WO2011074308A1 - 炭化珪素基板 - Google Patents

炭化珪素基板 Download PDF

Info

Publication number
WO2011074308A1
WO2011074308A1 PCT/JP2010/066809 JP2010066809W WO2011074308A1 WO 2011074308 A1 WO2011074308 A1 WO 2011074308A1 JP 2010066809 W JP2010066809 W JP 2010066809W WO 2011074308 A1 WO2011074308 A1 WO 2011074308A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
substrate
silicon carbide
carbide substrate
crystal substrate
Prior art date
Application number
PCT/JP2010/066809
Other languages
English (en)
French (fr)
Inventor
太郎 西口
信 佐々木
真 原田
恭子 沖田
博揮 井上
伸介 藤原
靖生 並川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US13/146,432 priority Critical patent/US20110284873A1/en
Priority to CN2010800096536A priority patent/CN102334176A/zh
Priority to CA2753373A priority patent/CA2753373A1/en
Priority to JP2011546013A priority patent/JPWO2011074308A1/ja
Publication of WO2011074308A1 publication Critical patent/WO2011074308A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Definitions

  • the present invention relates to a silicon carbide substrate.
  • SiC silicon carbide substrates
  • SiC has a larger band gap than Si (silicon) which is more commonly used. Therefore, a semiconductor device using a SiC substrate has advantages such as high breakdown voltage, low on-resistance, and small deterioration in characteristics under a high temperature environment.
  • Patent Document 1 a SiC substrate of 76 mm (3 inches) or more can be manufactured.
  • the size of the SiC single crystal substrate is industrially limited to about 100 mm (4 inches), and there is a problem that a semiconductor device cannot be efficiently manufactured using a large single crystal substrate.
  • a semiconductor device cannot be efficiently manufactured using a large single crystal substrate.
  • hexagonal SiC the above-described problem becomes particularly serious when the characteristics of a plane other than the (0001) plane are used. This will be described below.
  • a SiC single crystal substrate with few defects is usually manufactured by cutting out from a SiC ingot obtained by (0001) plane growth in which stacking faults are unlikely to occur. For this reason, a single crystal substrate having a plane orientation other than the (0001) plane is cut out non-parallel to the growth plane. For this reason, it is difficult to ensure a sufficient size of the single crystal substrate, or many portions of the ingot cannot be used effectively. For this reason, it is particularly difficult to efficiently manufacture a semiconductor device using a surface other than the (0001) surface of SiC.
  • silicon carbide substrate having a supporting portion and a plurality of small single crystal substrates bonded thereon instead of increasing the size of the SiC single crystal substrate with difficulty as described above.
  • This silicon carbide substrate can be enlarged as necessary by increasing the number of single crystal substrates.
  • the silicon carbide substrate having the single crystal substrate and the support portion bonded to each other as described above is likely to be warped and further cracked due to the difference in physical properties between the single crystal substrate and the support portion. There is also.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a silicon carbide substrate having a single crystal substrate and a supporting portion bonded to each other and hardly warping.
  • the silicon carbide substrate of the present invention has a substrate region and a support portion.
  • the substrate region has a first single crystal substrate.
  • the first single crystal substrate has a first surface and a first back surface that face each other, and a first side surface that connects the first surface and the first back surface.
  • the support portion is bonded to the first back surface.
  • the dislocation density of the first single crystal substrate is lower than the dislocation density of the support portion.
  • At least one of the substrate region and the support portion has a void.
  • the dislocation density of the first single crystal substrate is lower than the dislocation density of the support portion, the crystal quality of the silicon carbide substrate can be made particularly high in the first single crystal substrate.
  • the stress in the silicon carbide substrate is relieved by the voids, the occurrence of warpage of the silicon carbide substrate can be suppressed.
  • the number of voids per unit volume is greater in the support than in the first single crystal substrate. Therefore, by increasing the number of voids in the support portion while suppressing the number of voids in the first single crystal substrate, it is possible to secure a sufficient number of voids for stress relaxation. Therefore, warpage of the silicon carbide substrate can be suppressed without degrading the quality of the first single crystal substrate.
  • the first single crystal substrate has a first concentration as an impurity concentration per unit volume
  • the support portion has a second concentration as an impurity concentration per unit volume
  • the second concentration is the first concentration. Higher than the concentration of.
  • the electrical resistivity of a support part can be made low.
  • the substrate region has a second single crystal substrate.
  • the second single crystal substrate has a second surface and a second back surface that face each other, and a second side surface that connects the second surface and the second back surface.
  • the second back surface is joined to the support portion.
  • the substrate region includes a space portion sandwiched between first and second side surfaces facing each other.
  • the space portion has a filling portion that fills a part of the space portion.
  • the first single crystal substrate has a first porosity and the space portion has a second porosity.
  • the second porosity is higher than the first porosity.
  • the substrate region has a third single crystal substrate.
  • the third single crystal substrate is bonded to the first surface of the first single crystal substrate.
  • region can be made into a laminated structure.
  • the number of voids per unit volume of the support is 10 cm ⁇ 3 or more.
  • production of the curvature of a silicon carbide substrate can be suppressed more.
  • the number of voids relates to voids having a volume of 1 ⁇ m 3 or more.
  • production of the curvature of a silicon carbide substrate can be suppressed more reliably.
  • the first surface has an off angle of 50 ° or more and 65 ° or less with respect to the ⁇ 0001 ⁇ plane. More preferably, the angle formed between the off orientation of the first surface and the ⁇ 1-100> direction of the first single crystal substrate is 5 ° or less. More preferably, the off angle of the first surface with respect to the ⁇ 03-38 ⁇ plane in the ⁇ 1-100> direction of the first single crystal substrate is ⁇ 3 ° to 5 °.
  • channel mobility in the 1st surface can be raised.
  • the first surface has an off angle of 50 ° or more and 65 ° or less with respect to the ⁇ 0001 ⁇ plane.
  • the angle formed between the off orientation of the first surface and the ⁇ 11-20> direction of the first single crystal substrate is 5 ° or less.
  • the first back surface of the first single crystal substrate is a surface formed by slicing. That is, the first back surface is a surface formed by slicing and not polished thereafter. This provides relief on the first back surface. Therefore, when the support part is provided on the first back surface by the sublimation method, the space in the undulating concave part can be used as a gap in which the sublimation gas spreads.
  • the silicon carbide substrate of the present invention it is possible to provide a silicon carbide substrate that has a single crystal substrate and a support portion bonded to each other and is less likely to warp.
  • FIG. 1 is a plan view schematically showing a configuration of a silicon carbide substrate in a first embodiment of the present invention.
  • FIG. 2 is a schematic sectional view taken along line II-II in FIG. It is sectional drawing which shows schematically the 1st process of the manufacturing method of the silicon carbide substrate in Embodiment 1 of this invention.
  • FIG. 4 is a partially enlarged view of FIG. 3.
  • FIG. 5 is a partial cross sectional view schematically showing a direction of substance movement by sublimation in a second step of the method for manufacturing the silicon carbide substrate in the first embodiment of the present invention.
  • FIG. 5 is a partial cross sectional view schematically showing a movement direction of a void due to sublimation in a second step of the method for manufacturing the silicon carbide substrate in the first embodiment of the present invention.
  • It is sectional drawing which shows schematically the structure of the silicon carbide substrate in Embodiment 2 of this invention.
  • silicon carbide substrate 81 of the present embodiment has a support portion 30 and a substrate region R1.
  • the substrate region R1 has single crystal substrates 11 to 19 and a space (space portion) GP.
  • the space GP has a filling part 20.
  • region R1 and the support part 30 have the void V1 so that both interface may be straddled. That is, the void V1 has a void V1a included in the substrate region R1 and a void V1b included in the support portion 30. Void V1 is arranged at the boundary between single crystal substrates 11 to 19 in plan view. Moreover, the support part 30 has the void Vc in the inside.
  • the single crystal substrate 11 includes a first surface F1 and a first back surface B1 that face each other, and a first side surface S1 that connects the first surface F1 and the first back surface B1.
  • the single crystal substrate 12 includes a second surface F2 and a second back surface B2 that face each other, and a second side surface S2 that connects the second surface F2 and the second back surface B2.
  • the first and second single crystal substrates are arranged so that the first and second side surfaces S1 and S2 face each other with the space GP interposed therebetween.
  • the shortest distance between the first and second side surfaces S1 and S2 is 5 mm or less, more preferably 1 mm or less, still more preferably 100 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • Each surface of the single crystal substrates 11 to 19 preferably has a plane orientation ⁇ 03-38 ⁇ .
  • ⁇ 0001 ⁇ , ⁇ 11-20 ⁇ , or ⁇ 1-100 ⁇ can also be used as the plane orientation. It is also possible to use a surface that is off several degrees from each of the above surface orientations.
  • the filling unit 20 fills a part of the space GP so as to connect the first and second surfaces F1 and F2. Since the space GP has a relatively large void V1a as shown in FIG. 2, the void ratio (second void) is higher than the void ratio (first void ratio) of each of the single crystal substrates 11 to 19. Rate).
  • Support portion 30 is joined to each of single crystal substrates 11 to 19, for example, first and second back surfaces B1 and B2.
  • the support portion 30 has, for example, a disk shape, and in this case, the diameter is preferably 50 mm or more, and more preferably 150 mm or more.
  • the number of voids per unit volume is larger in the support portion 30 than in each of the single crystal substrates 11 to 19.
  • the number of voids per unit volume of the support part 30 is 10 cm ⁇ 3 or more.
  • the number of voids herein refers to voids having a volume of a certain level or more, and this volume is, for example, 1 ⁇ m 3 .
  • the dislocation density of each of the single crystal substrates 11 to 19 is lower than the dislocation density of the support portion 30. That is, the crystal quality is higher in the single crystal substrates 11 to 19 than in the support portion 30.
  • each of single crystal substrates 11 to 19 has a first concentration as an impurity concentration per unit volume
  • support portion 30 has a second concentration as an impurity concentration per unit volume. The second concentration is higher than the first concentration.
  • the heating device includes first and second heating bodies 91 and 92, a heat insulating container 40, a heater 50, and a heater power supply 150.
  • the heat insulating container 40 is formed from a material having high heat insulating properties.
  • the heater 50 is, for example, an electric resistance heater.
  • First and second heating bodies 91 and 92 have a function of heating support portion 30 and single crystal substrate group 10 by re-radiating heat obtained by absorbing radiant heat from heater 50.
  • the 1st and 2nd heating bodies 91 and 92 are formed from the graphite with a small porosity, for example.
  • first heating body 91, the single crystal substrate group 10, the support part 30, and the second heating body 92 are arranged so as to be stacked in this order.
  • first, single crystal substrates 11 to 19 are arranged in a matrix on first heating body 91.
  • the single crystal substrates 11 and 12 are placed such that the first and second side surfaces S1 and S2 face each other with the space GP therebetween.
  • support portion 30 is placed on the surface of single crystal substrate group 10.
  • the second heating body 92 is placed on the support portion 30.
  • the laminated first heating body, single crystal substrate group 10, support portion 30, and second heating body are housed in a heat insulating container 40 provided with a heater 50.
  • the atmosphere in the heat insulating container 40 is an atmosphere obtained by depressurizing the air atmosphere.
  • the pressure of the atmosphere is preferably higher than 10 ⁇ 1 Pa and lower than 10 4 Pa.
  • the above atmosphere may be an inert gas atmosphere.
  • the inert gas for example, a rare gas such as He or Ar, a nitrogen gas, or a mixed gas of a rare gas and a nitrogen gas can be used.
  • the ratio of nitrogen gas is, for example, 60%.
  • the pressure in the heat insulating container 40 is preferably 50 kPa or less, and more preferably 10 kPa or less.
  • the single crystal substrate group 10 and the support portion 30 are heated by the heater 50 through the first and second heating bodies 91 and 92 to a temperature at which a sublimation recrystallization reaction occurs. This heating is performed such that a temperature difference is formed such that the temperature of support portion 30 is higher than the temperature of single crystal substrate group 10.
  • support portion 30 is merely placed on each of single crystal substrates 11 and 12, and is not bonded. Therefore, a minute gap GQ exists between each of the back surfaces (upper surfaces in FIG. 5) of single crystal substrates 11 and 12 and support portion 30.
  • a space GP is formed between the single crystal substrates 11 and 12 as described above.
  • the back surfaces of single crystal substrates 11 and 12 are surfaces formed by slicing, that is, when they are surfaces that are formed by slicing and are not polished after that, undulations are provided on the back surfaces. Therefore, a space GQ having an appropriate size can be easily and reliably provided by the space in the concave and convex portions.
  • mass transfer due to sublimation occurs in the gap GQ as indicated by an arrow Mc in the figure. Further, mass transfer due to sublimation occurs from the support portion 30 toward the space GP as indicated by an arrow Mb in the figure. In the space GP, as indicated by an arrow Ma in the figure, mass transfer due to sublimation occurs from the back side (upper side in the figure) to the front side (lower side in the figure) of each of the single crystal substrates 11 and 12. Arise.
  • the cavity corresponding to the gap GQ (FIG. 6) cannot move while maintaining its shape, and instead generates a plurality of voids Vc (FIG. 7). .
  • the filling portion 20 that fills a part of the space GP so as to connect the first and second surfaces F1 and F2 is formed by the movement of the cavity corresponding to the space GP shown by the arrows H1a and H1b (FIG. 6).
  • a void V1 including a void V1b (FIG. 7) positioned facing the space GP of the support portion 30 and a void V1a (FIG. 7) positioned in the space GP is generated.
  • the crystal quality of silicon carbide substrate 81 is particularly improved in each of single crystal substrates 11-19. Can be high. Since stress in silicon carbide substrate 81 is relaxed by voids V1 and Vc, the occurrence of warpage of silicon carbide substrate 81 can be suppressed.
  • the number of voids per unit volume is larger in the support portion 30 than in each of the single crystal substrates 11 to 19. Therefore, by increasing the number of voids in support portion 30 while suppressing the number of voids in each of single crystal substrates 11 to 19, a sufficient number of voids for stress relaxation can be ensured. Therefore, warpage of silicon carbide substrate 81 can be suppressed without degrading the quality of single crystal substrates 11-19.
  • the surface area of the silicon carbide substrate 81 can be increased as compared with the case where only the first surface F1 is provided.
  • the space GP has a filling portion 20 that fills a part of the space GP so as to connect the first and second surfaces F1 and F2. As a result, the accumulation of foreign matter in the space GP is suppressed.
  • the porosity (second porosity) of the space GP is higher than the porosity (first porosity) of the single crystal substrate 11, the filling portion 20 is easily deformed. Thereby, stress is easily relieved by filling portion 20, so that the occurrence of warpage of silicon carbide substrate 81 is further suppressed.
  • the porosity of space GP is set higher than the porosity of each of the other single crystal substrates 12-19.
  • the single crystal substrate 11 has a first concentration as an impurity concentration per unit volume
  • the support portion 30 has a second concentration as an impurity concentration per unit volume.
  • the second concentration is higher than the first concentration.
  • the number of voids per unit volume of the support part 30 is 10 cm ⁇ 3 or more. Thereby, generation
  • the number of voids is the number of voids having a volume of 1 ⁇ m 3 or more.
  • production of the curvature of the silicon carbide substrate 81 can be suppressed more reliably.
  • the SiC crystal structure of each of the single crystal substrates 11 to 19 has a polytype 4H type.
  • silicon carbide substrate 81 suitable for manufacturing a power semiconductor is obtained.
  • the difference between the thermal expansion coefficient of support portion 30 in silicon carbide substrate 81 and the thermal expansion coefficient of single crystal substrates 11 to 19 is made as small as possible.
  • production of the curvature of the silicon carbide substrate 81 can be suppressed more.
  • the crystal structure of support portion 30 may be the same as that of single crystal substrates 11-19.
  • the in-plane variation of the thicknesses of the support 30 and the single crystal substrate group 10 (FIG. 4) prepared before the heat treatment is made as small as possible.
  • this variation is 10 ⁇ m or less.
  • the electrical resistivity of the support portion 30 prepared before the heat treatment is less than 50 m ⁇ ⁇ cm, and more preferably less than 10 m ⁇ ⁇ cm.
  • the impurity concentration of support portion 30 in silicon carbide substrate 81 is 5 ⁇ 10 18 cm ⁇ 3 or more, more preferably 1 ⁇ 10 20 cm ⁇ 3 or more.
  • a vertical semiconductor device that allows current to flow in the vertical direction, such as a vertical MOSFET (Metal Oxide Semiconductor Field Effect Transistor)
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the average value of the electrical resistivity of silicon carbide substrate 81 is preferably 5 m ⁇ ⁇ cm or less, and more preferably 1 m ⁇ ⁇ cm or less.
  • the thickness (the vertical dimension in FIG. 2) of silicon carbide substrate 81 is 300 ⁇ m or more.
  • the first surface F1 has an off angle of 50 ° to 65 ° with respect to the ⁇ 0001 ⁇ plane.
  • channel mobility in the 1st surface F1 can be raised. More preferably, the following first or second condition is satisfied.
  • the angle formed between the off orientation of the first surface F1 and the ⁇ 1-100> direction of the single crystal substrate 11 is 5 ° or less. More preferably, the off angle of the first surface F1 with respect to the ⁇ 03-38 ⁇ plane in the ⁇ 1-100> direction of the single crystal substrate 11 is ⁇ 3 ° to 5 °.
  • the angle formed between the off orientation of the first surface F1 and the ⁇ 11-20> direction of the single crystal substrate 11 is 5 ° or less.
  • the orientation of each surface of the other single crystal substrates 12 to 19 is preferably the same.
  • silicon carbide substrate 82 of the present embodiment does not have void V1b (FIG. 2) unlike Embodiment 1 (FIG. 2).
  • the silicon carbide substrate 82 can be obtained by forming the filling portion 20 mainly by the mass transfer indicated by the arrow Ma (FIG. 5) without generating the mass transfer indicated by the arrow Mb (FIG. 5).
  • silicon carbide substrate 83 of the present embodiment has a substrate region R3 instead of substrate region R1 (FIG. 2).
  • the substrate region R ⁇ b> 3 has a space part GP that is entirely filled with the filling part 21.
  • the support portion 30 has a void V2 in addition to the void Vc.
  • the void V ⁇ b> 2 is located only inside the support portion 30.
  • Silicon carbide substrate 83 can be obtained by continuing the heat treatment until void V ⁇ b> 1 (FIG. 7) completely enters support portion 30.
  • the material of the filling portion 21 is, for example, silicon carbide (SiC), silicon (Si), an adhesive, a resist, a resin, or silicon oxide (SiO 2 ).
  • silicon carbide substrate 84 of the present embodiment has a substrate region R4 instead of substrate region R1 (FIG. 2).
  • the substrate region R4 has a space portion GP that is not filled.
  • Silicon carbide substrate 84 is obtained by forming support portion 30 by depositing silicon carbide on first and second back surfaces B1 and B2, for example, as indicated by arrows in the figure. Void Vc is formed during this deposition.
  • the support 30 obtained by this deposition does not necessarily have a single crystal structure, and may have a polycrystalline structure.
  • a support portion 30 having a void Vc is prepared in advance.
  • a polycrystalline body or a sintered body may be used in addition to those similar to those in the first embodiment.
  • the surface of support portion 30 and the back surfaces of single crystal substrates 11 to 13 are joined. This bonding can be performed, for example, by heating the interface between each of single crystal substrates 11 to 13 and support portion 30.
  • silicon carbide substrate 85 of the present embodiment has a substrate region R5 instead of substrate region R1 (FIG. 2).
  • Substrate region R5 has only single crystal substrate 11 instead of single crystal substrates 11 to 19 (FIG. 1).
  • silicon carbide substrate 86 in the present embodiment has a substrate region R6 instead of substrate region R5 (FIG. 12).
  • Substrate region R6 includes single crystal substrate 41 (third single crystal substrate) in addition to single crystal substrate 11.
  • Third single crystal substrate 41 is bonded to first surface F1 of single crystal substrate 11 (first single crystal substrate).
  • the substrate region R6 has a laminated structure.
  • semiconductor device 100 of the present embodiment is a vertical DiMOSFET (Double Implanted Metal Oxide Semiconductor Field Effect Transistor), and includes silicon carbide substrate 81, buffer layer 121, breakdown voltage holding layer 122, p region. 123, an n + region 124, a p + region 125, an oxide film 126, a source electrode 111, an upper source electrode 127, a gate electrode 110, and a drain electrode 112.
  • DiMOSFET Double Implanted Metal Oxide Semiconductor Field Effect Transistor
  • Silicon carbide substrate 81 has an n-type conductivity type in the present embodiment, and has support portion 30 and single crystal substrate 11 as described in the first embodiment.
  • the drain electrode 112 is provided on the support portion 30 so as to sandwich the support portion 30 with the single crystal substrate 11.
  • Buffer layer 121 is provided on single crystal substrate 11 such that single crystal substrate 11 is sandwiched between support portion 30.
  • Buffer layer 121 has n-type conductivity and has a thickness of 0.5 ⁇ m, for example.
  • the concentration of the n-type conductive impurity in the buffer layer 121 is, for example, 5 ⁇ 10 17 cm ⁇ 3 .
  • the breakdown voltage holding layer 122 is formed on the buffer layer 121 and is made of silicon carbide having an n-type conductivity.
  • the thickness of the breakdown voltage holding layer 122 is 10 ⁇ m, and the concentration of the n-type conductive impurity is 5 ⁇ 10 15 cm ⁇ 3 .
  • a plurality of p regions 123 having a p-type conductivity are formed at intervals.
  • An n + region 124 is formed in the surface layer of the p region 123 inside the p region 123.
  • a p + region 125 is formed at a position adjacent to the n + region 124. From the n + region 124 in one p region 123 to the p region 123, the breakdown voltage holding layer 122 exposed between the two p regions 123, the other p region 123, and the n + region 124 in the other p region 123 An oxide film 126 is formed so as to extend to.
  • a gate electrode 110 is formed on the oxide film 126.
  • a source electrode 111 is formed on the n + region 124 and the p + region 125.
  • An upper source electrode 127 is formed on the source electrode 111.
  • the maximum value of the nitrogen atom concentration in the region within 10 nm from the interface between the oxide film 126 and the n + region 124, p + region 125, p region 123 and the breakdown voltage holding layer 122 as the semiconductor layer is 1 ⁇ 10 21 cm ⁇ 3. That's it. Thereby, the mobility of the channel region under the oxide film 126 (part of the p region 123 between the n + region 124 and the breakdown voltage holding layer 122, which is in contact with the oxide film 126) can be improved. .
  • 16 to 19 show only the steps in the vicinity of the single crystal substrate 11 among the single crystal substrates 11 to 19 (FIG. 1), but the same applies to the vicinity of each of the single crystal substrates 12 to 19. These steps are performed.
  • a silicon carbide substrate 81 (FIGS. 1 and 2) is prepared. Silicon carbide substrate 81 has n type conductivity.
  • buffer layer 121 and breakdown voltage holding layer 122 are formed as follows.
  • buffer layer 121 is formed on the surface of single crystal substrate 11 of silicon carbide substrate 81.
  • Buffer layer 121 is made of silicon carbide of n-type conductivity, and is an epitaxial layer having a thickness of 0.5 ⁇ m, for example. Further, the concentration of the conductive impurity in the buffer layer 121 is set to 5 ⁇ 10 17 cm ⁇ 3 , for example.
  • the breakdown voltage holding layer 122 is formed on the buffer layer 121. Specifically, a layer made of silicon carbide of n-type conductivity is formed by an epitaxial growth method.
  • the thickness of the breakdown voltage holding layer 122 is, for example, 10 ⁇ m.
  • the concentration of the n-type conductive impurity in the breakdown voltage holding layer 122 is, for example, 5 ⁇ 10 15 cm ⁇ 3 .
  • p region 123, n + region 124, and p + region 125 are formed as follows by the implantation step (step S 130: FIG. 15).
  • an impurity having a p-type conductivity is selectively implanted into a part of the breakdown voltage holding layer 122, whereby the p region 123 is formed.
  • n + region 124 is formed by selectively injecting n-type conductive impurities into a predetermined region, and p-type conductive impurities having a conductivity type are selectively injected into the predetermined region. As a result, a p + region 125 is formed.
  • the impurity is selectively implanted using a mask made of an oxide film, for example.
  • an activation annealing process is performed.
  • annealing is performed in an argon atmosphere at a heating temperature of 1700 ° C. for 30 minutes.
  • a gate insulating film formation step (step S140: FIG. 15) is performed. Specifically, an oxide film 126 is formed to cover the breakdown voltage holding layer 122, the p region 123, the n + region 124, and the p + region 125. This formation may be performed by dry oxidation (thermal oxidation).
  • the dry oxidation conditions are, for example, a heating temperature of 1200 ° C. and a heating time of 30 minutes.
  • a nitrogen annealing step (step S150) is performed. Specifically, an annealing process is performed in a nitrogen monoxide (NO) atmosphere.
  • the heating temperature is 1100 ° C. and the heating time is 120 minutes.
  • nitrogen atoms are introduced in the vicinity of the interface between each of the breakdown voltage holding layer 122, the p region 123, the n + region 124, and the p + region 125 and the oxide film 126.
  • an annealing process using an argon (Ar) gas that is an inert gas may be further performed.
  • the conditions for this treatment are, for example, a heating temperature of 1100 ° C. and a heating time of 60 minutes.
  • the source electrode 111 and the drain electrode 112 are formed as follows by the electrode formation step (step S160: FIG. 15).
  • a resist film having a pattern is formed on the oxide film 126 by photolithography. Using this resist film as a mask, portions of oxide film 126 located on n + region 124 and p + region 125 are removed by etching. As a result, an opening is formed in the oxide film 126. Next, a conductor film is formed in contact with each of n + region 124 and p + region 125 in this opening. Next, by removing the resist film, the portion of the conductor film located on the resist film is removed (lifted off).
  • the conductor film may be a metal film, and is made of nickel (Ni), for example. As a result of this lift-off, the source electrode 111 is formed.
  • the heat processing for alloying is performed here.
  • heat treatment is performed for 2 minutes at a heating temperature of 950 ° C. in an atmosphere of argon (Ar) gas that is an inert gas.
  • upper source electrode 127 is formed on source electrode 111.
  • drain electrode 112 is formed on the back surface of silicon carbide substrate 81.
  • a gate electrode 110 is formed on the oxide film 126.
  • the semiconductor device 100 is obtained. Note that a structure in which the conductivity types in this embodiment are switched, that is, a structure in which the p-type and the n-type are replaced can also be used.
  • Silicon carbide substrate for manufacturing semiconductor device 100 is not limited to silicon carbide substrate 81 of the first embodiment, and is, for example, one of silicon carbide substrates 82 to 86 (embodiments 2 to 6). There may be.
  • a vertical DiMOSFET has been illustrated, other semiconductor devices may be manufactured using the semiconductor substrate of the present invention.
  • a RESURF-JFET Reduced Surface Field-Junction Field Effect Transistor
  • a Schottky diode is manufactured. Also good.
  • each of the single crystal substrate group 10, that is, the single crystal substrates 11 to 19 (FIG. 1), has a square shape of 20 ⁇ 20 mm, a thickness of 300 ⁇ m, a polytype 4H, a plane orientation (03-38), and an n-type impurity concentration of 1 ⁇ .
  • a silicon carbide wafer having 10 19 cm ⁇ 3 , micropipe density of 0.2 cm ⁇ 2 , and stacking fault density of less than 1 cm ⁇ 1 was prepared. Moreover, the graphite piece as each of the 1st and 2nd heating bodies 91 and 92 was prepared.
  • Single crystal substrates 11 to 19 were mounted on the first heating body 91 in a matrix.
  • support portion 30 was placed on single crystal substrate group 10.
  • the second heating body 92 was placed on the support portion 30. Thereby, the laminated body which consists of the 1st heating body 91, the single crystal substrate group 10, the support part 30, and the 2nd heating body 92 was prepared.
  • the above laminate was stored in the heat insulating container 40 (FIG. 3) of the heating device.
  • the atmosphere in the heat insulating container 40 was changed to a nitrogen atmosphere having a pressure of 1 Pa.
  • the temperature in the heat insulating container 40 was heated to about 2100 ° C. by the heater 50. This heating was performed by the heater 50 located closer to the second heating body 92 than to the first heating body 91. As a result, the temperature of the second heating body 92 was made higher than the temperature of the first heating body 91. Thereby, the temperature of the single crystal substrate group 10 facing the first heating body 91 was made lower than the temperature of the support portion 30 facing the second heating body 92. Heat treatment was performed by maintaining this state for 24 hours. Thereby, silicon carbide substrate 81 (FIGS. 1 and 2) was obtained.
  • the number of voids per unit volume of support portion 30 in silicon carbide substrate 81 was 10 cm ⁇ 3 or more.
  • the impurity concentration of the support portion 30 was 5 ⁇ 10 20 cm ⁇ 3 . That is, the impurity concentration of the support portion 30 after the heat treatment was higher than 1 ⁇ 10 20 cm ⁇ 3, which was the value before the heat treatment. This is considered to be because the support part 30 has taken in the nitrogen in the atmosphere described above.
  • the temperature of the single crystal substrate 11 was set lower than the temperature of the support portion 30 in the heat treatment. However, when an experiment was performed on the heat treatment that does not provide such a temperature difference, the temperature of the single crystal substrate 11 was compared with that of this example. More part of the gap GQ remained.
  • silicon carbide substrates having diameters of 50 mm, 75 mm, 100 mm, 125 mm, and 150 mm were fabricated for each of the plane orientations (0001) and (03-38) by the same method as described above. It was.
  • a substrate made of a single crystal corresponding to each of the above sizes was prepared. Each of these substrates was ion implanted and an activation anneal was performed.
  • the activation annealing conditions were as follows: atmosphere was Ar atmosphere, pressure was 90 kPa, temperature rising rate was 100 ° C./min, temperature was 1800 ° C., and holding time was 30 minutes.

Abstract

 炭化珪素基板(81)は基板領域(R1)および支持部(30)を有する。基板領域(R1)は第1の単結晶基板(11)を有する。支持部(30)は第1の単結晶(11)の第1の裏面(B1)に接合されている。第1の単結晶基板(11)の転位密度は支持部(30)の転位密度よりも低い。基板領域(R1)および支持部(30)の少なくともいずれかはボイドを有する。

Description

炭化珪素基板
 本発明は炭化珪素基板に関するものである。
 近年、半導体装置の製造に用いられる半導体基板としてSiC(炭化珪素)基板の採用が進められつつある。SiCは、より一般的に用いられているSi(シリコン)に比べて大きなバンドギャップを有する。そのためSiC基板を用いた半導体装置は、耐圧が高く、オン抵抗が低く、また高温環境下での特性の低下が小さい、といった利点を有する。
 半導体装置を効率的に製造するためには、ある程度以上の基板の大きさが求められる。米国特許第7314520号明細書(特許文献1)によれば、76mm(3インチ)以上のSiC基板を製造することができるとされている。
米国特許第7314520号明細書
 SiC単結晶基板の大きさは工業的には100mm(4インチ)程度にとどまっており、このため大型の単結晶基板を用いて半導体装置を効率よく製造することができないという問題がある。特に六方晶系のSiCにおいて、(0001)面以外の面の特性が利用される場合、上記の問題が特に深刻となる。このことについて、以下に説明する。
 欠陥の少ないSiC単結晶基板は、通常、積層欠陥の生じにくい(0001)面成長で得られたSiCインゴットから切り出されることで製造される。このため(0001)面以外の面方位を有する単結晶基板は、成長面に対して非平行に切り出されることになる。このため単結晶基板の大きさを十分確保することが困難であったり、インゴットの多くの部分が有効に利用できなかったりする。このため、SiCの(0001)面以外の面を利用した半導体装置は、効率よく製造することが特に困難である。
 このように困難をともなうSiC単結晶基板の大型化に代わって、支持部と、この上に接合された複数の小さな単結晶基板とを有する炭化珪素基板を用いることが考えられる。この炭化珪素基板は、単結晶基板の枚数を増やすことで、必要に応じて大型化することができる。
 しかし上記のように互いに接合された単結晶基板および支持部を有する炭化珪素基板には、単結晶基板および支持部の間の物性の相違に起因して、反りが生じやすく、さらに割れが生じることもある。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、互いに接合された単結晶基板および支持部を有し、かつ反りが生じにくい炭化珪素基板を提供することである。
 本発明の炭化珪素基板は基板領域および支持部を有する。基板領域は第1の単結晶基板を有する。第1の単結晶基板は、互いに対向する第1の表面および第1の裏面と、第1の表面および第1の裏面をつなぐ第1の側面とを有する。支持部は第1の裏面に接合されている。第1の単結晶基板の転位密度は支持部の転位密度よりも低い。基板領域および支持部の少なくともいずれかはボイドを有する。
 本発明によれば、第1の単結晶基板の転位密度が支持部の転位密度よりも低いので、炭化珪素基板の結晶の品質を第1の単結晶基板において特に高くすることができる。また炭化珪素基板中の応力がボイドによって緩和されるので、炭化珪素基板の反りの発生を抑制することができる。
 好ましくは、単位体積当たりのボイド数は、第1の単結晶基板内に比して支持部内において多い。よって、第1の単結晶基板内におけるボイド数を抑制しつつ、支持部内のボイド数を多くすることで、応力緩和のために十分なボイド数を確保することができる。よって第1の単結晶基板の品質を落とすことなく、炭化珪素基板の反りの発生を抑制することができる。
 好ましくは、第1の単結晶基板は単位体積当たりの不純物濃度として第1の濃度を有し、支持部は単位体積当たりの不純物濃度として第2の濃度を有し、第2の濃度は第1の濃度よりも高い。これにより支持部の電気抵抗率を低くすることができる。
 好ましくは、基板領域は第2の単結晶基板を有する。第2の単結晶基板は、互いに対向する第2の表面および第2の裏面と、第2の表面および第2の裏面をつなぐ第2の側面とを有する。第2の裏面は支持部に接合されている。これにより、基板領域の表面として第1および第2の表面の両方が設けられるので、炭化珪素基板の表面積を大きくすることができる。
 好ましくは、基板領域は、互いに対向する第1および第2の側面によって挟まれた空間部を含む。空間部は空間部の一部を充填する充填部を有する。これより、充填部がない場合に比して、空間部へ異物が溜まることが抑制される。
 好ましくは、第1の単結晶基板は第1の空隙率を有し、空間部は第2の空隙率を有する。第2の空隙率は第1の空隙率に比して高い。これにより、空間部の変形によって応力が緩和されやすくなる。よって炭化珪素基板の反りの発生がより抑制される。
 好ましくは、基板領域は第3の単結晶基板を有する。第3の単結晶基板は、第1の単結晶基板の第1の表面に接合されている。これにより基板領域を積層構造とすることができる。
 好ましくは、支持部の単位体積当たりのボイド数は10cm-3以上である。これにより炭化珪素基板の反りの発生をより抑制することができる。
 好ましくは、ボイド数は、1μm3以上の体積を有するボイドに関するものである。これにより炭化珪素基板の反りの発生をより確実に抑制することができる。
 好ましくは、第1の表面は、{0001}面に対して50°以上65°以下のオフ角を有する。より好ましくは、第1の表面のオフ方位と第1の単結晶基板の<1-100>方向とのなす角は5°以下である。さらに好ましくは、第1の単結晶基板の<1-100>方向における{03-38}面に対する第1の表面のオフ角は-3°以上5°以下である。これにより、第1の表面が{0001}面である場合に比して、第1の表面におけるチャネル移動度を高めることができる。
 好ましくは、第1の表面は、{0001}面に対して50°以上65°以下のオフ角を有する。第1の表面のオフ方位と第1の単結晶基板の<11-20>方向とのなす角は5°以下である。これにより、第1の表面が{0001}面である場合に比して、第1の表面におけるチャネル移動度を高めることができる。
 好ましくは、第1の単結晶基板の第1の裏面は、スライスによって形成された面である。すなわち第1の裏面は、スライスによって形成され、その後に研磨されていない面である。これにより第1の裏面上に起伏が設けられる。よってこの起伏の凹部内の空間を、第1の裏面上に支持部を昇華法によって設ける場合において、昇華ガスが広がる空隙として用いることができる。
 以上の説明から明らかなように、本発明の炭化珪素基板によれば、互いに接合された単結晶基板および支持部を有し、かつ反りが生じにくい炭化珪素基板を提供することができる。
本発明の実施の形態1における炭化珪素基板の構成を概略的に示す平面図である。 図1の線II-IIに沿う概略断面図である。 本発明の実施の形態1における炭化珪素基板の製造方法の第1工程を概略的に示す断面図である。 図3の一部拡大図である。 本発明の実施の形態1における炭化珪素基板の製造方法の第2工程における、昇華による物質の移動方向を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素基板の製造方法の第2工程における、昇華による空隙の移動方向を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素基板の製造方法の第2工程における、昇華によるボイドの移動方向を概略的に示す部分断面図である。 本発明の実施の形態2における炭化珪素基板の構成を概略的に示す断面図である。 本発明の実施の形態3における炭化珪素基板の構成を概略的に示す断面図である。 本発明の実施の形態4における炭化珪素基板の構成を概略的に示す断面図である。 本発明の実施の形態4の変形例の炭化珪素基板の製造方法の一工程を概略的に示す断面図である。 本発明の実施の形態5における炭化珪素基板の構成を概略的に示す断面図である。 本発明の実施の形態6における炭化珪素基板の構成を概略的に示す断面図である。 本発明の実施の形態7における半導体装置の構成を概略的に示す部分断面図である。 本発明の実施の形態7における半導体装置の製造方法の概略的なフロー図である。 本発明の実施の形態7における半導体装置の製造方法の第1工程を概略的に示す部分断面図である。 本発明の実施の形態7における半導体装置の製造方法の第2工程を概略的に示す部分断面図である。 本発明の実施の形態7における半導体装置の製造方法の第3工程を概略的に示す部分断面図である。 本発明の実施の形態7における半導体装置の製造方法の第4工程を概略的に示す部分断面図である。
 以下、図面に基づいて本発明の実施の形態を説明する。
 (実施の形態1)
 図1および図2を参照して、本実施の形態の炭化珪素基板81は、支持部30および基板領域R1を有する。基板領域R1は、単結晶基板11~19と、空間(空間部)GPとを有する。空間GPは充填部20を有する。基板領域R1および支持部30は、両者の界面を跨ぐように、ボイドV1を有する。すなわちボイドV1は、基板領域R1に含まれるボイドV1aと、支持部30に含まれるボイドV1bとを有する。ボイドV1は、平面視において、単結晶基板11~19同士の境界に配置されている。また支持部30は、その内部にボイドVcを有する。
 単結晶基板11(第1の単結晶基板)は、互いに対向する第1の表面F1および第1の裏面B1と、第1の表面F1および第1の裏面B1をつなぐ第1の側面S1とを有する。単結晶基板12(第2の単結晶基板)は、互いに対向する第2の表面F2および第2の裏面B2と、第2の表面F2および第2の裏面B2をつなぐ第2の側面S2とを有する。第1および第2の単結晶基板は、第1および第2の側面S1、S2が空間GPを介して対向するように配置されている。好ましくは第1および第2の側面S1、S2の最短間隔は5mm以下とされ、より好ましくは1mm以下とされ、さらに好ましくは100μm以下とされ、さらに好ましくは10μm以下とされる。
 単結晶基板11~19の各々の表面は、好ましくは、面方位{03-38}を有する。ただし面方位として、{0001}、{11-20}、または{1-100}を用いることもできる。また上記の各面方位から数度オフした面を用いることもできる。
 充填部20は、第1および第2の表面F1、F2をつなぐように空間GPの一部を充填している。空間GPは、図2に示すように比較的大きなボイドV1aを有するので、単結晶基板11~19の各々の空隙率(第1の空隙率)に比して、高い空隙率(第2の空隙率)を有する。
 支持部30は、単結晶基板11~19の各々、たとえば第1および第2の裏面B1、B2の各々に接合されている。支持部30は、たとえば円板状の形状を有し、この場合その直径は、好ましくは50mm以上であり、より好ましくは150mm以上である。
 単位体積当たりのボイド数は、単結晶基板11~19の各々の内部に比して、支持部30内において多い。好ましくは、支持部30の単位体積当たりのボイド数は10cm-3以上である。ここでいうボイド数とは、ある程度以上の体積を有するボイドについてのものであり、この体積は、たとえば1μm3である。
 また単結晶基板11~19の各々の転位密度は、支持部30の転位密度よりも低い。すなわち支持部30よりも単結晶基板11~19において、結晶の品質が高い。
 好ましくは、単結晶基板11~19の各々は単位体積当たりの不純物濃度として第1の濃度を有し、支持部30は単位体積当たりの不純物濃度として第2の濃度を有する。第2の濃度は第1の濃度よりも高い。
 次に炭化珪素基板81の製造方法について説明する。なお以下において説明を簡略化するために単結晶基板11~19のうち単結晶基板11および12に関してのみ言及する場合があるが、単結晶基板13~19も単結晶基板11および12と同様に扱われる。
 図3および図4を参照して、支持部30と、単結晶基板11~19すなわち単結晶基板群10と、加熱装置とが準備される。加熱装置は、第1および第2の加熱体91、92と、断熱容器40と、ヒータ50と、ヒータ電源150とを有する。断熱容器40は、断熱性の高い材料から形成されている。ヒータ50は、たとえば電気抵抗ヒータである。第1および第2の加熱体91、92は、ヒータ50からの放射熱を吸収して得た熱を再放射することによって、支持部30および単結晶基板群10を加熱する機能を有する。第1および第2の加熱体91、92は、たとえば、空隙率の小さいグラファイトから形成されている。
 次に、第1の加熱体91、単結晶基板群10、支持部30、第2の加熱体92が、この順に積み重なるように配置される。具体的には、まず第1の加熱体91上に、単結晶基板11~19がマトリクス状に配置される。たとえば単結晶基板11および12は、第1および第2の側面S1、S2が空間GPを介して対向するように載置される。次に単結晶基板群10の表面上に支持部30が載置される。次に支持部30上に第2の加熱体92が載置される。次に、積層された、第1の加熱体、単結晶基板群10、支持部30、第2の加熱体が、ヒータ50が設けられた断熱容器40内に収められる。
 次に断熱容器40内の雰囲気が、大気雰囲気を減圧することにより得られた雰囲気とされる。雰囲気の圧力は、好ましくは、10-1Paよりも高く104Paよりも低くされる。
 なお上記の雰囲気は不活性ガス雰囲気であってもよい。不活性ガスとしては、たとえば、He、Arなどの希ガス、窒素ガス、または希ガスと窒素ガスとの混合ガスを用いることができる。この混合ガスが用いられる場合、窒素ガスの割合は、たとえば60%である。また断熱容器40内の圧力は、好ましくは50kPa以下とされ、より好ましくは10kPa以下とされる。
 次にヒータ50によって、第1および第2の加熱体91、92のそれぞれを介して、単結晶基板群10と支持部30とが、昇華再結晶反応が生じる程度の温度に加熱される。この加熱は、支持部30の温度が単結晶基板群10の温度よりも高くなるような温度差が形成されるように行われる。
 図5を参照して、上記の加熱が開始される段階では、支持部30は単結晶基板11および12の各々の上に載置されているだけであって、接合はされていない。このため単結晶基板11および12の裏面(図5における上面)の各々と、支持部30との間には微小な空隙GQが存在する。また単結晶基板11および12の間には、上述したように空間GPが形成されている。特に単結晶基板11および12の裏面がスライスによって形成された面である場合、すなわちスライスによって形成されその後に研磨されていない面である場合、この裏面上に起伏が設けられる。よってこの起伏の凹部内の空間により、適度な大きさの空隙GQを容易かつ確実に設けることができる。
 上述したように、単結晶基板11および12の各々の温度に比して、支持部30の温度が高くされると、空隙GQにおいて、図中矢印Mcに示すように、昇華による物質移動が生じる。また支持部30から空間GPに向かって、図中矢印Mbに示すように、昇華による物質移動が生じる。また空間GPにおいて、図中矢印Maに示すように、単結晶基板11および12の各々の裏面側(図中の上側)から表面側(図中の下側)に向かって、昇華による物質移動が生じる。
[規則91に基づく訂正 07.04.2011] 
 さらに図6を参照して、図5の矢印Ma~Mcのそれぞれに示す物質移動は、逆に言えば、空間GPおよび空隙GQに存在する空洞の、図6の矢印H1a~H1cに示す空洞移動に対応する。ここで空隙GQの高さ(図中の縦方向の寸法)には大きな面内ばらつきがあり、このばらつきに起因して、空隙GQに対応する空洞の移動(図中矢印H1c)の速度に大きな面内ばらつきが生じる。
 さらに図7を参照して、上記ばらつきのために空隙GQ(図6)に対応する空洞は、その形状を保ちつつ移動することができず、代わりに複数のボイドVc(図7)を生成する。
 また矢印H1aおよびH1b(図6)に示す、空間GPに対応する空洞の移動によって、第1および第2の表面F1、F2をつなぐように空間GPの一部を充填する充填部20が形成される。この結果、支持部30の空間GPに面して位置するボイドV1b(図7)と、空間GPに位置するボイドV1a(図7)とからなるボイドV1が生成される。
 さらに加熱が継続されることで、ボイドV1a、V1b、およびVcのそれぞれが、矢印H2a、H2b、およびH2cに示すように移動する。これにより、図2に示す炭化珪素基板81が得られる。
 本実施の形態によれば、単結晶基板11~19の各々の転位密度が支持部30の転位密度よりも低いので、炭化珪素基板81の結晶の品質を単結晶基板11~19の各々において特に高くすることができる。また炭化珪素基板81中の応力が、ボイドV1およびVcによって緩和されるので、炭化珪素基板81の反りの発生を抑制することができる。
 また単位体積当たりのボイド数は、単結晶基板11~19の各々内に比して支持部30内において多い。よって、単結晶基板11~19の各々内におけるボイド数を抑制しつつ、支持部30内のボイド数を多くすることで、応力緩和のために十分なボイド数を確保することができる。よって単結晶基板11~19の品質を落とすことなく、炭化珪素基板81の反りの発生を抑制することができる。
 また第1および第2の表面F1、F2(図2)が設けられるので、第1の表面F1のみが設けられる場合に比して、炭化珪素基板81の表面積を大きくすることができる。
 また空間GPは、第1および第2の表面F1、F2をつなぐように空間GPの一部を充填する充填部20を有する。これより空間GP中へ異物が溜まることが抑制される。
 また空間GPの空隙率(第2の空隙率)は単結晶基板11の空隙率(第1の空隙率)に比して高いので、充填部20が変形しやすくなる。これにより充填部20によって応力が緩和されやすくなるので、炭化珪素基板81の反りの発生がより抑制される。好ましくは空間GPの空隙率は、他の単結晶基板12~19の各々の空隙率に比しても高くされる。
 好ましくは、単結晶基板11は単位体積当たりの不純物濃度として第1の濃度を有し、支持部30は単位体積当たりの不純物濃度として第2の濃度を有する。第2の濃度は第1の濃度よりも高い。これにより支持部30の電気抵抗率を低くすることができる。
 好ましくは、支持部30の単位体積当たりのボイド数は10cm-3以上である。これにより炭化珪素基板81の反りの発生をより抑制することができる。
 好ましくは、上記のボイド数は、1μm3以上の体積を有するボイドの数である。これにより炭化珪素基板81の反りの発生をより確実に抑制することができる。
 好ましくは、単結晶基板11~19の各々のSiCの結晶構造は、ポリタイプ4H型を有する。これにより電力用半導体の製造に適した炭化珪素基板81が得られる。
 好ましくは、炭化珪素基板81の割れを防止するために、炭化珪素基板81における支持部30の熱膨張係数と、単結晶基板11~19の熱膨張係数との差がなるべく小さくされる。これにより炭化珪素基板81の反りの発生をより抑制することができる。このためには、たとえば、支持部30の結晶構造が単結晶基板11~19の結晶構造と同一とされればよい。
 好ましくは、熱処理前に準備される支持部30および単結晶基板群10(図4)の各々の厚さの面内ばらつきは、なるべく小さくされる。たとえば、このばらつきは10μm以下とされる。
 好ましくは、熱処理前に準備される支持部30の電気抵抗率は50mΩ・cm未満とされ、より好ましくは、10mΩ・cm未満とされる。
 好ましくは、炭化珪素基板81における支持部30の不純物濃度は、5×1018cm-3以上とされ、より好ましくは1×1020cm-3以上とされる。このような炭化珪素基板81を用いて縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などのように縦方向に電流を流す縦型半導体装置を製造することにより、縦型半導体装置のオン抵抗を低減することができる。
 好ましくは、炭化珪素基板81の電気抵抗率の平均値は、好ましくは5mΩ・cm以下とされ、より好ましくは、1mΩ・cm以下とされる。
 好ましくは、炭化珪素基板81の厚さ(図2における縦方向の寸法)は、300μm以上とされる。
 好ましくは、第1の表面F1は、{0001}面に対して50°以上65°以下のオフ角を有する。これにより、第1の表面F1が{0001}面である場合に比して、第1の表面F1におけるチャネル移動度を高めることができる。より好ましくは、以下の第1または第2の条件が満たされる。
 第1の条件下において、第1の表面F1のオフ方位と単結晶基板11の<1-100>方向とのなす角は5°以下である。さらに好ましくは、単結晶基板11の<1-100>方向における{03-38}面に対する第1の表面F1のオフ角は-3°以上5°以下である。
 第2の条件下において、第1の表面F1のオフ方位と単結晶基板11の<11-20>方向とのなす角は5°以下である。
 なお上記において単結晶基板11の第1の表面F1の好ましい方位について説明したが、好ましくは、他の単結晶基板12~19の各々の表面の方位についても同様とされる。
 (実施の形態2)
 主に図8を参照して、本実施の形態の炭化珪素基板82は、実施の形態1(図2)と異なり、ボイドV1b(図2)を有しない。炭化珪素基板82は、矢印Mb(図5)に示す物質移動をほとんど発生させずに、主に矢印Ma(図5)に示す物質移動によって充填部20を形成することによって得ることができる。
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。本実施の形態によっても実施の形態1と同様の効果が得られる。
 (実施の形態3)
 主に図9を参照して、本実施の形態の炭化珪素基板83は、基板領域R1(図2)の代わりに基板領域R3を有する。基板領域R3は、充填部21によって全体が充填された空間部GPを有する。また支持部30は、ボイドVcに加えて、ボイドV2を有する。ボイドV2は支持部30の内部にのみ位置している。炭化珪素基板83は、ボイドV1(図7)が支持部30内部に完全に入るまで熱処理が継続されることによって得ることができる。
 充填部21の材料は、たとえば、炭化珪素(SiC)、シリコン(Si)、接着剤、レジスト、樹脂、または酸化珪素(SiO2)である。
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。本実施の形態によっても実施の形態1と同様の効果が得られる。
 (実施の形態4)
 図10を参照して、本実施の形態の炭化珪素基板84は、基板領域R1(図2)の代わりに基板領域R4を有する。基板領域R4は、充填されていない空間部GPを有する。炭化珪素基板84は支持部30の形成を、たとえば図中矢印に示すように、第1および第2の裏面B1、B2上に炭化珪素を堆積することによって行うことで得られる。ボイドVcは、この堆積の際に形成される。この堆積によって得られる支持部30は、必ずしも単結晶構造を有する必要はなく、多結晶構造を有してもよい。
 図11を参照して、本実施の形態の変形例について説明する。本変形例においては、予めボイドVcを有する支持部30が準備される。支持部30としては、実施の形態1と同様のものの他、多結晶体または焼結体が用いられてもよい。そして図中矢印に示すように、支持部30の面と、単結晶基板11~13の各々の裏面とが接合される。この接合は、たとえば、単結晶基板11~13の各々と支持部30との間の界面を加熱することによって行うことができる。
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。本実施の形態によっても、実施の形態1と同様の効果が得られる。
 (実施の形態5)
 図12を参照して、本実施の形態の炭化珪素基板85は、基板領域R1(図2)の代わりに基板領域R5を有する。基板領域R5は単結晶基板11~19(図1)の代わりに単結晶基板11のみを有する。
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。本実施の形態によっても、実施の形態1と同様の効果が得られる。
 (実施の形態6)
 図13を参照して、本実施の形態の炭化珪素基板86は、基板領域R5(図12)の代わりに基板領域R6を有する。基板領域R6は、単結晶基板11に加えて、単結晶基板41(第3の単結晶基板)を有する。第3の単結晶基板41は、単結晶基板11(第1の単結晶基板)の第1の表面F1に接合されている。これにより基板領域R6は積層構造を有する。
 (実施の形態7)
 図14を参照して、本実施の形態の半導体装置100は、縦型DiMOSFET(Double Implanted Metal Oxide Semiconductor Field Effect Transistor)であって、炭化珪素基板81、バッファ層121、耐圧保持層122、p領域123、n+領域124、p+領域125、酸化膜126、ソース電極111、上部ソース電極127、ゲート電極110、およびドレイン電極112を有する。
 炭化珪素基板81は、本実施の形態においてはn型の導電型を有し、また実施の形態1で説明したように、支持部30および単結晶基板11を有する。ドレイン電極112は、単結晶基板11との間に支持部30を挟むように、支持部30上に設けられている。バッファ層121は、支持部30との間に単結晶基板11を挟むように、単結晶基板11上に設けられている。
 バッファ層121は、導電型がn型であり、その厚さはたとえば0.5μmである。またバッファ層121におけるn型の導電性不純物の濃度は、たとえば5×1017cm-3である。
 耐圧保持層122は、バッファ層121上に形成されており、また導電型がn型の炭化珪素からなる。たとえば、耐圧保持層122の厚さは10μmであり、そのn型の導電性不純物の濃度は5×1015cm-3である。
 この耐圧保持層122の表面には、導電型がp型である複数のp領域123が互いに間隔を隔てて形成されている。p領域123の内部において、p領域123の表面層にn+領域124が形成されている。また、このn+領域124に隣接する位置には、p+領域125が形成されている。一方のp領域123におけるn+領域124上から、p領域123、2つのp領域123の間において露出する耐圧保持層122、他方のp領域123および当該他方のp領域123におけるn+領域124上にまで延在するように、酸化膜126が形成されている。酸化膜126上にはゲート電極110が形成されている。また、n+領域124およびp+領域125上にはソース電極111が形成されている。このソース電極111上には上部ソース電極127が形成されている。
 酸化膜126と、半導体層としてのn+領域124、p+領域125、p領域123および耐圧保持層122との界面から10nm以内の領域における窒素原子濃度の最大値は1×1021cm-3以上となっている。これにより、特に酸化膜126下のチャネル領域(酸化膜126に接する部分であって、n+領域124と耐圧保持層122との間のp領域123の部分)の移動度を向上させることができる。
 次に半導体装置100の製造方法について説明する。なお図16~図19においては単結晶基板11~19(図1)のうち単結晶基板11の近傍における工程のみを示すが、単結晶基板12~単結晶基板19の各々の近傍においても、同様の工程が行なわれる。
 まず基板準備工程(ステップS110:図15)にて、炭化珪素基板81(図1および図2)が準備される。炭化珪素基板81の導電型はn型とされる。
 図16を参照して、エピタキシャル層形成工程(ステップS120:図15)により、バッファ層121および耐圧保持層122が、以下のように形成される。
 まず炭化珪素基板81の単結晶基板11の表面上にバッファ層121が形成される。バッファ層121は、導電型がn型の炭化珪素からなり、たとえば厚さ0.5μmのエピタキシャル層である。またバッファ層121における導電型不純物の濃度は、たとえば5×1017cm-3とされる。
 次にバッファ層121上に耐圧保持層122が形成される。具体的には、導電型がn型の炭化珪素からなる層が、エピタキシャル成長法によって形成される。耐圧保持層122の厚さは、たとえば10μmとされる。また耐圧保持層122におけるn型の導電性不純物の濃度は、たとえば5×1015cm-3である。
 図17を参照して、注入工程(ステップS130:図15)により、p領域123と、n+領域124と、p+領域125とが、以下のように形成される。
 まず導電型がp型の不純物が耐圧保持層122の一部に選択的に注入されることで、p領域123が形成される。次に、n型の導電性不純物を所定の領域に選択的に注入することによってn+領域124が形成され、また導電型がp型の導電性不純物を所定の領域に選択的に注入することによってp+領域125が形成される。なお不純物の選択的な注入は、たとえば酸化膜からなるマスクを用いて行われる。
 このような注入工程の後、活性化アニール処理が行われる。たとえば、アルゴン雰囲気中、加熱温度1700℃で30分間のアニールが行われる。
 図18を参照して、ゲート絶縁膜形成工程(ステップS140:図15)が行われる。具体的には、耐圧保持層122と、p領域123と、n+領域124と、p+領域125との上を覆うように、酸化膜126が形成される。この形成はドライ酸化(熱酸化)により行われてもよい。ドライ酸化の条件は、たとえば、加熱温度が1200℃であり、また加熱時間が30分である。
 その後、窒素アニール工程(ステップS150)が行われる。具体的には、一酸化窒素(NO)雰囲気中でのアニール処理が行われる。この処理の条件は、たとえば加熱温度が1100℃であり、加熱時間が120分である。この結果、耐圧保持層122、p領域123、n+領域124、およびp+領域125の各々と、酸化膜126との界面近傍に、窒素原子が導入される。
 なおこの一酸化窒素を用いたアニール工程の後、さらに不活性ガスであるアルゴン(Ar)ガスを用いたアニール処理が行われてもよい。この処理の条件は、たとえば、加熱温度が1100℃であり、加熱時間が60分である。
 図19を参照して、電極形成工程(ステップS160:図15)により、ソース電極111およびドレイン電極112が、以下のように形成される。
 まず酸化膜126上に、フォトリソグラフィ法を用いて、パターンを有するレジスト膜が形成される。このレジスト膜をマスクとして用いて、酸化膜126のうちn+領域124およびp+領域125上に位置する部分がエッチングにより除去される。これにより酸化膜126に開口部が形成される。次に、この開口部においてn+領域124およびp+領域125の各々と接触するように導体膜が形成される。次にレジスト膜を除去することにより、上記導体膜のうちレジスト膜上に位置していた部分の除去(リフトオフ)が行われる。この導体膜は、金属膜であってもよく、たとえばニッケル(Ni)からなる。このリフトオフの結果、ソース電極111が形成される。
 なお、ここでアロイ化のための熱処理が行なわれることが好ましい。たとえば、不活性ガスであるアルゴン(Ar)ガスの雰囲気中、加熱温度950℃で2分の熱処理が行なわれる。
 再び図14を参照して、ソース電極111上に上部ソース電極127が形成される。また、炭化珪素基板81の裏面上にドレイン電極112が形成される。また酸化膜126上にゲート電極110が形成される。以上により、半導体装置100が得られる。

 なお本実施の形態における導電型が入れ替えられた構成、すなわちp型とn型とが入れ替えられた構成を用いることもできる。
 また半導体装置100を作製するための炭化珪素基板は、実施の形態1の炭化珪素基板81に限定されるものではなく、たとえば炭化珪素基板82~86(実施の形態2~6)のいずれかであってもよい。
 また縦型DiMOSFETを例示したが、本発明の半導体基板を用いて他の半導体装置が製造されてもよく、たとえばRESURF-JFET(Reduced Surface Field-Junction Field Effect Transistor)またはショットキーダイオードが製造されてもよい。
 支持部30(図3)として、直径100mm、厚さ300μm、ポリタイプ4H、面方位(03-38)、n形不純物濃度1×1020cm-3、マイクロパイプ密度1×104cm-2、および積層欠陥密度1×105cm-1を有する炭化珪素ウエハが準備された。また単結晶基板群10すなわち単結晶基板11~19(図1)の各々として、20×20mmの正方形状、厚さ300μm、ポリタイプ4H、面方位(03-38)、n形不純物濃度1×1019cm-3、マイクロパイプ密度0.2cm-2、および積層欠陥密度1cm-1未満を有する炭化珪素ウエハが準備された。また第1および第2の加熱体91、92の各々としてのグラファイト片が準備された。
 単結晶基板11~19が第1の加熱体91上にマトリックス状に載置された。次に単結晶基板群10上に支持部30が載置された。次に支持部30上に第2の加熱体92が載置された。これにより、第1の加熱体91、単結晶基板群10、支持部30、および第2の加熱体92からなる積層体が準備された。
 上記の積層体が加熱装置の断熱容器40(図3)内に収められた。次に断熱容器40内の雰囲気が圧力1Paの窒素雰囲気とされた。次にヒータ50によって断熱容器40内の温度が約2100℃に加熱された。この加熱は第1の加熱体91よりも第2の加熱体92の近くに位置するヒータ50によって行なわれた。この結果、第1の加熱体91の温度に比して第2の加熱体92の温度が高くされた。これにより第1の加熱体91に面する単結晶基板群10の温度は、第2の加熱体92に面する支持部30の温度よりも低くされた。この状態が24時間保持されることで熱処理が行なわれた。これにより炭化珪素基板81(図1、図2)が得られた。
 炭化珪素基板81における支持部30の単位体積当たりのボイド数は10cm-3以上であった。またこの支持部30の不純物濃度は5×1020cm-3であった。すなわち熱処理後の支持部30の不純物濃度は、熱処理前の値である1×1020cm-3よりも大きくなっていた。この原因は、支持部30が上述した雰囲気中の窒素を取り込んだためと考えられる。
 炭化珪素基板81の断面をSEM(Scanning Electron Microscope)により観察したところ、熱処理前に単結晶基板11と支持部30との境界に存在していた空隙GQ(図5)は、ほぼ消失していた。
 なお本実施例においては熱処理において支持部30の温度よりも単結晶基板11の温度が低くされたが、このような温度差を設けない熱処理について実験を行ったところ、本実施例に比して空隙GQのより多くの部分が残存した。
 次に本実施例のさらなる試料として、上記と同様の方法によって、面方位(0001)および(03-38)の各々について、直径50mm、75mm、100mm、125mm、および150mmの炭化珪素基板が作製された。また比較例として、上記の各々の大きさに対応する単結晶からなる基板が準備された。これらの基板の各々に対してイオン注入を行い、そして活性化アニールが行われた。活性化アニールの条件は、雰囲気がAr雰囲気、圧力が90kPa、昇温レートが100℃/分、温度が1800℃、保持時間が30分間とされた。
 上記のようにして得られた各基板の反りが測定された。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この結果から、本実施例によれば、基板の反りの発生を抑制することができることがわかった。
 また上記の各基板の割れの確率が測定された。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この結果から、本実施例によれば、基板の割れの確率を低減することができることがわかった。
 なお本実施例においては活性化アニールとしてAr雰囲気が用いられたが、Heなどの他の不活性ガス、またはN2ガスの雰囲気が用いられた場合についても、同様の結果が得られた。
 また炭化珪素基板81における支持部30の単位体積当たりのボイド数と、上記の基板の反りとの相関について調べたところ、単位体積当たりのボイド数が小さくなるほど、基板の反りが大きくなることがわかった。特に、1μm3以上の体積を有するボイドの単位体積当たりの数が10cm-3未満とされると、割れが生じることがあった。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 11 単結晶基板(第1の単結晶基板)、12 単結晶基板(第2の単結晶基板)、13~19 単結晶基板、20 充填部、30 支持部、41 単結晶基板(第3の単結晶基板)、81~86 炭化珪素基板、91 第1の加熱体、92 第2の加熱体、100 半導体装置、R1,R3~R6 基板領域。

Claims (14)

  1.  第1の単結晶基板(11)を含む基板領域(R1)を備え、前記第1の単結晶基板は、互いに対向する第1の表面(F1)および第1の裏面(B1)と、前記第1の表面および前記第1の裏面をつなぐ第1の側面(S1)とを有し、さらに
     前記第1の裏面に接合された支持部(30)を備え、前記第1の単結晶基板の転位密度は前記支持部の転位密度よりも低く、かつ前記基板領域および前記支持部の少なくともいずれかはボイドを有する、炭化珪素基板(81)。
  2.  単位体積当たりのボイド数が、前記第1の単結晶基板内に比して前記支持部内において多い、請求の範囲第1項に記載の炭化珪素基板(81)。
  3.  前記第1の単結晶基板は単位体積当たりの不純物濃度として第1の濃度を有し、前記支持部は単位体積当たりの不純物濃度として第2の濃度を有し、前記第2の濃度は前記第1の濃度よりも高い、請求の範囲第1項に記載の炭化珪素基板。
  4.  前記基板領域は第2の単結晶基板(12)を含み、前記第2の単結晶基板は、互いに対向する第2の表面(F2)および第2の裏面(B2)と、前記第2の表面および前記第2の裏面をつなぐ第2の側面(S2)とを有し、前記第2の裏面は前記支持部に接合されている、請求の範囲第1項に記載の炭化珪素基板(81)。
  5. [規則91に基づく訂正 09.03.2011] 
     前記基板領域は、互いに対向する前記第1および第2の側面によって挟まれた空間部(GP)を含み、前記空間部は前記空間部の一部を充填する充填部(20)を有する、請求の範囲第4項に記載の炭化珪素基板。
  6.  前記第1の単結晶基板は第1の空隙率を有し、前記空間部は第2の空隙率を有し、前記第2の空隙率は前記第1の空隙率の比して高い、請求の範囲第5項に記載の炭化珪素基板。
  7.  前記基板領域は、前記第1の単結晶基板の前記第1の表面に接合された第3の単結晶基板(41)を含む、請求の範囲第1項に記載の炭化珪素基板(86)。
  8.  前記支持部の単位体積当たりのボイド数は10cm-3以上である、請求の範囲第1項に記載の炭化珪素基板。
  9.  前記ボイド数は、1μm3以上の体積を有するボイドに関するものである、請求の範囲第8項に記載の炭化珪素基板。
  10.  前記第1の表面は、{0001}面に対して50°以上65°以下のオフ角を有する、請求の範囲第1項に記載の炭化珪素基板。
  11.  前記第1の表面のオフ方位と前記第1の単結晶基板の<1-100>方向とのなす角は5°以下である、請求の範囲第10項に記載の炭化珪素基板。
  12.  前記第1の単結晶基板の<1-100>方向における{03-38}面に対する前記第1の表面のオフ角は-3°以上5°以下である、請求の範囲第11項に記載の炭化珪素基板。
  13.  前記第1の表面のオフ方位と前記第1の単結晶基板の<11-20>方向とのなす角は5°以下である、請求の範囲第10項に記載の炭化珪素基板。
  14.  前記第1の単結晶基板の前記第1の裏面(B1)は、スライスによって形成された面である、請求の範囲第1項に記載の炭化珪素基板(81)。
PCT/JP2010/066809 2009-12-16 2010-09-28 炭化珪素基板 WO2011074308A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/146,432 US20110284873A1 (en) 2009-12-16 2010-09-28 Silicon carbide substrate
CN2010800096536A CN102334176A (zh) 2009-12-16 2010-09-28 碳化硅衬底
CA2753373A CA2753373A1 (en) 2009-12-16 2010-09-28 Silicon carbide substrate
JP2011546013A JPWO2011074308A1 (ja) 2009-12-16 2010-09-28 炭化珪素基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009285239 2009-12-16
JP2009-285239 2009-12-16

Publications (1)

Publication Number Publication Date
WO2011074308A1 true WO2011074308A1 (ja) 2011-06-23

Family

ID=44167074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066809 WO2011074308A1 (ja) 2009-12-16 2010-09-28 炭化珪素基板

Country Status (7)

Country Link
US (1) US20110284873A1 (ja)
JP (1) JPWO2011074308A1 (ja)
KR (1) KR20120108912A (ja)
CN (1) CN102334176A (ja)
CA (1) CA2753373A1 (ja)
TW (1) TW201130130A (ja)
WO (1) WO2011074308A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073216A1 (ja) * 2011-11-14 2013-05-23 住友電気工業株式会社 炭化珪素基板、半導体装置およびこれらの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630342B1 (ko) 2012-09-28 2016-06-14 엘지디스플레이 주식회사 액정 표시장치 및 그 조립방법
JP5958352B2 (ja) * 2013-01-15 2016-07-27 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP6206012B2 (ja) * 2013-09-06 2017-10-04 住友電気工業株式会社 炭化珪素半導体装置
US10096681B2 (en) * 2016-05-23 2018-10-09 General Electric Company Electric field shielding in silicon carbide metal-oxide-semiconductor (MOS) device cells
CN109192350B (zh) * 2018-10-08 2020-03-24 山西大同大学 一种基于碳化硅材料的肖特基微型核电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129397A (ja) * 1997-07-04 1999-02-02 Nippon Pillar Packing Co Ltd 単結晶SiCおよびその製造方法
WO2001018872A1 (fr) * 1999-09-07 2001-03-15 Sixon Inc. TRANCHE DE SiC, DISPOSITIF A SEMI-CONDUCTEUR DE SiC, ET PROCEDE DE PRODUCTION D'UNE TRANCHE DE SiC
JP2002280531A (ja) * 2001-03-19 2002-09-27 Denso Corp 半導体基板及びその製造方法
US7314520B2 (en) 2004-10-04 2008-01-01 Cree, Inc. Low 1c screw dislocation 3 inch silicon carbide wafer
JP2009117533A (ja) * 2007-11-05 2009-05-28 Shin Etsu Chem Co Ltd 炭化珪素基板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675176A (en) * 1994-09-16 1997-10-07 Kabushiki Kaisha Toshiba Semiconductor device and a method for manufacturing the same
US7109521B2 (en) * 2004-03-18 2006-09-19 Cree, Inc. Silicon carbide semiconductor structures including multiple epitaxial layers having sidewalls
JP2009081352A (ja) * 2007-09-27 2009-04-16 Seiko Epson Corp 半導体基板の製造方法及び半導体基板
JP5504597B2 (ja) * 2007-12-11 2014-05-28 住友電気工業株式会社 炭化ケイ素半導体装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129397A (ja) * 1997-07-04 1999-02-02 Nippon Pillar Packing Co Ltd 単結晶SiCおよびその製造方法
WO2001018872A1 (fr) * 1999-09-07 2001-03-15 Sixon Inc. TRANCHE DE SiC, DISPOSITIF A SEMI-CONDUCTEUR DE SiC, ET PROCEDE DE PRODUCTION D'UNE TRANCHE DE SiC
JP2002280531A (ja) * 2001-03-19 2002-09-27 Denso Corp 半導体基板及びその製造方法
US7314520B2 (en) 2004-10-04 2008-01-01 Cree, Inc. Low 1c screw dislocation 3 inch silicon carbide wafer
JP2008515748A (ja) * 2004-10-04 2008-05-15 クリー インコーポレイテッド 低1cらせん転位の3インチ炭化珪素ウェハ
JP2009117533A (ja) * 2007-11-05 2009-05-28 Shin Etsu Chem Co Ltd 炭化珪素基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073216A1 (ja) * 2011-11-14 2013-05-23 住友電気工業株式会社 炭化珪素基板、半導体装置およびこれらの製造方法

Also Published As

Publication number Publication date
CA2753373A1 (en) 2011-06-23
US20110284873A1 (en) 2011-11-24
CN102334176A (zh) 2012-01-25
TW201130130A (en) 2011-09-01
JPWO2011074308A1 (ja) 2013-04-25
KR20120108912A (ko) 2012-10-05

Similar Documents

Publication Publication Date Title
US10741683B2 (en) Semiconductor device and method for manufacturing same
WO2010131573A1 (ja) 絶縁ゲート型バイポーラトランジスタ
US8435866B2 (en) Method for manufacturing silicon carbide substrate
WO2011161976A1 (ja) 炭化珪素基板の製造方法および製造装置
WO2011074308A1 (ja) 炭化珪素基板
WO2010131571A1 (ja) 半導体装置
WO2011077797A1 (ja) 炭化珪素基板
JP2011256053A (ja) 複合基板およびその製造方法
TW201201284A (en) Method for manufacturing silicon carbide substrate, method for manufacturing semiconductor device, silicon carbide substrate and semiconductor device
WO2012132594A1 (ja) 炭化珪素基板
JP2011071204A (ja) 半導体基板の製造方法
JP2011071196A (ja) 半導体基板の製造方法
JP2011166022A (ja) 炭化珪素基板の製造方法
JP2011236064A (ja) 炭化珪素基板の製造方法
JP2011068504A (ja) 半導体基板の製造方法
JP2011210864A (ja) 半導体基板
WO2011158535A1 (ja) 複合基板の製造方法および複合基板
JP2011071195A (ja) 半導体基板の製造方法
JP2011108727A (ja) 半導体基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009653.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13146432

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011546013

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2753373

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20117019567

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010837338

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE