WO2011078100A1 - 3級アミンの製造方法 - Google Patents

3級アミンの製造方法 Download PDF

Info

Publication number
WO2011078100A1
WO2011078100A1 PCT/JP2010/072845 JP2010072845W WO2011078100A1 WO 2011078100 A1 WO2011078100 A1 WO 2011078100A1 JP 2010072845 W JP2010072845 W JP 2010072845W WO 2011078100 A1 WO2011078100 A1 WO 2011078100A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
reaction
catalyst
amine
tertiary amine
Prior art date
Application number
PCT/JP2010/072845
Other languages
English (en)
French (fr)
Inventor
西村徹
野村航
高橋雄伸
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to BR112012015104-5A priority Critical patent/BR112012015104A2/pt
Priority to CN201080052769.8A priority patent/CN102630223B/zh
Priority to DE112010004959T priority patent/DE112010004959B4/de
Priority to US13/514,254 priority patent/US8481787B2/en
Publication of WO2011078100A1 publication Critical patent/WO2011078100A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J35/58
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present invention relates to a method for producing a tertiary amine.
  • Aliphatic amines made from beef tallow, coconut oil, palm oil, etc. are important intermediates in the household and industrial fields.
  • aliphatic tertiary amines are derived from quaternary ammonium salts and used for a wide range of applications such as fiber softeners, antistatic agents, rinse bases and the like.
  • a method for producing a tertiary amine a method for producing a corresponding tertiary amine by reacting an alcohol with a primary or secondary amine in the presence of a catalyst is known.
  • a secondary amine is used as a starting material, and the corresponding tertiary amine, that is, one hydrogen atom bonded to the nitrogen atom of the secondary amine is an alcohol-derived alkyl and / or alkenyl group.
  • the mono-substituted tertiary amine substituted with is produced, there is a problem that a by-product is generated and the yield of the product is lowered.
  • a primary amine or ammonia generated by a side reaction of a secondary amine as a raw material is a tertiary amine generated by participating in a reaction with an alcohol, that is, an alkyl and / or alkenyl derived from a raw alcohol.
  • an alcohol that is, an alkyl and / or alkenyl derived from a raw alcohol.
  • Examples include di-substituted compounds in which two groups are bonded to a nitrogen atom and tri-substituted tertiary amines in which three groups are bonded. In order to improve the yield of the intended tertiary amine, it is important to suppress the generation of these by-products.
  • Japanese Patent Laid-Open No. 61-15865 discloses a copper-nickel-group 8 (meaning the former IUPAC group VIII and corresponding to the current IUPAC group 8 to 10) platinum group element catalyst with a tertiary amine. A method of obtaining is disclosed.
  • alcohol and primary amine are reacted in the presence of a catalyst to produce a tertiary amine, and then alcohol and secondary amine are reacted in the presence of the catalyst used in the reaction.
  • the present invention relates to a method for producing a secondary amine.
  • the present invention provides a method for producing a corresponding tertiary amine with high efficiency using alcohol and secondary amine as raw materials.
  • the target tertiary amine can be produced with high efficiency.
  • FIG. 1 is a schematic diagram showing an example of a circulating fixed bed reactor used in the present invention.
  • FIG. 2 is a schematic diagram showing an example of a stirred tank reactor used in the present invention.
  • the starting alcohol used in the present invention is preferably a linear or branched, saturated or unsaturated aliphatic alcohol having 8 to 36 carbon atoms, such as octyl alcohol, decyl alcohol, lauryl alcohol, Examples include myristyl alcohol, stearyl alcohol, behenyl alcohol, oleyl alcohol and the like, and mixed alcohols thereof, Ziegler alcohol obtained by the Ziegler method, oxo alcohol and Gerve alcohol obtained by the oxo method.
  • the primary amine used as a raw material in the present invention is preferably an aliphatic primary amine, and examples thereof include those having 1 to 18 carbon atoms and 1 to 4 alkyl groups, such as monomethylamine, monoethylamine, And dodecylamine. Of these, primary amines selected from monomethylamine and monoethylamine are preferred.
  • the secondary amine used as a raw material in the present invention is preferably an aliphatic secondary amine, and examples thereof include those having two alkyl groups having 1 to 18 carbon atoms and 1 to 4 carbon atoms, such as dimethylamine, diethylamine, didodecyl. An amine etc. are mentioned. Of these, secondary amines selected from dimethylamine and diethylamine are preferred.
  • the hydrogen atom bonded to the nitrogen atom of the primary or secondary amine is substituted with an alcohol-derived alkyl and / or alkenyl group.
  • the corresponding tertiary amine obtained from lauryl alcohol and dimethylamine is N-dodecyl-N, N-dimethylamine. This is because the tertiary amines N, N-didodecyl-N-methylamine and N, N, N-tridodecyl which are by-produced when methylamine and ammonia produced by the side reaction of dimethylamine react with lauryl alcohol, respectively. Differentiated from amines.
  • the catalyst used in the present invention is not particularly limited as long as it can produce a tertiary amine by reacting a primary amine or secondary amine with an alcohol, and a known one can be used.
  • a Cu-based metal or the like can be preferably used.
  • Cu alone or a material containing two or more components including a transition metal element such as Cr, Co, Ni, Fe, Mn, or the like may be used.
  • a transition metal element such as Cr, Co, Ni, Fe, Mn, or the like
  • those obtained by further supporting these on silica, alumina, titania, zeolite and the like can be mentioned.
  • the catalyst used in the present invention preferably contains Cu and / or Ni.
  • the specific composition includes Cu, Ni, and one or more elements selected from Pt, Pd, Ru, and Rh as platinum group elements of Group 8 to 10, and the molar ratio of metal atoms is Cu: Ni. Is from 1: 9 to 9: 1, and the platinum group elements of Group 8 to 10 have a molar ratio of 0.0001 to 0.1 with respect to the total of Cu and Ni. It is preferable from the viewpoint of selectivity and high durability.
  • the form of the catalyst various types such as a fixed catalyst such as granular or powder, pellet, noodle, honeycomb, monolith, etc. can be used.
  • the granular or powdery catalyst can be used by being suspended in a fluid containing the raw material.
  • the immobilized catalyst can be used by being filled in a reactor to which a fluid containing a raw material is supplied.
  • a film-type catalyst can be suitably used.
  • the film-type catalyst include those described in Patent Document 2. That is, unlike the conventional irregular packing type having a size of several millimeters, it refers to a catalyst in the form of a thin film having a thickness of 500 ⁇ m or less. If a film-type catalyst is used, the target tertiary amine can be efficiently produced by a simple process that does not require a catalyst separation operation.
  • a method for producing a film-type catalyst a method in which a coating material containing a powdery catalyst active material and a binder such as a synthetic resin for immobilizing the catalyst is formed on a support is preferably used. It is done.
  • the thickness of the film-type catalyst is preferably not more than 100 ⁇ m and more preferably not more than 50 ⁇ m because it not only suppresses the overreaction of the intermediate reactant inside the catalyst body but also increases the reaction activity per catalyst mass. Further, the lower limit of the thickness is preferably 0.01 ⁇ m or more, and more preferably 1 ⁇ m or more in order to ensure the strength of the catalyst layer and obtain durability of the strength.
  • a tubular flow reactor for example, a tubular flow reactor, a tank reactor, or the like can be given.
  • a flow system that continuously recovers the product while supplying the reactant to the immobilized catalyst inside the tube, or a particulate or powdered catalyst suspension fluid containing the reactant is supplied to and passed through the tube.
  • the reaction can be progressed continuously or batchwise by single circulation or circulation supply.
  • a fluid containing an internal reactant can be mixed by stirring or the like, and the reaction can be allowed to proceed continuously or batchwise.
  • a reduction treatment for reducing and activating the catalyst can be suitably performed prior to the reaction between the alcohol and the primary or secondary amine.
  • the reduction of the catalyst is preferably performed by supplying hydrogen gas to the reactor in which the catalyst is charged, and it is more preferable to perform the reduction in the presence of the raw material alcohol.
  • a raw material alcohol in which a granular or powdered catalyst is suspended is charged into a reactor, and reduction is performed while hydrogen gas is supplied to the reactor.
  • a hydrogen gas and a raw alcohol are loaded into a reactor loaded with a film-type catalyst.
  • a method in which the raw material alcohol is charged into a reactor loaded with a film-type catalyst and then reduced while supplying hydrogen gas.
  • the conditions for reacting alcohol in the presence of a catalyst vary depending on the type of reactant, product and catalyst.
  • the reactant may be present in the gas phase or in the liquid phase.
  • a gas inert to the amination reaction such as nitrogen or a rare gas may be supplied.
  • the amount of primary or secondary amine in the gas excluding the generated water exhausted outside the reaction system is preferably 50% by volume or less (vs. exhaust gas), and 30% by volume or less. Is more desirable. It is desirable that the pressure in the system does not increase significantly beyond normal pressure.
  • the reaction temperature varies depending on the type of catalyst, but it is preferable to carry out the reaction at a temperature of 150 to 300 ° C.
  • the progress of the reaction can be promoted and the activity of the catalyst can be maintained.
  • the progress of the reaction can be followed by, for example, a gas chromatograph.
  • a tertiary amine prior to producing a tertiary amine by reacting an alcohol with a secondary amine in the presence of a catalyst, a tertiary amine is produced by reacting the alcohol with a primary amine in the presence of the catalyst.
