WO2011092841A1 - 照明光学系とこれを用いたプロジェクタ - Google Patents

照明光学系とこれを用いたプロジェクタ Download PDF

Info

Publication number
WO2011092841A1
WO2011092841A1 PCT/JP2010/051237 JP2010051237W WO2011092841A1 WO 2011092841 A1 WO2011092841 A1 WO 2011092841A1 JP 2010051237 W JP2010051237 W JP 2010051237W WO 2011092841 A1 WO2011092841 A1 WO 2011092841A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
wavelength
light
optical system
illumination optical
Prior art date
Application number
PCT/JP2010/051237
Other languages
English (en)
French (fr)
Inventor
裕之 斉藤
加藤 厚志
基恭 宇都宮
明弘 大坂
正晃 松原
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to JP2011551638A priority Critical patent/JP5424367B2/ja
Priority to PCT/JP2010/051237 priority patent/WO2011092841A1/ja
Priority to US12/734,553 priority patent/US8936368B2/en
Priority to EP10844602.2A priority patent/EP2530520B1/en
Priority to EP16199826.5A priority patent/EP3168684A1/en
Priority to CN201080062746.5A priority patent/CN102741742B/zh
Publication of WO2011092841A1 publication Critical patent/WO2011092841A1/ja
Priority to US14/579,679 priority patent/US9509966B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3197Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using light modulating optical valves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors

Definitions

  • the present invention relates to an illumination optical system that generates illumination light of a plurality of colors for forming image light of a plurality of colors, and a projector that projects each image light by the illumination optical system.
  • a technology that uses an LED (Light Emitting Diode) as a light source of a projector that projects an image on a screen such as a liquid crystal projector or a DMD (Digital Micromirror Device) projector has attracted attention (see Patent Document 1).
  • LED Light Emitting Diode
  • DMD Digital Micromirror Device
  • LEDs Because of the long life and high reliability of LEDs, projectors using LEDs as light sources have the advantage of long life and high reliability.
  • the brightness of LED light is low for projectors, so it is not easy to obtain an image with sufficient brightness for the projector using the LED as a light source.
  • How much the light from the light source can be used as projection light by the display panel is limited by etendue. That is, if the value of the product of the light emission area and the emission angle of the light source is not less than or equal to the product of the area of the incident surface of the display panel and the capture angle determined by the F number of the illumination optical system, the light from the light source is efficiently used. It cannot be used as projection light.
  • the amount of light can be increased by increasing the light emitting area, but if the light emitting area increases, the etendue of the light source increases. Due to etendue limitations, it is desirable for the light source of a projector to increase the light amount without increasing the light emitting area, but it is difficult to increase the light amount without increasing the light emitting area with a light source using an LED.
  • ⁇ Etendue increases with light sources that use only LEDs.
  • the present invention realizes an illumination optical system having a small etendue, a longer life, and a high luminance.
  • An illumination optical system of the present invention includes a laser light source that generates excitation light having a first wavelength, A fluorescence wheel comprising a blue fluorescence generation region that generates fluorescence of a second wavelength by the excitation light, and a green fluorescence generation region that generates fluorescence of a third wavelength by the excitation light; An LED light source that generates light of a fourth wavelength; A dichroic mirror that reflects the second wavelength of fluorescence and the third wavelength of fluorescence and allows the light of the fourth wavelength to pass therethrough and emits each of these lights in the same direction; It has.
  • the projector according to the present invention includes the illumination optical system described above.
  • a laser having a high energy density is focused on a phosphor as excitation light, and the fluorescence emitted from the focused location is used, so that the etendue is small, and the illumination has a longer lifetime and high brightness.
  • An optical system can be realized.
  • FIG. 3 is a plan view of the fluorescent wheel 105 when viewed from the laser light source 101 side (from the left side to the right side in FIG. 1).
  • FIG. 2 is a sectional view showing a structure of a blue phosphor region 105 1.
  • FIG. 2 is sectional drawing which shows the structure of the green fluorescent substance area
  • (A)-(c) is a top view which shows the principal part structure of 2nd Embodiment of the illumination optical system by this invention
  • (d)-(f) is 3rd Embodiment of the illumination optical system of this invention. It is a top view which shows the principal part structure.
  • FIG. 1 is a block diagram showing a configuration of an embodiment of an illumination optical system according to the present invention.
  • the present embodiment includes a laser light source 101, an LED light source 102, dichroic mirrors 103 and 104, a fluorescent wheel 105, a light tunnel 106, lens groups 107 to 109, and reflecting mirrors 110 1 and 110 2 .
  • FIG. 2 is a plan view when the fluorescent wheel 105 is viewed from the left side to the right side in FIG.
  • the laser light source 101 generates laser light for excitation having a wavelength ⁇ 1.
  • the fluorescent wheel 105 has a blue phosphor region 105 1 that generates blue fluorescence and green fluorescence having wavelengths ⁇ 2 and ⁇ 3 ( ⁇ 2 ⁇ 3) longer than the wavelength ⁇ 1 when green laser light for excitation is incident, and green fluorescence.
  • Body regions 105 2 and 105 4 and a transparent region 105 3 that transmits light are provided.
  • the LED light source 102 generates red light having a wavelength ⁇ 4 longer than the wavelength ⁇ 3.
  • four wavelengths of light, ⁇ 1 to ⁇ 4 are used, and the relationship is ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4.
  • the dichroic mirror 103 reflects only light of ⁇ 3, passes light of ⁇ 1, ⁇ 2, and ⁇ 4, and the dichroic mirror 104 reflects only light of ⁇ 2.
  • ⁇ 1, ⁇ 3, and ⁇ 4 are allowed to pass through.
  • the dichroic mirror 104 may reflect light of ⁇ 1 and ⁇ 2 and allow light of ⁇ 3 and ⁇ 4 to pass therethrough.
  • 3 and 4 are cross-sectional views showing the configurations of the blue phosphor region 105 1 and the green phosphor regions 105 2 and 105 4 .
  • the blue phosphor region 105 1, on the wavelength .lambda.1 ⁇ transparent substrate 303 relative .lambda.4, reflective layer 304 and the blue phosphor layer 305 are stacked.
  • the blue phosphor layer 305 generates blue fluorescence having a wavelength ⁇ 2 when an excitation laser beam having a wavelength ⁇ 1 is incident.
  • the reflection layer 304 transmits the excitation laser beam having the wavelength ⁇ 1, and reflects the blue fluorescence having the wavelength ⁇ 2 generated in the blue phosphor layer 305. Therefore, as shown in FIG. 3, when the excitation laser beam 301 having the wavelength ⁇ 1 is incident from the substrate 303 side, the blue fluorescence 302 having the wavelength ⁇ 2 is emitted from the blue phosphor layer 305 side.
  • a reflective layer 402 and a green phosphor layer 403 are laminated on a substrate 303 that is transparent with respect to wavelengths ⁇ 1 to ⁇ 4.
  • the green phosphor layer 403 emits green fluorescence of wavelength ⁇ 3 when the excitation light 301 of wavelength ⁇ 1 is incident.
  • the reflection layer 402 reflects the green fluorescence having the wavelength ⁇ 3 generated in the green phosphor layer 403. Therefore, as shown in FIG. 4, when the excitation laser beam 301 having the wavelength ⁇ 1 is incident from the green phosphor layer 403 side, the green phosphor 305 generates the green fluorescence 403 having the wavelength ⁇ 3, and the reflection layer 402. And is emitted from the green phosphor layer 305 side.
  • the light emitted from the laser light source 1 passes through the dichroic mirror 103 and the lens group 109, is reflected by the reflecting mirrors 110 1 and 110 2 , and enters the dichroic mirror 103 through the lens group 108.
  • each member is arranged.
  • the optical axes of the lens group 107 and the lens group 108 and the rotational axis of the fluorescent wheel 105 are parallel, and the rotational center of the fluorescent wheel 105 is the middle of the optical axes of the lens group 107 and the lens group 108.
  • the laser light source 101 has an outgoing optical axis orthogonal to the outgoing optical axis of the LED light source 102, and the outgoing light enters the fluorescent wheel 105 through the dichroic mirror 103 and the lens group 109.
  • the fluorescent wheel 105 is provided with three types of regions, and the operation after the incidence of the fluorescent wheel 105 differs depending on the incident region.
  • the circular fluorescent wheel 105 is divided into four, and the blue fluorescent region 105 1 and the transparent region 105 3 , the green fluorescent region 105 2 and the green fluorescent region 105 4 are point-symmetric. It is arranged to become.
  • the light emitted from the laser light source 101 enters the fluorescent wheel 105 through the dichroic mirror 103 and the lens group 107.
  • the incident point (hereinafter referred to as the primary condensing point) is one of the three types of regions described above.
  • the primary condensing point is the transparent region 105 3
  • the incident light passes through the transparent region 105 3 and is folded by the reflecting mirrors 110 1 and 110 2 , and the primary condensing point of the fluorescent wheel 105
  • the light is incident on the secondary condensing point on the blue phosphor region 105 1 which is a symmetrical position.
  • the primary condensing point is, when the green phosphor region 105 2 and the green phosphor region 105 4, when the transparent region 105 3, when the blue phosphor region 105 1, the operation after the incident, respectively description To do.
  • Primary condensing point is in the case of the green phosphor region 105 2 and the green phosphor region 105 4 is in a state shown in FIG.
  • the green fluorescent light having the wavelength ⁇ 3 generated in the green phosphor layer 403 is diffused light and becomes substantially parallel light by the lens group 107. Thereafter, the green fluorescence is reflected toward the light tunnel 106 by the dichroic mirror 103. Thereafter, the light passes through the dichroic mirror 104, is collected by the lens group 109, and enters the light tunnel 106.
  • the primary condensing point is the transparent region 105 3
  • the light emitted from the laser light source 101 is secondary from the back surface of the fluorescent wheel 105 (from the left side to the right side in FIG. 1) on the blue phosphor region 105 1.
  • the light enters the condensing point and becomes the state shown in FIG.
  • the blue fluorescent light having the wavelength ⁇ ⁇ b> 2 generated in the blue phosphor layer 305 is diffused light and becomes substantially parallel light by the lens group 108. Thereafter, the blue fluorescence is reflected by the dichroic mirror 104 toward the light tunnel 106, collected by the lens group 109, and enters the light tunnel 106.
  • the blue fluorescence having the wavelength ⁇ 2 generated in the blue phosphor layer 305 becomes substantially parallel light by the lens group 107 and passes through the dichroic mirror 103 to the laser light source 101. Will return.
  • the blue fluorescence generated when the primary condensing point is the blue phosphor region 105 1 is not used as illumination light.
  • the laser light source 101 is turned off, the LED light source 102 is turned on, and the LED light source 102 emits red light having a wavelength ⁇ 4. Enters the light tunnel 106 through the dichroic mirrors 103 and 104 and the lens group 109.
  • the primary focal point is the case of the green phosphor region 105 2 and the green phosphor region 105 4 is green fluorescence is incident on the light tunnel 106, primary
  • the condensing point is the transparent region 105 3
  • the blue fluorescence is incident on the light tunnel 106
  • the primary condensing point is the blue phosphor region 105 1
  • the red light of the LED light source 102 is the light tunnel 106. Is incident on.
  • Each of these incident lights has a uniform illuminance distribution within the light tunnel 106, and the uniformed red light, green light, blue light, and green light appear in order on the exit side of the light tunnel 106, and are used as illumination light. It is done.
  • a yellow phosphor or a magenta phosphor may be used instead of one green phosphor, and a yellow or magenta color may be used as illumination light.
  • FIG. 5 is a block diagram showing a circuit configuration of a projector using the illumination optical system of the present embodiment.
  • the user interface unit 501 receives an instruction input from the user and outputs it to the control unit 502, and displays the current operating state of the projector on a display device (not shown) such as an indicator or a display panel.
  • the control unit 502 controls each unit constituting the projector according to a program stored in the storage unit 503.
  • the storage unit 503 stores the control program of the control unit 503 and temporarily stores video data.
  • the video signal processing unit 504 converts the video signal input from the outside into a video signal used in the projector. Since the video signal of this embodiment has a configuration in which the illumination light of each color is sequentially output from the illumination optical system as described above, the video signal corresponding to each color is sequentially generated.
  • the synchronization signal processing unit 505 converts a synchronization signal synchronized with a video signal input from the outside into a video signal used in the projector. Specifically, a synchronization signal indicating the output timing of each color video signal is generated and output.
  • the LD drive unit 506 controls the lighting state of the laser light source 101 in accordance with the synchronization signal output from the synchronization signal processing unit 505, and the LED drive unit 507 controls the LED light source in accordance with the synchronization signal output from the synchronization signal processing unit 505.
  • the lighting state of 102 is controlled.
  • the rotation state detection unit 510 detects the rotation state of the fluorescent wheel 105 and outputs it to the fluorescent wheel driving unit 508.
  • the fluorescent wheel driving unit 508 includes a color of the video signal indicated by the synchronization signal output from the synchronous signal processing unit 505, and a color output by the illumination optical system indicated by the rotation state of the fluorescent wheel 105 detected by the rotation state detection unit 510.
  • the display element driving unit 509 controls the rotation state of the fluorescent wheel 105 so as to coincide with each other, and drives the display element 511 in accordance with the video signal output from the video signal processing unit.
  • the display element a plurality of micromirrors are arranged in a matrix, and a reflective image forming element that forms an image according to the reflection state of each micromirror, a transmissive liquid crystal display element, and a reflective liquid crystal display element are used. It is done.
  • the display element 511 that displays an image corresponding to each color is illuminated by illumination light of each color sequentially output from the illumination optical system, and a reflected image or a transmitted image of the display element 511 is projected optically. Projected sequentially through a system (not shown).
  • FIGS. 6 (a) to 6 (c) are plan views showing the main configuration of the second embodiment of the illumination optical system according to the present invention
  • FIGS. 6 (d) to 6 (f) are third views of the illumination optical system of the present invention. It is a top view which shows the principal part structure of this embodiment.
  • the fluorescent wheel 105 shown in FIG. 2 is equally divided into four, and the blue phosphor region 105 1 and the transparent region 105 3 , and the green phosphor region 105 2 and the green phosphor region 105 4 are arranged to be point-symmetric.
  • the fluorescent wheel 105 ′ shown in FIGS. 5A to 5C includes the areas of the blue phosphor region 105 1 ′ and the transparent region 105 3 ′, the green phosphor region 105 2 ′, and the green fluorescence.
  • the area of the body region 105 4 ′ is different. Since the other configuration is the same as that of the embodiment shown in FIG.
  • the area of the green phosphor region 105 2 ′ and the green phosphor region 105 4 ′ is twice the area of the blue phosphor region 105 1 ′ and the transparent region 105 3 ′. Since each region of the fluorescent wheel 105 shown in FIG. 2 is equally divided, when the fluorescent wheel 105 is rotated once, red light, green light, blue light, and green light appear in the same cycle. In the form, each time when green light appears is twice as long as red light and blue light appear.
  • FIG. 7 is a timing chart showing the light emission time according to the second embodiment of the present invention.
  • the laser light source 101 is turned off, the LED light source 102 is turned on, and red LED light is emitted. Appears (the lighting time is assumed to be period T).
  • the generation ratio of each color light when the fluorescent wheel makes one rotation is the same as the embodiment shown in FIGS. It is configured such that fluorescence appears continuously.
  • the rotation axis of the fluorescent wheel 603 is set to a position different from the fluorescent wheel 105 shown in FIG. 1 and the fluorescent wheel 105 ′ shown in FIGS. 6A to 6C, and the size thereof is also changed. . Since the other configuration is the same as that of the embodiment shown in FIG.
  • a blue phosphor region 604 1 and a transparent region 604 3 having an equal area and a green fluorescent region 604 2 having an area four times larger than these are formed in an arc shape.
  • the relationship between the primary condensing point 605 and the secondary condensing point 606 is as follows.
  • the fluorescent wheel 603 is not point-symmetric.
  • the primary focal point 605 and secondary focal point 606, as shown in FIG. 6 (d) ⁇ (f) , and spacing of the blue phosphor region 604 1 or the transparent region 604 3 The positional relationship is consistent and maintained at a predetermined interval.
  • FIG. 8 is a timing chart showing the light emission time according to the second embodiment of the present invention.
  • the laser light source 101 is turned off, the LED light source 102 is turned on, and red LED light is emitted. Appears (the lighting time is assumed to be period T).
  • FIG. 9 is a block diagram showing the main configuration of a fourth embodiment of the illumination optical system according to the present invention.
  • This embodiment includes a laser light source 901, an LED light source 902, a dichroic mirror 903, lens groups 904 and 906, and a fluorescent wheel 905.
  • the laser light source 901 generates an example laser beam having a wavelength ⁇ 1.
  • the LED light source 902 generates red light having a wavelength ⁇ 4 longer than the wavelength ⁇ 3.
  • the dichroic mirror 903 allows light of wavelength ⁇ 4 to pass and reflects light of wavelengths ⁇ 1 to ⁇ 3.
  • the fluorescent wheel 905 emits blue fluorescent light and green fluorescent light having wavelengths ⁇ 2 and ⁇ 3 ( ⁇ 2 ⁇ 3) longer than the wavelength ⁇ 1 when the excitation laser light is incident.
  • Each has a blue phosphor region, a green phosphor region, and a transparent region.
  • green fluorescence When the incident position of the laser beam is in the green phosphor region, green fluorescence is generated.
  • the green fluorescence is collimated by the lens group 906, reflected by the dichroic mirror 903, and emitted as illumination light through the lens group 904.
  • the laser beam passes through the fluorescence wheel 905 without being generated and is reflected by the dichroic mirror 903 and emitted. Thus, no illumination light is generated when the incident position of the laser light is in the transparent region.
  • the laser light source 901 is turned off, the LED light source 902 is turned on, and the red emitted light having the wavelength ⁇ 4 of the LED light source 902 is emitted from the dichroic mirror. 903 and the lens group 904 are emitted as illumination light.
  • the red light, the green light, the blue light, and the green light that are used as illumination light appear in order, and the configuration shown in FIG.
  • a projector with high brightness and long life can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

 本発明は、エテンデューが小さく、より長寿命かつ高輝度の照明光学系を実現するもので、第1の波長の励起光を発生するレーザ光源と、前記励起光により第2の波長の蛍光を発生する青蛍光発生領域と、前記励起光により第3の波長の蛍光を発生する緑蛍光発生領域とを備える蛍光ホイールと、第4の波長の光を発生するLED光源と、前記第2の波長の蛍光および前記第3の波長の蛍光を反射し、前記第4の波長の光を通過させることにより、これらの各光を同じ方向に出射するダイクロイックミラーと、を備える。

Description

照明光学系とこれを用いたプロジェクタ
 本発明は、複数の色の画像光を形成するための複数の色の照明光を発生する照明光学系と、該照明光学系による各画像光を投射するプロジェクタに関する。
 液晶プロジェクタやDMD(Digital Micromirror Device)プロジェクタのようなスクリーンに画像を投射するプロジェクタの光源としてLED(Light Emitting Diode)を用いる技術が注目されている(特許文献1参照)。
 LEDは寿命が長くまた信頼性が高いことに起因して、LEDを光源とするプロジェクタには長寿命で高信頼という利点がある。
 しかしながら、その一方でLEDの光はプロジェクタ用としては輝度が低いので、LEDを光源としてプロジェクタに十分な輝度の映像を得るのは容易ではない。光源からの光を表示パネルがどれだけ投射光として利用できるかはエテンデューにより制限される。つまり、光源の発光面積と放射角との積の値を、表示パネルの入射面の面積と照明光学系のFナンバーで決まる取り込み角との積の値以下にしなければ、光源からの光を効率良く投射光として利用できない。
 LEDによる光源では発光面積を大きくすれば光量を上げることはできるが、発光面積が大きくなれば光源のエテンデューが大きくなってしまう。エテンデューの制限からプロジェクタの光源としては発光面積を大きくせず光量を上げることが望まれるが、LEDによる光源で発光面積を大きくせずに光量を上げるのは困難である。
特開2003-186110号公報
 LEDのみによる光源ではエテンデューが大きくなってしまう。本発明は、エテンデューが小さく、より長寿命かつ高輝度の照明光学系を実現するものである。
 本発明の照明光学系は、第1の波長の励起光を発生するレーザ光源と、
 前記励起光により第2の波長の蛍光を発生する青蛍光発生領域と、前記励起光により第3の波長の蛍光を発生する緑蛍光発生領域とを備える蛍光ホイールと、
 第4の波長の光を発生するLED光源と、
 前記第2の波長の蛍光および前記第3の波長の蛍光を反射し、前記第4の波長の光を通過させることにより、これらの各光を同じ方向に出射するダイクロイックミラーと、
を備えている。また、本発明によるプロジェクタは上記の照明光学系を備えている。
 本発明によれば、エネルギー密度の高いレーザを励起光として蛍光体に集光し、その集光された場所から発せられる蛍光を用いているので、エテンデューが小さく、より長寿命かつ高輝度の照明光学系を実現できる。
本発明による照明光学系の一実施形態の構成を示すブロック図である。 蛍光ホイール105をレーザ光源101側から見たときの(図1左側から右側)の平面図である。 図2中の、青蛍光体領域1051の構成を示す断面図である。 図2中の、緑蛍光体領域1052,1054の構成を示す断面図である。 本発明による照明光学系を用いたプロジェクタの回路構成を示すブロック図である。 (a)~(c)は本発明による照明光学系の第2の実施形態の要部構成を示す平面図、(d)~(f)は本発明の照明光学系の第3の実施形態の要部構成を示す平面図である。 本発明の第2の実施形態の発光時間を示すタイミングチャートである。 本発明の第3の実施形態の発光時間を示すタイミングチャートである。 本発明による照明光学系の第4の実施形態の要部構成を示すブロック図である。
 次に、本発明の実施形態について図面を参照して説明する。
 図1は本発明による照明光学系の一実施形態の構成を示すブロック図である。
 本実施形態は、レーザ光源101、LED光源102、ダイクロイックミラー103,104、蛍光ホイール105、ライトトンネル106、レンズ群107~109、反射ミラー1101,1102から構成されている。
 図2は、蛍光ホイール105を図1左側から右側に向けて見たときの平面図である。
 レーザ光源101は波長λ1の励起用のレーザ光を発生する。蛍光ホイール105は、励起用のレーザ光が入射されたときに、波長λ1よりも長い波長λ2、λ3(λ2<λ3)の青色蛍光、緑色蛍光をそれぞれ発生する青蛍光体領域1051、緑蛍光体領域1052,1054、光を透過する透明領域1053を備えている。
 まず、本実施形態における各光学要素の特性について説明する。
 LED光源102は波長λ3よりも長い波長λ4の赤色の光を発生する。このように、本実施形態では、4波長の光、λ1~λ4、が用いられるが、その関係は、λ1<λ2<λ3<λ4となる。反射面が平行に配置されたダイクロイックミラー103,104のうち、ダイクロイックミラー103はλ3の光のみを反射し、λ1、λ2およびλ4の光は通過させ、ダイクロイックミラー104はλ2の光のみを反射し、λ1、λ3およびλ4の光は通過させる。なお、ダイクロイックミラー104は、λ1、λ2の光を反射し、λ3およびλ4の光は通過させるものとしてもよい。
 図3および図4は、青蛍光体領域1051、および、緑蛍光体領域1052,1054の構成を示す断面図である。
 図3に示すように、青蛍光体領域1051は、波長λ1~λ4に対して透明な基板303上に、反射層304および青蛍光体層305が積層されている。青蛍光体層305は波長λ1の励起用のレーザ光が入射されると波長λ2の青色蛍光を発生する。反射層304は、波長λ1の励起用のレーザ光は透過し、青蛍光体層305にて発生した波長λ2の青色蛍光は反射する。このため、図3に示すように、基板303側から波長λ1の励起用のレーザ光301を入射させると、青蛍光体層305側から波長λ2の青色蛍光302が出射する。
 図4に示すように、緑蛍光体領域1052,1054は、波長λ1~λ4に対して透明な基板303上に、反射層402および緑蛍光体層403が積層されている。緑蛍光体層403は波長λ1の励起用の301が入射されると波長λ3の緑色蛍光を発生する。反射層402は、緑蛍光体層403にて発生した波長λ3の緑色蛍光は反射する。このため、図4に示すように、緑蛍光体層403側から波長λ1の励起用のレーザ光301を入射させると、緑蛍光体層305で波長λ3の緑色蛍光403が発生し、反射層402で反射されて、緑蛍光体層305側から出射する。
 次に、本実施形態における光学系の配置について説明する。
 蛍光ホイール105が無いと仮定した場合、レーザ光源1の出射光はダイクロイックミラー103、レンズ群109を通って反射ミラー1101,1102により折り返され、レンズ群108を通ってダイクロイックミラー103に入射するように各部材は配置されている。レンズ群107とレンズ群108の光軸、および蛍光ホイール105の回転軸は平行とされ、蛍光ホイール105の回転中心は、レンズ群107とレンズ群108の光軸の中間とされている。
 レーザ光源101は、出射光軸がLED光源102の出射光軸と直交するもので、その出射光はダイクロイックミラー103、レンズ群109を通って蛍光ホイール105に入射する。上述したように、蛍光ホイール105には3種類の領域が備えられており、蛍光ホイール105入射後の動作は入射した領域に応じて異なるものとなる。
 図2に示したように、円形の蛍光ホイール105は、4分割されており、青蛍光体領域1051と透明領域1053、緑蛍光体領域1052と緑蛍光体領域1054は、点対称となるように配置されている。
 レーザ光源101の出射光は、ダイクロイックミラー103、レンズ群107を通って、蛍光ホイール105に入射する。その入射点(以下、1次集光点と呼ぶ)は上述した3種類の領域のうちのいずれかとなる。1次集光点が、透明領域1053の場合には、入射光は該透明領域1053を透過し、反射ミラー1101,1102により折り返され、蛍光ホイール105の1次集光点と点対称な位置となる青蛍光体領域1051上の2次集光点に入射する。
 以下に、1次集光点が、緑蛍光体領域1052および緑蛍光体領域1054の場合、透明領域1053の場合、青蛍光体領域1051の場合、の入射後の動作についてそれぞれ説明する。
 1次集光点が緑蛍光体領域1052および緑蛍光体領域1054の場合には、図4に示した状態となる。緑蛍光体層403で発生した波長λ3の緑色蛍光は拡散光であり、レンズ群107により略平行光となる。その後、緑色蛍光はダイクロイックミラー103によりライトトンネル106に向けて反射される。この後、ダイクロイックミラー104を通過し、レンズ群109により集光されてライトトンネル106に入射する。
 1次集光点が透明領域1053の場合には、レーザ光源101の出射光は蛍光ホイール105の裏面(図1の図面左側から右側に向けて)から青蛍光体領域1051上の2次集光点に入射し、図3に示した状態となる。青蛍光体層305で発生した波長λ2の青色蛍光は拡散光であり、レンズ群108により略平行光となる。その後、青色蛍光はダイクロイックミラー104によりライトトンネル106に向けて反射され、レンズ群109により集光されてライトトンネル106に入射する。
 1次集光点が青蛍光体領域1051の場合には、青蛍光体層305で発生した波長λ2の青色蛍光がレンズ群107により略平行光となり、ダイクロイックミラー103を通ってレーザ光源101に戻ることとなる。このように、1次集光点が青蛍光体領域1051の場合に発生した青色蛍光は照明光として利用されることはない。本実施形態では、1次集光点が青蛍光体領域1051となる場合には、レーザ光源101は消灯するものとし、LED光源102が点灯され、LED光源102の波長λ4の赤色の出射光は、ダイクロイックミラー103,104、レンズ群109を通ってライトトンネル106に入射する。
 上記のように、本実施形態の照明光学系では、1次集光点が緑蛍光体領域1052および緑蛍光体領域1054の場合には、緑色蛍光がライトトンネル106に入射し、1次集光点が透明領域1053の場合には、青色蛍光がライトトンネル106に入射し、1次集光点が青蛍光体領域1051の場合には、LED光源102の赤色光がライトトンネル106に入射する。これらの各入射光はライトトンネル106内で照度分布が均一化され、ライトトンネル106の出射側には均一化された赤色光、緑色光、青色光、緑色光が順番に現れ、照明光として用いられる。尚、一方の緑色蛍光体の代わりに黄色蛍光体やマゼンダ色蛍光体を用い、黄色やマゼンダ色を照明光として使用してもよい。
 図5は、本実施形態の照明光学系を用いたプロジェクタの回路構成を示すブロック図である。
 図5に示すプロジェクタは、ユーザインタフェース部501、制御部502、記憶部503、映像信号処理部504、同期信号処理部505、LD駆動部506、LED駆動部507、蛍光ホイール駆動部508、表示素子駆動部509、回転状態検出部510、表示素子511、図1に示したレーザ光源101、LED光源102、および蛍光ホイール105から構成されている。
 ユーザインタフェース部501は、ユーザからの指示入力を受け付けて制御部502に出力し、また、現在のプロジェクタの動作状態をインジケータや表示パネルなどの表示装置(不図示)に表示させる。
 制御部502は、記憶部503に格納されているプログラムに応じてプロジェクタを構成する各部を制御する。
 記憶部503は、制御部503の制御プログラムを格納し、また、映像用データを一時記憶する。
 映像信号処理部504は外部より入力された映像信号を、プロジェクタ内で用いられる映像信号に変換する。本実施形態の映像信号は、上述したように各色の照明光が順次照明光学系より出力される構成であるため、各色に応じた映像信号が順次生成される。
 同期信号処理部505は、外部より入力された映像信号に同期する同期信号を、プロジェクタ内で用いられる映像信号に変換する。具体的には、各色の映像信号の出力タイミングを示す同期信号を生成して出力する。
 LD駆動部506は、同期信号処理部505が出力した同期信号に応じてレーザ光源101の点灯状態を制御し、LED駆動部507は、同期信号処理部505が出力した同期信号に応じてLED光源102の点灯状態を制御する。
 回転状態検出部510は蛍光ホイール105の回転状態を検出して蛍光ホイール駆動部508へ出力する。
 蛍光ホイール駆動部508は、同期信号処理部505が出力した同期信号に示される映像信号の色と、回転状態検出部510が検出した蛍光ホイール105の回転状態が示す照明光学系が出力する色とが一致するように蛍光ホイール105の回転状態を制御する
 表示素子駆動部509は映像信号処理部が出力する映像信号に応じて、表示素子511を駆動する。ここで、表示素子としては、複数のマイクロミラーがマトリックス状に配置され、各マイクロミラーの反射状態により画像を形成する反射型画像形成素子や、透過型液晶表示素子、反射型液晶表示素子が用いられる。
 上記のように構成されるプロジェクタでは、照明光学系から順次出力される各色の照明光により各色に対応した画像を表示する表示素子511が照明され、表示素子511の反射画像もしくは透過画像が投影光学系(不図示)を介して順次投射される。
 次に、本発明の他の実施形態について説明する。
 図6(a)~(c)は本発明による照明光学系の第2の実施形態の要部構成を示す平面図、図6(d)~(f)は本発明の照明光学系の第3の実施形態の要部構成を示す平面図である。
 図2に示した蛍光ホイール105は、等しく4分割され、青蛍光体領域1051と透明領域1053、緑蛍光体領域1052と緑蛍光体領域1054は、点対称となるように配置されていたのに対し、図5(a)~(c)に示す蛍光ホイール105’は、青蛍光体領域1051’および透明領域1053’の面積と、緑蛍光体領域1052’および緑蛍光体領域1054’の面積が異なるものとされている。この他の構成は図1に示した実施例と同じであるため、説明は省略する。
 緑蛍光体領域1052’および緑蛍光体領域1054’の面積は青蛍光体領域1051’および透明領域1053’の面積の2倍とされている。図2に示した蛍光ホイール105は各領域が等分されていたため、蛍光ホイール105が1回転すると、赤色光、緑色光、青色光、緑色光が同じ周期で現れていたのに対し、本実施形態では緑色光が現れるそれぞれの時間は、赤色光、青色光が現れる時間の2倍となる。
 図7は、本発明の第2の実施形態の発光時間を示すタイミングチャートである。
 図6(a)に示すように、1次集光点601が青蛍光体領域1051’上となる場合には、レーザ光源101は消灯状態とされ、LED光源102が点灯されて赤LED光が現れる(点灯時間を周期Tとする)。
 図6(b)に示すように、1次集光点601が緑蛍光体領域1054’上となる場合には、緑蛍光が現れる(周期2T)。
 図6(c)に示すように、1次集光点601が透明領域1053’上となる場合には、2次集光点602で発生した青蛍光が現れる(周期T)。
 その後、1次集光点601が緑蛍光体領域1052’上となる場合には、緑蛍光が現れる(周期2T)。
 図6(d)~(f)に示す実施形態は、蛍光ホイールが1回転するときの各色光の発生割合を図6(a)~(c)に示した実施形態と同じであるが、緑蛍光が連続して現れるように構成したものである。
 本実施形態においては、蛍光ホイール603の回転軸を図1に示した蛍光ホイール105、図6(a)~(c)に示した蛍光ホイール105’と異なる位置とし、その大きさも変更されている。この他の構成は図1に示した実施例と同じであるため、説明は省略する。
 蛍光ホイール603には、等しい面積の青蛍光体領域6041および透明領域6043とこれらの4倍の面積の緑蛍光領域6042が円弧状に形成されている。上述したように、蛍光ホイール603の回転中心軸がレンズ群107とレンズ群108の光軸の中間ではないため、本実施形態において、1次集光点605と2次集光点606の関係は蛍光ホイール603について点対称とならない。本実施形態においては、1次集光点605と2次集光点606は、図6(d)~(f)に示されるように、青蛍光体領域6041または透明領域6043の間隔と一致する、所定の間隔を保った位置関係となっている。
 図8は、本発明の第2の実施形態の発光時間を示すタイミングチャートである。
 図6(f)に示すように、1次集光点605が青蛍光体領域6041’上となる場合には、レーザ光源101は消灯状態とされ、LED光源102が点灯されて赤LED光が現れる(点灯時間を周期Tとする)。
 図6(d)に示すように、1次集光点605が緑蛍光体領域6042’上となる場合には、緑蛍光が現れる(周期4T)。
 図6(e)に示すように、1次集光点605が透明領域1053’上となる場合には、2次集光点606で発生した青蛍光が現れる(周期T)。
 図9は、本発明による照明光学系の第4の実施形態の要部構成を示すブロック図である。
 本実施形態は、レーザ光源901、LED光源902、ダイクロイックミラー903、レンズ群904,906、蛍光ホイール905から構成されている。
 レーザ光源901は、波長λ1の例起用のレーザ光を発生する。
 LED光源902は波長λ3よりも長い波長λ4の赤色の光を発生する。
 ダイクロイックミラー903は波長λ4の光を通過させ、波長λ1~λ3の光は反射する。
 蛍光ホイール905は、図1に示した蛍光ホイール105と同様に、励起用のレーザ光が入射されたときに、波長λ1よりも長い波長λ2、λ3(λ2<λ3)の青色蛍光、緑色蛍光をそれぞれ発生する青蛍光体領域、緑蛍光体領域と、透明領域とを備えている。
 レーザ光源901からレーザ光が蛍光ホイール905に出射されると、レーザ光の入射位置が青蛍光体領域の場合には青蛍光が発生する。青蛍光は、レンズ群906によりコリメートされ、ダイクロイックミラー903により反射され、レンズ群904を介して照明光として出射する。
 レーザ光の入射位置が緑蛍光体領域の場合には緑蛍光が発生する。緑蛍光は、レンズ群906によりコリメートされ、ダイクロイックミラー903により反射され、レンズ群904を介して照明光として出射する。
 レーザ光の入射位置が透明領域の場合には、蛍光が発生することなく、レーザ光のまま蛍光ホイール905を通過し、ダイクロイックミラー903により反射されて出射することとなる。このように、レーザ光の入射位置が透明領域の場合には照明光が発生しないこととなる。本実施形態では、1次集光点が透明領域となる場合には、レーザ光源901は消灯するものとし、LED光源902が点灯され、LED光源902の波長λ4の赤色の出射光は、ダイクロイックミラー903、レンズ群904を通って照明光として出射する。
 上記のように、第2乃至第3の実施形態のいずれも、照明光として用いられる赤色光、緑色光、青色光、緑色光が順番に現れるものとなっており、図5に示した構成により表示素子511を駆動することで高輝度かつ長寿命なプロジェクタを実現できる。
 101  レーザ光源
 102  LED光源
 103,104  ダイクロイックミラー
 105  蛍光ホイール
 106  ライトトンネル
 107~109  レンズ群
 1101、1102  反射ミラー

Claims (5)

  1. 第1の波長の励起光を発生するレーザ光源と、
     前記励起光により第2の波長の蛍光を発生する青蛍光発生領域と、前記励起光により第3の波長の蛍光を発生する緑蛍光発生領域とを備える蛍光ホイールと、
     第4の波長の光を発生するLED光源と、
     前記第2の波長の蛍光および前記第3の波長の蛍光を反射し、前記第4の波長の光を通過させることにより、これらの各光を同じ方向に出射するダイクロイックミラーと、
    を備えることを特徴とする照明光学系。
  2. 請求項1記載の照明光学系において、
     前記蛍光ホイールには、前記励起光を通過させ、前記第2の波長の蛍光および前記第3の波長の蛍光を反射する反射層が形成され、
     前記青蛍光発生領域には、前記反射層上に、前記励起光により第2の波長の蛍光を発生する青蛍光体が形成され、
     前記緑蛍光発生領域には、前記反射層上に、前記前記励起光により第3の波長の蛍光を発生する緑蛍光体が形成されていることを特徴とする照明光学系。
  3. 請求項2記載の照明光学系において、
     前記レーザ光源は、前記蛍光ホイールの1回転周期内で、前記青蛍光発生領域および前記緑蛍光発生領域に前記反射層側から前記励起光を前記蛍光ホイールに照射し、
     前記LED光源は、前記蛍光ホイールの1回転周期内で、前記蛍光ホイールに対する前記レーザ光源による励起光の照射が行われないときに前記第4の波長の光を発生することを特徴とする照明光学系。
  4. 請求項2記載の照明光学系において、
     前記蛍光ホイールは、すべての波長の光を通過させる透明領域を備え、
     前記透明領域を通過した光を再度前記蛍光ホイールに入射させる再帰機構を具備し、
     前記ダイクロイックミラーは、
     前記緑蛍光発生領域に前記緑蛍光体側から前記励起光が入射したときに発生した前記第3の波長の蛍光を反射する第1のダイクロイックミラーと、
     前記透明領域を通過し、前記再帰機構により前記青蛍光発生領域に前記反射層側から前記励起光が入射したときに発生した前記第2の波長の蛍光を反射する第2のダイクロイックミラーと、を備えることを特徴とする照明光学系。
  5. 請求項1ないし請求項4のいずれかに記載の照明光学系を備えたプロジェクタ。
PCT/JP2010/051237 2010-01-29 2010-01-29 照明光学系とこれを用いたプロジェクタ WO2011092841A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011551638A JP5424367B2 (ja) 2010-01-29 2010-01-29 照明光学系とこれを用いたプロジェクタ
PCT/JP2010/051237 WO2011092841A1 (ja) 2010-01-29 2010-01-29 照明光学系とこれを用いたプロジェクタ
US12/734,553 US8936368B2 (en) 2010-01-29 2010-01-29 Illumination optical system and projector using the same
EP10844602.2A EP2530520B1 (en) 2010-01-29 2010-01-29 Illumination optical system and projector using same
EP16199826.5A EP3168684A1 (en) 2010-01-29 2010-01-29 Illumination optical system and projector using the same
CN201080062746.5A CN102741742B (zh) 2010-01-29 2010-01-29 照明光学系统和使用该照明光学系统的投影仪
US14/579,679 US9509966B2 (en) 2010-01-29 2014-12-22 Projector in illumination optical system including phosphor wheel driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051237 WO2011092841A1 (ja) 2010-01-29 2010-01-29 照明光学系とこれを用いたプロジェクタ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/734,553 A-371-Of-International US8936368B2 (en) 2010-01-29 2010-01-29 Illumination optical system and projector using the same
US14/579,679 Continuation US9509966B2 (en) 2010-01-29 2014-12-22 Projector in illumination optical system including phosphor wheel driver

Publications (1)

Publication Number Publication Date
WO2011092841A1 true WO2011092841A1 (ja) 2011-08-04

Family

ID=44318849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051237 WO2011092841A1 (ja) 2010-01-29 2010-01-29 照明光学系とこれを用いたプロジェクタ

Country Status (5)

Country Link
US (2) US8936368B2 (ja)
EP (2) EP3168684A1 (ja)
JP (1) JP5424367B2 (ja)
CN (1) CN102741742B (ja)
WO (1) WO2011092841A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209555A (ja) * 2010-03-30 2011-10-20 Casio Computer Co Ltd 発光ユニット及びプロジェクタ
CN103033918A (zh) * 2011-09-30 2013-04-10 卡西欧计算机株式会社 光源装置及投影仪装置
WO2013067807A1 (zh) * 2011-11-10 2013-05-16 深圳市光峰光电技术有限公司 一种光源系统、照明装置及投影装置
CN103309140A (zh) * 2012-03-14 2013-09-18 卡西欧计算机株式会社 光源装置及投影机
WO2014073136A1 (ja) * 2012-11-07 2014-05-15 パナソニック株式会社 光源および画像投写装置
KR20140097189A (ko) * 2011-11-28 2014-08-06 아포트로닉스 코포레이션 리미티드 투영장치 및 그 제어 방법
CN104081114A (zh) * 2012-01-27 2014-10-01 欧司朗有限公司 具有荧光材料轮的发光装置
JP2014527261A (ja) * 2011-08-04 2014-10-09 アポトロニクス(チャイナ)コーポレイション 照明装置および投影装置
CN104412159A (zh) * 2012-07-06 2015-03-11 欧司朗有限公司 具有荧光材料装置和激光器的照明设备
CN104641289A (zh) * 2012-09-18 2015-05-20 株式会社理光 照明装置、投影仪和照明方法
EP2749943A4 (en) * 2011-08-27 2015-08-19 Appotronics Corp Ltd PROJECTION SYSTEM AND LIGHT EMITTING DEVICE THEREOF
JP2016006523A (ja) * 2011-09-22 2016-01-14 台達電子工業股▲ふん▼有限公司 投影装置
JP2016510160A (ja) * 2013-03-06 2016-04-04 アポトロニクス チャイナ コーポレイション 発光装置及び関連する投影システム
KR101817828B1 (ko) * 2011-08-16 2018-01-11 이아이에스 옵틱스 리미티드 옵티칼 휠
JP2018045199A (ja) * 2016-09-16 2018-03-22 カシオ計算機株式会社 光源装置及び投影装置
JP2019033485A (ja) * 2018-08-30 2019-02-28 カシオ計算機株式会社 光源装置、投影装置、光源装置の制御方法
WO2019161182A1 (en) 2018-02-15 2019-08-22 Luminus, Inc. Remote wavelength-converting member and related systems
US11340445B2 (en) 2018-06-29 2022-05-24 Panasonic Intellectual Property Management Co., Ltd. Phosphor wheel device

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756403B2 (ja) * 2009-06-30 2011-08-24 カシオ計算機株式会社 光源装置及びプロジェクタ
JP5406638B2 (ja) * 2009-08-31 2014-02-05 カシオ計算機株式会社 光源装置及びプロジェクタ
JP5534331B2 (ja) * 2010-07-30 2014-06-25 カシオ計算機株式会社 光源ユニット及びプロジェクタ
WO2012066654A1 (ja) * 2010-11-17 2012-05-24 Necディスプレイソリューションズ株式会社 光源装置、照明装置および投射型表示装置
CN102418907B (zh) * 2010-12-08 2014-04-16 深圳市绎立锐光科技开发有限公司 光源
TWI410740B (zh) * 2010-12-14 2013-10-01 Delta Electronics Inc 光源系統及包含該光源系統之投影裝置
JP2012141411A (ja) * 2010-12-28 2012-07-26 Jvc Kenwood Corp 光源装置
TWI432780B (zh) * 2011-01-19 2014-04-01 台達電子工業股份有限公司 光源系統
JP5987382B2 (ja) * 2011-07-22 2016-09-07 株式会社リコー 照明装置、ならびに、投射装置および投射装置の制御方法
US10310363B2 (en) 2011-09-22 2019-06-04 Delta Electronics, Inc. Phosphor device with spectrum of converted light comprising at least a color light
US10688527B2 (en) 2011-09-22 2020-06-23 Delta Electronics, Inc. Phosphor device comprising plural phosphor agents for converting waveband light into plural color lights with different wavelength peaks
TW201317705A (zh) * 2011-10-31 2013-05-01 Delta Electronics Inc 發光模組及顯示裝置
CN102563410B (zh) * 2011-12-04 2014-08-06 深圳市光峰光电技术有限公司 发光装置、投影装置和照明装置
CN103454844A (zh) * 2012-05-29 2013-12-18 中强光电股份有限公司 照明系统与投影装置
DE102012209426A1 (de) * 2012-06-04 2013-12-05 Osram Gmbh Leuchtstoffrad zur Umwandlung von Pumplicht
DE102012213036A1 (de) * 2012-07-25 2014-01-30 Osram Gmbh Beleuchtungsvorrichtung mit leuchtstoffrad
US20150323861A1 (en) * 2012-12-25 2015-11-12 Nec Display Solutions, Ltd. Light source apparatus, projector, and method for illuminating an image modulation element
FR3003629B1 (fr) * 2013-03-22 2016-07-15 Valeo Vision Systeme d'eclairage multifonction
US11320728B2 (en) 2013-05-23 2022-05-03 Texas Instruments Incorporated Spatial light modulator image display projector apparatus with solid state illumination light sources
DE102013215054A1 (de) * 2013-07-31 2015-02-05 Osram Gmbh Beleuchtungsvorrichtung mit Leuchtstoffrad und Anregungsstrahlungsquelle
CN103399452A (zh) * 2013-08-23 2013-11-20 中国华录集团有限公司 一种投影机光源装置
DE102013224768B4 (de) * 2013-12-03 2023-07-27 Coretronic Corporation Lichtmodul für eine Projektionsvorrichtung und DLP-Projektor
CN109557750B (zh) 2017-09-26 2021-06-15 中强光电股份有限公司 照明系统及使用照明系统的投影装置
US10732495B2 (en) 2014-05-02 2020-08-04 Coretronic Corporation Illumination system, projection apparatus and method for driving illumination system
TWI522723B (zh) * 2014-05-26 2016-02-21 台達電子工業股份有限公司 光源系統及其適用之投影設備
CN205350946U (zh) * 2015-12-16 2016-06-29 深圳市绎立锐光科技开发有限公司 一种光源系统及照明系统
US9958766B2 (en) * 2016-06-21 2018-05-01 Casio Computer Co., Ltd. Light source unit and projector
CN106287436A (zh) * 2016-09-07 2017-01-04 广州市巴卡研玻璃制品有限责任公司 一种新型激光与led混色光源系统
CN106125482A (zh) * 2016-09-12 2016-11-16 海信集团有限公司 激光光源及激光投影设备
CN107861321B (zh) * 2016-09-22 2023-12-01 上海激亮光电科技有限公司 一种光纤荧光轮混合式激光投影机及其控制方法
US10288992B2 (en) 2017-02-16 2019-05-14 Delta Electronics, Inc. Laser light source for projector and laser projection device
CN108445700A (zh) * 2017-02-16 2018-08-24 台达电子工业股份有限公司 激光投影光源与激光投影装置
CN108663879B (zh) 2017-03-31 2021-04-06 中强光电股份有限公司 投影机及其照明系统
CN110637248A (zh) * 2017-04-20 2019-12-31 德州仪器公司 具有固态照明光源的空间光调制图像显示投影仪设备
WO2019096764A1 (en) 2017-11-14 2019-05-23 Signify Holding B.V. Solid state light sources enabling digital spokes when used with a color wheel
US11187888B2 (en) * 2017-11-24 2021-11-30 Sharp Nec Display Solutions, Ltd. Light source device, projector, and chromaticity adjustment method
CN109839793B (zh) * 2017-11-28 2021-01-29 中强光电股份有限公司 投影机及其照明系统
JP7057107B2 (ja) * 2017-11-28 2022-04-19 キヤノン株式会社 光源装置および画像投射装置
CN110361914A (zh) * 2018-04-11 2019-10-22 中强光电股份有限公司 照明系统、控制单元及投影装置
CN110703552B (zh) 2018-07-10 2021-10-15 中强光电股份有限公司 照明系统以及投影装置
CN110032034A (zh) * 2019-04-29 2019-07-19 杭州有人光电技术有限公司 一种利用激光诱导荧光的投影照明系统
JP7372068B2 (ja) 2019-07-19 2023-10-31 株式会社Screenホールディングス 基板処理装置および基板処理方法
CN111679544B (zh) * 2020-07-01 2021-08-10 无锡视美乐激光显示科技有限公司 光源装置及光学系统
DE102020131178A1 (de) 2020-11-25 2022-05-25 Jenoptik Optical Systems Gmbh Vorrichtung und Verfahren zum Erzeugen von Licht
DE202020005883U1 (de) 2020-11-25 2023-01-30 Jenoptik Optical Systems Gmbh Vorrichtung zum Erzeugen von Licht
CN116339055A (zh) * 2021-08-02 2023-06-27 合肥全色光显科技有限公司 一种投影系统
CN113608403A (zh) * 2021-08-17 2021-11-05 四川长虹电器股份有限公司 一种激光光源模组投影光路系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003186110A (ja) 2001-12-21 2003-07-03 Nec Viewtechnology Ltd Led照明式dmdプロジェクター及びその光学系
JP2004341105A (ja) * 2003-05-14 2004-12-02 Nec Viewtechnology Ltd 投写型表示装置
JP2008052070A (ja) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd カラーホイール、可視光光源、投射型画像表示装置、投射型画像表示方法
JP2009266463A (ja) * 2008-04-23 2009-11-12 Panasonic Corp 面状照明装置とこれを用いた画像表示装置

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3640173B2 (ja) * 2001-04-02 2005-04-20 ソニー株式会社 画像表示装置
JP3873845B2 (ja) * 2002-08-07 2007-01-31 三菱電機株式会社 映像表示装置
US7070300B2 (en) * 2004-06-04 2006-07-04 Philips Lumileds Lighting Company, Llc Remote wavelength conversion in an illumination device
JP2006023436A (ja) 2004-07-07 2006-01-26 Olympus Corp 照明装置及びプロジェクタ
KR100644644B1 (ko) * 2004-10-28 2006-11-10 삼성전자주식회사 레이저 반점을 제거한 조명계 및 이를 채용한 1 패널식프로젝션 시스템
WO2006133214A2 (en) 2005-06-07 2006-12-14 Optical Research Associates Phosphor wheel illuminator
US8182093B2 (en) * 2005-09-21 2012-05-22 Panasonic Corporation Image projection device including determining displayable region
JP2008015299A (ja) * 2006-07-07 2008-01-24 Seiko Epson Corp 照明装置及びプロジェクタ
JP2008286823A (ja) 2007-05-15 2008-11-27 Seiko Epson Corp 光源装置、照明装置及びプロジェクタ
US7547114B2 (en) * 2007-07-30 2009-06-16 Ylx Corp. Multicolor illumination device using moving plate with wavelength conversion materials
KR101328960B1 (ko) * 2007-11-05 2013-11-14 엘지전자 주식회사 프로젝터
CN101430492B (zh) * 2007-11-08 2011-05-18 北京中视中科光电技术有限公司 一种用于投影系统的光源装置及投影显示装置
JP4662183B2 (ja) * 2008-04-16 2011-03-30 カシオ計算機株式会社 光源装置及びプロジェクタ
JP4662185B2 (ja) * 2008-05-15 2011-03-30 カシオ計算機株式会社 光源装置及びプロジェクタ
JP4900428B2 (ja) * 2008-09-26 2012-03-21 カシオ計算機株式会社 投影装置及び投影方法
JP4678556B2 (ja) * 2009-03-17 2011-04-27 カシオ計算機株式会社 発光装置及び光源装置並びにこの光源装置を用いたプロジェクタ
JP4697559B2 (ja) * 2009-03-27 2011-06-08 カシオ計算機株式会社 光源装置及びプロジェクタ
JP4900736B2 (ja) * 2009-03-31 2012-03-21 カシオ計算機株式会社 光源装置及びプロジェクタ
JP4883376B2 (ja) * 2009-06-30 2012-02-22 カシオ計算機株式会社 蛍光体基板及び光源装置、プロジェクタ
JP4756403B2 (ja) * 2009-06-30 2011-08-24 カシオ計算機株式会社 光源装置及びプロジェクタ
JP4742349B2 (ja) * 2009-06-30 2011-08-10 カシオ計算機株式会社 光源装置及びプロジェクタ
JP5412996B2 (ja) * 2009-06-30 2014-02-12 カシオ計算機株式会社 光源装置、投影装置及び投影方法
JP4711156B2 (ja) * 2009-06-30 2011-06-29 カシオ計算機株式会社 光源装置及びプロジェクタ
JP4711154B2 (ja) * 2009-06-30 2011-06-29 カシオ計算機株式会社 光源装置及びプロジェクタ
JP4711155B2 (ja) * 2009-06-30 2011-06-29 カシオ計算機株式会社 光源装置及びプロジェクタ
JP5625287B2 (ja) * 2009-08-21 2014-11-19 カシオ計算機株式会社 光源装置、投影装置、投影方法及びプログラム
JP4924677B2 (ja) * 2009-08-21 2012-04-25 カシオ計算機株式会社 光源装置、投影装置及び投影方法
JP5406638B2 (ja) * 2009-08-31 2014-02-05 カシオ計算機株式会社 光源装置及びプロジェクタ
JP5370764B2 (ja) * 2009-09-15 2013-12-18 カシオ計算機株式会社 光源装置及びプロジェクタ
JP5796272B2 (ja) * 2009-09-28 2015-10-21 カシオ計算機株式会社 光源装置、投影装置及び投影方法
JP2011075919A (ja) * 2009-09-30 2011-04-14 Casio Computer Co Ltd 光源装置、投影装置及び投影方法
JP4983897B2 (ja) * 2009-11-30 2012-07-25 カシオ計算機株式会社 光源装置、投影装置及び投影方法
JP5567844B2 (ja) * 2010-01-29 2014-08-06 日立コンシューマエレクトロニクス株式会社 投写型映像表示装置
CN102741743A (zh) * 2010-01-29 2012-10-17 Nec显示器解决方案株式会社 照明光学系统和使用该照明光学系统的投影仪
US20110205502A1 (en) * 2010-02-23 2011-08-25 Minebea Co., Ltd. Projector
JP5617288B2 (ja) * 2010-03-18 2014-11-05 セイコーエプソン株式会社 照明装置及びプロジェクター
CN102213384A (zh) * 2010-04-01 2011-10-12 中强光电股份有限公司 光源模组与投影装置
CN102235618B (zh) * 2010-04-23 2014-11-19 中强光电股份有限公司 照明模块与投影装置
JP2011248272A (ja) * 2010-05-31 2011-12-08 Sanyo Electric Co Ltd 光源装置及び投写型映像表示装置
JP2011257600A (ja) * 2010-06-09 2011-12-22 Minebea Co Ltd カラーホイールの製造方法及びカラーホイール並びにプロジェクタ
US8733942B2 (en) * 2010-08-09 2014-05-27 Delta Electronics, Inc. Illumination system and projector using the same
JP5724245B2 (ja) * 2010-08-19 2015-05-27 株式会社リコー 光源装置、照明装置及び投影表示装置
JP5672861B2 (ja) * 2010-08-27 2015-02-18 セイコーエプソン株式会社 プロジェクター

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003186110A (ja) 2001-12-21 2003-07-03 Nec Viewtechnology Ltd Led照明式dmdプロジェクター及びその光学系
JP2004341105A (ja) * 2003-05-14 2004-12-02 Nec Viewtechnology Ltd 投写型表示装置
JP2008052070A (ja) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd カラーホイール、可視光光源、投射型画像表示装置、投射型画像表示方法
JP2009266463A (ja) * 2008-04-23 2009-11-12 Panasonic Corp 面状照明装置とこれを用いた画像表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530520A4

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209555A (ja) * 2010-03-30 2011-10-20 Casio Computer Co Ltd 発光ユニット及びプロジェクタ
JP2014527261A (ja) * 2011-08-04 2014-10-09 アポトロニクス(チャイナ)コーポレイション 照明装置および投影装置
KR101817828B1 (ko) * 2011-08-16 2018-01-11 이아이에스 옵틱스 리미티드 옵티칼 휠
EP3382451A1 (en) * 2011-08-27 2018-10-03 Appotronics Corporation Limited Projection system and light emitting device thereof
KR101780318B1 (ko) * 2011-08-27 2017-10-10 아포트로닉스 코포레이션 리미티드 투영 시스템 및 이의 발광 장치
EP2749943A4 (en) * 2011-08-27 2015-08-19 Appotronics Corp Ltd PROJECTION SYSTEM AND LIGHT EMITTING DEVICE THEREOF
JP2016006523A (ja) * 2011-09-22 2016-01-14 台達電子工業股▲ふん▼有限公司 投影装置
CN103033918A (zh) * 2011-09-30 2013-04-10 卡西欧计算机株式会社 光源装置及投影仪装置
US9366948B2 (en) 2011-09-30 2016-06-14 Casio Computer Co., Ltd. Light source apparatus and projection apparatus
US9094619B2 (en) 2011-09-30 2015-07-28 Casio Computer Co., Ltd. Light source apparatus and projection apparatus
CN104991407A (zh) * 2011-11-10 2015-10-21 深圳市光峰光电技术有限公司 一种光源系统、照明装置及投影装置
WO2013067807A1 (zh) * 2011-11-10 2013-05-16 深圳市光峰光电技术有限公司 一种光源系统、照明装置及投影装置
KR101897457B1 (ko) * 2011-11-28 2018-09-12 아포트로닉스 코포레이션 리미티드 투영장치 및 그 제어 방법
EP2787390A4 (en) * 2011-11-28 2016-01-13 Appotronics Corp Ltd PROJECTION DEVICE AND ITS CONTROL METHOD
KR20140097189A (ko) * 2011-11-28 2014-08-06 아포트로닉스 코포레이션 리미티드 투영장치 및 그 제어 방법
US9476573B2 (en) 2012-01-27 2016-10-25 Osram Gmbh Lighting apparatus comprising phosphor wheel
CN104081114A (zh) * 2012-01-27 2014-10-01 欧司朗有限公司 具有荧光材料轮的发光装置
CN103309140A (zh) * 2012-03-14 2013-09-18 卡西欧计算机株式会社 光源装置及投影机
CN104412159A (zh) * 2012-07-06 2015-03-11 欧司朗有限公司 具有荧光材料装置和激光器的照明设备
US9594296B2 (en) 2012-09-18 2017-03-14 Ricoh Company, Ltd. Illumination device including a wavelength converter
CN104641289A (zh) * 2012-09-18 2015-05-20 株式会社理光 照明装置、投影仪和照明方法
WO2014073136A1 (ja) * 2012-11-07 2014-05-15 パナソニック株式会社 光源および画像投写装置
JPWO2014073136A1 (ja) * 2012-11-07 2016-09-08 パナソニックIpマネジメント株式会社 光源および画像投写装置
US9644803B2 (en) 2012-11-07 2017-05-09 Panasonic Intellectual Property Management Co., Ltd. Light source and image projection apparatus
CN104769497A (zh) * 2012-11-07 2015-07-08 松下知识产权经营株式会社 光源以及图像投影装置
CN104769497B (zh) * 2012-11-07 2016-09-28 松下知识产权经营株式会社 光源以及图像投影装置
JP2016510160A (ja) * 2013-03-06 2016-04-04 アポトロニクス チャイナ コーポレイション 発光装置及び関連する投影システム
JP2018045199A (ja) * 2016-09-16 2018-03-22 カシオ計算機株式会社 光源装置及び投影装置
WO2019161182A1 (en) 2018-02-15 2019-08-22 Luminus, Inc. Remote wavelength-converting member and related systems
EP3753055A4 (en) * 2018-02-15 2021-11-17 Luminus, Inc. DISTANT WAVELENGTH CONVERSION ELEMENT AND RELATED SYSTEMS
US11340445B2 (en) 2018-06-29 2022-05-24 Panasonic Intellectual Property Management Co., Ltd. Phosphor wheel device
JP2019033485A (ja) * 2018-08-30 2019-02-28 カシオ計算機株式会社 光源装置、投影装置、光源装置の制御方法

Also Published As

Publication number Publication date
EP2530520A1 (en) 2012-12-05
EP3168684A1 (en) 2017-05-17
US9509966B2 (en) 2016-11-29
EP2530520A4 (en) 2016-07-13
CN102741742A (zh) 2012-10-17
US20120062857A1 (en) 2012-03-15
EP2530520B1 (en) 2017-04-26
JP5424367B2 (ja) 2014-02-26
US8936368B2 (en) 2015-01-20
CN102741742B (zh) 2015-01-28
US20150146100A1 (en) 2015-05-28
JPWO2011092841A1 (ja) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5424367B2 (ja) 照明光学系とこれを用いたプロジェクタ
JP5473021B2 (ja) 照明光学系とこれを用いたプロジェクタ
JP5408756B2 (ja) 照明光学系とこれを用いたプロジェクタ
JP5483505B2 (ja) 照明光学系とこれを用いたプロジェクタ
JP5914878B2 (ja) 光源装置及び投写型表示装置
JP5987368B2 (ja) 照明装置および投射装置
JP4186918B2 (ja) 画像表示装置
WO2014041636A1 (ja) 照明光学装置、プロジェクタ、および照明光学装置の制御方法
US20130242264A1 (en) Lighting optical system and projection display device including the same
US20130242268A1 (en) Lighting optical system and projection display device including the same
WO2020137749A1 (ja) 光源装置および投写型映像表示装置
US20180149955A1 (en) Illumination device and projector
JP6759853B2 (ja) 照明装置、画像投射装置
JP2012008303A (ja) 光源装置及びそれを用いた投写型表示装置
JP2010054572A (ja) 画像投射装置
JP5709225B2 (ja) 照明光学系とこれを用いたプロジェクタ
JP2008300115A (ja) 照明装置および画像投影表示装置
JP4944496B2 (ja) 照明装置とその照明装置を用いたプロジェクタ
JP5213484B2 (ja) 画像投射装置
JP5804536B2 (ja) 照明光学系および投写型表示装置
JP4382503B2 (ja) 投写型表示装置の光源装置と投写型表示装置
JP2009098569A (ja) プロジェクタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062746.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12734553

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844602

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010844602

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010844602

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011551638

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE