WO2011096109A1 - 炭化珪素基板の製造方法 - Google Patents

炭化珪素基板の製造方法 Download PDF

Info

Publication number
WO2011096109A1
WO2011096109A1 PCT/JP2010/066828 JP2010066828W WO2011096109A1 WO 2011096109 A1 WO2011096109 A1 WO 2011096109A1 JP 2010066828 W JP2010066828 W JP 2010066828W WO 2011096109 A1 WO2011096109 A1 WO 2011096109A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
single crystal
carbide substrate
manufacturing
back surface
Prior art date
Application number
PCT/JP2010/066828
Other languages
English (en)
French (fr)
Inventor
太郎 西口
佐々木 信
原田 真
恭子 沖田
博揮 井上
藤原 伸介
靖生 並川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CA2759074A priority Critical patent/CA2759074A1/en
Priority to KR1020117024009A priority patent/KR20120124352A/ko
Priority to CN2010800168445A priority patent/CN102395715A/zh
Priority to US13/256,991 priority patent/US8435866B2/en
Priority to JP2011525315A priority patent/JPWO2011096109A1/ja
Priority to EP10845240.0A priority patent/EP2532773A4/en
Publication of WO2011096109A1 publication Critical patent/WO2011096109A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Definitions

  • the present invention relates to a method for manufacturing a silicon carbide substrate.
  • SiC silicon carbide substrates
  • SiC has a larger band gap than Si (silicon) which is more commonly used. Therefore, a semiconductor device using a SiC substrate has advantages such as high breakdown voltage, low on-resistance, and small deterioration in characteristics under a high temperature environment.
  • Patent Document 1 a SiC substrate of 76 mm (3 inches) or more can be manufactured.
  • the size of the SiC single crystal substrate is industrially limited to about 100 mm (4 inches), and there is a problem that a semiconductor device cannot be efficiently manufactured using a large single crystal substrate.
  • a semiconductor device cannot be efficiently manufactured using a large single crystal substrate.
  • hexagonal SiC the above-described problem becomes particularly serious when the characteristics of a plane other than the (0001) plane are used. This will be described below.
  • a SiC single crystal substrate with few defects is usually manufactured by cutting out from a SiC ingot obtained by (0001) plane growth in which stacking faults are unlikely to occur. For this reason, a single crystal substrate having a plane orientation other than the (0001) plane is cut out non-parallel to the growth plane. For this reason, it is difficult to ensure a sufficient size of the single crystal substrate, or many portions of the ingot cannot be used effectively. For this reason, it is particularly difficult to efficiently manufacture a semiconductor device using a surface other than the (0001) surface of SiC.
  • silicon carbide substrate having a supporting portion and a plurality of small single crystal substrates bonded thereon instead of increasing the size of the SiC single crystal substrate with difficulty as described above.
  • This silicon carbide substrate can be enlarged as necessary by increasing the number of single crystal substrates.
  • the bonding strength may be insufficient.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a silicon carbide substrate capable of increasing the bonding strength between the single crystal substrate and the support portion.
  • the method for manufacturing a silicon carbide substrate of the present invention includes the following steps. At least one single crystal substrate, each having a back surface and made from silicon carbide, and a support having a main surface and made from silicon carbide are provided. In this preparation, at least one of the back surface and the main surface is formed by mechanical processing. By this formation, a surface layer having a crystal structure strain is formed on at least one of the back surface and the main surface. At least a portion of the surface layer is removed. After this removal, the back and main surfaces are joined together.
  • the bonding strength between the back surface and the main surface can be increased by removing the strained surface layer.
  • the step of removing at least a part of the surface layer is performed by sublimating the surface layer.
  • the surface layer is formed on the back surface, and in the step of removing at least a part of the surface layer, at least the surface layer formed on the back surface. Part is removed.
  • the back surface and the main surface face each other before the surface layer is sublimated.
  • the step of removing at least a part of the surface layer may be performed by sacrificial oxidation.
  • the step of removing at least part of the surface layer may be performed chemically.
  • the step of removing at least part of the surface layer is performed so as to remove all of the surface layer.
  • the joint strength between the back surface and the main surface can be further increased.
  • the step of joining the back surface and the main surface to each other is performed by generating sublimation of silicon carbide from the main surface and recrystallization of silicon carbide on the back surface between the back surface and the main surface. .
  • the step of removing at least part of the surface layer is performed by sublimating the surface layer, both steps can be performed using sublimation.
  • the step of removing at least a part of the surface layer when the back surface and the main surface face each other before the surface layer is sublimated, after the surface layer is sublimated, the direction of movement of the substance by sublimation is changed. By simply changing, the back surface and the main surface can be joined together.
  • the surface layer on the main surface can be eliminated by sublimation in the step of joining the back surface and the main surface to each other.
  • At least one single crystal substrate is a plurality of single crystal substrates.
  • a silicon carbide substrate having a large area can be obtained.
  • the step of removing at least a part of the surface layer may be performed by etching the surface layer.
  • This etching is, for example, wet etching or gas etching.
  • the back surface may be mechanically polished. Thereby, the back surface can be planarized. Moreover, the thickness of the surface layer formed on the back surface can be reduced.
  • the back surface may be formed by slicing. That is, the back surface is a surface formed by slicing and not polished thereafter. This provides relief on the back surface. Therefore, when the support part is provided on the back surface by the sublimation method, the space in the undulating concave part can be used as a gap where the sublimation gas spreads.
  • the at least one single crystal substrate includes a first single crystal substrate having a first surface facing the back surface.
  • the first surface has an off angle of 50 ° or more and 65 ° or less with respect to the ⁇ 0001 ⁇ plane.
  • channel mobility in the 1st surface can be raised.
  • the angle between the off orientation of the first surface and the ⁇ 1-100> direction of the first single crystal substrate is 5 ° or less. More preferably, the off angle of the first surface with respect to the ⁇ 03-38 ⁇ plane in the ⁇ 1-100> direction of the first single crystal substrate is ⁇ 3 ° to 5 °.
  • the bonding strength between the single crystal substrate and the support portion can be increased.
  • FIG. 1 is a plan view schematically showing a configuration of a silicon carbide substrate in a first embodiment of the present invention.
  • FIG. 2 is a schematic sectional view taken along line II-II in FIG. It is sectional drawing which shows schematically the 1st process of the manufacturing method of the silicon carbide substrate in Embodiment 1 of this invention.
  • FIG. 4 is a partially enlarged view of FIG. 3.
  • FIG. 5 is a partial cross sectional view schematically showing a direction of substance movement by sublimation in a second step of the method for manufacturing the silicon carbide substrate in the first embodiment of the present invention.
  • FIG. 1 is a plan view schematically showing a configuration of a silicon carbide substrate in a first embodiment of the present invention.
  • FIG. 2 is a schematic sectional view taken along line II-II in FIG. It is sectional drawing which shows schematically the 1st process of the manufacturing method of the silicon carbide substrate in Embodiment 1 of this invention.
  • FIG. 4 is a partially enlarged view
  • FIG. 8 is a partial cross sectional view schematically showing a direction of substance movement by sublimation in a third step of the method for manufacturing a silicon carbide substrate in Embodiment 1 of the present invention. It is a fragmentary sectional view which shows schematically the moving direction of the space
  • FIG. 5 is a partial cross sectional view schematically showing a movement direction of a void due to sublimation in a second step of the method for manufacturing the silicon carbide substrate in the first embodiment of the present invention.
  • silicon carbide substrate 81 of the present embodiment has a support portion 30 and single crystal substrates 11-13.
  • Support portion 30 is a layer made of silicon carbide, and this layer has main surface F0.
  • Single crystal substrates 11 to 19 are made of silicon carbide, and are arranged in a matrix as shown in FIG. The back surfaces of single crystal substrates 11 to 19 and main surface F0 of support portion 30 are joined to each other.
  • single crystal substrate 11 first single crystal substrate
  • single crystal substrate 12 has surface F2 facing each other.
  • surface B2 second back surface.
  • Each of back surface B1 and B2 is joined to main surface F0.
  • Each surface of the single crystal substrates 11 to 19 preferably has a plane orientation ⁇ 03-38 ⁇ .
  • ⁇ 0001 ⁇ , ⁇ 11-20 ⁇ , or ⁇ 1-100 ⁇ can also be used as the plane orientation. It is also possible to use a surface that is off several degrees from each of the above surface orientations.
  • support 30, single crystal substrates 11 to 19 (collectively referred to as single crystal substrate group 10), and a heating device are prepared.
  • the support part 30 does not necessarily need to be a single crystal body, for example, may be a polycrystal body or a sintered body.
  • the heating device includes first and second heating bodies 91 and 92, a heat insulating container 40, a heater 50, and a heater power supply 150.
  • the heat insulating container 40 is formed from a material having high heat insulating properties.
  • the heater 50 is, for example, an electric resistance heater.
  • First and second heating bodies 91 and 92 have a function of heating support portion 30 and single crystal substrate group 10 by re-radiating heat obtained by absorbing radiant heat from heater 50.
  • the 1st and 2nd heating bodies 91 and 92 are formed from the graphite with a small porosity, for example.
  • first heating body 91, the single crystal substrate group 10, the support part 30, and the second heating body 92 are arranged so as to be stacked in this order. Specifically, first, single crystal substrates 11 to 19 are arranged in a matrix on first heating body 91. Next, support portion 30 is placed on the surface of single crystal substrate group 10. Next, the second heating body 92 is placed on the support portion 30. Next, the stacked first heating body 91, single crystal substrate group 10, support portion 30, and second heating body 92 are housed in a heat insulating container 40 provided with a heater 50.
  • the atmosphere in the heat insulating container 40 is an atmosphere obtained by depressurizing the air atmosphere.
  • the pressure of the atmosphere is preferably higher than 10 ⁇ 1 Pa and lower than 10 4 Pa.
  • the above atmosphere may be an inert gas atmosphere.
  • the inert gas for example, a rare gas such as He or Ar, a nitrogen gas, or a mixed gas of a rare gas and a nitrogen gas can be used.
  • the ratio of nitrogen gas is, for example, 60%.
  • the pressure in the processing chamber is preferably 50 kPa or less, and more preferably 10 kPa or less.
  • surface layer 71 (FIG. 5) is formed on the back surface of single crystal substrate group 10 (FIG. 3) prepared as described above.
  • surface layer 71 is formed on each of back surfaces B1 and B2.
  • the surface layer 71 is a layer having a distortion of the crystal structure formed on the back surfaces B1 and B2 by forming the back surfaces B1 and B2 by machining when the single crystal substrates 11 and 12 are prepared.
  • a surface layer is formed during the slicing.
  • the thickness of the surface layer formed by slicing is, for example, about 20 ⁇ m.
  • mechanical polishing is performed on the rear surfaces B1 and B2 after slicing, a relatively thick surface layer by slicing can be removed, but this polishing forms a surface layer although it is relatively thin.
  • the support portion 30 is only placed on each of the single crystal substrates 11 and 12, and is not joined. For this reason, a minute gap GQ exists between each of the back surfaces B1 and B2 and the support portion 30. Accordingly, the surface layer 71 faces the gap GQ.
  • the sublimation recrystallization reaction occurs between the single crystal substrate group 10 including the single crystal substrates 11 and 12 and the support portion 30 by the heater 50 through the first and second heating bodies 91 and 92, respectively. It is heated to a certain temperature.
  • This heating is first performed so that a temperature difference is formed such that the temperature of the single crystal substrate group 10 is higher than the temperature of the support portion 30. That is, in the figure, a temperature gradient is formed such that the temperature decreases from bottom to top.
  • This temperature gradient is preferably 1 ° C./cm or more and 100 ° C./cm or less, more preferably 10 ° C./cm or more and 50 ° C./cm or less, between the single crystal substrate group 10 and the support portion 30. .
  • the temperature of support portion 30 is increased as compared with the temperatures of single crystal substrates 11 and 12. That is, a temperature gradient is formed such that the temperature decreases from top to bottom in the figure. In other words, the direction of the temperature gradient is reversed.
  • This temperature gradient is preferably 1 ° C./cm or more and 200 ° C./cm or less, more preferably 10 ° C./cm or more and 50 ° C./cm or less, between the single crystal substrate group 10 and the support portion 30. . Due to such a temperature gradient, mass transfer due to sublimation occurs in the gap GQ as indicated by an arrow M2 in the figure.
  • the mass transfer indicated by arrow M2 in FIG. 5 corresponds to the cavity movement indicated by arrow H2 in FIG.
  • the mass transfer indicated by arrow M2 in FIG. 5 corresponds to the cavity movement indicated by arrow H2 in FIG.
  • there is a large in-plane variation in the height (the vertical dimension in the drawing) of the gap GQ and due to this variation, the speed of the movement of the cavity corresponding to the gap GQ (arrow H2 in the drawing) is large. In-plane variation occurs.
  • the void VD moves away from the main surface F0 as indicated by an arrow H3. This further increases the bonding strength.
  • the crystal structure of support portion 30 gradually changes from a region close to single crystal substrate group 10 to one corresponding to the crystal structure of single crystal substrate group 10. Thus, silicon carbide substrate 81 is obtained.
  • the surface layer 71 (FIG. 5) is removed by sublimation rather than mechanically, so that the removal of a new crystal structure distortion on the back surfaces B1 and B2 accompanying this removal is avoided.
  • the surface layer 71 having strain can be removed. Thereby, the joint strength between each of back surface B1 and B2 and main surface F0 can be raised. Further, the surface layer 71 can be removed by a simple process of heat treatment. Further, an increase in electric resistance in the thickness direction (vertical direction in FIG. 2) due to the crystal defects of the surface layer 71 can be suppressed.
  • the back surfaces B1 and B2 and the main surface F0 face each other as shown in FIG. Thereby, since each of the back surfaces B1 and B2 and the main surface F0 are already facing each other when the surface layer 71 is removed, the process of subsequently joining them (FIGS. 6 to 8) can be facilitated. It can be carried out.
  • both the step of removing the surface layer 71 and the step of joining each of the back surfaces B1 and B2 and the main surface F0 are performed using sublimation. Specifically, both steps can be performed simply by reversing the temperature gradient for sublimation and recrystallization. Thereby, the manufacturing process of silicon carbide substrate 81 can be simplified.
  • surfaces F1 and F2 (FIG. 2) are provided, the surface area of silicon carbide substrate 81 can be increased as compared with the case where only surface F1 is provided.
  • each of the crystal structures of single crystal substrates 11 to 19 has a polytype 4H type.
  • silicon carbide substrate 81 suitable for manufacturing a power semiconductor is obtained.
  • the difference between the thermal expansion coefficient of support portion 30 in silicon carbide substrate 81 and the thermal expansion coefficient of single crystal substrates 11 to 19 is made as small as possible.
  • production of the curvature of the silicon carbide substrate 81 can be suppressed.
  • the crystal structure of the support portion 30 only needs to be the same as that of the single crystal substrates 11 to 19, and specifically, mass transfer by sublimation and recrystallization (FIG. 8: arrow H3 ) Is sufficiently performed, the crystal structure of the support portion 30 may be the same as that of the single crystal substrates 11 to 19.
  • the in-plane variation of the thicknesses of the support 30 and the single crystal substrate group 10 (FIG. 4) prepared before the heat treatment is made as small as possible.
  • this variation is 10 ⁇ m or less.
  • a planarization process may be performed.
  • the electrical resistivity of the support portion 30 prepared before the heat treatment is less than 50 m ⁇ ⁇ cm, and more preferably less than 10 m ⁇ ⁇ cm.
  • the impurity concentration of support portion 30 in silicon carbide substrate 81 is 5 ⁇ 10 18 cm ⁇ 3 or more, more preferably 1 ⁇ 10 20 cm ⁇ 3 or more.
  • a vertical semiconductor device that allows current to flow in the vertical direction, such as a vertical MOSFET (Metal Oxide Semiconductor Field Effect Transistor)
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the average value of the electrical resistivity of silicon carbide substrate 81 is preferably 5 m ⁇ ⁇ cm or less, and more preferably 1 m ⁇ ⁇ cm or less.
  • the thickness (the vertical dimension in FIG. 2) of silicon carbide substrate 81 is 300 ⁇ m or more.
  • the surface F1 has an off angle of 50 ° or more and 65 ° or less with respect to the ⁇ 0001 ⁇ plane.
  • the channel mobility in the surface F1 can be raised compared with the case where the surface F1 is a ⁇ 0001 ⁇ plane. More preferably, the following first or second condition is satisfied.
  • the angle formed by the off orientation of the surface F1 and the ⁇ 1-100> direction of the single crystal substrate 11 is 5 ° or less. More preferably, the off angle of the surface F1 with respect to the ⁇ 03-38 ⁇ plane in the ⁇ 1-100> direction of the single crystal substrate 11 is ⁇ 3 ° to 5 °.
  • the angle between the off orientation of the surface F1 and the ⁇ 11-20> direction of the single crystal substrate 11 is 5 ° or less.
  • the “off angle of the surface F1 with respect to the ⁇ 03-38 ⁇ plane in the ⁇ 1-100> direction” means the normal line of the surface F1 to the projecting plane extending in the ⁇ 1-100> direction and the ⁇ 0001> direction.
  • the back surfaces of the single crystal substrates 11 to 19 may be mechanically polished in advance. Since the thickness of the surface layer 71 is reduced by this polishing, the removal of the surface layer 71 by sublimation (FIG. 5) can be performed more easily.
  • an electric resistance heater is exemplified as the heater 50. That is, although the resistance heating method is illustrated, other heating methods can be used, for example, a high frequency induction heating method or a lamp annealing method can be used.
  • the silicon carbide substrate of the present embodiment has a configuration substantially similar to that of silicon carbide substrate 81 (FIGS. 1 and 2). Below, the manufacturing method is demonstrated.
  • single crystal substrate 11 having surface layer 71 formed on back surface B1 is prepared. Similar single crystal substrates 12 to 19 (FIG. 1) are prepared. Further, the support portion 30 having the surface layer 73 formed on the main surface F0 is prepared.
  • the support portion 30 is not necessarily a single crystal body, and may be a polycrystalline body or a sintered body, for example.
  • the surface layers 71 and 93 are chemically removed. Specifically, the surface layers 71 and 93 are etched.
  • etching method for example, wet etching, gas etching, RIE (Reactive Ion Etching), or etching by sacrificial oxidation can be used.
  • single crystal substrates 11 and 12 are placed on support portion 30 so that back surfaces B1 and B2 and main surface F0 face each other.
  • support portion 30 and single crystal substrates 11 and 12 are heated to bond each of back surfaces B1 and B2 and main surface F0.
  • silicon carbide substrate 81 FIG. 2
  • the support portion 30 having the surface layer 73 is prepared. However, the support portion 30 having no surface layer 73 may be prepared. Further, the single crystal substrate 11 having the surface layer 71 is prepared, but the single crystal substrate 11 not having the surface layer 71 may be prepared.
  • silicon carbide substrate 85 of the present embodiment has only single crystal substrate 11 instead of single crystal substrates 11 to 19 (FIG. 1). Since the configuration other than this is substantially the same as the configuration of the first embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and the description thereof will not be repeated.
  • silicon carbide substrate 86 of the present embodiment has single crystal substrate 41 in addition to single crystal substrate 11.
  • Single crystal substrate 41 is bonded to surface F ⁇ b> 1 of single crystal substrate 11.
  • semiconductor device 100 of the present embodiment is a vertical DiMOSFET (Double Implanted Metal Oxide Semiconductor Field Effect Transistor), and includes silicon carbide substrate 81, buffer layer 121, breakdown voltage holding layer 122, p region. 123, an n + region 124, a p + region 125, an oxide film 126, a source electrode 111, an upper source electrode 127, a gate electrode 110, and a drain electrode 112.
  • DiMOSFET Double Implanted Metal Oxide Semiconductor Field Effect Transistor
  • Silicon carbide substrate 81 has an n-type conductivity type in the present embodiment, and has support portion 30 and single crystal substrate 11 as described in the first embodiment.
  • the drain electrode 112 is provided on the support portion 30 so as to sandwich the support portion 30 with the single crystal substrate 11.
  • Buffer layer 121 is provided on single crystal substrate 11 such that single crystal substrate 11 is sandwiched between support portion 30.
  • Buffer layer 121 has n-type conductivity and has a thickness of 0.5 ⁇ m, for example.
  • the concentration of the n-type conductive impurity in the buffer layer 121 is, for example, 5 ⁇ 10 17 cm ⁇ 3 .
  • the breakdown voltage holding layer 122 is formed on the buffer layer 121 and is made of silicon carbide whose conductivity type is n-type.
  • the thickness of the breakdown voltage holding layer 122 is 10 ⁇ m, and the concentration of the n-type conductive impurity is 5 ⁇ 10 15 cm ⁇ 3 .
  • a plurality of p regions 123 having a p-type conductivity are formed at intervals.
  • An n + region 124 is formed in the surface layer of the p region 123 inside the p region 123.
  • a p + region 125 is formed at a position adjacent to the n + region 124. From the n + region 124 in one p region 123 to the p region 123, the breakdown voltage holding layer 122 exposed between the two p regions 123, the other p region 123, and the n + region 124 in the other p region 123 An oxide film 126 is formed so as to extend to.
  • a gate electrode 110 is formed on the oxide film 126.
  • a source electrode 111 is formed on the n + region 124 and the p + region 125.
  • An upper source electrode 127 is formed on the source electrode 111.
  • the maximum value of the nitrogen atom concentration in the region within 10 nm from the interface between the oxide film 126 and the n + region 124, p + region 125, p region 123 and the breakdown voltage holding layer 122 as the semiconductor layer is 1 ⁇ 10 21 cm ⁇ 3. That's it. Thereby, the mobility of the channel region under the oxide film 126 (part of the p region 123 between the n + region 124 and the breakdown voltage holding layer 122, which is in contact with the oxide film 126) can be improved. .
  • 16 to 19 show only the steps in the vicinity of the single crystal substrate 11 among the single crystal substrates 11 to 19 (FIG. 1), but the same applies to the vicinity of each of the single crystal substrates 12 to 19. These steps are performed.
  • a silicon carbide substrate 81 (FIGS. 1 and 2) is prepared. Silicon carbide substrate 81 has n type conductivity.
  • buffer layer 121 and breakdown voltage holding layer 122 are formed as follows.
  • buffer layer 121 is formed on single crystal substrate 11 of silicon carbide substrate 81.
  • Buffer layer 121 is made of n-type silicon carbide and is, for example, an epitaxial layer having a thickness of 0.5 ⁇ m. Further, the concentration of the conductive impurity in the buffer layer 121 is set to 5 ⁇ 10 17 cm ⁇ 3 , for example.
  • the breakdown voltage holding layer 122 is formed on the buffer layer 121. Specifically, a layer made of silicon carbide of n-type conductivity is formed by an epitaxial growth method.
  • the thickness of the breakdown voltage holding layer 122 is, for example, 10 ⁇ m.
  • the concentration of the n-type conductive impurity in the breakdown voltage holding layer 122 is, for example, 5 ⁇ 10 15 cm ⁇ 3 .
  • p region 123, n + region 124, and p + region 125 are formed as follows by the implantation step (step S 130: FIG. 15).
  • an impurity having a p-type conductivity is selectively implanted into a part of the breakdown voltage holding layer 122, whereby the p region 123 is formed.
  • n + region 124 is formed by selectively injecting n-type conductive impurities into a predetermined region, and p-type conductive impurities having a conductivity type are selectively injected into the predetermined region. As a result, a p + region 125 is formed.
  • the impurity is selectively implanted using a mask made of an oxide film, for example.
  • an activation annealing process is performed.
  • annealing is performed in an argon atmosphere at a heating temperature of 1700 ° C. for 30 minutes.
  • a gate insulating film formation step (step S140: FIG. 15) is performed. Specifically, an oxide film 126 is formed to cover the breakdown voltage holding layer 122, the p region 123, the n + region 124, and the p + region 125. This formation may be performed by dry oxidation (thermal oxidation).
  • the dry oxidation conditions are, for example, a heating temperature of 1200 ° C. and a heating time of 30 minutes.
  • a nitrogen annealing step (step S150) is performed. Specifically, an annealing process is performed in a nitrogen monoxide (NO) atmosphere.
  • the heating temperature is 1100 ° C. and the heating time is 120 minutes.
  • nitrogen atoms are introduced in the vicinity of the interface between each of the breakdown voltage holding layer 122, the p region 123, the n + region 124, and the p + region 125 and the oxide film 126.
  • an annealing process using an argon (Ar) gas that is an inert gas may be further performed.
  • the conditions for this treatment are, for example, a heating temperature of 1100 ° C. and a heating time of 60 minutes.
  • the source electrode 111 and the drain electrode 112 are formed as follows by the electrode formation step (step S160: FIG. 15).
  • a resist film having a pattern is formed on the oxide film 126 by photolithography. Using this resist film as a mask, portions of oxide film 126 located on n + region 124 and p + region 125 are removed by etching. As a result, an opening is formed in the oxide film 126. Next, a conductor film is formed in contact with each of n + region 124 and p + region 125 in this opening. Next, by removing the resist film, the portion of the conductor film located on the resist film is removed (lifted off).
  • the conductor film may be a metal film, and is made of nickel (Ni), for example. As a result of this lift-off, the source electrode 111 is formed.
  • the heat processing for alloying is performed here.
  • heat treatment is performed for 2 minutes at a heating temperature of 950 ° C. in an atmosphere of argon (Ar) gas that is an inert gas.
  • the upper source electrode 127 is formed on the source electrode 111.
  • drain electrode 112 is formed on the back surface of silicon carbide substrate 81.
  • a gate electrode 110 is formed on the oxide film 126.
  • the semiconductor device 100 is obtained.
  • Silicon carbide substrate for manufacturing semiconductor device 100 is not limited to silicon carbide substrate 81 of the first embodiment. For example, even if a silicon carbide substrate according to any of the other embodiments is used. Good.
  • a vertical DiMOSFET has been illustrated, other semiconductor devices may be manufactured using the semiconductor substrate of the present invention.
  • a RESURF-JFET Reduced Surface Field-Junction Field Effect Transistor
  • a Schottky diode is manufactured. Also good.
  • Example 1 As support part 30 (FIG. 3), diameter 100 mm, thickness 300 ⁇ m, polytype 4H, plane orientation (03-38), n-type impurity concentration 1 ⁇ 10 20 cm ⁇ 3 , micropipe density 1 ⁇ 10 4 cm ⁇ 2 And a silicon carbide wafer having a stacking fault density of 1 ⁇ 10 5 cm ⁇ 1 was prepared.
  • Each of the single crystal substrate groups 10 has a square shape of 35 ⁇ 35 mm, a thickness of 300 ⁇ m, a polytype 4H, a plane orientation (03-38), an n-type impurity concentration of 1 ⁇ 10 19 cm ⁇ 3 , a micropipe density of 0.1.
  • a silicon carbide wafer having 2 cm ⁇ 2 and a stacking fault density of less than 1 cm ⁇ 1 was prepared. This silicon carbide wafer was formed by slicing from a lump of silicon carbide single crystal. The surface formed by slicing was not polished. By this slicing, a surface layer 71 having a thickness of about 20 ⁇ m was formed.
  • the single crystal substrate group was placed on the first heating body 91 in a matrix.
  • support portion 30 was placed on single crystal substrate group 10.
  • the second heating body 92 was placed on the support portion 30. Thereby, the laminated body which consists of the 1st heating body 91, the single crystal substrate group 10, the support part 30, and the 2nd heating body 92 was prepared.
  • the above laminate was stored in a heat insulating container 40 made of graphite (FIG. 3). Next, nitrogen gas was introduced into the heat insulating container 40 at a flow rate of 100 sccm (standard cubic centimeter per minute), and the pressure in the heat insulating container 40 was controlled to 133 Pa.
  • the temperature in the heat insulating container 40 was heated to about 2000 ° C. by the heater 50. This heating was performed so that the temperature of the first heating body 91 was higher than the temperature of the second heating body 92. As a result, the temperature of the single crystal substrate group 10 facing the first heating body 91 was made higher than the temperature of the support portion 30 facing the second heating body 92. Thus, silicon carbide was sublimated from the back surface (FIG. 5: back surfaces B1 and B2) of single crystal substrate group 10.
  • the sublimated thickness was set to 0 ⁇ m, 2.5 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, and 50 ⁇ m.
  • the temperature gradient between the single crystal substrate group 10 and the support part 30 was reversed while the atmosphere in the heat insulating container 40 and the approximate temperature were kept as they were. That is, the temperature of the support portion 30 was made higher than the temperature of the single crystal substrate group 10. Thereby, the single crystal substrate group 10 and the support part 30 were joined (FIG. 7, FIG. 8).
  • Example 2 The back surface B1 of the single crystal substrate 11 (FIG. 9) was exposed to molten KOH at a temperature of 500 ° C. for 10 minutes, thereby removing a thickness of about 10 ⁇ m. Next, a silicon carbide substrate was manufactured using this single crystal substrate 11 (FIG. 11).
  • Example 3 The back surface B1 of the single crystal substrate 11 (FIG. 9) was removed by a thickness of about 3 ⁇ m by gas etching using hydrogen gas.
  • the etching conditions were a temperature of 1500 ° C., a hydrogen flow rate of 3 slm (standard liter per minute), and a time of 60 minutes.
  • a silicon carbide substrate was manufactured using this single crystal substrate 11 (FIG. 11).
  • Example 4 Back surface B1 of single crystal substrate 11 (FIG. 9) was removed by a thickness of about 5 ⁇ m by gas etching using a mixed gas of hydrogen and hydrogen chloride.
  • the etching conditions were a temperature of 1500 ° C., a hydrogen flow rate of 3 slm, a hydrogen chloride flow rate of 0.3 slm, and a time of 60 minutes.
  • a silicon carbide substrate was manufactured using this single crystal substrate 11 (FIG. 11).
  • Example 5 The back surface B1 of the single crystal substrate 11 (FIG. 9) was removed by a thickness of about 5 ⁇ m by RIE (Reactive Ion Etching). Etching conditions were a carbon tetrafluoride (CF 4 ) flow rate of 10 sccm, an oxygen flow rate of 5 sccm, an output of 300 to 500 W, and a time of 20 minutes. Next, a silicon carbide substrate was manufactured using this single crystal substrate 11 (FIG. 11).
  • RIE Reactive Ion Etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 各々が裏面(B1)を有しかつ炭化珪素から作られた少なくとも1つの単結晶基板(11)と、主面(F0)を有しかつ炭化珪素から作られた支持部(30)とが準備される。この準備において、裏面(B1)および主面(F0)の少なくともいずれかが機械的加工によって形成される。この形成によって裏面(B1)および主面(F0)の少なくともいずれかに、結晶構造の歪を有する表面層が形成される。表面層の少なくとも一部が除去される。この除去の後に、裏面(B1)および主面(F0)が互いに接合される。

Description

炭化珪素基板の製造方法
 本発明は炭化珪素基板の製造方法に関するものである。
 近年、半導体装置の製造に用いられる半導体基板としてSiC(炭化珪素)基板の採用が進められつつある。SiCは、より一般的に用いられているSi(シリコン)に比べて大きなバンドギャップを有する。そのためSiC基板を用いた半導体装置は、耐圧が高く、オン抵抗が低く、また高温環境下での特性の低下が小さい、といった利点を有する。
 半導体装置を効率的に製造するためには、ある程度以上の基板の大きさが求められる。米国特許第7314520号明細書(特許文献1)によれば、76mm(3インチ)以上のSiC基板を製造することができるとされている。
米国特許第7314520号明細書
 SiC単結晶基板の大きさは工業的には100mm(4インチ)程度にとどまっており、このため大型の単結晶基板を用いて半導体装置を効率よく製造することができないという問題がある。特に六方晶系のSiCにおいて、(0001)面以外の面の特性が利用される場合、上記の問題が特に深刻となる。このことについて、以下に説明する。
 欠陥の少ないSiC単結晶基板は、通常、積層欠陥の生じにくい(0001)面成長で得られたSiCインゴットから切り出されることで製造される。このため(0001)面以外の面方位を有する単結晶基板は、成長面に対して非平行に切り出されることになる。このため単結晶基板の大きさを十分確保することが困難であったり、インゴットの多くの部分が有効に利用できなかったりする。このため、SiCの(0001)面以外の面を利用した半導体装置は、効率よく製造することが特に困難である。
 このように困難をともなうSiC単結晶基板の大型化に代わって、支持部と、この上に接合された複数の小さな単結晶基板とを有する炭化珪素基板を用いることが考えられる。この炭化珪素基板は、単結晶基板の枚数を増やすことで、必要に応じて大型化することができる。しかしこのように支持部と単結晶基板とが接合される場合、その接合の強度が不十分となることがあった。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、単結晶基板および支持部の間の接合強度を高めることができる炭化珪素基板の製造方法を提供することである。
 本発明の炭化珪素基板の製造方法は、以下の工程を有する。
 各々が裏面を有しかつ炭化珪素から作られた少なくとも1つの単結晶基板と、主面を有しかつ炭化珪素から作られた支持部とが準備される。この準備において、裏面および主面の少なくともいずれかが機械的加工によって形成される。この形成によって裏面および主面の少なくともいずれかに、結晶構造の歪を有する表面層が形成される。表面層の少なくとも一部が除去される。この除去の後に、裏面および主面が互いに接合される。
 本発明によれば、歪を有する表面層を除去することにより、裏面および主面の間の接合強度を高めることができる。
 好ましくは、表面層の少なくとも一部を除去する工程は、表面層を昇華させることによって行われる。これにより、新たな結晶構造の歪が生じることを避けつつ、簡便に、表面層の少なくとも一部を除去することができる。より好ましくは、少なくとも1つの単結晶基板と、支持部とを準備する工程において、裏面に表面層が形成され、表面層の少なくとも一部を除去する工程において、裏面に形成された表面層の少なくとも一部が除去される。これにより、少なくとも1つの単結晶基板の裏面に形成された表面層の少なくとも一部を除去することができる。さらに好ましくは、表面層の少なくとも一部を除去する工程において、表面層が昇華させられる前に、裏面および主面が互いに向かい合わされる。これにより、表面層が除去された時点で、既に裏面および主面が互いに向かい合わされているので、続いて両者を接合することが容易となる。
 表面層の少なくとも一部を除去する工程は犠牲酸化によって行われてもよい。表面層の少なくとも一部を除去する工程は化学的に行われてもよい。
 好ましくは、表面層の少なくとも一部を除去する工程は、表面層のすべてを除去するように行なわれる。これにより裏面および主面の間の接合強度をより高めることができる。
 好ましくは、裏面および主面を互いに接合する工程は、裏面および主面の間において、主面からの炭化珪素の昇華と、裏面上での炭化珪素の再結晶化とを発生させることにより行われる。表面層の少なくとも一部を除去する工程が表面層を昇華させることによって行われる場合、両工程をともに昇華を用いて行うことができる。さらに、表面層の少なくとも一部を除去する工程において、表面層が昇華させられる前に、裏面および主面が互いに向かい合わされる場合、表面層が昇華させられた後に、昇華による物質の移動方向を変えるだけで、裏面および主面を互いに接合することができる。また表面層が裏面上だけでなく主面上にも存在する場合、主面上の表面層を、裏面および主面を互いに接合する工程における昇華によって消失させることができる。
 好ましくは、少なくとも1つの単結晶基板は複数の単結晶基板である。これにより大きな面積を有する炭化珪素基板を得ることができる。
 上記の、表面層の少なくとも一部を除去する工程は、表面層をエッチングすることによって行われてもよい。このエッチングは、たとえばウエットエッチングまたはガスエッチングである。
 少なくとも1つの単結晶基板を準備する工程において、裏面が機械的に研磨されてもよい。これにより裏面を平坦化することができる。また裏面上に形成された表面層の厚さを薄くすることができる。
 少なくとも1つの単結晶基板を準備する工程において、裏面はスライスによって形成されてもよい。すなわち裏面は、スライスによって形成され、その後に研磨されていない面である。これにより裏面上に起伏が設けられる。よってこの起伏の凹部内の空間を、裏面上に支持部を昇華法によって設ける場合において、昇華ガスが広がる空隙として用いることができる。
 好ましくは、少なくとも1つの単結晶基板は、裏面に対向する第1の表面を有する第1の単結晶基板を含む。第1の表面は、{0001}面に対して50°以上65°以下のオフ角を有する。これにより、第1の表面が{0001}面である場合に比して、第1の表面におけるチャネル移動度を高めることができる。
 より好ましくは、第1の表面のオフ方位と第1の単結晶基板の<1-100>方向とのなす角は5°以下である。さらに好ましくは、第1の単結晶基板の<1-100>方向における{03-38}面に対する第1の表面のオフ角は-3°以上5°以下である。
 以上の説明から明らかなように、本発明の炭化珪素基板の製造方法によれば、単結晶基板および支持部の間の接合強度を高めることができる。
本発明の実施の形態1における炭化珪素基板の構成を概略的に示す平面図である。 図1の線II-IIに沿う概略断面図である。 本発明の実施の形態1における炭化珪素基板の製造方法の第1工程を概略的に示す断面図である。 図3の一部拡大図である。 本発明の実施の形態1における炭化珪素基板の製造方法の第2工程における、昇華による物質の移動方向を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素基板の製造方法の第3工程における、昇華による物質の移動方向を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素基板の製造方法の第3工程における、昇華による空隙の移動方向を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素基板の製造方法の第2工程における、昇華によるボイドの移動方向を概略的に示す部分断面図である。 本発明の実施の形態2における炭化珪素基板の製造方法の第1工程における単結晶基板の構成を概略的に示す断面図である。 本発明の実施の形態2における炭化珪素基板の製造方法の第1工程における支持部の構成を概略的に示す断面図である。 本発明の実施の形態2における炭化珪素の製造方法の一工程を概略的に示す断面図である。 本発明の実施の形態3における炭化珪素基板の構成を概略的に示す断面図である。 本発明の実施の形態4における炭化珪素基板の構成を概略的に示す断面図である。 本発明の実施の形態5における半導体装置の構成を概略的に示す部分断面図である。 本発明の実施の形態5における半導体装置の製造方法の概略的なフロー図である。 本発明の実施の形態5における半導体装置の製造方法の第1工程を概略的に示す部分断面図である。 本発明の実施の形態5における半導体装置の製造方法の第2工程を概略的に示す部分断面図である。 本発明の実施の形態5における半導体装置の製造方法の第3工程を概略的に示す部分断面図である。 本発明の実施の形態5における半導体装置の製造方法の第4工程を概略的に示す部分断面図である。
 以下、図面に基づいて本発明の実施の形態を説明する。
 (実施の形態1)
 図1および図2を参照して、本実施の形態の炭化珪素基板81は、支持部30と、単結晶基板11~13とを有する。支持部30は、炭化珪素から作られた層であり、この層は主面F0を有する。単結晶基板11~19は、炭化珪素から作られており、図1に示すように、マトリックス状に配置されている。単結晶基板11~19の各々の裏面と、支持部30の主面F0とは、互いに接合されている。たとえば単結晶基板11(第1の単結晶基板)は、互いに対向する表面F1(第1の表面)および裏面B1(第1の裏面)を有し、単結晶基板12は、互いに対向する表面F2(第2の表面)および裏面B2(第2の裏面)を有する。裏面B1およびB2の各々は、主面F0に接合されている。
 単結晶基板11~19の各々の表面は、好ましくは、面方位{03-38}を有する。ただし面方位として、{0001}、{11-20}、または{1-100}を用いることもできる。また上記の各面方位から数度オフした面を用いることもできる。
 次に炭化珪素基板81の製造方法について説明する。なお以下において説明を簡略化するために単結晶基板11~19のうち単結晶基板11および12に関してのみ言及する場合があるが、単結晶基板13~19も単結晶基板11および12と同様に扱われる。この点は、他の実施の形態の説明においても同様である。
 図3および図4を参照して、支持部30と、単結晶基板11~19(総称して単結晶基板群10ともいう。)と、加熱装置とが準備される。この時点において、支持部30は必ずしも単結晶体である必要はなく、たとえば、多結晶体または焼結体であってもよい。
 加熱装置は、第1および第2の加熱体91、92と、断熱容器40と、ヒータ50と、ヒータ電源150とを有する。断熱容器40は、断熱性の高い材料から形成されている。ヒータ50は、たとえば電気抵抗ヒータである。第1および第2の加熱体91、92は、ヒータ50からの放射熱を吸収して得た熱を再放射することによって、支持部30および単結晶基板群10を加熱する機能を有する。第1および第2の加熱体91、92は、たとえば、空隙率の小さいグラファイトから形成されている。
 次に、第1の加熱体91、単結晶基板群10、支持部30、第2の加熱体92が、この順に積み重なるように配置される。具体的には、まず第1の加熱体91上に、単結晶基板11~19がマトリクス状に配置される。次に単結晶基板群10の表面上に支持部30が載置される。次に支持部30上に第2の加熱体92が載置される。次に、積層された、第1の加熱体91、単結晶基板群10、支持部30、第2の加熱体92が、ヒータ50が設けられた断熱容器40内に収められる。
 次に断熱容器40内の雰囲気が、大気雰囲気を減圧することにより得られた雰囲気とされる。雰囲気の圧力は、好ましくは、10-1Paよりも高く104Paよりも低くされる。
 なお上記の雰囲気は不活性ガス雰囲気であってもよい。不活性ガスとしては、たとえば、He、Arなどの希ガス、窒素ガス、または希ガスと窒素ガスとの混合ガスを用いることができる。この混合ガスが用いられる場合、窒素ガスの割合は、たとえば60%である。また処理室内の圧力は、好ましくは50kPa以下とされ、より好ましくは10kPa以下とされる。
 さらに図5を参照して、上記のように準備された単結晶基板群10(図3)の裏面上には表面層71(図5)が形成されている。たとえば裏面B1およびB2の各々の上に表面層71が形成されている。表面層71は、単結晶基板11および12が準備される際に、裏面B1およびB2が機械加工によって形成されることによって裏面B1およびB2に形成された、結晶構造の歪みを有する層である。たとえば単結晶基板11~19が炭化珪素単結晶の塊からスライスされることで製造される場合、このスライスの際に表面層が形成される。スライスにより形成される上記表面層の厚さは、たとえば20μm程度である。またスライス後に裏面B1およびB2に対して機械的な研磨がなされる場合、スライスによる比較的厚い表面層は除去できるものの、この研磨によって、比較的薄くはあるが、表面層が形成される。
 支持部30は単結晶基板11および12の各々の上に載置されているだけであって、接合はされていない。このため裏面B1およびB2の各々と支持部30との間には微小な空隙GQが存在する。よって表面層71は空隙GQに面している。
 次にヒータ50によって、第1および第2の加熱体91、92のそれぞれを介して、単結晶基板11および12を含む単結晶基板群10と、支持部30とが、昇華再結晶反応が生じる程度の温度に加熱される。この加熱は、まず、単結晶基板群10の温度が支持部30の温度よりも高くなるような温度差が形成されるように行われる。すなわち、図中、下から上に向かって温度が低下するような温度勾配が形成される。この温度勾配は、単結晶基板群10と支持部30との間において、好ましくは1℃/cm以上100℃/cm以下であり、より好ましくは10℃/cm以上50℃/cm以下とされる。
 上述したように、支持部30の温度に比して、単結晶基板11および12の各々の温度が高くされると、空隙GQにおいて、図中矢印M1に示すように、昇華による物質移動が生じる。この結果、表面層71の少なくとも一部が除去され、好ましくは表面層71のすべてが除去される。昇華した炭化珪素は支持部30の主面F0上において再結晶化することで、支持部30に吸収される。
 図6を参照して、単結晶基板11および12の各々の温度に比して、支持部30の温度が高くされる。すなわち、図中、上から下に向かって温度が低下するような温度勾配が形成される。言い換えれば、温度勾配の方向が反転される。この温度勾配は、単結晶基板群10と支持部30との間において、好ましくは1℃/cm以上200℃/cm以下であり、より好ましくは10℃/cm以上50℃/cm以下とされる。このような温度勾配により、空隙GQにおいて、図中矢印M2に示すように、昇華による物質移動が生じる。
 さらに図7を参照して、図5の矢印M2に示す物質移動は、逆に言えば、空隙GQに存在する空洞の、図7の矢印H2に示す空洞移動に対応する。ここで空隙GQの高さ(図中の縦方向の寸法)には大きな面内ばらつきがあり、このばらつきに起因して、空隙GQに対応する空洞の移動(図中矢印H2)の速度に大きな面内ばらつきが生じる。
 さらに図8を参照して、上記ばらつきのために空隙GQ(図7)に対応する空洞は、その形状を保ちつつ移動することができず、代わりに複数のボイドVD(図7)に分解される。この結果、単結晶基板11および12の各々が、支持部30に接合される。
 さらに加熱が継続されると、ボイドVDは、矢印H3に示すように、主面F0から離れていく。これにより接合強度がさらに高められる。また支持部30の結晶構造が、単結晶基板群10に近い領域から徐々に、単結晶基板群10の結晶構造に対応するものに変化していく。以上により炭化珪素基板81が得られる。
 本実施の形態によれば、表面層71(図5)が機械的にではなく昇華によって除去されるので、この除去にともなって裏面B1およびB2に新たな結晶構造の歪が生じることを避けつつ、歪を有する表面層71を除去することができる。これにより、裏面B1およびB2の各々と主面F0との間の接合強度を高めることができる。また、加熱処理という簡便な工程によって表面層71を除去することができる。またこの表面層71の結晶欠陥に起因した厚さ方向(図2における縦方向)の電気抵抗の増大を抑制することができる。
 また表面層71が昇華させられる前に、裏面B1およびB2と主面F0とが、図5に示すように互いに向かい合わされる。これにより、表面層71が除去された時点で、既に裏面B1およびB2の各々と主面F0とが互いに向かい合わされているので、続いて両者を接合する工程(図6~図8)を容易に行うことができる。
 また表面層71を除去する工程と、裏面B1およびB2の各々と主面F0とを接合する工程とは、ともに昇華を用いて行われる。具体的には、昇華および再結晶化のための温度勾配を反転させるだけで、両工程を行うことができる。これにより炭化珪素基板81の製造工程を簡略化することができる。
 また裏面B1およびB2の各々と主面F0とが接合される際に、図6に示すように主面F0からの昇華が生じるので、仮に主面F0上に表面層が存在したとしてもこの表面層は除去される。よってこの表面層が接合強度に悪影響を与えることを避けることができる。
 また表面F1およびF2(図2)が設けられるので、表面F1のみが設けられる場合に比して炭化珪素基板81の表面積を大きくすることができる。
 好ましくは、単結晶基板11~19の各々の結晶構造はポリタイプ4H型を有する。これにより電力用半導体の製造に適した炭化珪素基板81が得られる。
 好ましくは、炭化珪素基板81の割れを防止するために、炭化珪素基板81における支持部30の熱膨張係数と、単結晶基板11~19の熱膨張係数との差がなるべく小さくされる。これにより炭化珪素基板81の反りの発生を抑制することができる。このためには、たとえば、支持部30の結晶構造が単結晶基板11~19の結晶構造と同一とされればよく、具体的には、昇華および再結晶化による物質移動(図8:矢印H3)が十分に行われることで支持部30の結晶構造を単結晶基板11~19の結晶構造と同一とすればよい。
 好ましくは、熱処理前に準備される支持部30および単結晶基板群10(図4)の各々の厚さの面内ばらつきは、なるべく小さくされる。たとえば、このばらつきは10μm以下とされる。面内ばらつきを抑制するためには、たとえば平坦化処理が行われればよい。
 好ましくは、熱処理前に準備される支持部30の電気抵抗率は50mΩ・cm未満とされ、より好ましくは、10mΩ・cm未満とされる。
 好ましくは、炭化珪素基板81における支持部30の不純物濃度は、5×1018cm-3以上とされ、より好ましくは1×1020cm-3以上とされる。このような炭化珪素基板81を用いて縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などのように縦方向に電流を流す縦型半導体装置を製造することにより、縦型半導体装置のオン抵抗を低減することができる。
 好ましくは、炭化珪素基板81の電気抵抗率の平均値は、好ましくは5mΩ・cm以下とされ、より好ましくは、1mΩ・cm以下とされる。
 好ましくは、炭化珪素基板81の厚さ(図2における縦方向の寸法)は、300μm以上とされる。
 好ましくは、表面F1は、{0001}面に対して50°以上65°以下のオフ角を有する。これにより、表面F1が{0001}面である場合に比して、表面F1におけるチャネル移動度を高めることができる。より好ましくは、以下の第1または第2の条件が満たされる。
 第1の条件下において、表面F1のオフ方位と単結晶基板11の<1-100>方向とのなす角は5°以下である。さらに好ましくは、単結晶基板11の<1-100>方向における{03-38}面に対する表面F1のオフ角は-3°以上5°以下である。
 第2の条件下において、表面F1のオフ方位と単結晶基板11の<11-20>方向とのなす角は5°以下である。
 なお上記において、「<1-100>方向における{03-38}面に対する表面F1のオフ角」とは、<1-100>方向および<0001>方向の張る射影面への表面F1の法線の正射影と、{03-38}面の法線とのなす角度であり、その符号は、上記正射影が<1-100>方向に対して平行に近づく場合が正であり、上記正射影が<0001>方向に対して平行に近づく場合が負である。
 また上記において単結晶基板11の表面F1の好ましい方位について説明したが、好ましくは、他の単結晶基板12~19の各々の表面の方位についても同様とされる。
 また単結晶基板11~19が支持部30に接合されるために配置される前に、単結晶基板11~19の裏面が予め機械的に研磨されてもよい。この研磨によって表面層71の厚さが薄くなるので、表面層71の昇華による除去(図5)をより容易に行うことができる。
 またヒータ50として電気抵抗ヒータを例示した。つまり抵抗加熱法を例示したが、他の加熱法を用いることもでき、たとえば、高周波誘導加熱法またはランプアニール法を用いることもできる。
 (実施の形態2)
 本実施の形態の炭化珪素基板は、炭化珪素基板81(図1および図2)とおおよそ同様の構成を有する。以下に、その製造方法について説明する。
 図9および図10を参照して、裏面B1に表面層71が形成された単結晶基板11が準備される。また同様の単結晶基板12~19(図1)が準備される。また主面F0に表面層73が形成された支持部30が準備される。支持部30は必ずしも単結晶体である必要はなく、たとえば、多結晶体または焼結体であってもよい。
 次に、表面層71および93の少なくともいずれかの少なくとも一部が化学的に除去される。具体的には、表面層71および93がエッチングされる。エッチング方法としては、たとえば、ウエットエッチング、ガスエッチング、RIE(Reactive Ion Etching)、または犠牲酸化によるエッチングを用いることができる。
 図11を参照して、裏面B1およびB2と、主面F0とが向かい合うように、支持部30上に単結晶基板11および12が載置される。次に支持部30と、単結晶基板11および12とが加熱されることで、裏面B1およびB2の各々と主面F0とが接合される。これにより炭化珪素基板81(図2)が得られる。
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 また本実施の形態においては支持部30として表面層73を有するものが準備されたが、表面層73を有しない支持部30が準備されてもよい。また単結晶基板11として表面層71を有するものが準備されたが、表面層71を有しない単結晶基板11が準備されてもよい。
 (実施の形態3)
 主に図12を参照して、本実施の形態の炭化珪素基板85は、単結晶基板11~19(図1)の代わりに、単結晶基板11のみを有する。これ以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 (実施の形態4)
 主に図13を参照して、本実施の形態の炭化珪素基板86は、単結晶基板11に加えて、単結晶基板41を有する。単結晶基板41は、単結晶基板11の表面F1に接合されている。
 (実施の形態5)
 図14を参照して、本実施の形態の半導体装置100は、縦型DiMOSFET(Double Implanted Metal Oxide Semiconductor Field Effect Transistor)であって、炭化珪素基板81、バッファ層121、耐圧保持層122、p領域123、n+領域124、p+領域125、酸化膜126、ソース電極111、上部ソース電極127、ゲート電極110、およびドレイン電極112を有する。
 炭化珪素基板81は、本実施の形態においてはn型の導電型を有し、また実施の形態1で説明したように、支持部30および単結晶基板11を有する。ドレイン電極112は、単結晶基板11との間に支持部30を挟むように、支持部30上に設けられている。バッファ層121は、支持部30との間に単結晶基板11を挟むように、単結晶基板11上に設けられている。
 バッファ層121は、導電型がn型であり、その厚さはたとえば0.5μmである。またバッファ層121におけるn型の導電性不純物の濃度は、たとえば5×1017cm-3である。
 耐圧保持層122は、バッファ層121上に形成されており、また導電型がn型の炭化ケイ素からなる。たとえば、耐圧保持層122の厚さは10μmであり、そのn型の導電性不純物の濃度は5×1015cm-3である。
 この耐圧保持層122の表面には、導電型がp型である複数のp領域123が互いに間隔を隔てて形成されている。p領域123の内部において、p領域123の表面層にn+領域124が形成されている。また、このn+領域124に隣接する位置には、p+領域125が形成されている。一方のp領域123におけるn+領域124上から、p領域123、2つのp領域123の間において露出する耐圧保持層122、他方のp領域123および当該他方のp領域123におけるn+領域124上にまで延在するように、酸化膜126が形成されている。酸化膜126上にはゲート電極110が形成されている。また、n+領域124およびp+領域125上にはソース電極111が形成されている。このソース電極111上には上部ソース電極127が形成されている。
 酸化膜126と、半導体層としてのn+領域124、p+領域125、p領域123および耐圧保持層122との界面から10nm以内の領域における窒素原子濃度の最大値は1×1021cm-3以上となっている。これにより、特に酸化膜126下のチャネル領域(酸化膜126に接する部分であって、n+領域124と耐圧保持層122との間のp領域123の部分)の移動度を向上させることができる。
 次に半導体装置100の製造方法について説明する。なお図16~図19においては単結晶基板11~19(図1)のうち単結晶基板11の近傍における工程のみを示すが、単結晶基板12~単結晶基板19の各々の近傍においても、同様の工程が行なわれる。
 まず基板準備工程(ステップS110:図15)にて、炭化珪素基板81(図1および図2)が準備される。炭化珪素基板81の導電型はn型とされる。
 図16を参照して、エピタキシャル層形成工程(ステップS120:図15)により、バッファ層121および耐圧保持層122が、以下のように形成される。
 まず炭化珪素基板81の単結晶基板11上にバッファ層121が形成される。バッファ層121は、導電型がn型の炭化ケイ素からなり、たとえば厚さ0.5μmのエピタキシャル層である。またバッファ層121における導電型不純物の濃度は、たとえば5×1017cm-3とされる。
 次にバッファ層121上に耐圧保持層122が形成される。具体的には、導電型がn型の炭化ケイ素からなる層が、エピタキシャル成長法によって形成される。耐圧保持層122の厚さは、たとえば10μmとされる。また耐圧保持層122におけるn型の導電性不純物の濃度は、たとえば5×1015cm-3である。
 図17を参照して、注入工程(ステップS130:図15)により、p領域123と、n+領域124と、p+領域125とが、以下のように形成される。
 まず導電型がp型の不純物が耐圧保持層122の一部に選択的に注入されることで、p領域123が形成される。次に、n型の導電性不純物を所定の領域に選択的に注入することによってn+領域124が形成され、また導電型がp型の導電性不純物を所定の領域に選択的に注入することによってp+領域125が形成される。なお不純物の選択的な注入は、たとえば酸化膜からなるマスクを用いて行われる。
 このような注入工程の後、活性化アニール処理が行われる。たとえば、アルゴン雰囲気中、加熱温度1700℃で30分間のアニールが行われる。
 図18を参照して、ゲート絶縁膜形成工程(ステップS140:図15)が行われる。具体的には、耐圧保持層122と、p領域123と、n+領域124と、p+領域125との上を覆うように、酸化膜126が形成される。この形成はドライ酸化(熱酸化)により行われてもよい。ドライ酸化の条件は、たとえば、加熱温度が1200℃であり、また加熱時間が30分である。
 その後、窒素アニール工程(ステップS150)が行われる。具体的には、一酸化窒素(NO)雰囲気中でのアニール処理が行われる。この処理の条件は、たとえば加熱温度が1100℃であり、加熱時間が120分である。この結果、耐圧保持層122、p領域123、n+領域124、およびp+領域125の各々と、酸化膜126との界面近傍に、窒素原子が導入される。
 なおこの一酸化窒素を用いたアニール工程の後、さらに不活性ガスであるアルゴン(Ar)ガスを用いたアニール処理が行われてもよい。この処理の条件は、たとえば、加熱温度が1100℃であり、加熱時間が60分である。
 図19を参照して、電極形成工程(ステップS160:図15)により、ソース電極111およびドレイン電極112が、以下のように形成される。
 まず酸化膜126上に、フォトリソグラフィ法を用いて、パターンを有するレジスト膜が形成される。このレジスト膜をマスクとして用いて、酸化膜126のうちn+領域124およびp+領域125上に位置する部分がエッチングにより除去される。これにより酸化膜126に開口部が形成される。次に、この開口部においてn+領域124およびp+領域125の各々と接触するように導電体膜が形成される。次にレジスト膜を除去することにより、上記導体膜のうちレジスト膜上に位置していた部分の除去(リフトオフ)が行われる。この導体膜は、金属膜であってもよく、たとえばニッケル(Ni)からなる。このリフトオフの結果、ソース電極111が形成される。
 なお、ここでアロイ化のための熱処理が行なわれることが好ましい。たとえば、不活性ガスであるアルゴン(Ar)ガスの雰囲気中、加熱温度950℃で2分の熱処理が行なわれる。
 再び図14を参照して、ソース電極111上に上部ソース電極127が形成される。また、炭化珪素基板81の裏面上にドレイン電極112が形成される。また酸化膜126上にゲート電極110が形成される。以上により、半導体装置100が得られる。
 なお本実施の形態における導電型が入れ替えられた構成、すなわちp型とn型とが入れ替えられた構成を用いることもできる。
 また半導体装置100を作製するための炭化珪素基板は、実施の形態1の炭化珪素基板81に限定されるものではなく、たとえば、他の実施の形態のいずれかによる炭化珪素基板が用いられてもよい。
 また縦型DiMOSFETを例示したが、本発明の半導体基板を用いて他の半導体装置が製造されてもよく、たとえばRESURF-JFET(Reduced Surface Field-Junction Field Effect Transistor)またはショットキーダイオードが製造されてもよい。
 (実施例1)
 支持部30(図3)として、直径100mm、厚さ300μm、ポリタイプ4H、面方位(03-38)、n形不純物濃度1×1020cm-3、マイクロパイプ密度1×104cm-2、および積層欠陥密度1×105cm-1を有する炭化珪素ウエハが準備された。
 また単結晶基板群10の各々として、35×35mmの正方形状、厚さ300μm、ポリタイプ4H、面方位(03-38)、n形不純物濃度1×1019cm-3、マイクロパイプ密度0.2cm-2、および積層欠陥密度1cm-1未満を有する炭化珪素ウエハが準備された。この炭化珪素ウエハは、炭化珪素単結晶の塊からスライスされることによって形成された。スライスされることで形成された面に対して、研磨は行わなかった。このスライスによって、厚さ約20μmの表面層71が形成された。
 単結晶基板群が第1の加熱体91上にマトリックス状に載置された。次に単結晶基板群10上に支持部30が載置された。次に支持部30上に第2の加熱体92が載置された。これにより、第1の加熱体91、単結晶基板群10、支持部30、および第2の加熱体92からなる積層体が準備された。
 上記の積層体がグラファイト製の断熱容器40(図3)内に収められた。次に断熱容器40に流量100sccm(standard cubic centimeter per minute) で窒素ガスが導入され、かつ断熱容器40内の圧力が133Paに制御された。
 次にヒータ50によって断熱容器40内の温度が約2000℃に加熱された。この加熱は、第2の加熱体92の温度に比して第1の加熱体91の温度が高くなるように行なわれた。これにより第1の加熱体91に面する単結晶基板群10の温度は、第2の加熱体92に面する支持部30の温度よりも高くされた。これにより単結晶基板群10の裏面(図5:裏面B1、B2)から炭化珪素を昇華させた。昇華される厚さと、得られる炭化珪素基板の特性との相関を調べるために、昇華される厚さは、0μm、2.5μm、5μm、10μm、15μm、20μm、25μm、および50μmとされた。
 次に、断熱容器40内の雰囲気およびおおよその温度はそのままに、単結晶基板群10および支持部30の間での温度勾配が反転された。すなわち単結晶基板群10の温度に比して支持部30の温度が高くされた。これにより単結晶基板群10と支持部30とが接合された(図7、図8)。
 次に接合強度と、接合界面におけるマイクロパイプ密度とを調べた。その結果を、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この結果から、本実施例によれば、昇華によって表面層71(図5)を除去することで、接合強度が向上し、かつ接合界面におけるマイクロパイプ密度が低下することがわかった。またこの効果は、昇華させられる厚さが表面層の厚さである20μmに至ると飽和することがわかった。
 (実施例2)
 単結晶基板11(図9)の裏面B1が、温度500℃の溶融KOHに10分間さらされることで、厚さ約10μmだけ除去された。次に、この単結晶基板11を用いて炭化珪素基板が製造された(図11)。
 (実施例3)
 単結晶基板11(図9)の裏面B1が、水素ガスを用いたガスエッチングによって、厚さ約3μmだけ除去された。エッチング条件は、温度が1500℃、水素流量が3slm(standard liter per minute)、時間が60分とされた。次に、この単結晶基板11を用いて炭化珪素基板が製造された(図11)。
 (実施例4)
 単結晶基板11(図9)の裏面B1が、水素および塩化水素の混合ガスを用いたガスエッチングによって、厚さ約5μmだけ除去された。エッチング条件は、温度が1500℃、水素流量が3slm、塩化水素流量が0.3slm、時間が60分とされた。次に、この単結晶基板11を用いて炭化珪素基板が製造された(図11)。
 (実施例5)
 単結晶基板11(図9)の裏面B1が、RIE(Reactive Ion Etching)によって、厚さ約5μmだけ除去された。エッチング条件は、四フッ化炭素(CF4)流量が10sccm、酸素流量が5sccm、出力が300~500W、時間が20分とされた。次に、この単結晶基板11を用いて炭化珪素基板が製造された(図11)。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 11 単結晶基板(第1の単結晶基板)、12~19,41 単結晶基板、30 支持部、81,85,86 炭化珪素基板、91 第1の加熱体、92 第2の加熱体、100 半導体装置。

Claims (15)

  1.  各々が裏面(B1)を有しかつ炭化珪素から作られた少なくとも1つの単結晶基板(11)と、主面(F0)を有しかつ炭化珪素から作られた支持部(30)とを準備する工程を備え、前記準備する工程は前記裏面および前記主面の少なくともいずれかを機械的加工によって形成する工程を含み、前記形成する工程によって前記裏面および前記主面の少なくともいずれかに、結晶構造の歪を有する表面層が形成され、さらに
     前記表面層の少なくとも一部を除去する工程と、
     前記除去する工程の後に、前記裏面および前記主面を互いに接合する工程とを備える、炭化珪素基板の製造方法。
  2.  前記除去する工程は、前記表面層を昇華させることによって行われる、請求の範囲第1項に記載の炭化珪素基板の製造方法。
  3. [規則91に基づく訂正 31.05.2011] 
     前記準備する工程において前記裏面に前記表面層が形成され、
     前記除去する工程において、前記裏面に形成された前記表面層の少なくとも一部が除去される、請求の範囲第2項に記載の炭化珪素基板の製造方法。
  4.  前記除去する工程は、前記昇華させる工程の前に、前記裏面および前記主面を互いに向かい合わせる工程を含む、請求の範囲第3項に記載の炭化珪素基板の製造方法。
  5.  前記除去する工程は犠牲酸化により行なわれる、請求の範囲第1項に記載の炭化珪素基板の製造方法。
  6.  前記除去する工程は化学的に行われる、請求の範囲第1項に記載の炭化珪素基板の製造方法。
  7.  前記除去する工程は、前記表面層のすべてを除去するように行なわれる、請求の範囲第1項に記載の炭化珪素基板の製造方法。
  8.  前記接合する工程は、前記裏面および前記主面の間において、前記主面からの炭化珪素の昇華と、前記裏面上での炭化珪素の再結晶化とを発生させることにより行われる、請求の範囲第1項に記載の炭化珪素基板の製造方法。
  9.  前記少なくとも1つの単結晶基板は複数の単結晶基板である、請求の範囲第1項に記載の炭化珪素基板の製造方法。
  10.  前記除去する工程は、前記表面層をエッチングすることによって行われる、請求の範囲第1項に記載の炭化珪素基板の製造方法。
  11.  前記準備する工程は、前記裏面を機械的に研磨する工程を含む、請求の範囲第1項に記載の炭化珪素基板の製造方法。
  12.  前記準備する工程は、前記裏面をスライスによって形成する工程を含む、請求の範囲第1項に記載の炭化珪素基板の製造方法。
  13.  前記少なくとも1つの単結晶基板は、前記裏面に対向する第1の表面を有する第1の単結晶基板を含み、
     前記第1の表面は、{0001}面に対して50°以上65°以下のオフ角を有する、請求の範囲第1項に記載の炭化珪素基板の製造方法。
  14.  前記第1の表面のオフ方位と前記第1の単結晶基板の<1-100>方向とのなす角は5°以下である、請求の範囲第13項に記載の炭化珪素基板の製造方法。
  15.  前記第1の単結晶基板の<1-100>方向における{03-38}面に対する前記第1の表面のオフ角は-3°以上5°以下である、請求の範囲第14項に記載の炭化珪素基板の製造方法。
PCT/JP2010/066828 2010-02-05 2010-09-28 炭化珪素基板の製造方法 WO2011096109A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2759074A CA2759074A1 (en) 2010-02-05 2010-09-28 Method for manufacturing silicon carbide substrate
KR1020117024009A KR20120124352A (ko) 2010-02-05 2010-09-28 탄화규소 기판의 제조 방법
CN2010800168445A CN102395715A (zh) 2010-02-05 2010-09-28 制造碳化硅衬底的方法
US13/256,991 US8435866B2 (en) 2010-02-05 2010-09-28 Method for manufacturing silicon carbide substrate
JP2011525315A JPWO2011096109A1 (ja) 2010-02-05 2010-09-28 炭化珪素基板の製造方法
EP10845240.0A EP2532773A4 (en) 2010-02-05 2010-09-28 PROCESS FOR PRODUCING SILICON CARBIDE SUBSTRATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010024508 2010-02-05
JP2010-024508 2010-02-05

Publications (1)

Publication Number Publication Date
WO2011096109A1 true WO2011096109A1 (ja) 2011-08-11

Family

ID=44355131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066828 WO2011096109A1 (ja) 2010-02-05 2010-09-28 炭化珪素基板の製造方法

Country Status (8)

Country Link
US (1) US8435866B2 (ja)
EP (1) EP2532773A4 (ja)
JP (1) JPWO2011096109A1 (ja)
KR (1) KR20120124352A (ja)
CN (1) CN102395715A (ja)
CA (1) CA2759074A1 (ja)
TW (1) TW201142091A (ja)
WO (1) WO2011096109A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054580A1 (ja) * 2011-10-13 2013-04-18 住友電気工業株式会社 炭化珪素基板、炭化珪素半導体装置、炭化珪素基板の製造方法、および炭化珪素半導体装置の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254051A (ja) * 2010-06-04 2011-12-15 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
US8860040B2 (en) * 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9018639B2 (en) * 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
JP2015013762A (ja) * 2013-07-03 2015-01-22 住友電気工業株式会社 炭化珪素単結晶の製造方法および炭化珪素単結晶基板
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112100A (ja) * 1997-06-27 1999-01-19 Nippon Pillar Packing Co Ltd 単結晶SiCおよびその製造方法
JP2005324994A (ja) * 2004-05-14 2005-11-24 Tsunenobu Kimoto SiC単結晶の成長方法およびそれにより成長したSiC単結晶
JP2008230944A (ja) * 2007-03-23 2008-10-02 Kwansei Gakuin 単結晶炭化ケイ素基板の表面平坦化方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板
JP2008290898A (ja) * 2007-05-23 2008-12-04 Nippon Steel Corp 低抵抗率炭化珪素単結晶基板

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000538A1 (fr) 1997-06-27 1999-01-07 Nippon Pillar Packing Co., Ltd. Sic monocristallin et procede de preparation associe
US6562131B2 (en) * 1999-07-20 2003-05-13 The Fox Group, Inc. Method for growing single crystal silicon carbide
DE60033829T2 (de) * 1999-09-07 2007-10-11 Sixon Inc. SiC-HALBLEITERSCHEIBE, SiC-HALBLEITERBAUELEMENT SOWIE HERSTELLUNGSVERFAHREN FÜR EINE SiC-HALBLEITERSCHEIBE
JP4716558B2 (ja) * 2000-12-12 2011-07-06 株式会社デンソー 炭化珪素基板
TW583354B (en) * 2001-05-25 2004-04-11 Mitsui Shipbuilding Eng Method for producing amorphous SiC wafer
US6562127B1 (en) * 2002-01-16 2003-05-13 The United States Of America As Represented By The Secretary Of The Navy Method of making mosaic array of thin semiconductor material of large substrates
US7141117B2 (en) * 2004-02-04 2006-11-28 Matsushita Electric Industrial Co., Ltd. Method of fixing seed crystal and method of manufacturing single crystal using the same
FR2871172B1 (fr) * 2004-06-03 2006-09-22 Soitec Silicon On Insulator Support d'epitaxie hybride et son procede de fabrication
US7314520B2 (en) 2004-10-04 2008-01-01 Cree, Inc. Low 1c screw dislocation 3 inch silicon carbide wafer
JP2009016602A (ja) * 2007-07-05 2009-01-22 Denso Corp 炭化珪素半導体装置の製造方法
JP2009117533A (ja) * 2007-11-05 2009-05-28 Shin Etsu Chem Co Ltd 炭化珪素基板の製造方法
SG159484A1 (en) * 2008-09-05 2010-03-30 Semiconductor Energy Lab Method of manufacturing soi substrate
EP2432000A4 (en) * 2009-05-11 2012-11-21 Sumitomo Electric Industries SILICON CARBIDE SUBSTRATE, SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING A SILICON CARBIDE SUBSTRATE
WO2011052321A1 (ja) * 2009-10-30 2011-05-05 住友電気工業株式会社 炭化珪素基板の製造方法および炭化珪素基板
JPWO2011077797A1 (ja) * 2009-12-25 2013-05-02 住友電気工業株式会社 炭化珪素基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112100A (ja) * 1997-06-27 1999-01-19 Nippon Pillar Packing Co Ltd 単結晶SiCおよびその製造方法
JP2005324994A (ja) * 2004-05-14 2005-11-24 Tsunenobu Kimoto SiC単結晶の成長方法およびそれにより成長したSiC単結晶
JP2008230944A (ja) * 2007-03-23 2008-10-02 Kwansei Gakuin 単結晶炭化ケイ素基板の表面平坦化方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板
JP2008290898A (ja) * 2007-05-23 2008-12-04 Nippon Steel Corp 低抵抗率炭化珪素単結晶基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2532773A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054580A1 (ja) * 2011-10-13 2013-04-18 住友電気工業株式会社 炭化珪素基板、炭化珪素半導体装置、炭化珪素基板の製造方法、および炭化珪素半導体装置の製造方法

Also Published As

Publication number Publication date
JPWO2011096109A1 (ja) 2013-06-10
US20120009761A1 (en) 2012-01-12
TW201142091A (en) 2011-12-01
CA2759074A1 (en) 2011-08-11
CN102395715A (zh) 2012-03-28
US8435866B2 (en) 2013-05-07
EP2532773A1 (en) 2012-12-12
KR20120124352A (ko) 2012-11-13
EP2532773A4 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
WO2011096109A1 (ja) 炭化珪素基板の製造方法
JP5477380B2 (ja) 半導体基板の製造方法
WO2011046021A1 (ja) 炭化珪素基板の製造方法および炭化珪素基板
WO2011142158A1 (ja) 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
WO2010131571A1 (ja) 半導体装置
WO2011092893A1 (ja) 炭化珪素基板の製造方法
WO2011074308A1 (ja) 炭化珪素基板
JP2011256053A (ja) 複合基板およびその製造方法
WO2011152089A1 (ja) 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
JP2011243617A (ja) 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
JP2011243618A (ja) 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
WO2011108137A9 (ja) 炭化珪素基板の製造方法
WO2012132594A1 (ja) 炭化珪素基板
JP2011243771A (ja) 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
JP2011243640A (ja) 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
WO2011086734A1 (ja) 炭化珪素基板の製造方法
JP2013087048A (ja) 炭化珪素基板の製造方法
JP2011210864A (ja) 半導体基板
JP2011236064A (ja) 炭化珪素基板の製造方法
JP2011086691A (ja) 半導体基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016844.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011525315

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13256991

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117024009

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2759074

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010845240

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE