WO2011083550A1 - レゾルバ信号変換装置及び方法 - Google Patents

レゾルバ信号変換装置及び方法 Download PDF

Info

Publication number
WO2011083550A1
WO2011083550A1 PCT/JP2010/007552 JP2010007552W WO2011083550A1 WO 2011083550 A1 WO2011083550 A1 WO 2011083550A1 JP 2010007552 W JP2010007552 W JP 2010007552W WO 2011083550 A1 WO2011083550 A1 WO 2011083550A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
resolver
resolver signal
sampled
detection angle
Prior art date
Application number
PCT/JP2010/007552
Other languages
English (en)
French (fr)
Inventor
昌啓 山田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201080034857.5A priority Critical patent/CN102472640B/zh
Priority to EP10842070.4A priority patent/EP2522958B1/en
Priority to US13/201,403 priority patent/US8825440B2/en
Priority to KR1020117019824A priority patent/KR101322070B1/ko
Publication of WO2011083550A1 publication Critical patent/WO2011083550A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37481Sampling rate for output of resolver as function of pulse rate of excitation
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/38Electric signal transmission systems using dynamo-electric devices
    • G08C19/46Electric signal transmission systems using dynamo-electric devices of which both rotor and stator carry windings
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/64Analogue/digital converters with intermediate conversion to phase of sinusoidal or similar periodical signals
    • H03M1/645Analogue/digital converters with intermediate conversion to phase of sinusoidal or similar periodical signals for position encoding, e.g. using resolvers or synchros

Definitions

  • the present invention relates to a resolver signal conversion apparatus and a resolver signal conversion method for converting a detection angle of a two-phase resolver signal output from a resolver that detects a rotation angle of a motor or the like into a digital output angle.
  • resolvers are used to detect the rotation angle of a motor or the like.
  • the resolver includes an excitation coil and a detection coil.
  • AC is supplied to the excitation coil
  • an AC voltage is generated in the detection coil according to the relative angle between the stator and the rotor.
  • This AC voltage is detected by a voltmeter connected to the detection coil and output to a resolver-digital converter (RD converter).
  • RD converter resolver-digital converter
  • the detected angle included in the input resolver signal is converted into digital angle data and output.
  • the resolver and the RD converter are used in combination.
  • Resolver is usually placed near the motor. Therefore, the resolver is strongly influenced by the magnetic field generated by the motor, and noise due to the magnetic field generated by the motor is superimposed on the resolver signal.
  • the motor is rotating, the magnetic field generated by the motor is a magnetic field synchronized with the rotation, so that the noise superimposed due to the influence of the magnetic field generated by the motor becomes low-frequency noise.
  • the motor is often driven by a voltage controlled by PWM (Pulse Width Modulation).
  • PWM Pulse Width Modulation
  • a resolver provided in such a PWM driven motor is affected by switching noise. This switching noise is distributed not only at low frequencies but also at high frequencies.
  • disturbance noise is superimposed on the resolver signal input to the RD converter in this way, the operation of the RD converter is affected, and the digital angle output output from the RD converter is an angular error caused by the disturbance noise. Will be included.
  • Patent Document 1 proposes an RD converter that can remove noise due to the influence of a magnetic field generated by a motor.
  • This RD converter includes a resolver signal between a synchronous detection circuit that performs synchronous detection with reference to an excitation signal in an angle calculation loop and a controller that controls a digital angle output so that the output of the synchronous detection circuit becomes zero.
  • a band elimination filter that removes a low-frequency noise component superimposed on. This band elimination filter is set so as to remove frequencies in this band with an excitation frequency of 10 kHz as a center frequency and a bandwidth of 2 kHz or more.
  • a general RD converter including the RD converter described in Patent Document 1 feeds back an output angle to an input angle, and has a tracking loop that operates so that a deviation between the input angle and the output angle is always zero. Adopted. Since an RD converter having such a tracking loop has a frequency characteristic that the gain increases at a specific frequency, an error may occur between the actual angle and the output angle depending on the frequency.
  • the present invention eliminates the frequency dependency of arithmetic processing, and reduces the influence of disturbance noise such as a magnetic field generated by a motor from the input resolver signal, thereby reducing the error in the detection angle of the resolver. It is an object of the present invention to provide a resolver signal conversion device and a resolver signal conversion method.
  • the resolver signal conversion device is designed to pass a predetermined band whose center frequency is the frequency of the excitation signal among the frequency components of the first resolver signal that is a sine wave output from the resolver. And the first resolver signal that has passed through the first bandpass filter are sampled in synchronization with a reference signal based on the excitation signal, and a sine value of a detection angle signal from the sampled resolver signal.
  • the first sampling synchronous rectification unit for generating the signal and the frequency component of the second resolver signal, which is a cosine wave output from the resolver are designed to pass a predetermined band centered on the frequency of the excitation signal And the second resolver signal that has passed through the second bandpass filter.
  • a second sampling synchronous rectification unit that samples in synchronization with the reference signal and creates a cosine value of the detection angle signal from the sampled resolver signal, and calculates a detection angle from the sine value and cosine value of the detection angle signal An angle calculation unit.
  • the resolver signal conversion method is a first resolver signal designed to pass a first resolver signal, which is a sine wave output from the resolver, through a predetermined band whose center frequency is the frequency of the excitation signal. Filtering with the band-pass filter, and sampling the first resolver signal that has passed through the first band-pass filter in synchronization with the reference signal based on the excitation signal, and detecting the detection angle from the sampled resolver signal A first sampling synchronous rectification step for creating a sine value of the signal and a second resolver signal that is a cosine wave output from the resolver are passed through a predetermined band whose center frequency is the frequency of the excitation signal.
  • the second resolver signal that has passed is sampled in synchronization with the reference signal, a second sampling synchronous rectification step that creates a cosine value of the detected angle signal from the sampled resolver signal, and the detected angle signal Calculating a detection angle from a sine value and a cosine value.
  • the resolver signal conversion apparatus or method it is not necessary to correct an offset error while the resolver signal passes through the analog signal processing unit by filtering the resolver signal with the first or second bandpass filter.
  • the error of the detection angle can be reduced. It is also possible to attenuate the frequency components of disturbance noise from the resolver signal by filtering the resolver signal with the first or second band pass filter.
  • the resolver signal is not multiplied by the reference signal in the synchronous rectification, the harmonics and disturbance noise of the reference signal are not amplified, and these influences on the detection angle signal can be reduced. And since there is no tracking loop in the processing of the resolver signal, there is no frequency dependence. Therefore, according to the resolver signal conversion device and the resolver signal conversion method, it is possible to reduce errors in the detection angle of the resolver.
  • the first and second sampling synchronous rectifiers sample the first or second resolver signal at a timing at which the amplitude of the reference signal becomes maximum on the positive side and the negative side, respectively. If the amplitude of the reference signal is positive, the sampled resolver signal is recorded as it is, and if the amplitude of the reference signal is negative, the sign of the sampled resolver signal is inverted between positive and negative. When the amplitude of the reference signal is negative, the sampled resolver signal is recorded as it is, and when the amplitude of the reference signal is positive, the sign of the sampled resolver signal is positive or negative Inverted and recorded, these records are arranged in time series to create the detection angle signal Rukoto is good.
  • a first band pass designed to pass a first resolver signal which is a sine wave output from the resolver through a predetermined band whose center frequency is the frequency of the excitation signal. Filtering with a filter; sampling the first resolver signal that has passed through the first bandpass filter in synchronization with a reference signal based on the excitation signal; and detecting a sine of a detected angle signal from the sampled resolver signal Designed to pass a first sampling synchronous rectification step for creating a value and a second resolver signal, which is a cosine wave output from the resolver, through a predetermined band whose center frequency is the frequency of the excitation signal Filtering with a second bandpass filter; and A second sampling synchronous rectification step of sampling the second resolver signal passed in synchronization with the reference signal and creating a cosine value of the detected angle signal from the sampled resolver signal; and Calculating a detection angle from a sine value and a cosine value.
  • the resolver signal can be sampled at a sampling period twice the frequency of the reference signal. By doubling the sampling period, the response speed (data update period) can be increased.
  • the resolver signal conversion device may include a phase correction unit that corrects the excitation signal with a predicted phase delay and supplies the corrected signal as the reference signal. According to this, a reference signal is supplied that compensates for the phase delay that occurs between the time when the current based on the excitation signal is supplied to the resolver and the time when the current is input to the resolver signal converter until the sampling synchronous rectifier is reached. Therefore, the detection accuracy can be further increased.
  • the difference calculation unit that calculates the rotation speed from the difference of the detection angle for each sampling, and the first or second band pass filter from the detection angle and the rotation speed. It is preferable to further include a delay correction unit that calculates a detection angle after correction by correcting the phase delay caused by the error.
  • a step of calculating a rotational speed from a difference of the detected angle for each sampling, and passing the first or second bandpass filter from the rotational speed and the detected angle is preferable to further include a step of calculating a corrected detection angle in which the phase delay caused by the correction is corrected.
  • an amplifying unit for amplifying the first or second resolver signal input to the first or second bandpass filter, and the amplified resolver signal from an analog signal to a digital signal It is preferable to further include an AD conversion unit that converts the signal into a signal and outputs the signal to the first or second bandpass filter.
  • the resolver signal converter at least the first and second bandpass filters, the first and second sampling synchronous rectifiers, and the angle calculator are configured on one programmable device. It is good to have. Thereby, since the calculation performed in each calculation part is processed inside a programmable device, compared with the software calculation in a microcomputer etc., high-speed calculation is attained, and adjustment between each calculation part becomes easy. Furthermore, since the apparatus is configured with a small number of parts, it can be compact and contribute to cost reduction.
  • the present invention there is no frequency dependency of arithmetic processing, and it is possible to reduce the influence of disturbance noise such as magnetic field noise generated by the motor from the input resolver signal and switching noise caused by PWM driving. Therefore, the error in the detection angle of the resolver can be reduced.
  • FIG. 1 is a block diagram showing a configuration of an angle detection apparatus including an RD converter that is a resolver signal conversion apparatus according to the present invention.
  • FIG. 2 is a flowchart showing the flow of resolver signal conversion processing.
  • FIG. 3 is a diagram illustrating a design example of the band-pass filter.
  • FIG. 4A is a design example of the band-pass filter and is a graph showing the amplitude response characteristics of the first band-pass filter.
  • FIG. 4B is a graph showing a phase response characteristic of the first bandpass filter, which is a design example of the bandpass filter.
  • FIG. 5 is a diagram illustrating the waveform of the reference signal, the waveform of the resolver signal, and the waveform of the detection angle signal after demodulation for explaining the process of synchronously rectifying the resolver signal with the reference signal.
  • the resolver signal converter according to the embodiment of the present invention is configured as a resolver-digital converter (hereinafter referred to as “RD converter 1”).
  • RD converter 1 a resolver-digital converter
  • FIG. 1 the configuration of the RD converter 1 is shown as an angle detection device together with the resolver 10 and the excitation signal generator 2.
  • the resolver 10 is arranged in the vicinity of a winding of a motor (not shown), and includes one excitation coil 11 provided on the rotor of the motor, a first detection coil 13 provided on the stator, and a first detection coil 13.
  • the second detection coil 15 is provided.
  • An AC voltage based on the excitation signal generated by the excitation signal generator 2 is supplied from the AC power source 12 to the excitation coil 11.
  • the first detection coil 13 and the second detection coil 15 are arranged around the rotor with the phase shifted by 90 ° in terms of electrical angle around the axis of the rotor.
  • Each of the coils 13 and 15 is connected to a voltmeter 14 and 16 for detecting a voltage generated at both ends thereof and outputting it to the RD converter 1.
  • the excitation signal generator 2 includes a sine wave generation unit 21, a DA conversion unit (digital-analog converter) 22, an amplification unit 23, and a phase correction unit 24.
  • the sine wave generator 21 generates a sinusoidal excitation signal Asin ⁇ t. This excitation signal is input to the DA converter 22 and converted from a digital signal to an analog signal, input to the amplifier 23, amplified, and input to the AC power supply 12 of the resolver 10.
  • the AC power supply 12 to which the excitation signal Asin ⁇ t is input supplies the excitation coil 11 with an excitation voltage based on the excitation signal.
  • the excitation voltage may be directly supplied from the amplifying unit 23 to the excitation coil 11 without using the AC power supply 12.
  • a voltage obtained by modulating the excitation voltage with the rotation angle (detection angle ⁇ ) of the rotor is generated in each of the detection coils 13 and 15 and connected to the first detection coil 13.
  • the first resolver signal S1 is output as the detection signal from the voltmeter 14 and the second resolver signal S2 is output as the detection signal from the voltmeter 16 connected to the second detection coil 15.
  • the resolver signal may be directly input from the coils 13 and 15 to the RD converter 1 without using the voltmeters 14 and 16.
  • k represents a transformation ratio.
  • the RD converter 1 includes a first amplifying unit 31, a second amplifying unit 41, a first AD converting unit (analog-digital converter) 32, a second AD converting unit (analog-digital converter) 42, a first A band pass filter 33, a second band pass filter 43, a first sampling synchronous rectification unit 34, a second sampling synchronous rectification unit 44, an angle calculation unit 35, a delay correction unit 36, and a difference calculation unit 37 are provided. .
  • each component of the RD converter 1 will be described together with a flow of resolver signal conversion processing shown in FIG.
  • the first resolver signal S1 input from the resolver 10 to the RD converter 1 (step S11) is amplified by the first amplification unit 31 (step S12), and the first AD conversion unit 32 converts the analog signal into a digital signal. After being demodulated (step S13), filtered by the first bandpass filter 33 (step S14), and synchronously rectified with the reference signal based on the excitation signal by the first sampling synchronous rectifier 34 (step S15).
  • the detected angle signal (after synchronous rectification) is input to the angle calculator 35 as a sine wave sin ⁇ .
  • the second resolver signal S2 input from the resolver 10 to the RD converter 1 is amplified by the second amplification unit 41 (step S22), and the second AD conversion unit 42 converts the analog signal into a digital signal. It is converted into a signal (step S23), filtered by the second bandpass filter 43 (step S24), synchronously rectified with the reference signal by the second sampling synchronous rectifier 44 (step S25), and after this demodulation (synchronous rectification)
  • the later detected angle signal is input to the angle calculator 35 as a cosine wave cos ⁇ .
  • the first band pass filter 33 attenuates the frequency outside the set pass band in the resolver signal analog-digital converted by the first AD converter 32 and passes only the frequency in the pass band. It is a bandpass filter.
  • the resolver signal input to the first band pass filter 33 includes an offset error while passing through the analog signal processing unit of the first amplification unit 31 and the first AD conversion unit 32.
  • the first band pass filter 33 is provided as one of the objects for solving the problem relating to the offset error. Therefore, since the RD converter 1 includes the first band pass filter 33, correction processing for subtracting the offset amount from the detected resolver signal is not performed.
  • the center frequency of the pass band of the first band pass filter 33 is the frequency of the excitation signal, and the width of the pass band is similarly determined from the frequency characteristics necessary for angle detection, the frequency of noise to be reduced, and the amount of attenuation. That is, the first band pass filter 33 functions to extract only the frequency component output by modulating the excitation signal by the resolver 10 from the resolver signal.
  • FIG. 3 shows an example of a screen display for inputting the setting of the first band pass filter 33.
  • the excitation signal frequency is set to 7.3 kHz
  • the noise frequency is set to 10 kHz
  • the passband width is set to ⁇ 2.3 kHz
  • the passband is set to 5.0 to 9.6 kHz.
  • FIG. 4A is a graph showing the amplitude response characteristics of the first bandpass filter 33, where the vertical axis represents amplitude and the horizontal axis represents frequency. As shown in this figure, in the first band pass filter 33 set as described above, frequencies other than the pass band of 5.0 to 9.6 kHz are attenuated by an attenuation amount of 40 decibels or more.
  • the excitation signal is modulated by the resolver 10 and output to the resolver signal S1 ′ that has passed through the first band pass filter 33.
  • Frequency components are included, and zero and nearby frequency components (DC components) are not included. Therefore, it is not necessary to consider an offset error for the resolver signal S1 'that has passed through the first bandpass filter 33. Further, the resolver signal S1 'that has passed through the first bandpass filter 33 has noise components outside the passband attenuated and removed.
  • both the first resolver signal S1 and the second resolver signal S2 must be filtered with the same characteristics. Therefore, the filter characteristics of the first band-pass filter 33 and the second band-pass filter 43 must be eliminated, and the filter characteristics for both channels must be completely matched.
  • both the first bandpass filter 33 and the second bandpass filter 43 are digital filters, and the same bandpass is set for these bandpass filters 33 and 43. The By using the digital filter in this way, it is possible to eliminate the influence of the variation in the characteristics of the constituent parts of each filter, such as an analog filter, on the angle detection performance.
  • the first sampling synchronous rectifier 34 samples the first resolver signal S1 ′ that has passed through the first band-pass filter 33 in synchronization with the reference signal based on the excitation signal supplied to the AC power supply 12 (resolver 10).
  • the output is rectified and output to the angle calculation unit 35 as a detected angle signal after demodulation.
  • the excitation signal generated by the sine wave generator 21 of the excitation signal generator 2 and supplied to the AC power supply 12 includes a phase delay that occurs while passing through the DA converter 22 and the amplifier 23. Yes.
  • phase lag predicts the phase lag that occurred while passing through the winding of the resolver 10, the first amplifying unit 31, the first AD converting unit 32, and the first band pass filter 33, A signal obtained by delaying the phase of the excitation signal by the phase correction unit 24 by the predicted phase delay is input to the first sampling synchronous rectification unit 34 as a reference signal.
  • FIG. 5 illustrates a process of sampling and rectifying the first resolver signal S1 'by the first sampling synchronous rectification unit 34.
  • 5 shows the waveform (a) of the reference signal Asin ⁇ t input from the excitation signal generator 2 to the first sampling synchronous rectification unit 34.
  • the middle stage of FIG. 5 shows the waveform (b) of the first resolver signal S1 ′ input to the RD converter 1 and passed through the first amplifying unit 31, the first AD converting unit 32, and the first band pass filter 33. ).
  • the lowermost part of FIG. 5 shows the waveform (c) of the detected angle signal after demodulation.
  • the vertical axis represents amplitude and the horizontal axis represents time.
  • the first sampling synchronous rectification unit 34 samples the first resolver signal S1 ′ at the timing at which the amplitude of the reference signal is maximized on the positive side and the negative side, and samples when the amplitude of the reference signal is on the positive side.
  • the first resolver signal S1 ′ thus recorded is recorded as it is, and when the amplitude of the reference signal is negative, the sampled first resolver signal S1 ′ is multiplied by ⁇ 1, and the sign is reversed to be positive and negative.
  • the angle detection signal is created by arranging these records in time series. By sampling-synchronized rectification in this way, the first resolver signal S1 'is sampled at a sampling period twice the frequency of the reference signal.
  • the sampling period is several tens of kHz.
  • the general calculation period of a microcomputer for controlling a motor or the like is often several kHz or less in frequency, and this causes no problem.
  • the reference signal is used for taking the sampling timing, and since the reference signal and the resolver signal are not multiplied, the disturbance noise is not amplified, so that the detection angle signal after demodulation is used. Disturbance noise is less likely to appear, and distortion due to harmonics of the reference signal does not occur in the detected angle signal.
  • step S11 to S15 The configuration and processing (steps S11 to S15) from the first amplifying unit 31 to the first sampling synchronous rectification unit 34 for the first resolver signal S1 described above are the same as those for the second resolver signal S2. Since the configuration from the amplification unit 41 to the second sampling synchronous rectification unit 44 and the processing thereof (steps S21 to S25) are the same, the second amplification unit 41, the second AD conversion unit 42, the second band pass Detailed descriptions of the filter 43 and the second sampling synchronous rectification unit 44 are omitted.
  • the first sampling synchronous rectification unit 34 outputs the sine value kAsin ⁇ of the demodulated detected angle signal to the angle calculation unit 35, whereas the second sampling synchronous rectification unit 44 demodulates the angle calculation unit 35 to the angle calculation unit 35.
  • the cosine value kAcos ⁇ of the detected angle signal is output.
  • the angle calculator 35 calculates the detection angle ⁇ from the arctangent arctan of these detection angle signals (Ste S16).
  • the detected angle ⁇ calculated by the angle calculator 35 includes a phase shift caused by passing through the first band-pass filter 33 or the second band-pass filter 43.
  • FIG. 4B is a graph showing the phase response characteristics of the first bandpass filter 33, where the vertical axis represents the phase and the horizontal axis represents the frequency.
  • the first band pass filter 33 configured using the FIR filter has a phase shift in the pass band, but the phase changes linearly with respect to the frequency.
  • the difference calculation unit 37 that has acquired the detection angle ⁇ output from the angle calculation unit 35 calculates the rotation speed of the rotor from the difference of each of the acquired multiple detection angles ⁇ and delays this as speed data. It outputs to the correction
  • the RD converter 1 having the above configuration has a flat frequency characteristic because it does not have a feedback structure inside. That is, the conventional product including a general tracking loop has frequency dependency because the gain of the loop has frequency characteristics, but the RD converter 1 according to the present invention does not have such frequency dependency. Accordingly, it is possible to reduce an error between the digital angle data (detection angle ⁇ ) output by converting the resolver signal by the RD converter 1 and the actual rotation angle of the rotor.
  • the RD converter 1 configured as described above, at least the first band pass filter 33, the second band pass filter 43, the first sampling synchronous rectification unit 34, the second sampling synchronous rectification unit 44, and the angle calculation unit 35 are It is desirable to be realized by one or more circuits and / or one or more programs configured on one programmable device.
  • the programmable device may include a sine wave generation unit 21 and / or a phase correction unit 24.
  • An example of such a programmable device is FPGA (Field Programmable Gate Array). The calculations performed in each of these calculation units are processed inside one programmable device, thereby enabling high-speed calculation and facilitating adjustment between the respective calculation units.
  • the conventional product of the RD converter is generally provided in combination with the resolver to be used. For this reason, it is often difficult for the user to select the characteristics and shape.
  • the RD converter 1 configured on one chip as described above is configured with a small number of parts, it can be compact and can be mounted with high density, and can further contribute to cost reduction.
  • the resolver signal conversion apparatus and method according to the present invention are not limited to the RD converter 1 described in the above embodiment, and an arithmetic unit for converting a detection angle included in the resolver signal into digital angle data and outputting the digital angle data, and It can be widely used as a circuit. Furthermore, the resolver signal conversion apparatus and method according to the present invention is connected to a detector that outputs a two-phase rotation angle position signal, such as a resolver, a Hall element, and an MR element (magnetoresistance element). The present invention can be applied to a device that converts a detection angle included in a signal into digital angle data and outputs it.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

