WO2013073216A1 - 炭化珪素基板、半導体装置およびこれらの製造方法 - Google Patents

炭化珪素基板、半導体装置およびこれらの製造方法 Download PDF

Info

Publication number
WO2013073216A1
WO2013073216A1 PCT/JP2012/061835 JP2012061835W WO2013073216A1 WO 2013073216 A1 WO2013073216 A1 WO 2013073216A1 JP 2012061835 W JP2012061835 W JP 2012061835W WO 2013073216 A1 WO2013073216 A1 WO 2013073216A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
substrate
layer
carbide substrate
manufacturing
Prior art date
Application number
PCT/JP2012/061835
Other languages
English (en)
French (fr)
Inventor
浩史 野津
原田 真
石橋 恵二
勉 堀
雄 斎藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2013073216A1 publication Critical patent/WO2013073216A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide

Definitions

  • the present invention relates to a silicon carbide substrate, a semiconductor device, and a manufacturing method thereof, and more specifically, a silicon carbide substrate capable of forming a high-quality epitaxial growth layer, a semiconductor device including the silicon carbide substrate, and these It relates to a manufacturing method.
  • silicon carbide is being adopted as a material constituting the semiconductor device.
  • Silicon carbide is a wide band gap semiconductor having a larger band gap than silicon that has been widely used as a material constituting a semiconductor device. Therefore, by adopting silicon carbide as a material constituting the semiconductor device, it is possible to achieve a high breakdown voltage and a low on-resistance of the semiconductor device.
  • a semiconductor device that employs silicon carbide as a material has an advantage that a decrease in characteristics when used in a high temperature environment is small as compared with a semiconductor device that employs silicon as a material.
  • a large-diameter substrate is obtained by bonding a small-diameter SiC substrate excellent in crystallinity and a large-diameter base substrate by a proximity sublimation method or the like.
  • a silicon carbide substrate that can be handled can be obtained.
  • sufficient adhesion between the SiC substrate and the base substrate can be obtained.
  • the filling rate decreases in the gap and the surface roughness in the filling portion. Poor filling such as deterioration may occur.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a silicon carbide substrate capable of forming a high-quality epitaxial growth layer, a semiconductor device including the silicon carbide substrate, and a method for manufacturing the same. .
  • a silicon carbide substrate according to the present invention includes a base layer made of silicon carbide, a silicon carbide layer made of single crystal silicon carbide, arranged side by side on the base layer in plan view, and an adjacent silicon carbide layer. And a filling portion made of silicon carbide. Moreover, the surface roughness of a filling part is 50 micrometers or less by RMS value.
  • the surface roughness of the filling portion filling the gap formed between the adjacent silicon carbide layers is reduced to 50 ⁇ m or less in terms of the RMS value. Therefore, in the formation of the epitaxial growth layer on the surface of the silicon carbide substrate according to the present invention, the formation of abnormally grown crystals is suppressed, and as a result, the generation of particles generated due to such crystal breakage is suppressed. Can do. Therefore, according to the silicon carbide substrate according to the present invention, a silicon carbide substrate capable of forming a high-quality epitaxial growth layer can be provided.
  • the surface roughness of the filling portion may be an RMS value of 0.1 ⁇ m or more.
  • the surface roughness of the filling portion is 0.1 ⁇ m or less in terms of the RMS value, a remarkable effect can be obtained by reducing the surface roughness of the filling portion with respect to the yield of the semiconductor device using the silicon carbide substrate. Absent. Therefore, by reducing the surface roughness of the filling portion to an RMS value of 0.1 ⁇ m or more, it is possible to form a high-quality epitaxial growth layer, and to reduce the cost and improve the productivity in manufacturing the silicon carbide substrate. Can do.
  • the surface roughness of the silicon carbide layer may be an RMS value of 0.5 nm or less. Thereby, a high quality epitaxial growth layer can be more easily formed on the silicon carbide substrate.
  • the dislocation density of the silicon carbide layer may be 1 ⁇ 10 3 cm ⁇ 2 or more and 2 ⁇ 10 4 cm ⁇ 2 or less. Thereby, the yield of the semiconductor device using the said silicon carbide substrate can be improved.
  • the carrier concentration of the silicon carbide layer may be 2 ⁇ 10 18 cm ⁇ 3 or more and 2 ⁇ 10 19 cm ⁇ 3 or less. Thereby, a favorable on-resistance can be achieved in a semiconductor device using the silicon carbide substrate.
  • the diameter of the silicon carbide substrate may be 110 mm or more.
  • each of the plurality of silicon carbide layers may be made of hexagonal silicon carbide. Further, the off angle of the surface constituting the main surface opposite to the base layer of each of the plurality of silicon carbide layers with respect to the ⁇ 0001 ⁇ plane may be not less than 0.1 ° and not more than 10 °. Thereby, an epitaxial growth layer can be easily formed on the silicon carbide substrate.
  • each of the plurality of silicon carbide layers may be made of hexagonal silicon carbide. Further, the off angle of the surface constituting the main surface opposite to the base layer of each of the plurality of silicon carbide layers with respect to the ⁇ 03-38 ⁇ plane may be 4 ° or less. Thereby, a good channel mobility can be achieved in the semiconductor device using the silicon carbide substrate.
  • the number of metal atoms per 1 cm 2 existing on the main surface on the side where the silicon carbide layer is disposed may be 1 ⁇ 10 15 or less. Thereby, a high quality epitaxial growth layer can be more easily formed on the silicon carbide substrate.
  • the number of Na atoms per 1 cm 2 existing on the main surface on the side where the silicon carbide layer is disposed may be 1 ⁇ 10 14 or less. Thereby, a high quality epitaxial growth layer can be more easily formed on the silicon carbide substrate.
  • the semiconductor device includes a substrate and an electrode formed on the substrate.
  • the substrate is a silicon carbide substrate according to the present invention.
  • the semiconductor device according to the present invention includes the silicon carbide substrate according to the present invention, which can form a high-quality epitaxial growth layer. Therefore, according to the semiconductor device according to the present invention, a high-quality semiconductor device can be provided.
  • the semiconductor device may further include an epitaxial growth layer formed on the substrate.
  • the electrode may be formed on the epitaxial growth layer.
  • a method of manufacturing a silicon carbide substrate includes a composite substrate in which a plurality of silicon carbide layers made of single crystal silicon carbide arranged side by side in a plan view are held by a base layer made of silicon carbide Filling the gap between the adjacent silicon carbide layers after the step of preparing the surface layer, the step of removing the surface layer portion of the base layer exposed from between the adjacent silicon carbide layers, and the step of removing the surface layer portion of the base layer. And a step of forming a filling portion made of silicon carbide.
  • a plurality of silicon carbide layers made of single crystal silicon carbide arranged side by side in a plan view are held in a base layer made of silicon carbide.
  • the step of preparing the composite substrate the step of forming the coating layer covering the surface of the base layer exposed from between the adjacent silicon carbide layers, and the step of forming the coating layer covering the surface of the base layer, adjacent carbonization Filling a gap between the silicon layers and forming a filling portion made of silicon carbide.
  • the present inventor has conducted detailed studies on the cause of the decrease in the filling rate of the gaps between adjacent silicon carbide layers and the deterioration of the surface roughness at the filling portion. As a result, it has become clear that the cause is that the surface roughness of the base layer exposed from between the adjacent silicon carbide layers is large.
  • the base layer portion exposed from between adjacent silicon carbide layers is removed before the filling portion is formed, whereby the base is formed.
  • the surface roughness of the layer is reduced.
  • a covering layer that covers the surface of the base layer exposed from between adjacent silicon carbide layers is formed before the filling portion is formed.
  • the surface roughness of the base layer is reduced.
  • a silicon carbide substrate in which a decrease in filling rate in the gap between the silicon layers and a deterioration in surface roughness in the filling part are suppressed can be manufactured. Therefore, in the formation of the epitaxial growth layer on the silicon carbide substrate, the abnormal growth of the crystal generated due to the decrease in the filling rate in the gap between the silicon carbide layers and the deterioration of the surface roughness in the filling portion is suppressed, As a result, generation of particles that cause deterioration in quality such as electrical characteristics and durability of the semiconductor device is suppressed. Therefore, according to the method for manufacturing a silicon carbide substrate according to the present invention, a silicon carbide substrate capable of forming a high-quality epitaxial growth layer can be manufactured.
  • the surface roughness of the base layer exposed from between adjacent silicon carbide layers is 0.5 ⁇ m in terms of RMS value.
  • the surface layer portion of the base layer may be removed so as to be as follows.
  • a coating layer made of silicon carbide may be formed.
  • a silicon carbide substrate capable of forming a high-quality epitaxial growth layer can be more easily manufactured.
  • a coating layer made of amorphous or polycrystalline silicon carbide may be formed.
  • the step of forming the covering layer covers a surface of the base layer exposed between adjacent silicon carbide layers, and includes a precursor containing an organic material composed of Si and C
  • a step of forming a body layer and a step of forming a coating layer made of silicon carbide by firing the precursor layer may be included.
  • the coating layer in the step of forming the coating layer, may be formed by a CVD method.
  • the coating layer in the step of forming the coating layer, may be formed so that the surface roughness of the coating layer is 0.3 ⁇ m or less in terms of RMS value.
  • the method for manufacturing a semiconductor device includes a step of preparing a substrate and a step of arranging electrodes on the substrate.
  • a silicon carbide substrate manufactured by the method for manufacturing a silicon carbide substrate according to the present invention is prepared.
  • the semiconductor device manufacturing method includes a step of preparing a substrate and a step of arranging electrodes on the substrate.
  • the silicon carbide substrate according to the present invention is prepared.
  • a silicon carbide substrate that is capable of forming a high-quality epitaxial growth layer is prepared that is manufactured by the method for manufacturing a silicon carbide substrate according to the present invention.
  • a silicon carbide substrate according to the present invention capable of forming a higher quality epitaxial growth layer is prepared. Therefore, according to the method for manufacturing a semiconductor device according to the present invention, a high-quality semiconductor device can be manufactured by forming a high-quality epitaxial growth layer.
  • the semiconductor device manufacturing method may further include a step of forming an epitaxial growth layer on the substrate.
  • the electrode may be formed on the epitaxial growth layer.
  • a silicon carbide substrate capable of forming a high-quality epitaxial growth layer and a semiconductor device including the silicon carbide substrate These manufacturing methods can also be provided.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate according to the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate according to the second embodiment.
  • 10 is a flowchart schematically showing a method for manufacturing a silicon carbide substrate according to a third embodiment.
  • MOSFET 1 as a semiconductor device according to the present embodiment includes a silicon carbide substrate 10, a semiconductor layer 20 that is an epitaxial growth layer, an oxide film 30, a gate electrode 40, a source electrode 50, And a drain electrode 60.
  • a drift region 21, a body region 22, a source region 23, and a contact region 24 are formed.
  • Silicon carbide substrate 10 is a silicon carbide substrate according to the present embodiment.
  • silicon carbide substrate 10 includes a base layer 11 made of silicon carbide, a plurality of silicon carbide layers 12 made of single crystal silicon carbide, and a filling portion 13 made of silicon carbide.
  • a plurality of silicon carbide layers 12 are arranged side by side on main surface 11A of base layer 11 so as to be spaced apart from each other when viewed in a plan view.
  • Filling portion 13 is formed to fill a gap between adjacent silicon carbide layers 12.
  • the surface roughness of the main surface 13A of the filling portion 13 is an RMS value of 50 ⁇ m or less.
  • drift region 21 is formed on one main surface of silicon carbide substrate 10.
  • Drift region 21 has an n-type conductivity by including an n-type impurity such as N (nitrogen).
  • Body region 22 includes main surface 20 ⁇ / b> A of semiconductor layer 20, and is formed on the side opposite to silicon carbide substrate 10 when viewed from drift region 21.
  • Body region 22 has a p-type conductivity by including a p-type impurity such as Al (aluminum) or B (boron).
  • the source region 23 includes the main surface 20A and is formed so as to contact the body region 22.
  • Source region 23 includes an n-type impurity such as P (phosphorus), for example, and has an n-type conductivity similar to drift region 21, and its concentration is higher than that of drift region 21.
  • P phosphorus
  • Contact region 24 includes main surface 20 ⁇ / b> A and is formed to contact body region 22 and source region 23. Similar to body region 22, contact region 24 has a p-type conductivity by containing a p-type impurity such as Al (aluminum) or B (boron), and its concentration is higher than that of body region 22. It is high.
  • a p-type impurity such as Al (aluminum) or B (boron
  • Oxide film 30 is made of, for example, SiO 2 (silicon dioxide), and is formed to partially cover main surface 20A.
  • the gate electrode 40 is made of a conductor such as polysilicon or Al to which impurities are added, and is formed on the oxide film 30 in contact therewith. More specifically, the gate electrode 40 is formed so as to extend from one source region 23 facing the other to the other source region 23 under the gate electrode 40.
  • Source electrode 50 is formed on main surface 20 ⁇ / b> A so as to be in contact with source region 23 and contact region 24.
  • the source electrode 50 is made of a material capable of making ohmic contact with the source region 23, for example, Ni x Si y (nickel silicide), Ti x Si y (titanium silicide), Al x Si y (aluminum silicide), and Ti x Al. It is made of y Si z (titanium aluminum silicide) or the like and is electrically connected to the source region 23.
  • Drain electrode 60 is formed in contact with the main surface opposite to the drift region 21 when viewed from the silicon carbide substrate 10. Drain electrode 60 is made of the same material as source electrode 50, for example, and is electrically connected to silicon carbide substrate 10.
  • MOSFET 1 as a semiconductor device according to the present embodiment.
  • the voltage applied to gate electrode 40 is less than the threshold voltage, that is, in the off state, even if a voltage is applied between source electrode 50 and drain electrode 60, drift is caused between body region 22 and drift.
  • the pn junction formed with the region 21 is reverse-biased and becomes non-conductive.
  • a voltage higher than the threshold voltage is applied to the gate electrode 40, an inversion layer is formed in the channel region of the body region 22 (the body region 22 below the gate electrode 40).
  • the source region 23 and the drift region 21 are electrically connected, and a current flows between the source electrode 50 and the drain electrode 60.
  • the MOSFET 1 operates.
  • silicon carbide substrate 10 according to the present embodiment surface roughness of main surface 13A of filling portion 13 that fills a gap formed between adjacent silicon carbide layers 12 is an RMS value of 50 ⁇ m. It has been reduced to the following. Therefore, in the formation of the epitaxial growth layer on main surface 10A of silicon carbide substrate 10 according to the present embodiment, formation of abnormally grown crystals is suppressed, and as a result, generation of particles generated due to such crystal breakage is generated. Can be suppressed. Therefore, silicon carbide substrate 10 according to the present embodiment is a silicon carbide substrate capable of forming a high-quality epitaxial growth layer. Therefore, semiconductor layer 20 formed on main surface 10A of silicon carbide substrate 10 has high quality. Therefore, MOSFET 1 as the semiconductor device according to the present embodiment provided with silicon carbide substrate 10 according to the present embodiment is a high-quality semiconductor device.
  • surface roughness of main surface 13A of filling portion 13 may be an RMS value of 0.1 ⁇ m or more.
  • the surface roughness of the main surface 13A of the filling portion 13 is an RMS value of 30 ⁇ m or less. Is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less. Further, from the viewpoint of cost reduction and productivity improvement in the manufacture of the silicon carbide substrate, the surface roughness of the main surface 13A of the filling portion 13 is preferably 0.5 ⁇ m or more in terms of RMS value, and is 1 ⁇ m or more. It is more preferable.
  • surface roughness of main surface 12A of silicon carbide layer 12 may be an RMS value of 0.5 nm or less. Thereby, a high quality epitaxial growth layer can be more easily formed on main surface 10 ⁇ / b> A of silicon carbide substrate 10. Further, the surface roughness of main surface 12A of silicon carbide layer 12 is more preferably 0.3 nm or less in terms of RMS value.
  • the surface roughness of the main surface 12A of the silicon carbide layer 12 is, for example, a stylus type roughness meter, a laser displacement meter, a laser microscope, an optical interference roughness meter, or an atomic force microscope (AFM: Atomic Force Microscope). It can measure using.
  • silicon carbide layer 12 may have a dislocation density of 1 ⁇ 10 3 cm ⁇ 2 or more and 2 ⁇ 10 4 cm ⁇ 2 or less. Thereby, the yield of the semiconductor device using silicon carbide substrate 10 can be improved.
  • the dislocation density of silicon carbide layer 12 is more preferably 3 ⁇ 10 3 cm ⁇ 2 or more and 1 ⁇ 10 4 cm ⁇ 2 or less.
  • silicon carbide layer 12 may have a carrier concentration of 2 ⁇ 10 18 cm ⁇ 3 or more and 2 ⁇ 10 19 cm ⁇ 3 or less. Thereby, a favorable on-resistance can be achieved in a semiconductor device using silicon carbide substrate 10.
  • the carrier concentration of silicon carbide layer 12 is more preferably 5 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 19 cm ⁇ 3 or less.
  • the diameter of silicon carbide substrate 10 according to the present embodiment may be 110 mm or more, and more preferably 150 mm or more.
  • each of the plurality of silicon carbide layers 12 may be made of hexagonal silicon carbide. Further, the off angle of the surface constituting main surface 12A opposite to base layer 11 of each of the plurality of silicon carbide layers 12 with respect to the ⁇ 0001 ⁇ plane may be not less than 0.1 ° and not more than 10 °. . Thereby, an epitaxial growth layer can be easily formed on silicon carbide substrate 10.
  • the off-angle relative to the ⁇ 03-38 ⁇ plane of the surface constituting main surface 12A of each of the plurality of silicon carbide layers 12 may be 4 ° or less. Good. Thereby, good channel mobility can be achieved in MOSFET 1 using silicon carbide substrate 10. Further, each of the plurality of silicon carbide layers 12 may have an off angle of 4 ° or less with respect to the ⁇ 01-11 ⁇ plane or the ⁇ 01-12 ⁇ plane of the plane constituting main surface 12A.
  • the number of metal atoms per 1 cm 2 existing on main surface 10A on the side where silicon carbide layer 12 is disposed is 1 ⁇ 10 15 or less. Good.
  • metal impurities are present on main surface 10A of silicon carbide substrate 10
  • epitaxial growth on main surface 10A is hindered, and formation of abnormally grown crystals is more easily promoted.
  • by making the number of metal atoms present on main surface 10A of silicon carbide substrate 10 in the above range growth of abnormally grown crystals in epitaxial growth can be suppressed.
  • semiconductor layer 20 formed on main surface 10A of silicon carbide substrate 10 has a higher quality, and as a result, the yield of a semiconductor device using silicon carbide substrate 10 can be further improved.
  • the number of metal atoms present on the main surface 10A of the silicon carbide substrate 10 can be measured by extracting the metal with a chemical and using ICP-MS (Inductively Coupled Plasma Mass Spectrometry). At this time, not only the metal present in the flat portion of the main surface 10A but also the metal present in the recessed portion or the void portion, for example, can be extracted and measured. Any chemical solution can be used as long as it can effectively extract the metal present on the main surface 10A. For example, hydrochloric acid, nitric acid, hydrofluoric acid, hydrofluoric acid, aqua regia or hydrochloric acid overwater may be employed. it can.
  • the number of metal atoms per 1 cm 2 existing on main surface 10A is preferably 1 ⁇ 10 14 or less. It is more preferably 10 ⁇ 13 or less, further preferably 1 ⁇ 10 12 or less, and further preferably 1 ⁇ 10 11 or less. Further, when the number of the metal atoms present on the main surface 10A is 5 ⁇ 10 9 or less, a remarkable effect cannot be obtained with respect to suppression of abnormal growth in epitaxial growth. Therefore, by setting the number of metal atoms to 5 ⁇ 10 9 or more, it is possible to reduce costs and improve productivity in substrate cleaning while suppressing abnormal growth in epitaxial growth.
  • the number of Na atoms per 1 cm 2 existing on main surface 10A on the side where silicon carbide layer 12 is disposed is 1 ⁇ 10 14 or less. Good.
  • the formation of abnormally grown crystals during epitaxial growth is more facilitated, and oxidation on main surface 10A is more likely to proceed.
  • the number of Na atoms present on main surface 10A of silicon carbide substrate 10 within the above range, growth of abnormally grown crystals in epitaxial growth is suppressed and progress of oxidation on main surface 10A is suppressed. can do.
  • semiconductor layer 20 formed on main surface 10A of silicon carbide substrate 10 has a higher quality, and as a result, the yield of a semiconductor device using silicon carbide substrate 10 can be further improved.
  • the number of Na atoms per 1 cm 2 present on main surface 10A of silicon carbide substrate 10 is preferably 1 ⁇ 10 13 or less, more preferably 1 ⁇ 10 12 or less, and 1 ⁇ 10 11. Or less, more preferably 1 ⁇ 10 10 or less.
  • the number of Na atoms on main surface 10A is 5 ⁇ 10 9 or less, a remarkable effect cannot be obtained for abnormal growth in epitaxial growth and suppression of the progress of oxidation on main surface 10A. Therefore, by setting the number of Na atoms to 5 ⁇ 10 9 or more, it is possible to reduce costs and improve productivity in substrate cleaning while suppressing abnormal growth in epitaxial growth and progress of oxidation on the main surface 10A. .
  • MOSFET 1 as the semiconductor device according to the present embodiment can be manufactured by the method for manufacturing a semiconductor device according to the present embodiment.
  • a silicon carbide substrate preparation step is performed.
  • the silicon carbide substrate according to the present embodiment is implemented by carrying out the method for manufacturing the silicon carbide substrate according to the present embodiment including the steps (S11) to (S13) described below. 10 is prepared.
  • a composite substrate preparation step is performed.
  • a plurality of SiC substrates 12 made of single-crystal silicon carbide and base substrate 11 made of silicon carbide are prepared.
  • the SiC substrate 12 may be chamfered in advance.
  • a plurality of SiC substrates 12 are arranged side by side on main surface 11A of base substrate 11 so that a gap is formed between adjacent SiC substrates 12.
  • the plurality of SiC substrates 12 and base substrate 11 are bonded to each other by, for example, heating to a temperature equal to or higher than the sublimation temperature of silicon carbide.
  • a composite substrate 14 is prepared in which a plurality of SiC substrates 12 arranged side by side so as to be spaced apart from each other when viewed in plan are held by the base substrate 11.
  • the composite substrate 14 may be prepared as described below. That is, referring to FIG. 5, first, a plurality of SiC substrates 12 and a base substrate 11 are prepared. Next, a plurality of SiC substrates 12 are arranged side by side on main surface 11A of base substrate 11 so that end surfaces 12B of adjacent SiC substrates 12 are in contact with each other. Referring to FIG. 6, SiC substrate 12 is partially removed in the vicinity of a region where adjacent SiC substrates 12 contact each other, for example, by dicing, and a gap is formed between adjacent SiC substrates 12. In this way, the composite substrate 14 may be prepared.
  • the SiC substrate 12 and the base substrate 11 may be joined by the proximity sublimation method as described above, but is not limited thereto.
  • SiC substrate 12 and base substrate 11 may be bonded using a carbon adhesive or a SiC adhesive that forms SiC by heat treatment.
  • a surface layer part removing step is performed as a step (S12).
  • the surface layer portion of base substrate 11 exposed from between adjacent SiC substrates 12 is removed by, for example, dicing, polishing and etching. Further, in this step (S12), the surface layer portion of base substrate 11 is adjusted so that the surface roughness of main surface 11A of base substrate 11 exposed from between adjacent SiC substrates 12 is 0.5 ⁇ m or less in terms of RMS value. Removed.
  • the fall of the filling rate in the said clearance gap or the deterioration of the surface roughness in the filling part 13 is more effective. Can be suppressed.
  • a filling portion forming step is performed.
  • this step (S13) referring to FIGS. 8 and 9, after the surface layer portion of base substrate 11 is removed in step (S12), the gap between adjacent SiC substrates 12 is filled.
  • Filling portion 13 made of silicon carbide is formed. More specifically, referring to FIG. 8, first, composite substrate 14 and raw material substrate 15 made of silicon carbide are arranged on first support member 70 and second support member 71 arranged so as to face each other. Is done. Next, a mask layer 16 made of, for example, carbon is formed on the main surface of SiC substrate 12 facing raw material substrate 15. Next, the silicon carbide is sublimated from the surface of the raw material substrate 15 by heating the heater 72 to a predetermined temperature. Sublimated silicon carbide is deposited so as to fill the gaps between adjacent SiC substrates 12 to form a filling portion 13 made of silicon carbide as shown in FIG.
  • filling portion 13 made of silicon carbide may be formed by filling a gap between adjacent SiC substrates 12 with an organic material and performing heat treatment. More specifically, for example, an amorphous or polycrystalline silicon carbide is prepared by filling the gap with an organic material composed of Si and C, such as polycarbosilane, and performing a heat treatment at a temperature of 900 ° C. to 2100 ° C. A filling portion 13 may be formed.
  • ultrasonic cleaning may be further performed after the formation of the filling portion 13 is completed. Since the surface of the filling portion 13 has a large surface area due to the unevenness, impurities such as metal are easily accumulated. Therefore, the accumulated impurities can be removed by performing ultrasonic cleaning as described above.
  • organic alkali such as choline or TMAH (Tetra Methyl Ammonium Hydroxide)
  • hydrochloric acid nitric acid
  • sulfuric acid hydrofluoric acid
  • hydrofluoric acid hydrofluoric acid
  • aqua regia or hydrochloric acid overwater can be employed.
  • ultrasonic cleaning may be performed in multiple stages by combining a plurality of the above chemical solutions. Further, the accumulated impurities can be more effectively removed by raising the temperature of the chemical solution during ultrasonic cleaning.
  • a surface polishing step is performed.
  • main surface 10A of silicon carbide substrate 10 is planarized by polishing. Thereby, a higher quality epitaxial growth layer can be formed on main surface 10 ⁇ / b> A of silicon carbide substrate 10.
  • step (S30) an epitaxial growth step is performed as a step (S30).
  • semiconductor layer 20 made of, for example, n-type silicon carbide is formed on main surface 10A of silicon carbide substrate 10 by epitaxial growth.
  • an ion implantation step is performed.
  • this step (S40) referring to FIG. 11, first, for example, Al ions are implanted into a region including main surface 20A of semiconductor layer 20, whereby body region 22 is formed.
  • source region 23 is formed by being implanted at a depth shallower than the Al ion implantation depth.
  • Al ions are implanted into a region adjacent to the source region 23 and including the main surface 20A, whereby a contact region 24 having a depth equivalent to that of the source region 23 is formed.
  • a region where the body region 22, the source region 23, and the contact region 24 are not formed becomes a drift region 21.
  • an activation annealing step is performed as a step (S50).
  • the silicon carbide substrate 10 on which the semiconductor layer 20 including the drift region 21, the body region 22, the source region 23, and the contact region 24 is formed is heated, whereby the above step (S40).
  • the impurities introduced in are activated.
  • desired carriers are generated in the region where the impurity is introduced.
  • an oxide film forming step is performed.
  • silicon carbide substrate 10 on which semiconductor layer 20 is formed is heated to cover main surface 20A of semiconductor layer 20 in an atmosphere containing oxygen, for example.
  • an oxide film 30 made of SiO 2 (silicon dioxide) is formed.
  • step (S70) a gate electrode formation step is performed.
  • gate electrode 40 made of polysilicon is formed to be in contact with oxide film 30 by, for example, LPCVD (Low Pressure Chemical Vapor Deposition).
  • an ohmic electrode forming step is performed.
  • this step (S80) first, in the region where the source electrode 50 is to be formed, the oxide film 30 is removed, and a region where the source region 23 and the contact region 24 are exposed is formed.
  • a film made of, for example, Ni is formed.
  • a film made of Ni for example, is formed on the main surface of base substrate 11 opposite to the side where drift region 21 is formed. Thereafter, an alloying heat treatment is performed, and at least a part of the Ni film is silicided, whereby the source electrode 50 and the drain electrode 60 are formed.
  • the thickness of the substrate 10 may be adjusted before the drain electrode 60 is formed. Specifically, by grinding or polishing main surface 10B of substrate 10, base substrate 11 may be removed, and silicon carbide layer 12 may be further reduced in thickness. By doing so, the on-resistance of MOSFET 1 can be further reduced. When the base substrate 11 is removed in this way, various materials can be adopted as the material constituting the base substrate 11 without considering the influence on the device characteristics of the MOSFET 1. By performing the above steps (S10) to (S80), MOSFET 1 as the semiconductor device according to the present embodiment is manufactured, and the manufacturing method of the semiconductor device according to the present embodiment is completed.
  • the surface layer portion of base substrate 11 exposed from between adjacent SiC substrates 12 is removed before filling portion 13 is formed. Since the surface roughness of the base substrate 11 is reduced by this, the filling rate in the gap between the SiC substrates 12 decreases, the surface roughness in the filling portion 13 deteriorates, or the gap between the SiC substrate 12 and the base substrate 11 is reduced. Silicon carbide substrate 10 whose formation is suppressed can be manufactured. Therefore, in the formation of the epitaxial growth layer on the silicon carbide substrate 10, abnormal crystal growth or the like is suppressed, and as a result, generation of particles that cause deterioration in quality such as electrical characteristics and durability of the semiconductor device is suppressed.
  • silicon carbide substrate 10 capable of forming a high-quality epitaxial growth layer can be manufactured.
  • silicon carbide substrate 10 manufactured by the method for manufacturing a silicon carbide substrate according to the present embodiment is prepared. Therefore, according to the semiconductor device manufacturing method of the present embodiment, a high-quality semiconductor device can be manufactured.
  • Embodiment 2 a silicon carbide substrate, a semiconductor device, and a manufacturing method thereof according to Embodiment 2, which is another embodiment of the present invention, will be described.
  • the silicon carbide substrate and the semiconductor device according to the present embodiment basically have the same configuration as the silicon carbide substrate and the semiconductor device according to the first embodiment, and have the same effects.
  • the method for manufacturing the silicon carbide substrate and the semiconductor device according to the present embodiment is basically the same as the method for manufacturing the silicon carbide substrate and the semiconductor device according to the first embodiment, and has the same effects. Play.
  • a step of forming a covering layer that covers the surface of the base substrate Is different from the first embodiment in that is implemented.
  • a method for manufacturing a silicon carbide substrate according to the present embodiment will be described.
  • a step (S10) a composite substrate preparation step is performed.
  • this step (S10) referring to FIG. 4, as in the first embodiment, a plurality of SiC substrates 12 made of single crystal silicon carbide arranged side by side so as to be spaced apart from each other when seen in a plan view. Is prepared on a base substrate 11 made of silicon carbide.
  • a coating layer forming step is performed.
  • steps (S21) and (S22) described below are performed to form a coating layer 17B that covers the surface of base substrate 11 exposed from between adjacent SiC substrates 12.
  • a precursor layer forming step is performed.
  • a precursor layer 17A covering 11A is formed.
  • a firing step is performed as a step (S22).
  • precursor layer 17A is baked, and coating layer 17B made of silicon carbide is formed. More specifically, the precursor layer 17A made of polycarbosilane is baked by raising the temperature from a low temperature state to a temperature of 900 ° C. or higher and 2100 ° C.
  • a filling portion forming step is performed.
  • filling portion 13 that fills the gap between adjacent SiC substrates 12 is formed as in the first embodiment.
  • coating layer 17B that covers the surface of base substrate 11 exposed from between adjacent SiC substrates 12 before filling portion 13 is formed. Since the surface roughness of the base layer 11 is reduced, the silicon carbide substrate 10 in which the decrease in the filling rate in the gap between the SiC substrates 12 and the deterioration in the surface roughness in the filling portion 13 are suppressed. Can be manufactured.
  • the abnormal growth of crystals generated due to the decrease in the filling rate in the gap between the SiC substrates 12 and the deterioration in the surface roughness in the filling portion 13 is suppressed.
  • generation of particles that cause deterioration of quality such as electrical characteristics and durability of the semiconductor device is suppressed. Therefore, according to the method for manufacturing a silicon carbide substrate according to the present embodiment, silicon carbide substrate 10 capable of forming a high-quality epitaxial growth layer can be manufactured.
  • coating layer 17B may be formed so that the surface roughness thereof is an RMS value of 0.3 ⁇ m or less. Thereby, the fall of the filling rate in the clearance gap between SiC substrates 12 and the deterioration of the surface roughness in the filling part 13 can be suppressed more effectively.
  • the silicon carbide substrate and the semiconductor device according to the present embodiment basically have the same configuration as the silicon carbide substrate and the semiconductor device according to the first and second embodiments, and have the same effects.
  • the method for manufacturing the silicon carbide substrate and the semiconductor device according to the present embodiment is basically performed in the same manner as the method for manufacturing the silicon carbide substrate and the semiconductor device according to the second embodiment, and has the same effects. .
  • the method for manufacturing the silicon carbide substrate according to the present embodiment differs from the second embodiment in the method of forming the coating layer.
  • a method for manufacturing a silicon carbide substrate according to the present embodiment will be described.
  • a step (S10) a composite substrate preparation step is performed.
  • this step (S10) referring to FIG. 4, as in the first and second embodiments, a plurality of SiCs made of single crystal silicon carbide arranged side by side so as to be spaced apart from each other when viewed in a plan view.
  • a composite substrate 14 is prepared in which a substrate 12 is held on a base substrate 11 made of silicon carbide.
  • a CVD (Chemical Vapor Deposition) step is performed.
  • a coating layer 17B that covers main surface 11A of base substrate 11 exposed from between adjacent SiC substrates 12 is obtained by subjecting composite substrate 14 to a CVD process. It is formed.
  • coating layer 17B made of silicon carbide that covers the surface of base substrate 11 exposed from between adjacent SiC substrates 12 can be more easily formed.
  • a filling portion forming step is performed.
  • this step (S30) referring to FIG. 9, as in the first and second embodiments, filling portion 13 that fills the gap between adjacent SiC substrates 12 is formed.
  • steps (S10) to (S30) silicon carbide substrate 10 according to the present embodiment is manufactured, and the method for manufacturing the silicon carbide substrate according to the present embodiment is completed.
  • the surface layer portion of base substrate 11 exposed from between adjacent SiC substrates 12 is removed before filling portion 13 is formed. Is done.
  • the covering layer covering the surface of base substrate 11 exposed from between adjacent SiC substrates 12 before filling portion 13 is formed. 17B is formed.
  • silicon carbide substrate 10 in which a decrease in filling rate in a gap between adjacent SiC substrates 12 and a deterioration in surface roughness of filling portion 13 are suppressed can be manufactured. Therefore, in the formation of the epitaxial growth layer on the silicon carbide substrate 10, the abnormal growth of crystals generated due to the decrease in the filling rate in the gap between the SiC substrates 12 and the deterioration of the surface roughness of the filling portion 13 is suppressed. As a result, generation of particles that cause deterioration of quality such as electrical characteristics and durability of the semiconductor device is suppressed.
  • silicon carbide substrate 10 capable of forming a high-quality epitaxial growth layer can be manufactured.
  • the silicon carbide substrate manufactured by the method for manufacturing the silicon carbide substrate according to the above-described embodiment of the present invention and capable of forming a high-quality epitaxial growth layer. 10 is prepared. Therefore, according to the method for manufacturing a semiconductor device according to the embodiment of the present invention, high-quality MOSFET 1 can be manufactured.
  • a silicon carbide substrate having a structure similar to that of silicon carbide substrate 10 according to Embodiment 1 of the present invention described with reference to FIG. 2 was prepared. Specifically, first, a composite substrate was prepared in which a plurality of SiC substrates arranged side by side so as to form an interval when viewed in plan were held on a base substrate.
  • the seam part which fills the said clearance gap was formed by filling the clearance gap between SiC substrates by a sublimation method, or filling the said clearance gap with the said clearance gap, and heat-processing at 1500 degreeC.
  • the joint portion was formed such that the surface roughness was 0.05 ⁇ m, 0.1 ⁇ m, 1 ⁇ m, 5 ⁇ m, 20 ⁇ m, 50 ⁇ m, and 70 ⁇ m in terms of RMS value.
  • an epitaxially grown layer was formed on each silicon carbide substrate, and the occurrence frequency of abnormal crystal growth was confirmed.
  • the semiconductor device was manufactured using each silicon carbide substrate, and the yield at that time was confirmed. Table 1 shows the influence of the surface roughness of the joint portion of the silicon carbide substrate on the frequency of occurrence of abnormal crystal growth and the yield of the semiconductor device.
  • a silicon carbide substrate was prepared in the same manner as in Example 1.
  • the prepared silicon carbide substrate was subjected to ultrasonic cleaning to produce a silicon carbide substrate having a predetermined amount of metal on the main surface.
  • the ultrasonic cleaning was performed in a clean environment using ultrapure water and a chemical solution.
  • an epitaxially grown layer was formed on each silicon carbide substrate, and the occurrence frequency of abnormal crystal growth was confirmed.
  • the semiconductor device was manufactured using each silicon carbide substrate, and the yield at that time was confirmed.
  • Table 2 shows the influence of the amount of metal present on the main surface of the silicon carbide substrate on the frequency of occurrence of abnormal crystal growth and the yield of the semiconductor device.
  • the number of metal atoms per 1 cm 2 existing on the main surface of the silicon carbide substrate is larger than 1 ⁇ 10 15 and the number of Na atoms is larger than 1 ⁇ 10 14 .
  • the frequency of occurrence of abnormal crystal growth decreased.
  • the device yield of the semiconductor device improved.
  • the surface roughness of the joint portion is set to 50 ⁇ m or less, and the number of metal atoms per 1 cm 2 existing on the main surface is 1 ⁇ 10 15 or less, and Na It was confirmed that by setting the number of atoms to 1 ⁇ 10 14 or less, it is easier to form a high-quality epitaxial growth layer with less occurrence of abnormal crystal growth. Further, it has been confirmed that the device yield of the semiconductor device using the silicon carbide substrate is improved by facilitating the formation of a high quality epitaxial growth layer.
  • the silicon carbide substrate and semiconductor device of the present invention and the manufacturing method thereof can be applied particularly advantageously in the silicon carbide substrate and semiconductor device required to manufacture a high-quality semiconductor device, and the manufacturing method thereof.
  • 1 MOSFET 10 silicon carbide substrate, 11 base layer (base substrate), 12 silicon carbide layer (SiC substrate), 13 filling section, 14 composite substrate, 15 raw material substrate, 16 mask layer, 17A precursor layer, 17B coating layer, 20 semiconductor layer, 21 drift region, 22 body region, 23 source region, 24 contact region, 30 oxide film, 40 gate electrode, 50 source electrode, 60 drain electrode, 70 first support member, 71 second support member, 72 heater 10A, 11A, 12A, 13A, 20A main surface, 12B end surface.

Abstract

 炭化珪素基板(10)は、炭化珪素からなるベース層(11)と、単結晶炭化珪素からなり、平面的に見てベース層(11)上に並べて配置された炭化珪素層(12)と、隣り合う炭化珪素層(12)の間に形成された隙間を充填し、炭化珪素からなる充填部(13)とを備えている。また、充填部(13)の表面粗さは、RMS値で50μm以下である。

Description

炭化珪素基板、半導体装置およびこれらの製造方法
 本発明は、炭化珪素基板、半導体装置およびこれらの製造方法に関するものであり、より特定的には、高品質なエピタキシャル成長層を形成可能な炭化珪素基板および当該炭化珪素基板を備える半導体装置ならびにこれらの製造方法に関するものである。
 近年、半導体装置の高耐圧化、低損失化などを可能とするため、半導体装置を構成する材料としての炭化珪素の採用が進められている。炭化珪素は、従来より半導体装置を構成する材料として広く用いられている珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
 半導体装置を効率よく製造するためには、大口径の基板を用いることが有効である。そのため、単結晶炭化珪素からなる直径3インチまたは4インチの炭化珪素基板やその製造方法に関して種々の検討がなされ、たとえば昇華法を用いた炭化珪素基板の製造方法が提案されている。
 ここで、昇華法によって大口径の炭化珪素基板を作製するためには、温度が均一な領域を広くする必要がある。しかし、昇華法における炭化珪素の成長温度は2000℃以上と高く温度制御が困難であるため、温度が均一な領域を広くすることは容易ではない。さらに、昇華法による炭化珪素基板の作製においては、炭化珪素の結晶成長の過程を確認することが難しく、外形上同条件で炭化珪素を結晶成長させた場合でも、得られた基板(結晶)の品質が異なるという問題も生じ得る。このように、比較的大口径化が容易である昇華法を用いた場合でも、結晶性に優れた大口径の炭化珪素基板を作製することは困難である。
 これに対して、たとえば結晶性に優れた小口径のSiC基板を平面的に複数並べて配置した上で、これらを支持する大口径のベース基板を形成することにより、これらのSiC基板を結晶性に優れた大口径の炭化珪素基板として取り扱うことなどが提案されている(たとえば、国際公開第2011/052321号パンフレット(特許文献1)参照)。
国際公開第2011/052321号パンフレット
 特許文献1において提案されている炭化珪素基板の製造方法においては、結晶性に優れた小口径のSiC基板と大口径のベース基板とを近接昇華法等によって接合することにより、大口径の基板として取り扱うことが可能な炭化珪素基板を得ることができる。しかし、この方法においては、SiC基板とベース基板との十分な密着性が得られる一方で、隣り合うSiC基板の間の隙間を充填すると、上記隙間における充填率の低下や充填部における表面粗さの悪化などの充填不良が発生する場合がある。このような炭化珪素基板上にエピタキシャル成長層を形成すると、上述のような充填不良に起因して、たとえば針状突起などの異常成長した結晶が形成される。そして、このような針状突起は、その後の半導体装置の製造工程において容易に破損してパーティクル源となり、結果として半導体装置の電気特性や耐久性などの品質の劣化を招くという問題点がある。
 本発明は上記課題に鑑みてなされたものであり、その目的は、高品質なエピタキシャル成長層を形成可能な炭化珪素基板および当該炭化珪素基板を備える半導体装置ならびにこれらの製造方法を提供することである。
 本発明に従った炭化珪素基板は、炭化珪素からなるベース層と、単結晶炭化珪素からなり、平面的に見てベース層上に並べて配置された炭化珪素層と、隣り合う炭化珪素層の間に形成された隙間を充填し、炭化珪素からなる充填部とを備えている。また、充填部の表面粗さは、RMS値で50μm以下である。
 本発明に従った炭化珪素基板において、隣り合う炭化珪素層の間に形成された隙間を充填する充填部の表面粗さは、RMS値で50μm以下にまで低減されている。そのため、本発明に従った炭化珪素基板の表面上へのエピタキシャル成長層の形成においては、異常成長した結晶の形成が抑制され、その結果このような結晶の破損により生成するパーティクルの発生を抑制することができる。したがって、本発明に従った炭化珪素基板によれば、高品質なエピタキシャル成長層を形成可能な炭化珪素基板を提供することができる。
 上記炭化珪素基板において、充填部の表面粗さは、RMS値で0.1μm以上であってもよい。
 充填部の表面粗さがRMS値で0.1μm以下である場合には、上記炭化珪素基板を用いた半導体装置の歩留まりに対して、充填部の表面粗さの低減による顕著な効果は得られない。そのため、充填部の表面粗さをRMS値で0.1μm以上とすることにより、高品質なエピタキシャル成長層の形成を可能としつつ、上記炭化珪素基板の製造におけるコスト削減や生産性の改善を図ることができる。
 上記炭化珪素基板において、炭化珪素層の表面粗さは、RMS値で0.5nm以下であってもよい。これにより、上記炭化珪素基板上において高品質なエピタキシャル成長層をより容易に形成することができる。
 上記炭化珪素基板において、炭化珪素層の転位密度は、1×10cm-2以上2×10cm-2以下であってもよい。これにより、上記炭化珪素基板を用いた半導体装置の歩留まりを向上させることができる。
[規則91に基づく訂正 20.08.2012] 
 上記炭化珪素基板において、炭化珪素層のキャリア濃度は、2×1018cm-3以上2×1019cm-3以下であってもよい。これにより、上記炭化珪素基板を用いた半導体装置において良好なオン抵抗を達成することができる。
 上記炭化珪素基板の直径は、110mm以上であってもよい。このような大口径の炭化珪素基板を用いることにより、半導体装置の製造におけるコスト削減や効率化を図ることができる。
 上記炭化珪素基板において、複数の炭化珪素層の各々は、六方晶炭化珪素からなっていてもよい。また、複数の炭化珪素層の各々のベース層とは反対側の主表面を構成する面の{0001}面に対するオフ角は、0.1°以上10°以下であってもよい。これにより、上記炭化珪素基板上において容易にエピタキシャル成長層を形成することができる。
 上記炭化珪素基板において、複数の炭化珪素層の各々は、六方晶炭化珪素からなっていてもよい。また、複数の炭化珪素層の各々のベース層とは反対側の主表面を構成する面の{03-38}面に対するオフ角は、4°以下であってもよい。これにより、上記炭化珪素基板を用いた半導体装置において、良好なチャネル移動度を達成することができる。
 上記炭化珪素基板において、炭化珪素層が配置される側の主表面上に存在する1cm当たりの金属原子数は、1×1015以下であってもよい。これにより、上記炭化珪素基板上において高品質なエピタキシャル成長層をさらに容易に形成することができる。
 上記炭化珪素基板において、炭化珪素層が配置される側の主表面上に存在する1cm当たりのNa原子数は、1×1014以下であってもよい。これにより、上記炭化珪素基板上において高品質なエピタキシャル成長層を一層容易に形成することができる。
 本発明に従った半導体装置は、基板と、基板上に形成された電極とを備えている。また、基板は、上記本発明に従った炭化珪素基板である。
 本発明に従った半導体装置は、高品質なエピタキシャル成長層を形成可能な上記本発明に従った炭化珪素基板を備えている。したがって、本発明に従った半導体装置によれば、高品質な半導体装置を提供することができる。
 上記半導体装置は、基板上に形成されたエピタキシャル成長層をさらに備えていてもよい。また、電極は、エピタキシャル成長層上に形成されていてもよい。
 これにより、高品質なエピタキシャル成長層上に電極が形成された半導体装置を容易に製造することができる。
 本発明の一の局面に従った炭化珪素基板の製造方法は、平面的に見て並べて配置された単結晶炭化珪素からなる複数の炭化珪素層が炭化珪素からなるベース層に保持された複合基板を準備する工程と、隣り合う炭化珪素層の間から露出するベース層の表層部を除去する工程と、ベース層の表層部を除去する工程の後に、隣り合う炭化珪素層同士の隙間を充填し、炭化珪素からなる充填部を形成する工程とを備えている。
 また、本発明の他の局面に従った炭化珪素基板の製造方法は、平面的に見て並べて配置された単結晶炭化珪素からなる複数の炭化珪素層が炭化珪素からなるベース層に保持された複合基板を準備する工程と、隣り合う炭化珪素層の間から露出するベース層の表面を覆う被覆層を形成する工程と、ベース層の表面を覆う被覆層を形成する工程の後に、隣り合う炭化珪素層同士の隙間を充填し、炭化珪素からなる充填部を形成する工程とを備えている。
 本発明者は、隣り合う炭化珪素層同士の隙間の充填率の低下や充填部における表面粗さの悪化の原因について詳細な検討を行なった。その結果、隣り合う炭化珪素層の間から露出するベース層の表面粗さが大きいことが原因となっていることが明らかとなった。
[規則91に基づく訂正 20.08.2012] 
 本発明の一の局面に従った炭化珪素基板の製造方法では、充填部が形成される前に、隣り合う炭化珪素層の間から露出するベース層の表層部が除去されることにより、上記ベース層の表面粗さが低減される。また、本発明の他の局面に従った炭化珪素基板の製造方法では、充填部が形成される前に、隣り合う炭化珪素層の間から露出するベース層の表面を覆う被覆層が形成されることにより、上記ベース層の表面粗さが低減される。このように、本発明に従った炭化珪素基板の製造方法においては、充填部が形成される前に、隣り合う炭化珪素層の間から露出するベース層の表面粗さが低減されるため、炭化珪素層同士の隙間における充填率の低下や充填部における表面粗さの悪化が抑制された炭化珪素基板を製造することができる。そのため、炭化珪素基板上へのエピタキシャル成長層の形成においては、炭化珪素層同士の隙間における充填率の低下や充填部における表面粗さの悪化に起因して発生する結晶の異常成長などが抑制され、結果として半導体装置の電気特性や耐久性などの品質の劣化の原因となるパーティクルの発生が抑制される。したがって、本発明に従った炭化珪素基板の製造方法によれば、高品質なエピタキシャル成長層を形成可能な炭化珪素基板を製造することができる。
 上記一の局面に従った炭化珪素基板の製造方法において、ベース層の表層部を除去する工程では、隣り合う炭化珪素層の間から露出するベース層の表面粗さが、RMS値で0.5μm以下となるようにベース層の表層部が除去されてもよい。
[規則91に基づく訂正 20.08.2012] 
 これにより、隣り合う炭化珪素層同士の隙間における充填率の低下や充填部における表面粗さの悪化をより効果的に抑制することができる。
 上記他の局面に従った炭化珪素基板の製造方法において、被覆層を形成する工程では、炭化珪素からなる被覆層が形成されてもよい。
 このように、炭化珪素からなる被覆層を形成することにより、高品質なエピタキシャル成長層を形成可能な炭化珪素基板をより容易に製造することができる。
 上記他の局面に従った炭化珪素基板の製造方法において、被覆層を形成する工程では、非晶質または多結晶炭化珪素からなる被覆層が形成されてもよい。
 これにより、隣り合う炭化珪素層の間から露出するベース層の表面を覆う炭化珪素からなる被覆層をより容易に形成することができる。
 上記他の局面に従った炭化珪素基板の製造方法において、被覆層を形成する工程は、隣り合う炭化珪素層の間から露出するベース層の表面を覆い、SiおよびCからなる有機材料を含む前駆体層を形成する工程と、前駆体層を焼成することにより、炭化珪素からなる被覆層を形成する工程とを含んでいてもよい。
 これにより、隣り合う炭化珪素層の間から露出するベース層の表面を覆う炭化珪素からなる被覆層をさらに容易に形成することができる。
 上記他の局面に従った炭化珪素基板の製造方法において、被覆層を形成する工程では、CVD法により被覆層が形成されてもよい。
 これにより、隣り合う炭化珪素層の間から露出するベース層の表面を覆う炭化珪素からなる被覆層を一層容易に形成することができる。
 上記他の局面に従った炭化珪素基板の製造方法において、被覆層を形成する工程では、被覆層の表面粗さがRMS値で0.3μm以下となるように被覆層が形成されてもよい。
 これにより、炭化珪素層同士の隙間における充填率の低下や充填部における表面粗さの悪化をさらに効果的に抑制することができる。
 本発明の一の局面に従った半導体装置の製造方法は、基板を準備する工程と、基板上に電極を配置する工程とを備えている。そして、基板を準備する工程では、上記本発明に従った炭化珪素基板の製造方法により製造された炭化珪素基板が準備される。
 また、本発明の他の局面に従った半導体装置の製造方法は、基板を準備する工程と、基板上に電極を配置する工程とを備えている。そして、基板を準備する工程では、上記本発明に従った炭化珪素基板が準備される。
 本発明の一の局面に従った半導体装置の製造方法においては、上記本発明に従った炭化珪素基板の製造方法により製造された、高品質なエピタキシャル成長層を形成可能な炭化珪素基板が準備される。また、本発明の他の局面に従った半導体装置の製造方法においては、さらに高品質なエピタキシャル成長層を形成可能な上記本発明に従った炭化珪素基板が準備される。したがって、本発明に従った半導体装置の製造方法によれば、高品質なエピタキシャル成長層を形成することにより、高品質な半導体装置を製造することができる。
 上記半導体装置の製造方法は、基板上にエピタキシャル成長層を形成する工程をさらに備えていてもよい。また、電極を形成する工程では、エピタキシャル成長層上に電極が形成されてもよい。
 これにより、高品質なエピタキシャル成長層上に電極が形成された半導体装置を容易に製造することができる。
 以上の説明から明らかなように、本発明に従った炭化珪素基板、半導体装置およびこれらの製造方法によれば、高品質なエピタキシャル成長層を形成可能な炭化珪素基板および当該炭化珪素基板を備える半導体装置ならびにこれらの製造方法を提供することができる。
MOSFETの構造を示す概略断面図である。 炭化珪素基板の構造を示す概略断面図である。 MOSFETおよび炭化珪素基板の製造方法を概略的に示すフローチャートである。 炭化珪素基板の製造方法を説明するための概略断面図である。 炭化珪素基板の製造方法を説明するための概略断面図である。 炭化珪素基板の製造方法を説明するための概略断面図である。 炭化珪素基板の製造方法を説明するための概略断面図である。 炭化珪素基板の製造方法を説明するための概略断面図である。 炭化珪素基板の製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 実施の形態2に係る炭化珪素基板の製造方法を概略的に示すフローチャートである。 実施の形態2に係る炭化珪素基板の製造方法を説明するための概略断面図である。 実施の形態2に係る炭化珪素基板の製造方法を説明するための概略断面図である。 実施の形態3に係る炭化珪素基板の製造方法を概略的に示すフローチャートである。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。また、本明細書中においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示す。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
 (実施の形態1)
 まず、本発明の一実施の形態である実施の形態1に係る炭化珪素基板および半導体装置、ならびにこれらの製造方法について説明する。はじめに、本実施の形態に係る炭化珪素基板および半導体装置の構造について、図1および図2を参照して説明する。図1を参照して、本実施の形態に係る半導体装置としてのMOSFET1は、炭化珪素基板10と、エピタキシャル成長層である半導体層20と、酸化膜30と、ゲート電極40と、ソース電極50と、ドレイン電極60とを備えている。半導体層20には、ドリフト領域21と、ボディ領域22と、ソース領域23と、コンタクト領域24とが形成されている。また、炭化珪素基板10は、本実施の形態に係る炭化珪素基板である。
 図2を参照して、炭化珪素基板10は、炭化珪素からなるベース層11と、単結晶炭化珪素からなる複数の炭化珪素層12と、炭化珪素からなる充填部13とを備えている。炭化珪素層12は、平面的に見て互いに間隔が形成されるようにベース層11の主表面11A上に複数並べて配置されている。充填部13は、隣り合う炭化珪素層12の隙間を充填するように形成されている。また、充填部13の主表面13Aの表面粗さは、RMS値で50μm以下となっている。
 図1を参照して、ドリフト領域21は、炭化珪素基板10の一方の主表面上に形成されている。ドリフト領域21は、たとえばN(窒素)などのn型不純物を含むことにより、導電型がn型となっている。
 ボディ領域22は、半導体層20の主表面20Aを含み、ドリフト領域21から見て炭化珪素基板10とは反対側に形成されている。ボディ領域22は、たとえばAl(アルミニウム)やB(硼素)などのp型不純物を含むことにより、導電型がp型となっている。
 ソース領域23は、主表面20Aを含み、ボディ領域22に接触するように形成されている。ソース領域23は、たとえばP(リン)などのn型不純物を含むことにより、ドリフト領域21と同様に導電型がn型となっており、その濃度は、ドリフト領域21よりも高くなっている。
 コンタクト領域24は、主表面20Aを含み、ボディ領域22およびソース領域23に接触するように形成されている。コンタクト領域24は、ボディ領域22と同様に、たとえばAl(アルミニウム)やB(硼素)などのp型不純物を含むことにより導電型がp型となっており、その濃度は、ボディ領域22よりも高くなっている。
 酸化膜30は、たとえばSiO(二酸化珪素)からなっており、主表面20Aを部分的に覆うように形成されている。
 ゲート電極40は、たとえば不純物が添加されたポリシリコン、Alなどの導電体からなっており、酸化膜30上に接触して形成されている。より具体的には、ゲート電極40は、ゲート電極40下において互いに対向する一方のソース領域23から他方のソース領域23にまで延在するように形成されている。
 ソース電極50は、主表面20A上において、ソース領域23およびコンタクト領域24に接触するように形成されている。ソース電極50は、ソース領域23に対してオーミック接触することができる材料、たとえばNiSi(ニッケルシリサイド)、TiSi(チタンシリサイド)、AlSi(アルミシリサイド)およびTiAlSi(チタンアルミシリサイド)などからなっており、ソース領域23に対して電気的に接続されている。
 ドレイン電極60は、炭化珪素基板10から見てドリフト領域21とは反対側の主表面に接触して形成されている。ドレイン電極60は、たとえばソース電極50と同様の材料からなっており、炭化珪素基板10に対して電気的に接続されている。
 次に、本実施の形態に係る半導体装置としてのMOSFET1の動作について説明する。図1を参照して、ゲート電極40に印加された電圧が閾値電圧未満の状態、すなわちオフ状態では、ソース電極50とドレイン電極60との間に電圧が印加されても、ボディ領域22とドリフト領域21との間に形成されるpn接合が逆バイアスとなり、非導通状態となる。一方、ゲート電極40に閾値電圧以上の電圧が印加されると、ボディ領域22のチャネル領域(ゲート電極40下のボディ領域22)に反転層が形成される。その結果、ソース領域23とドリフト領域21とが電気的に接続され、ソース電極50とドレイン電極60との間に電流が流れる。以上のようにして、MOSFET1は動作する。
 以上のように、本実施の形態に係る炭化珪素基板10において、隣り合う炭化珪素層12の間に形成された隙間を充填する充填部13の主表面13Aの表面粗さは、RMS値で50μm以下にまで低減されている。そのため、本実施の形態に係る炭化珪素基板10の主表面10A上へのエピタキシャル成長層の形成においては、異常成長した結晶の形成が抑制され、その結果このような結晶の破損により生成するパーティクルの発生を抑制することができる。したがって、本実施の形態に係る炭化珪素基板10は、高品質なエピタキシャル成長層を形成可能な炭化珪素基板となっている。そのため、炭化珪素基板10の主表面10A上に形成された半導体層20は高品質となっている。したがって、本実施の形態に係る炭化珪素基板10を備えた本実施の形態に係る半導体装置としてのMOSFET1は、高品質な半導体装置となっている。
 また、上記本実施の形態に係る炭化珪素基板10において、充填部13の主表面13Aの表面粗さは、RMS値で0.1μm以上であってもよい。これにより、高品質なエピタキシャル成長層の形成を可能としつつ、炭化珪素基板の製造におけるコスト削減や生産性の改善を図ることができる。
 また、炭化珪素層12同士の隙間の充填率の向上や充填部13の表面粗さの低減という観点からすると、充填部13の主表面13Aの表面粗さは、RMS値で30μm以下であることが好ましく、20μm以下であることがより好ましく、10μm以下であることが一層好ましい。また、炭化珪素基板の製造におけるコスト削減や生産性の改善という観点からすると、充填部13の主表面13Aの表面粗さは、RMS値で0.5μm以上であることが好ましく、1μm以上であることがより好ましい。
 また、上記本実施の形態に係る炭化珪素基板10において、炭化珪素層12の主表面12Aの表面粗さは、RMS値で0.5nm以下であってもよい。これにより、炭化珪素基板10の主表面10A上において高品質なエピタキシャル成長層をより容易に形成することができる。また、炭化珪素層12の主表面12Aの表面粗さは、RMS値で0.3nm以下であることがより好ましい。なお、炭化珪素層12の主表面12Aの表面粗さは、たとえば触針式粗さ計、レーザー変位計、レーザー顕微鏡、光干渉式粗さ計、あるいは原子間力顕微鏡(AFM:Atomic Force Microscope)などを用いて測定することができる。
[規則91に基づく訂正 20.08.2012] 
 また、上記本実施の形態に係る炭化珪素基板10において、炭化珪素層12の転位密度は、1×10cm-2以上2×10cm-2以下であってもよい。これにより、炭化珪素基板10を用いた半導体装置の歩留まりを向上させることができる。なお、炭化珪素層12の転位密度は、3×10cm-2以上1×10cm-2以下であることがより好ましい。
 また、上記本実施の形態に係る炭化珪素基板10において、炭化珪素層12のキャリア濃度は、2×1018cm-3以上2×1019cm-3以下であってもよい。これにより、炭化珪素基板10を用いた半導体装置において良好なオン抵抗を達成することができる。なお、炭化珪素層12のキャリア濃度は、5×1018cm-3以上1×1019cm-3以下であることがより好ましい。
 また、上記本実施の形態に係る炭化珪素基板10の直径は、110mm以上であってもよく、また150mm以上であることがより好ましい。このような大口径の炭化珪素基板を用いることにより、半導体装置の製造におけるコスト削減や効率化を図ることができる。
 また、上記本実施の形態に係る炭化珪素基板10において、複数の炭化珪素層12の各々は、六方晶炭化珪素からなっていてもよい。また、複数の炭化珪素層12の各々の、ベース層11とは反対側の主表面12Aを構成する面の{0001}面に対するオフ角は、0.1°以上10°以下であってもよい。これにより、炭化珪素基板10上において容易にエピタキシャル成長層を形成することができる。
 また、上記本実施の形態に係る炭化珪素基板10において、複数の炭化珪素層12の各々の主表面12Aを構成する面の{03-38}面に対するオフ角は、4°以下であってもよい。これにより、炭化珪素基板10を用いたMOSFET1において、良好なチャネル移動度を達成することができる。また、複数の炭化珪素層12の各々の、主表面12Aを構成する面の{01-11}面または{01-12}面に対するオフ角が4°以下であってもよい。
 また、上記本実施の形態に係る炭化珪素基板10において、炭化珪素層12が配置される側の主表面10A上に存在する1cm当たりの金属原子数は、1×1015以下であってもよい。炭化珪素基板10の主表面10Aに金属不純物が存在する場合、主表面10A上におけるエピタキシャル成長が阻害され、異常成長した結晶の形成がより促進され易くなる。これに対して、炭化珪素基板10の主表面10Aに存在する金属原子数を上記範囲とすることにより、エピタキシャル成長における異常成長した結晶の成長を抑制することができる。これにより、炭化珪素基板10の主表面10A上に形成される半導体層20はより高品質なものとなり、結果として炭化珪素基板10を用いた半導体装置の歩留まりをより向上させることができる。
 炭化珪素基板10の主表面10A上に存在する金属原子数は、当該金属を薬液により抽出し、ICP-MS(Inductively Coupled Plasma Mass Spectrometry)により測定することができる。このとき、主表面10Aの平坦部に存在する金属だけでなく、たとえば凹み部やボイド部に存在する金属も抽出し測定することができる。薬液としては、主表面10A上に存在する金属を効果的に抽出することができるものであればよく、たとえば塩酸、硝酸、フッ酸、フッ硝酸、王水あるいは塩酸過水などを採用することができる。
 また、炭化珪素基板10の主表面10A上のエピタキシャル成長における異常成長を抑制する観点からは、主表面10A上に存在する1cm当たりの金属原子数は1×1014以下であることが好ましく、1×1013以下であることがより好ましく、1×1012以下であることがさらに好ましく、1×1011以下であることが一層好ましい。また、主表面10A上に存在する当該金属原子数が5×10以下である場合には、エピタキシャル成長における異常成長の抑制に対して顕著な効果は得られない。そのため、当該金属原子数を5×10以上とすることにより、エピタキシャル成長における異常成長を抑制しつつ、基板洗浄におけるコスト削減や生産性の改善を図ることができる。
 また、上記本実施の形態に係る炭化珪素基板10において、炭化珪素層12が配置される側の主表面10A上に存在する1cm当たりのNa原子数は、1×1014以下であってもよい。炭化珪素基板10の主表面10AにNaが存在する場合、エピタキシャル成長において異常成長した結晶の形成がより促進され易くなるとともに、主表面10A上における酸化がより進行し易くなる。これに対して、炭化珪素基板10の主表面10A上に存在するNa原子数を上記範囲とすることにより、エピタキシャル成長における異常成長した結晶の成長を抑制するとともに、主表面10Aにおける酸化の進行を抑制することができる。これにより、炭化珪素基板10の主表面10A上に形成される半導体層20はさらに高品質なものとなり、結果として炭化珪素基板10を用いた半導体装置の歩留まりをさらに向上させることができる。
[規則91に基づく訂正 20.08.2012] 
 また、炭化珪素基板10の主表面10A上に存在する1cm当たりのNa原子数は、1×1013以下であることが好ましく、1×1012以下であることがより好ましく、1×1011以下であることがさらに好ましく、1×1010以下であることが一層好ましい。また、主表面10Aにおける当該Na原子数が5×10以下である場合には、エピタキシャル成長における異常成長、および主表面10Aにおける酸化の進行の抑制に対して顕著な効果は得られない。そのため、当該Na原子数を5×10以上とすることにより、エピタキシャル成長における異常成長、および主表面10Aにおける酸化の進行を抑制しつつ、基板洗浄におけるコスト削減や生産性の改善を図ることができる。
 次に、本実施の形態に係る炭化珪素基板および半導体装置の製造方法について、図3~図12を参照して説明する。本実施の形態に係る半導体装置の製造方法により、上記本実施の形態に係る半導体装置としてのMOSFET1を製造することができる。
 図3を参照して、まず、工程(S10)として、炭化珪素基板準備工程が実施される。この工程(S10)では、以下に説明する工程(S11)~(S13)を備える本実施の形態に係る炭化珪素基板の製造方法が実施されることにより、上記本実施の形態に係る炭化珪素基板10が準備される。
 まず、工程(S11)として、複合基板準備工程が実施される。この工程(S11)では、図4を参照して、まず、単結晶炭化珪素からなる複数のSiC基板12と、炭化珪素からなるベース基板11とが準備される。SiC基板12には、あらかじめ面取り加工などが施されていてもよい。そして、複数のSiC基板12が、ベース基板11の主表面11A上において、隣り合うSiC基板12同士の間に隙間が形成されるように並べて配置される。その後、たとえば炭化珪素の昇華温度以上の温度にまで加熱されることにより、複数のSiC基板12とベース基板11とが接合される。このようにして、平面的に見て互いに間隔が形成されるように並べて配置された複数のSiC基板12がベース基板11に保持された複合基板14が準備される。
 また、この工程(S11)では、以下に説明するように複合基板14が準備されてもよい。すなわち、図5を参照して、まず、複数のSiC基板12と、ベース基板11とが準備される。次に、複数のSiC基板12が、ベース基板11の主表面11A上において、隣り合うSiC基板12同士の端面12Bが互いに接触するように並べて配置される。そして、図6を参照して、たとえばダイシングなどにより、隣り合うSiC基板12同士が接触する領域付近においてSiC基板12が部分的に除去され、隣り合うSiC基板12の間に隙間が形成される。このようにして、複合基板14が準備されてもよい。
 また、この工程(S11)では、上述のように近接昇華法によりSiC基板12とベース基板11とが接合されてもよいが、これに限られるものではない。たとえばカーボン接着剤や、加熱処理によりSiCを形成するSiC接着剤などを用いて、SiC基板12とベース基板11とが接合されてもよい。
[規則91に基づく訂正 20.08.2012] 
 次に、工程(S12)として、表層部除去工程が実施される。この工程(S12)では、図7を参照して、たとえばダイシング、研磨およびエッチングなどを行なうことにより、隣り合うSiC基板12の間から露出するベース基板11の表層部が除去される。また、この工程(S12)では、隣り合うSiC基板12の間から露出するベース基板11の主表面11Aの表面粗さが、RMS値で0.5μm以下となるようにベース基板11の表層部が除去される。これにより、後の工程(S13)において隣り合うSiC基板12同士の隙間を充填する充填部13を形成する際に、上記隙間における充填率の低下や充填部13における表面粗さの悪化をより効果的に抑制することができる。
 次に、工程(S13)として、充填部形成工程が実施される。この工程(S13)では、図8および図9を参照して、上記工程(S12)において、ベース基板11の表層部が除去された後に、隣り合うSiC基板12同士の隙間を充填するように、炭化珪素からなる充填部13が形成される。より具体的には、図8を参照して、まず、複合基板14および炭化珪素からなる原料基板15が、互いに対向するように配置された第1支持部材70および第2支持部材71にそれぞれ配置される。次に、原料基板15と対向するSiC基板12の主表面上に、たとえばカーボンからなるマスク層16が形成される。次に、ヒータ72を所定の温度にまで加熱することにより、原料基板15の表面から炭化珪素が昇華する。そして、昇華した炭化珪素は、隣り合うSiC基板12同士の隙間を充填するように堆積し、図9に示すように炭化珪素からなる充填部13が形成される。
 また、この工程(S13)において、充填部13を形成する方法は、上述のような昇華法に限られるものではない。たとえば、隣り合うSiC基板12同士の隙間に有機材料を充填し、加熱処理を施すことにより炭化珪素からなる充填部13が形成されてもよい。より具体的には、たとえばポリカルボシランなどのSiおよびCからなる有機材料を上記隙間に充填し、900℃から2100℃の温度で加熱処理を施すことにより、非晶質または多結晶の炭化珪素からなる充填部13が形成されてもよい。
 また、この工程(S13)では、充填部13の形成が完了した後、超音波洗浄がさらに実施されてもよい。充填部13の表面はその凹凸により表面積が大きいため、たとえば金属などの不純物が蓄積し易くなっている。そのため、上述のように超音波洗浄を実施することにより、蓄積した当該不純物を取り除くことができる。超音波洗浄に用いる薬液としては、たとえばコリンやTMAH(Tetra Methyl Ammonium Hydroxide)などの有機アルカリ、塩酸、硝酸、硫酸、フッ酸、フッ硝酸、王水あるいは塩酸過水などを採用することができる。また、上記薬液を複数組み合わせて多段階で超音波洗浄を実施してもよい。また、超音波洗浄時に薬液の温度を上昇させることにより、蓄積した不純物をより効果的に取り除くことができる。上記工程(S11)~(S13)が実施されることにより、上記本実施の形態に係る炭化珪素基板10が製造され、本実施の形態に係る炭化珪素基板の製造方法が完了する。
 次に、工程(S20)として、表面研磨工程が実施される。この工程(S20)では、図9を参照して、炭化珪素基板10の主表面10Aが研磨されることにより平坦化される。これにより、炭化珪素基板10の主表面10A上により高品質なエピタキシャル成長層を形成することが可能になる。
 次に、工程(S30)として、エピタキシャル成長工程が実施される。この工程(S30)では、図10を参照して、エピタキシャル成長により、たとえば導電型がn型の炭化珪素からなる半導体層20が、炭化珪素基板10の主表面10A上に形成される。
 次に、工程(S40)として、イオン注入工程が実施される。この工程(S40)では、図11を参照して、まず、たとえばAlイオンが半導体層20の主表面20Aを含む領域に注入されることにより、ボディ領域22が形成される。次に、たとえばPイオンが主表面20Aを含む領域において、上記Alイオンの注入深さよりも浅い深さで注入されることにより、ソース領域23が形成される。そして、たとえばAlイオンが、ソース領域23に隣接し主表面20Aを含む領域に注入されることにより、ソース領域23と同等の深さを有するコンタクト領域24が形成される。また、半導体層20において、ボディ領域22、ソース領域23およびコンタクト領域24が形成されない領域は、ドリフト領域21となる。
 次に、工程(S50)として、活性化アニール工程が実施される。この工程(S50)では、ドリフト領域21と、ボディ領域22と、ソース領域23と、コンタクト領域24とを含む半導体層20が形成された炭化珪素基板10を加熱することにより、上記工程(S40)において導入された不純物が活性化される。これにより、不純物が導入された領域において所望のキャリアが生成する。
 次に、工程(S60)として、酸化膜形成工程が実施される。この工程(S60)では、図12を参照して、たとえば酸素を含む雰囲気中において、半導体層20が形成された炭化珪素基板10が加熱されることにより、半導体層20の主表面20Aを覆うようにSiO(二酸化珪素)からなる酸化膜30が形成される。
[規則91に基づく訂正 20.08.2012] 
 次に、工程(S70)として、ゲート電極形成工程が実施される。この工程(S70)では、図1を参照して、たとえばLPCVD(Low Pressure Chemical Vapor Deposition)法により、酸化膜30上に接触するようにポリシリコンからなるゲート電極40が形成される。
 次に、工程(S80)として、オーミック電極形成工程が実施される。この工程(S80)では、まず、ソース電極50を形成すべき領域において、酸化膜30が除去され、ソース領域23およびコンタクト領域24が露出した領域が形成される。そして、当該領域において、たとえばNiからなる膜が形成される。一方、ベース基板11において、ドリフト領域21が形成される側とは反対側の主表面上に、たとえばNiからなる膜が形成される。その後、合金化熱処理が施され、上記Niからなる膜の少なくとも一部がシリサイド化されることにより、ソース電極50およびドレイン電極60が形成される。
 また、この工程(S80)では、ドレイン電極60が形成される前に、基板10の厚みが調整されてもよい。具体的には、基板10の主表面10Bを研削または研磨することにより、ベース基板11が除去されてもよく、さらに炭化珪素層12が減厚されてもよい。このようにすることにより、MOSFET1のオン抵抗をより低減することができる。なお、このようにベース基板11が除去される場合には、ベース基板11を構成する材料として、MOSFET1のデバイス特性への影響を考慮することなく種々の材料を採用することができる。上記工程(S10)~(S80)が実施されることにより、本実施の形態に係る半導体装置としてのMOSFET1が製造され、本実施の形態に係る半導体装置の製造方法が完了する。
 以上のように、本実施の形態に係る炭化珪素基板の製造方法では、充填部13が形成される前に、隣り合うSiC基板12の間から露出するベース基板11の表層部が除去されることによりベース基板11の表面粗さが低減されるため、SiC基板12同士の隙間における充填率の低下や充填部13における表面粗さの悪化、あるいはSiC基板12とベース基板11との間における空隙の形成が抑制された炭化珪素基板10を製造することができる。そのため、炭化珪素基板10上へのエピタキシャル成長層の形成においては、結晶の異常成長などが抑制され、結果として半導体装置の電気特性や耐久性などの品質の劣化の原因となるパーティクルの発生が抑制される。したがって、本実施の形態に係る炭化珪素基板の製造方法によれば、高品質なエピタキシャル成長層を形成可能な炭化珪素基板10を製造することができる。また、本実施の形態に係る半導体装置の製造方法においては、上記本実施の形態に係る炭化珪素基板の製造方法により製造された炭化珪素基板10が準備される。したがって、本実施の形態に係る半導体装置の製造方法によれば、高品質な半導体装置を製造することができる。
 (実施の形態2)
 次に、本発明の他の実施の形態である実施の形態2に係る炭化珪素基板および半導体装置、ならびにその製造方法について説明する。本実施の形態に係る炭化珪素基板および半導体装置は、基本的には実施の形態1に係る炭化珪素基板および半導体装置と同様の構成を備え、かつ同様の効果を奏する。また、本実施の形態に係る炭化珪素基板および半導体装置の製造方法は、基本的には、実施の形態1に係る炭化珪素基板および半導体装置の製造方法と同様に実施され、かつ同様の効果を奏する。しかし、本実施の形態に係る炭化珪素基板の製造方法は、隣り合うSiC基板の間から露出するベース基板の表層部を除去する工程に代えて、ベース基板の表面を覆う被覆層を形成する工程が実施されるという点において実施の形態1とは異なっている。
 以下、本実施の形態に係る炭化珪素基板の製造方法について説明する。図13を参照して、まず、工程(S10)として、複合基板準備工程が実施される。この工程(S10)では、図4を参照して、実施の形態1と同様に、平面的に見て互いに間隔が形成されるように並べて配置された単結晶炭化珪素からなる複数のSiC基板12が炭化珪素からなるベース基板11に保持された複合基板14が準備される。
 次に、工程(S20)として、被覆層形成工程が実施される。この工程(S20)では、以下に説明する工程(S21)および(S22)が実施され、隣り合うSiC基板12の間から露出するベース基板11の表面を覆う被覆層17Bが形成される。
 まず、工程(S21)として、前駆体層形成工程が実施される。この工程(S21)では、図14を参照して、たとえばポリカルボシランなどのSiおよびCからなる有機材料が塗布されることにより、隣り合うSiC基板12の間から露出するベース基板11の主表面11Aを覆う前駆体層17Aが形成される。次に、工程(S22)として、焼成工程が実施される。この工程(S22)では、図15を参照して、複合基板14を加熱することにより、前駆体層17Aが焼成され、炭化珪素からなる被覆層17Bが形成される。より具体的には、低温状態から900℃以上2100℃以下の温度にまで昇温することにより、ポリカルボシランからなる前駆体層17Aが焼成され、非晶質または多結晶の炭化珪素からなる被覆層17Bが形成される。なお、この工程(S22)では、昇温速度を制御しつつ上記温度範囲にまで昇温することにより、ポリカルボシランの体積収縮などによるクラックの発生を抑制することができる。
 次に、工程(S30)として、充填部形成工程が実施される。この工程(S30)では、図9を参照して、実施の形態1と同様に、隣り合うSiC基板12の隙間を充填する充填部13が形成される。上記工程(S10)~(S30)が実施されることにより上記本実施の形態に係る炭化珪素基板10が製造され、本実施の形態に係る炭化珪素基板の製造方法が完了する。
[規則91に基づく訂正 20.08.2012] 
 以上のように、本実施の形態に係る炭化珪素基板の製造方法においては、充填部13が形成される前に、隣り合うSiC基板12の間から露出するベース基板11の表面を覆う被覆層17Bが形成されることにより、ベース層11の表面粗さが低減されるため、SiC基板12同士の隙間における充填率の低下や充填部13における表面粗さの悪化が抑制された炭化珪素基板10を製造することができる。そのため、炭化珪素基板10上へのエピタキシャル成長層の形成においては、SiC基板12同士の隙間における充填率の低下や充填部13における表面粗さの悪化に起因して発生する結晶の異常成長などが抑制され、結果として半導体装置の電気特性や耐久性などの品質の劣化の原因となるパーティクルの発生が抑制される。したがって、本実施の形態に係る炭化珪素基板の製造方法によれば、高品質なエピタキシャル成長層を形成可能な炭化珪素基板10を製造することができる。
 また、上記本実施の形態に係る炭化珪素基板の製造方法において、工程(S20)では、被覆層17Bは、その表面粗さがRMS値で0.3μm以下となるように形成されてもよい。これにより、SiC基板12同士の隙間における充填率の低下や充填部13における表面粗さの悪化をさらに効果的に抑制することができる。
 (実施の形態3)
 次に、本発明のさらに他の実施の形態である実施の形態3に係る炭化珪素基板および半導体装置、ならびにその製造方法について説明する。本実施の形態に係る炭化珪素基板および半導体装置は、基本的には実施の形態1および実施の形態2に係る炭化珪素基板および半導体装置と同様の構成を備え、かつ同様の効果を奏する。また、本実施の形態に係る炭化珪素基板および半導体装置の製造方法は、基本的には、実施の形態2に係る炭化珪素基板および半導体装置の製造方法と同様に実施され、同様の効果を奏する。しかし、本実施の形態に係る炭化珪素基板の製造方法は、被覆層を形成する方法において実施の形態2とは異なっている。
 以下、本実施の形態に係る炭化珪素基板の製造方法について説明する。図16を参照して、まず、工程(S10)として、複合基板準備工程が実施される。この工程(S10)では、図4を参照して、実施の形態1および2と同様に、平面的に見て互いに間隔が形成されるように並べて配置された単結晶炭化珪素からなる複数のSiC基板12が炭化珪素からなるベース基板11に保持された複合基板14が準備される。
 次に、工程(S20)として、CVD(Chemical Vapor Deposition)工程が実施される。この工程(S20)では、図15を参照して、複合基板14にCVD処理を施すことにより、隣り合うSiC基板12の間から露出するベース基板11の主表面11Aを覆うような被覆層17Bが形成される。このように、CVD法を用いることにより、隣り合うSiC基板12の間から露出するベース基板11の表面を覆う炭化珪素からなる被覆層17Bを一層容易に形成することができる。
 次に、工程(S30)として、充填部形成工程が実施される。この工程(S30)では、図9を参照して、実施の形態1および2と同様に、隣り合うSiC基板12の隙間を充填する充填部13が形成される。上記工程(S10)~(S30)が実施されることにより上記本実施の形態に係る炭化珪素基板10が製造され、本実施の形態に係る炭化珪素基板の製造方法が完了する。
[規則91に基づく訂正 20.08.2012] 
 以上のように、本発明の実施の形態1に係る炭化珪素基板の製造方法では、充填部13が形成される前に、隣り合うSiC基板12の間から露出するベース基板11の表層部が除去される。また、本発明の実施の形態2および3に係る炭化珪素基板の製造方法では、充填部13が形成される前に、隣り合うSiC基板12の間から露出するベース基板11の表面を覆う被覆層17Bが形成される。このように、本発明の実施の形態に係る炭化珪素基板の製造方法においては、充填部13が形成される前に、隣り合うSiC基板12の間から露出するベース基板11の主表面11Aの表面粗さが低減されるため、隣り合うSiC基板12同士の隙間における充填率の低下や、充填部13の表面粗さの悪化が抑制された炭化珪素基板10を製造することができる。そのため、炭化珪素基板10上へのエピタキシャル成長層の形成においては、SiC基板12同士の隙間における充填率の低下や充填部13の表面粗さの悪化に起因して発生する結晶の異常成長などが抑制され、結果として半導体装置の電気特性や耐久性などの品質の劣化の原因となるパーティクルの発生が抑制される。このように、本発明の実施の形態に係る炭化珪素基板の製造方法によれば、高品質なエピタキシャル成長層を形成可能な炭化珪素基板10を製造することができる。また、本発明の実施の形態に係る半導体装置の製造方法においては、上記本発明の実施の形態に係る炭化珪素基板の製造方法により製造された、高品質なエピタキシャル成長層を形成可能な炭化珪素基板10が準備される。したがって、本発明の実施の形態に係る半導体装置の製造方法によれば、高品質なMOSFET1を製造することができる。
 まず、炭化珪素基板における充填部(継ぎ目部)の表面粗さと、炭化珪素基板上にエピタキシャル成長層を形成した際の結晶の異常成長の発生頻度、および当該炭化珪素基板を用いて半導体装置を製造した際の歩留まりとの関係を調査する実験を行なった。まず、図2を参照して説明した本発明の実施の形態1に係る炭化珪素基板10と同様の構造を有する炭化珪素基板を準備した。具体的には、まず、平面的に見て間隔が形成されるように並べて配置された複数のSiC基板がベース基板に保持された複合基板を準備した。そして、昇華法によりSiC基板同士の隙間を充填することにより、またはポリカルボシランを上記隙間に充填して1500℃で加熱処理を施すことにより、上記隙間を充填する継ぎ目部を形成した。ここで、継ぎ目部は、表面粗さがRMS値で0.05μm、0.1μm、1μm、5μm、20μm、50μmおよび70μmとなるように形成した。そして、それぞれの炭化珪素基板上にエピタキシャル成長層を形成し、結晶の異常成長の発生頻度を確認した。また、それぞれの炭化珪素基板を用いて半導体装置を製造し、その際の歩留まりを確認した。表1には、結晶の異常成長の発生頻度および半導体装置の歩留まりに対する炭化珪素基板の継ぎ目部分の表面粗さの影響を示す。
Figure JPOXMLDOC01-appb-T000001
 上記実験結果について以下に説明する。表1から明らかなように、炭化珪素基板における継ぎ目部分の表面粗さが70μmの場合には、針状に異常成長した結晶が多数確認されたのに対して、継ぎ目部分の表面粗さが50μm以下の場合には、結晶の異常成長の発生頻度は低下した。そして、結晶の異常成長の発生頻度が低下するに従い、半導体装置の歩留まりは向上した。また、継ぎ目部分の表面粗さが0.05μmの場合には、0.1μmの場合に比べて歩留まりの向上は確認されなかった。なお、この実験結果は、昇華法により継ぎ目部を形成した場合、およびポリカルボシランをSiC基板同士の隙間に充填し1500℃で加熱処理を施すことにより継ぎ目部を形成した場合のいずれにおいても同様であった。
 このことから、本発明の炭化珪素基板において、継ぎ目部の表面粗さを50μm以下とすることにより、結晶の異常成長の発生が少ない、高品質なエピタキシャル成長層が形成されることが確認された。また、本発明の炭化珪素基板において、継ぎ目部の表面粗さが0.1μm以下の場合には、上記炭化珪素基板を用いた半導体装置の歩留まりに対して継ぎ目部の表面粗さの低減による顕著な効果は得られないことが確認された。
 次に、炭化珪素基板において主表面上に存在する金属量と、炭化珪素基板上にエピタキシャル成長層を形成した際の結晶の異常成長の発生頻度、および当該炭化珪素基板を用いて半導体装置を製造した際の歩留まりとの関係を調査する実験を行った。まず、上記実施例1と同様にして、炭化珪素基板を準備した。次に、準備した炭化珪素基板に超音波洗浄を施し、主表面上に所定量の金属が存在する炭化珪素基板を作成した。上記超音波洗浄は、超純水と薬液とを用いてクリーン環境にて実施した。そして、それぞれの炭化珪素基板上にエピタキシャル成長層を形成し、結晶の異常成長の発生頻度を確認した。また、それぞれの炭化珪素基板を用いて半導体装置を製造し、その際の歩留まりを確認した。表2には、結晶の異常成長の発生頻度および半導体装置の歩留まりに対する炭化珪素基板の主表面上に存在する金属量の影響を示す。
Figure JPOXMLDOC01-appb-T000002
 上記実験結果について以下に説明する。表2から明らかなように、炭化珪素基板の主表面上に存在する1cm当たりの金属原子数が1×1015より大きく、またNa原子数が1×1014より大きい場合に比べて、当該金属原子数が1×1015以下、また当該Na原子数が1×1014以下である場合には結晶の異常成長の発生頻度が低下した。そして、結晶の異常成長の発生頻度が低下するに従い、半導体装置のデバイス歩留まりが向上した。このことから、本発明の炭化珪素基板においては、継ぎ目部分の表面粗さを50μm以下とした上で、さらに主表面上に存在する1cm当たりの金属原子数を1×1015以下、またNa原子数を1×1014以下とすることにより、結晶の異常成長の発生が少ない、高品質なエピタキシャル成長層がより形成され易くなることが確認された。また、このように高品質なエピタキシャル成長層がより形成され易くなることにより、当該炭化珪素基板を用いた半導体装置のデバイス歩留まりが向上することが確認された。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の炭化珪素基板および半導体装置、ならびにその製造方法は、高品質な半導体装置を製造することが要求される炭化珪素基板および半導体装置、ならびにその製造方法において特に有利に適用され得る。
 1 MOSFET、10 炭化珪素基板、11 ベース層(ベース基板)、12 炭化珪素層(SiC基板)、13 充填部、14 複合基板、15 原料基板、16 マスク層、17A 前駆体層、17B 被覆層、20 半導体層、21 ドリフト領域、22 ボディ領域、23 ソース領域、24 コンタクト領域、30 酸化膜、40 ゲート電極、50 ソース電極、60 ドレイン電極、70 第1支持部材、71 第2支持部材、72 ヒータ、10A,11A,12A,13A,20A 主表面、12B 端面。

Claims (23)

  1.  炭化珪素からなるベース層(11)と、
     単結晶炭化珪素からなり、平面的に見て前記ベース層(11)上に並べて配置された炭化珪素層(12)と、
     隣り合う前記炭化珪素層(12)の間に形成された隙間を充填し、炭化珪素からなる充填部(13)とを備え、
     前記充填部(13)の表面粗さは、RMS値で50μm以下である、炭化珪素基板(10)。
  2.  前記充填部(13)の表面粗さは、RMS値で0.1μm以上である、請求項1に記載の炭化珪素基板(10)。
  3.  前記炭化珪素層(12)の表面粗さは、RMS値で0.5nm以下である、請求項1または2に記載の炭化珪素基板(10)。
  4.  前記炭化珪素層(12)の転位密度は、1×10cm-2以上2×10cm-2以下である、請求項1~3のいずれか1項に記載の炭化珪素基板(10)。
  5.  前記炭化珪素層(12)のキャリア濃度は、2×1018cm-3以上2×1019cm-3以下である、請求項1~4のいずれか1項に記載の炭化珪素基板(10)。
  6.  直径が110mm以上である、請求項1~5のいずれか1項に記載の炭化珪素基板(10)。
  7.  複数の前記炭化珪素層(12)の各々は、六方晶炭化珪素からなり、
     複数の前記炭化珪素層(12)の各々の、前記ベース層(11)とは反対側の主表面(12A)を構成する面の{0001}面に対するオフ角は、0.1°以上10°以下である、請求項1~6のいずれか1項に記載の炭化珪素基板(10)。
  8.  複数の前記炭化珪素層(12)の各々は、六方晶炭化珪素からなり、
     複数の前記炭化珪素層(12)の各々の、前記ベース層(11)とは反対側の主表面(12A)を構成する面の{03-38}面に対するオフ角は、4°以下である、請求項1~6のいずれか1項に記載の炭化珪素基板(10)。
  9.  前記炭化珪素層(12)が配置される側の主表面上に存在する1cm当たりの金属原子数は、1×1015以下である、請求項1~8のいずれか1項に記載の炭化珪素基板(10)。
  10.  前記炭化珪素層(12)が配置される側の前記主表面上に存在する1cm当たりのNa原子数は、1×1014以下である、請求項9に記載の炭化珪素基板(10)。
  11.  基板と、
     前記基板上に形成された電極(40,50)とを備え、
     前記基板は、請求項1~10のいずれか1項に記載の炭化珪素基板(10)である、半導体装置(1)。
  12.  前記基板上に形成されたエピタキシャル成長層(20)をさらに備え、
     前記電極(40,50)は、前記エピタキシャル成長層(20)上に形成されている、請求項11に記載の半導体装置(1)。
  13.  平面的に見て並べて配置された単結晶炭化珪素からなる複数の炭化珪素層(12)が炭化珪素からなるベース層(11)に保持された複合基板(14)を準備する工程と、
     隣り合う前記炭化珪素層(12)の間から露出する前記ベース層(11)の表層部を除去する工程と、
     前記ベース層(11)の表層部を除去する工程の後に、隣り合う前記炭化珪素層(12)同士の隙間を充填し、炭化珪素からなる充填部(13)を形成する工程とを備える、炭化珪素基板の製造方法。
  14.  前記ベース層(11)の表層部を除去する工程では、隣り合う前記炭化珪素層(12)の間から露出する前記ベース層(11)の表面粗さが、RMS値で0.5μm以下となるように前記ベース層(11)の表層部が除去される、請求項13に記載の炭化珪素基板の製造方法。
  15.  平面的に見て並べて配置された単結晶炭化珪素からなる複数の炭化珪素層(12)が炭化珪素からなるベース層(11)に保持された複合基板(14)を準備する工程と、
     隣り合う前記炭化珪素層(12)の間から露出する前記ベース層(11)の表面を覆う被覆層(17B)を形成する工程と、
     前記ベース層(11)の表面を覆う前記被覆層(17B)を形成する工程の後に、隣り合う前記炭化珪素層(12)同士の隙間を充填し、炭化珪素からなる充填部(13)を形成する工程とを備える、炭化珪素基板の製造方法。
  16.  前記被覆層(17B)を形成する工程では、炭化珪素からなる前記被覆層(17B)が形成される、請求項15に記載の炭化珪素基板の製造方法。
  17.  前記被覆層(17B)を形成する工程では、非晶質または多結晶炭化珪素からなる前記被覆層(17B)が形成される、請求項16に記載の炭化珪素基板の製造方法。
  18.  前記被覆層(17B)を形成する工程は、
     隣り合う前記炭化珪素層(12)の間から露出する前記ベース層(11)の表面を覆い、SiおよびCからなる有機材料を含む前駆体層(17A)を形成する工程と、
     前記前駆体層(17A)を焼成することにより、炭化珪素からなる前記被覆層(17B)を形成する工程とを含む、請求項16または17に記載の炭化珪素基板の製造方法。
  19.  前記被覆層(17B)を形成する工程では、CVD法により前記被覆層(17B)が形成される、請求項16または17に記載の炭化珪素基板の製造方法。
  20.  前記被覆層(17B)を形成する工程では、前記被覆層(17B)の表面粗さがRMS値で0.3μm以下となるように前記被覆層(17B)が形成される、請求項15~19のいずれか1項に記載の炭化珪素基板の製造方法。
  21.  基板を準備する工程と、
     前記基板上に電極(40,50)を形成する工程とを備え、
     前記基板を準備する工程では、請求項13~20のいずれか1項に記載の炭化珪素基板の製造方法により製造された炭化珪素基板(10)が準備される、半導体装置の製造方法。
  22.  基板を準備する工程と、
     前記基板上に電極(40,50)を形成する工程とを備え、
     前記基板を準備する工程では、請求項1~10のいずれか1項に記載の炭化珪素基板(10)が準備される、半導体装置の製造方法。
  23.  前記基板上にエピタキシャル成長層(20)を形成する工程をさらに備え、
     前記電極(40,50)を形成する工程では、前記エピタキシャル成長層(20)上に前記電極(40,50)が形成される、請求項21または22に記載の半導体装置の製造方法。
PCT/JP2012/061835 2011-11-14 2012-05-09 炭化珪素基板、半導体装置およびこれらの製造方法 WO2013073216A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011248312 2011-11-14
JP2011-248312 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013073216A1 true WO2013073216A1 (ja) 2013-05-23

Family

ID=48279748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061835 WO2013073216A1 (ja) 2011-11-14 2012-05-09 炭化珪素基板、半導体装置およびこれらの製造方法

Country Status (3)

Country Link
US (1) US20130119406A1 (ja)
JP (1) JPWO2013073216A1 (ja)
WO (1) WO2013073216A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170041223A (ko) * 2014-07-29 2017-04-14 다우 코닝 코포레이션 승화에 의한 대직경 탄화규소 결정을 제조하는 방법 및 관련 반도체 sic 웨이퍼
JP2020061562A (ja) * 2014-10-23 2020-04-16 住友電気工業株式会社 炭化珪素基板およびその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10832904B2 (en) 2012-06-12 2020-11-10 Lam Research Corporation Remote plasma based deposition of oxygen doped silicon carbide films
US10325773B2 (en) 2012-06-12 2019-06-18 Novellus Systems, Inc. Conformal deposition of silicon carbide films
US10211310B2 (en) 2012-06-12 2019-02-19 Novellus Systems, Inc. Remote plasma based deposition of SiOC class of films
US9234276B2 (en) 2013-05-31 2016-01-12 Novellus Systems, Inc. Method to obtain SiC class of films of desired composition and film properties
US9362133B2 (en) 2012-12-14 2016-06-07 Lam Research Corporation Method for forming a mask by etching conformal film on patterned ashable hardmask
US10297442B2 (en) 2013-05-31 2019-05-21 Lam Research Corporation Remote plasma based deposition of graded or multi-layered silicon carbide film
US20160314964A1 (en) * 2015-04-21 2016-10-27 Lam Research Corporation Gap fill using carbon-based films
US10002787B2 (en) 2016-11-23 2018-06-19 Lam Research Corporation Staircase encapsulation in 3D NAND fabrication
US9837270B1 (en) 2016-12-16 2017-12-05 Lam Research Corporation Densification of silicon carbide film using remote plasma treatment
US10840087B2 (en) 2018-07-20 2020-11-17 Lam Research Corporation Remote plasma based deposition of boron nitride, boron carbide, and boron carbonitride films
KR20220056249A (ko) 2018-10-19 2022-05-04 램 리써치 코포레이션 갭 충진 (gapfill) 을 위한 도핑되거나 도핑되지 않은 실리콘 카바이드 증착 및 원격 수소 플라즈마 노출

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236299A (ja) * 1998-02-25 1999-08-31 Nippon Pillar Packing Co Ltd 単結晶SiCおよびその製造方法
JP2006328455A (ja) * 2005-05-24 2006-12-07 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
JP2010165735A (ja) * 2009-01-13 2010-07-29 Sumitomo Electric Ind Ltd 炭化ケイ素基板、エピタキシャルウエハおよび炭化ケイ素基板の製造方法
WO2010125827A1 (ja) * 2009-04-30 2010-11-04 ライオン株式会社 半導体用基板の洗浄方法および酸性溶液
WO2010131569A1 (ja) * 2009-05-11 2010-11-18 住友電気工業株式会社 半導体基板の製造方法
WO2011052320A1 (ja) * 2009-10-30 2011-05-05 住友電気工業株式会社 炭化珪素基板の製造方法および炭化珪素基板
WO2011052321A1 (ja) * 2009-10-30 2011-05-05 住友電気工業株式会社 炭化珪素基板の製造方法および炭化珪素基板
WO2011074308A1 (ja) * 2009-12-16 2011-06-23 住友電気工業株式会社 炭化珪素基板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236299A (ja) * 1998-02-25 1999-08-31 Nippon Pillar Packing Co Ltd 単結晶SiCおよびその製造方法
JP2006328455A (ja) * 2005-05-24 2006-12-07 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
JP2010165735A (ja) * 2009-01-13 2010-07-29 Sumitomo Electric Ind Ltd 炭化ケイ素基板、エピタキシャルウエハおよび炭化ケイ素基板の製造方法
WO2010125827A1 (ja) * 2009-04-30 2010-11-04 ライオン株式会社 半導体用基板の洗浄方法および酸性溶液
WO2010131569A1 (ja) * 2009-05-11 2010-11-18 住友電気工業株式会社 半導体基板の製造方法
WO2011052320A1 (ja) * 2009-10-30 2011-05-05 住友電気工業株式会社 炭化珪素基板の製造方法および炭化珪素基板
WO2011052321A1 (ja) * 2009-10-30 2011-05-05 住友電気工業株式会社 炭化珪素基板の製造方法および炭化珪素基板
WO2011074308A1 (ja) * 2009-12-16 2011-06-23 住友電気工業株式会社 炭化珪素基板

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170041223A (ko) * 2014-07-29 2017-04-14 다우 코닝 코포레이션 승화에 의한 대직경 탄화규소 결정을 제조하는 방법 및 관련 반도체 sic 웨이퍼
JP2017523950A (ja) * 2014-07-29 2017-08-24 ダウ コーニング コーポレーションDow Corning Corporation 昇華による大径シリコンカーバイド結晶の製造方法及び関連する半導体sicウェハ
KR102373323B1 (ko) 2014-07-29 2022-03-11 에스케이 실트론 씨에스에스 엘엘씨 승화에 의한 대직경 탄화규소 결정을 제조하는 방법 및 관련 반도체 sic 웨이퍼
JP2020061562A (ja) * 2014-10-23 2020-04-16 住友電気工業株式会社 炭化珪素基板およびその製造方法
JP2021102550A (ja) * 2014-10-23 2021-07-15 住友電気工業株式会社 炭化珪素基板およびその製造方法
JP7095765B2 (ja) 2014-10-23 2022-07-05 住友電気工業株式会社 炭化珪素基板およびその製造方法

Also Published As

Publication number Publication date
US20130119406A1 (en) 2013-05-16
JPWO2013073216A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
WO2013073216A1 (ja) 炭化珪素基板、半導体装置およびこれらの製造方法
JP5950011B2 (ja) 炭化珪素基板
WO2010131572A1 (ja) 半導体装置
WO2011046020A1 (ja) 炭化珪素基板の製造方法、炭化珪素基板および半導体装置
WO2011052320A1 (ja) 炭化珪素基板の製造方法および炭化珪素基板
JP6123408B2 (ja) 単結晶4H−SiC基板及びその製造方法
EP2551891B1 (en) Semiconductor device and method for producing same
WO2011052321A1 (ja) 炭化珪素基板の製造方法および炭化珪素基板
WO2011118101A1 (ja) 半導体装置およびその製造方法
TW201203538A (en) Process for production of silicon carbide substrate, process for production of semiconductor device, silicon carbide substrate, and semiconductor device
WO2013054580A1 (ja) 炭化珪素基板、炭化珪素半導体装置、炭化珪素基板の製造方法、および炭化珪素半導体装置の製造方法
WO2010131571A1 (ja) 半導体装置
WO2011092893A1 (ja) 炭化珪素基板の製造方法
WO2011077797A1 (ja) 炭化珪素基板
WO2011074308A1 (ja) 炭化珪素基板
JP5870672B2 (ja) 半導体装置
TW201131757A (en) Method for manufacturing a semiconductor substrate
TW201237960A (en) Production method for semiconductor device
JPWO2012127748A1 (ja) 炭化珪素基板
TW201201284A (en) Method for manufacturing silicon carbide substrate, method for manufacturing semiconductor device, silicon carbide substrate and semiconductor device
JP2009182240A (ja) 半導体装置の製造方法および半導体装置
JP6696247B2 (ja) 半導体装置の製造方法
JP2011071196A (ja) 半導体基板の製造方法
JP2011071195A (ja) 半導体基板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012541249

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848926

Country of ref document: EP

Kind code of ref document: A1