する場合には、各下部冷媒管の冷媒流通量を足した合計値を、下部冷媒管の個数で割った値を意味し、下部冷媒管が1つである場合には、その下部冷媒管の冷媒流通量を意味している。同様に、下部冷媒管以外の冷媒管が複数存在する場合には、下部冷媒管以外の各冷媒管の冷媒流通量を足した合計値を、下部冷媒管以外の冷媒管の個数で割った値を意味し、下部冷媒管以外の冷媒管が1つである場合には、その冷媒管の冷媒流通量を意味している。
 (2) 上記のように冷媒の流通量を調整するための具体例としては、次の態様が上げられる。この態様では、前記熱交換器の前記下部に位置する前記伝熱管部を含む下部冷媒管に接続された前記分岐管は、前記下部冷媒管以外の冷媒管に接続された前記分岐管よりも、圧力損失の値の平均値が大きい。すなわち、この態様では、分岐管における圧力損失を調整することにより、その分岐管が接続されている冷媒管へ流れる冷媒の流通量(循環量)を調節している。
 下部冷媒管に接続された前記分岐管では、圧力損失の平均値を大きくしているので、下部冷媒管以外の冷媒管に接続された他の分岐管に比べて冷媒の流通時の流通抵抗が大きくなる。したがって、冷媒の流通量(循環量)を他の冷媒管に比べて相対的に小さくすることができる。これにより、他の部位に比べて風速の小さい熱交換器の下部に配設された下部冷媒管において、冷媒が十分に相変化可能な量に流通量を調整することができるので、冷媒の相変化が不十分になるのを抑制することが可能になる。
 なお、この態様でいう「圧力損失の値の平均値」とは、例えば下部冷媒管が複数存在する場合には、各下部冷媒管に接続された分岐管の圧力損失の値を足した合計値を、下部冷媒管の個数で割った値を意味し、下部冷媒管が1つである場合には、その下部冷媒管に接続された分岐管の圧力損失の値を意味している。同様に、下部冷媒管以外の冷媒管が複数存在する場合には、下部冷媒管以外の各冷媒管に接続された分岐管の圧力損失の値を足した合計値を、下部冷媒管以外の冷媒管の個数で割った値を意味し、下部冷媒管以外の冷媒管が1つである場合には、その冷媒管に接続された分岐管の圧力損失の値を意味している。
 (3) 上記のように冷媒の流通量を調整するための他の具体例としては、次の態様が上げられる。この態様では、前記熱交換器の前記下部に位置する前記伝熱管部を含む下部冷媒管は、前記下部冷媒管以外の冷媒管よりも、流路長の平均値が大きい。すなわち、この態様では、冷媒管の流路長を調整して冷媒管自体の圧力損失を調整することにより、各冷媒管へ流れる冷媒の流通量(循環量)を調節している。前記下部冷媒管では、流路長の平均値を大きくしているので、下部冷媒管以外の他の冷媒管に比べて冷媒の流通時の流通抵抗が大きくなる。したがって、冷媒の流通量(循環量)を他の冷媒管に比べて相対的に小さくすることができる。これにより、他の部位に比べて風速の小さい熱交換器の下部に配設された下部冷媒管において、冷媒が十分に相変化可能な量に流通量を調整することができるので、冷媒の相変化が不十分になるのを抑制することが可能になる。
 なお、この態様でいう「流路長の平均値」とは、例えば下部冷媒管が複数存在する場合には、各下部冷媒管の流路長を足した合計値を、下部冷媒管の個数で割った値を意味し、下部冷媒管が1つである場合には、その下部冷媒管の流路長を意味している。同様に、下部冷媒管以外の冷媒管が複数存在する場合には、下部冷媒管以外の各冷媒管の流路長を足した合計値を、下部冷媒管以外の冷媒管の個数で割った値を意味し、下部冷媒管以外の冷媒管が1つである場合には、その冷媒管の流路長を意味している。
 (4) また、前記複数の伝熱管部は、少なくとも3列に配列されており、前記熱交換器の前記下部は、前記上流側の第1列から前記下流側の第3列に向かうにつれて前記列数が段階的に少なくなり、前記凹部が階段状に形成されていてもよい。
 この態様では、前記凹部が階段状に形成されているので、前記一対の側壁部の間において、上流側の側壁部と熱交換器の下部との間のスペースをより大きくすることができ、空気の流れの改善が可能になる。
 <他の実施形態>
 以上、本発明の実施形態について説明したが、本発明は、上述した実施形態に限定されることなく、種々の形態で実施することができる。例えば、前記実施形態では、室内機に用いられる熱交換器を例に挙げて説明したが、本発明の熱交換器は、室外機用にも適用可能である。
 また、前記実施形態では、分流器の複数のキャピラリーチューブのうちの1つを前管板に設けられた開口端部に接続する場合を例に挙げて説明したが、2つ以上のキャピラリーチューブを前管板の開口端部に接続してもよく、全てのキャピラリーチューブを後管板の開口端部に接続してもよい。
 また、前記実施形態では、下部冷媒管が1つである場合を例に挙げて説明したが、下部冷媒管は、複数設けられていてもよい。
 また、前記実施形態では、下部冷媒管は、それ以外の冷媒管よりも、圧力損失の値の平均値が大きく、かつ、流路長の平均値が大きい場合を例に挙げて説明したが、これに限定されない。すなわち、下部冷媒管は、下部冷媒管以外の冷媒管よりも、圧力損失の値の平均値及び流路長の平均値のうち、圧力損失の値の平均値のみが大きい形態であってもよく、流路長の平均値のみが大きい形態であってもよい。
 31 室内機
 45 ドレンパン
 71 熱交換器
 73 フィン
 77 前管板
 79 後管板
 91 ヘッダ
 92 ヘッダ本体
 93 分岐管
 94 分流器
 95 分流器本体
 96 キャピラリーチューブ(分岐管)
 D3 高さ方向
 D4 厚み方向
 P 伝熱管部
  P11~P13 冷媒管R1の伝熱管部
  P21~P23 冷媒管R2の伝熱管部
  P31~P34 冷媒管R3の伝熱管部
  P41~P46 冷媒管R4の伝熱管部
 R(R1,R2,R3,R4) 冷媒管
 U 屈曲管部

Claims (4)

  1.  熱交換器(71)と、前記熱交換器(71)の下端部に沿って延設された底部(45a)及びこの底部(45a)の両サイドから上方にそれぞれ延びる一対の側壁部(45b,45c)を有するドレンパン(45)と、を備えた空気調和機であって、
     前記熱交換器(71)は、
     隣同士が互いに隙間をあけた状態で対面するように並設された複数のフィン(73)と、
     冷媒の出入口となる一対の開口端部(E1,E2)を有する複数の冷媒管(R)と、
     複数の分岐管(96)を有し、対応する冷媒管(R)の一方の前記開口端部(E1)に各分岐管(96)が接続された分流器(94)と、を備え、
     複数の冷媒管(R)における各冷媒管(R)は、前記複数のフィン(73)に接した状態で前記複数のフィン(73)の並設方向に沿って延設された複数の伝熱管部(P)の少なくとも1つを含み、
     前記複数の伝熱管部(P)は、前記熱交換器(71)の高さ方向(D3)に複数段並び、前記熱交換器(71)の厚み方向(D4)に複数列並ぶように配列されており、
     前記一対の側壁部(45b,45c)の間に位置する前記熱交換器(71)の下部は、他の部位よりも前記伝熱管部(P)の列数が少なく、空気の流れ方向の上流側の前記側壁部(45b)に対向する位置に、前記流れ方向の下流側に凹み、かつ、前記底部(45a)からの高さが前記上流側の前記側壁部(45b)よりも大きい凹部(72)を有しており、
     前記熱交換器(71)の前記下部に位置する前記伝熱管部(P)を含む下部冷媒管(R)は、前記下部冷媒管(R)以外の冷媒管(R)よりも、冷媒の流通量の平均値が小さい、空気調和機。
  2.  前記熱交換器(71)の前記下部に位置する前記伝熱管部(P)を含む下部冷媒管(R)に接続された前記分岐管(96)は、前記下部冷媒管(R)以外の冷媒管(R)に接続された前記分岐管よりも、圧力損失の値の平均値が大きい、請求項1に記載の空気調和機。
  3.  前記熱交換器(71)の前記下部に位置する前記伝熱管部(P)を含む下部冷媒管(R)は、前記下部冷媒管(R)以外の冷媒管(R)よりも、流路長の平均値が大きい、請求項1又は2に記載の空気調和機。
  4.  前記複数の伝熱管部(P)は、少なくとも3列に配列されており、
     前記熱交換器(71)の前記下部は、前記上流側の第1列から前記下流側の第3列に向かうにつれて前記列数が段階的に少なくなり、前記凹部(72)が階段状に形成されている、請求項1~3のいずれか1項に記載の空気調和機。
PCT/JP2011/000581 2010-02-15 2011-02-02 空気調和機 WO2011099255A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011900003368U CN202927961U (zh) 2010-02-15 2011-02-02 空调机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010030648A JP5062265B2 (ja) 2010-02-15 2010-02-15 空気調和機
JP2010-030648 2010-02-15

Publications (1)

Publication Number Publication Date
WO2011099255A1 true WO2011099255A1 (ja) 2011-08-18

Family

ID=44367544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000581 WO2011099255A1 (ja) 2010-02-15 2011-02-02 空気調和機

Country Status (3)

Country Link
JP (1) JP5062265B2 (ja)
CN (1) CN202927961U (ja)
WO (1) WO2011099255A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104246377A (zh) * 2012-03-26 2014-12-24 大金工业株式会社 空调装置的热交换器及空调装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673077B (zh) * 2012-09-10 2016-12-21 珠海格力电器股份有限公司 立式空调
KR102048348B1 (ko) * 2012-11-12 2019-11-25 엘지전자 주식회사 공기조화기
JP2015132425A (ja) * 2014-01-14 2015-07-23 三菱電機株式会社 空気調和機
US10473356B2 (en) 2015-07-08 2019-11-12 Hitachi-Johnson Controls Air Conditioning, Inc. Indoor unit for air conditioner
CN108291726A (zh) * 2015-11-24 2018-07-17 三菱电机株式会社 空调机

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258623U (ja) * 1988-10-21 1990-04-26
US5613554A (en) * 1995-06-23 1997-03-25 Heatcraft Inc. A-coil heat exchanger
JPH10238800A (ja) * 1997-02-21 1998-09-08 Mitsubishi Heavy Ind Ltd 熱交換装置及び空気調和機
JPH10267469A (ja) * 1997-03-27 1998-10-09 Daikin Ind Ltd 空調機用熱交換器
JP2000111206A (ja) * 1998-10-06 2000-04-18 Toshiba Ave Co Ltd 天井埋め込み型空気調和機
JP2001082795A (ja) * 1999-09-13 2001-03-30 Daikin Ind Ltd 空気調和機の室内ユニット
JP2002147781A (ja) * 2000-11-06 2002-05-22 Hitachi Ltd 空気調和機用室内機
JP2003074892A (ja) * 2001-08-30 2003-03-12 Sharp Corp 空気調和装置
EP1757869A2 (en) * 2005-08-26 2007-02-28 LS Cable Ltd. Heat exchanger for air conditioner having different circuit pattern depending on distance from fan
JP2007139373A (ja) * 2005-11-22 2007-06-07 Mitsubishi Electric Corp 空気調和機
JP2007187420A (ja) * 2006-01-16 2007-07-26 Daikin Ind Ltd 空気調和機
JP2009222366A (ja) * 2008-03-19 2009-10-01 Hitachi Appliances Inc 冷媒分配器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243265A (ja) * 2001-02-15 2002-08-28 Daikin Ind Ltd 空気調和機
JP3758592B2 (ja) * 2002-03-28 2006-03-22 三菱電機株式会社 天井埋込形空気調和機
JP2007147231A (ja) * 2005-11-30 2007-06-14 Mitsubishi Electric Corp 空気調和機
JP4628380B2 (ja) * 2007-02-14 2011-02-09 三菱電機株式会社 空気調和装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258623U (ja) * 1988-10-21 1990-04-26