レゾルバ信号変換装置及び方法において、レゾルバからの正弦波出力を増幅してアナログ-デジタル変換したのち、帯域通過フィルタを通して励磁信号の周波数を中心周波数とする所定の帯域の周波数成分を取り出して、前記励磁信号に基づくリファレンス信号と同期させてサンプリングし、このサンプリングされた信号から検出角度信号の正弦値を作成する。同様にして、レゾルバからの余弦波出力から検出角度信号の余弦値を作成し、検出角度信号の正弦値及び余弦値から検出角度を算出する。これにより、入力されたレゾルバ信号からモータが発生する磁界やPWM駆動によるスイッチングノイズなどの外乱ノイズによる影響を排除し、演算処理の周波数依存性を無くすことによって、検出角度の誤差を低減する。

Description

レゾルバ信号変換装置及び方法
 本発明は、モータ等の回転角度を検出するレゾルバから出力される二相のレゾルバ信号の検出角度をデジタルな出力角度に変換するためのレゾルバ信号変換装置及びレゾルバ信号変換方法に関する。
 従来、レゾルバはモータ等の回転角度を検出するために用いられている。レゾルバは、励磁コイルと検出コイルを備えており、励磁コイルに交流が供給されると、固定子と回転子の相対角度に応じて検出コイルに交流電圧が生じる。この交流電圧が検出コイルに接続された電圧計で検出されてレゾルバ-デジタルコンバータ(RDコンバータ)へ出力される。このRDコンバータでは、入力されたレゾルバ信号に含まれる検出角度をデジタル角度データに変換して出力する。このように、レゾルバとRDコンバータは組み合わせて使用される。
 レゾルバは、通常、モータの近傍に配置される。このため、レゾルバはモータが発生する磁界の影響を強く受け、レゾルバ信号にモータが発生する磁界の影響によるノイズが重畳する。モータが回転しているとき、モータが発生する磁界はその回転に同期した磁界となるため、モータが発生する磁界の影響により重畳するノイズは低周波のノイズとなる。また、近年では、モータはPWM(Pulse Width Modulation)制御された電圧で駆動されていることが多い。このようなPWM駆動されるモータに備えたレゾルバはスイッチングノイズの影響を受けてしまう。このスイッチングノイズは低周波に限らず高周波まで分布していることがある。このようにしてRDコンバータに入力されるレゾルバ信号に外乱ノイズが重畳していると、RDコンバータの動作はその影響を受け、RDコンバータから出力されるデジタル角度出力は、外乱ノイズに起因する角度誤差を含むものとなる。
 これに対し、モータの発生磁界の影響によるノイズを除去できるようにしたRDコンバータが特許文献1で提案されている。このRDコンバータは、角度演算ループ内において励磁信号を参照して同期検波する同期検波回路と該同期検波回路の出力がゼロになるようにデジタル角度出力を制御する制御器との間に、レゾルバ信号に重畳する低周波のノイズ成分を除去する帯域除去フィルタを備えている。なお、この帯域除去フィルタは、励磁周波数10kHzを中心周波数とし帯域幅を2kHz以上として、この帯域の周波数を除去するように設定されている。
特開2009-150826号公報
 特許文献1に記載されたRDコンバータをはじめとして一般的なRDコンバータは、入力角度に対して出力角度をフィードバックし、入力角度と出力角度との偏差が常時ゼロとなるように動作するトラッキングループを採用している。このようなトラッキングループを備えたRDコンバータは或特定の周波数でゲインが増加するという周波数特性を有するため、周波数によっては実際の角度と出力される角度とに誤差が生じることがある。
 本発明は上記に鑑み、演算処理の周波数依存性を無くし、且つ、入力されたレゾルバ信号からモータが発生する磁界などの外乱ノイズによる影響を低減させることによって、レゾルバの検出角度の誤差を低減できるようにしたレゾルバ信号変換装置及びレゾルバ信号変換方法を提供することを目的とする。
 本発明に係るレゾルバ信号変換装置は、レゾルバからの正弦波出力である第一のレゾルバ信号の周波数成分のうち励磁信号の周波数を中心周波数とする所定の帯域を通過させるように設計された第一の帯域通過フィルタと、前記第一の帯域通過フィルタを通過した前記第一のレゾルバ信号を前記励磁信号に基づくリファレンス信号と同期させてサンプリングし、このサンプリングされたレゾルバ信号から検出角度信号の正弦値を作成する第一のサンプリング同期整流部と、前記レゾルバからの余弦波出力である第二のレゾルバ信号の周波数成分のうち前記励磁信号の周波数を中心周波数とする所定の帯域を通過させるように設計された第二の帯域通過フィルタと、前記第二の帯域通過フィルタを通過した前記第二のレゾルバ信号を前記リファレンス信号と同期させてサンプリングし、このサンプリングされたレゾルバ信号から前記検出角度信号の余弦値を作成する第二のサンプリング同期整流部と、前記検出角度信号の正弦値及び余弦値から検出角度を算出する角度演算部とを、備えるものである。
 同様に、本発明に係るレゾルバ信号変換方法は、レゾルバからの正弦波出力である第一のレゾルバ信号を、励磁信号の周波数を中心周波数とする所定の帯域を通過させるように設計された第一の帯域通過フィルタでフィルタリングするステップと、前記第一の帯域通過フィルタを通過した前記第一のレゾルバ信号を前記励磁信号に基づくリファレンス信号と同期させてサンプリングし、このサンプリングされたレゾルバ信号から検出角度信号の正弦値を作成する第一のサンプリング同期整流ステップと、前記レゾルバからの余弦波出力である第二のレゾルバ信号を、前記励磁信号の周波数を中心周波数とする所定の帯域を通過させるように設計された第二の帯域通過フィルタでフィルタリングするステップと、前記第二の帯域通過フィルタを通過した前記第二のレゾルバ信号を前記リファレンス信号と同期させてサンプリングし、このサンプリングされたレゾルバ信号から前記検出角度信号の余弦値を作成する第二のサンプリング同期整流ステップと、前記検出角度信号の正弦値及び余弦値から検出角度を算出するステップとを含むものである。
 上記レゾルバ信号変換装置又は方法によれば、第一又は第二の帯域通過フィルタでレゾルバ信号をフィルタリングすることによって、レゾルバ信号がアナログ信号処理部を通過する間のオフセット誤差を補正する必要が無くなり、検出角度の誤差を低減させることができる。また、第一又は第二の帯域通過フィルタでレゾルバ信号をフィルタリングすることによって、レゾルバ信号から外乱ノイズの周波数成分を減衰させることも可能である。さらに、同期整流においてレゾルバ信号にリファレンス信号を乗じないので、リファレンス信号の高調波や外乱ノイズが増幅されることがなく、検出角度信号へのこれらの影響を低減させることができる。そして、レゾルバ信号の処理においてトラッキングループが存在しないので、周波数依存性がない。よって、このレゾルバ信号変換装置及びレゾルバ信号変換方法によれば、レゾルバの検出角度の誤差を低減することができる。
 前記レゾルバ信号変換装置において、前記第一及び第二のサンプリング同期整流部は、前記リファレンス信号の振幅が正側及び負側でそれぞれ最大となるタイミングで前記第一又は第二のレゾルバ信号を採取し、前記リファレンス信号の振幅が正側である場合は前記採取されたレゾルバ信号をそのまま記録するとともに前記リファレンス信号の振幅が負側である場合は前記採取されたレゾルバ信号の符号を正負で反転させて記録し、或いは、前記リファレンス信号の振幅が負側である場合は前記採取されたレゾルバ信号をそのまま記録するとともに前記リファレンス信号の振幅が正側である場合は前記採取されたレゾルバ信号の符号を正負で反転させて記録し、これらの記録を時系列に並べて前記検出角度信号を作成するように構成されていることがよい。
 同様に、前記レゾルバ信号変換方法において、レゾルバからの正弦波出力である第一のレゾルバ信号を、励磁信号の周波数を中心周波数とする所定の帯域を通過させるように設計された第一の帯域通過フィルタでフィルタリングするステップと、前記第一の帯域通過フィルタを通過した前記第一のレゾルバ信号を前記励磁信号に基づくリファレンス信号と同期させてサンプリングし、このサンプリングされたレゾルバ信号から検出角度信号の正弦値を作成する第一のサンプリング同期整流ステップと、前記レゾルバからの余弦波出力である第二のレゾルバ信号を、前記励磁信号の周波数を中心周波数とする所定の帯域を通過させるように設計された第二の帯域通過フィルタでフィルタリングするステップと、前記第二の帯域通過フィルタを通過した前記第二のレゾルバ信号を前記リファレンス信号と同期させてサンプリングし、このサンプリングされたレゾルバ信号から前記検出角度信号の余弦値を作成する第二のサンプリング同期整流ステップと、前記検出角度信号の正弦値及び余弦値から検出角度を算出するステップとを含むことがよい。
 上記によれば、リファレンス信号の周波数の2倍のサンプリング周期でレゾルバ信号をサンプリングすることができる。サンプリング周期を2倍とすることにより、応答速度(データ更新周期)を上げることができる。
 前記レゾルバ信号変換装置において、前記励磁信号を予測される位相遅れ分で補正し、これを前記リファレンス信号として供給する位相補正部を備えることがよい。これによれば、励磁信号に基づく電流がレゾルバに供給されるまでやレゾルバ信号変換装置に入力されてからサンプリング同期整流部に至るまでの間に生じた位相遅れが補償されたリファレンス信号が供給されるので、より検出精度を高めることができる。
 また、前記レゾルバ信号変換装置において、前記検出角度のサンプリング毎の差分から回転速度を算出する差分演算部と、前記検出角度と前記回転速度とから前記第一又は第二の帯域通過フィルタを通過することに起因する位相の遅延を補正した補正後の検出角度を算出する遅延補正部とを、さらに備えることがよい。
 同様に、前記レゾルバ信号変換方法において、前記検出角度のサンプリング毎の差分から回転速度を算出するステップと、前記回転速度と前記検出角度とから前記第一又は第二の帯域通過フィルタを通過することに起因する位相の遅延を補正した補正後の検出角度を算出するステップとを、さらに含むことがよい。
 上記によれば、第一又は第二の帯域通過フィルタを通過することに起因する位相の遅延を補正して、検出角度の誤差をより低減させることができる。
 また、前記レゾルバ信号変換装置において、前記第一又は第二の帯域通過フィルタに入力される前記第一又は第二のレゾルバ信号を増幅する増幅部と、この増幅されたレゾルバ信号をアナログ信号からデジタル信号に変換して前記第一又は第二の前記帯域通過フィルタに出力するAD変換部とを、さらに備えることがよい。
 さらに、前記レゾルバ信号変換装置において、少なくとも前記第一及び第二の帯域通過フィルタと、前記第一及び第二のサンプリング同期整流部と、前記角度演算部とが、1つのプログラマブルデバイス上に構成されていることがよい。これにより、各演算部で行われる演算がプログラマブルデバイス内部で処理されるのでマイクロコンピュータなどにおけるソフトウエア演算と比較して高速演算が可能となるとともに、各演算部間の調整が容易となる。さらに、少ない部品点数で装置が構成されているのでコンパクトとなってコストダウンに寄与することができる。
 本発明によれば、演算処理の周波数依存性が無く、且つ、入力されたレゾルバ信号からモータが発生する磁界のノイズやPWM駆動されることによるスイッチングノイズなどの外乱ノイズによる影響を低減することができるので、レゾルバの検出角度の誤差を低減することができる。
図1は、本発明に係るレゾルバ信号変換装置であるRDコンバータを備えた角度検出装置の構成を示すブロック図である。 図2は、レゾルバ信号変換処理の流れを示すフローチャートである。 図3は、帯域通過フィルタの設計例を示す図である。 図4Aは、帯域通過フィルタの設計例であって、第一の帯域通過フィルタの振幅応答特性を示したグラフである。 図4Bは、帯域通過フィルタの設計例であって、第一の帯域通過フィルタの位相応答特性を示したグラフである。 図5は、レゾルバ信号をリファレンス信号でサンプリング同期整流する過程を説明するための、リファレンス信号の波形、レゾルバ信号の波形および復調後の検出角度信号の波形を示す図である。
 以下、本発明を実施するための形態について、図面を参照しながら、詳細に説明する。本発明の実施の形態に係るレゾルバ信号変換装置は、レゾルバ-デジタルコンバータ(以下、「RDコンバータ1」という)として構成されている。図1では、このRDコンバータ1の構成が、レゾルバ10及び励磁信号発生器2と共に角度検出装置として示されている。
 レゾルバ10は、モータ(図示せず)の巻線の近傍に配置されており、モータの回転子に設けられた1つの励磁コイル11と、固定子に設けられた第一の検出コイル13及び第二の検出コイル15とを備えている。励磁コイル11には、励磁信号発生器2で生成された励磁信号に基づく交流電圧が交流電源12から供給される。第一の検出コイル13と第二の検出コイル15とは、回転子の周囲において該回転子の軸心を中心として位相を電気角換算で90°ずらして配置されている。各コイル13,15にはその両端に生じる電圧を検出してRDコンバータ1へ出力する電圧計14,16が各々に接続されている。
 励磁信号発生器2は、正弦波発生部21と、DA変換部(デジタル-アナログコンバータ)22と、増幅部23と、位相補正部24とを備えている。正弦波発生部21は、正弦波状の励磁信号Asinωtを発生する。この励磁信号は、DA変換部22に入力されてデジタル信号からアナログ信号に変換され、増幅部23に入力されて増幅され、レゾルバ10の交流電源12に入力される。
 励磁信号Asinωtが入力された交流電源12は、励磁コイル11に該励磁信号に基づく励磁電圧を供給する。なお、交流電源12を介さずに直接に増幅部23から励磁コイル11へ励磁電圧が供給されるように構成してもよい。励磁コイル11に励磁電圧が供給されると、この励磁電圧を回転子の回転角度(検出角度θ)で変調した電圧が各検出コイル13,15に発生し、第一の検出コイル13に接続された電圧計14からその検出信号として第一のレゾルバ信号S1が出力され、第二の検出コイル15に接続された電圧計16からその検出信号として第二のレゾルバ信号S2が出力される。なお、電圧計14,16を介さずに、直接に各コイル13,15からRDコンバータ1へレゾルバ信号が入力されるように構成することもできる。
 第一のレゾルバ信号S1は正弦波sinθに依存し、S1=kAsinωt・sinθで表される。ここで、kは変圧比を表している。一方、第二のレゾルバ信号S2は検出角度θの余弦波cosθに依存し、S2=kAsinωt・cosθで表される。このように、検出角度θに対して正弦波状に振幅が変化する2相の90°ずれたレゾルバ信号がレゾルバ10からRDコンバータ1へ入力され、RDコンバータ1ではこれらのレゾルバ信号が角度データに変換されてデジタル信号として出力される。このように、励磁信号発生器2と、レゾルバ10と、RDコンバータ1とを組み合わせることにより、デジタル角度検出装置として機能することができる。
 (RDコンバータ1の構成)
 続いて、RDコンバータ1の構成について詳細に説明する。RDコンバータ1は、第一の増幅部31、第二の増幅部41、第一のAD変換部(アナログ-デジタルコンバータ)32、第二のAD変換部(アナログ-デジタルコンバータ)42、第一の帯域通過フィルタ33、第二の帯域通過フィルタ43、第一のサンプリング同期整流部34、第二のサンプリング同期整流部44、角度演算部35、遅延補正部36、及び差分演算部37を備えている。以下、RDコンバータ1の各構成要素について、図2に示すレゾルバ信号変換処理の流れとともに説明する。
 レゾルバ10からRDコンバータ1に入力された第一のレゾルバ信号S1は(ステップS11)、第一の増幅部31で増幅され(ステップS12)、第一のAD変換部32でアナログ信号からデジタル信号に変換され(ステップS13)、第一の帯域通過フィルタ33でフィルタリングされ(ステップS14)、第一のサンプリング同期整流部34で励磁信号に基づくリファレンス信号と同期整流され(ステップS15)、この復調後(同期整流後)の検出角度信号が角度演算部35へ正弦波sinθとして入力される。一方、レゾルバ10からRDコンバータ1に入力された第二のレゾルバ信号S2は(ステップS21)、第二の増幅部41で増幅され(ステップS22)、第二のAD変換部42でアナログ信号からデジタル信号に変換され(ステップS23)、第二の帯域通過フィルタ43でフィルタリングされ(ステップS24)、第二のサンプリング同期整流部44でリファレンス信号と同期整流され(ステップS25)、この復調後(同期整流後)の検出角度信号が角度演算部35へ余弦波cosθとして入力される。
 第一の帯域通過フィルタ33は、第一のAD変換部32でアナログ-デジタル変換されたレゾルバ信号のうち、設定された通過帯域の外の周波数を減衰させて、通過帯域の周波数のみを通過させるバンドパスフィルタである。第一の帯域通過フィルタ33に入力されたレゾルバ信号には、第一の増幅部31及び第一のAD変換部32のアナログ信号処理部を通過する間のオフセット誤差が含まれている。第一の帯域通過フィルタ33は、このオフセット誤差に関する問題を解消することを目的の一つとして設けられている。従って、RDコンバータ1では第一の帯域通過フィルタ33を備えることによって、検出されたレゾルバ信号からオフセット量を減算するような補正処理は行われない。
 第一の帯域通過フィルタ33の通過帯域の中心周波数は励磁信号の周波数であり、同じく通過帯域の幅は角度検出に必要な周波数特性と低減させるべきノイズの周波数とその減衰量から決定される。つまり、第一の帯域通過フィルタ33はレゾルバ信号から、レゾルバ10で励磁信号が変調されて出力された周波数成分のみを取り出すように機能する。例えば、図3では第一の帯域通過フィルタ33の設定を入力する画面表示の一例を示している。ここでは、励磁信号の周波数を7.3kHz、ノイズの周波数を10kHz、及び通過帯域の幅を±2.3kHzとそれぞれ設定して、通過帯域を5.0~9.6kHzとしている。そして、この通過帯域外で40デシベル以上の減衰量を確保するためのFIR(Finite Impulse Response)フィルタの次数を83次としている。図4Aは第一の帯域通過フィルタ33の振幅応答特性を示したグラフであって縦軸は振幅を表し横軸は周波数を表している。この図に示されるように、上述のように設定された第一の帯域通過フィルタ33では、通過帯域である5.0~9.6kHz以外の周波数は40デシベル以上の減衰量で減衰される。
 上記第一の帯域通過フィルタ33は、レゾルバ信号の通過帯域の周波数成分を通過させるので、第一の帯域通過フィルタ33を通過したレゾルバ信号S1’には励磁信号がレゾルバ10で変調されて出力された周波数成分が含まれ、ゼロ及びその近傍の周波数成分(直流成分)は含まれない。よって、この第一の帯域通過フィルタ33を通過したレゾルバ信号S1’に対してオフセット誤差を考慮する必要がない。さらに、この第一の帯域通過フィルタ33を通過したレゾルバ信号S1’は、通過帯域の外のノイズ成分が減衰除去されている。
 なお、検出角度精度を確保するためには第一のレゾルバ信号S1と第二のレゾルバ信号S2の両チャンネルを同一の特性でフィルタリングしなければならない。従って、第一の帯域通過フィルタ33と第二の帯域通過フィルタ43のフィルタ特性にバラツキを無くして、両チャンネルに対するフィルタ特性を完全に一致させなければならない。これを実現するために、第一の帯域通過フィルタ33と第二の帯域通過フィルタ43は、いずれもデジタルフィルタが採用され、これらの帯域通過フィルタ33,43に対して同一の帯域通過が設定される。このようにデジタルフィルタを用いることにより、アナログフィルタのように各フィルタの構成部品の特性のバラツキが角度検出性能に与える影響を排除できる。
 第一のサンプリング同期整流部34は、交流電源12(レゾルバ10)へ供給された励磁信号に基づくリファレンス信号と同期させて第一の帯域通過フィルタ33を通過した第一のレゾルバ信号S1’のサンプリングを行って整流し、これを復調後の検出角度信号として角度演算部35へ出力するものである。但し、励磁信号発生器2の正弦波発生部21で生成されて交流電源12へ供給された励磁信号には、DA変換部22及び増幅部23を通過するうちに生じた位相遅れが含まれている。そこで、この位相遅れに加え、レゾルバ10の巻き線、第一の増幅部31、第一のAD変換部32、及び第一の帯域通過フィルタ33を通過するうちに生じた位相遅れを予測し、これらの予測された位相遅れぶんだけ位相補正部24で励磁信号の位相を遅らせたものがリファレンス信号として、第一のサンプリング同期整流部34へ入力される。
 図5では、第一のサンプリング同期整流部34で第一のレゾルバ信号S1’をサンプリング及び整流する過程を説明している。図5の最上段は、励磁信号発生器2から第一のサンプリング同期整流部34へ入力されたリファレンス信号Asinωtの波形(a)を示している。図5の中段は、RDコンバータ1へ入力されて第一の増幅部31と第一のAD変換部32と第一の帯域通過フィルタ33とを通過した第一のレゾルバ信号S1’の波形(b)を示している。図5の最下段は、復調後の検出角度信号の波形(c)を示している。なお、図5では縦軸が振幅、横軸が時間をそれぞれ示している。第一のサンプリング同期整流部34は、リファレンス信号の振幅が正側及び負側でそれぞれ最大となるタイミングで第一のレゾルバ信号S1’を採取し、リファレンス信号の振幅が正側である場合は採取された第一のレゾルバ信号S1’をそのまま記録し、リファレンス信号の振幅が負側である場合は採取された第一のレゾルバ信号S1’に-1を乗じて符号を正負で反転させて記録し、これらの記録を時系列に並べて角度検出信号を作成する。このようにしてサンプリング同期整流されることによって、リファレンス信号の周波数の2倍のサンプリング周期で第一のレゾルバ信号S1’のサンプリングが行われる。なお、一般にリファレンス信号の周波数は数kHzであるため、サンプリング周期は十数kHzになる。このサンプリング周期でサンプリングされた信号は不連続となるが、モータ等の制御を行うマイクロコンピュータの一般的な演算周期は周波数にして数kHz以下であることが多いので、これによる問題は生じない。また、第一のサンプリング同期整流部34では、リファレンス信号はサンプリングのタイミングをとるために利用され、リファレンス信号とレゾルバ信号とが乗算されないことから、外乱ノイズが増幅されないので復調後の検出角度信号に外乱ノイズが表れにくくなり、また、リファレンス信号の高調波による歪みが検出角度信号に生じない。
 以上で説明した第一のレゾルバ信号S1に対する第一の増幅部31から第一のサンプリング同期整流部34までの構成及びその処理(ステップS11~S15)は、第二のレゾルバ信号S2に対する第二の増幅部41から第二のサンプリング同期整流部44までの構成及びその処理(ステップS21~S25)と同様であるので、第二の増幅部41、第二のAD変換部42、第二の帯域通過フィルタ43、及び第二のサンプリング同期整流部44についての詳細な説明は省略する。なお、第一のサンプリング同期整流部34から角度演算部35へ復調後の検出角度信号の正弦値kAsinθが出力されるのに対し、第二のサンプリング同期整流部44から角度演算部35へ復調後の検出角度信号の余弦値kAcosθが出力される。
 そして、上述のように検出角度信号の正弦値kAsinθと、検出角度信号の余弦値kAcosθが入力された角度演算部35は、これらの検出角度信号の逆正接arctanから、検出角度θを算出する(ステップS16)。但し、角度演算部35で算出された検出角度θには、第一の帯域通過フィルタ33又は第二の帯域通過フィルタ43を通ることにより生じた位相のズレが含まれている。図4Bは第一の帯域通過フィルタ33の位相応答特性を示したグラフであって縦軸は位相を表し横軸は周波数を表している。この図に示されるように、FIRフィルタを用いて構成された第一の帯域通過フィルタ33は、その通過帯域において位相ズレが生じているものの位相が周波数に対して直線的に変化しているので、正確な位相補正を行うことが容易である。そこで、角度演算部35から出力された検出角度θを取得した差分演算部37は、取得した複数の検出角度θのサンプリング毎の差分から回転子の回転速度を算出し、これを速度データとして遅延補正部36及び外部へ出力する(ステップS17)。さらに、角度演算部35から出力された検出角度θと差分演算部37から出力された速度データとを取得した遅延補正部36は、第一の帯域通過フィルタ33又は第二の帯域通過フィルタ43を通過することに起因して検出角度θに含まれる位相の遅延を速度データに基づいて補正し、補正された検出角度θをデジタル角度データとして外部へ出力する(ステップS18)。
 上記構成のRDコンバータ1は、内部にフィードバック構造を持たないので、周波数特性が平坦である。つまり、一般的なトラッキングループを備えた従来品は、ループのゲインが周波数特性を有することから周波数依存性を持つが、本発明に係るRDコンバータ1はこのような周波数依存性を持たない。よって、このRDコンバータ1でレゾルバ信号が変換されて出力されたデジタル角度データ(検出角度θ)と実際の回転子の回転角度との誤差を低減することができる。
 なお、上記構成のRDコンバータ1において少なくとも第一の帯域通過フィルタ33、第二の帯域通過フィルタ43、第一のサンプリング同期整流部34、第二のサンプリング同期整流部44、及び角度演算部35は1つのプログラマブルデバイス上に構成された1以上の回路及び/又は1以上のプログラムで実現されることが望ましい。さらに、このプログラマブルデバイスは正弦波発生部21及び/又は位相補正部24を含めることもできる。このようなプログラマブルデバイスとして、例えば、FPGA(Field Programmable Gate Array)を挙げることができる。これらの各演算部で行われる演算が1つのプログラマブルデバイス内部で処理されることにより高速演算が可能となるとともに、各演算器間の調整が容易となる。なお、RDコンバータの従来品は、使用するレゾルバと組み合わされて提供されることが一般的であり、このためにユーザがその特性や形状を選択することが難しい場合が多かった。特定のレゾルバと組み合わされない汎用のRDコンバータの従来品もあるが、この場合は外付けの部品が多く設定や調整が煩雑となっていた。いずれにしても、RDコンバータの従来品は高密度実装が要求される昨今の事情にそぐわないものであった。これに対し、上記のようにワンチップの上に構成されたRDコンバータ1は、少ない部品点数で構成されるのでコンパクトとなって高密度実装が可能となり、さらにコストダウンに寄与することができる。
 本発明に係るレゾルバ信号変換装置及び方法は、上記実施例に記載されたRDコンバータ1に限定されず、レゾルバ信号に含まれる検出角度をデジタルな角度データに変換して出力するための演算器及び回路として広く利用することができる。さらに、本発明に係るレゾルバ信号変換装置及び方法は、レゾルバ、ホール素子、及びMR素子(磁気抵抗素子)などの2相の回転角度位置信号を出力する検出器に接続されて、この回転角度位置信号に含まれる検出角度をデジタルな角度データに変換して出力する装置に応用させることができる。
 1 RDコンバータ(レゾルバ信号変換装置)
 2 励磁信号発生器
 10 レゾルバ
 11 励磁コイル
 12 交流電源
 13 第一の検出コイル
 14 電圧計
 15 第二の検出コイル
 16 電圧計
 21 正弦波発生部
 22 DA変換部
 23 増幅部
 24 位相補正部
 31 第一の増幅部
 32 第一のAD変換部
 33 第一の帯域通過フィルタ
 34 第一のサンプリング同期整流部
 35 角度演算部
 36 遅延補正部
 37 差分演算部
 41 第二の増幅部
 42 第二のAD変換部
 43 第二の帯域通過フィルタ
 44 第二のサンプリング同期整流部

Claims (9)

  1.  レゾルバからの正弦波出力である第一のレゾルバ信号の周波数成分のうち励磁信号の周波数を中心周波数とする所定の帯域を通過させるように設計された第一の帯域通過フィルタと、
     前記第一の帯域通過フィルタを通過した前記第一のレゾルバ信号を前記励磁信号に基づくリファレンス信号と同期させてサンプリングし、このサンプリングされたレゾルバ信号から検出角度信号の正弦値を作成する第一のサンプリング同期整流部と、
     前記レゾルバからの余弦波出力である第二のレゾルバ信号の周波数成分のうち前記励磁信号の周波数を中心周波数とする所定の帯域を通過させるように設計された第二の帯域通過フィルタと、
     前記第二の帯域通過フィルタを通過した前記第二のレゾルバ信号を前記リファレンス信号と同期させてサンプリングし、このサンプリングされたレゾルバ信号から前記検出角度信号の余弦値を作成する第二のサンプリング同期整流部と、
     前記検出角度信号の正弦値及び余弦値から検出角度を算出する角度演算部とを、
     備えるレゾルバ信号変換装置。
  2.  前記第一及び第二のサンプリング同期整流部は、
     前記リファレンス信号の振幅が正側及び負側でそれぞれ最大となるタイミングで前記第一又は第二のレゾルバ信号を採取し、
     前記リファレンス信号の振幅が正側である場合は前記採取されたレゾルバ信号をそのまま記録するとともに前記リファレンス信号の振幅が負側である場合は前記採取されたレゾルバ信号の符号を正負で反転させて記録し、
     或いは、前記リファレンス信号の振幅が負側である場合は前記採取されたレゾルバ信号をそのまま記録するとともに前記リファレンス信号の振幅が正側である場合は前記採取されたレゾルバ信号の符号を正負で反転させて記録し、
     これらの記録を時系列に並べて前記検出角度信号を作成するように構成されている、請求項1に記載のレゾルバ信号変換装置。
  3.  前記励磁信号を予測される位相遅れ分で補正し、これを前記リファレンス信号として供給する位相補正部を備える、請求項1に記載のレゾルバ信号変換装置。
  4.  前記検出角度のサンプリング毎の差分から回転速度を算出する差分演算部と、
     前記検出角度と前記回転速度とから前記第一又は第二の帯域通過フィルタを通過することに起因する位相の遅延を補正した補正後の検出角度を算出する遅延補正部とを、さらに備える請求項1に記載のレゾルバ信号変換装置。
  5.  前記第一又は第二の帯域通過フィルタに入力される前記第一又は第二のレゾルバ信号を増幅する増幅部と、この増幅されたレゾルバ信号をアナログ信号からデジタル信号に変換して前記第一又は第二の前記帯域通過フィルタに出力するAD変換部とを、さらに備える請求項1に記載のレゾルバ信号変換装置。
  6.  少なくとも前記第一及び第二の帯域通過フィルタと、前記第一及び第二のサンプリング同期整流部と、前記角度演算部とが、1つのプログラマブルデバイス上に構成されている、請求項1に記載のレゾルバ信号変換装置。
  7.  レゾルバからの正弦波出力である第一のレゾルバ信号を、励磁信号の周波数を中心周波数とする所定の帯域を通過させるように設計された第一の帯域通過フィルタでフィルタリングするステップと、
     前記第一の帯域通過フィルタを通過した前記第一のレゾルバ信号を前記励磁信号に基づくリファレンス信号と同期させてサンプリングし、このサンプリングされたレゾルバ信号から検出角度信号の正弦値を作成する第一のサンプリング同期整流ステップと、
     前記レゾルバからの余弦波出力である第二のレゾルバ信号を、前記励磁信号の周波数を中心周波数とする所定の帯域を通過させるように設計された第二の帯域通過フィルタでフィルタリングするステップと、
     前記第二の帯域通過フィルタを通過した前記第二のレゾルバ信号を前記リファレンス信号と同期させてサンプリングし、このサンプリングされたレゾルバ信号から前記検出角度信号の余弦値を作成する第二のサンプリング同期整流ステップと、
     前記検出角度信号の正弦値及び余弦値から検出角度を算出するステップとを、
     含むレゾルバ信号変換方法。
  8.  前記第一及び前記第二のサンプリング同期整流ステップは、
     前記リファレンス信号の振幅が正側及び負側でそれぞれ最大となるタイミングで前記第一又は第二のレゾルバ信号を採取するステップと、
     前記リファレンス信号の振幅が正側である場合は前記採取されたレゾルバ信号をそのまま記録するとともに前記リファレンス信号の振幅が負側である場合は前記採取されたレゾルバ信号の符号を正負で反転させて記録する、或いは、前記リファレンス信号の振幅が負側である場合は前記採取されたレゾルバ信号をそのまま記録するとともに前記リファレンス信号の振幅が正側である場合は前記採取されたレゾルバ信号の符号を正負で反転させて記録するステップと、
     これらの記録を時系列に並べて前記検出角度信号を作成するステップとを、各々に含む請求項7に記載のレゾルバ信号変換方法。
  9.  前記検出角度のサンプリング毎の差分から回転速度を算出するステップと、
     前記回転速度と前記検出角度とから前記第一又は第二の帯域通過フィルタを通過することに起因する位相の遅延を補正した補正後の検出角度を算出するステップとを、さらに含む請求項7に記載のレゾルバ信号変換方法。
PCT/JP2010/007552 2010-01-07 2010-12-27 レゾルバ信号変換装置及び方法 WO2011083550A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080034857.5A CN102472640B (zh) 2010-01-07 2010-12-27 旋转变压器信号转换装置以及方法
EP10842070.4A EP2522958B1 (en) 2010-01-07 2010-12-27 Resolver signal conversion device and method
US13/201,403 US8825440B2 (en) 2010-01-07 2010-12-27 Resolver signal converter and resolver signal conversion method
KR1020117019824A KR101322070B1 (ko) 2010-01-07 2010-12-27 리졸버 신호 변환 장치 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010002200A JP5422401B2 (ja) 2010-01-07 2010-01-07 レゾルバ信号変換装置及び方法
JP2010-002200 2010-01-07

Publications (1)

Publication Number Publication Date
WO2011083550A1 true WO2011083550A1 (ja) 2011-07-14

Family

ID=44305296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007552 WO2011083550A1 (ja) 2010-01-07 2010-12-27 レゾルバ信号変換装置及び方法

Country Status (6)

Country Link
US (1) US8825440B2 (ja)
EP (1) EP2522958B1 (ja)
JP (1) JP5422401B2 (ja)
KR (1) KR101322070B1 (ja)
CN (1) CN102472640B (ja)
WO (1) WO2011083550A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207800A1 (ja) * 2017-05-11 2018-11-15 太陽誘電株式会社 レゾルバ信号の演算処理装置
CN109540446A (zh) * 2018-11-06 2019-03-29 西安航天动力测控技术研究所 基于时域冲击面积的固体发动机跌落式冲击试验数据处理方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799327B2 (ja) * 2011-09-29 2015-10-21 多摩川精機株式会社 インターフェース回路
KR101262274B1 (ko) 2011-11-16 2013-05-08 현대자동차주식회사 차량용 엔진오일순환장치
DE102011055717B4 (de) 2011-11-25 2015-07-23 Dr. Fritz Faulhaber Gmbh & Co. Kg Verfahren und Anordnung zur Bestimmung des dynamischen Zustands eines Elektromotors
JP5739825B2 (ja) * 2012-01-04 2015-06-24 日立オートモティブシステムズ株式会社 Rd変換器の診断装置、ステアリングシステム、パワートレインシステム
CN104169687B (zh) * 2012-03-16 2016-08-24 三菱电机株式会社 角度检测装置
JP5733250B2 (ja) * 2012-03-27 2015-06-10 株式会社デンソー 位置検出装置
JP5733251B2 (ja) 2012-03-27 2015-06-10 株式会社デンソー 位置検出装置
JP5821764B2 (ja) * 2012-04-16 2015-11-24 株式会社デンソー 位置検出装置
JP5601339B2 (ja) * 2012-04-19 2014-10-08 日本精工株式会社 位置検出装置
KR101335162B1 (ko) * 2012-11-19 2013-12-02 한밭대학교 산학협력단 레졸버를 위한 위치 오차 보정 장치 및 보정 방법
CN103116076B (zh) * 2013-03-07 2018-10-30 苏州朗高电机有限公司 一种旋转变压器零位测试仪
US9059732B2 (en) * 2013-03-21 2015-06-16 Hamilton Sundstrand Corporation Resolver-to-digital converter
JP6013963B2 (ja) * 2013-03-29 2016-10-25 日立オートモティブシステムズ株式会社 診断装置
JP6221307B2 (ja) * 2013-04-02 2017-11-01 株式会社ジェイテクト 回転角検出装置及び電動パワーステアリング装置
JPWO2015029427A1 (ja) * 2013-08-30 2017-03-02 パナソニックIpマネジメント株式会社 角度位置検出装置
US10317245B2 (en) * 2014-01-27 2019-06-11 Ford Global Technologies, Llc Resolver excitation frequency scheduling for noise immunity
AU2015335646B2 (en) * 2014-10-24 2018-11-08 Moog Inc. Position sensor assembly
EP3056867B1 (en) * 2015-02-16 2017-06-21 Visedo Oy A device for producing a rotational position signal and a method for producing rotational position signals
US10315530B2 (en) 2015-04-16 2019-06-11 Hyundai Motor Company System and method for reducing speed ripple of drive motor of electric vehicle
JP6532791B2 (ja) * 2015-09-10 2019-06-19 株式会社東芝 Ad変換回路、パイプラインad変換器、及び無線通信装置
CN105490461B (zh) * 2015-12-24 2017-12-15 合肥工业大学 电机转角检测装置与检测方法
US9843335B2 (en) * 2015-12-29 2017-12-12 Schweitzer Engineering Laboratories, Inc. Supervision of input signal channels
CN105526954B (zh) * 2016-01-15 2017-10-17 中工科安科技有限公司 一种磁阻式旋转变压器的信号处理方法
CN105547335B (zh) * 2016-01-15 2017-10-27 中工科安科技有限公司 一种磁阻式旋转变压器的信号处理系统
US9897469B2 (en) * 2016-01-26 2018-02-20 GM Global Technology Operations LLC Resolver phase compensation
EP3232164B1 (en) * 2016-04-13 2018-12-19 ams AG Position sensor and method for generating a sensor output signal
CN107063075B (zh) * 2017-05-27 2023-05-26 苏州昱泽智能科技有限公司 一种角度检测设备
KR102506930B1 (ko) * 2018-03-19 2023-03-07 현대자동차 주식회사 레졸버 신호 제어 장치 및 그 방법
US10913550B2 (en) 2018-03-23 2021-02-09 The Boeing Company System and method for position and speed feedback control
US10830591B2 (en) 2018-03-23 2020-11-10 The Boeing Company System and method for dual speed resolver
US10911061B2 (en) * 2018-03-23 2021-02-02 The Boeing Company System and method for demodulation of resolver outputs
KR102051820B1 (ko) * 2018-07-17 2019-12-04 국방과학연구소 비동기 리졸버 회전각 검출기 및 이의 방법
KR102575175B1 (ko) * 2018-07-27 2023-09-05 현대자동차 주식회사 레졸버 출력 신호 정류 장치 및 그 방법
JP6939754B2 (ja) * 2018-11-22 2021-09-22 Tdk株式会社 角度センサおよび角度センサシステム
WO2020178904A1 (ja) * 2019-03-01 2020-09-10 東芝三菱電機産業システム株式会社 レゾルバ信号処理装置、ドライブ装置、レゾルバ信号処理方法、及びプログラム
CN109946540B (zh) * 2019-03-21 2021-04-16 西安联飞智能装备研究院有限责任公司 一种正余弦旋转变压器的检测电路及检测方法
JP6791515B1 (ja) * 2019-10-16 2020-11-25 多摩川精機株式会社 回転機器制御システム及びエンコーダ
JP2021096198A (ja) * 2019-12-19 2021-06-24 多摩川精機株式会社 R/d変換方法及びr/d変換器
US11360133B2 (en) * 2019-12-20 2022-06-14 Hamilton Sundstrand Corporation Sinusoidal harmonic nulling
CN113359026A (zh) * 2020-03-06 2021-09-07 比亚迪股份有限公司 电机参数诊断装置及系统
US11177987B1 (en) * 2020-10-27 2021-11-16 Infineon Technologies Ag Resolver signal processing
US11353337B2 (en) * 2020-11-03 2022-06-07 Semiconductor Components Industries, Llc Offset cancel systems and methods for resolver-type sensors
KR102415786B1 (ko) * 2020-12-09 2022-07-04 현대모비스 주식회사 신호 처리 장치 및 방법, 레졸버 반도체
CN113949225B (zh) * 2021-10-15 2022-10-25 深圳市海浦蒙特科技有限公司 一种正余弦编码器的信号处理装置
CN114280404B (zh) * 2021-12-24 2024-02-06 北京七星飞行电子有限公司 一种斯科特变压器的角分测试系统及测试方法
CN114508995A (zh) * 2022-01-20 2022-05-17 中国航空工业集团公司北京长城计量测试技术研究所 一种电阻应变测量仪的阶跃响应特性校准装置及方法
WO2023147014A1 (en) * 2022-01-27 2023-08-03 Microchip Technology Incorporated Compensation of sine-cosine coil mismatches in inductive sensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350717A (ja) * 1986-08-20 1988-03-03 Mitsubishi Chem Ind Ltd 移動量計測装置
JP2006177750A (ja) * 2004-12-22 2006-07-06 Toyota Motor Corp 回転角検出装置のための異常検出装置
JP2007248246A (ja) * 2006-03-15 2007-09-27 Omron Corp レゾルバ信号処理装置
JP2009150826A (ja) * 2007-12-21 2009-07-09 Japan Aviation Electronics Industry Ltd Rdコンバータ及び角度検出装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3328999B2 (ja) 1993-05-26 2002-09-30 株式会社安川電機 絶対位置検出器
JP3216491B2 (ja) * 1995-09-08 2001-10-09 トヨタ自動車株式会社 レゾルバ異常検出装置及び方法
DE19841763C1 (de) * 1998-09-11 2000-02-10 Texas Instruments Deutschland Verfahren zur digitalen Auswertung der analogen Ausgangssignale eines Resolvers
JP2003153496A (ja) 2001-11-12 2003-05-23 Matsushita Electric Ind Co Ltd モータ制御装置
EP1324008A1 (de) 2001-12-19 2003-07-02 ZF Sachs AG Verfahren und Vorrichtung zur Demodulierung amplitudenmodulierter Signale, insbesondere von von einem Resolver gelieferten Ausgangssignalen
JP2003235285A (ja) * 2002-02-08 2003-08-22 Denso Corp 三相ブラシレスdcモータの回転方向検出装置
DE10219678C1 (de) 2002-05-02 2003-06-26 Balluff Gmbh Induktiver Wegmessaufnehmer mit einen passiven Resonanzkreis aufweisendem Messkopf
KR20070116850A (ko) * 2005-03-04 2007-12-11 래비트 조인트 벤처 리미티드 신호 처리와 위치 결정 장치 및 방법
JP4627746B2 (ja) * 2005-07-19 2011-02-09 日立オートモティブシステムズ株式会社 位相検出回路及びこれを用いたレゾルバ/デジタル変換器並びに制御システム
JP4674516B2 (ja) * 2005-09-27 2011-04-20 株式会社デンソー 同期モータの磁極位置推定方法
US20090060687A1 (en) * 2007-08-28 2009-03-05 White John M Transfer chamber with rolling diaphragm
JP5266783B2 (ja) * 2008-02-18 2013-08-21 日本精工株式会社 回転角検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350717A (ja) * 1986-08-20 1988-03-03 Mitsubishi Chem Ind Ltd 移動量計測装置
JP2006177750A (ja) * 2004-12-22 2006-07-06 Toyota Motor Corp 回転角検出装置のための異常検出装置
JP2007248246A (ja) * 2006-03-15 2007-09-27 Omron Corp レゾルバ信号処理装置
JP2009150826A (ja) * 2007-12-21 2009-07-09 Japan Aviation Electronics Industry Ltd Rdコンバータ及び角度検出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207800A1 (ja) * 2017-05-11 2018-11-15 太陽誘電株式会社 レゾルバ信号の演算処理装置
CN109540446A (zh) * 2018-11-06 2019-03-29 西安航天动力测控技术研究所 基于时域冲击面积的固体发动机跌落式冲击试验数据处理方法
CN109540446B (zh) * 2018-11-06 2020-07-03 西安航天动力测控技术研究所 基于时域冲击面积的固体发动机跌落式冲击试验处理方法

Also Published As

Publication number Publication date
KR101322070B1 (ko) 2013-10-28
EP2522958B1 (en) 2016-08-17
JP5422401B2 (ja) 2014-02-19
CN102472640A (zh) 2012-05-23
EP2522958A1 (en) 2012-11-14
US20120010849A1 (en) 2012-01-12
US8825440B2 (en) 2014-09-02
EP2522958A4 (en) 2014-07-23
CN102472640B (zh) 2014-12-24
JP2011141207A (ja) 2011-07-21
KR20110119756A (ko) 2011-11-02

Similar Documents

Publication Publication Date Title
JP5422401B2 (ja) レゾルバ信号変換装置及び方法
EP2073390B1 (en) R/D converter and angle detecting apparatus
US9816514B2 (en) Magnetic bearing device and vacuum pump
JP5173962B2 (ja) レゾルバ/デジタル変換装置およびレゾルバ/デジタル変換方法
JP2000088507A (ja) レゾルバからのアナログ出力信号をデジタル評価するための方法
US9068861B2 (en) Resolver interface
US20120256773A1 (en) Resolver digital converter
US10367521B2 (en) Signal processor and control apparatus
US20200341447A1 (en) Semiconductor device, motor control system, and error detection method
JP7391341B2 (ja) 電気角取得システム、電気角取得方法および電気角取得プログラム
CN107342711A (zh) 控制设备
JP2011099828A (ja) 信号処理回路
JPH0558489B2 (ja)
JP6788512B2 (ja) 制御装置
JP5895680B2 (ja) 信号処理装置
JP2014122885A (ja) 角度検出装置
JP6432037B2 (ja) レゾルバの角度位置検出装置
JP7108231B2 (ja) 回転角度検出装置及び電動機駆動システム
JP6022817B2 (ja) バリアブルリラクタンス型レゾルバ及び回転角検出装置
RU2365032C1 (ru) Цифровой преобразователь угла
JP7490906B1 (ja) レゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラム
JP2003344106A (ja) 回転角度検出装置
JPH08285636A (ja) 回転角度検出器
JPH0266407A (ja) 磁気レゾルバの制御回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034857.5

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2010842070

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010842070

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117019824

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13201403

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE