WO2011083700A1 - クロムめっき方法 - Google Patents

クロムめっき方法 Download PDF

Info

Publication number
WO2011083700A1
WO2011083700A1 PCT/JP2010/073293 JP2010073293W WO2011083700A1 WO 2011083700 A1 WO2011083700 A1 WO 2011083700A1 JP 2010073293 W JP2010073293 W JP 2010073293W WO 2011083700 A1 WO2011083700 A1 WO 2011083700A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
plating
concentration
anode
hexavalent
Prior art date
Application number
PCT/JP2010/073293
Other languages
English (en)
French (fr)
Inventor
透 村上
亮 前田
ハミッド スハイミ
アイディラ ヌルル
ムールシッド モハッド
Original Assignee
上村工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上村工業株式会社 filed Critical 上村工業株式会社
Priority to CN201080064469.1A priority Critical patent/CN102782192B/zh
Priority to US13/520,594 priority patent/US20120279869A1/en
Publication of WO2011083700A1 publication Critical patent/WO2011083700A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/08Deposition of black chromium, e.g. hexavalent chromium, CrVI
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used

Definitions

  • the present invention relates to a chromium plating method using a mixture of a trivalent chromium compound and a hexavalent chromium compound.
  • a chromium plating bath a plating bath mainly composed of chromic acid (hexavalent chromium compound) and a plating bath composed of a trivalent chromium compound is well known.
  • plating baths mainly composed of chromic acid are widely used, but recently, plating baths made of trivalent chromium compounds have come to be used in view of the environment.
  • a conventional plating bath made of a trivalent chromium compound has a problem that defective plating occurs when hexavalent chromium (Cr 6+ ) is mixed therein.
  • a chromium plating bath using both a trivalent chromium compound and a hexavalent chromium compound (hereinafter referred to as an eclectic chromium plating bath) is also known (Patent Documents 1 to 4, Non-Patent Documents 1 to 8). ).
  • the present invention is an improvement of the above circumstances, and an object of the present invention is to provide a chromium plating method that enables favorable chromium plating over a long period of time using the above eclectic chromium plating bath and is advantageous for industrial operation.
  • the inventors of the present invention have used a trivalent chromium compound and a hexavalent chromium compound as an eclectic chromium plating bath, and a total chromium concentration of trivalent chromium and hexavalent chromium.
  • the hexavalent chromium concentration is 5 to 40 g / L
  • the ratio of the hexavalent chromium concentration is 5 to 35% by mass of the total chromium concentration
  • the organic carboxylate ions An acidic electrochrome plating bath containing 50 to 400 g / L, preferably an electrochromium plating bath containing 20 to 200 g / L of sulfate ions and having a pH of 1.8 to 2.6. It was found that it is advantageous in terms of obtaining
  • trivalent chromium ions are oxidized to hexavalent chromium ions, so it is necessary to reduce the hexavalent chromium ions to return to the concentration of the new solution, which requires time and effort for liquid management.
  • lead and tin are dissolved in the plating solution, and the dissolved ions have an adverse effect on the plating, and lead slime that is undesirable in the environment is generated.
  • an anode having such an iridium oxide-containing film on at least the surface thereof has been conventionally known, and also for a plating bath mainly composed of chromic acid (Patent Document 5: JP-A-3-260097), Also for a plating bath made of a trivalent chromium compound (Patent Documents 6 and 7: Japanese Patent Nos. 3188361 and 3810043), it has been proposed to use an anode having the iridium oxide-containing film.
  • Patent Documents 6 and 7 Japanese Patent Nos. 3188361 and 3810043
  • the plating bath contains lead ions mixed from the outside such as derived from the plating bath raw material, but when the lead ion concentration in the plating bath increases due to chemical replenishment and the like, and the lead ions exceed 2 mg / L, It is considered that this is oxidized at the anode and adheres to the anode as lead oxide, which functions as an electrode catalyst, and there is a possibility that trivalent chromium ions may be electrolytically oxidized to hexavalent chromium ions.
  • the present invention provides the following chromium plating method.
  • a trivalent chromium compound and a hexavalent chromium compound having a total chromium concentration of trivalent chromium and hexavalent chromium of 60 to 140 g / L and a hexavalent chromium concentration of 5 to 40 g / L, Acidic electrochrome plating containing a hexavalent chromium concentration of 5 to 35% by mass of the total chromium concentration, an organic carboxylate ion of 50 to 400 g / L, and a lead ion concentration of 2 mg / L or less 1.
  • a chromium plating method comprising immersing an object to be plated in a bath and performing electrolysis using an anode having an iridium oxide-containing film at least on the surface as an anode.
  • the trivalent chromium compound is an organic carboxylic acid chromium, or a mixture of chromium sulfate and an organic carboxylic acid chromium complex, and the ratio of the organic carboxylic acid chromium complex in the mixture is the total trivalent chromium concentration.
  • the chromium plating method according to [1] which has a concentration of 50% by mass or more.
  • a good chromium plating film can be obtained stably over a long period of time, and the management of the plating bath is very easy.
  • the chromium plating bath used in the chromium plating method of the present invention contains a trivalent chromium compound and a hexavalent chromium compound as a chromium source, and further contains a carboxylate ion, and preferably contains a sulfate ion as a stabilizer or a conductive salt. It is an acidic eclectic chromium plating bath.
  • a chromium complex of an organic carboxylic acid is preferably used as the trivalent chromium compound.
  • organic carboxylic acid oxalic acid, citric acid, formic acid, acetic acid, malonic acid, succinic acid, lactic acid, etc. are used, and oxalic acid, citric acid, formic acid, acetic acid are preferred, and especially a chromium complex of oxalic acid is suitably used. It is done.
  • the chromium complex of the organic carboxylic acid as described in Japanese Patent Application No.
  • chromic acid (CrO 3 ) and the organic carboxylic acid are mixed in an aqueous solution containing them, and the organic carboxylic acid is mixed. It is preferable to reduce the chromic acid with a carboxylic acid to obtain a (trivalent) chromium complex of the above organic carboxylic acid containing no hexavalent chromium ion.
  • Trivalent inorganic chromium salts can also be used as the trivalent chromium compound, and chromium sulfate is particularly preferably used.
  • the trivalent chromium source is only an inorganic chromium salt such as chromium sulfate, electrolysis of water during plating is possible. Due to the generation of hydrogen due to decomposition, the cathode interface becomes strongly alkaline, and chromium sulfate is hydrolyzed to produce chromium hydroxide and basic chromium sulfate, which may prevent plating that can withstand practical use.
  • organic carboxylic acids complex trivalent chromium ions to prevent and buffer the hydrolysis of trivalent chromium ions, and organic carboxylic acids act as a buffer for the plating bath pH. Is preferably used in combination with a chromium complex of an organic carboxylic acid.
  • the total trivalent chromium concentration is preferably 55 to 135 g / L, and particularly preferably 72 to 112 g / L, and the proportion of the chromium complex of the organic carboxylic acid is such that the trivalent chromium metal content is the total trivalent chromium metal content.
  • the mass ratio is preferably 0.5 to 1, particularly 0.6 to 1, with the balance being the inorganic chromium salt.
  • the plating film thickness immediately after the building bath is about 20% thicker than the case of only the organic carboxylate chromium complex.
  • the trivalent chromium metal content of the organic carboxylic acid chromium complex is 5: 5 to 10: 0, In particular, 6: 4 to 10: 0 (mass ratio) is desirable.
  • the hexavalent chromium compound chromic acid (CrO 3 ), dichromic acid and the like and salts thereof are preferably used.
  • the compounding amount of the hexavalent chromium compound is 5 to 40 g / L, preferably 7 to 20 g / L as the hexavalent chromium concentration. In this range, a good chromium plating film can be obtained. If the hexavalent chromium concentration is less than or more than the above range, poor plating appearance or non-uniform appearance occurs.
  • the total chromium concentration (the sum of trivalent chromium concentration and hexavalent chromium concentration) is 60 to 140 g / L, and preferably 80 to 120 g / L. In this range, a good chromium plating film can be obtained, but outside the above range, poor plating appearance and non-uniform appearance occur.
  • the ratio of the hexavalent chromium concentration is 5 to 35% by mass, preferably 10 to 25% by mass, based on the total chromium concentration.
  • the chromium plating bath of the present invention contains 50 to 400 g / L, particularly 100 to 300 g / L of organic carboxylate ions.
  • organic carboxylic acid source include oxalic acid, citric acid, formic acid, acetic acid, malonic acid, succinic acid, and lactic acid, and oxalic acid, citric acid, formic acid, and acetate ions are particularly preferable.
  • the organic carboxylate ion forms the above-mentioned trivalent chromium organic carboxylate complex. When the amount is less than 50 g / L, the organic carboxylate complex is insufficient, resulting in poor plating appearance and uneven appearance. Occurs.
  • trivalent chromium ions are difficult to be released by complexing trivalent chromium too much, resulting in poor appearance such as plating burn.
  • the trivalent chromium ion is anodized in the plating bath to produce hexavalent chromium ion and exceeds the appropriate range of the hexavalent chromium concentration, the organic carboxylic acid is added to reduce the hexavalent chromium ion. And return to the proper range.
  • the chromium plating bath of the present invention preferably further contains 20 to 200 g / L, particularly 30 to 150 g / L of sulfate ion as a stabilizer or conductive salt.
  • the sulfate ion source include sodium sulfate, potassium sulfate, ammonium sulfate, magnesium sulfate and the like, preferably sodium sulfate, ammonium sulfate. If the concentration of the sulfate ion is too low, the plating voltage may increase. If the amount is too large, there is a possibility that the plating film thickness may be decreased, although it is slight.
  • a pit preventing agent or the like for removing bubbles adhering to the plating surface can be added as necessary.
  • the chromium plating bath of the present invention preferably contains no halogen other than impurities, and does not contain a halide. If halides are contained, the odor of the generated halogen gas is strong and impractical, resulting in poor plating appearance, the halogen gas dissolves, and the resulting compound causes corrosion of the chrome plating or plating material. Problems such as corrosion of the plating material may occur.
  • the chromium plating bath of the present invention needs to be essentially lead-free.
  • the lead ion is acceptable if it is 2 mg / L or less, but the smaller the better. That is, as described above, the plating bath contains lead ions derived from the plating bath raw material and from the outside. When this exceeds 2 mg / L, it is oxidized at the anode and adheres to the anode as lead oxide. It functions as a catalyst and may cause electrolytic oxidation of trivalent chromium ions to hexavalent chromium ions, and the original performance of an iridium oxide-containing anode described later cannot be exhibited.
  • the lead ion can be reduced by substitution reaction with metal or electrolysis, and the original performance (100% oxygen generation reaction) of the iridium oxide-containing electrode can be exhibited. .
  • lead Removal methods such as removing lead using ion exchange resin or chelate resin, removing lead by electrolysis, dipping iron, nickel, cobalt, copper metal, etc. in a plating bath, and removing lead by displacement precipitation A method or the like can be adopted.
  • the chromium plating bath of the present invention is acidic and preferably has a pH of 1.8 to 2.6, particularly 2.0 to 2.3.
  • the pH adjuster ammonia or hydroxide (NaOH, KOH, chromium hydroxide, etc.) can be used when raising the pH, and sulfuric acid can be used when lowering the pH.
  • the chrome plating method using the chrome plating bath of the present invention employs a normal method in which an object to be plated (cathode) and an anode are immersed in a chrome plating bath and electrolysis is performed at a desired current density.
  • an anode having an iridium oxide-containing film on at least the surface is used.
  • a composite film formed by applying a composite film mixed with oxides such as, W, and other oxides for the purpose of improving the corrosion resistance of iridium oxide is preferably used.
  • a hexavalent chromium plating solution such as tin oxide or lead oxide is not used for the purpose of anodizing trivalent chromium.
  • the content of iridium oxide is preferably 20 to 95% by mass, particularly 30 to 90% by mass from the viewpoint of exerting the performance of iridium oxide.
  • the coating amount of the iridium oxide single film or the iridium oxide-containing composite film is preferably 0.2 to 1 g / dm 2 , particularly 0.2 to 0.6 g / dm 2 in terms of iridium metal.
  • the iridium oxide-containing anode As described above, by using the iridium oxide-containing anode, almost 100% of oxygen can be generated at the anode, and the anodic oxidation and anodic reaction of the plating solution component do not occur. This is because the iridium oxide-containing anode has a low oxygen generation overvoltage, so that the catalytic action of oxygen generation is large. As an anodic reaction, oxygen generation is almost 100%. Oxidation of the organic acid hardly occurs, and oxidative decomposition of the organic acid hardly occurs at the anode. Note that oxygen generation, trivalent chromium ion oxidation, and organic acid oxidative decomposition all occur at the lead, carbon, and platinum plating anodes. In these anodes, anodic oxidation of trivalent chromium ions occurs in proportion to the amount of electrolysis. Eventually, all of the trivalent chromium ions become hexavalent chromium ions.
  • the hexavalent chromium plating bath is a hexavalent and trivalent eclectic plating bath that fits almost within the appropriate range of hexavalent chromium in this eclectic bath, the hexavalent chromium concentration range is wide and plating management is easy. There is an effect that there is.
  • the conditions of chromium plating using the chromium plating bath and the iridium oxide-containing anode are preferably a plating temperature of 35 to 60 ° C., particularly 40 to 50 ° C., and a cathode current density of 5 to 15 A / dm 2 , particularly 6 to 12 A / dm 2 is preferred.
  • the plating can be applied to barrel plating with current interruption.
  • the anode current density is preferably 3 to 20 A / dm 2 , particularly preferably 5 to 14 A / dm 2 .
  • the liquid agitation and liquid filtration are preferably performed by continuous liquid filtration also serving as a gentle agitation of the plating solution for preventing variations in the liquid temperature.
  • the plating time is selected according to the required plating film thickness, and the plating time can be lengthened to increase the thickness.
  • the cathode current efficiency is usually 5 to 20%.
  • a diaphragm such as an ion exchange membrane is unnecessary. If a diaphragm is used, the plating operation and management become troublesome, so it is not desirable for practical plating.
  • an iridium oxide-containing anode By using an iridium oxide-containing anode, the production of hexavalent chromium and the anodic decomposition of the organic acid are suppressed, the plating bath management becomes easy, and the diaphragm does not have to be used.
  • Example 1 The following chromium plating bath was prepared. ⁇ Chromium plating bath composition> 78 g / L as chromium oxalate Cr 3+ Ammonium sulfate 120g / L Chromic acid 20g / L pH 2.2 The trivalent chromium ions, hexavalent chromium ions, oxalate ions, and sulfate ions in the chromium plating bath are as follows. The Pb content was 1 mg / L.
  • an iridium oxide composite anode obtained by coating iridium oxide mixed with tantalum oxide at a rate of 30 mol% in terms of metal on a titanium plate and applying at a rate of 0.5 g / dm 2 in terms of iridium metal is used.
  • Resin plating applied up to electric nickel was used as an object (cathode), and was filtered and circulated through a filter equipped with a plating solution polypropylene filter, with a cathode current density of 10 A / dm 2 and an anode current density of 6 A / dm 2. Chrome plating was performed for a minute. As a result, a chromium plating film having a good appearance and excellent corrosion resistance was obtained.
  • the average film thickness was 0.5 ⁇ m. Moreover, about anode performance, it electrolyzed to 100 AH / L and the result of the anode current efficiency shown in Table 1 was obtained. In this case, the hexavalent chromium concentration increased by electrolysis up to 100 AH / L, but the current efficiency was 7%, and the anodic decomposition efficiency of oxalic acid was 1%. The remainder was used as the oxygen generation efficiency, and an oxygen generation current efficiency of 92% was obtained.
  • Example 1 chromium plating was performed in the same manner as in Example 1 except that a lead anode was used as the anode instead of the iridium oxide composite anode. The obtained chrome plating film had a good appearance as well.
  • Table 1 The results of evaluating the anode performance in the same manner as in Example 1 are shown in Table 1.
  • the hexavalent chromium production efficiency was 40%, the oxalic acid decomposition efficiency was 10%, and the oxygen generation efficiency was 50%.
  • Example 1 Compared with Example 1, in addition to high hexavalent chromium production efficiency, the decomposition efficiency of oxalic acid is also large, so a lot of oxalic acid is required to reduce the hexavalent chromium concentration, and the plating solution management becomes frequent and complicated. It becomes. Even when a Pt—Ti anode or a carbon anode was used instead of the lead anode, the anode current efficiency was almost the same.
  • Example 2 In Example 2, chromium plating was performed in the same manner as in Example 1 except that hexavalent chromium was 20 g / L and the Pb concentration was 2 mg / L. The obtained chromium plating film had a good appearance as in Example 1.
  • Example 3 Chromium plating was performed in the same manner as in Example 1 except that the composite anode of Example 1 was replaced with a single iridium oxide anode. The appearance of the obtained chromium plating film was good.
  • Example 4 Chrome plating was performed in the same manner as in Example 1 except that chromium citrate was used instead of chromium oxalate in Example 1. The appearance of the obtained chromium plating film was as good as in Example 1.
  • Example 5 Chromium plating was performed in the same manner as in Example 1 except that 5 g / L of chromium sulfate was added to the plating bath of Example 1 at a Cr 3+ concentration. The appearance of the obtained chromium plating film was as good as in Example 1. Furthermore, compared with Example 1, the plating average film thickness was 1.2 times.
  • Example 2 Chromium plating was performed in the same manner as in Example 1 except that the Pb ion was changed to 10 mg / L in Example 1. The obtained plating film was found to have poor appearance that is considered to be derived from Pb ions.
  • Example 3 Chrome plating was performed in the same manner as in Example 1 except that hexavalent chromium was changed to 2 g / L in Example 1. The hexavalent chromium concentration was below the lower limit of the control range, and plating failure occurred.
  • Example 4 Chrome plating was performed in the same manner as in Example 1 except that hexavalent chromium was changed to 50 g / L in Example 1. The hexavalent chromium concentration was higher than the upper limit of the control range, resulting in poor plating.
  • composition change and coating appearance in the plating bath after 200 hours plating were evaluated.
  • 200 hours of plating (100 AH / L electrolysis) treatment was performed with the plating baths and plating conditions of Examples 1 to 3 and Comparative Examples 1 to 4 described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

 3価クロム化合物と6価クロム化合物とを、3価クロムと6価クロムとの合計クロム濃度が60~140g/Lであり、6価クロム濃度が5~40g/Lであると共に、6価クロム濃度の割合が合計クロム濃度の5~35質量%である割合で含み、かつ有機カルボン酸イオンを50~400g/L含み、鉛イオン濃度が2mg/L以下である酸性の電気クロムめっき浴に被めっき物を浸漬し、陽極として酸化イリジウム含有膜を少なくとも表面に有する陽極を用いて電解するクロムめっき方法に関するものであり、本発明の方法によれば、長期に亘り安定して良好なクロムめっき皮膜が得られ、めっき浴の管理も非常に容易である。

Description

クロムめっき方法
 本発明は、3価クロム化合物と6価クロム化合物とを混合使用したクロムめっき方法に関するものである。
 従来、クロムめっき浴については、クロム酸(6価クロム化合物)を主体とするめっき浴、3価クロム化合物からなるめっき浴がよく知られている。このうち、クロム酸を主体とするめっき浴が汎用されているが、最近では3価クロム化合物からなるめっき浴が環境の点で使用されるようになってきた。しかし、従来の3価クロム化合物からなるめっき浴は、これに6価クロム(Cr6+)が混入するとめっき不良が生じるという問題がある。
 これに対し、3価クロム化合物と6価クロム化合物とを併用したクロムめっき浴(以下、これを折衷クロムめっき浴と称する)も知られている(特許文献1~4、非特許文献1~8)。
 しかしながら、かかる折衷クロムめっき浴を用いためっき方法は、従来、工業的にほとんど実施されていない現状にある。それは、従来の折衷クロムめっき浴を用いたクロムめっき方法においては、比較的初期の段階では良好なめっきが行われるものの、比較的短時間の使用でめっき不良が生じ、安定したクロムめっき操業ができないことによる。
特公昭46-40761号公報 特開昭52-125427号公報 特開昭59-185794号公報 特開昭59-223143号公報 特開平3-260097号公報 特許第3188361号公報 特許第3810043号公報
江口清一郎,「クロム酸-飽和ジカルボン酸浴における光沢クロムメッキの生成」,金属表面技術,Vol.19,No.11,p.451-456,1968 陣屋久、見崎吉成、田辺良美,「電析法による非晶質Crおよび非晶質Cr二元合金の作製」,金属表面技術,Vol.32,No.12,p.631-636,1981 江口清一郎、吉田徹,「シュウ酸浴から光沢クロムめっきを得るための組成および条件」,金属表面技術,Vol.33,No.6,p.272-277,1982 江口清一郎、森河努、横井昌幸,「シュウ酸浴におけるクロムめっきの浴電圧および被覆力」,金属表面技術,Vol.35,No.2,p.104-108,1984 森河努、江口清一郎,「シュウ酸浴からのクロムめっきの硬さ」,金属表面技術,Vol.37,No.7,p.341-345,1986 森河努、横井昌幸、江口清一郎、福本幸男,「硫酸クロム(III)-カルボン酸塩浴からのCr-C合金めっき皮膜の作製」,表面技術,Vol.42,No.1,p.95-99,1991 森河努、横井昌幸、江口清一郎、福本幸男,「硫酸クロム(III)-シュウ酸アンモニウム浴からの非晶質Cr-C合金めっき」,表面技術,Vol.42,No.1,p.100-104,1991 渡邊和夫,「装飾3価クロムめっき技術」,表面技術,Vol.56,No.6,p.320-324,2005
 本発明は、上記事情を改善したもので、上記折衷クロムめっき浴を用いて長期間に亘り良好なクロムめっきを可能とし、工業的操業に有利なクロムめっき方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行った結果、折衷クロムめっき浴として、3価クロム化合物と6価クロム化合物とを、3価クロムと6価クロムとの合計クロム濃度が60~140g/Lであり、6価クロム濃度が5~40g/Lであると共に、6価クロム濃度の割合が合計クロム濃度の5~35質量%である割合で含み、かつ有機カルボン酸イオンを50~400g/L含む酸性の電気クロムめっき浴、好ましくは更に硫酸イオンを20~200g/L含み、pHが1.8~2.6である電気クロムめっき浴を用いることが良好なめっき皮膜を得る点で有利であることを知見した。
 しかしながら、従来の折衷クロムめっき浴では、陽極として鉛、鉛合金、カーボン、チタン、チタン上白金等の不溶性陽極を使用していたものであるが、これらの陽極を使用すると陽極において酸素が発生し、この酸素によって3価クロム(Cr3+)が容易に酸化されて6価クロム(Cr6+)になり、めっき浴中の6価クロム濃度が増大して比較的短期間で上記6価クロム濃度の限界を超え、めっき不良が生じるものであった。更に詳述すると、鉛陽極の欠点として、3価クロムイオンを6価クロムイオンに酸化するので、6価クロムイオンを還元し、新液の濃度に戻す必要があり、液管理に手間を要する、鉛や錫がめっき液に溶解し、その溶解イオンはめっきに悪影響を及ぼす、環境上望ましくない鉛スライムが発生するなどの問題がある。また、炭素陽極の欠点として、3価クロムイオンを6価クロムイオンに酸化するので、6価クロムイオンを還元し、新液の濃度に戻す必要があり、同様に液管理に手間を要する。しかも、炭素が酸化や侵食され、細かい固形物が浮遊し、めっき物に付着したり、濾別せねばならないなど、めっき管理に不都合を及ぼす。更に、Pt/Ti陽極の欠点として、3価クロムイオンを6価クロムイオンに酸化するので、6価クロムイオンを還元し、新液の濃度に戻す必要があり、液管理に手間を要する。しかも高価であり、Ptが腐食損失することもあるといった問題がある。
 そこで検討を行った結果、陽極として少なくとも表面に酸化イリジウム含有膜を有する陽極を使用した場合、同様に陽極において酸素が発生するが、3価クロムの6価クロムへの酸化が抑制されることを知見した。
 なお、このような酸化イリジウム含有膜を少なくとも表面に有する陽極は、従来より知られており、クロム酸を主体とするめっき浴に対しても(特許文献5:特開平3-260097号公報)、3価クロム化合物からなるめっき浴に対しても(特許文献6,7:特許第3188361号公報、特許第3810043号公報)、上記酸化イリジウム含有膜を有する陽極を使用することが提案されている。しかし、上記折衷クロムめっき浴における陽極としてかかる酸化イリジウム含有膜を有する陽極を使用するという点はなされていない。
 上記のように、折衷クロムめっき浴に対して酸化イリジウム含有膜を有する陽極を使用すると、3価クロムの6価クロムへの酸化が抑制され得るものであり、この点でこの陽極は折衷クロムめっき浴に有効であることを見出したが、しばらく電解を継続していくと、意外なことに6価のクロムイオンの増大が認められ、上記6価クロム濃度範囲を超える場合が生じた。
 このため、この点について更に検討を進めた結果、上記酸化イリジウム含有膜を有する陽極を使用しているにもかかわらず、6価クロム濃度が増大する原因は、該陽極自体ではなく、めっき浴中の鉛イオン濃度によるものであることが判明した。
 即ち、めっき浴には、めっき浴原料に由来するなど外部から混入した鉛イオンが含まれるが、薬品補給などによりめっき浴中の鉛イオン濃度が増加し、鉛イオンが2mg/Lを超えると、これが陽極で酸化されて酸化鉛として陽極に付着し、これが電極触媒として機能し、3価クロムイオンを6価クロムイオンに電解酸化させるおそれが生じるものと考えられる。
 従って、これによって酸化イリジウム本来の性能を発揮させることを阻害するものと推察された。そこで、更なる検討を続け、鉛イオン濃度が浴中2mg/L以下であれば鉛イオンによる上記悪影響は実質的になく、これによって6価クロム濃度を長期に亘って上記最適濃度に維持し、長期間の安定したクロムめっきが可能になることを見出したものである。
 従って、本発明は下記クロムめっき方法を提供する。
[1]3価クロム化合物と6価クロム化合物とを、3価クロムと6価クロムとの合計クロム濃度が60~140g/Lであり、6価クロム濃度が5~40g/Lであると共に、6価クロム濃度の割合が合計クロム濃度の5~35質量%である割合で含み、かつ有機カルボン酸イオンを50~400g/L含み、鉛イオン濃度が2mg/L以下である酸性の電気クロムめっき浴に被めっき物を浸漬し、陽極として酸化イリジウム含有膜を少なくとも表面に有する陽極を用いて電解することを特徴とするクロムめっき方法。
[2]3価クロム化合物が、有機カルボン酸クロム、又は硫酸クロムと有機カルボン酸クロム錯体との混合物であって、該混合物における有機カルボン酸クロム錯体の割合が3価クロム濃度として全3価クロム濃度の50質量%以上である[1]記載のクロムめっき方法。
[3]クロムめっき浴が、更に硫酸イオンを20~200g/L含み、pHが1.8~2.6である[1]又は[2]記載のクロムめっき方法。
[4]クロムめっき浴がハロゲンフリーである[1]~[3]のいずれかに記載のクロムめっき方法。
[5]被めっき物と陽極とが互いに隔膜によって隔離されることなく同一めっき槽内のめっき浴に浸漬された状態でめっきを行うようにした[1]~[4]のいずれかに記載のクロムめっき方法。
 本発明によれば、長期に亘り安定して良好なクロムめっき皮膜が得られ、めっき浴の管理も非常に容易である。
 本発明のクロムめっき方法で用いるクロムめっき浴は、3価クロム化合物と6価クロム化合物とをクロム源とし、更にカルボン酸イオンを含有し、好ましくはこれに安定剤あるいは伝導塩として硫酸イオンを含む酸性の折衷クロムめっき浴である。
 ここで、3価クロム化合物としては、有機カルボン酸のクロム錯体が好適に用いられる。有機カルボン酸としては、シュウ酸、クエン酸、蟻酸、酢酸、マロン酸、コハク酸、乳酸などが用いられ、シュウ酸、クエン酸、蟻酸、酢酸が好ましく、特にシュウ酸のクロム錯体が好適に用いられる。なお、上記有機カルボン酸のクロム錯体としては、特願2008-294007に記載されているように、例えばクロム酸(CrO3)と上記有機カルボン酸とをこれらを含む水溶液中で混合し、上記有機カルボン酸によりクロム酸を還元して、6価クロムイオンを含まない上記有機カルボン酸の(3価の)クロム錯体としたものが好適である。
 また、3価クロム化合物として、3価の無機クロム塩も使用し得、特に硫酸クロムが好ましく用いられるが、3価クロム源が硫酸クロム等の無機クロム塩のみの場合、めっき時、水の電解分解による水素発生によって、陰極界面が強アルカリ性になり、硫酸クロムは加水分解され、水酸化クロムや塩基性硫酸クロムが生成され、実用に耐えるめっきができないおそれがある。
 一方、有機カルボン酸は3価クロムイオンを錯化し、3価クロムイオンの加水分解を防止、緩衝し、更に有機カルボン酸はめっき浴pHの緩衝剤として作用するため、硫酸クロム等の無機クロム塩を用いる場合は、有機カルボン酸のクロム錯体と併用することが好ましい。
 ここで、全3価クロム濃度は55~135g/L、特に72~112g/Lであることが好ましく、また有機カルボン酸のクロム錯体の割合は、3価クロム金属分が全3価クロム金属分に対して質量比で0.5~1、特に0.6~1が望ましく、残部が上記無機クロム塩である。この場合、3価クロム源として有機カルボン酸クロム錯体と硫酸クロムを併用することで、建浴直後のめっき膜厚が有機カルボン酸クロム錯体のみの場合と比較すると20%程度厚く付くことから、有機カルボン酸クロム錯体と硫酸クロムを併用することが好ましく、このように併用する場合、有機カルボン酸クロム錯体の3価クロム金属分:硫酸クロムの3価クロム金属分を5:5~10:0、特に6:4~10:0(質量比)とすることが望ましい。
 一方、6価クロム化合物としては、クロム酸(CrO3)、重クロム酸等やこれらの塩が好適に用いられる。6価クロム化合物の配合量としては、6価クロム濃度として5~40g/L、好ましくは7~20g/Lであり、この範囲において良好なクロムめっき皮膜が得られる。6価クロム濃度の上記範囲より少なくても多くてもめっき外観不良や外観の不均一が生じる。
 ここで、全クロム濃度(3価クロム濃度と6価クロム濃度の合計)は60~140g/Lであり、80~120g/Lであることが好ましい。この範囲で良好なクロムめっき皮膜が得られるが、上記範囲外ではめっき外観不良や外観の不均一が生じる。
 またこの場合、6価クロム濃度の割合は全クロム濃度の5~35質量%であり、好ましくは10~25質量%である。
 この割合の範囲において良好なクロムめっきが達成されるが、上記範囲より少なくても多くてもめっき外観不良が生じるおそれがある。
 本発明のクロムめっき浴は、有機カルボン酸イオンを50~400g/L、特に100~300g/L含有する。有機カルボン酸源としては、シュウ酸、クエン酸、蟻酸、酢酸、マロン酸、コハク酸、乳酸などが挙げられ、特にシュウ酸、クエン酸、蟻酸、酢酸イオンが好ましい。上記有機カルボン酸イオンは、上記3価クロムの有機カルボン酸錯体を形成するもので、その量が50g/L未満の場合、有機カルボン酸のクロム錯体が不足し、めっき外観不良や外観の不均一が生じる。一方、400g/Lを超える場合、3価クロムを錯化しすぎることで3価のクロムイオンが遊離しにくくなり、めっき焼けなどの外観不良が生じる。なお、めっき浴中で3価クロムイオンが陽極酸化されて6価クロムイオンが生成し、6価クロム濃度の適正範囲を超えた場合、上記有機カルボン酸を添加することで6価クロムイオンを還元し、適正範囲に戻すことができる。
 本発明のクロムめっき浴には、更に安定剤あるいは伝導塩として硫酸イオンを20~200g/L、特に30~150g/L含有していることが好ましい。この場合、硫酸イオン源としては、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、硫酸マグネシウムなどが挙げられ、好ましくは硫酸ナトリウム、硫酸アンモニウムであり、上記硫酸イオン濃度が少なすぎると、めっき電圧が上がるおそれが生じ、多すぎると、わずかではあるがめっき膜厚が低下するおそれが生じる。
 本発明のクロムめっき浴には、更に必要によりめっき表面に付着した気泡を除去するためのピット防止剤等を添加することができる。
 なお、本発明のクロムめっき浴は、不純物としてのハロゲン以外は含有しないことが好ましく、ハロゲン化物を含有しないものである。ハロゲン化物が含まれると、発生するハロゲンガスの臭気が強く、実用的ではない、めっき外観不良が生じる、ハロゲンガスが溶解し、生成した化合物によりクロムめっきやめっき素材の腐食が生じる、ハロゲンイオンによるめっき素材の腐食が生じる等の問題が生じるおそれがある。
 また、本発明のクロムめっき浴は、本質的に鉛フリーであることが必要である。この場合、鉛イオンとしては、2mg/L以下であれば許容し得るが、少ないほどよい。即ち、上述したように、めっき浴には、めっき浴原料由来及び外部から混入した鉛イオンが含まれるが、これが2mg/Lを超えると陽極で酸化され、酸化鉛として、陽極に付着し、電極触媒として機能し、3価クロムイオンを6価クロムイオンに電解酸化させるおそれがあり、後述する酸化イリジウム含有陽極本来の性能が発揮できない。これに対し、鉛イオンを2mg/L以下とすることにより、金属への置換反応や電解で鉛イオンを低減化し、酸化イリジウム含有電極本来の性能(100%酸素発生反応)を発揮させることができる。
 なお、このように鉛イオンを2mg/L以下に抑える方法としては、めっき浴原料由来の鉛イオンを極力排除することが望ましく、高純度の原料を使用するか、これが困難な場合は公知の鉛除去法、例えばイオン交換樹脂やキレート樹脂を用いて鉛を除去する方法、電解により鉛を除去する方法、鉄、ニッケル、コバルト、銅金属などをめっき浴に浸漬し、置換析出により鉛を除去する方法などを採用し得る。
 本発明のクロムめっき浴は、酸性であり、pHが1.8~2.6、特に2.0~2.3であることが好ましい。なお、pH調整剤としてはpHを上げる場合はアンモニアや水酸化物(NaOH、KOH、水酸化クロムなど)を使用することができ、pHを下げる場合は硫酸を使用することができる。
 本発明の上記クロムめっき浴を用いたクロムめっき方法は、被めっき物(陰極)と陽極をクロムめっき浴に浸漬し、所用の電流密度で電解を行うという通常の方法が採用されるが、本発明においては、少なくとも表面に酸化イリジウム含有膜を有する陽極を使用する。
 この場合、かかる電極としては、チタン、タンタル、ジルコニウム、ニオブ又はこれらの合金等の所用の陽極形状に応じた基板の表面に酸化イリジウム単独膜、又は酸化イリジウムとTa、Si、Mo、Ti、Zr、Wなどの酸化物、その他の酸化イリジウムの耐食性向上を目的とした酸化物とを混合した複合膜を塗布、形成したものが好適に用いられる。この場合、酸化錫、酸化鉛等の6価クロムめっき液中で3価クロムの陽極酸化を目的としたものは使用しない。なお、上記複合膜の場合、酸化イリジウムの含有量は20~95質量%、特に30~90質量%とすることが酸化イリジウムの性能を発揮させる点で好ましい。また、上記酸化イリジウム単独膜又は酸化イリジウム含有複合膜の塗布量は、イリジウム金属に換算して0.2~1g/dm2、特に0.2~0.6g/dm2であることが好ましい。
 このように、酸化イリジウム含有陽極を用いることにより、陽極においてほぼ100%の酸素発生が可能となり、めっき液成分の陽極酸化や陽極反応が起こらないものである。これは、酸化イリジウム含有陽極は、酸素発生過電圧が低いことから、酸素発生の触媒作用が大きい、陽極反応としては、酸素発生がほぼ100%となる、陽極において3価クロムイオンの6価クロムイオンへの酸化がほとんど起こらない、陽極において有機酸の酸化分解も起こりにくいという効果を与えるものである。なお、鉛、炭素、白金めっき陽極では、酸素発生、3価クロムイオンの酸化、有機酸の酸化分解が全部起こる。これらの陽極では、3価クロムイオンの陽極酸化は電解量に比例して起こる。ついには、3価クロムイオンの全部が6価クロムイオンになるものである。
 更に、上記酸化イリジウム含有陽極を用いることで、6価クロムが生成しにくく、有機酸の酸化分解しにくい、めっき液の長寿命化(長期安定)、めっき管理容易、酸化イリジウムを陽極として使用すると、6価クロムの生成がほとんどなくなり、この折衷浴における6価クロムの適正範囲に収まる、6価と3価の折衷めっき浴であるため、6価クロムの濃度範囲も広く、めっき管理が容易であるという効果を与えることができる。
 上記クロムめっき浴及び酸化イリジウム含有陽極を用いたクロムめっきの条件としては、めっき温度35~60℃、特に40~50℃が好ましく、陰極電流密度は5~15A/dm2、特に6~12A/dm2であることが好ましい。なお、めっきの種類としては、ラックめっきのほか、電流中断があるバレルめっきに適用することができる。また、陽極電流密度は3~20A/dm2、特に5~14A/dm2とすることが好ましい。液撹拌、液濾過は液温ばらつきを防止するめっき液の緩い撹拌を兼ねて連続液濾過を行うことが好ましい。めっき時間は、要求するめっき膜厚に応じて選定され、めっき時間を長くして厚付けすることが可能である。なお、陰極電流効率は通常5~20%である。
 本発明のめっき方法において、イオン交換膜等の隔膜は不要である。隔膜を使用すれば、めっき操作や管理が面倒になるので、実用的なめっきには望ましくない。酸化イリジウム含有陽極を使用することで、6価クロムの生成や有機酸の陽極分解が抑制され、めっき浴管理が容易になり、隔膜は使用しなくても良くなったものである。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されることはない。
  [実施例1]
 下記クロムめっき浴を調製した。
<クロムめっき浴組成>
 シュウ酸クロム     Cr3+として78g/L
 硫酸アンモニウム    120g/L
 クロム酸        20g/L
 pH          2.2
 上記クロムめっき浴中の3価クロムイオン、6価クロムイオン、シュウ酸イオン、硫酸イオンは以下の通りである。なお、Pb分は1mg/Lとした。
 3価クロムイオン    78g/L
 6価クロムイオン    10g/L
 シュウ酸イオン     248g/L(シュウ酸・2水塩に換算して)
 硫酸イオン       87g/L
 陽極として、チタン板に酸化タンタルを金属換算で30モル%の割合で混合した酸化イリジウムをイリジウム金属に換算して0.5g/dm2の割合で塗布した酸化イリジウム複合陽極を使用し、被めっき物(陰極)として電気ニッケルまで施した樹脂めっきを用い、めっき液ポリプロピレン製フィルターを装着した濾過器で濾過循環しながら、陰極電流密度10A/dm2、陽極電流密度6A/dm2の条件で10分間クロムめっきを行った。
 その結果、良好な外観を有し、耐食性の優れるクロムめっき皮膜が得られた。なお、その平均膜厚は0.5μmであった。
 また、陽極性能については、100AH/Lまで電解を行い、表1に示す陽極電流効率の結果を得た。この場合、100AH/Lまでの電解で6価クロム濃度は上昇したが、その電流効率は7%であり、シュウ酸の陽極分解の効率は1%であった。これからその残りを酸素発生の効率とし、92%の酸素発生電流効率を得た。
  [比較例1]
 実施例1において、陽極として酸化イリジウム複合陽極の代りに鉛陽極を使用した以外は実施例1と同様にしてクロムめっきを行った。
 得られたクロムめっき皮膜は、同様に良好な外観を有しているものであった。
 実施例1と同様にして陽極性能を評価した結果を表1に示すが、6価クロム生成効率は40%、シュウ酸分解効率は10%、酸素発生効率は50%であった。実施例1と比較すると、6価クロム生成効率が高い上に、シュウ酸の分解効率も大きく、6価クロム濃度を下げるために多くのシュウ酸を要し、めっき液管理が頻繁になり、煩雑となる。
 なお、鉛陽極の代りにPt-Ti陽極や炭素陽極を用いてもほぼ同じ陽極電流効率であった。
  [実施例2]
 実施例2では6価クロムを20g/L、Pb濃度を2mg/Lとした以外は実施例1と同様にクロムめっきを行った。得られたクロムめっき皮膜は実施例1と同様に良好な外観を有していた。
  [実施例3]
 実施例1の複合陽極を単体の酸化イリジウム陽極とした以外は実施例1と同様にクロムめっきを行った。得られたクロムめっき皮膜の外観は良好であった。
  [実施例4]
 実施例1のシュウ酸クロムの代りにクエン酸クロムを用いた以外は実施例1と同様にクロムめっきを行った。得られたクロムめっき皮膜の外観は実施例1と同様に良好であった。
  [実施例5]
 実施例1のめっき浴に硫酸クロムをCr3+濃度で5g/L添加した以外は実施例1と同様にクロムめっきを行った。得られたクロムめっき皮膜の外観は実施例1と同様に良好であった。更に、実施例1と比較してめっき平均膜厚は1.2倍であった。
  [比較例2]
 実施例1でPbイオンを10mg/Lとした以外は実施例1と同様にクロムめっきを行った。得られためっき皮膜は、Pbイオンに由来すると考えられる外観不良が見られた。
  [比較例3]
 実施例1で6価クロムを2g/Lとした以外は実施例1と同様にクロムめっきを行った。6価クロム濃度が管理範囲下限以下であり、めっき不良が発生した。
  [比較例4]
 実施例1で6価クロムを50g/Lとした以外は実施例1と同様にクロムめっきを行った。6価クロム濃度が管理範囲上限以上であり、めっき不良が発生した。
 また、上記実施例2~5、比較例2~4の陽極性能を実施例1と同様に評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
※ クロム析出における当量は3電子反応では、17.3である。即ち、1F=26.8AHで17.3gのクロムが析出する。電流効率が7%では1.21gのクロムが析出し、AH当たりでは1.21gクロム/26.8AH=0.045gクロムとなる。従って、100AH/Lの電解では6価クロム濃度が4.5g/L上昇する。
 200時間めっき後(100AH/L電解後)のめっき浴中の組成変化及び皮膜外観を評価した。上記の実施例1~3及び比較例1~4のめっき浴とめっき条件で200時間めっき(100AH/L電解)処理を行い、それぞれのめっき浴組成変化と皮膜外観を表2に示す。
Figure JPOXMLDOC01-appb-T000002
※ 0.5A/Lで200時間の電解で100AH/Lとなる。比較例3では、6価クロム5g/L以上が良好であるので、初めは2g/Lで外観不良だが、めっき後6価クロム濃度が6.5g/Lとなり、良好な外観となった。

Claims (5)

  1.  3価クロム化合物と6価クロム化合物とを、3価クロムと6価クロムとの合計クロム濃度が60~140g/Lであり、6価クロム濃度が5~40g/Lであると共に、6価クロム濃度の割合が合計クロム濃度の5~35質量%である割合で含み、かつ有機カルボン酸イオンを50~400g/L含み、鉛イオン濃度が2mg/L以下である酸性の電気クロムめっき浴に被めっき物を浸漬し、陽極として酸化イリジウム含有膜を少なくとも表面に有する陽極を用いて電解することを特徴とするクロムめっき方法。
  2.  3価クロム化合物が、有機カルボン酸クロム、又は硫酸クロムと有機カルボン酸クロム錯体との混合物であって、該混合物における有機カルボン酸クロム錯体の割合が3価クロム濃度として全3価クロム濃度の50質量%以上である請求項1記載のクロムめっき方法。
  3.  クロムめっき浴が、更に硫酸イオンを20~200g/L含み、pHが1.8~2.6である請求項1又は2記載のクロムめっき方法。
  4.  クロムめっき浴がハロゲンフリーである請求項1乃至3のいずれか1項記載のクロムめっき方法。
  5.  被めっき物と陽極とが互いに隔膜によって隔離されることなく同一めっき槽内のめっき浴に浸漬された状態でめっきを行うようにした請求項1乃至4のいずれか1項記載のクロムめっき方法。
PCT/JP2010/073293 2010-01-08 2010-12-24 クロムめっき方法 WO2011083700A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080064469.1A CN102782192B (zh) 2010-01-08 2010-12-24 镀铬方法
US13/520,594 US20120279869A1 (en) 2010-01-08 2010-12-24 Chromium plating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-002712 2010-01-08
JP2010002712A JP5732721B2 (ja) 2010-01-08 2010-01-08 クロムめっき方法

Publications (1)

Publication Number Publication Date
WO2011083700A1 true WO2011083700A1 (ja) 2011-07-14

Family

ID=44305437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073293 WO2011083700A1 (ja) 2010-01-08 2010-12-24 クロムめっき方法

Country Status (4)

Country Link
US (1) US20120279869A1 (ja)
JP (1) JP5732721B2 (ja)
CN (1) CN102782192B (ja)
WO (1) WO2011083700A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014115203A1 (ja) * 2013-01-25 2017-01-19 上村工業株式会社 クロムめっき浴及びそれを使用したクロムめっき皮膜の形成方法
BR112015031543B1 (pt) * 2013-06-20 2021-06-29 Tata Steel Ijmuiden Bv Substratos revestidos de cromo-óxido de cromo, método de fabricação e seus usos
CO7190036A1 (es) * 2014-02-11 2015-02-19 Garcia Carlos Enrique Muñoz Proceso de cromado trivalente continuo
JP5995906B2 (ja) * 2014-05-19 2016-09-21 株式会社豊田中央研究所 隔膜の製造方法、及び金属被膜の製造方法
WO2017109834A1 (ja) * 2015-12-21 2017-06-29 地方独立行政法人大阪府立産業技術総合研究所 クロムめっき液、電気めっき方法及びクロムめっき液の製造方法
DE102018133532A1 (de) * 2018-12-21 2020-06-25 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Elektrolyt und Verfahren zur Herstellung von Chromschichten
CN113774380A (zh) * 2021-07-19 2021-12-10 广州市锦德建材科技有限公司 一种水龙头表面处理方法
WO2023114836A1 (en) * 2021-12-15 2023-06-22 Magna Imperio Systems Corp. Ion removal from heavy ends using electrodialysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185794A (ja) * 1983-04-07 1984-10-22 Oosakafu ワインダ−用ドラムの表面処理方法
JPS6179796A (ja) * 1984-09-26 1986-04-23 Kiyoteru Takayasu クロム電析方法
JPH0813199A (ja) * 1994-06-27 1996-01-16 Permelec Electrode Ltd クロムめっき方法
JP2000104199A (ja) * 1998-09-30 2000-04-11 Permelec Electrode Ltd クロムめっき用電極

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6800734A (ja) * 1967-01-18 1968-07-19
ZA723659B (en) * 1971-06-30 1973-03-28 M & T Chemicals Inc Lubricating coating for metal sheet
US3909381A (en) * 1974-11-18 1975-09-30 Raymond John L Purification of chromium plating solutions by electrodialysis
JPS53106348A (en) * 1977-02-28 1978-09-16 Toyo Soda Mfg Co Ltd Electrolytic bath for chromium plating
US4477318A (en) * 1980-11-10 1984-10-16 Omi International Corporation Trivalent chromium electrolyte and process employing metal ion reducing agents
JPS61179890A (ja) * 1985-02-04 1986-08-12 Shigeo Hoshino 非晶質構造を有する硬質クロムのめつき浴
JPS63270490A (ja) * 1987-04-27 1988-11-08 Permelec Electrode Ltd クロムメツキ法
CN1049036A (zh) * 1989-07-25 1991-02-06 田代兵 一种在金工刀具上镀铬的方法和有铬层的金工刀具
JPH0696778B2 (ja) * 1990-10-05 1994-11-30 新日本製鐵株式会社 亜鉛系めっき鋼板のクロメート処理方法
GB0407619D0 (en) * 2004-04-02 2004-05-05 Jing Mei Ind Holdings Ltd Chromium plating
CN101280445B (zh) * 2008-05-16 2011-08-24 广州杰赛科技股份有限公司 镁合金摩托车轮毂表面电镀工艺
CN101343770A (zh) * 2008-08-18 2009-01-14 南京飞燕活塞环股份有限公司 活塞环多层铬基网格嵌入超硬耐磨粒子镀层镀液及电镀法
JP5326515B2 (ja) * 2008-11-18 2013-10-30 上村工業株式会社 クロムめっき浴の製造方法、及びめっき皮膜の形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185794A (ja) * 1983-04-07 1984-10-22 Oosakafu ワインダ−用ドラムの表面処理方法
JPS6179796A (ja) * 1984-09-26 1986-04-23 Kiyoteru Takayasu クロム電析方法
JPH0813199A (ja) * 1994-06-27 1996-01-16 Permelec Electrode Ltd クロムめっき方法
JP2000104199A (ja) * 1998-09-30 2000-04-11 Permelec Electrode Ltd クロムめっき用電極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEIICHIRO EGUCHI: "Shusan-yoku kara Kotaku Chrome Mekki o Eru tameno Sosei Oyobi Joken", KINZOKU HYOMEN GIJUTSU, vol. 33, no. 6, June 1982 (1982-06-01), pages 272 - 277 *

Also Published As

Publication number Publication date
CN102782192B (zh) 2015-09-09
JP2011140700A (ja) 2011-07-21
CN102782192A (zh) 2012-11-14
JP5732721B2 (ja) 2015-06-10
US20120279869A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5732721B2 (ja) クロムめっき方法
US3480523A (en) Deposition of platinum-group metals
JP2011140700A5 (ja)
TWI425121B (zh) 由三價鉻電鍍浴電鍍鉻之方法
WO2013038927A1 (ja) 塩素発生用陽極
WO2012133136A1 (ja) 電解採取用陽極およびそれを用いた電解採取法
JP5522484B2 (ja) 電解めっき用陽極および該陽極を用いる電解めっき法
Hong et al. Hard chromium plating from trivalent chromium solution
JP5686456B2 (ja) 酸素発生用陽極の製造方法
CN103060874A (zh) 一种不锈钢基β-PbO2-SnO2-CeO2-ZrO2惰性复合阳极材料的制备方法
JP3302949B2 (ja) 黒色ルテニウムめっき液
JPH049493A (ja) 鋼板の電気錫メッキ方法
CN107761142A (zh) 一种低共熔溶剂电沉积铁铬合金镀层的方法
JP5686457B2 (ja) 酸素発生用陽極の製造方法
US3488264A (en) High speed electrodeposition of nickel
US3772167A (en) Electrodeposition of metals
WO2014115203A1 (ja) クロムめっき浴及びそれを使用したクロムめっき皮膜の形成方法
JP2002275697A (ja) 酸素発生用陽極
JP4299253B2 (ja) 6価クロムめっき方法
RU2814771C1 (ru) Способ электроосаждения хромовых покрытий из электролита на основе гексагидрата сульфата хрома (III) и формиата натрия
JP4517177B2 (ja) 無電解ニッケルめっき液の処理方法
JP7291858B2 (ja) 金属化すべきプラスチック部品を調製するための電解処理装置及びプラスチック部品をエッチングする方法
JP6969688B2 (ja) 電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置
JP2908540B2 (ja) クロムめっき方法
CN115537883A (zh) 电解铜箔制备用IrO2-Ta2O5/Ti电极析氧电位的降低方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064469.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13520594

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842213

Country of ref document: EP

Kind code of ref document: A1