US5613554A (en) * 1995-06-23 1997-03-25 Heatcraft Inc. A-coil heat exchanger
JPH10238800A (ja) * 1997-02-21 1998-09-08 Mitsubishi Heavy Ind Ltd 熱交換装置及び空気調和機
JPH10267469A (ja) * 1997-03-27 1998-10-09 Daikin Ind Ltd 空調機用熱交換器
JP2000111206A (ja) * 1998-10-06 2000-04-18 Toshiba Ave Co Ltd 天井埋め込み型空気調和機
JP2001082795A (ja) * 1999-09-13 2001-03-30 Daikin Ind Ltd 空気調和機の室内ユニット
JP2002147781A (ja) * 2000-11-06 2002-05-22 Hitachi Ltd 空気調和機用室内機
JP2003074892A (ja) * 2001-08-30 2003-03-12 Sharp Corp 空気調和装置
EP1757869A2 (en) * 2005-08-26 2007-02-28 LS Cable Ltd. Heat exchanger for air conditioner having different circuit pattern depending on distance from fan
JP2007139373A (ja) * 2005-11-22 2007-06-07 Mitsubishi Electric Corp 空気調和機
JP2007187420A (ja) * 2006-01-16 2007-07-26 Daikin Ind Ltd 空気調和機
JP2009222366A (ja) * 2008-03-19 2009-10-01 Hitachi Appliances Inc 冷媒分配器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104246377A (zh) * 2012-03-26 2014-12-24 大金工业株式会社 空调装置的热交换器及空调装置
CN104246377B (zh) * 2012-03-26 2017-08-08 大金工业株式会社 空调装置的热交换器及空调装置

Also Published As

Publication number Publication date
JP5062265B2 (ja) 2012-10-31
CN202927961U (zh) 2013-05-08
JP2011163740A (ja) 2011-08-25

Similar Documents

Publication Publication Date Title
JP4715963B1 (ja) 空気調和機用熱交換器
JP4715971B2 (ja) 熱交換器及びそれを備えた室内機
CN103392109B (zh) 空调机用热交换器
WO2011099255A1 (ja) 空気調和機
WO2017073096A1 (ja) 空気調和機の室外機および室内機
JP5917159B2 (ja) 空気調和機の室外機
JP2016200338A (ja) 空気調和機
JP5338883B2 (ja) 熱源ユニット
WO2017135442A1 (ja) 熱交換器
EP2031334B1 (en) Heat exchanger
JP2019015432A (ja) 熱交換器及び熱交換ユニット
CN207438859U (zh) 室内换热器、空调室内机及空调器
JP2015014397A (ja) 熱交換器
JP2004333013A (ja) 空気調和機用熱交換器
JP2017133815A (ja) 熱交換器
JP5037400B2 (ja) 熱交換器の製造方法と、空気調和機の室内機
JP2020190383A (ja) 熱交換器
JP3594333B2 (ja) 熱交換器
JP5997115B2 (ja) 空気調和機
JP7471446B2 (ja) 室内熱交換器、及び空気調和機の室内機
JP2008249299A (ja) フィンチューブ型熱交換器および空気調和装置
JP2008275218A (ja) 熱交換器
JP2017040392A (ja) 空気調和機およびその室内機
JP2009115338A (ja) 空気調和機用室内機
JP2008275219A (ja) 熱交換器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000336.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742005

Country of ref document: EP

Kind code of ref document: A1