  • a tertiary amine is produced by reacting the alcohol with a primary amine in the presence of the catalyst.
  • the starting alcohol may be the same type of compound as that used in the subsequent reaction with the secondary amine, Different types of compounds may be used. It is desirable that the produced tertiary amine of the di-substituted product can be effectively used as a product, and an alcohol capable of supplying an alkyl and / or alkenyl group therefor can be appropriately selected.
  • the charged molar ratio of the both is 0.5 to 3, more preferably 0.5 to 1.5 as the primary amine / alcohol, and the reaction temperature is from 100 to 250 ° C., further 180 to 230 ° C., reaction pressure atmospheric pressure to 10 atmospheric pressure, further atmospheric pressure to 5 atmospheric pressure, reaction time 1 to 10 hours, further 2 to 8 hours, particularly 2 to 7 hours.
  • the catalyst includes Cu, Ni, and one or more elements selected from Pt, Pd, Ru, and Rh as the group 8 to 10 platinum group elements, and the molar ratio of metal atoms is Cu: Ni.
  • the platinum group elements of Group 8 to 10 have a molar ratio of 0.0001 to 0.1 with respect to the total of Cu and Ni, preferably a film type catalyst.
  • it may be used in an amount of 0.1 to 10% by mass with respect to the amount of raw material alcohol charged.
  • the charged molar ratio of the both is 1 to 5 and further 1 to 3 for the secondary amine / alcohol
  • the reaction temperature is 100 to 250 ° C., and further 180 to 230 ° C.
  • the reaction pressure is from atmospheric pressure to 10 atmospheric pressure, further from atmospheric pressure to 5 atmospheric pressure
  • the reaction time is from 1 to 10 hours, and further from 2 to 6 hours.
  • the catalyst includes Cu, Ni, and one or more elements selected from Pt, Pd, Ru, and Rh as the group 8 to 10 platinum group elements, and the molar ratio of metal atoms is Cu: Ni.
  • a tertiary amine (A) is produced by reacting an alcohol with a primary amine in the presence of a catalyst, and another alcohol and secondary amine separately prepared using the catalyst used in the reaction are reacted with each other.
  • the target tertiary amine (B) is produced by reaction.
  • the tertiary amine (A) is one in which two alcohol hydrocarbon groups are introduced, and the tertiary amine (B) is one in which one alcohol hydrocarbon group is introduced.
  • the subsequent reaction of the alcohol and the secondary amine may be carried out using not only the catalyst but also the same reaction equipment as it is, or only the catalyst is recovered.
  • the reaction may be carried out in a separate reaction facility.
  • the catalyst may be recovered and used in whole, or only a part may be used.
  • the catalyst used separately in the reaction of alcohol and primary amine divided into several times can be recovered to make a masterbatch, and the reaction of alcohol and secondary amine can be carried out using part or all of the masterbatch. Good.
  • reaction batch size or the series of continuous reaction amount and required catalyst amount, tertiary reaction for the reaction of alcohol and primary amine, and the reaction of alcohol and secondary amine In view of the production quantity of amine, production shipment time, etc., it can be selected as appropriate.
  • the reaction between the alcohol and the primary amine is preferably carried out in the same equipment. I can do it.
  • the disubstituted tertiary amine to be produced is the target monosubstituted tertiary amine in the subsequent reaction.
  • the residue in the equipment after the reaction product containing the tertiary amine of the di-substituted product is recovered from the reaction system including the reactor and incidental equipment such as catalyst filtration recovery is the target for the reaction to be carried out subsequently. This may cause a decrease in the purity of the tertiary amine.
  • the raw material alcohol in the reaction between the alcohol and the secondary amine and the raw alcohol in the reaction between the alcohol and the primary amine carried out prior to this are different compounds, and the residue in the raw material supply system May cause a decrease in the purity of the raw material alcohol in the subsequent reaction.
  • a decrease in the purity of the raw material alcohol causes a decrease in the purity of the mono-substituted tertiary amine produced by the reaction between this and the secondary amine.
  • the raw material alcohol in the reaction between the alcohol and the secondary amine and the raw material alcohol in the reaction between the alcohol and the primary amine carried out prior to this must be the same compound. Is desirable. Further, it is desirable to produce a considerable amount of mono-substituted tertiary amine by continuously reacting the alcohol with the secondary amine for a sufficient period of time so that the influence of the residue in the raw material supply system becomes sufficiently small.
  • the method of the present invention By using the method of the present invention to produce a tertiary amine using alcohol and secondary amine as raw materials, the corresponding tertiary amine can be obtained with high efficiency. Moreover, since many tertiary amines produced by the reaction of alcohol and primary amine can be used industrially, it is useful as a method for obtaining two different tertiary amines.
  • Production Example 1 Production of film-type catalyst A
  • a film-type catalyst A in which a powdered catalyst was immobilized using a phenol resin as a binder was prepared as follows.
  • a phenol resin (PR-9480 manufactured by Sumitomo Bakelite, 58% nonvolatile content) was added as a binder to 100 parts by mass of the powdered catalyst so that the nonvolatile content of the phenol resin was 25 parts by mass. Further, MIBK (methyl isobutyl ketone) was added as a solvent so that the ratio of solid content (powder catalyst and non-volatile content of phenol resin) was 60%. This was premixed for 30 minutes in a disperser, and then mixed and dispersed at 600 rpm for 40 minutes in a basket mill (Asada Tekko SS-10, filled with 4.8 L of 1.6 mm diameter glass beads, 7.2 kg). Painted.
  • the above-mentioned paint was applied with a gravure coater at a coating speed of 20 m / min and a thickness of 13 ⁇ m, and wound up through a drying oven (temperature 130 ° C. residence time 15 seconds), Again, a coating film was formed on the back surface in the same manner, and a coating film was formed on both sides of the copper foil.
  • a tubular reactor 1 loaded with a film-type catalyst is an upright circular tube-type fixed bed reactor, in which the catalyst is loaded, and its temperature can be controlled by heating from the outside.
  • the buffer tank 2 is a storage tank of a mixture of liquid reactants and / or products, and these are circulated with the reactor 1 by an external circulation pump 3.
  • a mixture of reactants and / or products, gaseous primary or secondary amine and hydrogen gas are continuously fed from the lower end of the reactor 1 through the external circulation conduit 4, and unreacted substances from the upper end, and The product mixture and hydrogen gas are continuously recovered and introduced into the buffer tank 2. Unreacted gaseous primary or secondary amine and water are continuously discharged through the packed tower conduit 5.
  • ⁇ Catalyst reduction treatment While charging 600 g of lauryl alcohol (Calcoal 2098 manufactured by Kao Corporation) into the buffer tank 2 and supplying hydrogen gas at a flow rate of 16.5 L / Hr in terms of standard state volume, between the buffer tank 2 and the reactor 1 The liquid was circulated at 5.92 L / Hr. In this state, the temperature inside the reactor 1 was raised to 130 ° C. and held for 6 hours to perform a catalyst reduction treatment. Thereafter, the whole system was cooled, and then the entire liquid was extracted.
  • lauryl alcohol (Calcoal 2098 manufactured by Kao Corporation)
  • Example 1 As in Example 1, the film type catalyst A obtained in Production Example 1 was loaded into the reactor 1 and the catalyst was subjected to a reduction treatment in the same manner as in Example 1.
  • pre-reaction is a reaction between an alcohol and a primary amine
  • DM body is a dimethyl type tertiary amine, and in this example is “N-dodecyl-N, N-dimethylamine”.
  • M2 form is a di-long alkyl tertiary amine, and in this example is “N, N-didodecyl-N-methylamine”.
  • M form is a monomethyl-mono long-chain alkyl secondary amine, and in this example is “N-dodecyl-N-methylamine”.
  • “mass% of raw material” of the catalyst amount means mass% of raw material alcohol.
  • Example 2 N-dodecyl-N, N-dimethylamine was produced using lauryl alcohol and dimethylamine as raw materials by using a stirred tank reactor shown in FIG.
  • N, N-didecyl-N-methylamine was produced using decyl alcohol and monomethylamine as raw materials using the same apparatus.
  • “%” means “% by mass” unless otherwise specified.
  • Table 2 shows the reaction conditions of alcohol and secondary amine in Example 2 and Comparative Example 2.
  • the contents of the stirring tank 21 containing the slurry of the liquid reaction product and / or product mixture in which the powdered catalyst is suspended are mixed by the stirring blade 23 connected to the stirrer 22.
  • the temperature can be controlled by external heating.
  • a gaseous primary or secondary amine and hydrogen gas are continuously supplied into the stirring vessel 21 through the gas blowing pipe 24. Unreacted gaseous primary or secondary amine and water are continuously discharged through the packed tower conduit 25.
  • the components discharged from the conduit 25 may contain alcohol and / or steam or mist-like components of the generated tertiary amine, etc., which are liquefied in the packed tower 26 and stirred.
  • the remaining gas components are discharged out of the system.
  • the reaction system is maintained at almost normal pressure.
  • Comparative Example 2 ⁇ Catalyst reduction treatment ⁇ As in Example 2, the powdered catalyst B obtained in Production Example 2 was charged into a 4.0 g stirring tank 21, and the catalyst was subjected to reduction treatment in the same manner as in Example 2.
  • pre-reaction is a reaction between an alcohol and a primary amine
  • DM body is a dimethyl type tertiary amine, and in this example is “N-dodecyl-N, N-dimethylamine”.
  • M2 form is a di-long alkyl tertiary amine, and in this example is “N, N-didodecyl-N-methylamine”.
  • mass% of raw material of the catalyst amount means mass% of raw material alcohol.

Abstract

 本発明は、アルコールと2級アミンとを原料として、対応する3級アミンを製造する方法を提供する。本発明は、アルコールと1級アミンを触媒の存在下で反応させて3級アミンを製造した後、当該反応に用いた当該触媒の存在下にアルコールと2級アミンを反応させる、3級アミンの製造方法である。 

Description

3級アミンの製造方法
 本発明は3級アミンの製造方法に関する。
背景技術
 牛脂、ヤシ油、パーム油等を原料とする脂肪族アミンは、家庭用、工業用分野において重要な中間体である。特に脂肪族3級アミンは、第4級アンモニウム塩等に誘導されて、繊維柔軟仕上げ剤、帯電防止剤、リンス基剤等幅広い用途に利用されている。
 3級アミンを製造する方法としては、アルコールと1級もしくは2級アミンとを触媒の存在下で反応させて、対応する3級アミンを製造する方法が知られている。
 しかしながらこの種の方法を用いる場合でも、特に2級アミンを原料にして、対応する3級アミン、すなわち2級アミンの窒素原子に結合する1個の水素原子がアルコール由来のアルキル及び/又はアルケニル基で置換されたモノ置換体の3級アミンを製造する場合には、副生物が少なからず生じて製品の歩留まりを下げるという問題があった。
 このような副生物としては、原料である2級アミンの副反応により生じた1級アミンやアンモニアが、アルコールとの反応に関与して生じる3級アミン、すなわち原料アルコール由来のアルキル及び/又はアルケニル基が2個窒素原子に結合したジ置換体や、3個結合したトリ置換体の3級アミンが挙げられる。目的とする3級アミンの収率を向上するためには、これら副生物の発生を抑える事が重要である。
 例えば、特開昭61-15865には、銅-ニッケル-第8族(旧IUPACのVIII族を意味し、現行IUPACの第8~10族に当たる)白金族元素触媒を用いて、3級アミンを得る方法が開示されている。
 また国際公開第2005/035122には、粉末状の触媒を使って3級アミンを製造する時に生じる、スラリーの撹拌や反応終了後のスラリーからの触媒の濾過分離等の複雑な操作を省略できる製造プロセスとして、厚さ500μm以下の薄いフィルム状の形態の固定化触媒を用いる方法が開示されている。
発明の要約
 本発明は、アルコールと1級アミンを触媒の存在下で反応させて3級アミンを製造した後、当該反応に用いた当該触媒の存在下にアルコールと2級アミンを反応させる、3級アミンの製造方法に関する。
発明の詳細な説明
 特開昭61-15865の製造方法では、2級アミンを原料にして3級アミンを製造した場合、目的とするモノ置換体3級アミン以外の副生物が生じることを十分に抑制できないため、製品の収率は不十分であった。
 国際公開第2005/035122の製造方法においても、2級アミンを原料にして3級アミンを製造した場合、目的とするモノ置換体3級アミン以外の副生物が生じることがあった。また、2級アミンを原料とする場合の工業的により有利な方法への展開については更なる検討が望まれる。
 本発明は、アルコールと2級アミンとを原料として、対応する3級アミンを高い効率で製造する方法を提供する。
 本発明の方法によれば、目的とする3級アミンを高い効率で製造することができる。
図1は、本発明に用いられる循環固定床型反応装置の一例を示す略示図である。 図2は、本発明に用いられる攪拌槽型反応装置の一例を示す略示図である。
図中、符号は次を示す。
1:フィルム型触媒を装填した管型反応器
2:緩衝槽
3:外部循環用ポンプ
4:外部循環用導管
5:充填塔用導管
6:充填塔
21:攪拌槽
22:攪拌機
23:攪拌翼
24:ガス吹込み管
25:充填塔用導管
26:充填塔
 本発明で用いる原料のアルコールは、いずれの反応においても、直鎖状又は分岐鎖状で炭素数8~36の飽和又は不飽和の脂肪族アルコールが好ましく、例えばオクチルアルコール、デシルアルコール、ラウリルアルコール、ミリスチルアルコール、ステアリルアルコール、ベヘニルアルコール、オレイルアルコール等並びにこれらの混合アルコール等、又チーグラー法によって得られるチーグラーアルコールや、オキソ法によって得られるオキソアルコール及びゲルべアルコール等が挙げられる。
 本発明で用いる原料の1級アミンとしては、脂肪族1級アミンが好ましく、炭素数1~18、更に1~4のアルキル基を1つ有するものが挙げられ、例えばモノメチルアミン、モノエチルアミン、モノドデシルアミン等が挙げられる。これらのうち、モノメチルアミン及びモノエチルアミンから選ばれる1級アミンが好ましい。
 本発明で用いる原料の2級アミンとしては、脂肪族2級アミンが好ましく、炭素数1~18、更に1~4のアルキル基を2つ有するものが挙げられ、例えばジメチルアミン、ジエチルアミン、ジドデシルアミン等が挙げられる。これらのうち、ジメチルアミン及びジエチルアミンから選ばれる2級アミンが好ましい。
 これら原料となるアルコールと1級又は2級アミンから得られる、対応する3級アミンは、1級又は2級アミンの窒素原子に結合する水素原子がアルコール由来のアルキル及び/又はアルケニル基で置換されたものである。例えばラウリルアルコールとジメチルアミンから得られる、対応する3級アミンはN-ドデシル-N,N-ジメチルアミンである。これは、ジメチルアミンの副反応で生じたメチルアミン及びアンモニアがラウリルアルコールと反応した時に、それぞれ副生する3級アミンのN,N-ジドデシル-N-メチルアミン及びN,N,N-トリドデシルアミンと区別される。
 本発明で用いる触媒としては、1級アミン又は2級アミンとアルコールとを反応させて3級アミンを製造できるものであれば特に限定されるものではなく、公知のものを利用する事ができるが、一般にCu系の金属等を好適に用いることができる。例えばCu単独あるいはこれにCr、Co、Ni、Fe、Mn等の遷移金属元素を加えた2成分、あるいは3成分以上の金属を含むものが挙げられる。またこれらをさらにシリカ、アルミナ、チタニア、ゼオライト等に担持させたもの等が挙げられる。
 本発明に用いられる触媒は、Cu及び/又はNiを含むことが好ましい。更に、具体的な組成として、Cu、Ni及び、第8~10族の白金族元素としてPt、Pd、Ru及びRhから選ばれる1種以上のものを含み、金属原子のモル比がCu:Niは1:9ないし9:1であり、第8~10族の白金族元素はCuとNiの合計に対してモル比で0.0001ないし0.1であるものが、触媒の高活性、高選択性及び高耐久性の観点から好ましい。
 触媒の形態は、粒状もしくは粉末状、あるいはペレット状、ヌードル状、ハニカム状、モノリス状等の固定化触媒等、種々のものを用いる事が出来る。粒状もしくは粉末状の触媒は原料を含む流体中に懸濁させて用いる事が出来る。固定化触媒は、原料を含む流体が供給される反応器内部に充填して用いる事が出来る。
 固定化触媒の種々の形態の中では、フィルム型の触媒を好適に用いる事が出来る。フィルム型触媒としては、特許文献2に記載されているものが挙げられる。すなわち、従来型の数mm程度の大きさを持つ不規則充填物タイプとは異なり、厚さ500μm以下の薄いフィルム状の形態の触媒を指す。フィルム型触媒を用いれば、触媒の分離操作を必要としない簡易なプロセスにより、目的とする3級アミンを効率良く製造する事ができる。フィルム型触媒を製造する方法としては、粉末状の触媒活物質とこれを固定化するための合成樹脂等のバインダーとを含有する塗料を、支持体の上に成膜する方法が、好適に用いられる。
 フィルム型触媒の厚さは、触媒体内部での中間反応物の過反応を抑制できるだけでなく、触媒質量当たりの反応活性が高くなることから、100μm以下、更に50μm以下が好ましい。また、厚さの下限は、触媒層の強度確保及び強度面の耐久性を得るために0.01μm以上が好ましく、1μm以上がより好ましい。
 反応器の形式は、従来公知のものを含めて種々のものを採用する事ができる。例えば、管状の流通式反応器や、槽型反応器等が挙げられる。管状の場合、管内部の固定化触媒に反応物を供給しながら生成物を連続的に回収する流通方式や、反応物を含む粒状もしくは粉末状触媒の懸濁流体を管に供給・通過させて生成物を含む触媒懸濁流体を連続的に回収する方式により、単回流通もしくは循環供給して連続あるいはバッチ式で反応を進行させる事ができる。また槽型の場合、内部の反応物を含む流体を撹拌等で混合して、やはり連続あるいはバッチ式で反応を進行させる事ができる。
 アルコールと1級もしくは2級アミンの反応を行う前に、触媒を還元して活性化するための還元処理を好適に実施する事が出来る。触媒の還元は、触媒を投入した反応器に水素ガスを供給することにより行うことが好ましく、原料アルコールの存在下で還元を行うことが更に好ましい。具体的には、粒状もしくは粉末状触媒を懸濁した原料アルコールを反応器に仕込み、これに水素ガスを供給しながら還元を行う方法、フィルム型触媒を装填した反応器に、水素ガスと原料アルコールを供給しながら還元を行う方法、フィルム型触媒を装填した反応器に原料アルコールを仕込んだ後、水素ガスを供給しながら還元を行う方法等が挙げられる。
 触媒の存在下にアルコールを反応させる条件は、反応物、生成物及び触媒の種類により異なる。反応物は気相に存在してもよいし、液相でもよい。気液2相の反応系において、アルコールと1級又は2級アミンとがそれぞれ異なる相に存在する場合、液中へのガスバブリング等によって相間での物質移動を促進する事が望ましい。反応系には、水素を供給して反応させる事が、触媒の活性を保つ等、3級アミンの生成反応を有利に導く上で望ましい。またこの他、窒素や希ガス等のアミノ化反応に対して不活性なガスを供給してもよい。1級又は2級アミンの供給量は、過剰な1級又は2級アミンの量を低減するために反応の進行に応じて調整する事が、製品アミンの品質と収率を良くする観点で望ましい。具体的には、反応系外へ排気される生成水を除いたガス中の1級又は2級アミンの量を50容量%以下(対排ガス)とする事が望ましく、30容量%以下とする事がより望ましい。系内の圧力は常圧を超えて著しく高くならないことが望ましい。反応温度は触媒の種類により異なるが、150~300℃の温度で反応させる事が好ましい。また反応の過程で副生する水分を反応系外に排出する事で、反応の進行を促進し、触媒の活性を保つ事ができる。反応の進行は、例えばガスクロマトグラフにより追跡する事ができる。
 本発明では、アルコールと2級アミンを触媒の存在下に反応させて3級アミンを製造するのに先立ち、当該触媒の存在下にアルコールと1級アミンを反応させて3級アミンを製造しておく事で、目的とするモノ置換体の3級アミンを高い収率で得る事が可能になる。
 アルコールと2級アミンの反応に先立って実施するアルコールと1級アミンの反応において、原料となるアルコールはその後の2級アミンとの反応で用いられるものと同一種類の化合物であってもよいし、異なる種類の化合物でもよい。製造されるジ置換体の3級アミンが製品として有効に利用出来るものである事が望ましく、そのためのアルキル及び/又はアルケニル基を供給出来るアルコールを適宜選択する事が出来る。この観点から、アルコールと1級アミンとの反応の好ましい条件として、両者の仕込みモル比が1級アミン/アルコールで0.5~3、更に0.5~1.5であり、反応温度100~250℃、更に180~230℃、反応圧力大気圧~10気圧、更に大気圧~5気圧、反応時間1~10時間、更に2~8時間、特に2~7時間とすることが挙げられる。そして、触媒として、組成がCu、Ni及び、第8~10族の白金族元素としてPt、Pd、Ru及びRhから選ばれる1種以上のものを含み、金属原子のモル比がCu:Niは1:9ないし9:1であり、第8~10族の白金族元素はCuとNiの合計に対してモル比で0.0001ないし0.1であるもの、好ましくはフィルム型触媒を、有効分として原料アルコール仕込み量に対して、0.1~10質量%の量で用いることが挙げられる。
 また、アルコールと2級アミンとの反応の好ましい条件として、両者の仕込みモル比が2級アミン/アルコールで1~5、更に1~3であり、反応温度100~250℃、更に180~230℃、反応圧力大気圧~10気圧、更に大気圧~5気圧、反応時間1~10時間、更に2~6時間とすることが挙げられる。そして、触媒として、組成がCu、Ni及び、第8~10族の白金族元素としてPt、Pd、Ru及びRhから選ばれる1種以上のものを含み、金属原子のモル比がCu:Niは1:9ないし9:1であり、第8~10族の白金族元素はCuとNiの合計に対してモル比で0.0001ないし0.1であるもの、好ましくはフィルム型触媒を、有効分として原料アルコール仕込み量に対して、0.1~10質量%の量で用いることが挙げられる。本発明は、アルコールと1級アミンを触媒の存在下で反応させて3級アミン(A)の製造を行い、当該反応に用いた当該触媒を用いて別途用意した他のアルコールと2級アミンを反応させて目的とする3級アミン(B)を製造するものである。3級アミン(A)はアルコールの炭化水素基が2つ導入されたものであり、3級アミン(B)はアルコールの炭化水素基が1つ導入されたものである。
 アルコールと1級アミンの反応を事前に実施した触媒を用いる事で、アルコールと2級アミンの反応において目的とする3級アミンの収率が向上するメカニズムについては明らかになっていないが、アルコールと1級アミンの反応を経る事で、触媒に何らかの化学的な変化がもたらされるものと考えられる。例えば、2級アミンの副反応で1級アミンを生じる触媒の活性点に、予め1級アミンが強固に吸着した状態を作る事で、新たに2級アミンが副反応するのを妨げる効果である事が予想される。このような観点からは、触媒を1級アミンに曝露するだけで、アルコールと1級アミンの反応を実施するのと同様の効果が得られる可能性がある。また別のメカニズムとして、アルコールと1級アミンの反応で生じるジ置換体の3級アミンが触媒表面に強固に吸着した状態を作る事で、ジ置換体の3級アミンが有する2個のアルキル及び/又はアルケニル基による立体障害により、触媒表面上で新たにジ置換体の3級アミンが生じるのを妨げているとも予想される。この観点からは、触媒をジ置換体の3級アミンに曝露するだけで、アルコールと1級アミンの反応を実施するのと同様の効果が得られる可能性もある。
 アルコールと1級アミンの反応で3級アミンを製造した後、次いで実施するアルコールと2級アミンの反応は、触媒だけでなく同じ反応設備をそのまま用いて実施してもよいし、触媒だけ回収して別の反応設備にて実施してもよい。触媒は全量回収して使用してもよいし、一部だけ用いてもよい。あるいは数回に分けたアルコールと1級アミンの反応で別々に用いられた触媒を回収してマスターバッチとし、マスターバッチの一部もしくは全部を使ってアルコールと2級アミンの反応を実施してもよい。これら触媒の回収方法と使用量については、アルコールと1級アミンの反応、及びアルコールと2級アミンの反応について、各々の反応バッチサイズもしくは一連の連続反応の処理量や必要な触媒量、3級アミンの製造数量並びに製造出荷時期等に鑑み、適宜選択する事が出来る。
 フィルム型触媒等の固定化触媒を使用する場合には、アルコールと1級アミンの反応で3級アミンを製造した後、引き続いて同じ設備にてアルコールと2級アミンの反応を好適に実施する事が出来る。
 アルコールと2級アミンの反応に先立って実施するアルコールと1級アミンの反応において、製造されるジ置換体の3級アミンは、次いで実施される反応で目的とするモノ置換体の3級アミンとは異なる化合物である。従って、このジ置換体の3級アミンを含む反応終了物を、反応装置及び触媒濾過回収等の付帯設備を含む当該反応系から回収した後の設備内残渣は、引き続いて実施される反応で目的とする3級アミンの純度を低下させる原因となり得る。特にアルコールと2級アミンの反応で得られるモノ置換体の3級アミンの精製工程において、このジ置換体の3級アミンの分離除去が困難な場合には、アルコールと2級アミンの反応に先立って、この反応終了物を可能な限り高い回収率で当該反応系より回収する事が望ましい。また当該設備内残渣の影響が十分小さくなるように、アルコールと2級アミンの反応を十分な期間連続して実施し、相当量のモノ置換体の3級アミンを製造する事が望ましい。
 また、反応設備が同じ場合、アルコールと2級アミンの反応における原料アルコールと、これに先立って実施するアルコールと1級アミンの反応における原料アルコールとが、異なる化合物である場合、原料供給系の残渣が引き続いて実施される反応の原料アルコールの純度を低下させる原因となり得る。原料アルコールの純度の低下は、これと2級アミンとの反応で製造されるモノ置換体の3級アミンの純度低下を引き起こす。原料供給系の残渣の影響をなくすためには、アルコールと2級アミンの反応における原料アルコールと、これに先立って実施するアルコールと1級アミンの反応における原料アルコールとが、同一の化合物である事が望ましい。また原料供給系の残渣の影響が十分小さくなるように、アルコールと2級アミンの反応を十分な期間連続して実施し、相当量のモノ置換体の3級アミンを製造する事が望ましい。
 本発明の方法により、アルコールと2級アミンとを原料として3級アミンを製造することで、対応する3級アミンを高い効率で得ることが可能になる。また、アルコールと1級アミンの反応により製造された3級アミンも工業上利用できるものが多いため、2つの異なる3級アミンを入手する方法としても有用である。
実施例
 次の実施例は本発明の実施について述べる。 実施例は本発明の例示について述べるものであり、 本発明を限定するためではない。
製造例1:フィルム型触媒Aの製造
 フェノール樹脂をバインダーとして粉末状触媒を固定化した、フィルム型触媒Aを以下のように調製した。
 容量1Lのフラスコに合成ゼオライトを仕込み、次いで硝酸銅と硝酸ニッケル及び塩化ルテニウムを各金属原子のモル比でCu:Ni:Ru=4:1:0.01となるように水に溶かしたものを入れ、撹拌しながら昇温した。90℃で10質量%炭酸ナトリウム水溶液をpH9~10にコントロールしながら徐々に滴下した。1時間の熟成後、沈殿物を濾過・水洗後80℃で10時間乾燥し、600℃で3時間焼成して粉末状触媒を得た。得られた粉末状触媒における金属酸化物の割合は50質量%、合成ゼオライトの割合は50質量%であった。
 上記粉末状触媒100質量部に、バインダーとしてフェノール樹脂(住友ベークライト製PR-9480、不揮発分58%)を加え、フェノール樹脂の不揮発分が25質量部になるようにした。さらに溶剤としてMIBK(メチルイソブチルケトン)を加え、固形分(粉末状触媒及びフェノール樹脂の不揮発分)の割合が60%となるようにした。これをディスパにて30分間予備混合した後、バスケットミル(浅田鉄工製SS-10、1.6mm径のガラスビーズ4.8L、7.2kgを充填)にて600rpmで40分間混合分散処理して塗料化した。銅箔(厚さ40μm)を支持体とし、上記塗料をグラビア式コーターにより、塗工速度20m/min、厚さ13μmで塗工し、乾燥炉(温度130℃滞留時間15秒間)を通して巻き取り、再度裏面も同様にして塗布膜を形成し銅箔の両面に塗布膜を形成した。
 得られた銅箔上の乾燥塗布膜のうち、片面の面積にして0.266m2分を、複数枚の幅130mmの短冊状片に裁断し、うち半数に波板状の折り曲げ加工を施した。
 その後、折り曲げ加工したもの、平板状のものと合せて熱風循環式乾燥器にて150℃で90分間硬化処理して、フィルム型触媒を上記銅箔の両面に固定化した。得られたフィルム型触媒について、その銅箔を除いた片面当りの厚さは13μmであり、銅箔を除いた全質量は、片面1m2当り20.9gであった。
 以下の実施例1及び比較例1では、図1に示す循環固定床型反応装置を用いて、ラウリルアルコールとジメチルアミンとを原料としてN-ドデシル-N,N-ジメチルアミンを製造した。実施例1については、上記反応に先立ち、同じ装置を用いて、デシルアルコールとモノメチルアミンを原料としてN,N-ジデシル-N-メチルアミンを製造した。なお以下の%は特に断りのないものは質量%を表す。表1に、実施例1と比較例1におけるアルコールと2級アミンの反応条件等を示した。
 なお、図1において、フィルム型触媒を装填した管型反応器1は、直立円管型固定床反応器で、内部に触媒が装填され、外部からの加熱によってその温度を制御できる。緩衝槽2は、液状の反応物、及び/又は生成物の混合物の貯槽であり、外部循環用ポンプ3によって反応器1との間でこれらを循環させる。外部循環用導管4を通じて反応器1の下端から反応物、及び/又は生成物の混合物と、ガス状の1級もしくは2級アミン及び水素ガスを連続的に供給し、上端から未反応物、及び/又は生成物の混合物と水素ガスを連続的に回収して、緩衝槽2に導入する。充填塔用導管5を通して未反応のガス状1級もしくは2級アミン、及び水分を連続的に排出する。導管5から排出される成分中には、上記の他にアルコール、及び/又は生成3級アミンの蒸気もしくはミスト状成分等が含まれることがあり、充填塔6にてこれらを液化させて緩衝槽2に戻し、残りのガス成分を系外に排出する。反応系内はほぼ常圧に保たれる。
実施例1
 製造例1で得たフィルム型触媒Aを、内径28.4mmの反応器1の内部に装填した。フィルム型触媒の装填された部分の体積は0.25Lで、反応器1の軸方向に連通した、断面積0.1cm2程度の複数の流路がフィルム型触媒によって形成された。
《触媒の還元処理》
 ラウリルアルコール(花王(株)製カルコール2098)600gを緩衝槽2に仕込み、水素ガスを標準状態体積換算で16.5L/Hrの流量で供給しながら、緩衝槽2と反応器1との間で液を5.92L/Hrで循環させた。この状態で反応器1内部の温度を130℃まで昇温した後6時間保持して、触媒の還元処理を行った。その後全系を冷却してから、液を全量抜き出した。
《デシルアルコールとモノメチルアミンを原料としたN,N-ジデシル-N-メチルアミンの製造》
 デシルアルコール(花王(株)製カルコール1098)660gを緩衝槽2に仕込み、水素ガスを標準状態体積換算で9.9L/Hrの流量で供給しながら、緩衝槽2と反応器1との間で液を5.92L/Hrで循環させた。反応器1内部の温度を165℃まで昇温してからモノメチルアミンを反応器1に供給し、さらに反応器1内部の温度を192℃まで昇温して反応を開始した。モノメチルアミン供給量は反応の進行に合わせて調整し、反応時間平均で17g/Hrであった。反応開始から7時間後にモノメチルアミンの供給を停止し、全系を冷却して緩衝槽2及び反応器1内部の液全量を抜き出した。ガスクロマトグラフにて分析を行い、面積百分率法にて定量した結果、未反応のデシルアルコールは2.6%、生成したN,N-ジデシル-N-メチルアミンは89.6%、N-デシル-N,N-ジメチルアミンは0.7%、N,N,N-トリデシルアミンは0.8%であった。
《ラウリルアルコールとジメチルアミンを原料としたN-ドデシル-N,N-ジメチルアミンの製造》
 上記の反応器1内部に装填されたフィルム型触媒はそのままで、ラウリルアルコール(花王(株)製カルコール2098)600gを緩衝槽2に仕込み、水素ガスを標準状態体積換算で16.5L/Hrの流量で供給しながら、緩衝槽2と反応器1との間で液を5.92L/Hrで循環させた。反応器1内部の温度を185℃まで昇温してからジメチルアミンを反応器に供給し、さらに反応器1内部の温度を220℃まで昇温して、反応を開始した。ジメチルアミン供給量は反応の進行に合わせて調整し、反応時間平均で51g/Hrであった。反応開始から2.6時間後にジメチルアミンの供給を停止し、全系を冷却して緩衝槽2及び反応器1内部の液全量を抜き出した。ガスクロマトグラフにて分析を行い、面積百分率法にて定量した結果、未反応のラウリルアルコールは0.8%、生成したN-ドデシル-N,N-ジメチルアミンは91.2%、N,N-ジドデシル-N-メチルアミンは4.7%であった。N,N,N-トリドデシルアミンは検出されなかった。
比較例1
 実施例1と同じく、製造例1で得たフィルム型触媒Aを反応器1の内部に装填し、実施例1と同様の操作にて触媒の還元処理を行った。
《ラウリルアルコールとジメチルアミンを原料としたN-ドデシル-N,N-ジメチルアミンの製造》
 ラウリルアルコール(花王(株)製カルコール2098)600gを緩衝槽2に仕込み、水素ガスを標準状態体積換算で16.5L/Hrの流量で供給しながら、緩衝槽2と反応器1との間で液を5.92L/Hrで循環させた。反応器1内部の温度を185℃まで昇温してからジメチルアミンを反応器に供給し、さらに反応器1内部の温度を220℃まで昇温して、反応を開始した。ジメチルアミン供給量は反応の進行に合わせて調整し、反応時間平均で42g/Hrであった。反応開始から3.3時間後にジメチルアミンの供給を停止し、全系を冷却して緩衝槽2及び反応器1内部の液全量を抜き出した。ガスクロマトグラフにて分析を行い、面積百分率法にて定量した結果、未反応のラウリルアルコールは0.5%、生成したN-ドデシル-N,N-ジメチルアミンは78.9%、N,N-ジドデシル-N-メチルアミンは17.2%であった。N,N,N-トリドデシルアミンは検出されなかった。
Figure JPOXMLDOC01-appb-T000001
 表中、「前反応」は、アルコールと1級アミンの反応であり、「DM体」は、ジメチル型3級アミンであり、本例では「N-ドデシル-N,N-ジメチルアミン」である。また、「M2体」は、ジ長鎖アルキル型3級アミンであり、本例では「N,N-ジドデシル-N-メチルアミン」である。また、「M体」は、モノメチル-モノ長鎖アルキル型2級アミンであり、本例では「N-ドデシル-N-メチルアミン」である。なお、表中、触媒量の「対原料質量%」は、対原料アルコール質量%の意味である。
製造例2:粉末状触媒Bの製造
 粉末状触媒Bを以下のように調製した。
 容量1Lのフラスコに合成ゼオライトを仕込み、次いで硝酸銅と硝酸ニッケル及び塩化ルテニウムを各金属原子のモル比でCu:Ni:Ru=4:1:0.01となるように水に溶かしたものを入れ、撹拌しながら昇温した。90℃で10質量%炭酸ナトリウム水溶液をpH9~10にコントロールしながら徐々に滴下した。1時間の熟成後、沈殿物を濾過・水洗後80℃で10時間乾燥し、600℃で3時間焼成して粉末状触媒を得た。得られた粉末状触媒における金属酸化物の割合は50質量%、合成ゼオライトの割合は50質量%であった。
 以下の実施例2及び比較例2では、図2に示す攪拌槽型反応装置を用いて、ラウリルアルコールとジメチルアミンとを原料としてN-ドデシル-N,N-ジメチルアミンを製造した。実施例2については、上記反応に先立ち、同じ装置を用いて、デシルアルコールとモノメチルアミンを原料としてN,N-ジデシル-N-メチルアミンを製造した。なお以下の%は特に断りのないものは質量%を表す。表2に、実施例2と比較例2におけるアルコールと2級アミンの反応条件等を示した。
 なお、図2において、粉末状触媒を懸濁させた液状の反応物、及び/又は生成物の混合物のスラリーが入った攪拌槽21は、攪拌機22に接続された攪拌翼23によって内容物が混合されると共に、外部からの加熱によってその温度を制御できる。ガス吹込み管24を通じて攪拌槽21の内部にガス状の1級もしくは2級アミン及び水素ガスを連続的に供給する。充填塔用導管25を通して未反応のガス状1級もしくは2級アミン、及び水分を連続的に排出する。導管25から排出される成分中には、上記の他にアルコール、及び/又は生成3級アミンの蒸気もしくはミスト状成分等が含まれることがあり、充填塔26にてこれらを液化させて攪拌槽21に戻し、残りのガス成分を系外に排出する。反応系内はほぼ常圧に保たれる。
実施例2
《触媒の還元処理》
 デシルアルコール(花王(株)製カルコール1098)1200gを攪拌槽21に仕込み、さらに製造例2で得た粉末状触媒Bを6.0g仕込んで、水素ガスを標準状態体積換算で18L/Hrの流量で供給しながら、攪拌槽21内部を攪拌翼23によって1000rpmで攪拌混合した。この状態で攪拌槽21内部の温度を180℃まで昇温した後1時間保持して、触媒の還元処理を行った。
《デシルアルコールとモノメチルアミンを原料としたN,N-ジデシル-N-メチルアミンの製造》
 上記の粉末状触媒Bの還元処理に引き続いて、水素ガスを標準状態体積換算で18L/Hrの流量で攪拌槽21に供給しながら、さらにモノメチルアミンを供給し、攪拌槽21内部の温度を192℃まで昇温して反応を開始した。モノメチルアミン供給量は反応の進行に合わせて調整し、反応時間平均で26g/Hrであった。反応開始から3.9時間後にモノメチルアミンの供給を停止し、全系を冷却して攪拌槽21内部の液及び触媒全量を抜き出し、触媒を濾過分離した。濾過した液についてガスクロマトグラフにて分析を行い、面積百分率法にて定量した結果、未反応のデシルアルコールは3.2%、生成したN,N-ジデシル-N-メチルアミンは93.1%、N-デシル-N,N-ジメチルアミンは0.3%、N,N,N-トリデシルアミンは0.5%であった。
《ラウリルアルコールとジメチルアミンを原料としたN-ドデシル-N,N-ジメチルアミンの製造》
 上記のN,N-ジデシル-N-メチルアミンの製造に使用して濾過分離した粉末状触媒の2/3量(4.0g相当量)と、新たにラウリルアルコール(花王(株)製カルコール2098)1200gを攪拌槽21に仕込み、水素ガスを標準状態体積換算で13L/Hrの流量で供給しながら、攪拌槽21内部を攪拌翼23によって1000rpmで攪拌混合した。攪拌槽21内部の温度を190℃まで昇温してからジメチルアミンを反応器に供給して反応を開始し、さらに攪拌槽21内部の温度を220℃まで昇温しながら水素ガスの流量を標準状態体積換算で27L/Hrまで増加した。ジメチルアミン供給量は反応の進行に合わせて調整し、反応時間平均で93g/Hrであった。反応開始から2.3時間後に攪拌槽21内部の液をサンプリングしてガスクロマトグラフにて分析を行い、面積百分率法にて定量した結果、未反応のラウリルアルコールは1.7%、生成したN-ドデシル-N,N-ジメチルアミンは93.3%、N,N-ジドデシル-N-メチルアミンは3.7%であった。N-ドデシル-N-メチルアミン及びN,N,N-トリドデシルアミンは検出されなかった。さらに反応を継続して反応開始から2.6時間後にジメチルアミンの供給を停止し、全系を冷却して攪拌槽21内部の液全量を抜き出し、触媒を濾過分離した。濾過した液についてガスクロマトグラフにて分析を行い、面積百分率法にて定量した結果、未反応のラウリルアルコールは1.0%、生成したN-ドデシル-N,N-ジメチルアミンは93.8%、N,N-ジドデシル-N-メチルアミンは3.8%であった。N-ドデシル-N-メチルアミン及びN,N,N-トリドデシルアミンは検出されなかった。
比較例2
《触媒の還元処理》
 実施例2と同じく、製造例2で得た粉末状触媒Bを4.0g攪拌槽21に仕込み、実施例2と同様の操作にて触媒の還元処理を行った。
《ラウリルアルコールとジメチルアミンを原料としたN-ドデシル-N,N-ジメチルアミンの製造》
 ラウリルアルコール(花王(株)製カルコール20)1200gを攪拌槽21に仕込み、さらに上記還元処理した粉末状触媒Bの全量を仕込んで、水素ガスを標準状態体積換算で13L/Hrの流量で供給しながら、攪拌槽21内部を攪拌翼23によって1000rpmで攪拌混合した。攪拌槽21内部の温度を190℃まで昇温してからジメチルアミンを反応器に供給して反応を開始し、さらに攪拌槽21内部の温度を220℃まで昇温しながら水素ガスの流量を標準状態体積換算で27L/Hrまで増加した。ジメチルアミン供給量は反応の進行に合わせて調整し、反応時間平均で98g/Hrであった。反応開始から2.3時間後にジメチルアミンの供給を停止し、全系を冷却して攪拌槽21内部の液全量を抜き出し、触媒を濾過分離した。濾過した液についてガスクロマトグラフにて分析を行い、面積百分率法にて定量した結果、未反応のラウリルアルコールは1.0%、生成したN-ドデシル-N,N-ジメチルアミンは93.1%、N,N-ジドデシル-N-メチルアミンは5.5%であった。N-ドデシル-N-メチルアミン及びN,N,N-トリドデシルアミンは検出されなかった。
Figure JPOXMLDOC01-appb-T000002
 表中、「前反応」は、アルコールと1級アミンの反応であり、「DM体」は、ジメチル型3級アミンであり、本例では「N-ドデシル-N,N-ジメチルアミン」である。また、「M2体」は、ジ長鎖アルキル型3級アミンであり、本例では「N,N-ジドデシル-N-メチルアミン」である。なお、表中、触媒量の「対原料質量%」は、対原料アルコール質量%の意味である。

Claims (3)

  1.  アルコールと1級アミンを触媒の存在下で反応させて3級アミンを製造した後、当該反応に用いた当該触媒の存在下にアルコールと2級アミンを反応させる、3級アミンの製造方法。
  2.  触媒がCu及び/又はNiを含む、請求項1記載の製造方法。
  3.  1級アミンがモノメチルアミン又はモノエチルアミン、2級アミンがジメチルアミン又はジエチルアミンである、請求項1又は2記載の製造方法。
PCT/JP2010/072845 2009-12-22 2010-12-20 3級アミンの製造方法 WO2011078100A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112012015104-5A BR112012015104A2 (pt) 2009-12-22 2010-12-20 método para produzir uma amina terciária
CN201080052769.8A CN102630223B (zh) 2009-12-22 2010-12-20 叔胺的制造方法
DE112010004959T DE112010004959B4 (de) 2009-12-22 2010-12-20 Verfahren zur Erzeugung von tertiärem Amin
US13/514,254 US8481787B2 (en) 2009-12-22 2010-12-20 Method for producing tertiary amine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-290030 2009-12-22
JP2009290030 2009-12-22
JP2010273331A JP4938125B2 (ja) 2009-12-22 2010-12-08 3級アミンの製造方法
JP2010-273331 2010-12-08

Publications (1)

Publication Number Publication Date
WO2011078100A1 true WO2011078100A1 (ja) 2011-06-30

Family

ID=44195626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072845 WO2011078100A1 (ja) 2009-12-22 2010-12-20 3級アミンの製造方法

Country Status (6)

Country Link
US (1) US8481787B2 (ja)
JP (1) JP4938125B2 (ja)
CN (1) CN102630223B (ja)
BR (1) BR112012015104A2 (ja)
DE (1) DE112010004959B4 (ja)
WO (1) WO2011078100A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498746B (zh) * 2019-09-17 2022-10-04 江苏万盛大伟化学有限公司 一种脂肪叔胺质量提升的方法
CN113698303B (zh) * 2021-08-04 2024-01-30 江苏万盛大伟化学有限公司 一种脂肪叔胺的生产方法
CN113620810B (zh) * 2021-08-05 2022-04-15 肯特催化材料股份有限公司 一种季铵盐制备方法及用季铵盐制备季铵碱的方法
CN114105777B (zh) * 2021-12-10 2024-03-12 江苏万盛大伟化学有限公司 一种低残余醇单烷基脂肪叔胺的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413060A (en) * 1987-03-05 1989-01-17 Ethyl Corp Manufacture of amine from alcohol
JPH06239809A (ja) * 1993-02-15 1994-08-30 Kao Corp 第3級アミンの製造方法
JP2006312624A (ja) * 2005-04-07 2006-11-16 Kao Corp 3級アミンの製造方法
JP2007537177A (ja) * 2004-05-13 2007-12-20 ビーエーエスエフ アクチェンゲゼルシャフト アミンの連続的な製造法
JP2009073754A (ja) * 2007-09-20 2009-04-09 Kao Corp 3級アミンの製造法
JP2009543830A (ja) * 2006-07-14 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア アミンの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2057001C3 (de) * 1970-11-20 1981-04-16 Ruhrchemie Ag, 4200 Oberhausen Verfahren zur Herstellung von tertiären Aminen
JPS6115865A (ja) 1984-06-29 1986-01-23 Kao Corp 第3級アミンの製造方法
CS260213B1 (en) 1986-03-05 1988-12-15 Jiri Sulc Method of polymerization casting of articles especially lenses from hydrophilic gels and equipment for realization of this method
JPH02234A (ja) * 1987-10-16 1990-01-05 Kao Corp N−置換アミンの製造方法
US5266730A (en) 1987-10-16 1993-11-30 Kao Corporation Process for preparing N-substituted amine
CN100512964C (zh) 2003-10-08 2009-07-15 花王株式会社 叔胺制造用薄膜型催化剂以及使用该催化剂的叔胺的制造方法
WO2006109848A1 (ja) * 2005-04-07 2006-10-19 Kao Corporation 3級アミンの製造方法
JP4811563B2 (ja) * 2005-05-20 2011-11-09 大日本印刷株式会社 商品陳列棚在庫管理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413060A (en) * 1987-03-05 1989-01-17 Ethyl Corp Manufacture of amine from alcohol
JPH06239809A (ja) * 1993-02-15 1994-08-30 Kao Corp 第3級アミンの製造方法
JP2007537177A (ja) * 2004-05-13 2007-12-20 ビーエーエスエフ アクチェンゲゼルシャフト アミンの連続的な製造法
JP2006312624A (ja) * 2005-04-07 2006-11-16 Kao Corp 3級アミンの製造方法
JP2009543830A (ja) * 2006-07-14 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア アミンの製造方法
JP2009073754A (ja) * 2007-09-20 2009-04-09 Kao Corp 3級アミンの製造法

Also Published As

Publication number Publication date
CN102630223B (zh) 2014-07-16
JP4938125B2 (ja) 2012-05-23
CN102630223A (zh) 2012-08-08
US20120277470A1 (en) 2012-11-01
DE112010004959B4 (de) 2013-11-21
DE112010004959T5 (de) 2013-01-10
US8481787B2 (en) 2013-07-09
JP2011148768A (ja) 2011-08-04
BR112012015104A2 (pt) 2020-11-17

Similar Documents

Publication Publication Date Title
JP4938802B2 (ja) モノエチレングリコール(meg)からのエチレンアミン及びエタノールアミンの製造方法
JP5124486B2 (ja) 触媒の存在でモノエチレングリコール及びアンモニアの水素化アミノ化によるエチレンアミン及びエタノールアミンの製造方法
JP5234726B2 (ja) 3級アミンの製造法
JPH10174875A (ja) アルキレンオキシド、アルコール、アルデヒドおよびケトンのアミノ化用触媒、およびその製造方法
CA2446989C (en) A process for the manufacture of diethylenetriamine and higher polyethylenepolyamines
JPH10174874A (ja) アルキレンオキシド、アルコール、アルデヒドおよびケトンのアミノ化用触媒
JP4354341B2 (ja) 反応装置
JP5167136B2 (ja) エチレンアミンの製造方法
JP6242878B2 (ja) モノ−n−アルキル−ピペラジンの製造方法
JP2007197396A (ja) 3級アミンの製造方法
JP4938125B2 (ja) 3級アミンの製造方法
JP2007533603A (ja) エチレンアミンの製造方法
WO2006109848A1 (ja) 3級アミンの製造方法
KR101336975B1 (ko) 알코올의 환원성 아민화에 의한 알킬아민 제조용 촉매
JP4975409B2 (ja) 3級アミンの製造方法
JP4994692B2 (ja) 3級アミンの製造方法
JP3811205B2 (ja) ジメチルアミンの製法
JP5879123B2 (ja) 3級アミンの製造方法
JP4879585B2 (ja) 3級アミンの製造法
WO2012091071A1 (ja) 3級アミンの製造方法
KR101178940B1 (ko) 알킬아민 제조용 촉매 및 이의 제조방법
CN106866583A (zh) 一种二(2‑羟乙基)哌嗪的制备方法
JP5750367B2 (ja) 3級アミンの製造方法
JP3995611B2 (ja) メチルアミンの製造方法
JP2024033630A (ja) スチルベン化合物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052769.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839330

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12012501251

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1120100049599

Country of ref document: DE

Ref document number: 112010004959

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13514254

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012015104

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 10839330

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012015104

Country of ref document: BR

Free format text: APRESENTE TRADUCAO SIMPLES DA CERTIDAO DE DEPOSITO DA PRIORIDADE NO PAIS DE ORIGEM OU DECLARACAO ASSINADA, AMBAS CONTENDO TODOS OS DADOS IDENTIFICADORES DA PRIORIDADE, CONFORME ART. 16, 2O, DA LPI.

ENP Entry into the national phase

Ref document number: 112012015104

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120619