WO2011097920A1 - 一种三维电极混凝组合深度处理焦化废水的方法 - Google Patents

一种三维电极混凝组合深度处理焦化废水的方法 Download PDF

Info

Publication number
WO2011097920A1
WO2011097920A1 PCT/CN2010/079890 CN2010079890W WO2011097920A1 WO 2011097920 A1 WO2011097920 A1 WO 2011097920A1 CN 2010079890 W CN2010079890 W CN 2010079890W WO 2011097920 A1 WO2011097920 A1 WO 2011097920A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
coagulation
dimensional electrode
electrode
treatment
Prior art date
Application number
PCT/CN2010/079890
Other languages
English (en)
French (fr)
Inventor
任洪强
时孝磊
丁丽丽
刘明
胡小兵
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to AU2010345513A priority Critical patent/AU2010345513B2/en
Publication of WO2011097920A1 publication Critical patent/WO2011097920A1/zh
Priority to US13/454,111 priority patent/US9422180B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment

Definitions

  • the invention relates to a method for treating coking wastewater, and belongs to the technical field of wastewater treatment, and more particularly to a method for treating coking wastewater by using a fluidized bed three-dimensional electrode and coagulation depth.
  • Coking wastewater is organic industrial wastewater produced in high-temperature dry distillation of coal, gas purification, product recovery, and tar, crude benzene refining process.
  • Coking wastewater contains high concentrations of inorganic pollutants such as ammonia nitrogen, cyanide, thiocyanide, and sulfide, as well as phenolic compounds, polycyclic aromatic hydrocarbons (PAHs), and heterocyclic compounds and aliphatic compounds containing nitrogen, oxygen, and sulfur. And other organic pollutants.
  • the composition of wastewater is complex and related to coking coal quality, carbonization temperature and coking product recovery processes and methods.
  • coking enterprises first adopt pretreatment such as degreasing-dephenolization-steaming ammonia, and then carry out secondary biochemical treatment.
  • the main processes include: ordinary activated sludge method, anaerobic-anoxic-good Oxygen (A 1 -A 2 -O) process, anoxic-aerobic (AO) process, and anoxic-first-order aerobic-secondary aerobic (AO 1 -O 2 ) process.
  • AO 1 -O 2 anoxic-first-order aerobic-secondary aerobic
  • the coagulation method is the most widely used, due to the strong polarity of organic matter in the biochemical effluent of coking wastewater, the general coagulant treatment effect is poor, and it is difficult to meet the discharge standard.
  • the use of activated carbon as an adsorbent for advanced treatment of coking wastewater has been applied in practical engineering, but it is expensive, difficult to regenerate, and has high operating costs, and has not been widely used in practice.
  • the advanced oxidation technology has a good treatment effect, it is mainly concentrated in the laboratory research stage, and the operation cost is high, and there is still a long distance from the application of actual engineering.
  • the high polymer produced by the liquid catalyst will enclose the activated carbon particles, affecting the suspension performance of the activated carbon, and at the same time drastically reduce the adsorption point on the surface of the activated carbon.
  • the activated carbon is easy to fail, and the problem of frequent replacement needs to affect the stable operation of the device, resulting in an increase in processing cost.
  • the present invention proposes a method for deep processing coking wastewater by a three-dimensional electrode coagulation combination, and the wastewater is treated by the treatment of the present invention.
  • COD, ammonia nitrogen and chromaticity simultaneously meet the first-level standard of the National Integrated Wastewater Discharge Standard (GB9878-1996), reducing environmental pollution.
  • a method for deep processing coking wastewater by a three-dimensional electrode coagulation process the steps of which are:
  • step (2) introducing the wastewater in step (1) into a three-dimensional electrode treatment device for electrolytic treatment, the current density is 30-150 A/m 2 , and the electrolysis time is 10-50 min;
  • the acid solution added in the step (1) is H 2 SO 4 or hydrochloric acid, and waste H 2 SO 4 and waste hydrochloric acid can also be used for cost saving.
  • Step ( 2 The three-dimensional electrode device used in the three-dimensional fluidized bed electrode, the reactor plate and the filled particle electrode are placed on the surface of the gas plate, the air inlet is provided below the gas plate, and the compressed air is introduced, and the anode and cathode of the plate are high.
  • Pure graphite or stainless steel, the particle electrode used is granular activated carbon, the size is 2 ⁇ 5mm, the filling amount is 50 ⁇ 120g/L.
  • the substance concentration and diffusion rate are the main limiting factors of the electrolysis reaction.
  • the introduction of gas increases the degree of turbulence inside the three-dimensional electrode reactor of the fluidized bed, and the conductive particles are fluidized and strengthen the reaction.
  • the mass transfer efficiency of the material in the reactor, and the potential distribution of the solution in the reactor is relatively uniform, and the oxygen contained in the gas can be introduced into the surface of the particle electrode or the cathode to convert the electron into a strong oxidant H 2 O 2 , ⁇ OH Etc., organic matter undergoes oxidation reaction and radical chain reaction under the action of these strong oxidants, so that the organic structure is destroyed, the surface is modified, and the degradation of organic matter and the subsequent treatment effect are enhanced.
  • the polysilicate magnesium ferrite coagulant used in the step (3) is made of industrial water glass with SiO 2 content of 2 ⁇ 4%, acidified with sulfuric acid, adjusted to pH value of 4.5 ⁇ 5.5, and activated at a constant temperature of 45 ⁇ 50 °C for 30 min.
  • the iron salt and magnesium salt have a Si/(Fe+Mg) molar ratio of 0.5 to 1.5 and a Fe/Mg molar ratio of 0.5 to 2, which is stirred until completely dissolved and matured for 2 hours.
  • Polysilicic acid has a strong bonding ability and adsorption bridging effect due to its possible polymerization in various directions to form a branched, cyclic or networked three-dimensional structure.
  • the iron salt when used for coagulation, in addition to the function of electrically neutralizing and compressing the electric double layer, it can also be complexed with groups containing orphan electrons such as -NH 2 , -NR 2 , -OH in the organic substance to make the organic substance The solubility changes.
  • Magnesium ions have a strong affinity for groups such as -COOH, -SO 3 , -OH, and form chemical coagulation under alkaline conditions to achieve decolorization.
  • the invention provides a method for deep treatment of coking wastewater by a three-dimensional electrode coagulation combination.
  • the three-dimensional electrode of the coupled fluidized bed has good mass transfer efficiency, high current efficiency and aggregation.
  • the decolorization effect of iron silicate magnesium coagulant has remarkable characteristics, overcomes the problem that it is difficult to meet the requirements of multiple water quality and stable compliance in a single process, and can be used for advanced treatment of high-efficiency, fast and stable coking wastewater.
  • COD, ammonia nitrogen and chromaticity meet the first-level discharge standard of Integrated Wastewater Discharge Standard (GB8978-96), with remarkable process treatment, simple and convenient management, low operating cost and easy project promotion.
  • Figure 1 is a process flow diagram of the present invention.
  • the industrial water glass with SiO 2 content of 2.5% was acidified with sulfuric acid, adjusted to pH 5.2, and activated at a constant temperature of 45 °C for 30 min.
  • the quantitative ferric sulfate and magnesium chloride were added, and the Si/(Fe+Mg) molar ratio was 0.7, Fe/ The molar ratio of Mg is 2.0, stirred until completely dissolved, and matured for 2 hours.
  • the electrolyzed wastewater is introduced into the coagulation tank, the pH of the wastewater is adjusted to 8, and the wastewater is added to 4 ml of polyferric magnesium ferrite coagulant. After mixing for 5 minutes, it flows into the sedimentation tank for 4 hours, and then the upper layer is taken out at night. After treatment, the water is discharged.
  • a coking plant biochemical treatment does not meet the standard wastewater, COD is 210 ⁇ 305mg/L, ammonia nitrogen is 30 ⁇ 50mg/L, color is 300 times, biochemical effluent is introduced into the regulating tank, hydrochloric acid solution is added, the pH of the wastewater is adjusted to 6, and then The wastewater is introduced into a self-made fluidized bed three-dimensional electrode reactor.
  • the anode of the plate is made of stainless steel, the cathode is high-purity graphite, the particle electrode is activated carbon, the size is 2 ⁇ 4mm, the dosage is 100g / L, compressed air is introduced, and the current density is 120A / m 2 , electrolysis time 35min.
  • the electrolyzed wastewater is introduced into the coagulation tank, the pH of the wastewater is adjusted to 9.5, and the wastewater is added to 2 ml of polyferric magnesium ferrite coagulant. After mixing for 10 minutes, the mixture is poured into the sedimentation tank for 5 hours, and then the upper layer is taken out at night. After treatment, the water is discharged.
  • the industrial water glass with SiO 2 content of 4% was acidified with sulfuric acid, adjusted to pH 4.8, and activated at a constant temperature of 45 °C for 30 min.
  • the quantitative ferric chloride and magnesium sulfate were added, and the Si/(Fe+Mg) molar ratio was 1.2.
  • the Fe/Mg molar ratio is 0.8, stirred until completely dissolved, and matured for 2 hours.
  • the biochemical treatment of a coking plant does not meet the standard wastewater, the COD is 180 ⁇ 272mg/L, the ammonia nitrogen is 12 ⁇ 28mg/L, the chroma is 320 times, the biochemical effluent is introduced into the regulating tank, the waste H 2 SO 4 solution is added, and the pH of the wastewater is adjusted. 6 , then the wastewater is introduced into the self-made fluidized bed three-dimensional electrode reactor, the plate anode stainless steel, the cathode is high-purity graphite, the particle electrode is activated carbon, the size is 2 ⁇ 3mm, the dosage is 80g/L, and the compressed air is introduced.
  • the current density is 100 A/m 2 and the electrolysis time is 10 min.
  • the electrolyzed wastewater is introduced into the coagulation tank, the pH of the wastewater is adjusted to 10, and the wastewater is added to 5 ml of polyferric magnesium ferrite coagulant. After mixing for 10 minutes, the mixture is poured into the sedimentation tank for 4 hours, and then the upper layer is taken out at night. After treatment, the water is discharged.
  • the industrial water glass with SiO 2 content of 2% is acidified with sulfuric acid, adjusted to pH 4.5, and activated at a constant temperature of 45 °C for 30 min.
  • the quantitative ferric sulfate and magnesium chloride are added, and the Si/(Fe+Mg) molar ratio is 0.8, Fe/ The molar ratio of Mg is 0.5, stirred until completely dissolved, and aged for 2 hours.
  • a coking plant biochemical treatment does not meet the standard wastewater, COD is 260 ⁇ 380mg / L, ammonia nitrogen is 25 ⁇ 42mg / L, color is 500 times, the biochemical effluent is introduced into the regulating tank, the waste hydrochloric acid solution is added, the pH of the wastewater is adjusted to 5.5, then The wastewater is introduced into the self-made fluidized bed three-dimensional electrode reactor.
  • the anode and cathode of the plate are stainless steel, the particle electrode is activated carbon, the size is 2 ⁇ 4mm, the dosage is 120g/L, and the compressed air is introduced.
  • the current density is 150A/m. 2 , the electrolysis time is 50min.
  • the electrolyzed wastewater is introduced into the coagulation tank, the pH of the wastewater is adjusted to 10, and the wastewater is added to 6 ml of polyferric magnesium ferrite coagulant. After mixing for 15 minutes, the mixture is poured into the sedimentation tank for 6 hours, and then the upper layer is taken out at night. After treatment, the water is discharged.
  • the biochemical treatment of a coking plant does not meet the standard wastewater, COD is 135 ⁇ 197mg/L, ammonia nitrogen is 12 ⁇ 27mg/L, color is 150 times, biochemical effluent is introduced into the regulating tank, hydrochloric acid solution is added, the pH of the wastewater is adjusted to 6, and then The wastewater is introduced into the self-made fluidized bed three-dimensional electrode reactor.
  • the anode of the plate is high-purity graphite
  • the cathode is stainless steel
  • the particle electrode is activated carbon
  • the size is 3 ⁇ 5mm
  • the dosage is 70g / L
  • compressed air is introduced
  • the current density is 70A / m 2 , electrolysis time 40min.
  • the electrolyzed wastewater is introduced into the coagulation tank, the pH of the wastewater is adjusted to 9, and the wastewater is added to 4 ml of polyferric magnesium ferrite coagulant. After mixing for 10 minutes, the mixture is poured into the sedimentation tank for 4 hours, and then the upper layer is taken out at night. After treatment, the water is discharged.

Description

一种三维电极混凝组合深度处理焦化废水的方法 技术领域
本发明涉及焦化废水的处理方法,属于废水处理技术领域,更具体说是一种采用流化床三维电极和混凝深度处理焦化废水的方法。
背景技术
焦化废水是在煤高温干馏、煤气净化、产品回收及焦油、粗苯精制过程等中产生的有机工业废水。焦化废水中含有高浓度的氨氮、氰化物、硫氰化物、硫化物等无机污染物,以及酚类化合物、多环芳烃 (PAHs) 以及含氮、氧、硫等的杂环化合物及脂肪族化合物等有机污染物。废水成分复杂,并和炼焦煤质、碳化温度和焦化产品回收工序和方法等有关。目前,对焦化废水的处理,大多数焦化企业首先采取除油 - 脱酚 - 蒸氨等预处理,然后进行二级生化处理,主要工艺包括:普通活性污泥法、厌氧 - 缺氧 - 好氧 (A1-A2-O) 工艺、缺氧 - 好氧 (A-O) 工艺以及缺氧 - 一级好氧 - 二级好氧 (A-O1-O2) 工艺等。经二级生化处理后,出水中酚、氰、 BOD5 等基本能达到排放标准,但是由于难降解有机物的存在,出水中 COD 、氨氮和色度等一般难以满足排放要求。因此,必须对焦化废水进行深度处理。
目前,焦化废水的深度处理方法很多,有生物膜法、混凝法、吸附法、高级氧化法如 Fenton 试剂氧化法、臭氧氧化法、光催化氧化法、电化学氧化法和催化湿式氧化技术等等、由于焦化废水生化出水中大部分为难降解有机物,采取生物膜法深度处理时,微生物生长较困难,处理效率低,且存在需对填料频繁反冲洗的问题。而混凝法虽然应用最为广泛,但是由于焦化废水生化出水中有机物极性较强,一般的混凝剂处理效果较差,难以达到排放标准。活性炭作为吸附剂深度处理焦化废水在实际工程中已有应用,但是其价格昂贵,再生困难,运行费用较高,并未在实际中得到广泛使用。高级氧化技术虽然处理效果较好,但目前还主要集中在实验室研究阶段,并且运行成本较高,距离实际工程的应用还有一段距离。
中国专利申请 200710117681.X 公开了一种先用含硼聚合硅酸硫酸铝铁 (PFASSB) 絮凝处理,然后采用粉煤灰 - 石灰吸附深度处理焦化废水的方法,出水 COD 可达到一级排放标准,氨氮达到二级排放标准。但是采用粉煤灰作为吸附剂,虽然价格低廉,但是粉煤灰吸附容量较低,存在需频繁更换的不足,同时絮凝剂中含有的铝,还存在对环境造成二次污染的问题。
邢向军等 ( 大连理工大学 )( 江苏环境科技,第 17 卷第 4 期 ) 采用复极性三维电极深度处理焦化废水生化出水, COD 为 150~200mg/L , 以圆筒石墨作为阳极,铁棒作为阴极,在槽电压为 10V ,反应时间 60min , pH 为 8 ,活性炭量为 115g/L ,液体催化剂 ( 含 Fe2+) 用量 150mg/L 时,对 COD 的去除率达 70% 。但 液体催化剂产生的高聚物会包裹活性炭粒子,影响活性炭的悬浮性能,同时急剧减少活性炭表面的吸附点,活性炭存在容易失效,需频繁更换的问题,影响装置的稳定运行,造成处理成本上升。
以上两种焦化废水生化出水的深度处理技术仅可以降低 COD 或 COD 和氨氮等污染物,而对于其他水质指标如色度的去除则未知。而色度超标一直是焦化废水处理工程中普通存在的问题,色度成了焦化废水处理除 COD 以外的另一个难题。焦化废水经过生物法处理后,虽然污染物浓度得到了降低,但还生成了一些新的有机物,这些有机物中含有 -CH=CH- 、 -CHO- 、 -COOH 、 -NO2 、 -CNH2O 等 生色基团以及 -CH3 、 -SH 、 -OR 、 -NHR 、-NR2 、-NH2 等助色基团,并且含有这些发色基团的有机物极性较强,能使一些长链烃类乳化而高度分散在废水中,单一的处理技术很难同时对多个水质指标进行稳定的达标处理,但现实中往往要求工艺能够对废水中各个污染因子均有明显的处理效果,且工艺稳定可靠。
技术问题
针对现有技术的不足,本发明提出了三维电极混凝组合深度处理焦化废水的方法,通过本发明的处理使废水的 COD 、氨氮和色度同时达到国家污水综合排放标准( GB9878-1996 )一级标准,减少对环境的污染。
技术解决方案
本发明的技术方案如下:
一种三维电极混凝组合深度处理焦化废水的方法,其步骤为:
( 1 )将经生化处理未达标废水引入调节池,向调节池中投加酸液,调整废水 pH 为 5.5~6.5 ;
( 2 )将步骤( 1 )中废水引入三维电极处理装置,进行电解处理,电流密度为 30~150A/m2 ,电解时间为 10~50min ;
( 3 )将经步骤( 2 )处理后的废水引入混凝反应池,投加碱液使得废水 pH 值为 8~10 ,加入聚硅酸铁镁混凝剂,混合反应 5~15min ,然后流入沉淀池自然沉淀 4~6h 后,将上层清夜引出,即得到处理后出水。
步骤( 1 )中投加的酸液为 H2SO4 或 盐酸 ,为节省成本也可以使用废 H2SO4 和废 盐酸 。
步骤( 2 )中所用三维电极装置为三维流化床电极,反应器极板以及填充粒子电极置于布气板上表面,布气板下方设有进气口,通入压缩空气,所用极板阴阳极为高纯石墨或不锈钢,所用粒子电极为颗粒活性炭,尺寸为 2~5mm ,填充量为 50~120g/L 。
在对生化出水进行处理时,物质浓度和扩散速率是电解反应的主要限制因素,气体的引入,提高了流化床三维电极反应器内部的 湍动程度, 导电颗粒呈流化状态,强化了反应器内物质的传质效率,并使反应器中溶液的电势分布比较均匀,同时通入气体中含有的氧气,可以在粒子电极表面或阴极上捕获电子转变为强氧化剂 H2O2 、 ·OH 等,有机物在这些强氧化剂的作用下发生氧化反应及自由基链反应,使有机物结构被破坏,表面得到改性,增强了对有机物的降解及后续处理效果。
步骤( 3 )中所用聚硅酸铁镁混凝剂由 SiO2 含量为 2~4% 的工业用水玻璃,用硫酸酸化,调节 pH 值为 4.5~5.5 , 45~50 ℃ 恒温活化 30min , 加入定量的铁盐和镁盐, Si/(Fe+Mg) 摩尔比为 0.5~1.5 , Fe/Mg 摩尔比为 0.5~2 , 搅拌至完全溶解,熟化 2h 制得 。向电解出水中投加氢氧化钠溶液或石灰乳,调节废水 pH 值为 8~10 , 毎升废水投加2 ~6ml 聚硅酸铁镁混凝剂,混合反应 5~15min 后流入沉淀池自然沉淀 4~6h 后,将上层清夜引出,即得到处理后出水。
聚硅酸由于可能向各个方向进行聚合形成带支链的、环状的或网状的立体结构,具有很强的粘接能力和吸附架桥作用。铁盐用于混凝时除具有电中和和压缩双电层作用外,还能与有机物中含孤对电子的基团如 -NH2 、 -NR2 、 -OH 等络合,使有机物的溶解性发生变化。镁离子对于 -COOH 、 -SO3 、 -OH 等基团具有很强的亲和能力,在碱性条件下形成化学混凝而达到脱色的目的。
有益效果
本发明提供了一种三维电极混凝组合深度处理焦化废水的方法,根据焦化废水生化出水色度高、极性有机物多的特点,耦合流化床三维电极传质效率好、电流效率高和聚硅酸铁镁混凝剂脱色效果显著的特点,克服了单一工艺处理难以满足多个水质同时稳定达标的问题,可以高效、快速稳定的对焦化废水进行深度处理,出水 COD 、氨氮、色度满足《污水综合排放标准》( GB8978-96 )一级排放标准,工艺处理效果显著, 管理简单方便,运行成本低、便于工程推广 。
附图说明
图 1 为本发明的工艺流程图。
本发明的最佳实施方式
本发明的实施方式
实施例 1
聚硅酸铁镁混凝剂的制备:
由 SiO2 含量为 2.5% 的工业用水玻璃,用硫酸酸化,调节 pH 值为 5.2 , 45 ℃ 恒温活化 30min , 加入定量的硫酸铁和氯化镁, Si/(Fe+Mg) 摩尔比为 0.7 , Fe/Mg 摩尔比为 2.0 , 搅拌至完全溶解,熟化 2h 制得,
某焦化厂生化处理未达标废水, COD 为 128~165mg/L ,氨氮为 19~32mg/L ,色度 150 倍,将生化出水引入调节池,投加 H2SO4 溶液,调节废水 pH 为 5.5 ,然后将废水引入自制流化床三维电极反应器,极板阴阳极均为高纯石墨,粒子电极为活性炭,尺寸为 2~4mm ,投加量为 50g /L ,通入压缩空气,电流密度为 30A /m2 ,电解时间 20min 。将经电解处理后的废水引入混凝池,调节废水 pH=8 ,毎升废水加入 4ml 聚硅酸铁镁混凝剂,混合反应 5min 后流入沉淀池自然沉淀 4h 后,将上层清夜引出,即得到处理后出水。
经上述工艺处理后,最终出水 COD 、氨氮 和色度满足《污水综合排放标准》( GB8978-96 )一级排放标准。
实施例 2
聚硅酸铁镁混凝剂的制备:
由 SiO2 含量为 3% 的工业用水玻璃,用硫酸酸化,调节 pH 值为 5 , 50 ℃ 恒温活化 30min , 加入定量的硫酸铁和硫酸镁, Si/(Fe+Mg) 摩尔比为 0.5 , Fe/Mg 摩尔比为 1 , 搅拌至完全溶解,熟化 2h 制得,
某焦化厂生化处理未达标废水, COD 为 210~305mg/L ,氨氮为 30~50mg/L ,色度 300 倍,将生化出水引入调节池,投加 盐酸 溶液,调节废水 pH 为 6 ,然后将废水引入自制流化床三维电极反应器,极板阳极为不锈钢,阴极为高纯石墨,粒子电极为活性炭,尺寸为 2~4mm ,投加量为 100g /L ,通入压缩空气,电流密度为 120A /m2 ,电解时间 35min 。将经电解处理后的废水引入混凝池,调节废水 pH=9.5 ,毎升废水加入 2ml 聚硅酸铁镁混凝剂,混合反应 10min 后流入沉淀池自然沉淀 5h 后,将上层清夜引出,即得到处理后出水。
经上述工艺处理后,最终出水 COD 、氨氮 和色度满足《污水综合排放标准》( GB8978-96 )一级排放标准。
实施例 3
聚硅酸铁镁混凝剂的制备:
由 SiO2 含量为 4% 的工业用水玻璃,用硫酸酸化,调节 pH 值为 4.8 , 45 ℃ 恒温活化 30min , 加入定量的氯化铁和硫酸镁, Si/(Fe+Mg) 摩尔比为 1.2 , Fe/Mg 摩尔比为 0.8 , 搅拌至完全溶解,熟化 2h 制得,
某焦化厂生化处理未达标废水, COD 为 180~272mg/L ,氨氮为 12~28mg/L ,色度 320 倍,将生化出水引入调节池,投加废 H2SO4 溶液,调节废水 pH 为 6 ,然后将废水引入自制流化床三维电极反应器,极板阳极不锈钢,阴极为高纯石墨,粒子电极为活性炭,尺寸为 2~3mm ,投加量为 80g/L ,通入压缩空气,电流密度为 100A/m2 ,电解时间 10min 。将经电解处理后的废水引入混凝池,调节废水 pH=10 ,毎升废水加入 5ml 聚硅酸铁镁混凝剂,混合反应 10min 后流入沉淀池自然沉淀 4h 后,将上层清夜引出,即得到处理后出水。
经上述工艺处理后,最终出水 COD 、氨氮 和色度满足《污水综合排放标准》( GB8978-96 )一级排放标准。
实施例 4
聚硅酸铁镁混凝剂的制备:
由 SiO2 含量为 2% 的工业用水玻璃,用硫酸酸化,调节 pH 值为 4.5 , 45 ℃ 恒温活化 30min , 加入定量的硫酸铁和氯化镁, Si/(Fe+Mg) 摩尔比为 0.8 , Fe/Mg 摩尔比为 0.5 , 搅拌至完全溶解,熟化 2h 制得。
某焦化厂生化处理未达标废水, COD 为 260~380mg/L ,氨氮为 25~42mg/L ,色度 500 倍,将生化出水引入调节池,投加废 盐酸 溶液,调节废水 pH 为 5.5 ,然后将废水引入自制流化床三维电极反应器,极板阴阳极均为不锈钢,粒子电极为活性炭,尺寸为 2~4mm ,投加量为 120g/L ,通入压缩空气,电流密度为 150A/m2 ,电解时间 50min 。将经电解处理后的废水引入混凝池,调节废水 pH=10 ,毎升废水加入 6ml 聚硅酸铁镁混凝剂,混合反应 15min 后流入沉淀池自然沉淀 6h 后,将上层清夜引出,即得到处理后出水。
经上述工艺处理后,最终出水 COD 、氨氮 和色度满足《污水综合排放标准》( GB8978-96 )一级排放标准。
实施例 5
聚硅酸铁镁混凝剂的制备:
由 SiO2 含量为 3.5% 的工业用水玻璃,用硫酸酸化,调节 pH 值为 5.5 , 50 ℃ 恒温活化 30min , 加入定量的氯化铁和氯化镁, Si/(Fe+Mg) 摩尔比为 1.5 , Fe/Mg 摩尔比为 1.5 , 搅拌至完全溶解,熟化 2h 制得,
某焦化厂生化处理未达标废水, COD 为 135~197mg/L ,氨氮为 12~27mg/L ,色度 150 倍,将生化出水引入调节池,投加 盐酸 溶液,调节废水 pH 为 6 ,然后将废水引入自制流化床三维电极反应器,极板阳极为高纯石墨,阴极为不锈钢,粒子电极为活性炭,尺寸为 3~5mm ,投加量为 70g /L ,通入压缩空气,电流密度为 70A /m2 ,电解时间 40min 。将经电解处理后的废水引入混凝池,调节废水 pH=9 ,毎升废水加入 4ml 聚硅酸铁镁混凝剂,混合反应 10min 后流入沉淀池自然沉淀 4h 后,将上层清夜引出,即得到处理后出水。
经上述工艺处理后,最终出水 COD 、氨氮 和色度满足《污水综合排放标准》( GB8978-96 )一级排放标准。
工业实用性
序列表自由内容

Claims (7)

  1. 一种三维电极混凝组合深度处理焦化废水的方法,其步骤包括:
    ( 1 )将经生化处理未达标废水引入调节池,向调节池中投加酸液,调整废水 pH 值 为 5.5~6.5 ;
    ( 2 )将步骤( 1 )中废水引入三维电极处理装置,进行电解处理,电流密度为 30~150A/m2 ,电解时间为 10~50min ;
    ( 3 )将经步骤( 2 )处理后的废水引入混凝反应池,投加碱液使得废水 pH 值为 8~10 ,加入聚硅酸铁镁混凝剂,混合反应 5~15min ,然后流入沉淀池自然沉淀 4~6h 后,将上层清夜引出,即得到处理后出水。
  2. 根据权利要求 1 所述的一种三维电极混凝组合工艺深度处理焦化废水的方法,其特征在于步骤( 1 )中酸液为 H2SO4 、 盐酸 或废 H2SO4 、废 盐酸 。
  3. 根据权利要求 1 所述的一种三维电极混凝组合深度处理焦化废水的方法,其特征在于步骤( 2 )中所述三维电极装置为流化床三维电极,其中的反应器极板以及填充的粒子电极置于布气板上表面,布气板下方设有进气口。
  4. 根据权利要求 3 所述的一种三维电极混凝组合深度处理焦化废水的方法,其特征在于步骤( 2 )中所采用极板阴阳极为高纯石墨或不锈钢。
  5. 根据权利要求 3 或 4 所述的一种三维电极混凝组合深度处理焦化废水的方法,其特征在于步骤( 2 )中所用粒子电极为颗粒活性炭,尺寸为 2~5mm ,填充量为 50~120g/L 。
  6. 根据权利要求 3 或 4 所述的一种三维电极混凝组合深度处理焦化废水的方法,其特征在于步骤( 3 )中聚硅酸铁镁混凝剂由 SiO2 重量百分比含量为 2~4% 的工业用水玻璃,用硫酸酸化,调节 pH 值为 4.5~5.5 , 45~50℃ 恒温活化 30min , 加入定量的铁盐和镁盐,搅拌至完全溶解,熟化 2h 制得,毎升废水投加2 ~6ml。
  7. 根据权利要求 3 或 4 所述的一种三维电极混凝组合深度处理焦化废水的方法,其特征在于投加的铁盐为氯化铁、硫酸铁,镁盐为氯化镁、硫酸镁, Si/(Fe+Mg) 摩尔比为 0.5~1.5 , Fe/Mg 摩尔比为 0.5~2 。
PCT/CN2010/079890 2010-02-11 2010-12-16 一种三维电极混凝组合深度处理焦化废水的方法 WO2011097920A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2010345513A AU2010345513B2 (en) 2010-02-11 2010-12-16 Method for advanced treatment of coke wastewater utilizing combination of three-dimensional electrode and coagulation
US13/454,111 US9422180B2 (en) 2010-02-11 2012-04-24 Method of treatment of coke wastewater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101091828A CN101781054B (zh) 2010-02-11 2010-02-11 一种三维电极混凝组合深度处理焦化废水的方法
CN201010109182.8 2010-02-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/454,111 Continuation-In-Part US9422180B2 (en) 2010-02-11 2012-04-24 Method of treatment of coke wastewater

Publications (1)

Publication Number Publication Date
WO2011097920A1 true WO2011097920A1 (zh) 2011-08-18

Family

ID=42521224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079890 WO2011097920A1 (zh) 2010-02-11 2010-12-16 一种三维电极混凝组合深度处理焦化废水的方法

Country Status (5)

Country Link
US (1) US9422180B2 (zh)
CN (1) CN101781054B (zh)
AU (1) AU2010345513B2 (zh)
WO (1) WO2011097920A1 (zh)
ZA (1) ZA201203220B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104276629A (zh) * 2013-07-03 2015-01-14 济南大学 一种粉煤灰基粒子电极及其制备方法
CN104276625A (zh) * 2013-07-03 2015-01-14 济南大学 一种水渣基粒子电极及其制备方法
CN111547953A (zh) * 2020-05-23 2020-08-18 季丹萍 一种焦化废水与煤气洗涤水联合处理工艺
CN112374583A (zh) * 2020-10-27 2021-02-19 合肥工业大学 一种功能化污泥基碳三维颗粒电极的制备及其应用
CN113354045A (zh) * 2021-05-18 2021-09-07 中国石油大学(北京) 聚硅酸铝铁絮凝剂及其制备方法与应用
CN115138375A (zh) * 2022-07-06 2022-10-04 中钢集团鞍山热能研究院有限公司 利用废三元催化剂制备三维粒子电极的方法及电极的应用
CN112374583B (zh) * 2020-10-27 2024-04-26 合肥工业大学 一种功能化污泥基碳三维颗粒电极的制备及其应用

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781054B (zh) * 2010-02-11 2012-08-22 南京大学 一种三维电极混凝组合深度处理焦化废水的方法
CN102351353B (zh) * 2011-08-29 2012-11-28 浙江海拓环境技术有限公司 一种电镀前处理倒槽水的预处理方法
CN102616992B (zh) * 2012-03-29 2013-12-11 南京大学 一种去除污水中抗生素抗性基因的方法
CN103395941B (zh) * 2013-08-09 2014-12-10 中国矿业大学(北京) 一种褐煤提质冷凝水回收利用系统
CN103922524B (zh) * 2014-05-14 2015-03-11 山东盛阳集团有限公司 一种焦化废水的深度处理方法
CN104787937A (zh) * 2015-03-24 2015-07-22 中国海洋石油总公司 一种三维电极电解处理高浓度氨氮废水的方法
CN106430744A (zh) * 2016-08-05 2017-02-22 波鹰(厦门)科技有限公司 一种市政污水处理厂排放水由一级b到一级a的提标装置
CN106242129A (zh) * 2016-08-05 2016-12-21 罗依依 一种市政污水处理厂排放水由一级b到一级a的提标方法
CN107445409A (zh) * 2017-09-15 2017-12-08 北京高能时代环境技术股份有限公司 工业废水光催化氧化处理回用装置及工艺
CN107399882A (zh) * 2017-09-19 2017-11-28 广州市豫泉净水材料有限公司 一种焦化废水处理装置及处理方法
CN108751378B (zh) * 2018-04-12 2020-09-01 南京大学 一种Fe3O4/Ag@Si三维复合电极及其制备方法和高级氧化集成技术系统
CN109020090A (zh) * 2018-09-12 2018-12-18 南京科莱恩环境工程有限公司 一种高浓度难降解有机废水处理装置及方法
CN111825258B (zh) * 2019-04-15 2022-09-27 郝东珍 一种焦化剩余氨水处理装置及方法
CN110078269A (zh) * 2019-04-23 2019-08-02 江苏大学 一种三维电极协同臭氧处理洗衣废水的处理系统及工艺
CN110590064A (zh) * 2019-09-19 2019-12-20 中冶赛迪工程技术股份有限公司 一种焦化废水的处理方法及系统
CN110642334A (zh) * 2019-09-27 2020-01-03 北京帝力伟业科技开发有限公司 一种高粘度压裂返排液电化学处理系统及方法
CN110902936A (zh) * 2019-11-04 2020-03-24 江阴道盛环保科技有限公司 一种适用印染污水的回用工艺
CN111186898B (zh) * 2020-01-13 2022-04-26 北京工商大学 一种以铁屑为铁源的Fenton氧化处理印染废水的方法及装置
CN111517619A (zh) * 2020-05-15 2020-08-11 同臣环保装备科技(苏州)有限公司 一种聚硅酸硫酸铁镁调理剂及其制备方法
CN112079494B (zh) * 2020-06-14 2022-06-17 太原理工大学 一种乳化液废水的处理方法
CN113376228B (zh) * 2020-09-10 2023-10-27 上海柏中观澈智能科技有限公司 一种氨氮检测用微流体装置及用途
CN112794553B (zh) * 2020-12-22 2022-08-02 哈尔滨工创环保科技有限公司 一种微电场耦合硫自养反硝化处理煤热解废水的装置及利用其处理煤热解废水的方法
CN112850946A (zh) * 2020-12-27 2021-05-28 中冶焦耐(大连)工程技术有限公司 一种增强型Fenton氧化工艺处理焦化废水的方法
CN112624429B (zh) * 2020-12-30 2021-07-06 华夏碧水环保科技有限公司北京分公司 焦化废水的深度处理方法和深度处理装置
CN112850855A (zh) * 2020-12-30 2021-05-28 广东省科学院测试分析研究所(中国广州分析测试中心) 一种农业废弃物生物炭三维电极粒子填料及其应用
CN112979061B (zh) * 2021-02-04 2023-06-27 南京大善环境科技有限公司 醇提取植物有效成份过程中的废水处理cnbb工艺及装备
CN113402125A (zh) * 2021-07-06 2021-09-17 河北丰源环保科技股份有限公司 一种焦化废水深度处理及中水回用方法及系统
CN113666545A (zh) * 2021-07-22 2021-11-19 中国大唐集团科学技术研究院有限公司中南电力试验研究院 一种以edta作为清洗介质酸洗有机废液的处理方法
CN113754149A (zh) * 2021-09-28 2021-12-07 天津工业大学 球型多孔填料及处理高盐水中有机物的电解氧化系统
CN115340253A (zh) * 2022-07-20 2022-11-15 蓝星工程有限公司 焦化废水零排放处理系统及其处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155461A (ja) * 1994-12-02 1996-06-18 Permelec Electrode Ltd 硝酸性及び/又は亜硝酸性窒素の除去方法及び装置
CN101177330A (zh) * 2007-08-10 2008-05-14 南京大学 一种电化学氧化絮凝组合工艺预处理焦化废水的方法
CN101781054A (zh) * 2010-02-11 2010-07-21 南京大学 一种三维电极混凝组合深度处理焦化废水的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388195A (en) * 1979-07-05 1983-06-14 Passavant-Werke Michelbacher Hutte Process and apparatus for the chemical-mechanical treatment and purification of ground waters, surface waters and effluents
JP3055544B2 (ja) * 1998-12-11 2000-06-26 日立プラント建設株式会社 生体高分子中の重金属除去方法及び装置
CN1151084C (zh) * 2002-01-16 2004-05-26 中山大学 三维电极反应器
CN101186361A (zh) * 2007-12-17 2008-05-28 江苏省环境科学研究院 三维电极反应器及利用其处理氯苯废水的方法
CN101514040A (zh) * 2009-04-03 2009-08-26 中南大学 一种三维电极反应器及其在难降解有机废水处理中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155461A (ja) * 1994-12-02 1996-06-18 Permelec Electrode Ltd 硝酸性及び/又は亜硝酸性窒素の除去方法及び装置
CN101177330A (zh) * 2007-08-10 2008-05-14 南京大学 一种电化学氧化絮凝组合工艺预处理焦化废水的方法
CN101781054A (zh) * 2010-02-11 2010-07-21 南京大学 一种三维电极混凝组合深度处理焦化废水的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
WANG, HANDAO ET AL.: "Experimental Study on Three-dimensional Electrode/Coagulation Method for Yeast Production Wastewater Treatment.", CHINA WATER & WASTEWATER., vol. 23, no. 7, 30 April 2007 (2007-04-30), pages 88 *
WANG, WANPENG ET AL.: "Advanced Treatment of Coal Tar Wastewater and Mechanism by Fluid Three-dimensional Electrode Reactor.", JOURNAL OF CHINA COAL SOCIETY., vol. 35, no. 1, 31 January 2010 (2010-01-31), pages 122 *
XING, XIANGJUN ET AL.: "Study on Advanced Treatment of Coking Wastewater by Bipolar Three-dimensional Electrode Technology.", JIANG SU ENVIRONMENTAL SCIENCE AND TECHNOLOGY., vol. 17, no. 4, 31 December 2004 (2004-12-31), pages 6 - 8 *
ZHANG, JINGXIANG ET AL.: "Studies on the Preparation and Decolorization of Polysilicate Ferric Magnesium Flocculant.", INDUSTRIAL WATER TREATMENT., vol. 29, no. 8, 31 August 2009 (2009-08-31) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104276629A (zh) * 2013-07-03 2015-01-14 济南大学 一种粉煤灰基粒子电极及其制备方法
CN104276625A (zh) * 2013-07-03 2015-01-14 济南大学 一种水渣基粒子电极及其制备方法
CN111547953A (zh) * 2020-05-23 2020-08-18 季丹萍 一种焦化废水与煤气洗涤水联合处理工艺
CN111547953B (zh) * 2020-05-23 2022-05-17 鄂托克旗建元煤焦化有限责任公司 一种焦化废水与煤气洗涤水联合处理工艺
CN112374583A (zh) * 2020-10-27 2021-02-19 合肥工业大学 一种功能化污泥基碳三维颗粒电极的制备及其应用
CN112374583B (zh) * 2020-10-27 2024-04-26 合肥工业大学 一种功能化污泥基碳三维颗粒电极的制备及其应用
CN113354045A (zh) * 2021-05-18 2021-09-07 中国石油大学(北京) 聚硅酸铝铁絮凝剂及其制备方法与应用
CN115138375A (zh) * 2022-07-06 2022-10-04 中钢集团鞍山热能研究院有限公司 利用废三元催化剂制备三维粒子电极的方法及电极的应用
CN115138375B (zh) * 2022-07-06 2023-07-28 中钢集团鞍山热能研究院有限公司 利用废三元催化剂制备三维粒子电极的方法及电极的应用

Also Published As

Publication number Publication date
AU2010345513B2 (en) 2014-06-05
CN101781054B (zh) 2012-08-22
ZA201203220B (en) 2013-01-30
CN101781054A (zh) 2010-07-21
US9422180B2 (en) 2016-08-23
AU2010345513A1 (en) 2012-05-24
US20120205317A1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
WO2011097920A1 (zh) 一种三维电极混凝组合深度处理焦化废水的方法
Zhuang et al. Enhanced 2, 4, 6-trichlorophenol anaerobic degradation by Fe3O4 supported on water hyacinth biochar for triggering direct interspecies electron transfer and its use in coal gasification wastewater treatment
CN112811783B (zh) 一种污泥基富铁生物炭活化分子氧的污泥调理及脱水方法
CN109911990B (zh) 一种高活性铁碳微电解填料的制备方法
CN107021547A (zh) 一种铁碳微电解填料的制备方法及其产品
CN1903752A (zh) 亚硝化电化学反亚硝化全自养脱氨氮的方法和反应器
CN114524491A (zh) 一种基于污泥富铁生物炭的复合铁碳填料及制备与应用
CN113321345A (zh) 一种基于污泥基生物炭的可同时回收水体中磷和去除抗生素的方法
CN111876173A (zh) 一种含铁污泥基生物炭材料的制备方法以及其在厌氧消化中的应用
CN111377499B (zh) 一种多功能复合填料及其制备方法
CN111517428A (zh) 一种脱除pta废水中重金属离子的处理工艺及系统
CN106854030B (zh) 一种化工污水的处理工艺
CN114618401B (zh) 改性复合石墨烯气凝胶及其制备方法和应用
CN114931935A (zh) 环保型焦化废水cod吸附剂及其制备方法
CN113582333B (zh) 一种基于导电纳米材料促进厌氧反应器启动的方法
CN106045124B (zh) 一种去除生物反应系统出水中残留有机物的方法
Zhang et al. Effects of anaerobic digester solids retention time on odor emission and dewaterability of biosolids subjected to various shear intensities, polymer doses, and storage duration times
CN112028419B (zh) 污泥减量化、资源化和改善活性的处理方法及其专用设备
CN109607664B (zh) 一种快速消除水体黑臭的材料及其制备方法
CN111635113A (zh) 一种利用过氧化钙进行污泥脱水调理的方法
CN111039376A (zh) 一种应用于污水处理领域的复合高效除磷剂及其制备方法
CN214004182U (zh) 一种电气石布料装置
CN114455699B (zh) 铁碳复合载体及其应用
CN113772779B (zh) 实现低浓度含氰焦化废水污泥减量化的药剂及制备方法
CN1040566A (zh) 复合混凝剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010345513

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010345513

Country of ref document: AU

Date of ref document: 20101216

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845590

Country of ref document: EP

Kind code of ref document: A1