WO2011089924A1 - 流体機械 - Google Patents

流体機械 Download PDF

Info

Publication number
WO2011089924A1
WO2011089924A1 PCT/JP2011/000366 JP2011000366W WO2011089924A1 WO 2011089924 A1 WO2011089924 A1 WO 2011089924A1 JP 2011000366 W JP2011000366 W JP 2011000366W WO 2011089924 A1 WO2011089924 A1 WO 2011089924A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
fluid machine
driven unit
machine according
forged
Prior art date
Application number
PCT/JP2011/000366
Other languages
English (en)
French (fr)
Inventor
憲幸 小林
瞳 柴田
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to MX2012008618A priority Critical patent/MX2012008618A/es
Priority to CN2011800071302A priority patent/CN102834615A/zh
Priority to EP11734531A priority patent/EP2530322A1/en
Priority to CA2787308A priority patent/CA2787308A1/en
Priority to IN6559DEN2012 priority patent/IN2012DN06559A/en
Priority to US13/575,263 priority patent/US20120294736A1/en
Publication of WO2011089924A1 publication Critical patent/WO2011089924A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/127Mounting of a cylinder block in a casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/14Provisions for readily assembling or disassembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections

Definitions

  • the present invention relates to a fluid machine, and more particularly to a fluid machine suitable for a hermetic reciprocating compressor that compresses a carbon dioxide refrigerant.
  • Patent Document 1 is composed of a cylindrical center shell formed of a steel pipe, and a cup-shaped top shell and a bottom shell, both of which are cast and welded to both opening ends of the center shell. A closed container is disclosed.
  • Patent Document 2 discloses a closed container composed of two members, a top shell and a bottom shell, both of which are press-molded.
  • Patent Document 3 discloses a top shell and a bottom shell, both of which are forged and molded. A closed container composed of two members is disclosed.
  • JP 2006-177285 A Japanese Patent Publication No.58-19869 JP 2004-285927 A
  • the shells constituting the sealed container are joined together by welding, in the case of the sealed container described in Patent Document 1, the top shell and the bottom shell are cast and the casting generally contains a lot of carbon. For this reason, welding of the shells is technically difficult, and there is a risk of poor welding.
  • the steel pipe as the center shell has a high material cost, and further, since the sealed container is composed of three members, the number of welding locations is at least two and requires assembly man-hours for the sealed container. As a result, there is a problem that the manufacturing cost of the compressor increases.
  • the sealed container is composed of two shells as in the sealed containers described in Patent Documents 2 and 3, the number of welding locations is reduced, the assembly man-hour of the sealed container is reduced, and the manufacturing cost of the sealed container is reduced. Further, it is considered that the welding failure as described above can be improved if each shell is press-molded or forged. However, when each shell is press-molded, the shell shape can only be molded to a simple shape such as a dome shape, so the location for fixing the electric motor, compression mechanism, etc. must be additionally processed in each shell and sealed An increase in the manufacturing cost of the container is inevitable.
  • the shell shape can be formed into a complicated shape as necessary, but the thickness and weight of each shell is smaller than when each shell is press-molded.
  • the airtight container, and hence the fluid machine cannot be reduced in weight and size.
  • the present invention has been made based on the above-described circumstances, and an object of the present invention is to provide a fluid machine that can realize weight reduction and size reduction while reducing manufacturing cost.
  • a fluid machine is a fluid machine in which a drive unit and a driven unit to which the driving force of the drive unit is transmitted are contained in a sealed container.
  • the first shell that covers the drive unit side and the second shell that is joined to the first shell and covers the driven unit side are formed by different processing methods. (Claim 1).
  • the first shell is forged and the second shell is press-molded (Claim 2), or the first shell is press-molded and the second shell is forged (Claim 3).
  • the longitudinal direction of the drive unit is accommodated in the depth direction of the first shell, and the longitudinal direction of the driven unit is accommodated in the radial direction of the second shell.
  • the second shell has a gripping portion that is gripped when the second shell is forged, and the gripping portion projects from the outer top portion of the second shell on the radial center side with respect to the side portion of the second shell ( Claim 5).
  • a lubrication mechanism is provided for supplying lubricating oil stored in the inner bottom portion of the second shell to the sliding portions of the driving unit and the driven unit, and the second shell is located at the position of the inner bottom portion on the back side of the gripping portion.
  • an oil sump portion recessed substantially in a shape similar to the outer shape of the gripping portion (claim 6).
  • the second shell has a pedestal portion to which the drive unit and the driven unit are fixed.
  • the gripping part, the oil sump part, and the pedestal part are all formed at the same time when the second shell is forged. Further, the pressure of the working fluid sucked into the driven unit and discharged from the driven unit acts in the sealed container, and the working fluid is a carbon dioxide refrigerant (claim 9).
  • the hermetic container is composed of two shells and at least one of the first shell and the second shell can be thinned by press molding, It is possible to reduce the weight and size of the container, and thus the fluid machine.
  • at least the second shell can be thinned by press molding.
  • at least the second shell can be formed by press molding.
  • One shell can be thinned, and in any case, since it is not cast molding, it is difficult to cause poor welding when the shells are welded and joined, and the weld strength of the sealed container is increased. be able to.
  • the first shell can be press-molded at a depth matching the length of the drive unit in the longitudinal direction, and the second shell can be pressed in the length of the driven unit in the longitudinal direction.
  • the second shell which has a relatively shallow depth that does not require a depth compared to the first shell, can be easily manufactured while reducing the thickness along the outer shape of the driven unit by forging, It is possible to surely reduce the weight and size of the container, and thus the fluid machine, and further reduce the dead space in the sealed container and promote further size reduction of the fluid machine.
  • the gripping portion is formed on the side portion of the second shell, the waste meat from the side portion of the second shell to the outer top portion is reduced, and the second shell is further updated. Therefore, further lightening and downsizing of the hermetic container and, as a result, the fluid machine can be realized.
  • the oil reservoir can be easily formed on the inner bottom without requiring a separate member such as an oil pan while reducing the thickness of the second shell using the gripping portion. Can do.
  • the lubricating oil can be stored in the inner bottom with a predetermined oil level, so even if a small amount of lubricating oil accumulates in the inner bottom, Lubricating oil can be smoothly supplied from the mechanism to each sliding portion, and can be circulated efficiently in the sealed container.
  • the drive unit and the driven unit can be fixed easily without requiring a separate member such as a frame.
  • the eighth aspect of the present invention it is possible to easily form the grip portion, the oil sump portion, and the pedestal portion without requiring a separate member or separate processing, thereby improving the productivity of the fluid machine.
  • the pressure of the working fluid discharged from the driven unit is high, and the pressure acting in the sealed container may be high. Normally, for the sake of safety, an increase in the thickness of the sealed container is unavoidable.
  • the above configuration is preferable because the weight and size of the sealed container, and thus the fluid machine, can be effectively promoted.
  • the compressor 1 is a hermetic reciprocating compressor, and is categorized in detail as a positive displacement compressor called a reciprocating compressor or a piston compressor.
  • a configuration of a refrigeration cycle (not shown) incorporated in a vending machine. Used as equipment.
  • the refrigeration cycle includes a path through which a refrigerant as a working fluid of the compressor 1 circulates.
  • a carbon dioxide refrigerant that is a non-flammable natural refrigerant is used as the refrigerant.
  • the compressor 1 includes an airtight container 2, and an electric motor (drive unit) 4 and a compression mechanism (driven unit) to which the driving force of the electric motor 4 is transmitted are enclosed in the airtight container 2. 6) is housed.
  • the electric motor 4 includes a stator 8 that generates a magnetic field by power feeding and a rotor 10 that rotates by the magnetic field generated by the stator 8.
  • the rotor 10 is disposed coaxially inside the stator 8, and will be described later.
  • the main shaft portion 24 is fixed by shrinkage fitting. Electric power is supplied to the stator 8 from the outside of the compressor 1 through an electrical component 12 fixed to the sealed container 2 and a lead wire (not shown).
  • the compression mechanism 6 includes a crankshaft 14, a cylinder block 16, a piston 18, a connecting rod 20, and the like.
  • the crankshaft 14 includes an eccentric shaft portion 22 and a main shaft portion 24.
  • a cylinder bore 26 is formed integrally with the cylinder block 16, and a cylinder gasket 28, a later-described suction valve 50, and a valve plate 30 are sequentially arranged from the cylinder block 16 side so as to close the opening of the cylinder bore 26.
  • the head gasket 32 and the cylinder head 34 are pressed and fixed by bolts.
  • the stator 8 is bolted to the cylinder block 16 via a frame 36, and the frame 36 is fixed to the sealed container 2.
  • the electric motor 4 and the compression mechanism 6 are supported by a pedestal portion 38 below the frame 36, and the frame 36 is fixed to the sealed container 2 by the pedestal portion 38.
  • the bearing 42 of the main shaft portion 24 is disposed on the inner peripheral surface 40a, and the thrust trace (bearing) that receives the thrust load of the rotor 10 on the upper end surface 40b of the cylindrical portion 40.
  • a bearing 44 such as a thrust washer is disposed.
  • the valve plate 30 includes a refrigerant suction hole 46 and a discharge hole 48, both of which are opened and closed by a suction valve 50 and a discharge valve 52, which are reed valves, respectively.
  • the cylinder head 34 includes a refrigerant suction chamber 54 and a discharge chamber 56.
  • the discharge valve 52 When the discharge valve 52 is opened in the compression stroke of the piston 18, the discharge chamber 56 communicates with the cylinder bore 26 through the discharge hole 48.
  • the intake valve 50 is opened during the intake stroke of the piston 18, the intake chamber 54 communicates with the cylinder bore 26 via the intake hole 46.
  • a suction pipe 58 and a discharge pipe 60 are fixed to the sealed container 2, and one ends of the suction and discharge pipes 58 and 60 are connected to a suction chamber 54 and a discharge chamber 56 of the cylinder head 34, respectively.
  • the other ends of the suction and discharge pipes 58 and 60 are connected to a refrigeration cycle via a suction muffler and a discharge muffler (not shown), and these mufflers reduce the pulsation and noise of the refrigerant flowing between the compressor 1 and the refrigeration cycle. ing.
  • the connecting rod 20 is provided with a large end 62 to which the eccentric shaft portion 22 of the crankshaft 14 is rotatably connected at one end, and a small end 64 to which the piston 18 is reciprocally connected at the other end. It has been.
  • the small end portion 64 is connected to the piston 18 by a piston pin 66, and the piston pin 66 is secured to the piston 18 by a fixing pin 68.
  • the connecting rod 20 swings in conjunction with the eccentric rotation of the eccentric shaft portion 22 with the piston pin 66 as a fulcrum, and the piston 18 interlocks with the swinging motion of the connecting rod 20. It reciprocates in the cylinder bore 26.
  • the discharge pressure of the refrigerant mainly acts in the sealed container 2, and a small amount of lubricating oil for lubricating the sliding portions of the electric motor 4 and the compression mechanism 6, such as the bearings 42 and 44, in the inner bottom portion 2 a of the sealed container 2.
  • an oil passage (lubricating mechanism) 70 is drilled from the substantially axial position of the lower end surface 22 a of the eccentric shaft portion 22 to the middle of the main shaft portion 24.
  • An upper portion of the oil passage 70 is opened from the outer peripheral surface 24 a of the main shaft portion 24, and an oil pipe (lubricating mechanism) 72 is connected to the lower portion of the oil passage 70.
  • the oil pipe 72 has an inclined portion 74 which is inclined from the substantially axial center of the eccentric shaft portion 22 toward the axial center of the main shaft portion 24 on the distal end side. It extends to the oil reservoir 76 having a concave shape in sectional view formed in the inner bottom 2a.
  • the oil sump portion 76 is formed to have a size and depth that allow a small amount of lubricating oil, for example, about 200 cc, to be stored so that the oil level is higher than the tip position of the oil pipe 74.
  • a centrifugal force acts on the lubricating oil in the inclined portion 74 in the oil pipe 72 in an obliquely upward outward direction. Is pumped from the oil reservoir 76 to the oil passage 74.
  • the operation and action of the compressor 1 will be described.
  • the rotor 10 fixed to the main shaft portion 24 is rotated by supplying power to the stator 8, and consequently the crankshaft 14 is rotated, and the piston 18 reciprocates in the cylinder bore 26 via the connecting rod 20.
  • the reciprocating motion of the piston 18 causes the refrigerant to be sucked into the cylinder bore 26 from the refrigeration cycle, and the refrigerant is compressed by the cylinder bore 26 and further discharged to the refrigeration cycle.
  • the piston 18 operates in the direction of decreasing the volume of the cylinder bore 26 and the refrigerant in the cylinder bore 26 is compressed and the pressure in the cylinder bore 26 exceeds the discharge pressure of the refrigerant, the pressure in the cylinder bore 26 and the discharge chamber 56 are increased.
  • the discharge valve 52 opens due to the difference from the internal pressure. The compressed refrigerant is guided to the discharge chamber 56 via the discharge hole 48 and discharged to the refrigeration cycle via the discharge pipe 60.
  • the pressure in the cylinder bore 26 decreases.
  • the discharge valve 52 closes according to the difference between the pressure in the cylinder bore 26 and the pressure in the discharge chamber 56.
  • the suction valve 50 opens according to the difference between the pressure in the cylinder bore 26 and the pressure in the suction chamber 54. The refrigerant in the refrigeration cycle is guided to the suction chamber 54 through the suction pipe 58 and is sucked into the cylinder bore 26 through the suction hole 46.
  • the lubricating oil pumped up from the oil reservoir 76 to the oil passage 70 in accordance with the operation of the compressor 1 described above flows out from the oil passage 70, flows down to the eccentric shaft portion 22 side, and lubricates the vicinity of the large end portion 62. Further, it is scattered toward the piston 18 by centrifugal force, and the vicinity of the skirt portion 18a of the piston 18 is lubricated.
  • a part of the lubricating oil flowing out from the oil passage 70 rises along an outer peripheral groove (not shown) formed in the crankshaft 14 by centrifugal force, and forms an oil film between the crankshaft 14 and the frame 36. Then, the bearing 42 is lubricated and moved to the upper end side of the crankshaft 14. The lubricating oil reaches the upper end surface 40b of the cylindrical portion 40 and lubricates the bearing 44, and then flows down to the oil sump portion 76 by gravity.
  • the lubricating oil that cannot pass through the bearing 44 rises as it is up the inner wall surface 10a of the rotor 10 to the upper end of the rotor 10, is scattered by the centrifugal force due to the rotation of the rotor 10, cools the stator 8, and then To flow down to the oil sump 76.
  • the sealed container 2 includes a top shell (first shell) 78 covering the electric motor 4 side and a bottom shell (second shell) 80 covering the compression mechanism 6 side.
  • the shell structure is composed of two shells. Since the crankshaft 14 and the connecting rod 20 are positioned so as to be substantially orthogonal within the sealed container 2, the longitudinal direction of the electric motor 4 is accommodated in the depth direction of the top shell 78, and the top shell 78 is the bottom shell 80. Compared to, it has a deep bottom shape.
  • the compression mechanism 6 is accommodated in the radial direction of the bottom shell 80 in the longitudinal direction, and the bottom shell 80 has a shallow bottom shape as compared with the top shell 78.
  • Each of the shells 78 and 80 has root edges protruding from the respective open end portions 78a and 80a, and the groove portions 82 are formed by abutting each root edge with each other.
  • Each of the shells 78 and 80 is joined by forming a bead-shaped welded portion 84 continuous around the entire circumference of the groove portion 82 by a single welding operation, that is, a single butt formed by a single welding operation. Joined with welded joints.
  • the top shell 78 is formed into a dome-like simple shape by deep drawing a soft steel such as SPCC or SPHE by press molding.
  • the thickness of the top shell 78 is as thin as about 6.8 mm at the thinnest part and about 7 mm even at the thickest part, and the pressure resistance against the high pressure of the refrigerant acting in the sealed container 2 is secured by work hardening by drawing.
  • the bottom shell 80 is formed as thin as possible to a thickness of about 8.5 mm by forging molding of soft steel such as S20C, S25C, and the pressure resistance against high-pressure refrigerant is ensured in the same manner as the top shell 78.
  • the bottom shell 80 has a gripping portion 86 that is gripped when the bottom shell 80 is forged, and the gripping portion 86 is located on the outer top portion 80c of the bottom shell 80 in the radial direction center side than the side portion 80b of the bottom shell 80. Projected.
  • the oil sump portion 76 is recessed at the position of the inner bottom portion 2a on the back side of the gripping portion 86 so as to be substantially similar to the outer shape of the gripping portion 86. That is, the bottom shell 80 is formed from the side portion 80b to the outer top portion 80c with substantially the same thickness as the side portion 80b.
  • a base plate 88 for stably mounting the compressor 1 is attached around the gripping portion 86 of the outer top portion 80c. By attaching anti-vibration rubber (not shown) to the lower surface of the base plate 88, the compressor 1 can be fixed while suppressing vibration during operation.
  • the pedestal portion 90 includes the stator 8 and A frame 36 that supports the cylinder block 16 is fixed.
  • the present invention is not limited to this, and a support structure in which the stator 8 and the cylinder block 16 are directly fixed to the pedestal portion 90 and the frame 36 is not required in the sealed container 2 may be employed.
  • the gripping portion 86, the oil sump portion 76, and the pedestal portion 90 formed on the bottom shell 80 are all formed at the same time when the bottom shell 80 is forged.
  • the hermetic container 2 is composed of two shells 78 and 80, and at least the top shell 78 can be thinned by press molding. 1 can be reduced in weight and size. Moreover, since it is not casting, it is hard to generate
  • the top shell 78 can be press-molded at a depth that matches the length of the electric motor 4 in the longitudinal direction, and the bottom shell 80 can be forged at a diameter that matches the length of the compression mechanism 6 in the longitudinal direction. can do.
  • the top shell 78 having a relatively deep bottom which requires a depth as compared with the bottom shell 80 can be easily manufactured by reducing the thickness along the outer shape of the electric motor 4 by press molding.
  • the bottom shell 80 that is a relatively shallow bottom that does not require a depth as compared with the top shell 78 can be easily manufactured by thinning along the outer shape of the compression mechanism 6 by forging. Therefore, it is possible to reliably realize the weight reduction and size reduction of the hermetic container 2, and hence the compressor 1, and further reduce the dead space in the hermetic container 2 and promote further size reduction of the compressor 1. Can do.
  • the gripping portion 86 is formed on the side portion 80b of the bottom shell 80, the waste of the bottom shell 80 from the side portion 80b to the outer top portion 80c is reduced, and the bottom shell 80 is further thinned. Since it can achieve, further weight reduction and size reduction of the airtight container 2 and by extension, the compressor 1 can be implement
  • the lubricating oil can be stored in the inner bottom portion 2a with a predetermined oil surface height, so that the lubricating oil collected in the inner bottom portion 2a is small.
  • lubricating oil can be smoothly supplied from the lubricating mechanism including the oil pipe 72, the oil passage 70, and the like to the sliding portions of the electric motor 4 and the compression mechanism 6, and can be efficiently circulated in the sealed container 2. it can.
  • the support can be easily performed without requiring another member such as the frame 36.
  • the electric motor 4 and the compression mechanism 6 can be fixed.
  • the gripping portion 86, the oil sump portion 76, and the pedestal portion 90 are all formed at the same time when the bottom shell 80 is forged, these portions can be easily formed without requiring separate members or processing. Therefore, the productivity of the compressor 1 can be improved.
  • the top shell 78 is formed by press molding and the bottom shell 80 is formed by forging.
  • the shells 78 and 80 are formed. It is not limited to this as long as the thickness can be reduced and the airtight container 2 and thus the compressor 1 can be reduced in weight and size.
  • the top shell 78 may be formed by forging and the bottom shell 80 may be formed by press molding. good.
  • the working fluid of the compressor 1 of the present embodiment is a carbon dioxide refrigerant, it is not limited to this.
  • the working fluid is carbon dioxide refrigerant
  • the pressure of the working fluid discharged from the compression mechanism 6 becomes high to the supercritical state, and the pressure acting in the sealed container 2 may be high.
  • the closed container 2 is made thick.
  • the above configuration is preferable because it can effectively promote the weight reduction and size reduction of the hermetic container 2 and thus the compressor 1.
  • the present Example demonstrates the positive displacement compressor 1, this invention is applicable to general sealed fluid machines, such as a scroll compressor and an expander, These fluid machines are other than a vending machine. Of course, it can be used as a component device of the refrigeration cycle incorporated in the.
  • Compressor (fluid machine) 2 Sealed container 2a Inner bottom 4 Electric motor (drive unit) 6 Compression mechanism (driven unit) 70 oil passage (lubrication mechanism) 72 Oil pipe (Lubrication mechanism) 76 Oil reservoir 78 Top shell (first shell) 80 Bottom shell (second shell) 80b Side part 80c Outer top part 86 Grasping part 90 Base part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

【課題】製造コストを低減しつつ、軽量化及び小型化を実現することができる流体機械を提供する。 【解決手段】密閉容器(2)内に、駆動ユニット(4)と、駆動ユニット(4)の駆動力が伝達される被駆動ユニット(6)とが収容される流体機械(1)であって、密閉容器(2)は、駆動ユニット(4)側を覆う第1シェル(78)と、第1シェル(78)に接合され、被駆動ユニット(6)側を覆う第2シェル(80)とからなり、第1シェル(78)と第2シェル(80)とは異なる加工方法で成型される。

Description

流体機械
 本発明は流体機械に関し、詳しくは二酸化炭素冷媒を圧縮する密閉型の往復動圧縮機に好適な流体機械に関する。
 この種の流体機械には、密閉容器内に、電動モータと、電動モータから伝達される駆動力によって冷媒を圧縮する圧縮機構とが収容された密閉型圧縮機が知られている。
 特許文献1には、鋼管から形成される筒状のセンターシェルと、何れも鋳造成型され、センターシェルの両開口端部にそれぞれ溶接されるカップ状のトップシェル、ボトムシェルとの3部材から構成される密閉容器が開示されている。
 また、特許文献2には、何れもプレス成型されるトップシェル、ボトムシェルの2部材から構成される密閉容器が開示され、特許文献3には、何れも鍛造成型されるトップシェル、ボトムシェルの2部材から構成される密閉容器が開示されている。
特開2006-177285号公報 特公昭58-19869号公報 特開2004-285927号公報
 上記密閉容器を構成する各シェル同士は溶接で接合されるものの、上記特許文献1に記載の密閉容器の場合には、トップシェル及びボトムシェルが鋳造成型され、鋳物には一般にカーボンが多く含まれることから、各シェル同士の溶接は技術的に難しいため、溶接不良が発生するおそれがある。
 また、センターシェルである鋼管は材料コストが高く、更に、密閉容器が3部材から構成されることから、溶接箇所は少なくとも2箇所以上となって密閉容器の組立工数を要し、これらにより密閉容器、ひいては圧縮機の製造コストが増大するとの問題もある。
 そこで、上記特許文献2及び3に記載の密閉容器のように、密閉容器を2つのシェルから構成すれば、溶接箇所が少なくなり、密閉容器の組立工数も減らせ、密閉容器の製造コストを低減することができ、更に各シェルをプレス成型または鍛造成型すれば、上述したような溶接不良を改善できるとも考えられる。
 しかしながら、各シェルをプレス成型した場合には、シェル形状をドーム形などの単純形状にしか成型できないため、電動モータや圧縮機構などを固定する箇所を各シェルに追加加工しなければならず、密閉容器の製造コストの増大は避けられない。
 一方、各シェルを鍛造成型した場合には、シェル形状を必要に応じて複雑な形状に成型可能であるものの、各シェルをプレス成型した場合に比して、各シェルの肉厚、ひいては重量が増大する傾向にあり、密閉容器、ひいては流体機械の軽量化及び小型化を実現することができないとの問題がある。
 本発明は上述の事情に基づいてなされたもので、その目的とするところは製造コストを低減しつつ、軽量化及び小型化を実現することができる流体機械を提供することにある。
 上記の目的を達成するため、本発明の流体機械は、密閉容器内に、駆動ユニットと、駆動ユニットの駆動力が伝達される被駆動ユニットとが収容される流体機械であって、密閉容器は、駆動ユニット側を覆う第1シェルと、第1シェルに接合され、被駆動ユニット側を覆う第2シェルとからなり、第1シェルと第2シェルとは異なる加工方法で成型されることを特徴としている(請求項1)。
 具体的には、第1シェルは鍛造成型され、前記第2シェルはプレス成型され(請求項2)、または、第1シェルはプレス成型され、第2シェルは鍛造成型される(請求項3)。
 また、駆動ユニットは、その長手方向が第1シェルの深さ方向に収容され、被駆動ユニットは、その長手方向が第2シェルの径方向に収容される(請求項4)。
 また、第2シェルは第2シェルの鍛造成型に際して把持される把持部を有し、把持部は第2シェルの側部よりも径方向中心側の第2シェルの外頂部に凸設される(請求項5)。
 更に、第2シェルの内底部に貯留される潤滑油を駆動ユニット及び被駆動ユニットの各摺動部に供給する潤滑機構を備え、第2シェルは、把持部の背面側の内底部の位置に、把持部の外形と略相似形をなして凹設される油溜め部を有する(請求項6)。
 更にまた、第2シェルは、駆動ユニット及び被駆動ユニットが固定される台座部を有する(請求項7)。
 また、把持部、油溜め部、及び台座部は、何れも第2シェルの鍛造成型に際し一括して形成される(請求項8)。
 更に、密閉容器内には、被駆動ユニットに吸入され、被駆動ユニットから吐出される作動流体の圧力が作用し、作動流体は二酸化炭素冷媒である(請求項9)。
 請求項1記載の本発明の流体機械によれば、密閉容器を2つのシェルから構成し、プレス成型により少なくとも第1シェルまたは第2シェルの何れか一方の薄肉化を図ることができるため、密閉容器、ひいては流体機械の軽量化及び小型化を実現することができる。
 具体的には、請求項2記載の本発明によれば、プレス成型により少なくとも第2シェルの薄肉化を図ることができ、一方、請求項3記載の本発明によれば、プレス成型により少なくとも第1シェルの薄肉化を図ることができ、また、何れの場合であっても、鋳造成型でないことから各シェルを溶接して接合したときの溶接不良が発生し難く、密閉容器の溶接強度を高めることができる。
 請求項4記載の発明によれば、第1シェルを駆動ユニットの長手方向の長さに合わせた深さでプレス成型することができ、また、第2シェルを被駆動ユニットの長手方向の長さに合わせた径で鍛造成型することができる。これにより、第2シェルに比して深さを要する比較的深底となる第1シェルをプレス成型により駆動ユニットの外形に沿って薄肉化を図りつつ容易に製造することができる。
 また、第1シェルに比して深さを要しない比較的浅底となる第2シェルを鍛造成型により被駆動ユニットの外形に沿って薄肉化を図りつつ容易に製造することができるため、密閉容器、ひいては流体機械の軽量化及び小型化を確実に実現することができ、更には密閉容器内のデッドスペースを削減して流体機械の更なる小型化を促進することができる。
 請求項5記載の発明によれば、把持部を第2シェルの側部に形成した場合に比して、第2シェルの側部から外頂部にかけての無駄肉を削減し、第2シェルの更なる薄肉化を図ることができるため、密閉容器、ひいては流体機械の更なる軽量化及び小型化を実現することができる。
 請求項6記載の発明によれば、把持部を利用して第2シェルの薄肉化を図りつつ、オイルパンなどの別部材を要することなく、容易にして内底部に油溜め部を形成することができる。また、内底部に油溜め部を形成することにより、潤滑油を所定の油面高さをもって内底部に貯留することができるため、内底部に溜まる潤滑油が少量の場合であっても、潤滑機構から各摺動部に潤滑油を円滑に供給し、密閉容器内で効率良く循環させることができる。
 請求項7記載の発明によれば、フレームなどの別部材を要しなくとも、容易にして駆動ユニット及び被駆動ユニットを固定することができる。
 請求項8記載の発明によれば、別部材や別途加工を要することなく容易にして把持部、油溜め部、台座部を形成することができ、流体機械の生産性を向上することができる。
 請求項9記載の発明によれば、作動流体を二酸化炭素冷媒とすると、被駆動ユニットから吐出される作動流体の圧力は高圧となり、密閉容器内に作用する圧力も高圧となるおそれがあるため、通常は安全上、密閉容器の重厚化は避けられないものの、上記構成によれば、密閉容器、ひいては流体機械の軽量化及び小型化を効果的に促進することができて好ましい。
第1実施例の圧縮機の縦断面図である。 図1の圧縮機構の要部拡大図である。 図1の圧縮機の密閉容器を示した外形図である。 図3のボトムシェルを上方からみた斜視図である。
 図1~図4は第1実施例の流体機械としての圧縮機1を示す。
 圧縮機1は、密閉型の往復動圧縮機であり、詳しくはレシプロ圧縮機やピストン圧縮機と称される容積式圧縮機に分類され、例えば自動販売機に組み込まれた図示しない冷凍サイクルの構成機器として使用される。
 冷凍サイクルは、圧縮機1の作動流体としての冷媒が循環する経路を備え、冷媒には例えば非可燃性の自然冷媒である二酸化炭素冷媒が用いられる。
 図1に示されるように、圧縮機1は密閉容器2を備え、密閉容器2内には、電動モータ(駆動ユニット)4と、電動モータ4の駆動力が伝達される圧縮機構(被駆動ユニット)6とが収容されている。
 電動モータ4は、給電により磁界を発生するステータ8と、ステータ8で発生した磁界により回転するロータ10とから構成され、ロータ10はステータ8の内側の同軸上に配置され、後述するクランクシャフト14の主軸部24に焼き嵌め固定されている。ステータ8には密閉容器2に固定された電装部12、及び図示しないリード線を介して圧縮機1外から給電される。
 圧縮機構6は、クランクシャフト14、シリンダブロック16、ピストン18、コネクティングロッド20などから構成され、クランクシャフト14は偏心軸部22と主軸部24とから構成される。
 図2に示されるように、シリンダブロック16には、シリンダボア26が一体に形成され、シリンダボア26の開口を閉じるように、シリンダブロック16側から順にシリンダガスケット28、後述する吸入バルブ50、バルブプレート30、ヘッドガスケット32、シリンダヘッド34がボルトによって押圧固定されている。
 図1に示されるように、シリンダブロック16にはステータ8がフレーム36を介してボルト固定され、フレーム36は密閉容器2に固定されている。
 詳しくは、電動モータ4及び圧縮機構6はフレーム36の下部の台座部38にて支持され、フレーム36は台座部38にて密閉容器2に固定されている。一方、フレーム36の上部の円筒部40においては、その内周面40aに主軸部24の軸受42が配置され、円筒部40の上端面40bにはロータ10のスラスト荷重を受けるスラストレース(ベアリング)またはスラストワッシャなどの軸受44が配置されている。
 図2に示されるように、バルブプレート30は冷媒の吸入孔46と吐出孔48とを備え、吸入孔46、吐出孔48は何れもリードバルブである吸入バルブ50、吐出バルブ52によってそれぞれ開閉される。
 シリンダヘッド34は冷媒の吸入室54、吐出室56を備え、ピストン18の圧縮行程において吐出バルブ52が開くことにより、吐出室56は吐出孔48を介してシリンダボア26と連通する。一方、ピストン18の吸入行程において吸入バルブ50が開くことにより、吸入室54は吸入孔46を介してシリンダボア26と連通する。
 密閉容器2には、吸入パイプ58と吐出パイプ60とが固定され、吸入及び吐出パイプ58,60の一端はシリンダヘッド34の吸入室54と吐出室56とにそれぞれ接続されている。吸入及び吐出パイプ58,60の他端は、図示しない吸入マフラ、吐出マフラを介して冷凍サイクルに接続され、これらマフラは圧縮機1と冷凍サイクルとの間を流れる冷媒の脈動及び騒音を低減している。
 コネクティングロッド20には、一端にクランクシャフト14の偏心軸部22が回転自在に連結される大端部62が設けられ、他端にピストン18が往復動自在に連結される小端部64が設けられている。小端部64はピストン18にピストンピン66にて連結され、ピストンピン66は固定ピン68によってピストン18からの抜け止め措置が施されている。
 この状態においてクランクシャフト14が回転すると、コネクティングロッド20がピストンピン66を支点とし偏心軸部22の偏心回転と連動して揺動運動し、コネクティングロッド20の揺動運動に連動してピストン18がシリンダボア26内を往復運動する。
 密閉容器2内には冷媒の主として吐出圧力が作用し、密閉容器2の内底部2aには、軸受42,44といった、電動モータ4及び圧縮機構6の各摺動部を潤滑する潤滑油が少量貯留される。
 クランクシャフト14内には偏心軸部22の下端面22aの略軸心位置から主軸部24の中途にかけて油路(潤滑機構)70が穿孔されている。油路70の上部は主軸部24の外周面24aから開口され、油路70の下部にはオイルパイプ(潤滑機構)72が接続されている。オイルパイプ72はその先端側に偏心軸部22の略軸心から主軸部24の軸心に近づく方向に傾斜した傾斜部74を有し、オイルパイプ72の傾斜部74の先端は密閉容器2内の内底部2aに形成された断面視凹状の油溜め部76まで延設されている。
 油溜め部76は、例えば200cc程度の少量の潤滑油がオイルパイプ74の先端位置以上の油面高さとなるように貯留可能な大きさ及び深さを有して形成される。クランクシャフト14の回転に伴って偏心軸部22とともにオイルパイプ72が偏心回転すると、オイルパイプ72内の傾斜部74における潤滑油に外側斜め上方向に遠心力が作用し、この遠心力によって潤滑油は油溜め部76から油路74に汲み上げられる。
 以下、圧縮機1の動作及び作用について説明する。
 圧縮機1では、ステータ8に給電することによって主軸部24に固定されたロータ10が回転され、ひいてはクランクシャフト14が回転され、コネクティングロッド20を介しピストン18がシリンダボア26内で往復運動する。そして、このピストン18の往復運動により、冷凍サイクルからシリンダボア26へ冷媒が吸入され、この冷媒はシリンダボア26で圧縮され、更に冷凍サイクルへ吐出される。
 詳しくは、ピストン18がシリンダボア26の容積を減少する方向に動作し、シリンダボア26内の冷媒が圧縮され、シリンダボア26内の圧力が冷媒の吐出圧力を超えると、シリンダボア26内の圧力と吐出室56内の圧力との差により吐出バルブ52が開く。そして、圧縮された冷媒は、吐出孔48を経て吐出室56に導かれ、吐出パイプ60を経て冷凍サイクルに吐出される。
 次に、ピストン18の動作が上死点からシリンダボア26内の容積が増加する方向に転じると、シリンダボア26内の圧力は低下する。シリンダボア26内の圧力が低下すると、シリンダボア26内の圧力と吐出室56内の圧力との差に応じて吐出バルブ52は閉じる。
 シリンダボア26内の圧力が冷媒の吸入圧力以下になると、シリンダボア26内の圧力と吸入室54内の圧力との差に応じて吸入バルブ50が開く。そして、冷凍サイクルの冷媒は、吸入パイプ58を経て吸入室54に導かれ、吸入孔46を経てシリンダボア26内に吸入される。
 次に、ピストン18の動作が下死点からシリンダボア26内の容積が減少する方向に転じると、シリンダボア26内の冷媒が再び圧縮される。このようにして、冷凍サイクルからのシリンダボア26への冷媒の吸入、シリンダボア26での冷媒の圧縮、冷凍サイクルへの冷媒の吐出という一連のプロセスが繰り返される。
 上述した圧縮機1の動作に伴って油溜め部76から油路70に汲み上げられた潤滑油は、油路70から流出され、偏心軸部22側に流下し、大端部62近傍を潤滑し、更に遠心力によってピストン18に向けて飛散され、ピストン18のスカート部18a近傍を潤滑する。
 一方、油路70から流出された潤滑油の一部は、遠心力によってクランクシャフト14に形成された図示しない外周溝に沿って上昇しながら、クランクシャフト14とフレーム36との間に油膜を形成し、軸受42を潤滑し、クランクシャフト14の上端側へ移動する。そして、潤滑油は、円筒部40の上端面40bに達して軸受44を潤滑した後、重力によって油溜め部76まで流下する。これに対し、軸受44を通過し切れない潤滑油は、そのままロータ10の内壁面10aをロータ10の上端まで上昇し、ロータ10の回転による遠心力で飛散されてステータ8を冷却した後、重力によって油溜め部76まで流下する。
 ピストン18のスカート部18a近傍を潤滑する際にシリンダボア26内に吸入されたオイルミストは、ピストン18とシリンダブロック16との間隙に、シリンダボア26から漏出した冷媒ガスとともに入り込んでピストン18のシールと潤滑を行う。この際に吸入室54の壁面54aに付着した潤滑油は重力によって油溜め部76まで流下する。このようにして油溜め部76まで流下した潤滑油は、オイルパイプ72から再び汲み上げられ、上述したように電動モータ4及び圧縮機構6の各摺動部の潤滑やシールに寄与しながら密閉容器2内を循環する。
 ところで、本実施例では、図3にも示されるように、密閉容器2は電動モータ4側を覆うトップシェル(第1シェル)78と、圧縮機構6側を覆うボトムシェル(第2シェル)80との2つのシェルから構成されたシェル構造をなしている。クランクシャフト14とコネクティングロッド20とは密閉容器2内において略直交する位置関係にあるため、電動モータ4は、その長手方向がトップシェル78の深さ方向に収容され、トップシェル78はボトムシェル80に比して深底形状をなしている。一方、圧縮機構6は、その長手方向がボトムシェル80の径方向に収容され、ボトムシェル80はトップシェル78に比して浅底形状をなしている。
 各シェル78、80は、それぞれの開口端部78a,80aに突出したルートエッジを有し、各ルートエッジを互いに突き合わせることにより開先部82を形成する。各シェル78、80は、開先部82の全周に連続したビード形状の溶接部84を1回の溶接作業で形成して接合され、即ち1回の溶接作業で形成された1箇所の突き合わせ溶接継ぎ手で接合される。
 トップシェル78は、SPCC、SPHEなどの軟質鋼をプレス成型にて深絞り加工してドーム状の単純形状に形成されている。トップシェル78の厚みは、最薄箇所で6.8mm程度、厚い箇所でも7mm程度に極力薄く形成され、絞りによる加工硬化により密閉容器2内に作用する冷媒の高圧に対する耐圧強度が確保されている。
 一方、ボトムシェル80は、S20C、S25Cなどの軟質鋼を鍛造成型にて8.5mm程度の厚さに極力薄く形成され、トップシェル78と同様に高圧冷媒に対する耐圧強度が確保されている。
 また、ボトムシェル80は、ボトムシェル80の鍛造成型に際して把持される把持部86を有し、把持部86はボトムシェル80の側部80bよりも径方向中心側のボトムシェル80の外頂部80cに凸設される。油溜め部76は、この把持部86の背面側の内底部2aの位置に、把持部86の外形と略相似形をなして凹設される。即ち、ボトムシェル80は側部80bから外頂部80cにかけて側部80bと略同一の肉厚で形成されている。
 外頂部80cの把持部86の周囲には、圧縮機1を安定して載置するためのベースプレート88が取り付けられている。ベースプレート88の下面に図示しない防振ゴムなどを取り付けることにより、動作中の振動を抑制しつつ圧縮機1を固定可能である。
 ボトムシェル80の開口端部80aには、ボトムシェル80の径方向中心側に波状に膨出して形成された台座部90が4つ形成され、台座部90には、図1に示すステータ8及びシリンダブロック16を支持するフレーム36が固定される。図示はしないが、これに限らず、台座部90にステータ8及びシリンダブロック16を直接に固定し、密閉容器2内にフレーム36を要しない支持構造を採用しても良い。
 このようにボトムシェル80に形成される把持部86、油溜め部76、及び台座部90は、何れもボトムシェル80の鍛造成型に際し一括して形成される。
 上述した第1実施例の圧縮機1は、密閉容器2を2つのシェル78,80から構成し、プレス成型により少なくともトップシェル78の薄肉化を図ることができるため、密閉容器2、ひいては圧縮機1の軽量化及び小型化を実現することができる。
 また、鋳造成型でないことから各シェル78,80を溶接して接合したときの溶接不良が発生し難く、密閉容器2の溶接強度を高めることができる。
 また、トップシェル78を電動モータ4の長手方向の長さに合わせた深さでプレス成型することができ、また、ボトムシェル80を圧縮機構6の長手方向の長さに合わせた径で鍛造成型することができる。これにより、ボトムシェル80に比して深さを要する比較的深底となるトップシェル78をプレス成型により電動モータ4の外形に沿って薄肉化を図りつつ容易に製造することができる。
 また、トップシェル78に比して深さを要しない比較的浅底となるボトムシェル80を鍛造成型により圧縮機構6の外形に沿って薄肉化を図りつつ容易に製造することができる。従って、密閉容器2、ひいては圧縮機1の軽量化及び小型化を確実に実現することができ、更には密閉容器2内のデッドスペースを削減して圧縮機1の更なる小型化を促進することができる。
 更に、把持部86をボトムシェル80の側部80bに形成した場合に比して、側部80bから外頂部80cにかけてのボトムシェル80の無駄肉を削減し、ボトムシェル80の更なる薄肉化を図ることができるため、密閉容器2、ひいては圧縮機1の更なる軽量化及び小型化を実現することができる。
 更にまた、把持部86を利用してボトムシェル80の薄肉化を図りつつ、オイルパンなどの別部材を要することなく、容易にして内底部2aに油溜め部76を形成することができる。また、内底部2aに油溜め部76を形成することにより、潤滑油を所定の油面高さをもって内底部2aに貯留することができるため、内底部2aに溜まる潤滑油が少量の場合であっても、オイルパイプ72,油路70などから構成される潤滑機構から電動モータ4及び圧縮機構6の各摺動部に潤滑油を円滑に供給し、密閉容器2内で効率良く循環させることができる。
 また、台座部90にステータ8及びシリンダブロック16を直接に固定し、密閉容器2内にフレーム36を要しない支持構造を採用した場合には、フレーム36などの別部材を要することなく容易にして電動モータ4及び圧縮機構6を固定することができる。
 更に、把持部86、油溜め部76、及び台座部90は、何れもボトムシェル80の鍛造成型に際し一括して形成されるため、別部材や別途加工を要することなく容易にしてこれらの部位を形成することができ、圧縮機1の生産性を向上することができる。
 本発明は上述の実施例に制約されるものではなく、更に種々の変形が可能である。
 具体的には、本実施例では、トップシェル78はプレス成型、ボトムシェル80は鍛造成型で形成されるが、各シェル78,80を異なる加工方法で成型することによって、各シェル78,80の薄肉化を図り、密閉容器2、ひいては圧縮機1の軽量化及び小型化を実現できるのであればこれに限定されず、例えばトップシェル78を鍛造成型、ボトムシェル80をプレス成型で形成しても良い。
 また、本実施例の圧縮機1の作動流体は二酸化炭素冷媒としているが、これに限定されない。しかし、作動流体を二酸化炭素冷媒とした場合には、圧縮機構6から吐出される作動流体の圧力は超臨界状態まで高圧となり、密閉容器2内に作用する圧力も高圧となるおそれがあるため、通常は安全上、密閉容器2の重厚化は避けられない。しかし、上記構成によれば、密閉容器2、ひいては圧縮機1の軽量化及び小型化を効果的に促進することができて好ましい。
 更に、本実施例は容積式の圧縮機1について説明しているが、本発明はスクロール圧縮機や膨張機などの密閉型流体機械全般に適用可能であり、これらの流体機械を自動販売機以外に組み込まれた冷凍サイクルの構成機器として使用できることは勿論である。
  1  圧縮機(流体機械)
  2  密閉容器
 2a  内底部
  4  電動モータ(駆動ユニット)
  6  圧縮機構(被駆動ユニット)
 70  油路(潤滑機構)
 72  オイルパイプ(潤滑機構)
 76  油溜め部
 78  トップシェル(第1シェル)
 80  ボトムシェル(第2シェル)
80b  側部
80c  外頂部
 86  把持部
 90  台座部

Claims (9)

  1.  密閉容器内に、駆動ユニットと、前記駆動ユニットの駆動力が伝達される被駆動ユニットとが収容される流体機械であって、 前記密閉容器は、前記駆動ユニット側を覆う第1シェルと、前記第1シェルに接合され、前記被駆動ユニット側を覆う第2シェルとからなり、
     前記第1シェルと前記第2シェルとは異なる加工方法で成型されることを特徴とする流体機械。
  2.  前記第1シェルは鍛造成型され、前記第2シェルはプレス成型されることを特徴とする請求項1に記載の流体機械。
  3.  前記第1シェルはプレス成型され、前記第2シェルは鍛造成型されることを特徴とする請求項1に記載の流体機械。
  4.  前記駆動ユニットは、その長手方向が前記第1シェルの深さ方向に収容され、前記被駆動ユニットは、その長手方向が前記第2シェルの径方向に収容されることを特徴とする請求項3に記載の流体機械。
  5.  前記第2シェルは、前記第2シェルの鍛造成型に際して把持される把持部を有し、前記把持部は前記第2シェルの側部よりも径方向中心側の前記第2シェルの外頂部に凸設されることを特徴とする請求項4に記載の流体機械。
  6.  前記第2シェルの内底部に貯留される潤滑油を前記駆動ユニット及び前記被駆動ユニットの各摺動部に供給する潤滑機構を備え、前記第2シェルは、前記把持部の背面側の前記内底部の位置に、前記把持部の外形と略相似形をなして凹設される油溜め部を有することを特徴とする請求項5に記載の流体機械。
  7.  前記第2シェルは、前記駆動ユニット及び前記被駆動ユニットが固定される台座部を有することを特徴とする請求項6に記載の流体機械。
  8.  前記把持部、前記油溜め部、及び前記台座部は、何れも前記第2シェルの鍛造成型に際し一括して形成されることを特徴とする請求項7に記載の流体機械。
  9.  前記密閉容器内には、前記被駆動ユニットに吸入され、前記被駆動ユニットから吐出される作動流体の圧力が作用し、前記作動流体は二酸化炭素冷媒であることを特徴とする請求項1乃至8の何れかに記載の流体機械。
PCT/JP2011/000366 2010-01-25 2011-01-24 流体機械 WO2011089924A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2012008618A MX2012008618A (es) 2010-01-25 2011-01-24 Maquina de fluido.
CN2011800071302A CN102834615A (zh) 2010-01-25 2011-01-24 流体机械
EP11734531A EP2530322A1 (en) 2010-01-25 2011-01-24 Fluid machine
CA2787308A CA2787308A1 (en) 2010-01-25 2011-01-24 Fluid machine
IN6559DEN2012 IN2012DN06559A (ja) 2010-01-25 2011-01-24
US13/575,263 US20120294736A1 (en) 2010-01-25 2011-01-24 Fluid Machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-013088 2010-01-25
JP2010013088A JP2011149393A (ja) 2010-01-25 2010-01-25 流体機械

Publications (1)

Publication Number Publication Date
WO2011089924A1 true WO2011089924A1 (ja) 2011-07-28

Family

ID=44306728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000366 WO2011089924A1 (ja) 2010-01-25 2011-01-24 流体機械

Country Status (9)

Country Link
US (1) US20120294736A1 (ja)
EP (1) EP2530322A1 (ja)
JP (1) JP2011149393A (ja)
KR (1) KR20120093440A (ja)
CN (1) CN102834615A (ja)
CA (1) CA2787308A1 (ja)
IN (1) IN2012DN06559A (ja)
MX (1) MX2012008618A (ja)
WO (1) WO2011089924A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6367660B2 (ja) 2014-09-19 2018-08-01 三菱重工コンプレッサ株式会社 遠心圧縮機
CN107514353A (zh) * 2016-06-15 2017-12-26 无锡市华琳制冷设备有限公司 一种空调压缩机焊接式壳体
WO2024057438A1 (ja) * 2022-09-14 2024-03-21 三菱電機株式会社 圧縮機、冷凍サイクル装置、および圧縮機の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819869A (ja) 1981-07-29 1983-02-05 Matsushita Electric Ind Co Ltd 円筒型アルカリ電池の製造法
JPH08296555A (ja) * 1995-04-27 1996-11-12 Aisan Ind Co Ltd ピストン式流体ポンプ
JPH10318140A (ja) * 1997-05-21 1998-12-02 Matsushita Refrig Co Ltd 密閉型電動圧縮機
JP2003056463A (ja) * 2001-08-10 2003-02-26 Toyota Industries Corp 電動コンプレッサ
JP2004285927A (ja) 2003-03-24 2004-10-14 Sanyo Electric Co Ltd コンプレッサ用密閉容器の製造方法
JP2004316485A (ja) * 2003-04-14 2004-11-11 Sanyo Electric Co Ltd コンプレッサ用密閉容器及びその製造方法
JP2005325731A (ja) * 2004-05-13 2005-11-24 Ebara Corp 高圧スクリュー圧縮機及びそれを用いたガス供給設備
JP2006177285A (ja) 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd 電動圧縮機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2113691A (en) * 1934-07-28 1938-04-12 Baldwin Southwark Corp Compressor
US4412791A (en) * 1977-02-10 1983-11-01 Copeland Corporation Refrigeration compressor apparatus and method of assembly
JPS6027831B2 (ja) * 1979-07-13 1985-07-01 松下電器産業株式会社 密閉型電動圧縮機
SK348887A3 (en) * 1986-05-20 1998-02-04 Sanyo Electric Co Hermetically sealed rotating compressor
JPH03258980A (ja) * 1990-03-06 1991-11-19 Matsushita Refrig Co Ltd 密閉型電動圧縮機
JP2004218585A (ja) * 2003-01-16 2004-08-05 Toyota Industries Corp 圧縮機及び圧縮機のハウジングの製造方法
CN1566652A (zh) * 2003-06-25 2005-01-19 乐金电子(天津)电器有限公司 封闭型压缩机下部容器及其制造方法
JP4662178B2 (ja) * 2004-11-01 2011-03-30 株式会社豊田自動織機 圧力容器、圧縮機およびシリンダブロックの鋳造方法
CN1769698A (zh) * 2004-11-05 2006-05-10 乐金电子(天津)电器有限公司 密封式压缩机的密封容器
KR100559082B1 (ko) * 2004-11-22 2006-03-13 삼성광주전자 주식회사 압축기
JP4893991B2 (ja) * 2005-09-06 2012-03-07 株式会社デンソー 燃料ポンプ
AT8933U1 (de) * 2005-12-20 2007-02-15 Acc Austria Gmbh Kältemittelkompressor
JP2009019544A (ja) * 2007-07-11 2009-01-29 Panasonic Corp 全密閉型往復動式圧縮機
JP5341472B2 (ja) * 2008-10-29 2013-11-13 サンデン株式会社 オイルセパレータ内蔵圧縮機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819869A (ja) 1981-07-29 1983-02-05 Matsushita Electric Ind Co Ltd 円筒型アルカリ電池の製造法
JPH08296555A (ja) * 1995-04-27 1996-11-12 Aisan Ind Co Ltd ピストン式流体ポンプ
JPH10318140A (ja) * 1997-05-21 1998-12-02 Matsushita Refrig Co Ltd 密閉型電動圧縮機
JP2003056463A (ja) * 2001-08-10 2003-02-26 Toyota Industries Corp 電動コンプレッサ
JP2004285927A (ja) 2003-03-24 2004-10-14 Sanyo Electric Co Ltd コンプレッサ用密閉容器の製造方法
JP2004316485A (ja) * 2003-04-14 2004-11-11 Sanyo Electric Co Ltd コンプレッサ用密閉容器及びその製造方法
JP2005325731A (ja) * 2004-05-13 2005-11-24 Ebara Corp 高圧スクリュー圧縮機及びそれを用いたガス供給設備
JP2006177285A (ja) 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd 電動圧縮機

Also Published As

Publication number Publication date
MX2012008618A (es) 2012-10-05
US20120294736A1 (en) 2012-11-22
CA2787308A1 (en) 2011-07-28
IN2012DN06559A (ja) 2015-10-23
JP2011149393A (ja) 2011-08-04
EP2530322A1 (en) 2012-12-05
KR20120093440A (ko) 2012-08-22
CN102834615A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5520063B2 (ja) 流体機械
US20130259725A1 (en) Rotary compressor
US20120087819A1 (en) Rotary compressor
WO2011089924A1 (ja) 流体機械
WO2011093086A1 (ja) 流体機械
JP3723430B2 (ja) 冷媒圧縮機
WO2011096226A1 (ja) 往復動型圧縮機
KR102579202B1 (ko) 왕복동식 압축기
WO2011093085A1 (ja) 流体機械
JP2013096349A (ja) 密閉形圧縮機
KR101410751B1 (ko) 밀폐형 압축기
JP2012041879A (ja) 密閉型圧縮機及びこれを用いた冷蔵庫
JP2009062864A (ja) 密閉型圧縮機
JP2013100797A (ja) 密閉型圧縮機
KR20090041715A (ko) 리니어 압축기
KR20050026809A (ko) 밀폐형 압축기의 커넥팅로드
JP2018048620A (ja) 密閉レシプロ圧縮機
JP2010242625A (ja) 圧縮機及び圧縮機の製造方法
JP2004293317A (ja) レシプロ型圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007130.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127018380

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2787308

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011734531

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201003743

Country of ref document: TH

Ref document number: 13575263

Country of ref document: US

Ref document number: 6559/DELNP/2012

Country of ref document: IN

Ref document number: MX/A/2012/008618

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012017567

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012017567

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112012017567

Country of ref document: BR

Free format text: PEDIDO RETIRADO EM RELACAO AO BRASIL POR NAO ATENDER AS DETERMINACOES REFERENTES A ENTRADA DO PEDIDO NA FASE NACIONAL E POR NAO TER CUMPRIDO EXIGENCIA FORMULADA NA RPI NO 2478, DE 03/07/2018.