WO2011099173A1 - ターボチャージャ付きエンジンの制御装置 - Google Patents
ターボチャージャ付きエンジンの制御装置 Download PDFInfo
- Publication number
- WO2011099173A1 WO2011099173A1 PCT/JP2010/059941 JP2010059941W WO2011099173A1 WO 2011099173 A1 WO2011099173 A1 WO 2011099173A1 JP 2010059941 W JP2010059941 W JP 2010059941W WO 2011099173 A1 WO2011099173 A1 WO 2011099173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- injection amount
- intake
- rotational speed
- turbine
- engine
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D41/0007—Controlling intake air for control of turbo-charged or super-charged engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
- F02B39/16—Other safety measures for, or other control of, pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B2037/122—Control of rotational speed of the pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
- F02B39/16—Other safety measures for, or other control of, pumps
- F02B2039/162—Control of pump parameters to improve safety thereof
- F02B2039/168—Control of pump parameters to improve safety thereof the rotational speed of pump or exhaust drive being limited
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0406—Intake manifold pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0414—Air temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/70—Input parameters for engine control said parameters being related to the vehicle exterior
- F02D2200/703—Atmospheric pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a control device for a turbocharged engine, and more particularly to a control device for a turbocharged engine capable of accurately suppressing the number of revolutions of a turbine below an allowable value.
- turbocharged engine when used in high altitudes where air pressure is low and air density is low, if it is intended to supply the engine with the same amount of air as used in low altitudes, the volume of air supplied to the engine It is necessary to supply a larger amount of air to the engine than in lowland areas. Therefore, if a turbocharged engine is used at high air density where the air density is low, the rotational speed of the turbine constituting the turbocharger may be excessively increased to supply a large amount of air to the engine, which may cause the turbocharger to be damaged. There is.
- a turbine is provided with a rotational speed sensor attached to a turbocharger equipped with movable nozzle vanes and the target mass flow rate and the compressor of the turbocharger are normally output according to the operating condition of the engine.
- the nozzle vane opening control is performed so that the substantial flow rate measured by the air flow meter provided on the upstream side matches.
- the fuel injection amount is controlled so that the actual intake volume flow rate of the compressor matches the volume flow rate map.
- the intake volume flow rate is a calculated value from the intake air mass flow rate and the intake air temperature obtained by the air flow meter.
- Patent Document 2 determines the altitude from the information of the atmospheric pressure measured by the atmospheric pressure sensor, and controls the EGR control valve so as to suppress the turbine rotational speed to the allowable value or less based on the determined altitude. It is an open operation. According to the technology disclosed in Patent Document 2, for a construction machine such as a hydraulic shovel, a rated operation is performed while maintaining a relatively high rotational speed to continuously drive a hydraulic pump, and the hydraulic pressure obtained by the hydraulic pump is used.
- the present invention it is possible to accurately estimate the rotational speed of the turbine without adding a component for directly detecting the turbine rotational speed, and by accurately estimating the rotational speed of the turbine It is an object of the present invention to provide a control device of a turbocharged engine capable of accurately suppressing the number of revolutions to a permissible value or less to prevent over-rotation.
- a turbocharger having a compressor disposed in an intake passage of an engine and a turbine disposed in an exhaust passage, and to the engine according to the operating state of the engine
- a control device for a turbocharged engine having fuel injection amount control means for controlling a fuel injection amount, the turbine rotational speed estimation means for calculating the estimated value of the rotational speed of the turbine from the operating state of the engine
- the fuel injection amount control means controls the fuel injection amount so that the estimated value of the turbine rotational speed becomes equal to or less than the allowable value when the estimated value of the turbine rotational speed exceeds a predetermined allowable value. It is characterized by
- the turbine rotational speed can be estimated from the operating state of the engine without adding a component that directly detects the turbine rotational speed. Therefore, it is possible to avoid the occurrence of problems such as an increase in product cost which may occur when a sensor for detecting the turbine rotational speed is temporarily provided, and a decrease in product reliability due to a failure or erroneous detection of the sensor. Further, by limiting the fuel injection amount when the turbine rotational speed exceeds the allowable value, the engine output is limited, whereby the turbine rotational speed can be suppressed to a predetermined value or less to prevent the over-rotation of the turbine. it can. Thus, it is possible to prevent damage or the like of the turbocharger due to the over-rotation of the turbine.
- atmospheric pressure measuring means for measuring the atmospheric pressure
- intake mass flow rate measuring means for measuring the intake mass flow rate of the intake drawn into the compressor disposed in the intake passage, and introduced into the compressor disposed in the intake passage
- intake temperature measurement means for measuring the temperature of the intake air
- boost pressure measurement means for measuring the boost pressure of the engine
- the turbine rotational speed estimation means includes the atmospheric pressure, the intake mass flow rate
- the intake air temperature is used to determine an intake air volume flow rate in a standard state of the intake air taken into the compressor disposed in the intake passage
- the boost pressure is divided by the atmospheric pressure to obtain an air supply pressure ratio
- the turbine rotational speed It may be estimated.
- the turbine speed is affected not only by the atmospheric pressure but also by the intake air temperature. Therefore, when the turbine rotational speed is estimated from the intake volume flow rate and the charge air pressure ratio using the performance curve of the turbocharger, the intake volume flow rate in the standard state determined considering the atmospheric pressure and the intake temperature as the intake volume flow rate By using it, it is possible to estimate the turbine rotational speed with high accuracy.
- the standard state refers to 25 ° C. and 1 atm.
- the turbine rotational speed estimating means further includes: atmospheric pressure measuring means for measuring the atmospheric pressure; and intake air temperature measuring means for measuring the temperature of the intake air introduced into the compressor disposed in the intake passage.
- the air density of the intake air is calculated using the atmospheric pressure and the intake air temperature
- the turbine rotational speed is calculated from the air density of the intake air using a map showing the relationship between the intake air density and the turbine rotational speed created in advance by experiment. It is good to estimate.
- the intake air temperature measurement means is an air supply manifold temperature measurement means for measuring the air supply manifold temperature in the air supply manifold of the engine, and a map showing the relationship between the air supply manifold temperature and the intake air temperature previously created by experiment.
- the intake air temperature is determined from the air supply manifold temperature using the above. This eliminates the need for a sensor or the like that directly detects the temperature of the intake air introduced into the compressor disposed in the intake passage. Therefore, the present invention can be applied to a turbocharged engine which does not have a sensor capable of directly detecting the temperature of intake air without additionally providing the sensor.
- a maximum fuel injection amount at which the turbine rotational speed is equal to or less than the allowable value is set in advance according to the turbine rotational speed and the atmospheric pressure, and the turbine rotational speed is the allowable value. If the value is exceeded, the fuel injection amount may be reduced to the maximum fuel injection amount corresponding to the atmospheric pressure and the turbine rotational speed, and the turbine rotational speed may be set to the allowable value or less. Thereby, the maximum value of the fuel injection amount can be easily determined.
- the fuel injection amount control means may calculate the air density of intake air using the atmospheric pressure and the intake air temperature, and the fuel injection amount control means may rotate the turbine according to the turbine rotational speed and the air density.
- the maximum fuel injection amount for which the number is equal to or less than the allowable value is set in advance, and when the turbine rotational speed exceeds the allowable value, the fuel injection amount up to the maximum according to the air density and the turbine rotational speed It is preferable to reduce the injection amount and make the turbine rotational speed equal to or less than the allowable value.
- the upper limit value of the fuel injection amount not only the engine speed and the atmospheric pressure but also the intake air temperature is considered, so the reduction of the fuel injection amount is kept small when preventing the overrotation of the turbine.
- the reduction in engine power can be kept small.
- the fuel injection amount control means may calculate a deterioration rate of the fuel efficiency according to the intake temperature, and correct the maximum fuel injection amount so as to be larger as the deterioration rate is larger. As a result, by considering the change in the fuel consumption rate, it is possible to keep the decrease in the engine output smaller when preventing the over-rotation of the turbine.
- the rotational speed of the turbine can be accurately estimated without adding a component that directly detects the turbine rotational speed, and the rotational speed of the turbine can be accurately estimated by accurately estimating the rotational speed of the turbine. It is possible to provide a control device for a turbocharged engine which can be suppressed to an allowable value or less to prevent overspeed.
- FIG. 1 is a schematic view showing the periphery of an engine to which a control device for a turbocharged engine according to a first embodiment is applied.
- FIG. 6 is a diagram showing a logic of control of a fuel injection amount in the first embodiment.
- 5 is a flowchart of control relating to limitation of the fuel injection amount in the first embodiment.
- 5 is a flowchart showing the procedure of the determination of the maximum injection amount limitation in the first embodiment.
- 7 is a flowchart of another example showing the procedure of the determination of the maximum injection amount limitation in the first embodiment.
- FIG. 7 is a diagram showing a logic of control of a fuel injection amount in a second embodiment. It is the graph which showed the relationship between the turbine speed and the air density.
- FIG. 6 is a diagram showing a logic of control of a fuel injection amount in the first embodiment.
- 5 is a flowchart of control relating to limitation of the fuel injection amount in the first embodiment.
- 5 is a flowchart showing the procedure of the
- FIG. 14 is a diagram showing a logic of control of a fuel injection amount in a third embodiment. It is the graph which showed the relationship between the air supply manifold temperature and the intake air temperature.
- FIG. 18 is a diagram showing a logic of control of a fuel injection amount in a fifth embodiment. It is a graph which shows the relationship between the air density in fixed engine speed, and the maximum fuel-injection amount from which a turbine speed is below an allowance.
- FIG. 18 is a diagram showing a logic of control of a fuel injection amount in a sixth embodiment. It is a graph shown about a turbine number of rotations and a relation of air density about an experiment point shown in a graph of Drawing 11.
- FIG. 1 is a schematic view showing an engine periphery to which a control device for a turbocharged engine according to a first embodiment is applied.
- an engine 2 is a four-stroke diesel engine having four cylinders.
- An intake passage 8 is joined to the engine 2 via an intake manifold 6, and an exhaust passage 12 is connected via an exhaust manifold 10.
- a compressor 14 a of the turbocharger 14 is provided in the intake passage 8.
- the compressor 14a is coaxially driven by a turbine 14b described later.
- an intercooler 16 that exchanges heat between the air flowing through the intake passage 8 and the atmosphere is provided on the downstream side of the intercooler 16 of the intake passage 8.
- a throttle valve 18 is provided on the downstream side of the intercooler 16 of the intake passage 8.
- an airflow meter 26 for detecting an intake flow rate and a temperature sensor 34 for detecting an intake temperature are provided upstream of the compressor 14a, and downstream of the intercooler 16 and upstream of the throttle valve 18.
- the pressure sensor 36 is provided to detect the supercharging pressure (boost pressure).
- the air supply manifold 6 is provided with a temperature sensor 28 and a pressure sensor 30. Detection values of the air flow meter 26, the temperature sensor 28, the pressure sensor 30, and the pressure sensor 36 are input to an engine control unit (ECU) 40 via A / D converters 46a, 46b, 46c, and 46e, respectively. Ru. Further, the detection value of the temperature sensor 34 is input to the ECU 40 via the thermistor circuit 42.
- the exhaust passage 12 is provided with a turbine 14 b of the turbocharger 14.
- the turbine 14 b is driven by the exhaust gas from the engine 2.
- an EGR passage 20 for recirculating a part of the exhaust gas to the intake passage 8 is connected to the exhaust manifold 10.
- An EGR cooler 22 and an EGR control valve 24 are provided in the EGR passage 20.
- the EGR cooler 22 is provided closer to the exhaust manifold 10 than the EGR control valve 24, and exchanges heat between the EGR gas passing through the EGR cooler 22 and the cooling water to lower the temperature of the EGR gas.
- the EGR control valve 24 controls the flow rate of the EGR gas flowing through the EGR passage 20.
- an engine speed sensor 32 is provided in the engine 4, and a detection value of the engine speed sensor 32 is input to the ECU 40 via a pulse count circuit 47.
- a pressure sensor 38 capable of measuring the atmospheric pressure is provided, and the atmospheric pressure detected by the pressure sensor 38 is input to the ECU 40 via the A / D converter 46 d.
- a means capable of acquiring altitude information such as GPS may be provided, and the atmospheric pressure may be estimated from the altitude information by the ECU 40.
- the target opening of the EGR control valve 24 and the throttle valve 18 is calculated by the CPU 48 based on the above-mentioned input values, and the opening of the EGR control valve 24 and the throttle valve 18 via the drive circuits 43 and 44. Control. Further, the fuel injection amount to the engine 4 is calculated by the CPU 48 based on the above-described input values, and the fuel injection amount to the engine 4 is controlled via the injector drive circuit 41.
- FIG. 2 is a diagram showing the logic of the fuel injection amount in the first embodiment
- FIG. 3 is a flow chart of control concerning restriction of the fuel injection amount in the first embodiment.
- step S1 data of each sensor is read into the ECU 40.
- the sensor data read in step S1 includes the atmospheric pressure [kPa] detected by the pressure sensor 38, the intake mass flow rate [kg / s] detected by the air flow meter 26, and the intake temperature [° C.] detected by the temperature sensor 34. , Boost pressure [kPa] detected by the pressure sensor 36.
- step S2 intake volume flow is calculated. This corresponds to 51 shown in FIG.
- step S2 as shown by 51 in FIG. 2, the intake mass flow rate [kg / s] detected by the air flow meter 26, the atmospheric pressure [kPa] detected by the pressure sensor 38, and the temperature sensor 34
- the intake air volume flow rate [m 3 / s] in the standard state is calculated using the intake air temperature [° C.].
- step S3 a charge air pressure ratio is calculated. This corresponds to 52 shown in FIG.
- step S3 as shown by 52 in FIG. 2, the boost pressure [kPa] detected by the pressure sensor 36 is divided by the atmospheric pressure [kPa] detected by the pressure sensor 38, and the air supply pressure ratio [-] is obtained.
- step S4 the turbine rotational speed of the turbine 14b is estimated.
- the turbine speed is estimated from the performance curve of the turbocharger as shown at 53 in FIG.
- the performance curve of the turbocharger shows the relationship between the air volume flow [m 3 / s], the air pressure ratio [ ⁇ ] and the turbine rotational speed under standard conditions, and is unique for each turbocharger.
- An example of a performance curve showing the relationship between the air supply pressure ratio [ ⁇ ] and the air volume flow rate [m 3 / s] in the standard state is illustrated in FIG. 2 at 53 for each rotation speed.
- the intake volume flow [m 3 / s] in the standard state is calculated based on the information read from each sensor in step S2, and the air supply pressure ratio [-] is calculated based on the information read from the sensor in step S3. Then, by estimating the turbine rotational speed using the performance curve in step 4, it is possible to estimate the turbine rotational speed only from the information read from the sensor.
- step S5 the maximum injection amount [mg / st] is calculated.
- the maximum injection amount means the upper limit value of the amount [mg / st] of fuel injected to the engine 4 via the injector drive circuit 41.
- the maximum injection amount is determined using a map as shown by 54 in FIG.
- the map shown by 54 in FIG. 2 shows the relationship between the maximum injection amount [mg / st], the turbine speed [rpm], and the atmospheric pressure [kPa]. By using such a map, the maximum injection amount can be obtained from the atmospheric pressure [kPa] detected by the pressure sensor 38 and the turbine rotational speed calculated in step S4.
- the map that can obtain the maximum injection amount from the atmospheric pressure and the turbine rotational speed as shown by 54 in FIG. 2 prevents the turbine rotational speed from over-rotation according to the turbine rotational speed for each atmospheric pressure. It is prepared in advance so that the maximum injection amount to be equal to or less than the allowable value can be obtained. From the map 52, it can be seen that the lower the atmospheric pressure, that is, the higher the altitude, the smaller the maximum injection amount.
- step S6 the maximum injection amount restriction determination is made.
- the maximum injection amount limitation determination is to determine whether the upper limit of the fuel amount injected to the engine 2 is limited to the maximum injection amount obtained in step S5. If the number of revolutions of the turbine is higher than a predetermined level, overspeeding of the turbine may occur and breakage of the turbocharger may occur. Therefore, the number of revolutions of the turbine determined in step S4 is equal to or greater than a predetermined allowable value.
- the upper limit of the amount of fuel injected to the engine 2 is limited to the maximum injection amount obtained in step S5.
- the maximum injection amount limit determination has hysteresis as shown by 55 in FIG.
- Reference numeral 55 in FIG. 2 is a map related to the determination of the maximum injection amount limitation, and the vertical axis indicates ON / OFF of the determination, and the horizontal axis indicates the turbine rotational speed, which will be described in detail with reference to FIG.
- FIG. 4 is a flowchart showing the procedure of the determination of the maximum injection amount limitation in the first embodiment.
- the injection amount restriction flag is a flag for determining whether or not to limit the upper limit of the fuel amount injected to the engine 2 to the maximum injection amount obtained in step S5, and the turbine calculated in step S4 It is influenced by the number of revolutions.
- step S11 determines whether the current injection amount restriction flag is ON. If “YES” is determined in the step S11, that is, it is determined that the current injection amount restriction flag is ON, the process proceeds to a step S12.
- step S12 it is determined whether Nt (turbine rotational speed) is smaller than 180,000 rpm. If YES is determined in step S12, that is, Nt ⁇ 180,000 rpm, the injection amount restriction flag is changed to OFF in step S13, and the process is ended. If it is determined in step S12 that NO, that is, Ntt180,000 rpm, the processing is ended without changing the injection amount restriction flag as it is ON.
- step S11 determines whether the current injection amount restriction flag is OFF. If NO in step S11, that is, if it is determined that the current injection amount restriction flag is OFF, the process proceeds to step S14.
- step S14 it is determined whether Nt (turbine rotational speed) is greater than 190,000 rpm. If it is determined that YES in step S14, that is, Nt> 190,000 rpm, the injection amount restriction flag is changed to ON, and the process is ended. If NO is determined in step S14, that is, Nt ⁇ 190,000 rpm, the processing is ended without changing the injection amount restriction flag as it is OFF.
- the injection amount restriction flag is ON at Nt> 190,000 rpm, and the injection amount restriction flag at Nt ⁇ 180,000 rpm regardless of the current state of the injection amount restriction flag. Turns OFF to end the process, and in the range of 180,000 rpm ⁇ Nt ⁇ 190,000 rpm, the current injection amount restriction flag is maintained and the process is ended.
- FIG. 5 is a flowchart of another example showing the procedure of the determination of the maximum injection amount limitation in the first embodiment.
- step S21 If “YES” is determined in the step S21, that is, it is determined that the current injection amount restriction flag is ON, the process proceeds to a step S22.
- step S22 it is determined whether the key of the engine has been turned off. If “YES” is determined in the step S22, that is, it is determined that the key of the engine is off, the injection amount restriction flag is changed to an off state in the step S24, and the process is ended. If "NO” is determined in the step S22, that is, if it is determined that the key of the engine is on, the process proceeds to a step S23. In step S23, it is determined whether a predetermined time, such as one hour, has elapsed since the injection amount restriction flag was turned ON.
- a predetermined time such as one hour
- step S23 If it is determined that the predetermined time has elapsed from YES at step S23, that is, the injection amount restriction flag is turned ON, the injection amount restriction flag is changed to OFF at step S24, and the process is ended. If it is determined as NO in step S23, the process is ended without changing the injection amount restriction flag as it is ON. That is, in steps S22 to S23, the injection amount restriction flag is turned off when any of the engine key is turned off and a predetermined time such as one hour has elapsed since the injection amount restriction flag was turned on. change.
- step S21 determines whether the current injection amount restriction flag is OFF. If NO in step S21, that is, if it is determined that the current injection amount restriction flag is OFF, the process proceeds to step S25.
- step S25 it is determined whether Nt (turbine rotational speed) is greater than 190,000 rpm. If it is determined that YES in step S25, that is, Nt> 190,000 rpm, the injection amount restriction flag is changed to ON, and the process is ended. If NO is determined in step S14, that is, Nt ⁇ 190,000 rpm, the processing is ended without changing the injection amount restriction flag as it is OFF.
- the conditions for turning off the injection restriction flag are different, and these are used depending on the application of the engine.
- the condition of the injection restriction flag shown in FIG. 4 is applied to an application frequently used in a high rotation, high load region, for example, a power shovel, the injection amount restriction flag is repeatedly turned ON and OFF.
- the procedure shown in FIG. 5 is applied to an application which frequently uses a high speed and high load area. In the procedure shown in FIG.
- the injection amount restriction flag is reset if the key of the engine is turned off in order to prevent frequent turning on and off of the injection amount restriction function as described above.
- the air temperature decreases and the air density rises with the passage of time, and, in the case of an engine mounted on a vehicle, the air density rises as the vehicle goes down a mountain. In such a case, it is not desirable that the injection amount be limited until the key of the engine is turned off. Therefore, in addition to the condition of turning off the engine key in the procedure shown in FIG. Deciding.
- step S6 in the flowchart shown in FIG. 3 the process proceeds to step S7 in the flowchart shown in FIG.
- step S7 when it is judged that the maximum injection amount limit is determined according to the flow chart (55 shown in FIG. 2) shown in FIG. 4, the circuit 56 shown in FIG.
- the maximum injection amount [mg / st] obtained in step S5 is output.
- the injection amount restriction flag is OFF, the fuel injection amount is not particularly limited.
- step S7 when the injection amount restriction flag is ON and the maximum injection amount is output, the ECU 40 calculates the fuel injection amount to the engine 4 by the CPU 48 based on the above-described input values.
- the fuel injection amount is controlled so as not to exceed the maximum injection amount.
- the engine output is limited, whereby the turbine rotational speed can be suppressed to a predetermined value or less, and over rotation of the turbine can be prevented.
- the turbine rotational speed can be suppressed to a predetermined value or less, and over rotation of the turbine can be prevented.
- the turbine rotational speed can be estimated from detection values of the atmospheric pressure [kPa], the intake mass flow rate [kg / s], the intake temperature [° C.], and the boost pressure [kPa]. Therefore, it is not necessary to provide a sensor for detecting the turbine rotational speed, and a problem such as an increase in product cost which may occur when a sensor for detecting the turbine rotational speed is temporarily provided, or a reduction in product reliability due to a failure or erroneous detection of the sensor. Can be avoided.
- the turbine rotational speed is estimated in consideration of not only the atmospheric pressure and the altitude information from the GPS but also the intake air temperature, the turbine rotational speed can be accurately estimated.
- the turbine rotational speed can be accurately suppressed to the allowable value or less.
- the EGR control valve is not controlled to prevent over-rotation of the turbine, the technology of the present embodiment can be applied as it is to an engine with an EGR device.
- FIG. 1 The schematic view showing the periphery of the engine to which the control device for a turbocharged engine according to the first embodiment is applied is the same as that of FIG. 1 described in the first embodiment, so FIG. 1 is used and the description is omitted.
- FIG. 6 is a diagram showing a logic of control of the fuel injection amount in the second embodiment. 6, the same reference numerals as those in FIG. 2 denote the same operations and controls, and the description thereof will be omitted.
- the second embodiment differs from the first embodiment in the method of estimating the turbine rotational speed. The method of estimating the turbine rotational speed in the second embodiment will be described with reference to FIG.
- the atmospheric pressure [kPa] detected by the pressure sensor 38 and the intake temperature [° C.] detected by the temperature sensor 34 are input to the ECU 40, and the atmospheric pressure [kPa] and the intake temperature Calculation of air density [kg / m 3 ] from [° C.] is performed.
- the turbine rotational speed [rpm] is estimated from the map showing the relationship between the turbine rotational speed [rpm] and the air density [kg / m 3 ].
- FIG. 7 is an example of a graph showing the relationship between the turbine speed [rpm] and the air density [kg / m 3 ].
- the vertical axis represents turbine rotational speed [ ⁇ 10 4 rpm]
- the horizontal axis represents air density [kg / m 3 ]
- each plot is an experimental point. From FIG. 7, there is a negative first-order correlation between the turbine rotational speed and the air density, and if such turbine rotational speed and air density are created in advance, the turbine rotational speed can be easily obtained from the air density. It can be asked.
- the performance curve of the turbocharger is not necessary, and the estimated value of the turbine rotational speed can be obtained by a simple calculation process.
- FIG. 8 is a diagram showing a logic of control of the fuel injection amount in the third embodiment.
- the same reference numerals as those in FIG. 2 denote the same operations and controls, and the descriptions thereof will be omitted.
- the intake air temperature [° C.] estimated from the air supply manifold temperature [° C.] can be used instead of the intake air temperature [° C.] used in the intake air volumetric flow rate calculation 51 in the first embodiment. ing.
- the ECU 40 passes the air supply manifold temperature [° C.] detected by the temperature sensor 28 through the low pass filter 71, and obtains the intake air temperature [° C.] from the air supply manifold temperature [° C.] using a map at 72.
- the low pass filter 71 is applied for the purpose of suppressing the influence of the operation pattern on the air supply manifold temperature change during the transient operation.
- FIG. 9 is a graph showing the relationship between the air supply manifold temperature [° C.] and the intake air temperature [° C.], where the vertical axis is the air supply manifold temperature [° C.], the horizontal axis is the intake air temperature [° C.], and each plot is It represents an experimental point.
- FIG. 9 it can be seen that there is a first-order correlation between the intake manifold temperature [° C.] and the intake temperature [° C.] regardless of the altitude, that is, not the atmospheric pressure. Therefore, the intake temperature [° C.] can be easily obtained from the air supply manifold temperature [° C.] by creating the map as shown in FIG. 9 in advance by experiment.
- the third embodiment it is possible to prevent the over-rotation of the turbine even in a turbocharged engine system which does not have the temperature sensor (34 in FIG. 1) for detecting the intake air temperature. Further, in the case where the temperature sensor (34 in FIG. 1) for detecting the intake air temperature is provided, the over-rotation of the turbine can be prevented even when the temperature sensor fails.
- the method using the intake air temperature [° C.] from the air supply manifold temperature [° C.] does not perform EGR (that is, the EGR control valve 24 Is applicable if the opening degree of the valve is 0 or the EGR passage 20 itself does not exist).
- the intake air temperature [° C.] obtained from the air supply manifold temperature [° C.] is also applicable to the intake air temperature [° C.] necessary when performing the air density calculation in the second embodiment.
- the intake mass flow rate [kg / s] calculated by calculation can be used instead of the intake mass flow rate [kg / s] detected by the air flow meter 26.
- the intake mass flow rate [kg / s] (G a ) can be obtained by the following equation.
- m m is the air density in the air supply manifold [kg / m 3 ]
- V D is the displacement
- [m 3 ] is the engine speed [rpm]
- I cycle is the number of cycles
- n cyl is the number of cylinders
- m (N e , P m ) is volumetric efficiency
- P m is the charge manifold pressure [Pa]
- Tm is the air supply manifold temperature [K].
- the fourth embodiment it is possible to prevent the over-rotation of the turbine even in an engine with supercharged air that does not have an air flow meter.
- FIG. 11 is a graph showing the relationship between the air density at a certain engine speed and the maximum fuel injection amount at which the turbine speed is less than the allowable value.
- the vertical axis indicates the maximum fuel injection amount [mg / st] and the horizontal axis indicates the air density [kg / m 3 ], and each plot is an experimental point.
- FIG. 11 it can be seen that there is a fixed relationship between the maximum fuel injection amount and the air density.
- FIG. 10 is a diagram showing a logic of control of the fuel injection amount in the fifth embodiment.
- the same reference numerals as those in FIG. 2 denote the same operations and controls, and the descriptions thereof will be omitted.
- the atmospheric pressure [kPa] detected by the pressure sensor 38 and the intake temperature [° C.] detected by the temperature sensor 34 are input to the ECU 40, and the atmospheric pressure [kPa] and the intake temperature [° C. Calculate the air density [kg / m 3 ] from the above.
- the maximum injection amount is determined based on the previously created map showing the relationship between the maximum fuel injection amount, the air density and the turbine rotational speed.
- a map capable of obtaining the maximum injection amount more accurately for the input value is created, and it is possible to keep the reduction of the output of the engine small when preventing the over-rotation of the turbine.
- FIG. 13 is a graph showing the relationship between the turbine rotational speed and the air density at the experimental points shown in the graph of FIG.
- the restriction is applied although the turbine rotational speed is below the allowable value. It will be. This is because the fuel consumption rate changes depending on the intake air temperature. Therefore, in the sixth embodiment, the maximum injection amount is corrected by the fuel consumption rate that changes with the intake air temperature.
- FIG. 12 is a diagram showing a logic of control of the fuel injection amount in the sixth embodiment.
- the same reference numerals as in FIGS. 2 and 10 denote the same operations and controls, and the descriptions thereof will be omitted.
- the deterioration rate of the fuel efficiency is calculated from the intake air temperature at 91 shown in FIG. 12, and the maximum injection amount determined by the map at 82 is corrected at 92 by the deterioration rate of the fuel efficiency. As a result, the larger the rate of deterioration of the fuel efficiency, the larger the maximum injection amount.
- the reduction of the output of the engine can be further reduced by considering the change in the fuel efficiency when preventing the over-rotation of the turbine.
- the present invention can accurately estimate the number of revolutions of the turbine without adding a component that directly detects the number of revolutions of the turbine, and accurately estimate the number of revolutions of the turbine to accurately allow the number of revolutions of the turbine
- the present invention can be used as a control device of a turbocharged engine which can be suppressed to the following to prevent over-rotation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Supercharger (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
また、建設機械以外であって低負荷から高負荷への状態変化があるようなアプリケーションに対しては、ターボの過回転保護のためにEGRを導入すると黒煙発生の問題を引き起こす可能性が高いため、建設機械以外への適用は難しく適用範囲が狭い。
さらに、大気圧の情報から判定した高度の情報のみからタービン回転数を許容値に制御するものであるが、タービン回転数は気圧と吸気温度の両方に関係する。特許文献2に開示された技術のように、吸気温度を考慮しない場合、タービンの過回転が発生しやすい吸気温度が高い条件でも過回転が発生しないようにパラメータを設定する必要があり、吸気温度が低い時に必要以上に燃料噴射量を制限してしまい、エンジンの出力を必要以上に制限することとなる。
また、タービン回転数が許容値を越える場合に燃料噴射量を制限することで、エンジン出力が制限され、これによりタービン回転数を所定値以下に抑えることができタービンの過回転を防止することができる。よってタービンの過回転に起因するターボチャージャの破損等を防止することができる。
ここで、標準状態とは25℃、1atmのことをいう。
これにより、吸気通路に配置されたコンプレッサに導入される吸気の温度を直接検出するセンサ等が必要なくなる。そのため、吸気の温度を直接検出することができるセンサを有しないターボチャージャ付きエンジンに関しても、新たに該センサを設けることなく本発明の適用が可能となる。
これにより、燃料噴射量の最大値を容易に決定することができる。
これにより、燃料噴射量の上限値を決定する際にエンジン回転数と大気圧だけでなく吸気温度も考慮しているため、タービンの過回転を防止する際に燃料の噴射量の低減を小さく留め、エンジンの出力の低減を小さく留めることができる。
これにより、燃費率の変化を考慮することで、タービンの過回転を防止する際に、エンジン出力の低下をさらに小さく留めることができる。
エアフローメータ26、温度センサ28、圧力センサ30、圧力センサ36の検知値は、それぞれA/D変換器46a、46b、46c、46eを介してエンジンコントロールユニット(Engine Control Unit:ECU)40に入力される。また、温度センサ34の検知値は、サーミスタ回路42を介してECU40に入力される。
EGRクーラー22は、EGR制御弁24よりも排気マニホールド10側に設けられ、EGRクーラー22を通過するEGRガスと冷却水とで熱交換して、該EGRガスの温度を低下させるものである。また、EGR制御弁24は、EGR通路20を流れるEGRガスの流量を制御するものである。
さらに、大気圧を測定することができる圧力センサ38が設けられており、圧力センサ38によって検知された大気圧は、A/D変換器46dを介してECU40に入力される。
なお、圧力センサ38に変えて、GPSなどの高度情報を入手できる手段を設け、ECU40により前記高度情報から大気圧を推測するようにしてもよい。
また、前述の各入力された値を基にCPU48でエンジン4への燃料噴射量を演算し、インジェクタ駆動回路41を介してエンジン4への燃料噴射量を制御する。
本発明における燃料噴射量の制限にかかる制御について説明する。
図2は、実施例1における燃料噴射量のロジックを示す図、図3は実施例1における燃料噴射量の制限にかかる制御のフローチャートである。
ステップS1では、ECU40に各センサのデータが読み込まれる。
ステップS1にて読み込むセンサデータは、圧力センサ38で検知される大気圧[kPa]、エアフローメータ26で検知される吸気質量流量[kg/s]、温度センサ34で検知される吸気温度[℃]、圧力センサ36で検知されるブースト圧[kPa]である。
ステップS2では吸気体積流量演算を実施する。これは図2に示した51にあたる。ステップS2では、図2に51で示したように、エアフローメータ26で検知される吸気質量流量[kg/s]、圧力センサ38で検知される大気圧[kPa]及び温度センサ34で検知される吸気温度[℃]を用いて標準状態(25℃、1atm)における吸気体積流量[m3/s]を演算する。
ステップS3では、給気圧力比を演算する。これは図2に示した52にあたる。ステップS3では、図2に52で示したように、圧力センサ36で検知されるブースト圧[kPa]を圧力センサ38で検知される大気圧[kPa]で除して給気圧力比[-]を演算する。
ステップS4では、タービン14bのタービン回転数を推定する。タービン回転数は、図2において53で示したようなターボチャージャの性能曲線から推定する。
ターボチャージャの性能曲線は、標準状態における空気体積流量[m3/s]、給気圧力比[-]及びタービン回転数の関係を示したものであり、ターボチャージャごとに固有のものである。図2における53には、給気圧力比[-]と標準状態における空気体積流量[m3/s]との関係を、回転数毎に示した性能曲線の一例を図示している。このような性能曲線を用いることで、給気圧力比[-]と標準状態における空気体積流量[m3/s]からタービン回転数を推定することができる。
ステップS5では、最大噴射量[mg/st]を演算する。ここで、最大噴射量とは、インジェクタ駆動回路41を介してエンジン4へ噴射される燃料の量[mg/st]の上限値を意味している。
最大噴射量は、図2において54で示したようなマップを用いて求める。図2において54で示したマップは、最大噴射量[mg/st]、タービン回転数[rpm]、大気圧[kPa]の関係を示したものである。このようなマップを用いることで、圧力センサ38で検知した大気圧[kPa]及びステップS4にて演算したタービン回転数から最大噴射量を求めることができる。
なお、図2において54で示したような、大気圧及びタービン回転数から最大噴射量を求めることができるマップは、大気圧ごとに、タービン回転数に応じて、タービン回転数が過回転を防止できる許容値以下となるような最大噴射量が求まるように予め作成しておく。
マップ52からは、大気圧が低い即ち高高度であるほど最大噴射量は小さくなることがわかる。
ステップS6では最大噴射量制限判断を行う。最大噴射量制限判断とは、エンジン2に噴射する燃料量の上限をステップS5で求めた最大噴射量に制限するか否かを判断することである。タービン回転数が所定以上の高回転である場合に、タービンの過回転が生じ、ターボチャージャの破損等が生じる可能性があることから、ステップS4で求められるタービン回転数が所定の許容値以上の高回転である場合に、エンジン2に噴射する燃料量の上限をステップS5で求めた最大噴射量に制限する。
前記最大噴射量制限判断は、タービン回転数が所定の許容値近辺である場合に、前記判断のON/OFFが頻繁に切り替わることがないように図2において55で示したようにヒステリシスを持たせて判断する。図2における55は最大噴射量制限判断に関するマップであって、縦軸は前記判断のON/OFF、横軸はタービン回転数を示しており、詳しくは以下で図4を用いて説明する。
図4は、実施例1における最大噴射量制限判断の手順を示すフローチャートである。
処理が開始すると、ステップS11で現状における噴射量制限フラグがONであるか否かを判断する。ここで噴射量制限フラグとは、エンジン2に噴射する燃料量の上限をステップS5で求めた最大噴射量に制限するか否かの判断を行うためのフラグであり、ステップS4で算出されるタービン回転数に影響されるものである。
ステップS12では、Nt(タービン回転数)が18万rpmよりも小さいか否かを判断する。ステップS12でYES即ちNt<18万rpmであると判断されるとステップS13で噴射量制限フラグをOFFに変更して処理を終了する。ステップS12でNO即ちNt≧18万rpmであると判断されると噴射量制限フラグをONのまま変更せずに処理を終了する。
ステップS14では、Nt(タービン回転数)が19万rpmよりも大きいか否かを判断する。ステップS14でYES即ちNt>19万rpmであると判断されると噴射量制限フラグをONに変更して処理を終了する。ステップS14でNO即ちNt≦19万rpmであると判断されると噴射量制限フラグをOFFのまま変更せずに処理を終了する。
処理が開始すると、ステップS21で現状における噴射量制限フラグがONであるか否かを判断する。
ステップS22では、エンジンのキーがOFFされたか否かを判断する。ステップS22でYES即ちエンジンのキーがOFFであると判断されるとステップS24で噴射量制限フラグをOFFに変更して処理を終了する。ステップS22でNO即ちエンジンのキーがオンであると判断されるとステップS23に進む。
ステップS23では、噴射量制限フラグがONとなってから例えば1時間等の所定時間が経過したか否か判断する。ステップS23でYES即ち噴射量制限フラグがONとなってから所定時間経過したと判断されるとステップS24で噴射量制限フラグをOFFに変更して処理を終了する。ステップS23でNOと判断されると噴射量制限フラグをONのまま変更せずに処理を終了する。
つまり、ステップS22~S23では、エンジンのキーがOFFされた、噴射量制限フラグがONとなってから例えば1時間等の所定時間が経過した、の何れかを満たすと噴射量制限フラグをOFFに変更する。
ステップS25では、Nt(タービン回転数)が19万rpmよりも大きいか否かを判断する。ステップS25でYES即ちNt>19万rpmであると判断されると噴射量制限フラグをONに変更して処理を終了する。ステップS14でNO即ちNt≦19万rpmであると判断されると噴射量制限フラグをOFFのまま変更せずに処理を終了する。
高回転、高負荷域で頻繁に使用されるアプリケーション、例えばパワーショベルに対して図4に示した噴射制限フラグの条件を適用する場合、噴射量制限フラグがONとOFFを繰り返すことになる。この場合、噴射量制限機能の入り切りが頻繁に発生することになるため、運転者が違和感を覚える可能性がある。このような問題を回避するために、高回転、高負荷域を頻繁に使用されるアプリケーションについては図5に示した手順を適用する。図5に示した手順では、前述のような噴射量制限機能の頻繁な入り切りを防止するために、エンジンのキーがOFFされたのであれば噴射量制限フラグをリセットしている。また、時間の経過によって気温が低下して空気密度が上昇することや、車両に搭載されたエンジンの場合には車両が山を下ることで空気密度が上昇することが考えられる。このような場合に、エンジンのキーがOFFされるまで噴射量が制限されることは望ましくないため、図5に示した手順においてエンジンキーOFFの条件に加えて、所定時間経過の判定を組み合わせて判断している。
ステップS7においては、図4に示したフローチャート(図2に示した55)により、最大噴射量制限判断がされると、前記噴射量制限フラグである場合には図2に示した回路56がONとなり、ステップS5(図2におけるマップ54)で求めた最大噴射量[mg/st]が出力される。前記噴射量制限フラグがOFFである場合には、燃料噴射量は特に制限されない。
ステップS7において、前記噴射量制限フラグがONであって最大噴射量が出力された場合には、ECU40は、前述の各入力された値を基にCPU48でエンジン4への燃料噴射量を演算しインジェクタ駆動回路41を介してエンジン4への燃料噴射量を制御する際に、燃料噴射量が前記最大噴射量を超えないように制御する。
図6において、図2と同一符号は同一の動作、制御を意味し、その説明を省略する。
実施例2においては、実施例1とはタービン回転数の推定方法が異なる。
図6を用いて実施例2におけるタービン回転数の推定方法について説明する。
図8において、図2と同一符号は同一の動作、制御を意味し、その説明は省略する。
実施例3においては、実施例1における吸気体積流量演算51の際に使用される吸気温度[℃]に変えて、給気マニホールド温度[℃]から推定した吸気温度[℃]を使用できるようにしている。
従って、図9に示したようなマップを実験により予め作成しておくことで、給気マニホールド温度[℃]から、吸気温度[℃]を簡単に求めることができる。
また、吸気温度を検知する温度センサ(図1においては34)を有する場合で、該温度センサが故障した場合においても、タービンの過回転の防止が可能となる。
Ga=Gcyl-Gegr ・・・(2)
図10において、図2と同一符号は同一の動作、制御を意味し、その説明を省略する。
図10に示した81において、ECU40に、圧力センサ38で検知される大気圧[kPa]、温度センサ34で検知される吸気温度[℃]が入力され、大気圧[kPa]と吸気温度[℃]から空気密度[kg/m3]の演算を実施する。
図11及び図13においてa部で示したデータについては、図10において82で使用したようなマップによって最大燃料噴射量を制限すると、タービン回転数が許容値以下であるにも関わらず制限がかかることになる。これは、吸気温度によって燃費率が変化するためである。そこで、実施例6においては、吸気温度によって変化する燃費率によって最大噴射量に補正をかける。
図12において、図2及び図10と同一符号は同一の動作、制御を意味し、その説明を省略する。
図12に示した91において吸気温度から燃費率の悪化割合を算出し、92で該燃費率の悪化割合によって82でマップによって決定した最大噴射量に補正をかける。これにより、燃費率の悪化割合が大きいほど、最大噴射量が大きくなる。
Claims (7)
- エンジンの吸気通路に配置されたコンプレッサ及び排気通路に配置されたタービンを有するターボチャージャと、
前記エンジンの運転状態に応じて、前記エンジンへの燃料噴射量を制御する燃料噴射量制御手段と、を有するターボチャージャ付きエンジンの制御装置において、
前記エンジンの運転状態から、前記タービンの回転数の推定値を計算上求めるタービン回転数推定手段を有し、
前記燃料噴射量制御手段は、前記タービン回転数の推定値が所定の許容値を越える場合に、前記タービン回転数の推定値が前記許容値以下となるように燃料噴射量を制御することを特徴とするターボチャージャ付きエンジンの制御装置。 - 大気圧を測定する大気圧測定手段と、
前記吸気通路に配置されたコンプレッサに吸入される吸気の吸気質量流量を測定する吸気質量流量測定手段と、
前記吸気通路に配置されたコンプレッサに導入される吸気の温度を測定する吸気温度測定手段と、
前記エンジンのブースト圧を測定するブースト圧測定手段と、を有し、
前記タービン回転数推定手段は、
前記大気圧と、前記吸気質量流量と、前記吸気温度とを用いて、前記吸気通路に配置されたコンプレッサに吸入される吸気の標準状態における吸気体積流量を求めるとともに、前記ブースト圧を大気圧で除算した給気圧力比を求め、前記標準状態における吸気体積流量と吸気圧力比と前記タービンの回転数の関係を示したターボチャージャの性能曲線を用いて、前記タービン回転数を推定することを特徴とする請求項1記載のターボチャージャ付きエンジンの制御装置。 - 大気圧を測定する大気圧測定手段と、
前記吸気通路に配置されたコンプレッサに導入される吸気の温度を測定する吸気温度測定手段と、を有し、
前記タービン回転数推定手段は、
前記大気圧と、前記吸気温度とを用いて前記吸気の空気密度を算出し、
予め実験により作成した吸気密度とタービン回転数の関係を示すマップを用いて、前記吸気の空気密度からタービン回転数を推定することを特徴とする請求項1記載のターボチャージャ付きエンジンの制御装置。 - 前記吸気温度測定手段は、
前記エンジンの給気マニホールド内の給気マニホールド温度を測定する給気マニホールド温度測定手段と、
予め実験により作成した給気マニホールド温度と吸気温度の関係を示すマップを用いて、前記給気マニホールド温度から吸気温度を求めることを特徴とする請求項2又は3記載のターボチャージャ付きエンジンの制御装置。 - 前記燃料噴射量制御手段は、
前記タービン回転数と大気圧に応じて、前記タービン回転数が前記許容値以下となる最大の燃料噴射量が予め設定され、
前記タービン回転数が、前記許容値を越える場合に、前記大気圧とタービン回転数に応じた最大の燃料噴射量以下まで燃料噴射量を低減し、前記タービン回転数を前記許容値以下とすることを特徴とする請求項2~4何れかに記載のターボチャージャ付きエンジンの制御装置。 - 前記大気圧と、吸気温度とを用いて吸気の空気密度を演算する空気密度演算手段を有し、
前記燃料噴射量制御手段は、
前記タービン回転数と空気密度に応じて、前記タービン回転数が前記許容値以下となる最大の燃料噴射量が予め設定され、
前記タービン回転数が、前記許容値を越える場合に、前記空気密度とタービン回転数に応じた最大の燃料噴射量以下まで燃料噴射量を低減し、前記タービン回転数を前記許容値以下とすることを特徴とする請求項2~4何れかに記載のターボチャージャ付きエンジンの制御装置。 - 前記燃料噴射量制御手段は、
前記吸気温度に応じた燃費率の悪化割合を算出し、
前記悪化割合が大きいほど、前記最大の燃料噴射量をガ大きくなるように補正することを特徴とする請求項5又は6記載のターボチャージャ付きエンジンの制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127000908A KR101324821B1 (ko) | 2010-02-09 | 2010-06-11 | 터보 과급기가 구비된 엔진의 제어 장치 |
CN201080031562.2A CN102575577B (zh) | 2010-02-09 | 2010-06-11 | 带涡轮增压器发动机的控制装置 |
US13/386,239 US20120179356A1 (en) | 2010-02-09 | 2010-06-11 | Control device for turbocharged engine |
EP10845765.6A EP2444629A4 (en) | 2010-02-09 | 2010-06-11 | CONTROL DEVICE FOR TURBOCHARGER ENGINE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010026438 | 2010-02-09 | ||
JP2010-026438 | 2010-02-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011099173A1 true WO2011099173A1 (ja) | 2011-08-18 |
Family
ID=44367470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059941 WO2011099173A1 (ja) | 2010-02-09 | 2010-06-11 | ターボチャージャ付きエンジンの制御装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120179356A1 (ja) |
EP (1) | EP2444629A4 (ja) |
JP (1) | JP5737898B2 (ja) |
KR (1) | KR101324821B1 (ja) |
CN (1) | CN102575577B (ja) |
WO (1) | WO2011099173A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102635451A (zh) * | 2012-04-26 | 2012-08-15 | 潍柴动力股份有限公司 | 一种保护涡轮增压器的控制方法 |
WO2013031919A1 (ja) * | 2011-09-02 | 2013-03-07 | ダイムラー・アクチェンゲゼルシャフト | 過給機の制御装置 |
WO2014002464A1 (ja) * | 2012-06-27 | 2014-01-03 | 日野自動車株式会社 | ターボ回転数検出装置 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011241733A (ja) * | 2010-05-17 | 2011-12-01 | Isuzu Motors Ltd | ターボチャージャーの回転数検出装置 |
FR2978986B1 (fr) * | 2011-08-08 | 2013-08-23 | Snecma | Procede d'estimation de la temperature du carburant en sortie d'un echangeur d'une turbomachine |
JP5803766B2 (ja) | 2012-03-20 | 2015-11-04 | 株式会社デンソー | エンジン制御装置 |
JP6005481B2 (ja) * | 2012-11-05 | 2016-10-12 | 日野自動車株式会社 | クローズドブリーザの断線検知方法 |
CN103630353A (zh) * | 2013-12-13 | 2014-03-12 | 湖南天雁机械有限责任公司 | 涡轮增压器整车路试检测方法及装置 |
JP6326910B2 (ja) * | 2014-03-28 | 2018-05-23 | マツダ株式会社 | ターボ過給器付きエンジンの制御装置 |
SE540370C2 (en) * | 2014-04-29 | 2018-08-21 | Scania Cv Ab | Förfarande samt system för styrning av ett överladdningssystem vid ett motorfordon |
CN104005839B (zh) * | 2014-05-07 | 2017-03-01 | 潍柴动力股份有限公司 | 一种保护整车压气机的控制方法 |
US9410475B2 (en) * | 2014-06-09 | 2016-08-09 | Ford Global Technologies, Llc | System and method for determining turbine degradation and mitigating turbine degradation in a variable geometry turbocharger |
JP6295996B2 (ja) * | 2014-06-19 | 2018-03-20 | トヨタ自動車株式会社 | 過給機付き内燃機関 |
JP5940126B2 (ja) * | 2014-09-18 | 2016-06-29 | 三菱電機株式会社 | 過給機付き内燃機関の制御装置及び過給機付き内燃機関の制御方法 |
JP6550943B2 (ja) * | 2015-06-10 | 2019-07-31 | いすゞ自動車株式会社 | 可変容量型ターボチャージャの制御装置 |
DE102015213639B3 (de) * | 2015-07-20 | 2016-11-24 | Mtu Friedrichshafen Gmbh | Verfahren zum Betreiben einer Brennkraftmaschine, Steuereinrichtung für eine Brennkraftmaschine, und Brennkraftmaschine |
US11053875B2 (en) | 2016-02-10 | 2021-07-06 | Garrett Transportation I Inc. | System and method for estimating turbo speed of an engine |
GB2547704B (en) * | 2016-02-29 | 2020-02-12 | Delphi Automotive Systems Lux | Method to determine the intake air temperature in an engine system |
JP6524952B2 (ja) * | 2016-03-31 | 2019-06-05 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP6406333B2 (ja) * | 2016-11-04 | 2018-10-17 | マツダ株式会社 | 過給機付エンジンの制御装置及び制御方法 |
JP6406334B2 (ja) * | 2016-11-04 | 2018-10-17 | マツダ株式会社 | 過給機付エンジンの制御装置及び制御方法 |
JP6406337B2 (ja) * | 2016-11-14 | 2018-10-17 | マツダ株式会社 | エンジンの制御方法及び制御装置 |
JP6406338B2 (ja) * | 2016-11-14 | 2018-10-17 | マツダ株式会社 | エンジンの制御方法及び制御装置 |
JP6766731B2 (ja) * | 2017-03-31 | 2020-10-14 | コベルコ建機株式会社 | 故障検出装置 |
WO2021193036A1 (ja) * | 2020-03-27 | 2021-09-30 | 株式会社クボタ | 吸気量測定装置およびエンジン |
JP7011008B2 (ja) * | 2020-03-27 | 2022-01-26 | 株式会社クボタ | 吸気量測定装置およびエンジン |
JP2022026884A (ja) * | 2020-07-31 | 2022-02-10 | ナブテスコ株式会社 | エンジン状態推定装置、エンジン状態推定方法、およびエンジン状態推定プログラム |
WO2022219766A1 (ja) * | 2021-04-15 | 2022-10-20 | 日産自動車株式会社 | 内燃機関の制御方法および制御装置 |
CN113250810B (zh) * | 2021-06-29 | 2021-10-01 | 四川迅联达智能科技有限公司 | 二行程发动机进气压力稳定方法及系统 |
CN113482764B (zh) * | 2021-07-30 | 2022-05-20 | 广西玉柴机器股份有限公司 | 一种可控增压器增压压力故障诊断的方法 |
CN115013171B (zh) * | 2022-05-09 | 2023-06-23 | 潍柴动力股份有限公司 | 提升发动机高原动力的控制方法及装置、车辆 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003307151A (ja) * | 2002-04-15 | 2003-10-31 | Komatsu Ltd | 大気圧・排気温度推定方法 |
JP2005299618A (ja) | 2004-04-16 | 2005-10-27 | Hino Motors Ltd | ターボチャージャ制御機構 |
JP2008184922A (ja) | 2007-01-26 | 2008-08-14 | Hino Motors Ltd | タービン保護装置 |
JP2009180162A (ja) * | 2008-01-31 | 2009-08-13 | Nissan Motor Co Ltd | 内燃機関のターボ過給機制御装置 |
JP2009191660A (ja) * | 2008-02-12 | 2009-08-27 | Toyota Motor Corp | 内燃機関の制御装置 |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3236586C2 (de) * | 1982-10-02 | 1999-08-12 | Bosch Gmbh Robert | Kraftstoffzumeßsystem für eine Brennkraftmaschine |
JPH06504348A (ja) * | 1991-12-19 | 1994-05-19 | キャタピラー インコーポレイテッド | コンピュータ利用モデルを用いてエンジンを診断する方法 |
JPH05280385A (ja) * | 1992-03-31 | 1993-10-26 | Isuzu Motors Ltd | ターボチャージャの制御装置 |
JPH06185395A (ja) * | 1992-12-15 | 1994-07-05 | Hitachi Ltd | 内燃機関の電子式燃料噴射量制御方法及びその装置 |
US6026784A (en) * | 1998-03-30 | 2000-02-22 | Detroit Diesel Corporation | Method and system for engine control to provide driver reward of increased allowable speed |
JP3233039B2 (ja) * | 1996-08-28 | 2001-11-26 | 三菱自動車工業株式会社 | 筒内噴射型火花点火式内燃エンジンの制御装置 |
JP3430923B2 (ja) * | 1998-06-15 | 2003-07-28 | 日産自動車株式会社 | 内燃機関の過給制御装置 |
JP3622588B2 (ja) * | 1999-08-27 | 2005-02-23 | トヨタ自動車株式会社 | ディーゼルエンジンの燃料噴射制御装置 |
DE19963358A1 (de) * | 1999-12-28 | 2001-07-12 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Luftsystem |
JP2001342840A (ja) * | 2000-05-30 | 2001-12-14 | Mitsubishi Motors Corp | 過給機付き内燃機関の制御装置 |
US6493627B1 (en) * | 2000-09-25 | 2002-12-10 | General Electric Company | Variable fuel limit for diesel engine |
US6401457B1 (en) * | 2001-01-31 | 2002-06-11 | Cummins, Inc. | System for estimating turbocharger compressor outlet temperature |
JP2002266690A (ja) * | 2001-03-12 | 2002-09-18 | Toyota Motor Corp | 内燃機関の制御装置 |
DE10122293A1 (de) * | 2001-05-08 | 2002-11-21 | Audi Ag | Verfahren zur Regelung einer Ladedruckbegrenzung eines Turboladers bei einem Verbrennungsmotor in Abhängigkeit von der Dichte der Umgebungsluft |
DE10160469A1 (de) * | 2001-12-08 | 2003-06-18 | Daimler Chrysler Ag | Verfahren zur Begrenzung der Drehzahl eines Abgasturboladers für eine Brennkraftmaschine |
US6539714B1 (en) * | 2002-03-19 | 2003-04-01 | Cummins, Inc. | System for estimating turbocharger rotational speed |
US6732521B2 (en) * | 2002-08-16 | 2004-05-11 | Toyota Jidosha Kabushiki Kaisha | Control system for a turbo-charged diesel aircraft engine |
GB0220383D0 (en) * | 2002-08-31 | 2002-10-09 | Holset Engineering Co | Mehod of reducing high cycle fatigue of turbochargers |
US6725659B1 (en) * | 2002-12-16 | 2004-04-27 | Cummins, Inc. | Apparatus and method for limiting turbocharger speed |
DE10310221B4 (de) * | 2003-03-08 | 2006-11-23 | Daimlerchrysler Ag | Verfahren zur Begrenzung eines Ladedrucks |
JP2005220761A (ja) * | 2004-02-03 | 2005-08-18 | Denso Corp | ディーゼル機関の制御装置 |
US7127892B2 (en) * | 2004-08-13 | 2006-10-31 | Cummins, Inc. | Techniques for determining turbocharger speed |
US7127345B2 (en) * | 2005-02-10 | 2006-10-24 | General Electric Company | Diesel engine control |
JP2006329139A (ja) * | 2005-05-30 | 2006-12-07 | Nissan Diesel Motor Co Ltd | ディーゼルエンジンの燃料噴射制御装置 |
DE102006007417B4 (de) * | 2006-02-17 | 2012-08-09 | Continental Automotive Gmbh | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine |
JP4539991B2 (ja) * | 2006-06-02 | 2010-09-08 | ヤンマー株式会社 | セタン価検出手段及び該セタン価検出手段を設けるエンジン |
JP2007321687A (ja) * | 2006-06-02 | 2007-12-13 | Denso Corp | ターボチャージャ付き内燃機関の制御装置 |
JP4502277B2 (ja) * | 2006-06-12 | 2010-07-14 | ヤンマー株式会社 | 過給機を備えるエンジン |
WO2008018380A1 (fr) * | 2006-08-10 | 2008-02-14 | Toyota Jidosha Kabushiki Kaisha | Dispositif de commande pour moteur à combustion interne équipé d'un turbocompresseur |
JP4337868B2 (ja) * | 2006-12-12 | 2009-09-30 | トヨタ自動車株式会社 | ガスタービンエンジンの制御装置 |
DE102006060313A1 (de) * | 2006-12-20 | 2008-06-26 | Robert Bosch Gmbh | Verfahren zum Betrieb einer Brennkraftmaschine |
US7721539B2 (en) * | 2007-05-01 | 2010-05-25 | Cummins Inc. | System for controlling engine fueling to limit engine output power |
US7730724B2 (en) * | 2007-05-10 | 2010-06-08 | Ford Global Technologies, Llc | Turbocharger shaft over-speed compensation |
JP4512617B2 (ja) * | 2007-06-26 | 2010-07-28 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置および方法 |
US7801665B2 (en) * | 2007-07-13 | 2010-09-21 | Ford Global Technologies, Llc | Controlling cylinder mixture and turbocharger operation |
US8359858B2 (en) * | 2007-10-30 | 2013-01-29 | Ford Global Technologies, Llc | Twin turbocharged engine with reduced compressor imbalance and surge |
US20090249783A1 (en) * | 2008-04-04 | 2009-10-08 | General Electric Company | Locomotive Engine Exhaust Gas Recirculation System and Method |
US7861580B2 (en) * | 2008-06-23 | 2011-01-04 | Cummins Ip, Inc. | Virtual turbine speed sensor |
-
2010
- 2010-06-11 CN CN201080031562.2A patent/CN102575577B/zh active Active
- 2010-06-11 EP EP10845765.6A patent/EP2444629A4/en not_active Withdrawn
- 2010-06-11 US US13/386,239 patent/US20120179356A1/en not_active Abandoned
- 2010-06-11 WO PCT/JP2010/059941 patent/WO2011099173A1/ja active Application Filing
- 2010-06-11 KR KR1020127000908A patent/KR101324821B1/ko active IP Right Grant
- 2010-10-06 JP JP2010226169A patent/JP5737898B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003307151A (ja) * | 2002-04-15 | 2003-10-31 | Komatsu Ltd | 大気圧・排気温度推定方法 |
JP2005299618A (ja) | 2004-04-16 | 2005-10-27 | Hino Motors Ltd | ターボチャージャ制御機構 |
JP2008184922A (ja) | 2007-01-26 | 2008-08-14 | Hino Motors Ltd | タービン保護装置 |
JP2009180162A (ja) * | 2008-01-31 | 2009-08-13 | Nissan Motor Co Ltd | 内燃機関のターボ過給機制御装置 |
JP2009191660A (ja) * | 2008-02-12 | 2009-08-27 | Toyota Motor Corp | 内燃機関の制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2444629A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031919A1 (ja) * | 2011-09-02 | 2013-03-07 | ダイムラー・アクチェンゲゼルシャフト | 過給機の制御装置 |
JP2013053546A (ja) * | 2011-09-02 | 2013-03-21 | Daimler Ag | 過給機の制御装置 |
CN102635451A (zh) * | 2012-04-26 | 2012-08-15 | 潍柴动力股份有限公司 | 一种保护涡轮增压器的控制方法 |
WO2014002464A1 (ja) * | 2012-06-27 | 2014-01-03 | 日野自動車株式会社 | ターボ回転数検出装置 |
JP2014005811A (ja) * | 2012-06-27 | 2014-01-16 | Hino Motors Ltd | ターボ回転数検出装置 |
CN104379901A (zh) * | 2012-06-27 | 2015-02-25 | 日野自动车株式会社 | 涡轮转速检测装置 |
US9804059B2 (en) | 2012-06-27 | 2017-10-31 | Hino Motors, Ltd. | Turbo rotational frequency detection device |
Also Published As
Publication number | Publication date |
---|---|
US20120179356A1 (en) | 2012-07-12 |
EP2444629A4 (en) | 2015-10-14 |
KR101324821B1 (ko) | 2013-11-01 |
KR20120023852A (ko) | 2012-03-13 |
CN102575577A (zh) | 2012-07-11 |
JP5737898B2 (ja) | 2015-06-17 |
JP2011185263A (ja) | 2011-09-22 |
CN102575577B (zh) | 2014-08-20 |
EP2444629A1 (en) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011099173A1 (ja) | ターボチャージャ付きエンジンの制御装置 | |
US9010180B2 (en) | Method and observer for determining the exhaust manifold temperature in a turbocharged engine | |
JP4583038B2 (ja) | 過給機付き内燃機関の過給圧推定装置 | |
US7100375B2 (en) | System for limiting rotational speed of a turbocharger | |
US20060021344A1 (en) | Method for limiting a boost pressure | |
US8266905B2 (en) | System for limiting engine output power by controlling fueling | |
WO2007145021A1 (ja) | 過給器を備えるエンジン | |
JP2008240576A (ja) | 過給システムの故障診断装置 | |
WO2011114234A1 (en) | Control system and control method of internal combustion engine | |
US20030230287A1 (en) | Intake system failure detecting device and method for engines | |
US20080319600A1 (en) | Intake air temperature rationality diagnostic | |
JP5120333B2 (ja) | エアフロメータの故障診断装置 | |
JP4238597B2 (ja) | 内燃機関の状態検出装置 | |
JP5376051B2 (ja) | Egrシステムの異常検出装置及び異常検出方法 | |
JP2009221881A (ja) | エンジン | |
GB2482323A (en) | A method and system for controlling an engine based on determination of rotational speed of a compressor | |
JP4760671B2 (ja) | 差圧センサの故障検知システム | |
JP6838611B2 (ja) | 内燃機関の吸気制御方法及び吸気制御装置 | |
WO2013018895A1 (ja) | 空気流量センサ校正装置 | |
JP5556891B2 (ja) | 内燃機関の制御装置 | |
JP5111534B2 (ja) | 内燃機関のegr制御装置 | |
JP5004036B2 (ja) | 内燃機関の排気浄化装置 | |
JP2010048133A (ja) | エアフロメータの異常検出装置 | |
CN108223163B (zh) | 用于修正空气质量流量传感器的方法和设备 | |
JP6453121B2 (ja) | 可変容量型ターボチャージャーの制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080031562.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10845765 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127000908 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2010845765 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010845765 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13386239 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201000213 Country of ref document: TH |