WO2017073096A1 - 空気調和機の室外機および室内機 - Google Patents

空気調和機の室外機および室内機 Download PDF

Info

Publication number
WO2017073096A1
WO2017073096A1 PCT/JP2016/061662 JP2016061662W WO2017073096A1 WO 2017073096 A1 WO2017073096 A1 WO 2017073096A1 JP 2016061662 W JP2016061662 W JP 2016061662W WO 2017073096 A1 WO2017073096 A1 WO 2017073096A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
exchanger body
air conditioner
outdoor unit
refrigerant
Prior art date
Application number
PCT/JP2016/061662
Other languages
English (en)
French (fr)
Inventor
洋次 尾中
松本 崇
直史 竹中
繁佳 松井
博幸 岡野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680061472.5A priority Critical patent/CN108139089B/zh
Priority to EP16859333.3A priority patent/EP3370000B1/en
Priority to JP2017547637A priority patent/JP6545277B2/ja
Priority to US15/766,243 priority patent/US20180292096A1/en
Publication of WO2017073096A1 publication Critical patent/WO2017073096A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • F24F1/50Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow with outlet air in upward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins

Definitions

  • the present invention relates to an outdoor unit and an indoor unit of an air conditioner with improved energy efficiency.
  • liquid refrigerant condensed by a heat exchanger functioning as a condenser mounted in an indoor unit is decompressed by an expansion valve, and a gas-liquid two-phase state in which gas refrigerant and liquid refrigerant are mixed It flows into the heat exchanger that functions as an evaporator mounted on the outdoor unit.
  • the refrigerant flows into the heat exchanger that functions as an evaporator in a gas-liquid two-phase state, the distribution performance of the refrigerant to the heat exchanger deteriorates.
  • the header as a distributor of the heat exchanger mounted on the outdoor unit, the amount of branch pipe protruding into the header, the partition plate in the header, the installation of the ejection holes, etc. There is a way to adjust the structure in the header.
  • the distribution of the gas-liquid two-phase refrigerant in the header is greatly affected by the mass velocity of the refrigerant. For example, when operating at high output, more refrigerant is distributed at the top of the header than at the bottom of the header, and when operating at low output, more refrigerant is distributed at the bottom of the header than at the top of the header. Will be. And since the heat exchange performance of the heat exchanger deteriorates due to the deterioration of the refrigerant distribution performance, there is a problem that the energy efficiency of the air conditioner is reduced. In addition, the outdoor unit of the air conditioner has more wind flowing closer to the fan.
  • Patent Document 1 In order to improve the energy efficiency of the air conditioner, it is necessary to make the distribution of the gas-liquid two-phase refrigerant uniform. As a method for this, a method of providing a turbulent flow promoter for stirring the refrigerant in the header has been conventionally used. Yes (see Patent Document 1). In Patent Document 1, the gas-liquid two-phase refrigerant in the header is agitated by the turbulence promoting body, so that the gas-liquid two-phase refrigerant is uniformly distributed.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an outdoor unit and an indoor unit for an air conditioner that improve energy efficiency while suppressing an increase in cost.
  • An outdoor unit of an air conditioner according to the present invention has a suction port and a blower outlet, and is provided in the casing and includes a casing constituting an outer shell, sucks outside air from the suction port, and discharges outside air from the blower outlet And a heat exchanger provided in the casing for exchanging heat between the outside air sucked by the fan and the refrigerant, and the heat exchanger includes a plurality of fins arranged in parallel at intervals.
  • the first heat exchanger main body in which a flat tube having a high heat exchange performance is a heat transfer tube is disposed near a fan having a high contribution rate to the heat exchange performance.
  • the second heat exchanger body, which is a heat transfer tube is arranged in the distance from the fan that has a low contribution rate to the heat exchange performance, but the heat exchange performance is low, but the refrigerant distribution performance is high and the manufacturing cost is low. . Therefore, energy efficiency can be improved while suppressing an increase in cost.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a diagram showing another example of the AA cross-sectional view of FIG. 2.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • It is a schematic diagram of the distributor which concerns on Embodiment 1 of this invention.
  • It is a schematic diagram which shows the distributor different from the distributor which concerns on Embodiment 1 of this invention.
  • FIG. 4 It is a perspective view of the outdoor unit of the air conditioner which concerns on Embodiment 4 of this invention. It is a side surface schematic diagram of the heat exchanger which concerns on Embodiment 4 of this invention. It is a schematic diagram which shows a part of structure at the time of using an internal heat exchanger as a dryness adjustment apparatus of the outdoor unit of an air conditioner. It is a 1st figure which shows another example of FIG. It is a 2nd figure which shows another example of FIG. It is a 3rd figure which shows another example of FIG. It is a side surface schematic diagram of the heat exchanger which concerns on Embodiment 5 of this invention, and its periphery.
  • FIG. FIG. 1 is a perspective view of an outdoor unit 100a for an air conditioner according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic side view of a heat exchanger 10a according to Embodiment 1 of the present invention and its surroundings.
  • 3 is a cross-sectional view taken along the line AA in FIG. 2
  • FIG. 4 is a view showing another example of the cross-sectional view taken along the line AA in FIG. 2
  • the arrow in FIG. 1 has shown the flow of the wind
  • the arrow in FIG. 2 has shown the flow of the refrigerant
  • the outdoor unit 100a of the air conditioner according to Embodiment 1 is equipped with a heat exchanger 10a shown in FIG.
  • the outdoor unit 100a of the air conditioner is a top flow type, and constitutes a refrigeration cycle by circulating a refrigerant with an indoor unit (not shown).
  • the outdoor unit 100a is used, for example, in a building multi-unit outdoor unit, and is installed on the roof of a building.
  • the outdoor unit 100 a is arranged in the casing 1 along the casing 1 formed in a box shape, the suction port 2 formed by the opening on the side surface of the casing 1, and the suction port 2.
  • the heat exchanger 10a, the air outlet 3 formed by the opening on the upper surface of the casing 1, the fan guard 4 provided so as to be ventilated so as to cover the air outlet 3, and the fan guard 4 are disposed inside And a fan 5 that sucks outside air from the mouth 2 and discharges outside air from the air outlet 3.
  • the heat exchanger 10a mounted on the outdoor unit 100a of the air conditioner exchanges heat between the outside air sucked from the suction port 2 by the fan 5 and the refrigerant.
  • the heat exchanger 10 a is disposed below the fan 5, and includes an upper heat exchanger 11 and a lower heat exchanger 12.
  • the upper heat exchanger 11 and the lower heat exchanger 12 are arranged in the vertical direction when viewed from the front or from the side. Specifically, the upper heat exchanger 11 is disposed on the upper side near the fan 5, and the lower heat exchanger 12 is disposed on the lower side far from the fan 5.
  • the upper heat exchanger 11 includes a plurality of fins 21 that are arranged in parallel at intervals, and a plurality of heat transfer tubes that penetrate the fins 21 in the direction in which the fins 21 are arranged and in which the refrigerant flows.
  • An upper heat exchanger body 20, an upper first header 23 connected to one end of the plurality of heat transfer tubes, and an upper second header 24 connected to the other end of the plurality of heat transfer tubes are provided.
  • An upper first header 23 is connected to the upstream side of the upper heat exchanger body 20 during heating operation, and an upper second header 24 is connected to the downstream side of the upper heat exchanger body 20 during heating operation.
  • the distributor connected to the upstream side of the upper heat exchanger body 20 or the lower heat exchanger body 30 during the heating operation is referred to as an upstream distributor.
  • the lower heat exchanger 12 includes a plurality of fins 31 arranged in parallel at intervals, and a plurality of heat transfer tubes that penetrate the fins 31 in the juxtaposition direction of the fins 31 and through which the refrigerant flows.
  • a distributor 34 is connected via a capillary tube 33 to the upstream side of the lower heat exchanger body 30 during heating operation, and a lower header 35 is connected to the downstream side of the lower heat exchanger body 30 during heating operation. ing.
  • the upper first header 23 of the upper heat exchanger 11 is connected to a first branch pipe 41 branched from a first pipe 40 through which a gas-liquid two-phase refrigerant mixed with gas refrigerant and liquid refrigerant passes during heating operation. ing.
  • the upper second header 24 of the upper heat exchanger 11 is connected to a first branch pipe 51 branched from the second pipe 50 through which the gas refrigerant passes during heating operation.
  • the distributor 34 of the lower heat exchanger 12 is connected to a second branch pipe 42 branched from the first pipe 40.
  • the lower header 35 of the lower heat exchanger 12 is connected to a second branch pipe 52 branched from the second pipe 50.
  • the heat transfer tube of the upper heat exchanger 11 according to the first embodiment is a flat tube 22 having a flat cross section shown in FIG. 3, but the cross section shown in FIG. 4 is a flat shape and has a plurality of holes inside. It is good also as the flat porous tube 22a in which is formed. Moreover, although the flat tube 22 shown in FIG. 3 and the flat porous tube 22a shown in FIG. 4 are both smooth surfaces, it is good also as a grooved surface which expands a heat-transfer area by cutting a groove
  • FIG. 16 is a first diagram showing another example of FIG. 2
  • FIG. 17 is a second diagram showing another example of FIG.
  • the first embodiment there is a gap between the upper heat exchanger 11 and the lower heat exchanger 12 as shown in FIG. 2, but in reality, water droplets on the fin surface of the upper heat exchanger 11 are removed.
  • the upper heat exchanger 11 and the lower heat exchanger 12 may be brought into close contact with each other as shown in FIG.
  • the fin has no cut
  • the gas-liquid two-phase refrigerant passes through the first pipe 40 and is divided into the first branch pipe 41 and the second branch pipe 42.
  • the gas-liquid two-phase refrigerant that has flowed to the second branch pipe 42 flows to the distributor 34, is homogenized therein, and then flows into the lower heat exchanger main body 30 through the capillary tube 33.
  • the gas-liquid two-phase refrigerant flowing into the lower heat exchanger body 30 is gasified by exchanging heat with the outside air sucked from the suction port 2 there and flows out to the lower header 35.
  • the gas-liquid two-phase refrigerant that has flowed to the first branch pipe 41 flows to the upper first header 23, where it is distributed to each flat pipe 22 and flows from each flat pipe 22 into the upper heat exchanger body 20.
  • the gas-liquid two-phase refrigerant flowing into the upper heat exchanger body 20 is gasified by exchanging heat with the outside air sucked from the suction port 2 there and flows out to the upper second header 24.
  • FIG. 6 is a schematic diagram of the distributor 34 according to the first embodiment of the present invention.
  • the distributor 34 shown in FIG. 6 includes a distribution main pipe portion 61, a distribution expansion portion 62, and a distribution diverting member 63.
  • the distribution main pipe portion 61 is provided with an area abrupt reduction portion 64.
  • One end of a capillary tube 33 is connected to the distributor 34.
  • the gas-liquid two-phase refrigerant flows into the distributor 34 and is squeezed by the area abrupt reduction section 64 of the distribution main pipe section 61, and the gas refrigerant and the liquid refrigerant are agitated and homogenized by the distribution expansion section 62.
  • the homogenized gas refrigerant and liquid refrigerant are distributed to each capillary tube 33 by a distribution branching member 63.
  • the other end of the capillary tube 33 is connected to the circular pipe 32 of the lower heat exchanger 12, and the flow rate of the refrigerant flowing through each circular pipe 32 can be controlled by adjusting the length of the capillary tube 33.
  • FIG. 7 is a schematic diagram showing a distributor different from the distributor 34 according to Embodiment 1 of the present invention.
  • the arrow in FIG. 7 has shown the gravity direction.
  • the distributor connected to the upstream side of the lower heat exchanger main body 30 during the heating operation is the distributor 34 shown in FIG. 6, but may be the header 70 shown in FIG.
  • the header 70 shown in FIG. 7 has a structure that distributes the gas-liquid two-phase refrigerant that has flowed into the header 70 to the circular tubes 32 that are a plurality of heat transfer tubes arranged in parallel in the direction of gravity.
  • the gas-liquid two-phase refrigerant flows upward in the header 70 in the upward direction, and is divided into a plurality of circular pipes 32 at an angle perpendicular to the flow in the header 70.
  • the distributor 34 generally has a higher refrigerant distribution performance than the header.
  • the flat tube 22 is used in a heat exchanger that is a heat transfer tube, the number of paths increases, so that it is necessary to increase the number of branches of the distributor 34 or to use a plurality of distributors 34. There is a demerit that the handling of is complicated.
  • the header is easy to handle the piping, can be easily applied to automation such as automatic brazing, and can be manufactured at low cost.
  • gravity acts on the gas-liquid two-phase refrigerant, for example, when the refrigerant flow rate is small, there is a problem that the liquid refrigerant having a high density flows more biased to the lower part of the heat transfer tube. There is a demerit that the distribution performance is lower than that of the distributor 34.
  • FIG. 8 is a diagram showing the air volume with respect to the height direction of the heat exchanger 10a according to Embodiment 1 of the present invention. Since the heat exchanger 10a according to the first embodiment is mounted on the top flow type outdoor unit 100a, the fan 5 is arranged above the heat exchanger 10a, and the fan 5 causes the wind to be heat exchanger. It passes through the gap 10a, thereby exchanging heat with air. And since the fan 5 is arrange
  • the flow of wind increases in the upper heat exchanger 11 disposed on the upper side of the lower heat exchanger 12 disposed on the lower side. Therefore, when the front surface areas of the upper heat exchanger 11 and the lower heat exchanger 12 are the same, the upper heat exchanger 11 has a higher contribution ratio to the heat exchange performance of the outdoor unit 100a than the lower heat exchanger 12. Become.
  • an upper heat exchanger 11 having a high heat exchange performance and having a flat tube 22 as a heat transfer tube is arranged on the upper side of the outdoor unit 100a where the flow of wind is large, that is, near the fan 5, and the flow of wind is
  • a lower heat exchanger 12 in which the circular tube 32 is a heat transfer tube having a low heat exchange performance but a high refrigerant distribution performance is disposed below the few outdoor units 100a, that is, at a position far from the fan 5.
  • an optimum distributor is used for each upstream distributor of the heat exchanger in which the flat tube 22 is a heat transfer tube and the heat exchanger in which the circular tube 32 is a heat transfer tube.
  • a header is used as a distributor in the heat exchanger in which the flat tube 22 is a heat transfer tube, that is, the upper heat exchanger 11, and a heat exchanger in which the circular tube 32 is a heat transfer tube, that is, in the lower heat exchanger 12 is distributed.
  • Distributor 34 is used as a device.
  • the flow resistance of the distributor is larger in the distributor 34 than in the header, more refrigerant can flow through the upper heat exchanger 11 by using the distributor as described above. Therefore, the distribution characteristic of the refrigerant can be improved, and the heat exchange performance of the heat exchanger 10a can be improved. It is even better because the flow rate of the refrigerant flowing in the header can be adjusted by changing the length of the capillary tube 33 connected to the distributor 34.
  • FIG. 18 is a third diagram showing another example of FIG.
  • the distributor 34 is connected to the circular tube 32 and the header is connected to the flat tube 22 as shown in FIG. 2, but this is only an example.
  • the same distributor may be attached to either the flat tube 22 or a distributor 34 may be connected to the flat tube 22 and a header may be connected to the circular tube 32.
  • the flat tube 22 having a high heat exchange performance is a heat transfer tube near the fan 5 having a high contribution rate to the heat exchange performance of the outdoor unit 100a.
  • a certain upper heat exchanger 11 it is possible to provide a heat exchanger 10a with good cost performance.
  • the upper heat in which the flat tube 22 having a high heat exchange performance is a heat transfer tube near the fan 5 having a high contribution rate to the heat exchange performance.
  • FIG. 9 is a schematic side view of the heat exchanger 10b and its surroundings according to Embodiment 2 of the present invention.
  • the arrow in FIG. 9 has shown the flow of the refrigerant
  • the outdoor unit 100b of the air conditioner according to Embodiment 2 includes a gas-liquid separator 80 on the upstream side of the heat exchanger 10b.
  • the gas-liquid separator 80 is used to adjust the dryness of the refrigerant.
  • the first pipe 40 through which the liquid refrigerant separated by the gas-liquid separator 80 flows is connected.
  • the fourth pipe 83 is connected to the bypass flow valve 85, the bypass flow valve 85 is connected to the fifth pipe 84, and the fifth pipe 84 is connected to the second pipe 50.
  • the second pipe 50 is connected to the compressor 81.
  • FIG. 15 is a schematic diagram showing a part of the configuration when the internal heat exchanger 110 is used as a dryness adjusting device for an outdoor unit of an air conditioner.
  • the gas-liquid separator 80 corresponds to the “dryness adjusting device” of the present invention, but is only an example of a device for adjusting the dryness, and is not limited thereto.
  • an internal heat exchanger 110 as shown in FIG. 15 or a heat exchanger that exchanges heat with another low-temperature heat source or the like may be used.
  • the refrigerant passes through the pipe 111 and flows into the internal heat exchanger 110.
  • the refrigerant that has flowed into the internal heat exchanger 110 is self-cooled by the pipe 116 at the outlet of the heat exchanger 117 and a part of the bypassed refrigerant, and flows to the heat exchanger 117 through the pipe 112 in a state of reduced dryness.
  • the bypassed refrigerant passes through the pipe 115, and the bypass flow rate is adjusted by a valve 114 installed on the pipe 113.
  • the valve 114 installed on the pipe 113 is not limited to a valve, and may be a flow resistor such as a capillary tube, a thin tube, or a float valve.
  • the gas-liquid two-phase refrigerant passes through the third pipe 82 and flows into the gas-liquid separator 80.
  • the gas-liquid two-phase refrigerant that has flowed into the gas-liquid separator 80 is separated into gas refrigerant and liquid refrigerant there.
  • the gas refrigerant separated by the gas-liquid separator 80 passes through the fourth pipe 83, the bypass flow valve 85, the fifth pipe 84, and the second pipe 50 and flows into the compressor 81.
  • the liquid refrigerant separated by the gas-liquid separator 80 passes through the first pipe 40 and is divided into the first branch pipe 41 and the second branch pipe 42.
  • the liquid refrigerant that has flowed to the second branch pipe 42 flows to the distributor 34, where it is homogenized, and then flows into the lower heat exchanger body 30 through the capillary tube 33.
  • the liquid refrigerant flowing into the lower heat exchanger body 30 is gasified by exchanging heat with the outside air sucked from the suction port 2 there and flows out to the lower header 35.
  • the liquid refrigerant that has flowed to the first branch pipe 41 flows to the upper first header 23, where it is distributed to each flat pipe 22 and flows from each flat pipe 22 into the upper heat exchanger body 20.
  • the gas-liquid two-phase refrigerant flowing into the upper heat exchanger body 20 is gasified by exchanging heat with the outside air sucked from the suction port 2 there and flows out to the upper second header 24.
  • the flow rate ratio of the refrigerant flowing through the first branch pipe 41 and the second branch pipe 42 is that of the first branch pipe 41, the upper first header 23, the flat pipe 22, the upper second header 24, and the first branch pipe 51.
  • the total flow resistance and the total flow resistance of the second branch pipe 42, distributor 34, capillary tube 33, circular pipe 32, lower header 35, and second branch pipe 52 are determined.
  • the length of the capillary tube 33 the flow rate ratio of the refrigerant flowing through the first branch pipe 41 and the second branch pipe 42 can be optimally adjusted.
  • the gas refrigerant flow rate / total refrigerant flow rate (hereinafter referred to as dryness)
  • dryness the gas refrigerant flow rate / total refrigerant flow rate
  • the gas is in the upper first header 23.
  • the liquid refrigerant easily flows to the flat tubes 22 unevenly. Therefore, by reducing the gas refrigerant flowing through the upper first header 23 using the gas-liquid separator 80, the distribution performance of the refrigerant flowing through the upper first header 23 is improved, and the heat exchange performance is improved.
  • the gas-liquid two-phase refrigerant is separated into the gas refrigerant and the liquid refrigerant by the gas-liquid separator 80, but the gas flowing into the upper first header 23 even if it cannot be completely separated. What is necessary is just to be able to reduce a refrigerant
  • the gas-liquid separator 80 the pressure loss when passing through the distributor and the heat transfer tube can be reduced as a whole, and the flow rate ratio adjustment by the capillary tube 33 becomes easy.
  • FIG. 10 is a schematic side view showing another example of the heat exchanger 10b according to the second embodiment of the present invention and its periphery
  • FIG. 11 shows the heat exchanger 10b according to the second embodiment of the present invention. It is a side surface schematic diagram which shows another example of the periphery.
  • the arrow in FIG. 10 and FIG. 11 has shown the flow of the refrigerant
  • the arrangement of the gas-liquid separator 80 is not limited to the position shown in FIG. 9, and the gas-liquid separator 80 may be arranged in the first branch pipe 41 as shown in FIG. As shown, a gas-liquid separator 80 may be disposed in the second branch pipe 42.
  • the control range of the flow rate of the refrigerant flowing through the first branch pipe 41 and the second branch pipe 42 is further widened.
  • FIG. 12 is a schematic side view of the heat exchanger 10c according to the third embodiment of the present invention and its periphery.
  • the arrow in FIG. 12 has shown the flow of the refrigerant
  • at least two types of heat transfer tubes, a flat tube 22 and a circular tube 32 are connected in series via an intermediate header 26.
  • the heat exchanger 10c is disposed below the fan 5, and includes an upper heat exchanger body 20, a lower heat exchanger body 30, a header 25, an intermediate header 26, a distributor 34, a capillary tube 33, It has.
  • the upper heat exchanger body 20 includes a plurality of fins 21 arranged in parallel at intervals, and a plurality of flat tubes 22 that pass through the fins 21 in the juxtaposition direction of the fins 21 and through which the refrigerant flows.
  • the lower heat exchanger main body 30 includes a plurality of fins 31 arranged in parallel at intervals, a plurality of circular pipes 32 that pass through the fins 31 in the direction in which the fins 31 are arranged, and in which the refrigerant flows. It consists of The upper heat exchanger main body 20 and the lower heat exchanger main body 30 are arranged in a vertical direction when viewed from the front or from the side, and the upper heat exchanger main body 20 is located on the upper side near the fan 5. The lower heat exchanger body 30 is disposed on the lower side far from the fan 5.
  • the plurality of flat tubes 22 of the upper heat exchanger body 20 and the plurality of circular tubes 32 of the lower heat exchanger body 30 are juxtaposed in the direction of gravity.
  • One end of the plurality of flat tubes 22 of the upper heat exchanger body 20 is connected to the header 25, and one end of the plurality of circular tubes 32 of the lower heat exchanger body 30 is connected to the distributor 34 via the capillary tube 33.
  • the other end of the plurality of flat tubes 22 of the upper heat exchanger body 20 and the other end of the plurality of circular tubes 32 of the lower heat exchanger body 30 are connected to the intermediate header 26.
  • the distributor connected to the upstream side of the upper heat exchanger body 20 during the cooling operation is the header 25, and the distributor connected to the upstream side of the lower heat exchanger body 30 during the cooling operation is Distributor 34.
  • the header 25 is connected to a first pipe 91 through which gas refrigerant passes during cooling operation, and the distributor 34 is connected to a second pipe 92 through which liquid refrigerant passes during cooling operation.
  • the high-temperature and high-pressure gas refrigerant passes through the first pipe 91 and flows to the header 25, where it is distributed to each flat tube 22 and flows into the upper heat exchanger body 20 from each flat tube 22.
  • the gas refrigerant that has flowed into the upper heat exchanger body 20 exchanges heat with the outside air sucked from the suction port 2 to dissipate heat, thereby becoming a gas-liquid two-phase state and flows to the intermediate header 26.
  • the gas-liquid two-phase refrigerant flows into the circular pipe 32 of the lower heat exchanger main body 30, where it further exchanges heat with the surrounding air to become a liquid single phase.
  • the flat tube 22 is used for a heat exchanger in which a gas-liquid two-phase refrigerant with a large proportion of liquid refrigerant flows, such as the lower heat exchanger 12 in which the circular tube 32 is a heat transfer tube, the heat exchanger height is increased.
  • the flat tube 22 is more conspicuous in lowering the heat transfer coefficient in the liquid single phase than the circular tube 32.
  • the flat tube 22 is used for the heat exchanger in which the refrigerant with a large proportion of the liquid refrigerant flows, and the flat tube 22 is used in the heat exchanger in which the gas single-phase to gas-liquid two-phase state flows.
  • the disadvantage of the tube 22 can be compensated, and a heat exchanger with excellent cost performance can be provided.
  • FIG. 13 is a perspective view of an air conditioner outdoor unit 100d according to Embodiment 4 of the present invention
  • FIG. 14 is a schematic side view of a heat exchanger 10d according to Embodiment 4 of the present invention.
  • the arrow in FIG. 14 has shown the flow of the wind.
  • the outdoor unit 100d of the air conditioner according to the fourth embodiment is equipped with a heat exchanger 10d shown in FIG.
  • the outdoor unit 100d of the air conditioner is a side flow type, and constitutes a refrigeration cycle by circulating a refrigerant with an indoor unit (not shown).
  • the outdoor unit 100d is used, for example, for a building multi-unit outdoor unit, and is installed on the roof of a building.
  • the outdoor unit 100 d is arranged on a casing 101 formed in a box shape, a suction port (not shown) formed by an opening on the back of the casing 101, and a back side in the casing 101.
  • the heat exchanger 10 d mounted on the outdoor unit 100 d of the air conditioner exchanges heat between the outside air sucked from the suction port by the fan 105 and the refrigerant, and the heat exchanger 10 d is behind the fan 105. Arranged on the side.
  • the heat exchanger 10 d includes a front heat exchanger main body 120 constituted by the fins 21 and the flat tubes 22, and a rear heat exchanger main body 130 constituted by the fins 31 and the circular pipes 32.
  • the front heat exchanger main body 120 and the rear heat exchanger main body 130 are arranged in the front-rear direction when viewed from the front. Specifically, the front heat exchanger main body 120 is arranged on the front side of the outdoor unit 100 d close to the fan 105, and the rear heat exchanger main body 130 is arranged on the back side of the outdoor unit 100 d far from the fan 105.
  • the front heat exchanger main body 120 in which the flat tube 22 having high heat exchange performance is a heat transfer tube is arranged in the front row close to the fan 105, and the rear heat in which the circular tube 32 is a heat transfer tube in the rear row.
  • the exchanger main body 130 By arranging the exchanger main body 130, it is possible to improve the heat exchange performance with good cost performance in the front row where the temperature difference between the refrigerant and the outside air is large.
  • the upper heat exchanger main body 20 and the front heat exchanger main body 120 correspond to the “first heat exchanger main body” of the present invention, and the lower heat exchanger main body 30 and the rear heat exchanger main body 130 of the present invention. Corresponds to "second heat exchanger body”.
  • the front surface of the casing 101 corresponds to the “side surface of the casing” of the present invention.
  • FIG. 19 is a schematic side view of a heat exchanger 10e according to Embodiment 5 of the present invention and its periphery.
  • the arrow in FIG. 19 has shown the flow of the refrigerant
  • the heat exchanger 10e includes an upper first header 23 on the upstream side of the refrigerant flow in the upper heat exchanger body 20 and a lower first header 140 on the upstream side of the refrigerant flow in the lower heat exchanger body 30. Is connected, and a flow rate adjusting valve 150 is provided on the upstream side of the lower first header 140, and the flow rate of refrigerant flowing through the upper heat exchanger body 20 and the lower heat exchanger body 30 is adjusted by the valve opening. .
  • an expansion valve is mentioned here as an example of a mechanism for adjusting the refrigerant flow rate, it is only an example, and any device that adjusts the refrigerant flow rate by changing the flow resistance, such as a capillary tube or a float, may be used.
  • the distributor connected to the upper heat exchanger main body 20 or the lower heat exchanger main body 30 is connected to the header as an example of the fifth embodiment, but is not limited to this. You may mix headers and distributors.
  • the flow rate of the refrigerant flowing through the lower heat exchanger main body 30 constituted by the circular pipe 32 is controlled by the flow rate adjusting valve 150 to achieve distribution adjustment, and the lower heat exchanger main body.
  • the heat exchange contribution ratio of 30 can be changed, for example, a large amount of refrigerant can be stably supplied to the upper heat exchanger body 20 having a high heat exchange contribution ratio even during low-load operation, and the cost performance is excellent.
  • a heat exchanger can be provided.
  • FIG. 20 is a schematic side view of the heat exchanger 10f according to Embodiment 6 of the present invention and its periphery.
  • the arrow in FIG. 20 has shown the flow of the refrigerant
  • the heat exchanger 10f is connected to the upstream side of the lower heat exchanger main body 30 formed of the circular pipe 32 and the upper heat exchanger main body 20 formed of the flat tube 22 during the heating operation.
  • the headers connected to the downstream side and the headers connected to the downstream side are one upstream header 160 and one downstream header 170 without being divided vertically. That is, one upstream header 160 and one downstream header 170 are connected across the upper heat exchanger body 20 and the lower heat exchanger body 30.
  • piping can be reduced, or it is not necessary to attach a plurality of headers, and cost performance can be improved.
  • the header connected to the upstream side of the upper heat exchanger body 20 and the lower heat exchanger body 30 and the header connected to the downstream side are respectively Although it is comprised by one, it is not limited to it.
  • the upstream side is connected to a single header, but the downstream side may be a plurality of headers divided up and down, and the upstream side is connected to a distributor other than the header, such as a single distributor.
  • the downstream side may be a plurality of headers divided into upper and lower sides.
  • the upstream side may be a plurality of headers or distributors separated vertically, and the downstream side may be connected to a single header.
  • FIG. 21 is a schematic side view of the heat exchanger 10g according to the seventh embodiment of the present invention and its periphery.
  • the arrow in FIG. 21 has shown the flow of the refrigerant
  • an anticorrosion sheet 180 is inserted between the upper heat exchanger body 20 and the lower heat exchanger body 30. This is because, for example, when the flat tube 22 is made of aluminum, the circular tube 32 is made of a copper tube, etc., and different kinds of metals exist vertically, the corrosion rate of the lower heat exchanger body 30 is reduced by drainage or the like. is there. It is also effective to configure the upper heat exchanger body 20 and the lower heat exchanger body 30 with the same material instead of the anticorrosion sheet 180.
  • FIG. 22 is a schematic side view of the heat exchanger 10h according to Embodiment 8 of the present invention and its periphery.
  • the arrow in FIG. 22 has shown the flow of the refrigerant
  • the lower heat exchanger body 30 configured by the circular pipe 32 is farther from the fan 5 than the upper heat exchanger body 20 configured by the flat tube 22.
  • the heat transfer tubes of the heat exchanger are disposed substantially vertically, that is, vertically.
  • a flat tube 22 having a relatively high heat transfer performance is used at a position close to the fan 5, and a circular tube 32 having a relatively low heat transfer performance but a good cost performance is disposed at a position far from the fan 5.
  • a heat exchanger excellent in cost performance can be provided.
  • the header position where the refrigerant flows is the lower part of the heat exchanger body, but this is only an example.
  • the refrigerant flow position is the upper part of the heat exchanger body, or the upper heat exchanger body.
  • the lower part of 20 and the upper part of the lower heat exchanger main body 30 may be used.
  • FIG. Embodiment 9 of the present invention will be described below.
  • FIG. 23 is a first schematic diagram showing an indoor unit 100e of an air conditioner equipped with a turbo fan 250 according to Embodiment 9 of the present invention
  • FIG. 24 is a turbo according to Embodiment 9 of the present invention.
  • It is a 2nd schematic diagram which shows the indoor unit 100e of the air conditioner which mounts the fan 250.
  • the turbo fan 250 is rotated by the motor 230.
  • the wind flows along the bell mouth 240 and is blown out in the centrifugal direction by the turbo fan 250.
  • the blown wind passes through the first heat exchanger 200 and the second heat exchanger 210 arranged around the turbo fan 250 to exchange heat, and blows along the air path formed by the ceiling material 190. It will be.
  • a drain pan 220 is disposed below the second heat exchanger 210 and has a structure for storing condensed water generated in the heat exchanger.
  • the air volume distribution of the indoor unit 100e according to the ninth embodiment is as shown in FIG. 24, and the heat exchange performance is relative to the first heat exchanger 200, which is close to the tip of the turbo fan 250 and has a large wind flow velocity.
  • a circular pipe 32 having a relatively low heat exchange performance but a high cost performance is used for the second heat exchanger 210 that uses a relatively high flat tube 22 and is far from the tip of the turbofan 250 and has a small wind flow velocity.
  • the refrigerant circuit of the 1st heat exchanger 200 and the 2nd heat exchanger 210 may be connected in parallel, or may be connected in series, and the 2nd heat exchanger 210 is liquid single phase at the time of air_conditionaing
  • the clearance gap is drawn between the 1st heat exchanger 200 and the 2nd heat exchanger 210 in FIG.23 and FIG.24, the 1st heat exchanger 200 and the 2nd heat exchanger 210 are connected. By making contact, the drainage path of the fins may be secured.
  • the configuration of the indoor unit 100e according to the ninth embodiment can also be applied to an outdoor unit.

Abstract

 空気調和機の室外機は、吸込口および吹出口を有し、外郭を構成するケーシングと、ケーシング内に設けられ、吸込口から外気を吸い込み、吹出口から外気を排出するファンと、ケーシング内に設けられ、ファンが吸い込んだ外気と冷媒とを熱交換する熱交換器と、を備え、熱交換器は、間隔を空けて並設された複数のフィンと、フィンを並設方向に貫通し、内部を冷媒が流れる複数の扁平管と、で構成される第一熱交換器本体と、間隔を空けて並設された複数のフィンと、フィンを並設方向に貫通し、内部を冷媒が流れる複数の円管と、で構成される第二熱交換器本体と、を備え、第一熱交換器本体は第二熱交換器本体よりもファンの近くに配置されているものである。

Description

空気調和機の室外機および室内機
 本発明は、エネルギー効率を改善した空気調和機の室外機および室内機に関するものである。
 従来の空気調和機において、室内機に搭載された凝縮器として機能する熱交換器で凝縮された液冷媒は、膨張弁によって減圧され、ガス冷媒と液冷媒とが混在する気液二相状態となって室外機に搭載された蒸発器として機能する熱交換器に流入する。冷媒が気液二相状態で蒸発器として機能する熱交換器に流入すると、その熱交換器への冷媒の分配性能が悪化する。そこで、冷媒の分配性能を改善するため、室外機に搭載された熱交換器の分配器としてヘッダーを用いて、ヘッダー内への枝管突出し量、ヘッダー内の仕切り板、噴出孔の設置など、ヘッダー内の構造を調整する方法がある。
 しかし、上記のようにヘッダー内の構造を調整した場合においても、ヘッダー内の気液二相冷媒の分配は、冷媒の質量速度の影響を大きく受ける。例えば、高出力の運転をする場合には、ヘッダー下部よりもヘッダー上部で多くの冷媒が分配されてしまい、低出力の運転をする場合には、ヘッダー上部よりもヘッダー下部で多くの冷媒が分配されてしまう。そして、冷媒の分配性能の悪化により熱交換器の熱交換性能が悪化するため、空気調和機のエネルギー効率の低下を引き起こすという課題があった。加えて、空気調和機の室外機はファンから近い部分ほど風が多く流れる。そのため、ヘッダー上部よりもファンから遠いヘッダー下部で、ヘッダー上部よりも多くの冷媒が分配されてしまう場合には、さらに冷媒の分配性能および熱交換器の熱交換性能が悪化し、さらなるエネルギー効率の低下を引き起こすという課題があった。
 空気調和機のエネルギー効率を改善するためには、気液二相冷媒の分配を均一化させる必要があるが、その方法として、従来、ヘッダー内に冷媒を撹拌させる乱流促進体を設ける方法がある(特許文献1参照)。特許文献1では、乱流促進体によってヘッダー内の気液二相冷媒が撹拌されることにより、気液二相冷媒の分配を均一化させている。
特開平5-203286号公報
 特許文献1のような従来の方法では、ヘッダー内に冷媒を攪拌させる構造物を設けることで、冷媒の分配性能を改善しているが、ヘッダー内の構造が複雑になるため、コストの増大を招いてしまうという課題があった。
 本発明は、以上のような課題を解決するためになされたもので、コストの増大を抑制しつつ、エネルギー効率を改善した空気調和機の室外機および室内機を提供することを目的としている。
 本発明に係る空気調和機の室外機は、吸込口および吹出口を有し、外郭を構成するケーシングと、前記ケーシング内に設けられ、前記吸込口から外気を吸い込み、前記吹出口から外気を排出するファンと、前記ケーシング内に設けられ、前記ファンが吸い込んだ外気と冷媒とを熱交換する熱交換器と、を備え、前記熱交換器は、間隔を空けて並設された複数のフィンと、該フィンを並設方向に貫通し、内部を前記冷媒が流れる複数の扁平管と、で構成される第一熱交換器本体と、間隔を空けて並設された複数のフィンと、該フィンを並設方向に貫通し、内部を前記冷媒が流れる複数の円管と、で構成される第二熱交換器本体と、を備え、前記第一熱交換器本体は前記第二熱交換器本体よりも前記ファンの近くに配置されているものである。
 本発明に係る空気調和機の室外機によれば、熱交換性能に対する寄与率の高いファンの近くに、熱交換性能が高い扁平管が伝熱管である第一熱交換器本体が配置されており、熱交換性能に対する寄与率の低いファンの遠くに、熱交換性能は低いが、冷媒の分配性能が高く、製造コストが安い円管が伝熱管である第二熱交換器本体が配置されている。そのため、コストの増大を抑制しつつ、エネルギー効率を改善することができる。
本発明の実施の形態1に係る空気調和機の室外機の斜視図である。 本発明の実施の形態1に係る熱交換器およびその周辺の側面模式図である。 図2のA-A断面図である。 図2のA-A断面図の別の一例を示す図である。 図2のB-B断面図である。 本発明の実施の形態1に係るディストリビュータの模式図である。 本発明の実施の形態1に係るディストリビュータとは別の分配器を示す模式図である。 本発明の実施の形態1に係る熱交換器の高さ方向に対する風量を示す図である。 本発明の実施の形態2に係る熱交換器およびその周辺の側面模式図である。 本発明の実施の形態2に係る熱交換器およびその周辺の別の一例を示す側面模式図である。 本発明の実施の形態2に係る熱交換器およびその周辺の別の一例を示す側面模式図である。 本発明の実施の形態3に係る熱交換器およびその周辺の側面模式図である。 本発明の実施の形態4に係る空気調和機の室外機の斜視図である。 本発明の実施の形態4に係る熱交換器の側面模式図である。 空気調和機の室外機の乾き度調整装置として内部熱交換器を使用した場合の構成の一部を示す模式図である。 図2の別の一例を示す第一図である。 図2の別の一例を示す第二図である。 図2の別の一例を示す第三図である。 本発明の実施の形態5に係る熱交換器およびその周辺の側面模式図である。 本発明の実施の形態6に係る熱交換器およびその周辺の側面模式図である。 本発明の実施の形態7に係る熱交換器およびその周辺の側面模式図である。 本発明の実施の形態8に係る熱交換器およびその周辺の側面模式図である。 本発明の実施の形態9に係るターボファンを搭載した空気調和機の室内機を示す第一の模式図である。 本発明の実施の形態9に係るターボファンを搭載した空気調和機の室内機を示す第二の模式図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和機の室外機100aの斜視図であり、図2は、本発明の実施の形態1に係る熱交換器10aおよびその周辺の側面模式図であり、図3は、図2のA-A断面図であり、図4は、図2のA-A断面図の別の一例を示す図であり、図5は、図2のB-B断面図である。なお、図1中の矢印は風の流れを示しており、図2中の矢印は暖房運転時における冷媒の流れ、または、風の流れを示している。
 以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」等)を適宜用いるが、これは説明のためのものであって、これらの用語は本願発明を限定するものではない。また、本実施の形態1では、室外機100aを正面視した状態において、「上」、「下」、「右」、「左」、「前」、「後」を使用する。そして、後述する実施の形態2~4についても同様である。
 本実施の形態1に係る空気調和機の室外機100aは、図2に示す熱交換器10aを搭載している。
 空気調和機の室外機100aはトップフロー型であり、室内機(図示せず)との間で冷媒を循環させることにより冷凍サイクルを構成する。なお、この室外機100aは、例えばビル用マルチの室外機などに用いられ、ビルの屋上などに設置される。
 室外機100aは、図1に示すように、箱状に形成されたケーシング1と、ケーシング1の側面の開口により形成された吸込口2と、吸込口2に沿うようにケーシング1内に配置された熱交換器10aと、ケーシング1の上面の開口により形成された吹出口3と、吹出口3を覆うように通風可能に設けられたファンガード4と、ファンガード4の内部に配置され、吸込口2から外気を吸い込み、吹出口3から外気を排出するファン5と、を備えている。
 空気調和機の室外機100aに搭載されている熱交換器10aは、ファン5によって吸込口2から吸い込まれた外気と冷媒とを熱交換するものである。熱交換器10aは、図2に示すように、ファン5の下方に配置されており、上部熱交換器11と下部熱交換器12とで構成されている。そして、上部熱交換器11と下部熱交換器12とが、正面視して、または、側面視して上下方向に配置されている。詳しくは、上部熱交換器11がファン5から近い上側に配置され、下部熱交換器12がファン5から遠い下側に配置されている。
 上部熱交換器11は、間隔を空けて並設された複数のフィン21と、フィン21の並設方向にこれらフィン21を貫通し、内部を冷媒が流れる複数の伝熱管と、で構成される上部熱交換器本体20と、複数の伝熱管の一端と接続される上部第一ヘッダー23と、複数の伝熱管の他端と接続される上部第二ヘッダー24と、を備えている。なお、暖房運転時における上部熱交換器本体20の上流側に上部第一ヘッダー23が接続されており、暖房運転時における上部熱交換器本体20の下流側に上部第二ヘッダー24が接続されている。以後、暖房運転時における上部熱交換器本体20または下部熱交換器本体30の上流側に接続される分配器のことを、上流側分配器と称する。
 一方、下部熱交換器12は、間隔を空けて並設された複数のフィン31と、フィン31の並設方向にこれらフィン31を貫通し、内部を冷媒が流れる複数の伝熱管と、で構成される下部熱交換器本体30と、ディストリビュータ34と、複数の伝熱管の一端をディストリビュータ34と接続するキャピラリーチューブ33と、複数の伝熱管の他端と接続される下部ヘッダー35と、を備えている。なお、暖房運転時における下部熱交換器本体30の上流側にキャピラリーチューブ33を介してディストリビュータ34が接続されており、暖房運転時における下部熱交換器本体30の下流側に下部ヘッダー35が接続されている。
 また、上部熱交換器11の上部第一ヘッダー23は、暖房運転時にガス冷媒と液冷媒とが混在した気液二相冷媒が通過する第一配管40から分岐した第一分岐管41と接続されている。また、上部熱交換器11の上部第二ヘッダー24は、暖房運転時にガス冷媒が通過する第二配管50から分岐した第一分岐管51と接続されている。
 一方、下部熱交換器12のディストリビュータ34は、第一配管40から分岐した第二分岐管42と接続されている。また、下部熱交換器12の下部ヘッダー35は、第二配管50から分岐した第二分岐管52と接続されている。
 なお、本実施の形態1に係る上部熱交換器11の伝熱管は、図3に示す断面が扁平形状の扁平管22であるが、図4に示す断面が扁平形状で、内部に複数の孔が形成されている扁平多孔管22aとしてもよい。また、図3に示す扁平管22および図4に示す扁平多孔管22aは、いずれも平滑面となっているが、溝を切ることで伝熱面積の拡大を図る溝付き面としてもよい。また、本実施の形態1に係る下部熱交換器12の伝熱管は、図5に示す断面が円形状の円管32である。
 図16は、図2の別の一例を示す第一図であり、図17は、図2の別の一例を示す第二図である。
 なお、本実施の形態1では、図2に示すように上部熱交換器11と下部熱交換器12との間に隙間が存在するが、実際には上部熱交換器11のフィン表面の水滴を排水するために、図16に示すように上部熱交換器11と下部熱交換器12とを密着させてもよい。また、図17に示すようにフィンは上部熱交換器11と下部熱交換器12との間に切れ目が無く、一体のフィンを共有していてもよい。
 図3に示す扁平管22および図4に示す扁平多孔管22aは、図5に示す円管32と比べて、冷媒単位体積当たりの伝熱面積が大きいため熱交換性能が高い。しかし、断面積が小さいため、流動抵抗が大きく圧力損失が大きくなるため、伝熱管の多パス化を図り圧力損失の増加を抑制する必要がある。その際に、多数の伝熱管に冷媒を最適に分配する技術が課題としてある。一方、図5に示す円管32は、図3に示す扁平管22および図4に示す扁平多孔管22aと比べて、熱交換器性能は低いが、製造コストが低い。しかし、断面積が大きいため、流動抵抗が小さく圧力損失が小さくなるため、伝熱管のパス数を少なくでき、分配の最適化が容易であるというメリットがある。
 次に、本実施の形態1に係る空気調和機の室外機100aの暖房運転時における冷媒の流れについて、図2を用いて説明する。
 暖房運転時、気液二相冷媒は、第一配管40を通過し、第一分岐管41と、第二分岐管42とに分流される。第二分岐管42に流れた気液二相冷媒は、ディストリビュータ34へ流れ、そこで均質化された後、キャピラリーチューブ33を通って下部熱交換器本体30に流入する。下部熱交換器本体30に流入した気液二相冷媒は、そこで吸込口2から吸い込まれた外気と熱交換することでガス化し、下部ヘッダー35へ流出する。
 一方、第一分岐管41に流れた気液二相冷媒は、上部第一ヘッダー23へ流れ、そこで各扁平管22に分配され、各扁平管22から上部熱交換器本体20に流入する。上部熱交換器本体20に流入した気液二相冷媒は、そこで吸込口2から吸い込まれた外気と熱交換することでガス化し、上部第二ヘッダー24へ流出する。
 図6は、本発明の実施の形態1に係るディストリビュータ34の模式図である。
 図6に示すディストリビュータ34は、ディストリ主管部61と、ディストリ膨張部62と、ディストリ分流部材63と、を備えており、ディストリ主管部61には面積急縮小部64が設けられている。また、ディストリビュータ34には、キャピラリーチューブ33の一端が接続されている。
 ディストリビュータ34には、気液二相冷媒が流入し、ディストリ主管部61の面積急縮小部64で絞られ、ガス冷媒と液冷媒とはディストリ膨張部62で攪拌され、均質化される。均質化されたガス冷媒と液冷媒とは、ディストリ分流部材63で各キャピラリーチューブ33に分配するようになっている。キャピラリーチューブ33の他端は下部熱交換器12の円管32に接続され、各円管32に流れる冷媒流量は、キャピラリーチューブ33の長さを調整することによって制御することができる。
 図7は、本発明の実施の形態1に係るディストリビュータ34とは別の分配器を示す模式図である。なお、図7中の矢印は重力方向を示している。
 暖房運転時における下部熱交換器本体30の上流側に接続されている分配器は、図6に示すディストリビュータ34であるが、図7に示すヘッダー70としてもよい。
 図7に示すヘッダー70は、ヘッダー70内に流入した気液二相冷媒を、重力方向に並設された複数の伝熱管である円管32に分配する構造のものである。そして、気液二相冷媒は、ヘッダー70内を鉛直上向きに上昇流で流れ、複数の円管32にヘッダー70内の流れに対して垂直の角度で分流される。
 分配器は一般的にディストリビュータ34の方が、ヘッダーより冷媒の分配性能が高い。しかし、扁平管22が伝熱管である熱交換器に用いる場合には、パス数が多くなるため、ディストリビュータ34の分岐部を多くしたり、複数のディストリビュータ34を使用したりする必要があり、配管の取り回しが複雑になるというデメリットがある。
 一方、ヘッダーは、配管の取り回しが容易であり、自動ロウ付けなどの自動化も適用し易く、低コストで製造できる。しかし、気液二相冷媒に対して重力が作用するため、例えば、冷媒流量が小さい場合には、密度の大きい液冷媒が伝熱管下部に多く偏って流れるといった課題があり、一般的に冷媒の分配性能はディストリビュータ34より低いというデメリットがある。
 また、ヘッダーはディストリビュータ34と比較すると、ディストリビュータ34のように面積急縮小部64などがなく、また、キャピラリーチューブ33も接続されていないため、圧力損失は小さい。このため、上流側分配器において、扁平管22が伝熱管である熱交換器本体には、パス数が多くなるため、圧力損失が小さく、配管の取り回しが容易なヘッダーの方が適している。一方で、円管32が伝熱管である熱交換器本体には、パス数が少なく配管の取り回しが複雑にならないため、冷媒の分配性能が高いディストリビュータ34の方が適している。このように、扁平管22が伝熱管である熱交換器本体、および、円管32が伝熱管である熱交換器本体、の上流側分配器には、それぞれ適したものがある。
 図8は、本発明の実施の形態1に係る熱交換器10aの高さ方向に対する風量を示す図である。
 本実施の形態1に係る熱交換器10aは、トップフロー型の室外機100aに搭載されているため、ファン5は熱交換器10aの上方に配置されており、ファン5によって風が熱交換器10aの隙間を通過し、それによって空気と熱交換する。そして、ファン5が上部熱交換器11の上方に配置されているため、室外機100aを流れる風量分布は、図8に示すようにファン5から近い熱交換器10aの上側の方が下側よりも多くなる。つまり、下側に配置された下部熱交換器12よりも上側に配置された上部熱交換器11の方が、風の流れが多くなる。そのため、上部熱交換器11および下部熱交換器12の前面面積を同じとした場合、上部熱交換器11の方が下部熱交換器12よりも、室外機100aの熱交換性能に対する寄与率が高くなる。
 したがって、風の流れが多い室外機100aの上側、つまり、ファン5から近い位置には、熱交換性能が高い、扁平管22が伝熱管である上部熱交換器11を配置し、風の流れが少ない室外機100aの下側、つまり、ファン5から遠い位置には、熱交換性能は低いが冷媒の分配性能が高い、円管32が伝熱管である下部熱交換器12を配置する。そうすることで、熱交換性能を効率的に向上させることができる。その結果、空気調和機の室外機100aのエネルギー効率を改善することができる。
 また、風の流れが多い位置に配置されている上部熱交換器11に冷媒を多く流す方が熱交換性能は高くなる。そこで、扁平管22が伝熱管である熱交換器、および円管32が伝熱管である熱交換器、の上流側分配器にそれぞれ最適なものを用いる。扁平管22が伝熱管である熱交換器、つまり、上部熱交換器11には分配器としてヘッダーを用い、円管32が伝熱管である熱交換器、つまり、下部熱交換器12には分配器としてディストリビュータ34を用いる。
 分配器の流動抵抗はヘッダーよりもディストリビュータ34の方が大きいため、上記のように分配器を用いることで、上部熱交換器11に冷媒をより多く流すことができる。そのため、冷媒の分配特性を改善でき、熱交換器10aの熱交換性能を向上させることができる。また、ディストリビュータ34に接続されているキャピラリーチューブ33の長さを変更することで、ヘッダーに流れる冷媒流量を調整することができるので、なおよい。
 図18は、図2の別の一例を示す第三図である。
 なお、本実施の形態1では、図2に示すように円管32にディストリビュータ34、扁平管22にヘッダーを接続しているが、あくまでも一例であり、例えば、図18に示すように円管32と扁平管22のいずれにも同じ分配器を取り付けてもよく、あるいは扁平管22にディストリビュータ34、円管32にヘッダーを接続してもよい。
 また、一般的に円管32よりも扁平管22は製造コストが高いので、室外機100aの熱交換性能に対する寄与率の高いファン5の近くに、熱交換性能の高い扁平管22が伝熱管である上部熱交換器11を配置することで、コストパフォーマンスのよい熱交換器10aを提供することができる。
 以上より、本実施の形態1に係る空気調和機の室外機100aによれば、熱交換性能に対する寄与率の高いファン5の近くに、熱交換性能が高い扁平管22が伝熱管である上部熱交換器11を配置し、熱交換性能に対する寄与率の低いファン5の遠くに、熱交換性能は低いが、冷媒の分配性能が高く製造コストが安い円管32が伝熱管である下部熱交換器12を配置することにより、コストの増大を抑制しつつ、エネルギー効率を改善することができる。
 実施の形態2.
 以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては(一部の)説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図9は、本発明の実施の形態2に係る熱交換器10bおよびその周辺の側面模式図である。なお、図9中の矢印は暖房運転時における冷媒の流れ、または、風の流れを示している。
 本実施の形態2に係る空気調和機の室外機100bは、熱交換器10bの上流側に気液分離器80を備えている。気液分離器80は、冷媒の乾き度を調整するために用いられ、気液二相冷媒が流れる第三配管82、気液分離器80で分離されたガス冷媒が流れる第四配管83、および、気液分離器80で分離された液冷媒が流れる第一配管40と接続されている。第四配管83は、バイパス流量弁85と接続されており、バイパス流量弁85は、第五配管84と接続されており、第五配管84は、第二配管50と接続されている。また、第二配管50は、圧縮機81と接続されている。
 図15は、空気調和機の室外機の乾き度調整装置として内部熱交換器110を使用した場合の構成の一部を示す模式図である。
 なお、気液分離器80は、本発明の「乾き度調整装置」に相当するが、あくまで乾き度を調整する装置の一例であり、これに限定されるものではない。その他の乾き度調整装置としては、図15に示すような内部熱交換器110、または他の低温熱源などと熱交換する熱交換器を用いてもよい。
 図15に示すように、冷媒は配管111を通過し、内部熱交換器110に流入する。内部熱交換器110に流入した冷媒は、熱交換器117出口の配管116とバイパスされた一部の冷媒によって自己冷却され、乾き度が低下した状態で配管112を通り、熱交換器117に流れる。一方、バイパスされた冷媒は、配管115を通過し、バイパス流量は配管113上に設置されたバルブ114によって調整される。なお、配管113上に設置されたバルブ114はバルブに限られるものではなく、キャピラリーチューブ、細管、フロート弁などの流動抵抗体であればよい。
 次に、本実施の形態2に係る空気調和機の室外機100bの暖房運転時における冷媒の流れについて、図9を用いて説明する。
 暖房運転時、気液二相冷媒は、第三配管82を通過し、気液分離器80に流入する。気液分離器80に流入した気液二相冷媒は、そこでガス冷媒と液冷媒とに分離される。気液分離器80で分離されたガス冷媒は、第四配管83、バイパス流量弁85、第五配管84、および、第二配管50を通過し、圧縮機81に流入する。一方、気液分離器80で分離された液冷媒は、第一配管40を通過し、第一分岐管41と、第二分岐管42とに分流される。
 第二分岐管42に流れた液冷媒は、ディストリビュータ34へ流れ、そこで均質化された後、キャピラリーチューブ33を通って下部熱交換器本体30に流入する。下部熱交換器本体30に流入した液冷媒は、そこで吸込口2から吸い込まれた外気と熱交換することでガス化し、下部ヘッダー35へ流出する。一方、第一分岐管41に流れた液冷媒は、上部第一ヘッダー23へ流れ、そこで各扁平管22に分配され、各扁平管22から上部熱交換器本体20に流入する。上部熱交換器本体20に流入した気液二相冷媒は、そこで吸込口2から吸い込まれた外気と熱交換することでガス化し、上部第二ヘッダー24へ流出する。
 第一分岐管41と第二分岐管42とに流れる冷媒の流量比は、第一分岐管41、上部第一ヘッダー23、扁平管22、上部第二ヘッダー24、および、第一分岐管51の合計の流動抵抗と、第二分岐管42、ディストリビュータ34、キャピラリーチューブ33、円管32、下部ヘッダー35、および、第二分岐管52の合計の流動抵抗と、で決まる。特に、キャピラリーチューブ33の長さを調整することで、第一分岐管41と第二分岐管42とに流れる冷媒の流量比を最適に調整することができる。
 ここで、第一分岐管41を流れる冷媒にガスが多く混合している場合、すなわちガス冷媒流量/全冷媒流量(以後、乾き度と称する)が大きい場合には、ガスが上部第一ヘッダー23の上部に溜まりやすく、各扁平管22に液冷媒が不均等に流れやすい。そのため、気液分離器80を用いて上部第一ヘッダー23に流れるガス冷媒を減らすことで、上部第一ヘッダー23に流れる冷媒の分配性能が改善し、熱交換性能が向上する。
 なお、本実施の形態2では、気液分離器80によって気液二相冷媒をガス冷媒と液冷媒とに分離しているが、完全に分離できなくても、上部第一ヘッダー23に流れるガス冷媒を減らすことができればよい。また、気液分離器80を用いることで、分配器および伝熱管を通過する際の圧力損失を全体的に小さくすることができ、キャピラリーチューブ33による流量比の調整が容易となる。
 図10は、本発明の実施の形態2に係る熱交換器10bおよびその周辺の別の一例を示す側面模式図であり、図11は、本発明の実施の形態2に係る熱交換器10bおよびその周辺の別の一例を示す側面模式図である。なお、図10中および図11中の矢印は暖房運転時における冷媒の流れ、または、風の流れを示している。
 なお、気液分離器80の配置は、図9に示す位置に限定されず、図10に示すように第一分岐管41中に気液分離器80を配置してもよいし、図11に示すように、第二分岐管42中に気液分離器80を配置してもよい。また、気液分離器80を複数配置すると、第一分岐管41と第二分岐管42とに流れる冷媒流量の制御幅が広がるため、なおよい。
 実施の形態3.
 以下、本発明の実施の形態3について説明するが、実施の形態1と重複するものについては(一部の)説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図12は、本発明の実施の形態3に係る熱交換器10cおよびその周辺の側面模式図である。なお、図12中の矢印は冷房運転時における冷媒の流れ、または、風の流れを示している。
 本実施の形態3に係る熱交換器10cは、扁平管22および円管32の少なくとも2種類の伝熱管が中間ヘッダー26を介して直列に接続されている。
 熱交換器10cは、ファン5の下方に配置されており、上部熱交換器本体20と、下部熱交換器本体30と、ヘッダー25と、中間ヘッダー26と、ディストリビュータ34と、キャピラリーチューブ33と、を備えている。
 上部熱交換器本体20は、間隔を空けて並設された複数のフィン21と、フィン21の並設方向にこれらフィン21を貫通し、内部を冷媒が流れる複数の扁平管22と、で構成されている。また、下部熱交換器本体30は、間隔を空けて並設された複数のフィン31と、フィン31の並設方向にこれらフィン31を貫通し、内部を冷媒が流れる複数の円管32と、で構成されている。そして、上部熱交換器本体20と下部熱交換器本体30とは、正面視して、または、側面視して上下方向に配置されており、上部熱交換器本体20がファン5から近い上側に配置され、下部熱交換器本体30がファン5から遠い下側に配置されている。
 つまり、上部熱交換器本体20の複数の扁平管22と、下部熱交換器本体30の複数の円管32とは、重力方向に並設されている。
 上部熱交換器本体20の複数の扁平管22の一端は、ヘッダー25と接続されており、下部熱交換器本体30の複数の円管32の一端は、キャピラリーチューブ33を介してディストリビュータ34と接続されている。また、上部熱交換器本体20の複数の扁平管22の他端および下部熱交換器本体30の複数の円管32の他端は、中間ヘッダー26と接続されている。なお、冷房運転時における上部熱交換器本体20の上流側に接続されている分配器は、ヘッダー25であり、冷房運転時における下部熱交換器本体30の上流側に接続されている分配器は、ディストリビュータ34である。
 また、ヘッダー25は、冷房運転時にガス冷媒が通過する第一配管91と接続されており、ディストリビュータ34は、冷房運転時に液冷媒が通過する第二配管92と接続されている。
 次に、本実施の形態3に係る空気調和機の室外機100cの冷房運転時における冷媒の流れについて、図12を用いて説明する。
 冷房運転時、高温高圧のガス冷媒が第一配管91を通過し、ヘッダー25へ流れ、そこで各扁平管22に分配され、各扁平管22から上部熱交換器本体20に流入する。上部熱交換器本体20に流入したガス冷媒は、そこで吸込口2から吸い込まれた外気と熱交換して熱を放熱することで気液二相状態となり、中間ヘッダー26へ流れる。中間ヘッダー26で気液二相冷媒は下部熱交換器本体30の円管32へと流入し、そこでさらに周囲の空気と熱交換し、液単相となる。
 この時、扁平管22を、円管32が伝熱管である下部熱交換器12のように、液冷媒の割合が多い気液二相冷媒が流れる熱交換器に用いると、熱交換器高さが同じである場合、扁平管22は円管32よりも液単相での熱伝達率の低下が顕著である。このため、液冷媒の割合が多い冷媒が流れる熱交換器に円管32、ガス単相~気液二相状態が流れる熱交換器に扁平管22を用いることで、液単相部での扁平管22のデメリットを補うことができ、コストパフォーマンスに優れた熱交換器を提供できる。
 実施の形態4.
 以下、本発明の実施の形態4について説明するが、実施の形態1と重複するものについては(一部の)説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図13は、本発明の実施の形態4に係る空気調和機の室外機100dの斜視図であり、図14は、本発明の実施の形態4に係る熱交換器10dの側面模式図である。なお、図14中の矢印は風の流れを示している。
 本実施の形態4に係る空気調和機の室外機100dは、図14に示す熱交換器10dを搭載している。
 空気調和機の室外機100dはサイドフロー型であり、室内機(図示せず)との間で冷媒を循環させることにより冷凍サイクルを構成する。なお、この室外機100dは、例えばビル用マルチの室外機などに用いられ、ビルの屋上などに設置される。
 室外機100dは、図13に示すように、箱状に形成されたケーシング101と、ケーシング101の背面の開口により形成された吸込口(図示せず)と、ケーシング101内の背面側に配置された熱交換器10dと、ケーシング101の前面の開口により形成された吹出口103と、吹出口103を覆うように通風可能に設けられたファンガード104と、ファンガード104の内部に配置され、吸込口から外気を吸い込み、吹出口103から外気を排出するファン105と、を備えている。
 空気調和機の室外機100dに搭載されている熱交換器10dは、ファン105によって吸込口から吸い込まれた外気と冷媒とを熱交換するものであり、熱交換器10dは、ファン105よりも背面側に配置されている。
 熱交換器10dは、フィン21と扁平管22とで構成される前面熱交換器本体120と、フィン31と円管32とで構成される背面熱交換器本体130と、を備えている。そして、前面熱交換器本体120と背面熱交換器本体130とが、正面視して前後方向に配置されている。詳しくは、前面熱交換器本体120がファン105から近い室外機100dの前面側に配置され、背面熱交換器本体130がファン105から遠い室外機100dの背面側に配置されている。
 本実施の形態4のように、ファン105から近い前列に熱交換性能が高い扁平管22が伝熱管である前面熱交換器本体120を配置し、後列に円管32が伝熱管である背面熱交換器本体130を配置することで、冷媒と外気との温度差が大きい前列においてコストパフォーマンスよく、熱交換性能を改善することができる。
 なお、上部熱交換器本体20および前面熱交換器本体120は、本発明の「第一熱交換器本体」に相当し、下部熱交換器本体30および背面熱交換器本体130は、本発明の「第二熱交換器本体」に相当する。また、ケーシング101の前面は、本発明の「ケーシングの側面」に相当する。
 実施の形態5.
 以下、本発明の実施の形態5について説明するが、実施の形態1と重複するものについては(一部の)説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図19は、本発明の実施の形態5に係る熱交換器10eおよびその周辺の側面模式図である。なお、図19中の矢印は暖房運転時の冷媒の流れ、または風の流れを示している。
 本実施の形態5に係る熱交換器10eは、上部熱交換器本体20の冷媒流れ上流側に、上部第一ヘッダー23、下部熱交換器本体30の冷媒流れ上流側に、下部第一ヘッダー140が接続されており、下部第一ヘッダー140の上流側に流量調整弁150を備えており、上部熱交換器本体20および下部熱交換器本体30に流れる冷媒流量を弁開度により調整している。
 なお、ここでは冷媒流量を調整する機構例として膨張弁を挙げているが、あくまで一例であり、キャピラリーチューブ、フロートなど、流動抵抗を変化させて冷媒流量の調整を行うものであればよい。また、上部熱交換器本体20または下部熱交換器本体30に接続されている分配器はあくまでも本実施の形態5の一例としてヘッダーを接続しているがこれに限るものではなく、複数のディストリビュータまたはヘッダーとディストリビュータを混在使用してもよい。
 本実施の形態5によれば、暖房運転時、円管32で構成された下部熱交換器本体30に流れる冷媒流量を流量調整弁150によって制御し、分配調整を図ると共に、下部熱交換器本体30の熱交換寄与率を変化させることができ、例えば低負荷運転時においても安定して熱交換寄与率の高い上部熱交換器本体20に多く冷媒を供給することができ、コストパフォーマンスに優れた熱交換器を提供することができる。
 実施の形態6.
 以下、本発明の実施の形態6について説明するが、実施の形態1と重複するものについては(一部の)説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図20は、本発明の実施の形態6に係る熱交換器10fおよびその周辺の側面模式図である。なお、図20中の矢印は暖房運転時の冷媒の流れ、または風の流れを示している。
 本実施の形態6に係る熱交換器10fは、暖房運転時における、円管32で構成された下部熱交換器本体30および扁平管22で構成された上部熱交換器本体20の上流側に接続されているヘッダー、および、下流側に接続されているヘッダーは、それぞれ上下に分割されることなく一本の上流ヘッダー160、下流ヘッダー170である。つまり、上部熱交換器本体20と下部熱交換器本体30とにまたがって一本の上流ヘッダー160および下流ヘッダー170が接続されている。
 このように、ヘッダーを上下に分割しないことで、配管を減らすことができ、または、複数のヘッダーを取り付ける必要が無く、コストパフォーマンスを向上させることができる。
 なお、本実施の形態6では、暖房運転時における、上部熱交換器本体20および下部熱交換器本体30の上流側に接続されているヘッダー、および、下流側に接続されているヘッダーは、それぞれ一本で構成されているが、それに限定されない。例えば、上流側は一本のヘッダーに接続しているが、下流側は上下に分かれた複数のヘッダーであってもよく、上流側は一つのディストリビュータなどヘッダー以外の分配器に接続しているが、下流側は上下に分かれた複数のヘッダーであってもよい。また、上流側は上下に分かれた複数のヘッダーまたはディストリビュータなどで、下流側が一本のヘッダーに接続しているものでもよい。
 実施の形態7.
 以下、本発明の実施の形態7について説明するが、実施の形態1と重複するものについては(一部の)説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図21は、本発明の実施の形態7に係る熱交換器10gおよびその周辺の側面模式図である。なお、図21中の矢印は暖房運転時の冷媒の流れ、または風の流れを示している。
 本実施の形態7に係る熱交換器10gは、上部熱交換器本体20と下部熱交換器本体30との間に防食シート180が挿入されているものである。これは、例えば扁平管22がアルミ、円管32が銅管などで、異種金属が上下に存在している場合に、排水などによって下部熱交換器本体30の腐食の進行速度を低減するためである。なお、防食シート180の代わりに、上部熱交換器本体20と下部熱交換器本体30とを同じ材質で構成することも有効である。
 実施の形態8.
 以下、本発明の実施の形態8について説明するが、実施の形態1と重複するものについては(一部の)説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図22は、本発明の実施の形態8に係る熱交換器10hおよびその周辺の側面模式図である。なお、図22中の矢印は暖房運転時の冷媒の流れ、または風の流れを示している。
 本実施の形態8に係る熱交換器10hは、暖房運転時、円管32で構成された下部熱交換器本体30は扁平管22で構成された上部熱交換器本体20よりもファン5から遠い位置に配置されており、上部熱交換器本体20および下部熱交換器本体30の少なくとも一方は、熱交換器の伝熱管が略鉛直、つまり鉛直向きに配置されている。これにより、上部熱交換器本体20または下部熱交換器本体30に接続されるヘッダー内を流れる冷媒は、ヘッダーのヘッド差の影響が少なく、分配改善を図ることができる。
 また、ファン5に近い位置に、伝熱性能が相対的に高い扁平管22を用いており、ファン5から遠い位置に、伝熱性能が相対的に低いが、コストパフォーマンスのよい円管32を配置することで、コストパフォーマンスに優れた熱交換器を提供することができる。また、図22では、冷媒の流入するヘッダー位置を熱交換器本体の下部としているが、これはあくまでも一例であり、例えば冷媒流入位置を、熱交換器本体の上部としたり、上部熱交換器本体20の下部と下部熱交換器本体30の上部としたりしてもよい。
 実施の形態9.
 以下、本発明の実施の形態9について説明する。
 図23は、本発明の実施の形態9に係るターボファン250を搭載した空気調和機の室内機100eを示す第一の模式図であり、図24は、本発明の実施の形態9に係るターボファン250を搭載した空気調和機の室内機100eを示す第二の模式図である。なお、図23および図24中の矢印は風の流れを表している。
 本実施の形態9に係る空気調和機の室内機100eは、図23および図24に示すターボファン250を搭載している。また、ターボファン250の周囲に第一熱交換器200と、第二熱交換器210とを搭載しており、第一熱交換器200は第二熱交換器210よりも室内機100eの上側、つまりターボファン250の先端に近くに配置されている。
 ターボファン250は、モーター230によって回転され、ターボファン250が回転することによって風はベルマウス240に沿って流入し、ターボファン250によって遠心方向に吹きだされる。吹きだされた風はターボファン250の周囲に配置された第一熱交換器200、第二熱交換器210を通過することで熱交換し、天井材190によって形成された風路を沿って吹きだされる。また、第二熱交換器210の下部にはドレンパン220が配置されており、熱交換器で発生する凝縮水を溜める構造となっている。
 本実施の形態9に係る室内機100eの風量分布は、図24に示すようになっており、ターボファン250の先端に近く、風の流速の大きい第一熱交換器200に熱交換性能が相対的に高い扁平管22を用い、ターボファン250の先端から遠く、風の流速の小さい第二熱交換器210に熱交換性能は相対的に低いがコストパフォーマンスの高い円管32を用いる。
 なお、第一熱交換器200と第二熱交換器210との冷媒回路は並列に接続されていても、直列に接続されていてもよく、冷房運転時に第二熱交換器210を液単相の熱交換器として使用する様にするとなおよい。また、図23および図24中の第一熱交換器200と第二熱交換器210との間には隙間を描写しているが、第一熱交換器200と第二熱交換器210とを接触させることによって、フィンの排水経路が確保されなおよい。
 また、本実施の形態9に係る室内機100eの構成は、室外機にも適用できる。
 1 ケーシング、2 吸込口、3 吹出口、4 ファンガード、5 ファン、10a 熱交換器、10b 熱交換器、10c 熱交換器、10d 熱交換器、10e 熱交換器、10f 熱交換器、10g 熱交換器、10f 熱交換器、11 上部熱交換器、12 下部熱交換器、20 上部熱交換器本体、21 フィン、22 扁平管、22a 扁平多孔管、23 上部第一ヘッダー、24 上部第二ヘッダー、25 ヘッダー、26 中間ヘッダー、30 下部熱交換器本体、31 フィン、32 円管、33 キャピラリーチューブ、34 ディストリビュータ、35 下部ヘッダー、40 第一配管、41 第一分岐管、42 第二分岐管、50 第二配管、51 第一分岐管、52 第二分岐管、61 ディストリ主管部、62 ディストリ膨張部、63 ディストリ分流部材、64 面積急縮小部、70 ヘッダー、80 気液分離器、81 圧縮機、82 第三配管、83 第四配管、84 第五配管、85 バイパス流量弁、91 第一配管、92 第二配管、100a 室外機、100b 室外機、100c 室外機、100d 室内機、100e 室内機、101 ケーシング、103 吹出口、104 ファンガード、105 ファン、110 内部熱交換器、111 配管、112 配管、113 配管、114 バルブ、115 配管、116 配管、117 熱交換器、120 前面熱交換器本体、130 背面熱交換器本体、140 下部第一ヘッダー、150 流量調整弁、160 上流ヘッダー、170 下流ヘッダー、180 防食シート、190 天井材、200 第一熱交換器、210 第二熱交換器、220 ドレンパン、230 モーター、240 ベルマウス、250 ターボファン。

Claims (18)

  1.  吸込口および吹出口を有し、外郭を構成するケーシングと、
     前記ケーシング内に設けられ、前記吸込口から外気を吸い込み、前記吹出口から外気を排出するファンと、
     前記ケーシング内に設けられ、前記ファンが吸い込んだ外気と冷媒とを熱交換する熱交換器と、を備え、
     前記熱交換器は、
     間隔を空けて並設された複数のフィンと、該フィンを並設方向に貫通し、内部を前記冷媒が流れる複数の扁平管と、で構成される第一熱交換器本体と、
     間隔を空けて並設された複数のフィンと、該フィンを並設方向に貫通し、内部を前記冷媒が流れる複数の円管と、で構成される第二熱交換器本体と、を備え、
     前記第一熱交換器本体は前記第二熱交換器本体よりも前記ファンの近くに配置されている
     空気調和機の室外機。
  2.  暖房運転時における前記第一熱交換器本体の上流側に、ヘッダーが接続されており、
     暖房運転時における前記第二熱交換器本体の上流側に、キャピラリーチューブを介してディストリビュータが接続されている
     請求項1に記載の空気調和機の室外機。
  3.  暖房運転時における前記熱交換器の上流側に、前記冷媒の乾き度を調整する乾き度調整装置が設けられている
     請求項1または2に記載の空気調和機の室外機。
  4.  前記第一熱交換器本体と前記第二熱交換器本体とは正面視して上下方向に配置されており、前記第一熱交換器本体は前記第二熱交換器本体よりも上方に配置されており、前記第一熱交換器本体と前記第二熱交換器本体とは中間ヘッダーで直列に接続されている
     請求項1~3のいずれか一項に記載の空気調和機の室外機。
  5.  前記吹出口を前記ケーシングの上面に有する
     トップフロー型である
     請求項4に記載の空気調和機の室外機。
  6.  前記第一熱交換器本体と前記第二熱交換器本体とは正面視して前後方向に配置されている
     請求項1~3のいずれか一項に記載の空気調和機の室外機。
  7.  前記吹出口を前記ケーシングの側面に有する
     サイドフロー型である
     請求項6に記載の空気調和機の室外機。
  8.  前記第一熱交換器本体および前記第二熱交換器本体の少なくともいずれか一方に、暖房運転時に前記第一熱交換器本体および前記第二熱交換器本体に流れる冷媒流量を調整する機構を有する
     請求項1~6のいずれか一項に記載の空気調和機の室外機。
  9.  暖房運転時における前記第一熱交換器本体および前記第二熱交換器本体の上流側、および、下流側の少なくともいずれか一方に、前記第一熱交換器本体と前記第二熱交換器本体とにまたがって一つの分配器が接続されている
     請求項1~8のいずれか一項に記載の空気調和機の室外機。
  10.  前記第一熱交換器本体と前記第二熱交換器本体との間に防食シートが挿入されている
     請求項1~9のいずれか一項に記載の空気調和機の室外機。
  11.  前記第一熱交換器本体と前記第二熱交換器本体とは同じ材質で構成されている
     請求項1~10のいずれか一項に記載の空気調和機の室外機。
  12.  前記第一熱交換器本体および前記第二熱交換器本体の少なくともいずれか一方の伝熱管が鉛直向きに配置されている
     請求項1~6、8~11のいずれか一項に記載の空気調和機の室外機。
  13.  吸込口および吹出口を有し、外郭を構成するケーシングと、
     前記ケーシング内に設けられ、前記吸込口から外気を吸い込み、前記吹出口から外気を排出するターボファンと、
     前記ケーシング内に設けられ、前記ターボファンが吸い込んだ外気と冷媒とを熱交換する熱交換器と、を備え、
     前記熱交換器は、
     間隔を空けて並設された複数のフィンと、該フィンを並設方向に貫通し、内部を前記冷媒が流れる複数の扁平管と、で構成される第一熱交換器本体と、
     間隔を空けて並設された複数のフィンと、該フィンを並設方向に貫通し、内部を前記冷媒が流れる複数の円管と、で構成される第二熱交換器本体と、を備え、
     前記第一熱交換器本体は前記第二熱交換器本体よりも前記ターボファンの先端の近くに配置されている
     空気調和機の室外機。
  14.  前記第一熱交換器本体と前記第二熱交換器本体とは直列に接続されている
     請求項13に記載の空気調和機の室外機。
  15.  前記第一熱交換器本体と前記第二熱交換器本体とは並列に接続されている
     請求項13に記載の空気調和機の室外機。
  16.  吸込口および吹出口を有し、外郭を構成するケーシングと、
     前記ケーシング内に設けられ、前記吸込口から外気を吸い込み、前記吹出口から外気を排出するターボファンと、
     前記ケーシング内に設けられ、前記ターボファンが吸い込んだ外気と冷媒とを熱交換する熱交換器と、を備え、
     前記熱交換器は、
     間隔を空けて並設された複数のフィンと、該フィンを並設方向に貫通し、内部を前記冷媒が流れる複数の扁平管と、で構成される第一熱交換器本体と、
     間隔を空けて並設された複数のフィンと、該フィンを並設方向に貫通し、内部を前記冷媒が流れる複数の円管と、で構成される第二熱交換器本体と、を備え、
     前記第一熱交換器本体は前記第二熱交換器本体よりも前記ターボファンの先端の近くに配置されている
     空気調和機の室内機。
  17.  前記第一熱交換器本体と前記第二熱交換器本体とは直列に接続されている
     請求項16に記載の空気調和機の室内機。
  18.  前記第一熱交換器本体と前記第二熱交換器本体とは並列に接続されている
     請求項16に記載の空気調和機の室内機。
PCT/JP2016/061662 2015-10-28 2016-04-11 空気調和機の室外機および室内機 WO2017073096A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680061472.5A CN108139089B (zh) 2015-10-28 2016-04-11 空气调节机的室外机及室内机
EP16859333.3A EP3370000B1 (en) 2015-10-28 2016-04-11 Outdoor unit for air conditioner
JP2017547637A JP6545277B2 (ja) 2015-10-28 2016-04-11 空気調和機の室外機
US15/766,243 US20180292096A1 (en) 2015-10-28 2016-04-11 Outdoor unit and indoor unit of air-conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015212216 2015-10-28
JP2015-212216 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017073096A1 true WO2017073096A1 (ja) 2017-05-04

Family

ID=58630339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061662 WO2017073096A1 (ja) 2015-10-28 2016-04-11 空気調和機の室外機および室内機

Country Status (5)

Country Link
US (1) US20180292096A1 (ja)
EP (1) EP3370000B1 (ja)
JP (1) JP6545277B2 (ja)
CN (1) CN108139089B (ja)
WO (1) WO2017073096A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562032A (zh) * 2017-12-21 2018-09-21 合肥通用机械研究院 一种辐射与对流耦合换热统一末端
JP2018189330A (ja) * 2017-05-10 2018-11-29 日立ジョンソンコントロールズ空調株式会社 空気調和機の室外機
CN113639488A (zh) * 2021-06-28 2021-11-12 明平凡 一种高效除尘空气源热泵及其使用方法
US20220018553A1 (en) * 2018-12-19 2022-01-20 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109690211B (zh) * 2016-09-12 2020-10-30 三菱电机株式会社 热交换器及空调装置
WO2018047330A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
JP6304420B1 (ja) * 2017-03-23 2018-04-04 日本電気株式会社 冷媒分配装置、冷却装置及び冷媒分配装置における冷媒分配方法
CN107560117A (zh) * 2017-08-22 2018-01-09 珠海格力电器股份有限公司 空调系统及其控制方法
CN108870571A (zh) * 2018-07-31 2018-11-23 云森威尔智能环境(深圳)有限公司 一种新型多联环境机系统
US11221151B2 (en) * 2019-01-15 2022-01-11 Johnson Controls Technology Company Hot gas reheat systems and methods
CN110701675B (zh) * 2019-10-23 2021-10-22 广东美的暖通设备有限公司 空调器
CN114812014A (zh) * 2022-04-29 2022-07-29 青岛海信日立空调系统有限公司 一种换热器及空调
CN114992799A (zh) * 2022-05-05 2022-09-02 青岛海尔空调电子有限公司 空调室外机及空调器的控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189062U (ja) * 1983-06-02 1984-12-14 三菱電機株式会社 空気調和機の室外ユニツト
JP2002147781A (ja) * 2000-11-06 2002-05-22 Hitachi Ltd 空気調和機用室内機
JP2010133656A (ja) * 2008-12-05 2010-06-17 Sharp Corp 空気調和機の室内機
JP2011163741A (ja) * 2010-02-15 2011-08-25 Daikin Industries Ltd 空気調和機用熱交換器
WO2012035845A1 (ja) * 2010-09-16 2012-03-22 シャープ株式会社 空気調和機の室内機
JP2012181013A (ja) * 2012-06-20 2012-09-20 Mitsubishi Electric Corp 冷凍サイクル装置、ならびに本冷凍サイクル装置を用いた冷蔵庫、低温装置、および空調装置
JP2013139971A (ja) * 2012-01-06 2013-07-18 Mitsubishi Electric Corp 熱交換器、室内機、および室外機
JP2014137157A (ja) * 2013-01-15 2014-07-28 Mitsubishi Electric Corp 空気調和機の室外機
JP2014142138A (ja) * 2013-01-24 2014-08-07 Toshiba Corp 空気調和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482825B1 (ko) * 2002-07-09 2005-04-14 삼성전자주식회사 열교환기
EP1837608B1 (en) * 2004-12-24 2014-01-29 Toshiba Carrier Corporation Outdoor unit for air conditioner
US8307669B2 (en) * 2007-02-27 2012-11-13 Carrier Corporation Multi-channel flat tube evaporator with improved condensate drainage
KR101233209B1 (ko) * 2010-11-18 2013-02-15 엘지전자 주식회사 히트 펌프
CN202083248U (zh) * 2011-03-17 2011-12-21 冠昊有限公司 多通道式扁状蛇盘管热交换器及其热交换设备
JP5901748B2 (ja) * 2012-04-26 2016-04-13 三菱電機株式会社 冷媒分配器、この冷媒分配器を備えた熱交換器、冷凍サイクル装置及び空気調和機
US9702637B2 (en) * 2012-04-26 2017-07-11 Mitsubishi Electric Corporation Heat exchanger, indoor unit, and refrigeration cycle apparatus
US10036562B2 (en) * 2012-08-03 2018-07-31 Mitsubishi Electric Corporation Air-conditioning apparatus
KR20140056465A (ko) * 2012-10-26 2014-05-12 삼성전자주식회사 공기조화기
WO2014091536A1 (ja) * 2012-12-10 2014-06-19 三菱電機株式会社 扁平管熱交換器
WO2015097761A1 (ja) * 2013-12-24 2015-07-02 三菱電機株式会社 熱交換器及びこの熱交換器を備えた室外機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189062U (ja) * 1983-06-02 1984-12-14 三菱電機株式会社 空気調和機の室外ユニツト
JP2002147781A (ja) * 2000-11-06 2002-05-22 Hitachi Ltd 空気調和機用室内機
JP2010133656A (ja) * 2008-12-05 2010-06-17 Sharp Corp 空気調和機の室内機
JP2011163741A (ja) * 2010-02-15 2011-08-25 Daikin Industries Ltd 空気調和機用熱交換器
WO2012035845A1 (ja) * 2010-09-16 2012-03-22 シャープ株式会社 空気調和機の室内機
JP2013139971A (ja) * 2012-01-06 2013-07-18 Mitsubishi Electric Corp 熱交換器、室内機、および室外機
JP2012181013A (ja) * 2012-06-20 2012-09-20 Mitsubishi Electric Corp 冷凍サイクル装置、ならびに本冷凍サイクル装置を用いた冷蔵庫、低温装置、および空調装置
JP2014137157A (ja) * 2013-01-15 2014-07-28 Mitsubishi Electric Corp 空気調和機の室外機
JP2014142138A (ja) * 2013-01-24 2014-08-07 Toshiba Corp 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3370000A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189330A (ja) * 2017-05-10 2018-11-29 日立ジョンソンコントロールズ空調株式会社 空気調和機の室外機
CN108562032A (zh) * 2017-12-21 2018-09-21 合肥通用机械研究院 一种辐射与对流耦合换热统一末端
CN108562032B (zh) * 2017-12-21 2020-09-01 合肥通用机械研究院有限公司 一种辐射与对流耦合换热统一末端
US20220018553A1 (en) * 2018-12-19 2022-01-20 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
CN113639488A (zh) * 2021-06-28 2021-11-12 明平凡 一种高效除尘空气源热泵及其使用方法

Also Published As

Publication number Publication date
CN108139089A (zh) 2018-06-08
EP3370000A4 (en) 2019-05-29
JPWO2017073096A1 (ja) 2018-06-07
EP3370000A1 (en) 2018-09-05
CN108139089B (zh) 2021-01-01
EP3370000B1 (en) 2022-07-20
JP6545277B2 (ja) 2019-07-17
US20180292096A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2017073096A1 (ja) 空気調和機の室外機および室内機
US9618269B2 (en) Heat exchanger with tube arrangement for air conditioner
JP6104893B2 (ja) 熱交換器、冷凍サイクル装置、空気調和機及び熱交換方法
JPWO2015162689A1 (ja) 空気調和装置
CN109923348B (zh) 空调机的室内机以及空调机
US10047962B2 (en) Indoor unit for air-conditioning apparatus
WO2015004720A1 (ja) 熱交換器、及び空気調和機
JP6466047B1 (ja) 熱交換器及び空気調和装置
US10047963B2 (en) Indoor unit for air-conditioning apparatus
JP2014228223A (ja) 空気調和機
JP2019015432A (ja) 熱交換器及び熱交換ユニット
JP2019027614A (ja) 熱交換装置および空気調和機
US10041712B2 (en) Refrigerant distributor and refrigeration cycle device equipped with the refrigerant distributor
JP6611997B2 (ja) 熱交換ユニット及びこれを搭載する空気調和装置
JP2014029221A (ja) 空気調和機
JP6885857B2 (ja) 空気調和機
JPWO2019116820A1 (ja) 空気調和機
EP3663679A1 (en) Heat exchanger, and refrigeration cycle device
JP2012042128A (ja) 熱交換器及びそれを搭載した空気調和機
WO2019167312A1 (ja) 熱交換器
EP3848650A1 (en) Refrigerant distributor, heat exchanger, and refrigeration cycle apparatus
JP2021124226A (ja) マイクロチャネル熱交換器および空気調和機
JP2012013244A (ja) 空気調和機の室内機、及びこの室内機を備えた空気調和機
JP2006343024A (ja) 冷却器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547637

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15766243

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016859333

Country of ref document: EP