WO2011093286A1 - ガスバリアフィルムとその製造方法、およびそれを用いたデバイス - Google Patents

ガスバリアフィルムとその製造方法、およびそれを用いたデバイス Download PDF

Info

Publication number
WO2011093286A1
WO2011093286A1 PCT/JP2011/051352 JP2011051352W WO2011093286A1 WO 2011093286 A1 WO2011093286 A1 WO 2011093286A1 JP 2011051352 W JP2011051352 W JP 2011051352W WO 2011093286 A1 WO2011093286 A1 WO 2011093286A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
gas barrier
layer
acrylate
barrier film
Prior art date
Application number
PCT/JP2011/051352
Other languages
English (en)
French (fr)
Inventor
中村 修司
好和 湯上
西村 協
Original Assignee
ダイセル化学工業株式会社
ダイセルバリューコーティング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル化学工業株式会社, ダイセルバリューコーティング株式会社 filed Critical ダイセル化学工業株式会社
Priority to EP11736999.1A priority Critical patent/EP2529926A4/en
Priority to US13/575,434 priority patent/US20120301634A1/en
Priority to KR1020127022168A priority patent/KR20120127470A/ko
Priority to CN2011800114721A priority patent/CN102781665A/zh
Publication of WO2011093286A1 publication Critical patent/WO2011093286A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31598Next to silicon-containing [silicone, cement, etc.] layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a gas barrier film having excellent gas barrier properties (for example, water vapor barrier property), a method for producing the same, and a device (liquid crystal element, thin film solar cell element, organic EL element, electronic paper) including the gas barrier film as a gas barrier member. Electronic devices).
  • Patent Document 1 a barrier vapor deposition layer having a smooth surface is laminated on at least one surface of a base film, and a smooth vapor deposition layer is formed on the barrier vapor deposition layer.
  • a gas barrier film in which an acid-resistant protective layer having a surface is laminated is disclosed.
  • the protective layer may be composed of an acrylate resin.
  • this document describes a very excellent gas barrier film having a water vapor transmission rate of 0.1 g / m 2 / day or less.
  • it is necessary to smooth the surfaces of the barrier vapor-deposited layer and the protective layer, and it is difficult to easily manufacture such a gas barrier film.
  • JP 2005-528250 A includes (i) a flexible substrate, (ii) a basic barrier layer deposited on the flexible substrate, and an organic layer deposited on the basic barrier layer.
  • a base stack comprising: (iii) a barrier stack deposited on the base stack and comprising a barrier stack barrier layer, and an organic layer deposited on the barrier stack barrier layer; and (iv) a top deposited on the barrier stack.
  • a multilayer barrier coating comprising a separation layer is disclosed. This document describes that the organic layer may contain an acrylate organic material.
  • Patent Document 3 discloses that a transparent water vapor barrier film having a barrier film composed of at least an inorganic layer / organic layer / inorganic layer on a resin substrate, the organic layer is acryloyl.
  • a transparent water vapor barrier film mainly composed of a resin obtained by crosslinking a diacrylate having at least one polar group in addition to a group is disclosed. It is described that the polar group is preferably an ether bond and / or an ester bond from the viewpoint of transparency and heat stability.
  • a gas barrier film in which a barrier layer containing a metal or a metal compound is laminated on a substrate film via an acrylic resin layer is also known.
  • JP-A-10-278167 Patent Document 4 discloses a barrier property in which an acrylic resin layer formed by a vacuum ultraviolet ray curing method and a vapor deposition thin film of a metal or a metal compound are sequentially laminated on one surface of a resin film.
  • a laminate is disclosed.
  • acrylic monomers or oligomers are extensively described, and urethane acrylates and silicone acrylates are also exemplified.
  • this barrier laminate cannot reduce water vapor permeability and cannot improve gas barrier properties.
  • the water vapor transmission rate (40 ° C., 90% RH) of the barrier laminate is 0.4 g / m 2 / day, which is sufficient for the gas barrier properties required as a device member in recent years. is not.
  • Patent Document 5 discloses an acrylic monomer and / or an acrylic polymerizable prepolymer as a polymerization component on one or both sides of a flexible substrate from the side close to the substrate.
  • a gas barrier film that is repeatedly laminated only once or twice or more is disclosed.
  • this gas barrier film does not have sufficient water vapor barrier properties.
  • the water vapor permeability (40 ° C., 100% RH) of the gas barrier film shows a high value of 0.49 g / m 2 ⁇ day.
  • the water vapor permeability (40 ° C., 100% RH) is 0.09 g / m 2. -Day.
  • JP-A-2005-178137 (Claims 1 and 10, paragraph [0037], Examples) JP 2005-528250 A (Claim 1, paragraph [0035]) JP 2004-9395 A (Claims 1 and 2, paragraph [0007]) JP-A-10-278167 (Claim 1, paragraph [0036], Example) Japanese Patent Laying-Open No. 2005-313560 (Claim 1, Paragraph [0033], Example)
  • an object of the present invention is to provide a gas barrier film having excellent gas barrier properties (for example, water vapor barrier properties), a method for producing the same, and a device using the same.
  • Another object of the present invention is to provide a highly transparent gas barrier film, a method for producing the same, and a device using the same.
  • Still another object of the present invention is to provide a gas barrier film having a barrier layer with high adhesion to a base film, a method for producing the same, and a device using the same while preventing the generation of curls.
  • the present inventors formed an anchor layer with a composition containing at least a silicone (meth) acrylate monomer and / or a prepolymer on at least one surface of a base film, It has been found that when a barrier layer containing a metal or a metal compound is formed on the anchor layer, the gas barrier property (water vapor barrier property) can be remarkably improved, and the present invention has been completed.
  • an anchor layer composed of a cured product of a polymerizable composition containing a vinyl monomer and / or a vinyl prepolymer (oligomer) is laminated on at least one surface of a base film.
  • the anchor layer has a laminated structure in which a barrier layer containing a metal or a metal compound is laminated.
  • the vinyl monomer and / or prepolymer is at least a silicone (meth) acrylate monomer and / or prepolymer [eg, a silicone (meth) acrylate monomer and / or prepolymer and a silicon-free vinyl.
  • a combination with a system monomer and / or a prepolymer for example, urethane (meth) acrylate)].
  • the ratio (weight ratio) between the silicone (meth) acrylate monomer and / or prepolymer and the silicon-free vinyl monomer and / or prepolymer is not particularly limited, and the former / the latter is about 1/99 to 30/70. Even so, high gas barrier properties can be obtained.
  • the base film may be a film composed of at least one selected from a polyester resin and a polycarbonate resin. Moreover, one surface of the base film may have a plurality of lamination units (repeating units) composed of an anchor layer and a barrier layer laminated on the anchor layer.
  • the barrier layer may contain at least one metal compound selected from metal oxides, metal oxynitrides, and metal nitrides.
  • the barrier layer can be formed by a kind of film forming method selected from a vacuum vapor deposition method, an ion plating method, a sputtering method, a chemical vapor phase method and the like.
  • the thickness of the barrier layer may be about 20 to 300 nm.
  • the gas barrier film of the present invention may further include at least one layer selected from a coat layer (such as a hard coat layer and an overcoat layer) and a conductive layer (such as a transparent conductive layer).
  • a coat layer such as a hard coat layer and an overcoat layer
  • a conductive layer such as a transparent conductive layer.
  • a hard coat layer composed of a cured product of a polymerizable composition containing a vinyl monomer and / or a prepolymer is formed on the other side of the base film (the side opposite to the side on which the anchor layer is formed). May be.
  • the overcoat layer made of an organic material may be laminated on the barrier layer.
  • the conductive layer may be formed on at least one outermost layer.
  • an anchor layer is formed by applying a polymerizable composition containing at least a silicone (meth) acrylate monomer and / or a prepolymer to at least one surface of a base film and then curing the composition.
  • a method for producing a gas barrier film by forming a barrier layer containing a metal or metal compound in the layer is also included.
  • gas barrier film of the present invention can be suitably used for an electronic device (liquid crystal element, thin film solar cell element, organic EL element, electronic paper, etc.) as a gas barrier member.
  • an electronic device liquid crystal element, thin film solar cell element, organic EL element, electronic paper, etc.
  • acrylate and methacrylate are collectively referred to as (meth) acrylate
  • acrylic and methacrylic are collectively referred to as (meth) acrylic
  • the term “vinyl type” is used as a generic term for compounds having an ⁇ , ⁇ -ethylenically unsaturated double bond.
  • the anchor layer interposed between the base film and the barrier layer is composed of a cured product of a polymerizable composition containing at least a silicone (meth) acrylate monomer and / or a prepolymer
  • gas barrier properties for example, Water vapor barrier property
  • the gas barrier film of the present invention is used for an electronic device as a gas barrier member, it is possible to effectively prevent deterioration of element performance of the electronic device due to water vapor from the outside.
  • a barrier layer of a metal compound for example, metal oxide, metal oxynitride, metal nitride
  • a gas barrier property is obtained. Not only can transparency be improved.
  • curling can be prevented by forming a coat layer such as a hard coat layer on the surface opposite to the surface on which the anchor layer of the base film is formed.
  • the adhesion of the barrier layer to the base film can be improved.
  • FIG. 1 is a schematic sectional view showing an example of the gas barrier film of the present invention.
  • FIG. 2 is a schematic sectional view showing another example of the gas barrier film of the present invention.
  • FIG. 3 is a schematic sectional view showing still another example of the gas barrier film of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing an organic EL device including the gas barrier film of the present invention as a gas barrier member.
  • the gas barrier film of the present invention has a vinyl (particularly (meth) acrylic) monomer and / or prepolymer (hereinafter referred to as “vinyl component ((meth) acrylic component)”) on at least one surface of the base film. May be generically referred to as), and is composed of a cured product of a polymerizable composition containing at least a silicone (meth) acrylate monomer and / or a prepolymer (hereinafter may be generically referred to as “silicone (meth) acrylate component”).
  • An anchor layer is laminated, and a barrier layer containing a metal or a metal compound is laminated on the anchor layer.
  • FIG. 1 is a schematic sectional view showing an example of the gas barrier film of the present invention.
  • an anchor layer 12 is laminated on one surface of the base film 11, and a barrier layer 13 is laminated on the anchor layer 12.
  • Such a gas barrier film has an extremely high gas barrier property (for example, a water vapor barrier property) because the anchor layer interposed between the base film and the barrier layer is composed of a specific vinyl component.
  • the coating layer (for example, hard-coat layer) comprised by the hardened
  • FIG. 2 is a schematic sectional view showing another example of the gas barrier film of the present invention.
  • the anchor layer 22a and the barrier layer 23a are sequentially stacked on one surface of the base film 21, and the anchor layer 22b and the barrier layer 23b are sequentially stacked on the barrier layer 23a.
  • One surface of the base film may have two or more lamination units (repeating units) composed of an anchor layer and a barrier layer laminated on the anchor layer.
  • lamination units for example, 2 to 20, Preferably, there may be about 2 to 15, more preferably about 2 to 10.
  • each barrier layer (for example, its composition, thickness, etc.) may be the same as or different from each other.
  • Each anchor layer may be the same as or different from each other.
  • FIG. 3 is a schematic sectional view showing still another example of the gas barrier film of the present invention.
  • the structure is the same as that of FIG. 1 except that the overcoat layer 34 is laminated on the barrier layer 33.
  • a coat layer such as a hard coat layer may be laminated on the other surface of the base film from the viewpoint of preventing curling.
  • the gas barrier film of the present invention is not limited to a coat layer (overcoat layer, hard coat layer, etc.), and various layers depending on the use of the gas barrier film [for example, in the use of an electronic device, a conductive layer (transparent conductive layer). Etc.)] may be laminated.
  • the base film is not particularly limited as long as it is a film capable of holding the anchor layer and the barrier layer, and can be appropriately selected according to the use, but is usually composed of plastic.
  • the plastic may be a thermoplastic resin or a thermosetting resin.
  • olefin resin polyethylene, polypropylene, amorphous polyolefin, etc.
  • styrene resin polystyrene, acrylonitrile-styrene copolymer, etc.
  • polyester resin polyethylene terephthalate (PET), cyclohexanedimethanol)
  • PET-G polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polyalkylene arylate resin such as polyethylene naphthalate (PEN), polyarylate resin, liquid crystalline polyester, etc.
  • polyamide resin Nylon 6, nylon 66, nylon 12, etc.
  • vinyl chloride resin polyvinyl chloride, etc.
  • polycarbonate resin bisphenol A type polycarbonate, etc.
  • polyvinyl alcohol resin cellulose Ester resins, polyimide resins, polysulfone resins, polyphenylene ether resins, polyphenylene sulfide resins, fluorine resin
  • plastics can be used alone or in combination of two or more.
  • at least one plastic selected from polyester resins and polycarbonate resins is preferable, and polyalkylene arylate resins such as PET and PEN are particularly preferable.
  • the glass transition temperature (Tg) of the plastic constituting the base film is not particularly limited, and is, for example, about 40 to 350 ° C. (eg 60 to 350 ° C.), preferably 70 to 300 ° C., more preferably about 100 to 250 ° C. There may be.
  • stabilizers antioxidants, UV absorbers, light stabilizers, heat stabilizers, etc.
  • crystal nucleating agents for the base film, stabilizers (antioxidants, UV absorbers, light stabilizers, heat stabilizers, etc.), crystal nucleating agents, flame retardants, flame retardant aids, fillers, plastics, as necessary.
  • Agents, impact modifiers, reinforcing agents, colorants, dispersants, antistatic agents, foaming agents, antibacterial agents, and the like may be added. These additives can be used alone or in combination of two or more.
  • the base film may be an unstretched film or a stretched (uniaxial or biaxial) film. Further, the surface of the base film may be subjected to surface treatment such as discharge treatment such as corona discharge or glow discharge, acid treatment, and wrinkle treatment in order to improve adhesion.
  • surface treatment such as discharge treatment such as corona discharge or glow discharge, acid treatment, and wrinkle treatment in order to improve adhesion.
  • the thickness of the substrate film may be, for example, about 1 to 500 ⁇ m (for example, 10 to 500 ⁇ m), preferably 50 to 400 ⁇ m, and more preferably about 100 to 250 ⁇ m.
  • the anchor layer is composed of a cured product of a polymerizable composition containing a vinyl component.
  • the polymerizable composition is usually composed of a vinyl component and a polymerization initiator.
  • the vinyl component contains at least a silicone (meth) acrylate component, and may be composed of a silicone (meth) acrylate component alone, but usually a silicone (meth) acrylate component and a silicon-free vinyl (especially silicon) Non-containing (meth) acrylic) monomers and / or prepolymers (hereinafter sometimes collectively referred to as “silicon-free vinyl-based components (silicon-free (meth) acrylic components)”).
  • Gas barrier properties for example, water vapor barrier properties
  • the anchor layer is considered to be caused by factors such as strong adhesion between the base film and the barrier layer, improved surface properties, and improved barrier layer density. It is done.
  • the silicone (meth) acrylate component is not particularly limited as long as it is a compound having a silicon atom and a (meth) acryloyl group (a curable compound). —Si (—R) 2 —O—] (the group R represents a substituent).
  • the number of Si atoms (or organosiloxane units) may be 1 or more per molecule (for example, 1 to 30, preferably 1 to 20, more preferably about 1 to 15).
  • the number of (meth) acryloyl groups may be 1 or more per molecule (for example, about 1 to 20, preferably about 1 to 15, and more preferably about 1 to 10).
  • the silicone (meth) acrylate component may be a monomer, an oligomer (or prepolymer), or a combination of monomers and oligomers.
  • the oligomer (prepolymer) may be a polysiloxane oligomer having a plurality of (—Si—O) bonds, such as a hydrolytic condensable group (for example, a C 1-4 alkoxy group such as methoxy and ethoxy, It may be a multimer such as a dimer or trimer by hydrolytic condensation of a silicone (meth) acrylate monomer having a halogen atom such as a chlorine atom.
  • Typical silicone (meth) acrylate components include silicone mono to tetra (meth) acrylate having one Si atom in one molecule, silicone tetra to hexa (meth) acrylate having two Si atoms in one molecule, etc. Can be illustrated.
  • silicone (meth) acrylate components can be used alone or in combination of two or more.
  • silicone (meth) acrylate components a plurality of (for example, 2 to 10, preferably 2 to 8, more preferably about 2 to 6) (meth) acryloyl groups and 1 or Silicone (meth) acrylate component having a plurality of (for example, 1 to 20, preferably 1 to 10, more preferably about 1 to 6) Si atoms
  • Silicone di (meth) acrylate is available under the trade name “EBECRYL350” (manufactured by Daicel Cytec Co., Ltd.), and silicone hexa (meth) acrylate is trade name “EBECRYL1360” (manufactured by Daicel Cytech Co., Ltd.). ) Etc.
  • the viscosity of the silicone (meth) acrylate component may be about 100 to 5000 mPa ⁇ s, preferably 200 to 4000 mPa ⁇ s, more preferably about 300 to 3000 mPa ⁇ s at 25 ° C.
  • the content of the silicone (meth) acrylate component can be selected from the range of 50% by weight or less (for example, 1 to 30% by weight) with respect to the entire polymerizable composition including additives (such as a polymerization initiator). 0.01 to 25% by weight (eg 0.05 to 20% by weight), preferably 0.1 to 15% by weight (eg 0.5 to 10% by weight), more preferably 1 to 5% by weight (eg 2 to 4% by weight).
  • the silicon-free vinyl-based component is not particularly limited as long as it is a compound containing no silicon atom and having an ⁇ , ⁇ -ethylenically unsaturated double bond (curable compound). .
  • the number of ⁇ , ⁇ -ethylenically unsaturated double bonds [particularly (meth) acryloyl group] is 1 or more per molecule (for example, 1 to 20, preferably 1 to 15, more preferably about 1 to 10). It may be.
  • the silicon-free vinyl-based component may be a monomer or an oligomer (or prepolymer), or a combination of monomers and oligomers.
  • Silicon-free vinyl monomers include monofunctional vinyl monomers [monofunctional (meth) acrylates (or mono (meth) acrylates), etc.], bifunctional vinyl monomers [bifunctional (meth) acrylates (or di (meta) ) Acrylate) etc.] Trifunctional or higher functional vinyl monomers [Trifunctional or higher polyfunctional (meth) acrylate (or poly (meth) acrylate) etc.] are included.
  • Monofunctional vinyl monomers include, for example, (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl ( (Meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, C 1-24 alkyl (meth) acrylates such as stearyl (meth) acrylate; cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate; dicyclopentanyl (meth) acryl
  • bifunctional vinyl monomer examples include allyl (meth) acrylate; ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-propanediol di (meth) acrylate, and 1,4-butanediol.
  • Alkanediol di (meth) acrylates such as di (meth) acrylate, neopentylglycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate; alkane polyol di (meth) such as glycerin di (meth) acrylate Acrylate: Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol Polyalkylene glycol di (meth) acrylates such as urdi (meth) acrylate; 2,2-bis (4- (meth) acryloxyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxydiethoxyphenyl) ) Di (meth) acrylates of C 2-4 alkylene oxide adducts of bisphenols (bisphenol A
  • polyfunctional vinyl monomer examples include trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and tetramethylolmethane tetra (meth) acrylate.
  • Alkane polyol (meth) acrylates such as dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate; alkane polyols such as trimethylolpropane and glycerin C 2-4 alkylene oxide adduct tri (meth) acrylate
  • a tri (meth) acrylate having a triazine ring such as tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate .
  • These monomers can be used alone or in combination of two or more.
  • polyester (meth) acrylate for example, polyester (meth) acrylate formed by reaction of polycarboxylic acid, polyol, (meth) acrylic acid and / or hydroxyalkyl (meth) acrylate, etc.
  • Alkyd resin Alkyd resin
  • epoxy (meth) acrylate for example, epoxy compounds having a plurality of epoxy groups (polyhydric alcohol type, polyvalent carboxylic acid type, bisphenol types such as bisphenol A, F, and S, and novolak type epoxy resins) ) Epoxy (meth) acrylate with ring-opening addition of (meth) acrylic acid]; urethane (meth) acrylate; polyacryl (meth) acrylate [for example, (meth) acrylic monomer and glycidyl (meth) acrylate (Meth) to the copolymer of The acrylic acid and poly acrylate (meth) acrylate having a ring-opening addition to the epoxy group]; polyether (meth) acrylate; polybutadiene (meth) acrylate; melamine (meth) acrylate; polyacetal (meth) acrylate can be exemplified. These oligomers can be used alone or in combination of two or more.
  • oligomers such as urethane (meth) acrylate are preferable from the viewpoint of flexibility.
  • Urethane (meth) acrylate is not particularly limited.
  • polyisocyanate component or a prepolymer having a free isocyanate group formed by a reaction between a polyisocyanate component and a polyol component
  • Urethane (meth) acrylate obtained by reacting acrylate for example, hydroxyalkyl (meth) acrylate etc.
  • acrylate for example, hydroxyalkyl (meth) acrylate etc.
  • polyisocyanate component examples include aliphatic polyisocyanates [for example, aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMDI), lysine diisocyanate (LDI); 1,6,11-undecane.
  • aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMDI), lysine diisocyanate (LDI); 1,6,11-undecane.
  • Aliphatic triisocyanates such as triisocyanate methyloctane and 1,3,6-hexamethylene triisocyanate
  • alicyclic polyisocyanates eg, cyclohexane 1,4-diisocyanate, isophorone diisocyanate (IPDI), hydrogenated xylylene diisocyanate
  • Alicyclic diisocyanates such as hydrogenated bis (isocyanatophenyl) methane; alicyclic triisoses such as bicycloheptane triisocyanate Anate, etc.
  • aromatic polyisocyanates for example, phenylene diisocyanate, tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), naphthalene diisocyanate (NDI), bis (isocyanatophenyl) methane (MDI), toluid
  • the polyol component is not particularly limited.
  • a low molecular weight polyol [aliphatic polyol (C 2-10 alkane diol such as ethylene glycol, propylene glycol, tetramethylene ether glycol, etc .; C such as glycerin, trimethylolpropane, pentaerythritol, etc.) 3-12 aliphatic polyols), cycloaliphatic polyols (cycloalkanediols such as 1,4-cyclohexanediol), hydrogenated bisphenols such as hydrogenated bisphenol A, or C 2-4 alkylene oxide adducts thereof ), Aromatic polyols (araliphatic diols such as xylylene glycol, bisphenols such as bisphenol A, S, and F, or their C 2-4 alkylene oxide adducts)], polymer polyols [example For example, polyether polyol (poly C 2-4 al
  • JP, 2008-74891, A etc. can refer to the manufacturing method of these urethane (meth) acrylates.
  • the weight average molecular weight of urethane (meth) acrylate may be about 500 to 10,000, preferably about 600 to 9000, and more preferably about 700 to 8,000 in terms of polystyrene in gel permeation chromatography (GPC).
  • gas barrier property water vapor
  • the polymerization initiator may be a thermal polymerization initiator (a thermal radical generator such as a peroxide such as benzoyl peroxide) or a photopolymerization initiator (a photo radical generator).
  • a preferred polymerization initiator is a photopolymerization initiator.
  • photopolymerization initiator examples include benzoins (benzoin alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether), phenyl ketones [for example, acetophenones (for example, acetophenone, 2-hydroxy -2-methyl-1-phenylpropan-1-one, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, etc.), 2-hydroxy-2 -Alkyl phenyl ketones such as methylpropiophenone; cycloalkyl phenyl ketones such as 1-hydroxycyclohexyl phenyl ketone], aminoacetophenones ⁇ 2-methyl-1- [4- (methylthio) phene ] -2-morpholinoaminopropanone-1, 2-benzyl-2-dimethylaminoprop
  • the proportion of the polymerization initiator is 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight, more preferably 0.1 parts per 100 parts by weight of the vinyl component ((meth) acrylic component). It may be about 2.5 parts by weight.
  • the photopolymerization initiator may be combined with a photosensitizer.
  • the photosensitizer include conventional components such as tertiary amines [for example, trialkylamine, trialkanolamine (such as triethanolamine), ethyl N, N-dimethylaminobenzoate, N, N-dimethyl.
  • Dialkylaminobenzoic acid alkyl esters such as amyl aminobenzoate, bis (dialkylamino) benzophenones such as 4,4-bis (dimethylamino) benzophenone (Michler's ketone), 4,4'-diethylaminobenzophenone], triphenylphosphine, etc.
  • Phosphines such as N, N-dimethyltoluidine, anthracene such as 9,10-dimethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, 2-ethyl-9,10-diethoxyanthracene, etc. It is done.
  • the photosensitizers may be used alone or in combination of two or more.
  • the amount of the photosensitizer used may be, for example, about 0.1 to 100 parts by weight, preferably about 0.5 to 80 parts by weight with respect to 100 parts by weight of the photopolymerization initiator.
  • the thickness of the anchor layer is not particularly limited, and may be, for example, about 0.1 to 10 ⁇ m, preferably 0.5 to 8 ⁇ m, and more preferably about 1 to 5 ⁇ m (for example, 2 to 3 ⁇ m).
  • the thickness of the anchor layer is too small, a uniform anchor layer tends not to be formed, and when the thickness is too large, the curl tends to increase.
  • a barrier layer is not specifically limited as long as it contains a metal or a metal compound, it is preferable that it is a metal or metal compound which can form a thin film (especially transparent thin film).
  • metals include Group 2A elements of the periodic table such as beryllium, magnesium, calcium, strontium, and barium; Periodic table transition elements such as titanium, zirconium, ruthenium, hafnium, tantalum, and copper; Periodic table 2B such as zinc Group element; periodic table group 3B elements such as aluminum, gallium, indium and thallium; periodic table group 4B elements such as silicon, germanium and tin; and periodic table group 6B elements such as selenium and tellurium.
  • Group 2A elements of the periodic table such as beryllium, magnesium, calcium, strontium, and barium
  • Periodic table transition elements such as titanium, zirconium, ruthenium, hafnium, tantalum, and copper
  • Periodic table 2B such as zinc Group element
  • the metal compound examples include the metal oxides, nitrides, oxynitrides, halides, and carbides. These metals or metal compounds can be used alone or in combination of two or more. Among these metals or metal compounds, metal oxides, metal oxynitrides, metals of periodic table group 4B elements such as aluminum or periodic table group 4B elements such as silicon can be improved in addition to gas barrier properties. Nitride (for example, silicon oxide [composition formula SixOy], aluminum oxide [composition formula AlxOy], silicon nitride [composition formula SixNy], silicon oxynitride [composition formula SixOyNz]) is preferable. More preferable metals or metal compounds are metal oxides (for example, metal oxides of Group 3B or 4B elements of the periodic table such as silicon oxide and aluminum oxide).
  • the thickness of the barrier layer can be appropriately selected depending on the film formation method, and is, for example, 10 to 300 nm (for example, 20 to 300 nm), preferably 15 to 250 nm (for example, 20 to 200 nm), and more preferably 25 to 150 nm (for example, 50 nm). About 100 to 100 nm, particularly 60 to 90 nm).
  • the thickness of the barrier layer is 10 to 100 nm (for example, 15 to 80 nm, particularly 20 to 50 nm) from the viewpoint of preventing the occurrence of cracks and the like and maintaining a gas barrier property by forming a uniform film.
  • the thickness of the barrier layer is preferably adjusted to about 50 to 300 nm (for example, 80 to 250 nm, particularly 100 to 200 nm).
  • the gas barrier film of the present invention may further contain layers such as a coat layer (hard coat layer, overcoat layer, etc.) and a conductive layer (transparent conductive layer, etc.). Specifically, it is sufficient that at least one kind of layer selected from these layers is included, and these layers may be included in combination.
  • a coat layer hard coat layer, overcoat layer, etc.
  • a conductive layer transparent conductive layer, etc.
  • a coating layer is not specifically limited, Usually, it forms in the outer layer of a base film or a barrier layer.
  • a material constituting the coating layer organic materials such as thermoplastic resins and thermosetting resins are widely used.
  • Such a coat layer may be a hard coat layer formed on the surface opposite to the surface on which the anchor layer of the base film is laminated. When the hard coat layer is formed, the gas barrier film can be prevented from curling.
  • the hard coat layer may be formed of a coating composition containing a thermoplastic resin and / or a thermosetting resin.
  • a polymerizable composition containing a vinyl monomer and / or a vinyl prepolymer for example, “ You may form with the composition” illustrated by the term of the "anchor layer”.
  • the hard coat layer is preferably configured so as to have the same degree of shrinkage on both surfaces of the base material from the viewpoint of curling prevention, and may be different from or the same as the anchor layer.
  • the coat layer may be an overcoat layer formed on the barrier layer.
  • the overcoat layer is formed, cracks and the like can be prevented from occurring in the barrier layer even when a mechanical external force is applied, and the barrier layer can be protected.
  • the overcoat layer is usually laminated directly on the barrier layer.
  • thermoplastic resins for example, (meth) acrylic resins (eg, homopolymers such as polymethyl methacrylate and polyacrylate, methyl methacrylate-acrylic acid ester copolymers, etc.) Polycarbonate resins, polyester resins (phthalic acid, methylphthalic acid alone or copolymerized polyesters, etc.), cardo resins (fluorene polyesters, etc.), styrene resins (polystyrene, styrene-acrylonitrile copolymers, etc.), Olefin resins (polyethylene, polypropylene, polymethylpentene, etc.), polyphenylene ether resins, polyvinyl acetal (polyvinyl butyral, etc.)], thermosetting resins [eg, phenol resins, epoxy resins, diesters, etc.
  • thermoplastic resins for example, (meth) acrylic resins (eg, homopolymers such as polymethyl methacrylate and polyacrylate,
  • Organic materials include resins modified with acrylonitrile-butadiene rubber and polyfunctional acrylate compounds (acrylic modified vinyl chloride resin / acrylic modified urethane resin / ABS resin, etc.), and thermosetting resins modified with thermoplastic resins.
  • cross-linked polyethylene resin, cross-linked polyethylene / epoxy resin, cross-linked polyethylene / cyanate resin, polyphenylene ether / epoxy resin, polyphenylene ether / cyanate resin, etc. are also included. These organic materials can be used alone or in combination of two or more.
  • the thickness of the coat layer is not particularly limited, and is, for example, 0.1 to 10 ⁇ m, preferably 0.5 to 8 ⁇ m, more preferably 1 to 5 ⁇ m (for example, 2 to 3 ⁇ m). It may be a degree.
  • the gas barrier film of the present invention can be suitably used as a member of an electronic device, and can be used as a gas barrier conductive material [for example, a gas barrier electrode (transparent electrode, etc.)] by laminating a conductive layer (transparent conductive layer, etc.). Is possible.
  • the conductive layer may be usually laminated on at least one outermost layer of the gas barrier film.
  • the conductive layer can be formed of at least one selected from an inorganic material and an organic material.
  • inorganic materials include metal oxides [for example, indium oxide (In 2 O 3 , In 2 O 3 —SnO 2 composite oxide (ITO), etc.), tin oxide (SnO 2 , SnO 2 —Sb 2 O 5].
  • Conductive inorganic compounds such as composite oxides, fluorine-doped tin oxide (FTO), zinc oxide (ZnO, ZnO—Al 2 O 3 composite oxides)], metals (eg, gold, silver, platinum, palladium) It may be.
  • FTO fluorine-doped tin oxide
  • ZnO, ZnO—Al 2 O 3 composite oxides zinc oxide
  • metals eg, gold, silver, platinum, palladium
  • Organic materials include ⁇ -electron conjugated polymers [for example, polyacetylene, polyphenylene vinylene, polyparaphenylene, polyacene, polypyrrole, polypyridinopyridine, polypyridine, polyaniline, polythiophene, polythienylene vinylene, polyethylenedioxythiophene (PEDOT) , Polydiphenylacetylene] and the like can be exemplified. These organic materials can be used alone or in combination of two or more.
  • ⁇ -electron conjugated polymers for example, polyacetylene, polyphenylene vinylene, polyparaphenylene, polyacene, polypyrrole, polypyridinopyridine, polypyridine, polyaniline, polythiophene, polythienylene vinylene, polyethylenedioxythiophene (PEDOT) , Polydiphenylacetylene
  • These organic materials can be used alone or in combination of two or more.
  • the thickness of the conductive layer is not particularly limited, and may be about 1 to 1000 nm (for example, 1 to 500 nm), preferably 5 to 400 nm, and more preferably about 10 to 300 nm.
  • the surface resistance of the conductive layer may be about 10 to 1000 ⁇ , preferably about 15 to 500 ⁇ , and more preferably about 20 to 300 ⁇ .
  • the gas barrier film of the present invention is excellent in gas barrier properties (particularly water vapor barrier properties).
  • the water vapor permeability under an atmosphere of a temperature of 40 ° C. and a humidity of 90% RH is 1.5 g / m 2 ⁇ day or less (for example, about 0.00001 to 1.5 g / m 2 ⁇ day), preferably 1. 0g / m 2 ⁇ day or less (e.g., 0.1g / m 2 ⁇ day or less), more preferably 0.01g / m 2 ⁇ day or less (e.g., less 0.005g / m 2 ⁇ day), especially 0.
  • the gas barrier film of the present invention may be substantially below the detection limit, and exhibits extremely small barrier properties.
  • the water vapor permeability can be measured with a conventional measuring device [for example, “PERMATRAN”, “AQUATRAN” (manufactured by mocon), etc.].
  • the gas barrier film of the present invention is excellent in transparency, and the total light transmittance is 80% or more (for example, about 80 to 99.9%), preferably 82% or more in accordance with JIS K7105 ( For example, it may be about 82 to 99%), more preferably 85% or more (for example, about 85 to 95%).
  • the gas barrier film of the present invention can be produced by using a conventional method, and the order of lamination is not particularly limited depending on the laminated structure, but usually a vinyl-based component (particularly (meth)) is formed on at least one surface of the base film.
  • a vinyl-based component particularly (meth)
  • the acrylic component a polymerizable composition containing at least a silicone (meth) acrylate component is applied and then cured to form an anchor layer, and a barrier layer containing a metal or a metal compound is formed on the anchor layer. Can be obtained.
  • the coating method of the polymerizable composition is not particularly limited, and a conventional coating method such as an air knife coating method, a roll coating method, a gravure coating method, a blade coating method, a dip coating method, a spraying method. Examples thereof include spin coating and spin coating. After application, drying may be performed as necessary. Drying may be performed at a temperature of, for example, about 50 to 150 ° C., preferably 60 to 140 ° C., and more preferably about 70 to 130 ° C.
  • the polymerizable composition may be cured by heating depending on the type of the polymerization initiator, but it can usually be cured by irradiation with active energy rays.
  • active energy rays heat and / or light energy rays can be used, and it is particularly useful to use light energy rays.
  • light energy rays radiation (gamma rays, X-rays, etc.), ultraviolet rays, visible rays, etc. can be used, and usually ultraviolet rays are often used.
  • a Deep UV lamp for example, in the case of ultraviolet rays, a Deep UV lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a halogen lamp, a laser light source (light source such as helium-cadmium laser or excimer laser), etc. may be used. it can.
  • Irradiation light amount varies depending on the thickness of the coating film, for example, 50 ⁇ 10000mJ / cm 2, preferably 70 ⁇ 7000mJ / cm 2, more preferably may be 100 ⁇ 5000mJ / cm 2 approximately.
  • the barrier layer is not particularly limited as long as it is a method capable of forming a thin film containing a metal or a metal compound, and can be formed using a conventional film forming method.
  • the film formation method include physical vapor deposition (PVD) [for example, vacuum deposition, electron beam deposition, ion beam deposition, ion plating (for example, HCD, electron beam RF, arc discharge).
  • sputtering method eg, direct current discharge method, radio frequency (RF) discharge method, magnetron method, etc.
  • molecular beam epitaxy method laser ablation method
  • chemical vapor phase method eg, thermal CVD method, Plasma CVD method, MOCVD method (metal organic chemical vapor deposition method), photo CVD method]
  • ion beam mixing method ion implantation method and the like
  • film forming methods a physical vapor phase method such as a vacuum vapor deposition method, an ion plating method and a sputtering method, a chemical vapor phase method and the like are widely used, and a sputtering method and a plasma CVD method are preferable.
  • the degree of vacuum (or the initial degree of vacuum) is about 0.1 ⁇ 10 ⁇ 4 to 100 ⁇ 10 ⁇ 4 Pa, preferably about 1 ⁇ 10 ⁇ 4 to 10 ⁇ 10 ⁇ 4 Pa.
  • the introduced gas for example, an inert gas such as helium, neon, argon, or xenon; air, oxygen, nitrogen, carbon monoxide, carbon dioxide, nitrogen monoxide, sulfur dioxide, or the like can be used.
  • the introduced gas may be a mixed gas containing oxygen in an amount of about 1 to 50% (preferably 3 to 30%, more preferably 5 to 20%) with respect to the inert gas.
  • the applied voltage is, for example, about 0.1 to 100 kV, preferably about 1 to 50 kV.
  • the temperature is usually about 50 to 250 ° C.
  • Sputtering may be performed using a conventional apparatus (for example, “Quantera SXM” manufactured by PHI).
  • CVD plasma CVD
  • a halide corresponding to a metal or a metal compound and a reactive gas air, oxygen, nitrogen, carbon monoxide, carbon dioxide, nitrogen monoxide, sulfur dioxide, etc.
  • the pressure in the reactor is about 0.1 ⁇ 10 ⁇ 4 to 100 ⁇ 10 ⁇ 4 Pa, preferably about 1 ⁇ 10 ⁇ 4 to 10 ⁇ 10 ⁇ 4 Pa.
  • the applied voltage is, for example, about 0.1 to 100 kV, preferably about 1 to 50 kV.
  • the temperature is usually about 50 to 250 ° C.
  • the CVD may be performed using a conventional apparatus (for example, Cellback “ICP-CVD”, etc.).
  • the coat layer (hard coat layer, overcoat layer, etc.) may be laminated by the same method as that for forming the anchor layer. Moreover, a conductive layer can be laminated
  • the electronic device of the present invention includes the gas barrier film as a gas barrier member.
  • Such an electronic device may be, for example, a liquid crystal element, a thin film solar cell element, an organic EL element, electronic paper, or the like.
  • FIG. 4 is a schematic cross-sectional view showing an organic EL element including the gas barrier film of the present invention as a gas barrier member.
  • a gas barrier film 40 (50) in which a base film 41 (51), an anchor layer 42 (52), and a barrier layer 43 (53) are sequentially laminated is disposed on both surfaces of the organic EL element.
  • the base film side of the gas barrier film is in contact with the organic EL element.
  • a transparent electrode 65a and an organic light emitting layer 66 are provided at the center of the facing surface
  • the organic EL element 60 in which the metal electrode 65b is sequentially laminated is provided, and a pair of gas barrier films are bonded via the adhesive layers 67 at both ends of the organic EL element.
  • gas barrier films having excellent gas barrier properties (particularly, water vapor barrier properties) and transparency are disposed on both sides, so that water vapor can be transmitted from the outside without interfering with light transmittance. Contact with the organic EL element can be prevented, and deterioration of element performance can be effectively prevented.
  • the pair of gas barrier films may be opposed on the base film side or may be opposed on the barrier layer side. Further, one or a plurality of (for example, 2 to 4) gas barrier films may be used as long as a part or all of the periphery of the organic EL element is covered with the gas barrier film.
  • electronic paper usually has a structure in which a display layer composed of microcapsules or silica beads is laminated on a thin film transistor (TFT) substrate, and a transparent electrode is laminated on the display layer.
  • TFT thin film transistor
  • a vapor-deposited film phthalocyanine vapor-deposited film, fullerene vapor-deposited film, etc.
  • a conductive electrode aluminum electrode, etc.
  • a stop film LiF or the like
  • the gas barrier film of the present invention can be used as a component of these electronic devices, and may be laminated on the transparent electrode, for example.
  • the surface which contacts a transparent electrode may be a base film side, and may be a barrier layer side.
  • Water vapor permeability The water vapor permeability was measured using a water vapor permeability measuring device (for the gas barrier films of Examples 1 and 3 to 5 and Comparative Examples 1 to 5, “PERMATRAN-W3 / 33” manufactured by mocon, the gas barrier film of Example 2). On the other hand, measurement was performed using “AQUATRAN” manufactured by mocon. Measurement conditions are 40 ° C. and relative humidity 90% RH.
  • Total light transmittance The total light transmittance was measured using a haze meter (NDH-300A manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K7105.
  • Example 1 Urethane (meth) acrylate as a silicon-free vinyl component (manufactured by Daicel-Cytec Co., Ltd., “EBECRYL1290”) and silicone di (meth) acrylate as a silicone (meth) acrylate component (manufactured by Daicel-Cytec Co., Ltd.) , "EBECRYL350”) and a polymerization initiator ("Irgacure 184", manufactured by Ciba Japan Co., Ltd.) at a ratio of 96/2/2 (weight ratio), a base film (PET film) After coating and drying on both surfaces of Mitsubishi Resin Co., Ltd., thickness 188 ⁇ m), UV was irradiated at 300 mJ / cm 2 and cured to form anchor layers each having a thickness of 5 ⁇ m.
  • EBECRYL1290 silicone di (meth) acrylate as a silicone (meth) acrylate component
  • EBECRYL350 silicone (meth)
  • a gas barrier film is formed by depositing aluminum oxide [composition AlxOy] on one anchor layer by a sputtering method (vacuum degree 5 ⁇ 10 ⁇ 4 Pa, oxygen concentration 15%) to form a barrier layer having a thickness of 20 nm. did.
  • the evaluation results of the obtained gas barrier film are shown in Table 1.
  • Example 2 Using a coating solution in which a silicon-free vinyl-based component, a silicone (meth) acrylate component, and a polymerization initiator are mixed at a ratio of 94/4/2 (weight ratio), and a barrier layer having a thickness of 50 nm is formed. Except for this, a gas barrier film was prepared in the same manner as in Example 1. The evaluation results of the obtained gas barrier film are shown in Table 1.
  • Example 3 A procedure similar to that in Example 1 except that a coating liquid in which a silicon-free vinyl-based component, a silicone (meth) acrylate component, and a polymerization initiator are mixed at a ratio of 86/12/2 (weight ratio) is used. To prepare a gas barrier film. The evaluation results of the obtained gas barrier film are shown in Table 1.
  • Example 4 Using SiCl 4 , O 2, and N 2 , silicon oxynitride [composition SixOyNz] is deposited by plasma CVD [CVD apparatus (CELLBACK, Inc., ICP-CVD)] to form a barrier layer having a thickness of 70 nm. Except for forming a gas barrier film, the same procedure as in Example 2 was performed to create a gas barrier film, and the evaluation results of the obtained gas barrier film are shown in Table 1.
  • Example 5 A silicon nitride [composition SixNy] was deposited by a plasma CVD method [CVD apparatus (CELLBACK, Inc., ICP-CVD) using SiCl 4 and N 2 to form a barrier layer having a thickness of 70 nm. Produced a gas barrier film by the same procedure as in Example 2. Table 1 shows the evaluation results of the obtained gas barrier film.
  • Comparative Example 1 Aluminum oxide [composition AlxOy] is deposited on one surface of a base film (PET film, Mitsubishi Plastics, Inc., thickness 188 ⁇ m) by sputtering (vacuum degree 5 ⁇ 10 ⁇ 4 Pa, oxygen concentration 15%). Thus, a barrier layer having a thickness of 20 nm was formed to prepare a gas barrier film. The evaluation results of the obtained gas barrier film are shown in Table 1.
  • Comparative Example 2 A procedure similar to that in Example 1 except that a coating liquid in which a silicon-free vinyl-based component, a silicone (meth) acrylate component, and a polymerization initiator are mixed at a ratio of 98/0/2 (weight ratio) is used. To prepare a gas barrier film. The evaluation results of the obtained gas barrier film are shown in Table 1.
  • Comparative Example 3 A procedure similar to that of Example 4 except that a coating liquid in which a silicon-free vinyl-based component, a silicone (meth) acrylate component, and a polymerization initiator are mixed at a ratio of 98/0/2 (weight ratio) is used. To prepare a gas barrier film. The evaluation results of the obtained gas barrier film are shown in Table 1.
  • Comparative Example 4 A procedure similar to that of Example 5 except that a coating liquid in which a silicon-free vinyl-based component, a silicone (meth) acrylate component, and a polymerization initiator are mixed in a ratio of 98/0/2 (weight ratio) is used. To prepare a gas barrier film. The evaluation results of the obtained gas barrier film are shown in Table 1.
  • Comparative Example 5 A gas barrier film was prepared in the same manner as in Comparative Example 2 except that aluminum was deposited by a vacuum deposition method to form a barrier layer having a thickness of 80 nm. The evaluation results of the obtained gas barrier film are shown in Table 1.
  • the gas barrier film of the present invention Since the gas barrier film of the present invention has excellent gas barrier properties, it is widely applied to various packaging materials (for example, packaging materials for microwave oven foods, retort foods, frozen foods, microwave sterilization, flavor barriers, pharmaceuticals, precision electronic parts, etc.). it can. Moreover, since the gas barrier film of the present invention is particularly excellent in water vapor barrier and has high transparency, it is suitable for electronic devices (for example, liquid crystal elements, thin film solar cell elements, organic EL elements, electronic paper, touch panels, etc.) as gas barrier members. Available to:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

 優れたガスバリア性(例えば、水蒸気バリア性)を有するガスバリアフィルム及びその製造方法並びにそれを用いたデバイスを提供する。 基材フィルム11の一方の面に、少なくともシリコーン(メタ)アクリレートモノマー及び/又はプレポリマーを含む重合性組成物の硬化物で構成されたアンカー層12を積層して、このアンカー層に金属又は金属化合物を含むバリア層13を積層することにより、ガスバリア性(例えば、水蒸気バリア性)の高いガスバリアフィルム10を得る。

Description

ガスバリアフィルムとその製造方法、およびそれを用いたデバイス
 本発明は、優れたガスバリア性(例えば、水蒸気バリア性)を有するガスバリアフィルム及びその製造方法、並びに前記ガスバリアフィルムをガスバリア性部材として含むデバイス(液晶素子、薄膜太陽電池素子、有機EL素子、電子ペーパーなどの電子デバイス)に関する。
 基材フィルムを金属又は金属化合物の薄膜で被覆することにより、ガスバリア性を大きく改善させる試みが従来から行われている。例えば、特開2005-178137号公報(特許文献1)には、基材フィルムの少なくとも一方の面に、平滑な表面を有するバリア性蒸着層が積層され、このバリア性蒸着層上に、平滑な表面を有する耐酸性の保護層が積層されたガスバリアフィルムが開示されている。この文献には、前記保護層はアクリレート樹脂で構成してもよいことが記載されている。また、この文献には、水蒸気透過率が0.1g/m/day以下の極めて優れたガスバリアフィルムが記載されている。しかし、高いガスバリア性を発現するためには、バリア性蒸着層と保護層の表面を平滑化する必要があり、このようなガスバリアフィルムを簡便に製造することは困難である。
 また、特表2005-528250号公報(特許文献2)には、(i)フレキシブル基板と、(ii)フレキシブル基板上に堆積された基礎バリア層、及び基礎バリア層上に堆積された有機層を備える基礎スタックと、(iii)基礎スタック上に堆積され、かつバリアスタックバリア層、及びバリアスタックバリア層上に堆積された有機層を備えるバリアスタックと、(iv)バリアスタック上に堆積された最上分離層とを含む多層バリアコーティングが開示されている。この文献には、有機層はアクリレート系有機材料を含んでいてもよいことが記載されている。
 さらに、特開2004-9395号公報(特許文献3)には、樹脂基材上に、少なくとも無機物層/有機物層/無機物層で構成されたバリア膜を有する透明水蒸気バリアフィルムにおいて、有機物層がアクリロイル基以外に少なくとも1つ以上の極性基を有するジアクリレートを架橋させてなる樹脂を主成分とする透明水蒸気バリアフィルムが開示されている。前記極性基は、透明性や熱安定性の面から、エーテル結合及び/又はエステル結合が好ましいことが記載されている。
 しかし、これらのフィルムは、水蒸気バリア性が不充分である。また、無機材料層を蒸着で形成し、その無機材料層の上に有機材料層を蒸着で形成することにより、透明性を向上できるものの、生産性が低い。
 一方、金属又は金属化合物を含むバリア層が、アクリル樹脂層を介して、基材フィルムに積層されたガスバリアフィルムも知られている。例えば、特開平10-278167号公報(特許文献4)には、樹脂フィルムの片面に、真空紫外線硬化法により形成されたアクリル樹脂層、及び金属または金属化合物の蒸着薄膜が順次積層されたバリアー性積層体が開示されている。この文献には、アクリル系モノマー又はオリゴマーが広範に記載されており、ウレタンアクリレートやシリコーンアクリレートも例示されている。しかし、このバリアー性積層体は、水蒸気透過性を低減できず、ガスバリア性を改善できない。例えば、この文献の実施例では、バリアー性積層体の水蒸気透過率(40℃、90%RH)は0.4g/m/dayであり、近年デバイス部材として要求されるガスバリア性に対して充分ではない。
 また、特開2005-313560号公報(特許文献5)には、可撓性基材の片面又は両面に、前記基材に近い側から重合成分としてアクリル系モノマー及び/又はアクリル系重合性プレポリマーのみを含むUV硬化性樹脂の硬化物からなる厚さ0.1~10μmのアクリル系樹脂層、及び厚さ20~100nmの無機バリア層が順次積層した積層構造が、前記基材に対して直接、1回のみ又は2回以上繰り返し積層されているガスバリア性フィルムが開示されている。この文献には、アクリル系モノマー又はアクリル系重合性プレポリマーが広範に記載され、ウレタンアクリレートやシリコーンアクリレートも例示されている。しかし、このガスバリア性フィルムも水蒸気バリア性が充分ではない。例えば、この文献の実施例では、ガスバリア性フィルムの水蒸気透過性(40℃、100%RH)は、0.49g/m・dayと高い値を示す。特に、基材フィルムの両面に、アクリル系樹脂層を介して無機バリア層が形成されたガスバリア性フィルムであっても、水蒸気透過性(40℃、100%RH)は、0.09g/m・dayである。
特開2005-178137号公報(請求項1及び10、段落[0037]、実施例) 特表2005-528250号公報(請求項1、段落[0035]) 特開2004-9395号公報(請求項1及び2、段落[0007]) 特開平10-278167号公報(請求項1、段落[0036]、実施例) 特開2005-313560号公報(請求項1、段落[0033]、実施例)
 従って、本発明の目的は、優れたガスバリア性(例えば、水蒸気バリア性)を有するガスバリアフィルム及びその製造方法並びにそれを用いたデバイスを提供することにある。
 本発明の他の目的は、透明性の高いガスバリアフィルム及びその製造方法並びにそれを用いたデバイスを提供することにある。
 本発明のさらに他の目的は、カールの生成を防止するとともに、基材フィルムに対する密着性の高いバリア層を有するガスバリアフィルム及びその製造方法並びにそれを用いたデバイスを提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、基材フィルムの少なくとも一方の面に、少なくともシリコーン(メタ)アクリレートモノマー及び/又はプレポリマーを含む組成物でアンカー層を形成し、このアンカー層に金属又は金属化合物を含むバリア層を形成すると、ガスバリア性(水蒸気バリア性)を著しく向上できることを見いだし、本発明を完成した。
 すなわち、本発明のガスバリアフィルムは、基材フィルムの少なくとも一方の面に、ビニル系モノマー及び/又はビニル系プレポリマー(オリゴマー)を含む重合性組成物の硬化物で構成されたアンカー層が積層され、このアンカー層に、金属又は金属化合物を含むバリア層が積層された積層構造を有する。このようなガスバリアフィルムにおいて、前記ビニル系モノマー及び/又はプレポリマーを、少なくともシリコーン(メタ)アクリレートモノマー及び/又はプレポリマー[例えば、シリコーン(メタ)アクリレートモノマー及び/又はプレポリマーと、珪素非含有ビニル系モノマー及び/又はプレポリマー(例えば、ウレタン(メタ)アクリレート)との組合せ]で構成する。
 シリコーン(メタ)アクリレートモノマー及び/又はプレポリマーと、珪素非含有ビニル系モノマー及び/又はプレポリマーとの割合(重量比)は、特に制限されず、前者/後者=1/99~30/70程度であっても、高いガスバリア性が得られる。
 基材フィルムは、ポリエステル系樹脂及びポリカーボネート系樹脂から選択された少なくとも一種で構成されたフィルムであってもよい。また、基材フィルムの一方の面は、アンカー層と、このアンカー層に積層されたバリア層とで構成された積層単位(繰り返し単位)を複数有していてもよい。バリア層は、金属酸化物、金属酸化窒化物、及び金属窒化物から選択された少なくとも1種の金属化合物を含んでいてもよい。バリア層は、真空蒸着法、イオンプレーティング法、スパッタリング法、化学的気相法などから選択された一種の成膜方法により形成できる。バリア層の厚みは20~300nm程度であってもよい。
 本発明のガスバリアフィルムは、さらに、コート層(ハードコート層、オーバーコート層など)及び導電層(透明導電層など)から選択された少なくとも一種の層を積層してもよい。ビニル系モノマー及び/又はプレポリマーを含む重合性組成物の硬化物で構成されたハードコート層は、基材フィルムの他方の面(アンカー層を形成する面に対して反対の面)に形成してもよい。有機材料で構成されたオーバーコート層は、バリア層に積層してもよい。導電層は、少なくとも一方の最外層に形成してもよい。
 本発明には、基材フィルムの少なくとも一方の面に、少なくともシリコーン(メタ)アクリレートモノマー及び/又はプレポリマーを含む重合性組成物を塗布した後、硬化させることによりアンカー層を形成し、このアンカー層に、金属又は金属化合物を含むバリア層を形成することによりガスバリアフィルムを製造する方法も含まれる。
 また、本発明のガスバリアフィルムは、ガスバリア性部材として電子デバイス(液晶素子、薄膜太陽電池素子、有機EL素子、電子ペーパーなど)に好適に利用できる。
 なお、本明細書において、アクリレートとメタクリレートとを(メタ)アクリレートと総称し、アクリル系とメタクリル系とを(メタ)アクリル系と総称する。また、本明細書中、用語「ビニル系」とは、α,β-エチレン性不飽和二重結合を有する化合物の総称の意味で用いる。
 本発明では、基材フィルムとバリア層との間に介在するアンカー層を、少なくともシリコーン(メタ)アクリレートモノマー及び/又はプレポリマーを含む重合性組成物の硬化物で構成すると、ガスバリア性(例えば、水蒸気バリア性)を著しく向上できる。特に、シリコーン(メタ)アクリレートモノマー及び/又はプレポリマーの含有量が少なくても、ガスバリア性を顕著に向上できる。従って、本発明のガスバリアフィルムをガスバリア性部材として電子デバイスに利用すると、外部からの水蒸気による電子デバイスの素子性能の劣化を有効に防止できる。また、物理的気相法又は化学的気相法により、アルミニウム、珪素などで構成された金属化合物(例えば、金属酸化物、金属酸化窒化物、金属窒化物)のバリア層を構成すると、ガスバリア性のみならず、透明性も向上できる。さらに、本発明のガスバリアフィルムでは、基材フィルムのアンカー層を形成した面に対して反対の面に、ハードコート層などのコート層を形成することなどにより、カールの生成も防止できる。さらには、基材フィルムに対するバリア層の密着性も向上できる。
図1は本発明のガスバリアフィルムの一例を示す概略断面図である。 図2は本発明のガスバリアフィルムの他の例を示す概略断面図である。 図3は本発明のガスバリアフィルムのさらに他の例を示す概略断面図である。 図4は本発明のガスバリアフィルムをガスバリア性部材として含む有機EL素子を示す概略断面図である。
 以下、必要により添付図面を参照しつつ、本発明を詳細に説明する。
 [ガスバリアフィルム]
 本発明のガスバリアフィルムは、基材フィルムの少なくとも一方の面に、ビニル系(特に(メタ)アクリル系)モノマー及び/又はプレポリマー(以下、「ビニル系成分((メタ)アクリル系成分)」と総称する場合がある)として、少なくともシリコーン(メタ)アクリレートモノマー及び/又はプレポリマー(以下、「シリコーン(メタ)アクリレート成分」と総称する場合がある)を含む重合性組成物の硬化物で構成されたアンカー層が積層され、このアンカー層に金属又は金属化合物を含むバリア層が積層された積層構造を有する。
 図1は、本発明のガスバリアフィルムの一例を示す概略断面図である。この例では、基材フィルム11の一方の面にアンカー層12が積層され、このアンカー層12にバリア層13が積層されている。
 このようなガスバリアフィルムでは、基材フィルムとバリア層との間に介在するアンカー層を特定のビニル系成分で構成するため、ガスバリア性(例えば、水蒸気バリア性)が極めて高い。
 なお、カールの発生をより防止する点から、基材フィルムの他方の面にビニル系モノマー及び/又はプレポリマーを含む重合性組成物の硬化物で構成されたコート層(例えば、ハードコート層)を形成してもよい。また、カールの発生を防止し、ガスバリア性をさらに向上させる点から、基材フィルムの両面にアンカー層を介してバリア層を積層してもよい。
 図2は、本発明のガスバリアフィルムの他の例を示す概略断面図である。この例では、基材フィルム21の一方の面にアンカー層22aとバリア層23aとが順次積層され、このバリア層23aに、さらにアンカー層22bとバリア層23bとが順次積層されている。
 このようなガスバリアフィルムでは、アンカー層とバリア層とが交互に繰り返して積層されているため、ガスバリア性を著しく向上できる。
 なお、基材フィルムの一方の面には、アンカー層と、このアンカー層に積層されたバリア層とで構成された積層単位(繰り返し単位)が2以上あってもよく、例えば、2~20、好ましくは2~15、さらに好ましくは2~10程度あってもよい。この場合、各バリア層(例えば、その組成、厚みなど)は、互いに同一であっても異なっていてもよい。各アンカー層も互いに同一又は異なっていてもよい。
 図3は、本発明のガスバリアフィルムのさらに他の例を示す概略断面図である。この例では、バリア層33にオーバーコート層34が積層されている点を除き、前記図1と同様に構成されている。
 このようなガスバリアフィルムでは、バリア層がオーバーコート層で被覆されているため、機械的外力が作用しても、バリア層に亀裂や欠陥が生成することを防止でき、長期間に亘り高いガスバリア性を修得できる。
 なお、カールの発生を防止する点から、基材フィルムの他方の面にハードコート層などのコート層を積層してもよい。
 本発明のガスバリアフィルムには、コート層(オーバーコート層、ハードコート層など)に限定されず、ガスバリアフィルムの用途に応じて種々の層[例えば、電子デバイスの用途では、導電層(透明導電層など)]を積層してもよい。
 以下に、ガスバリアフィルムの各要素について詳細に説明する。
 [基材フィルム]
 基材フィルムは、アンカー層及びバリア層を保持可能なフィルムであれば特に限定されず、用途に応じて適宜選択できるが、通常、プラスチックで構成される。プラスチックとしては、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよい。具体的には、オレフィン系樹脂(ポリエチレン、ポリプロピレン、非晶質ポリオレフィンなど)、スチレン系樹脂(ポリスチレン、アクリロニトリル-スチレン共重合体など)、ポリエステル系樹脂(ポリエチレンテレフタレート(PET)、シクロヘキサンジメタノールをジオール成分として含むPET系共重合体(PET-G)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)などのポリアルキレンアリレート系樹脂、ポリアリレート系樹脂、液晶性ポリエステルなど)、ポリアミド系樹脂(ナイロン6、ナイロン66、ナイロン12など)、塩化ビニル系樹脂(ポリ塩化ビニルなど)、ポリカーボネート系樹脂(ビスフェノールA型ポリカーボネートなど)、ポリビニルアルコール系樹脂、セルロースエステル系樹脂、ポリイミド系樹脂、ポリスルホン系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルファイド系樹脂、フッ素樹脂などが例示できる。
 これらのプラスチックは、単独で又は二種以上組み合わせて使用できる。これらのプラスチックのうち、ポリエステル系樹脂及びポリカーボネート系樹脂から選択された少なくとも一種のプラスチックが好ましく、PET、PENなどのポリアルキレンアリレート系樹脂が特に好ましい。
 基材フィルムを構成するプラスチックのガラス転移温度(Tg)は特に制限されず、例えば、40~350℃(例えば60~350℃)、好ましくは70~300℃、さらに好ましくは100~250℃程度であってもよい。
 基材フィルムには、必要に応じて、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤など)、結晶核剤、難燃剤、難燃助剤、充填剤、可塑剤、耐衝撃改良剤、補強剤、着色剤、分散剤、帯電防止剤、発泡剤、抗菌剤などを添加してもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。
 基材フィルムは、未延伸フィルムであってもよく、延伸(一軸又は二軸)フィルムであってもよい。また、基材フィルムの表面には、接着性を向上させるため、コロナ放電やグロー放電などの放電処理、酸処理、焔処理などの表面処理を施してもよい。
 基材フィルムの厚みは、例えば、1~500μm(例えば10~500μm)、好ましくは50~400μm、さらに好ましくは100~250μm程度であってもよい。
 [アンカー層]
 アンカー層は、ビニル系成分を含む重合性組成物の硬化物で構成されている。前記重合性組成物は、通常、ビニル系成分と重合開始剤とで構成されている。
 (ビニル系成分)
 ビニル系成分は、少なくともシリコーン(メタ)アクリレート成分を含んでおり、シリコーン(メタ)アクリレート成分単独で構成してもよいが、通常、シリコーン(メタ)アクリレート成分と、珪素非含有ビニル系(特に珪素非含有(メタ)アクリル系)モノマー及び/又はプレポリマー(以下、「珪素非含有ビニル系成分(珪素非含有(メタ)アクリル系成分)」と総称する場合がある)とで構成されている。
 珪素非含有ビニル系成分とシリコーン(メタ)アクリレート成分とを組み合わせることにより、ガスバリア性(例えば、水蒸気バリア性)を著しく向上できる。その理由は定かではないが、例えば、本アンカー層による、基材フィルムとバリア層との強固な接着、表面性の向上、バリア層の緻密性の向上などといったことが要因になっていると考えられる。
 (A)シリコーン(メタ)アクリレート成分
 シリコーン(メタ)アクリレート成分としては、珪素原子と(メタ)アクリロイル基とを有する化合物(硬化性化合物)である限り、特に限定されないが、通常、オルガノシロキサン単位[-Si(-R)-O-](基Rは置換基を示す)を有している。Si原子(又はオルガノシロキサン単位)の数は、1分子中に1以上(例えば、1~30、好ましくは1~20、さらに好ましくは1~15程度)であってもよい。また、(メタ)アクリロイル基の数は、1分子中に1以上(例えば、1~20、好ましくは1~15、さらに好ましくは1~10程度)であってもよい。
 シリコーン(メタ)アクリレート成分は、モノマーであってもよく、オリゴマー(又はプレポリマー)であってもよく、モノマー及びオリゴマーを組み合わせて使用してもよい。また、オリゴマー(プレポリマー)は、複数の(-Si-O)結合を有するポリシロキサン系オリゴマーであってもよく、加水分解縮合性基(例えば、メトキシ、エトキシなどのC1-4アルコキシ基、塩素原子などのハロゲン原子など)を有するシリコーン(メタ)アクリレートモノマーの加水分解縮合による2量体、3量体などの多量体であってもよい。
 代表的なシリコーン(メタ)アクリレート成分としては、1分子中に1つのSi原子を有するシリコーンモノ乃至テトラ(メタ)アクリレート、1分子中に2つのSi原子を有するシリコーンテトラ乃至ヘキサ(メタ)アクリレートなどが例示できる。
 これらのシリコーン(メタ)アクリレート成分は、単独で又は二種以上組み合わせて使用できる。これらのシリコーン(メタ)アクリレート成分のうち、1分子中に複数(例えば、2~10個、好ましくは2~8個、さらに好ましくは2~6個程度)の(メタ)アクリロイル基と、1又は複数(例えば、1~20個、好ましくは1~10個、さらに好ましくは1~6個程度)のSi原子を有するシリコーン(メタ)アクリレート成分[例えば、シリコーンジ乃至ヘキサ(メタ)アクリレート、好ましくはシリコーンジ乃至テトラ(メタ)アクリレート、特にシリコーンジ(メタ)アクリレートなどのシリコーンジ乃至トリ(メタ)アクリレート]が好ましい。なお、シリコーンジ(メタ)アクリレートは、商品名「EBECRYL350」(ダイセル・サイテック(株)製)などとして入手でき、シリコーンヘキサ(メタ)アクリレートは、商品名「EBECRYL1360」(ダイセル・サイテック(株)製)などとして入手できる。
 シリコーン(メタ)アクリレート成分の粘度は、25℃において、100~5000mPa・s、好ましくは200~4000mPa・s、さらに好ましくは300~3000mPa・s程度であってもよい。
 シリコーン(メタ)アクリレート成分の含有量は、添加剤(重合開始剤など)も含む重合性組成物全体に対して、50重量%以下(例えば、1~30重量%)の範囲から選択でき、0.01~25重量%(例えば、0.05~20重量%)、好ましくは0.1~15重量%(例えば、0.5~10重量%)、さらに好ましくは1~5重量%(例えば、2~4重量%)程度であってもよい。
 (B)珪素非含有ビニル系成分
 珪素非含有ビニル系成分としては、珪素原子を含まず、α,β-エチレン性不飽和二重結合を有する化合物(硬化性化合物)である限り、特に限定されない。α,β-エチレン性不飽和二重結合[特に(メタ)アクリロイル基]の数は、1分子中に1以上(例えば、1~20、好ましくは1~15、さらに好ましくは1~10程度)であってもよい。
 珪素非含有ビニル系成分は、モノマーであっても、オリゴマー(又はプレポリマー)であってもよく、モノマー及びオリゴマーを組み合わせて使用してもよい。
 珪素非含有ビニル系モノマーには、単官能ビニル系モノマー[単官能(メタ)アクリレート(又はモノ(メタ)アクリレート)類など]、二官能ビニル系モノマー[二官能(メタ)アクリレート(又はジ(メタ)アクリレート)類など]、3官能以上のビニル系モノマー[3官能以上の多官能(メタ)アクリレート(又はポリ(メタ)アクリレート)類など]が含まれる。
 単官能ビニル系モノマーとしては、例えば、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのC1-24アルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレートなどのシクロアルキル(メタ)アクリレート;ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレートなどの橋架け環式(メタ)アクリレート;フェニル(メタ)アクリレート、ノニルフェニル(メタ)アクリレートなどのアリール(メタ)アクリレート;ベンジル(メタ)アクリレートなどのアラルキル(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレートなどのヒドロキシC2-10アルキル(メタ)アクリレート又はC2-10アルカンジオールモノ(メタ)アクリレート;トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロイソプロピル(メタ)アクリレートなどのフルオロC1-10アルキル(メタ)アクリレート;メトキシエチル(メタ)アクリレートなどのアルコキシアルキル(メタ)アクリレート;フェノキシエチル(メタ)アクリレートなどのアリールオキシアルキル(メタ)アクリレート;フェニルカルビトール(メタ)アクリレート、ノニルフェニルカルビトール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレートなどのアリールオキシ(ポリ)アルコキシアルキル(メタ)アクリレート;フェノキシヒドロキシプロピル(メタ)アクリレートなどのアリールオキシヒドロキシアルキル(メタ)アクリレート;ポリエチレングリコールモノ(メタ)アクリレートなどのポリアルキレングリコールモノ(メタ)アクリレート;グリセリンモノ(メタ)アクリレートなどのアルカンポリオールモノ(メタ)アクリレート;2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、2-t-ブチルアミノエチル(メタ)アクリレートなどのアミノ基を有する(メタ)アクリレート;グリシジル(メタ)アクリレートなどが例示できる。
 二官能ビニル系モノマーとしては、例えば、アリル(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-プロパンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートなどのアルカンジオールジ(メタ)アクリレート;グリセリンジ(メタ)アクリレートなどのアルカンポリオールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレートなどのポリアルキレングリコールジ(メタ)アクリレート;2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパンなどのビスフェノール類(ビスフェノールA、Sなど)のC2-4アルキレンオキサイド付加体のジ(メタ)アクリレート;脂肪酸変性ペンタエリスリトールなどの酸変性アルカンポリオールのジ(メタ)アクリレート;トリシクロデカンジメタノールジ(メタ)アクリレートなどの橋架け環式ジ(メタ)アクリレートなどが例示できる。
 多官能ビニル系モノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどのアルカンポリオール(メタ)アクリレート;トリメチロールプロパン、グリセリンなどのアルカンポリオールC2-4アルキレンオキサイド付加体のトリ(メタ)アクリレート;トリス(2-ヒドキシエチル)イソシアヌレートトリ(メタ)アクリレートなどのトリアジン環を有するトリ(メタ)アクリレートなどが例示できる。
 これらのモノマーは、単独で又は二種以上組み合わせて使用できる。
 珪素非含有ビニル系オリゴマーとしては、ポリエステル(メタ)アクリレート[例えば、多価カルボン酸とポリオールと(メタ)アクリル酸及び/又はヒドロキシアルキル(メタ)アクリレートとの反応により生成するポリエステル(メタ)アクリレートなど];アルキド樹脂;エポキシ(メタ)アクリレート[例えば、複数のエポキシ基を有するエポキシ化合物(多価アルコール型、多価カルボン酸型、ビスフェノールA、F、Sなどのビスフェノール型、ノボラック型などのエポキシ樹脂)に(メタ)アクリル酸が開環付加したエポキシ(メタ)アクリレートなど];ウレタン(メタ)アクリレート;ポリアクリル(メタ)アクリレート[例えば、(メタ)アクリル系単量体とグリシジル(メタ)アクリレートとの共重合体に(メタ)アクリル酸をエポキシ基に開環付加したポリアクリル(メタ)アクリレートなど];ポリエーテル(メタ)アクリレート;ポリブタジエン系(メタ)アクリレート;メラミン(メタ)アクリレート;ポリアセタール(メタ)アクリレートなどが例示できる。これらのオリゴマーは、単独で又は二種以上組み合わせて使用できる。
 これらの珪素非含有ビニル系成分のうち、柔軟性などの点から、ウレタン(メタ)アクリレートなどのオリゴマーが好ましい。
 ウレタン(メタ)アクリレートは、特に限定されず、例えば、ポリイソシアネート成分[又はポリイソシアネート成分とポリオール成分との反応により生成し、遊離のイソシアネート基を有するプレポリマー]に活性水素原子を有する(メタ)アクリレート[例えば、ヒドロキシアルキル(メタ)アクリレートなど]を反応させることにより得られたウレタン(メタ)アクリレートであってもよい。
 ポリイソシアネート成分としては、脂肪族ポリイソシアネート[例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMDI)、リジンジイソシアネート(LDI)などの脂肪族ジイソシアネート;1,6,11-ウンデカントリイソシアネートメチルオクタン、1,3,6-ヘキサメチレントリイソシアネートなどの脂肪族トリイソシアネートなど]、脂環族ポリイソシアネート[例えば、シクロヘキサン1,4-ジイソシアネート、イソホロンジイソシアネート(IPDI)、水添キシリレンジイソシアネート、水添ビス(イソシアナトフェニル)メタンなどの脂環族ジイソシアネート;ビシクロヘプタントリイソシアネートなどの脂環族トリイソシアネートなど]、芳香族ポリイソシアネート[例えば、フェニレンジイソシアネート、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、ナフタレンジイソシアネート(NDI)、ビス(イソシアナトフェニル)メタン(MDI)、トルイジンジイソシアネート(TODI)、1,3-ビス(イソシアナトフェニル)プロパンなどの芳香族ジイソシアネート;トリフェニルメタントリイソシアネートなどの芳香族トリイソシアネートなど]などが例示できる。これらのポリイソシアネート成分は、単独で又は二種以上組み合わせて使用できる。
 ポリオール成分としては、特に限定されず、例えば、低分子量ポリオール[脂肪族ポリオール(エチレングリコール、プロピレングリコール、テトラメチレンエーテルグリコールなどのC2-10アルカンジオール;グリセリン、トリメチロールプロパン、ペンタエリスリトールなどのC3-12脂肪族ポリオールなど)、脂環族ポリオール(1,4-シクロヘキサンジオールなどのシクロアルカンジオール類、水添ビスフェノールAなどの水添ビスフェノール類、又はこれらのC2-4アルキレンオキサイド付加体など)、芳香族ポリオール(キシリレングリコールなどの芳香脂肪族ジオール、ビスフェノールA、S、Fなどのビスフェノール類、又はこれらのC2-4アルキレンオキサイド付加体など)]、ポリマーポリオール類[例えば、ポリエーテルポリオール(ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなどのポリC2-4アルキレングリコールなど)、ポリエステルポリオール(アジピン酸などの脂肪族ジカルボン酸と脂肪族ジオールとのポリエステルポリオールなど)、ポリカーボネートポリオール]などが挙げられる。これらのポリオール成分は、単独で又は二種以上組み合わせて使用できる。
 ポリイソシアネート成分と活性水素原子を有する(メタ)アクリレート(又はポリオール成分)とは、通常、イソシアネート基と活性水素原子が略当量となる割合(イソシアネート基/活性水素原子=0.8/1~1.2/1程度)で組み合わせて用いられる。
 なお、これらのウレタン(メタ)アクリレートの製造方法について、特開2008-74891号公報などが参照できる。
 ウレタン(メタ)アクリレートの重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)において、ポリスチレン換算で、500~10000、好ましくは600~9000、さらに好ましくは700~8000程度であってもよい。
 シリコーン(メタ)アクリレート成分と、珪素非含有ビニル系成分[例えば、ウレタン(メタ)アクリレートなどの珪素非含有(メタ)アクリル系成分]との割合(重量比)は、前者/後者=0.01/99.99~50/50(例えば、1/99~30/70)程度の範囲から選択でき、0.01/99.99~30/70(例えば、0.05/99.95~25/75)、好ましくは0.1/99.9~20/80(例えば、0.5/99.5~15/85)、さらに好ましくは1/99~10/90(例えば1.5/98.5~8/92、特に2/98~5/95)程度であってもよい。本発明では、シリコーン(メタ)アクリレート成分の含有量が少なくてもガスバリア性(水蒸気バリア性)を大きく向上できる。
 (重合開始剤)
 重合開始剤は、熱重合開始剤(ベンゾイルパーオキサイドなどの過酸化物などの熱ラジカル発生剤)であってもよく光重合開始剤(光ラジカル発生剤)であってもよい。好ましい重合開始剤は、光重合開始剤である。光重合開始剤としては、例えば、ベンゾイン類(ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾインアルキルエーテル類など)、フェニルケトン類[例えば、アセトフェノン類(例えば、アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノンなど)、2-ヒドロキシ-2-メチルプロピオフェノンなどのアルキルフェニルケトン類;1-ヒドロキシシクロヘキシルフェニルケトンなどのシクロアルキルフェニルケトン類など]、アミノアセトフェノン類{2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノアミノプロパノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1など}、アントラキノン類(アントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノンなど)、チオキサントン類(2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントンなど)、ケタール類(アセトフェノンジメチルケタール、ベンジルジメチルケタールなど)、ベンゾフェノン類(ベンゾフェノンなど)、キサントン類、ホスフィンオキサイド類(例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドなど)などが例示できる。これらの光重合開始剤は単独で又は二種以上組み合わせて使用できる。
 重合開始剤の割合は、ビニル系成分((メタ)アクリル系成分)100重量部に対して0.01重量部~10重量部、好ましくは0.05~5重量部、さらに好ましくは0.1~2.5重量部程度であってもよい。
 なお、光重合開始剤は、光増感剤と組み合わせてもよい。光増感剤としては、慣用の成分、例えば、第3級アミン類[例えば、トリアルキルアミン、トリアルカノールアミン(トリエタノールアミンなど)、N,N-ジメチルアミノ安息香酸エチル、N,N-ジメチルアミノ安息香酸アミルなどのジアルキルアミノ安息香酸アルキルエステル、4,4-ビス(ジメチルアミノ)ベンゾフェノン(ミヒラーズケトン)、4,4’-ジエチルアミノベンゾフェノンなどのビス(ジアルキルアミノ)ベンゾフェノンなど]、トリフェニルホスフィンなどのホスフィン類、N,N-ジメチルトルイジンなどのトルイジン類、9,10-ジメトキシアントラセン、2-エチル-9,10-ジメトキシアントラセン、2-エチル-9,10-ジエトキシアントラセンなどのアントラセン類などが挙げられる。光増感剤は、単独で又は二種以上組み合わせてもよい。
 光増感剤の使用量は、前記光重合開始剤100重量部に対して、例えば、0.1~100重量部、好ましくは0.5~80重量部程度であってもよい。
 アンカー層の厚みは、特に限定されず、例えば、0.1~10μm、好ましくは0.5~8μm、さらに好ましくは1~5μm(例えば、2~3μm)程度であってもよい。アンカー層の厚みが小さ過ぎると、均一なアンカー層が形成されない傾向があり、厚みが大き過ぎると、カールが大きくなる傾向がある。
 [バリア層]
 バリア層は、金属又は金属化合物を含む限り、特に限定されないが、薄膜(特に、透明性薄膜)を形成可能な金属又は金属化合物であることが好ましい。このような金属には、例えば、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムなどの周期表2A族元素;チタン、ジルコニウム、ルテニウム、ハフニウム、タンタル、銅などの周期表遷移元素;亜鉛などの周期表2B族元素;アルミニウム、ガリウム、インジウム、タリウムなどの周期表3B族元素;珪素、ゲルマニウム、錫などの周期表4B族元素;セレン、テルルなどの周期表6B族元素などが例示できる。また、金属化合物としては、前記金属の酸化物、窒化物、酸化窒化物、ハロゲン化物、又は炭化物などが例示できる。これらの金属又は金属化合物は、単独で又は二種以上組み合わせて使用できる。これらの金属又は金属化合物のうち、ガスバリア性のみならず透明性も向上できる点から、アルミニウムなどの周期表3B族元素又は珪素などの周期表4B族元素の金属酸化物、金属酸化窒化物、金属窒化物(例えば、酸化珪素[組成式SixOy]、酸化アルミニウム[組成式AlxOy]、珪素窒化物[組成式SixNy]、珪素酸化窒化物[組成式SixOyNz])が好ましい。さらに好ましい金属又は金属化合物は、金属酸化物(例えば、酸化珪素、酸化アルミニウムなどの周期表3B族又は4B族元素の金属酸化物)である。
 バリア層の厚みは、成膜方法に応じて適宜選択でき、例えば、10~300nm(例えば20~300nm)、好ましくは15~250nm(例えば、20~200nm)、さらに好ましくは25~150nm(例えば50~100nm、特に60~90nm)程度であってもよい。特に、クラックなどの発生を防止し、均一な膜を形成してガスバリア性を保持する点から、物理的気相法では、バリア層の厚みを10~100nm(例えば15~80nm、特に20~50nm)程度に調整することが好ましく、化学的気相法では、バリア層の厚みを50~300nm(例えば80~250nm、特に100~200nm)程度に調整することが好ましい。
 本発明のガスバリアフィルムは、さらにコート層(ハードコート層、オーバーコート層など)及び導電層(透明導電層など)などの層を含んでいてもよい。具体的には、これらの層から選択された少なくとも一種の層を含んでいればよく、これらの層を組み合わせて含んでいてもよい。
 [コート層]
 コート層は、特に限定されないが、通常、基材フィルム又はバリア層の外層に形成される。コート層を構成する材料としては、熱可塑性樹脂、熱硬化性樹脂などの有機材料が汎用される。このようなコート層は、基材フィルムのアンカー層を積層した面と反対の面に形成されたハードコート層であってもよい。ハードコート層を形成すると、ガスバリアフィルムがカールするのを防止できる。
 ハードコート層は、熱可塑性樹脂及び/又は熱硬化性樹脂を含むコーティング組成物で形成してもよく、例えば、ビニル系モノマー及び/又はビニル系プレポリマーを含む重合性組成物(例えば、前記「アンカー層」の項で例示した組成物)で形成してもよい。なお、ハードコート層は、カール防止の点からは、基材の両面で同程度の収縮性となるように構成するのが好ましく、アンカー層と異なっていてもよく、同一であってもよい。
 また、コート層はバリア層に形成されたオーバーコート層であってもよい。オーバーコート層を形成すると、機械的外力が作用してもバリア層にクラックなどが発生することを防止でき、バリア層を保護できる。オーバーコート層は、通常、バリア層に直接積層される。
 オーバーコート層を構成する有機材料としては、例えば、熱可塑性樹脂[例えば、(メタ)アクリル系樹脂(ポリメチルメタクリレート、ポリアクリレートなどの単独重合体、メタクリル酸メチル-アクリル酸エステル共重合体など)、ポリカーボネート系樹脂、ポリエステル系樹脂(フタル酸、メチルフタル酸をジカルボン酸とする単独または共重合ポリエステルなど)、カルド樹脂(フルオレンポリエステルなど)、スチレン系樹脂(ポリスチレン、スチレン-アクリロニトリル共重合体など)、オレフィン系樹脂(ポリエチレン、ポリプロピレン、ポリメチルペンテンなど)、ポリフェニレンエーテル系樹脂、ポリビニルアセタール(ポリビニルブチラールなど)など]、熱硬化性樹脂[例えば、フェノール樹脂、エポキシ樹脂、ジエチレングリコールビス(アリルカーボネート)樹脂、シアネート樹脂(シアン酸エステル樹脂)、ポリイミド樹脂(ビスマレイミド系樹脂など)]、ゾルゲル法を利用した有機無機ハイブリッド材料などが挙げられる。また、有機材料には、アクリロニトリル-ブタジエンゴム及び多官能性アクリレート化合物などで変性した樹脂(アクリル変性塩化ビニル樹脂/アクリル変性ウレタン樹脂/ABS樹脂など)や、熱可塑性樹脂で変性した熱硬化性樹脂[例えば、架橋ポリエチレン樹脂、架橋ポリエチレン/エポキシ樹脂、架橋ポリエチレン/シアネート樹脂、ポリフェニレンエーテル/エポキシ樹脂、ポリフェニレンエーテル/シアネート樹脂など]も含まれる。これらの有機材料は、単独で又は二種以上組み合わせて使用できる。
 コート層(ハードコート層、オーバーコート層など)の厚みは、特に限定されず、例えば、0.1~10μm、好ましくは0.5~8μm、さらに好ましくは1~5μm(例えば、2~3μm)程度であってもよい。
 [導電層]
 本発明のガスバリアフィルムは、電子デバイスの部材として好適に利用でき、導電層(透明導電層など)を積層することにより、ガスバリア性導電材料[例えば、ガスバリア性電極(透明電極など)]などとして利用可能である。導電層は、通常、ガスバリアフィルムの少なくとも一方の最外層に積層してもよい。
 導電層は、無機材料及び有機材料から選択された少なくとも一種で形成できる。無機材料としては、例えば、金属酸化物[例えば、酸化インジウム(In、In-SnO複合酸化物(ITO)など)、酸化錫(SnO、SnO-Sb複合酸化物、フッ素ドープ酸化錫(FTO)など)、酸化亜鉛(ZnO、ZnO-Al複合酸化物など)]、金属(例えば、金、銀、白金、パラジウム)などの導電性無機化合物であってもよい。これらの無機材料は単独で又は二種以上組み合わせて使用できる。これらの無機材料のうち、ITOなどの金属酸化物が汎用される。
 有機材料としては、π電子共役系高分子[例えば、ポリアセチレン、ポリフェニレンビニレン、ポリパラフェニレン、ポリアセン、ポリピロール、ポリピリジノピリジン、ポリピリジン、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリエチレンジオキシチオフェン(PEDOT)、ポリジフェニルアセチレン]などの導電性樹脂(導電性高分子)などが例示できる。これらの有機材料は、単独で又は二種以上組み合わせて使用できる。
 導電層の厚みは、特に限定されず、1~1000nm(例えば1~500nm)、好ましくは5~400nm、さらに好ましくは10~300nm程度であってもよい。
 導電層の表面抵抗は、10~1000Ω、好ましくは15~500Ω、さらに好ましくは20~300Ω程度であってもよい。
 本発明のガスバリアフィルムは、ガスバリア性(特に、水蒸気バリア性)に優れる。例えば、温度40℃、湿度90%RH雰囲気下での水蒸気透過度は、1.5g/m・day以下(例えば、0.00001~1.5g/m・day程度)、好ましくは1.0g/m・day以下(例えば、0.1g/m・day以下)、さらに好ましくは0.01g/m・day以下(例えば、0.005g/m・day以下)、特に0.001g/m・day以下(例えば、0.0001~0.001g/m・day)程度であってもよい。本発明のガスバリアフィルムは、後述の水蒸気透過度評価試験に供しても、実質的に検出限界以下を示す場合があり、極めて小さいバリア性を示す。なお、水蒸気透過度は、慣用の測定装置[例えば、「PERMATRAN」「AQUATRAN」(mocon社製)など]により測定できる。
 また、本発明のガスバリアフィルムは、透明性にも優れており、全光線透過率は、JIS K7105に準拠して、80%以上(例えば80~99.9%程度)、好ましくは82%以上(例えば82~99%程度)、さらに好ましくは85%以上(例えば85~95%程度)であってもよい。
 [ガスバリアフィルムの製造方法]
 本発明のガスバリアフィルムは、慣用の方法を利用して製造でき、積層構造に応じて積層順序も特に限定されないが、通常、基材フィルムの少なくとも一方の面に、ビニル系成分(特に(メタ)アクリル系成分)として、少なくともシリコーン(メタ)アクリレート成分を含む重合性組成物を塗布した後、硬化させることによりアンカー層を形成し、このアンカー層に、金属又は金属化合物を含むバリア層を形成することにより得られる。
 アンカー層を形成する方法において、重合性組成物の塗布方法は特に限定されず、慣用の塗布方法、例えば、エアーナイフコート法、ロールコート法、グラビアコート法、ブレードコート法、ディップコート法、スプレー法、スピンコート法などが例示できる。塗布後は、必要に応じて乾燥を行ってもよい。乾燥は、例えば、50~150℃、好ましくは60~140℃、さらに好ましくは70~130℃程度の温度で行ってもよい。
 重合性組成物は、重合開始剤の種類に応じて加熱して硬化させてもよいが、通常、活性エネルギー線を照射することにより硬化できる。活性エネルギー線として、熱及び/又は光エネルギー線を利用でき、特に光エネルギー線を利用するのが有用である。光エネルギー線としては、放射線(ガンマー線、X線など)、紫外線、可視光線などが利用でき、通常、紫外線である場合が多い。光源としては、例えば、紫外線の場合は、Deep UV ランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、ハロゲンランプ、レーザー光源(ヘリウム-カドミウムレーザー、エキシマレーザーなどの光源)などを用いることができる。照射光量(照射エネルギー)は、塗膜の厚みにより異なるが、例えば、50~10000mJ/cm、好ましくは70~7000mJ/cm、さらに好ましくは100~5000mJ/cm程度であってもよい。
 バリア層は、金属又は金属化合物を含む薄膜を形成可能な方法であれば、特に限定されず、慣用の成膜方法を利用して形成できる。成膜方法としては、例えば、物理的気相法(PVD)[例えば、真空蒸着法、電子ビーム蒸着法、イオンビーム蒸着法、イオンプレーティング法(例えば、HCD法、エレクトロンビームRF法、アーク放電法など)、スパッタリング法(例えば、直流放電法、高周波(RF)放電法、マグネトロン法など)、分子線エピタキシー法、レーザーアブレーション法]、化学的気相法(CVD)[例えば、熱CVD法、プラズマCVD法、MOCVD法(有機金属気相成長法)、光CVD法]、イオンビームミキシング法、イオン注入法などが例示できる。これらの成膜方法のうち、真空蒸着法、イオンプレーティング法、スパッタリング法などの物理的気相法、化学的気相法などが汎用され、スパッタリング法、プラズマCVD法が好ましい。
 スパッタリングは一般的な条件で行うことができる。例えば、真空度(又は初期真空度)は、0.1×10-4~100×10-4Pa、好ましくは1×10-4~10×10-4Pa程度である。導入ガスとしては、例えば、ヘリウム、ネオン、アルゴン、キセノンなどの不活性ガス;空気、酸素、窒素、一酸化炭素、二酸化炭素、一酸化窒素、二酸化硫黄などが利用できる。導入ガスは、不活性ガスに対して酸素を、例えば、1~50%(好ましくは3~30%、さらに好ましくは5~20%)程度の割合で含む混合ガスなどであってもよい。印加電圧は、例えば、0.1~100kV、好ましくは1~50kV程度である。温度は、通常、50~250℃程度である。なお、スパッタリングは、慣用の装置(例えば、PHI社製「QuanteraSXM」など)を用いて行ってもよい。
 CVD(プラズマCVD)も一般的な条件で行うことができる。例えば、金属又は金属化合物に対応するハロゲン化物と反応性ガス(空気、酸素、窒素、一酸化炭素、二酸化炭素、一酸化窒素、二酸化硫黄など)とを用いて、金属又は金属化合物を蒸着させてもよい。反応器内の圧力は、0.1×10-4~100×10-4Pa、好ましくは1×10-4~10×10-4Pa程度である。印加電圧は、例えば、0.1~100kV、好ましくは1~50kV程度である。温度は、通常、50~250℃程度である。なお、CVDは、慣用の装置(例えば、(株)セルバック「ICP-CVD」など)を用いて行ってもよい。
 コート層(ハードコート層、オーバーコート層など)は、前記アンカー層を形成する方法と同様の方法で積層してもよい。また、導電層は、構成成分に応じて、慣用の方法により、積層できる。
 [電子デバイス]
 本発明の電子デバイスは、前記ガスバリアフィルムをガスバリア性部材として含んでいる。このような電子デバイスは、例えば、液晶素子、薄膜太陽電池素子、有機EL素子、電子ペーパーなどであってもよい。図4は、本発明のガスバリアフィルムをガスバリア性部材として含む有機EL素子を示す概略断面図である。この例では、有機EL素子の両面に、基材フィルム41(51)とアンカー層42(52)とバリア層43(53)とが順次積層されたガスバリアフィルム40(50)が配設され、各ガスバリアフィルムの基材フィルム側が有機EL素子と接触している。具体的には、基材フィルム側を互いに対向させた一対のガスバリアフィルムにおいて、対向面の中央部に、透明電極65aと有機発光層66(電子輸送層と正孔輸送層と、必要により発光層とを備える積層体)と金属電極65bとが順次積層された有機EL素子60を設け、この有機EL素子の両端部の接着剤層67を介して、一対のガスバリアフィルムが接着されている。
 このような有機EL素子では、両面にガスバリア性(特に、水蒸気バリア性)と透明性に優れるガスバリアフィルムが配設されているため、光の透過性を妨げることなく、外部から水蒸気が透過して有機EL素子と接触することを防止でき、素子性能の劣化を有効に防止できる。
 なお、一対のガスバリアフィルムは、基材フィルム側で対向してもよく、バリア層側で対向してもよい。また、有機EL素子の周囲の一部又は全部がガスバリアフィルムで被覆されている限り、1又は複数(例えば、2~4)のガスバリアフィルムを利用してもよい。
 なお、他の電子デバイスとして、例えば、電子ペーパーは、通常、薄膜トランジスタ(TFT)基板にマイクロカプセルやシリカビーズなどで構成された表示層が積層され、この表示層に透明電極が積層された構造を有する。また、薄膜太陽電池素子は、通常、透明電極に、蒸着膜(フタロシアニン蒸着膜、フラーレン蒸着膜など)が積層され、この蒸着膜に、導電極(アルミニウム電極など)が積層され、この電極に封止膜(LiFなど)が積層された構造を有する。本発明のガスバリアフィルムは、これらの電子デバイスの構成要素としても利用でき、例えば、前記透明電極に積層してもよい。なお、透明電極に接触する面は、基材フィルム側であってもよく、バリア層側であってもよい。これらの電子デバイスに本発明のガスバリアフィルムを利用することで、光の透過性を妨げることなく、外部からの水蒸気を遮断して素子性能の劣化を長期間に亘り防止できる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 なお、実施例及び比較例のガスバリアフィルムを用いて、下記の特性試験を行った。
 [水蒸気透過度]
 水蒸気透過度は、水蒸気透過率測定装置(実施例1及び3~5並びに比較例1~5のガスバリアフィルムに対しては、mocon社製「PERMATRAN-W3/33」、実施例2のガスバリアフィルムに対しては、mocon社製「AQUATRAN」)を用いて測定した。なお、測定条件は40℃、相対湿度90%RHである。
 [全光線透過率]
 全光線透過率は、JIS K7105に準拠して、ヘーズメーター(日本電色工業(株)製、NDH-300A)を用いて測定した。
 実施例1
 珪素非含有ビニル系成分としてのウレタン(メタ)アクリレート(ダイセル・サイテック(株)製、「EBECRYL1290」)と、シリコーン(メタ)アクリレート成分としてのシリコーンジ(メタ)アクリレート(ダイセル・サイテック(株)製、「EBECRYL350」)と、重合開始剤(チバジャパン(株)製、「イルガキュア184」)とを、96/2/2(重量比)の割合で混合したコーティング液を、基材フィルム(PETフィルム、三菱樹脂(株)製、厚み188μm)の両面に塗工し乾燥させた後、300mJ/cmでUVを照射して硬化させることにより、各々の厚みが5μmのアンカー層を形成した。一方のアンカー層に、スパッタリング法(真空度5×10-4Pa、酸素濃度15%)により、酸化アルミニウム[組成AlxOy]を蒸着させて、厚み20nmのバリア層を形成して、ガスバリアフィルムを作成した。得られたガスバリアフィルムの評価結果を表1に示す。
 実施例2
 珪素非含有ビニル系成分と、シリコーン(メタ)アクリレート成分と、重合開始剤とを、94/4/2(重量比)の割合で混合したコーティング液を用いること及び厚み50nmのバリア層を形成すること以外は、実施例1と同様の手順を行ってガスバリアフィルムを作成した。得られたガスバリアフィルムの評価結果を表1に示す。
 実施例3
 珪素非含有ビニル系成分と、シリコーン(メタ)アクリレート成分と、重合開始剤とを、86/12/2(重量比)の割合で混合したコーティング液を用いる以外は、実施例1と同様の手順を行ってガスバリアフィルムを作成した。得られたガスバリアフィルムの評価結果を表1に示す。
 実施例4
 SiClとOとNとを用いて、プラズマCVD法[CVD装置((株)セルバック、ICP-CVD]により、珪素酸化窒化物[組成SixOyNz]を蒸着させて、厚み70nmのバリア層を形成した以外は、実施例2と同様の手順を行ってガスバリアフィルムを作成した。得られたガスバリアフィルムの評価結果を表1に示す。
 実施例5
 SiClとNとを用いて、プラズマCVD法[CVD装置((株)セルバック、ICP-CVD]により、珪素窒化物[組成SixNy]を蒸着させて、厚み70nmのバリア層を形成した以外は、実施例2と同様の手順を行ってガスバリアフィルムを作成した。得られたガスバリアフィルムの評価結果を表1に示す。
 比較例1
 基材フィルム(PETフィルム、三菱樹脂(株)製、厚み188μm)の一方の面に、スパッタリング法(真空度5×10-4Pa、酸素濃度15%)により、酸化アルミニウム[組成AlxOy]を蒸着させて、厚み20nmのバリア層を形成して、ガスバリアフィルムを作成した。得られたガスバリアフィルムの評価結果を表1に示す。
 比較例2
 珪素非含有ビニル系成分と、シリコーン(メタ)アクリレート成分と、重合開始剤とを、98/0/2(重量比)の割合で混合したコーティング液を用いる以外は、実施例1と同様の手順を行ってガスバリアフィルムを作成した。得られたガスバリアフィルムの評価結果を表1に示す。
 比較例3
 珪素非含有ビニル系成分と、シリコーン(メタ)アクリレート成分と、重合開始剤とを、98/0/2(重量比)の割合で混合したコーティング液を用いる以外は、実施例4と同様の手順を行ってガスバリアフィルムを作成した。得られたガスバリアフィルムの評価結果を表1に示す。
 比較例4
 珪素非含有ビニル系成分と、シリコーン(メタ)アクリレート成分と、重合開始剤とを、98/0/2(重量比)の割合で混合したコーティング液を用いる以外は、実施例5と同様の手順を行ってガスバリアフィルムを作成した。得られたガスバリアフィルムの評価結果を表1に示す。
 比較例5
 真空蒸着法により、アルミニウムを蒸着させて、厚み80nmのバリア層を形成した以外は、比較例2と同様の手順を行ってガスバリアフィルムを作成した。得られたガスバリアフィルムの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、比較例に比べ、実施例では水蒸気透過度が著しく低く、透明性にも優れる。
 本発明のガスバリアフィルムは、ガスバリア性に優れるため、各種包装材料(例えば、電子レンジ用食品、レトルト食品、冷凍食品、マイクロ波殺菌、フレーババリア、医薬品、精密電子部品などの包装材料)に広く適用できる。また、本発明のガスバリアフィルムは、特に水蒸気バリアに優れ、透明性も高いため、ガスバリア性部材として電子デバイス(例えば、液晶素子、薄膜太陽電池素子、有機EL素子、電子ペーパー、タッチパネルなど)に好適に利用できる。
 10、20、30、40、50…ガスバリアフィルム
 11、21、31、41、51…基材フィルム
 12、22a、22b、32、42、52…アンカー層
 13、23a、23b、33、43、53…バリア層
 34…オーバーコート層
 60…有機EL素子
 65a…透明電極
 65b…金属電極
 66…有機発光層
 67…接着剤層

Claims (14)

  1.  基材フィルムの少なくとも一方の面に、ビニル系モノマー及び/又はプレポリマーを含む重合性組成物の硬化物で構成されたアンカー層が積層され、このアンカー層に、金属又は金属化合物を含むバリア層が積層されたガスバリアフィルムであって、前記ビニル系モノマー及び/又はプレポリマーが、少なくともシリコーン(メタ)アクリレートモノマー及び/又はプレポリマーを含むガスバリアフィルム。
  2.  ビニル系モノマー及び/又はプレポリマーが、シリコーン(メタ)アクリレートモノマー及び/又はプレポリマーと、珪素非含有ビニル系モノマー及び/又はプレポリマーとで構成されている請求項1記載のガスバリアフィルム。
  3.  珪素非含有ビニル系モノマー及び/又はプレポリマーが、ウレタン(メタ)アクリレートである請求項2記載のガスバリアフィルム。
  4.  シリコーン(メタ)アクリレートモノマー及び/又はプレポリマーと、珪素非含有ビニル系モノマー及び/又はプレポリマーとの割合(重量比)が、前者/後者=1/99~30/70である請求項2又は3のいずれかに記載のガスバリアフィルム。
  5.  バリア層に含まれる金属又は金属化合物が、金属酸化物、金属酸化窒化物、及び金属窒化物から選択された少なくとも1種の金属化合物である請求項1~4のいずれかに記載のガスバリアフィルム。
  6.  バリア層が、真空蒸着法、イオンプレーティング法、スパッタリング法、化学的気相法から選択された一種の成膜方法により形成され、かつバリア層の厚みが20~300nmである請求項1~5のいずれかに記載のガスバリアフィルム。
  7.  基材フィルムが、ポリエステル系樹脂及びポリカーボネート系樹脂から選択された少なくとも一種で構成されたフィルムである請求項1~6のいずれかに記載のガスバリアフィルム。
  8.  基材フィルムの他方の面にビニル系モノマー及び/又はプレポリマーを含む重合性組成物の硬化物で構成されたハードコート層が形成されている請求項1~7のいずれかに記載のガスバリアフィルム。
  9.  基材フィルムの一方の面が、アンカー層と、このアンカー層に積層されたバリア層とで構成された積層単位を複数有している請求項1~8のいずれかに記載のガスバリアフィルム。
  10.  バリア層に、有機材料で構成されたオーバーコート層が積層されている請求項1~9のいずれかに記載のガスバリアフィルム。
  11.  少なくとも一方の最外層に導電層が形成されている請求項1~10のいずれかに記載のガスバリアフィルム。
  12.  基材フィルムの少なくとも一方の面に、少なくともシリコーン(メタ)アクリレートモノマー及び/又はプレポリマーを含む重合性組成物を塗布した後、硬化させることによりアンカー層を形成し、このアンカー層に、金属又は金属化合物を含むバリア層を形成することにより請求項1~11のいずれかに記載のガスバリアフィルムを製造する方法。
  13.  請求項1~11のいずれかに記載のガスバリアフィルムをガスバリア性部材として含む電子デバイス。
  14.  液晶素子、薄膜太陽電池素子、有機EL素子、又は電子ペーパーである請求項13記載の電子デバイス。
PCT/JP2011/051352 2010-01-27 2011-01-25 ガスバリアフィルムとその製造方法、およびそれを用いたデバイス WO2011093286A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11736999.1A EP2529926A4 (en) 2010-01-27 2011-01-25 GAS BARRIER FILM, METHOD FOR PRODUCING THE SAME, AND DEVICE USING THE SAME
US13/575,434 US20120301634A1 (en) 2010-01-27 2011-01-25 Gas barrier film and process for producing the same, and device using the same
KR1020127022168A KR20120127470A (ko) 2010-01-27 2011-01-25 가스 배리어 필름과 그의 제조 방법, 및 그것을 이용한 디바이스
CN2011800114721A CN102781665A (zh) 2010-01-27 2011-01-25 阻气膜及其制造方法、以及使用该阻气膜的器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-015778 2010-01-27
JP2010015778 2010-01-27

Publications (1)

Publication Number Publication Date
WO2011093286A1 true WO2011093286A1 (ja) 2011-08-04

Family

ID=44319273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051352 WO2011093286A1 (ja) 2010-01-27 2011-01-25 ガスバリアフィルムとその製造方法、およびそれを用いたデバイス

Country Status (6)

Country Link
US (1) US20120301634A1 (ja)
EP (1) EP2529926A4 (ja)
KR (1) KR20120127470A (ja)
CN (1) CN102781665A (ja)
TW (1) TW201139141A (ja)
WO (1) WO2011093286A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025383A1 (en) * 2012-08-08 2014-02-13 3M Innovative Properties Company Photovoltaic devices with encapsulating barrier film
EP2772353A4 (en) * 2011-10-28 2015-06-24 Toray Industries GAS BARRIER FILM
JP2015525823A (ja) * 2012-08-08 2015-09-07 スリーエム イノベイティブ プロパティズ カンパニー 尿素(マルチ)−(メタ)アクリレート(マルチ)−シラン化合物及びそれを含む物品
US10815391B2 (en) * 2012-03-06 2020-10-27 Cheil Industries, Inc. Apparatus comprising an encapsulated member

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719864B2 (ja) * 2013-04-09 2015-05-20 長岡産業株式会社 透明導電性フィルム
CN104576524B (zh) * 2013-10-17 2017-09-19 群创光电股份有限公司 软性电子装置以及其制备方法
US10704254B2 (en) * 2014-02-18 2020-07-07 3M Innovative Properties Company Easy to apply air and water barrier articles
JP6547241B2 (ja) * 2014-05-30 2019-07-24 凸版印刷株式会社 ガスバリア性積層フィルム
JP6277142B2 (ja) * 2015-02-02 2018-02-07 富士フイルム株式会社 機能性複合フィルムおよび量子ドットフィルム
JP6344288B2 (ja) * 2015-03-31 2018-06-20 豊田合成株式会社 加飾製品、及び加飾製品の製造方法
TW201800729A (zh) * 2016-05-30 2018-01-01 日東電工股份有限公司 壓電感測器及使用其之顯示器
CN110172674A (zh) * 2019-05-29 2019-08-27 汕头万顺新材集团股份有限公司 一种高透明性阻隔膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10278167A (ja) * 1997-03-31 1998-10-20 Toppan Printing Co Ltd バリアー性積層体及びその製造方法
JP2001013309A (ja) * 1999-04-30 2001-01-19 Matsushita Electric Works Ltd 反射鏡
JP2005178137A (ja) * 2003-12-18 2005-07-07 Dainippon Printing Co Ltd ガスバリアフィルムとこれを用いた積層材、画像表示媒体
JP2005313560A (ja) * 2004-04-30 2005-11-10 Dainippon Printing Co Ltd ガスバリア性フィルム
JP2009062495A (ja) * 2007-09-10 2009-03-26 Tohcello Co Ltd ガスバリア層形成用塗剤、ガスバリア性フィルム及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3087682B2 (ja) * 1996-06-18 2000-09-11 東陶機器株式会社 光触媒性親水性部材
EP0951947A1 (en) * 1998-03-26 1999-10-27 Getratex S.A. Radiation-cured barrier coating and process for manufacturing same
JP3738618B2 (ja) * 1999-08-31 2006-01-25 凸版印刷株式会社 蒸着フィルム及びこの蒸着フィルムを用いた包装材料
US20040229051A1 (en) * 2003-05-15 2004-11-18 General Electric Company Multilayer coating package on flexible substrates for electro-optical devices
KR100451302B1 (ko) * 2003-03-19 2004-10-06 유메이드 주식회사 작업성 및 색상별 경화성이 우수한 uv경화성 도료 조성물
JP4054875B2 (ja) * 2003-10-31 2008-03-05 独立行政法人産業技術総合研究所 不純物除去装置
JP2007264281A (ja) * 2006-03-28 2007-10-11 Dainippon Printing Co Ltd 防汚染性を付与したハードコート層
US8956731B2 (en) * 2008-02-27 2015-02-17 Dai Nippon Printing Co., Ltd. Gas barrier sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10278167A (ja) * 1997-03-31 1998-10-20 Toppan Printing Co Ltd バリアー性積層体及びその製造方法
JP2001013309A (ja) * 1999-04-30 2001-01-19 Matsushita Electric Works Ltd 反射鏡
JP2005178137A (ja) * 2003-12-18 2005-07-07 Dainippon Printing Co Ltd ガスバリアフィルムとこれを用いた積層材、画像表示媒体
JP2005313560A (ja) * 2004-04-30 2005-11-10 Dainippon Printing Co Ltd ガスバリア性フィルム
JP2009062495A (ja) * 2007-09-10 2009-03-26 Tohcello Co Ltd ガスバリア層形成用塗剤、ガスバリア性フィルム及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2529926A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772353A4 (en) * 2011-10-28 2015-06-24 Toray Industries GAS BARRIER FILM
US10815391B2 (en) * 2012-03-06 2020-10-27 Cheil Industries, Inc. Apparatus comprising an encapsulated member
US9982160B2 (en) 2012-08-08 2018-05-29 3M Innovative Properties Company Urea (multi)-(meth)acrylate (multi)-silane compositions and articles including the same
JP2015525823A (ja) * 2012-08-08 2015-09-07 スリーエム イノベイティブ プロパティズ カンパニー 尿素(マルチ)−(メタ)アクリレート(マルチ)−シラン化合物及びそれを含む物品
US9790396B2 (en) 2012-08-08 2017-10-17 3M Innovation Properties Company Articles including a (co)polymer reaction product of a urethane (multi)-(meth)acrylate (multi)-silane
TWI613075B (zh) * 2012-08-08 2018-02-01 3M新設資產公司 具有封裝阻隔膜之光伏打裝置
WO2014025383A1 (en) * 2012-08-08 2014-02-13 3M Innovative Properties Company Photovoltaic devices with encapsulating barrier film
US10011735B2 (en) 2012-08-08 2018-07-03 3M Innovative Properties Companies Diurethane (meth)acrylate-silane compositions and articles including the same
US10533111B2 (en) 2012-08-08 2020-01-14 3M Innovative Properties Company Urea (multi)-urethane (meth)acrylate-silane compositions and articles including the same
US10774236B2 (en) 2012-08-08 2020-09-15 3M Innovative Properties, Company Urea (multi)-(meth)acrylate (multi)-silane compositions and articles including the same
US10804419B2 (en) 2012-08-08 2020-10-13 3M Innovative Properties Company Photovoltaic devices with encapsulating barrier film
CN104798211A (zh) * 2012-08-08 2015-07-22 3M创新有限公司 具有封装阻隔膜的光伏器件
US11174361B2 (en) 2012-08-08 2021-11-16 3M Innovative Properties Company Urea (multi)-urethane (meth)acrylate-silane compositions and articles including the same
US11192989B2 (en) 2012-08-08 2021-12-07 3M Innovative Properties Company Urea (multi)-urethane (meth)acrylate-silane compositions and articles including the same
US11492453B2 (en) 2012-08-08 2022-11-08 3M Innovative Properties Company Urea (multi)-(meth)acrylate (multi)-silane compositions and articles including the same

Also Published As

Publication number Publication date
US20120301634A1 (en) 2012-11-29
TW201139141A (en) 2011-11-16
EP2529926A1 (en) 2012-12-05
CN102781665A (zh) 2012-11-14
EP2529926A4 (en) 2013-07-24
KR20120127470A (ko) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2011093286A1 (ja) ガスバリアフィルムとその製造方法、およびそれを用いたデバイス
EP2289983B1 (en) Composite film
KR102168722B1 (ko) 가스 배리어 필름 및 그 제조 방법, 가스 배리어 필름 적층체, 전자 디바이스용 부재, 그리고 전자 디바이스
KR102059326B1 (ko) 가스 배리어성 적층체, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스
US8197946B2 (en) Barrier laminate, barrier film substrate, methods for producing them, and device
JP5749678B2 (ja) ガスバリアフィルム
WO2013047523A1 (ja) バリア性積層体および新規な重合性化合物
WO2013015315A1 (ja) ガスバリアフィルム及びデバイス
JP6402093B2 (ja) 積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス
WO2013146069A1 (ja) ガスバリアフィルム
JP2009172986A (ja) 積層体の製造方法、バリア性フィルム基板、デバイスおよび光学部材
WO2019151495A1 (ja) ガスバリア性フィルム及びその製造方法
JP2011021173A (ja) 活性エネルギー線硬化性組成物及び太陽電池用裏面保護シート
JP2012056309A (ja) 透明導電性フィルムおよびその製造方法並びに透明導電性フィルムを用いた太陽電池及びエレクトロルミネッセンス素子
JP2012227382A (ja) 太陽電池バックシート
JP2007269957A (ja) ガスバリア性フィルムとその製造方法、およびそれを用いた画像表示素子
JP2018022062A (ja) フォルダブルディスプレイ用フィルムおよびその製造方法
JP6544832B2 (ja) ガスバリア性積層体、電子デバイス用部材および電子デバイス
JP2006224577A (ja) ガスバリアフィルム
JP6124826B2 (ja) 樹脂成形体及びそれを用いた積層体
JP5554051B2 (ja) ガスバリア性フィルム、ガスバリア層、装置及びガスバリア性フィルムの製造方法
TW201808632A (zh) 層積體、電子裝置用元件以及電子裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011472.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13575434

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011736999

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127022168

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP