WO2011077999A1 - 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 - Google Patents

化学機械研磨パッドおよびそれを用いた化学機械研磨方法 Download PDF

Info

Publication number
WO2011077999A1
WO2011077999A1 PCT/JP2010/072430 JP2010072430W WO2011077999A1 WO 2011077999 A1 WO2011077999 A1 WO 2011077999A1 JP 2010072430 W JP2010072430 W JP 2010072430W WO 2011077999 A1 WO2011077999 A1 WO 2011077999A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing layer
polishing
chemical mechanical
mechanical polishing
hardness
Prior art date
Application number
PCT/JP2010/072430
Other languages
English (en)
French (fr)
Inventor
勝孝 横井
亜耶子 前川
裕貴 仕田
理 加茂
頓所 真司
佐藤 慶一
直希 西口
裕之 田野
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to US13/518,230 priority Critical patent/US20120322348A1/en
Priority to EP10839232A priority patent/EP2517828A1/en
Publication of WO2011077999A1 publication Critical patent/WO2011077999A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a chemical mechanical polishing pad and a chemical mechanical polishing method using the chemical mechanical polishing pad.
  • polishing pad for polishing glass and semiconductor elements
  • porous nonwoven fabrics and polyurethane moldings obtained by impregnating a nonwoven fabric with a polyurethane solution have been used.
  • CMP Chemical Mechanical Polishing
  • a polishing pad made of polyurethane as exemplified below has been studied. .
  • JP-A-8-550262 discloses a polishing pad in which a filler-like component is dispersed in polyurethane
  • JP-A Nos. 2000-17252 and 3956364 disclose a polishing pad using foamed polyurethane
  • JP-A No. No. 2007-284625 discloses a polishing pad in which physical property values are controlled by adjusting the amount of polyol or isocyanate used to adjust the degree of crosslinking of the urethane resin
  • Japanese Patent Application Laid-Open No. 2003-332277 discloses the surface of the polishing layer. A polishing pad with controlled characteristics is described.
  • the polishing pad described in Japanese Patent No. 3956364 has a high elastic modulus by making the polishing layer have a porous structure.
  • the polishing pad has a high hardness of the material constituting the polishing layer itself, but the specific gravity of the polishing layer is low due to its porous structure, and the surface to be polished is uneven due to the cushioning effect due to the porous structure. Therefore, the flatness of the surface to be polished in CMP tends to be insufficient.
  • the polishing layer becomes hard and polished by polishing debris and pad scraps that enter between the surface to be polished and the polishing layer. Defects (scratches) are likely to increase.
  • some aspects according to the present invention provide a chemical mechanical polishing pad capable of achieving both improvement in flatness of a surface to be polished in CMP and reduction in polishing defects (scratches) by solving the above-described problems, And a chemical mechanical polishing method using the chemical mechanical polishing pad.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • One aspect of the chemical mechanical polishing pad according to the present invention is: Having a polishing layer formed from a composition containing thermoplastic polyurethane;
  • the polishing layer has a specific gravity of 1.15 or more and 1.30 or less, and a duro D hardness of the polishing layer is 50D or more and 80D or less.
  • Residual strain at the time of tension of the polishing layer may be 2% or more and 10% or less.
  • the volume change rate when the polishing layer is immersed in water at 23 ° C. for 24 hours may be 0.8% or more and 5.0% or less.
  • the surface hardness when the polishing layer is immersed in water at 23 ° C. for 4 hours may be 2 N / mm 2 or more and 10 N / mm 2 or less.
  • thermoplastic polyurethane may include a repeating unit derived from at least one selected from alicyclic isocyanate and aromatic isocyanate.
  • the composition may further include water-soluble particles.
  • One aspect of the chemical mechanical polishing method according to the present invention is: Chemical mechanical polishing is performed using the chemical mechanical polishing pad described in any one of Application Examples 1 to 6.
  • the chemical mechanical polishing pad according to the present invention is formed of a composition containing a thermoplastic polyurethane, and has a polishing layer having a specific gravity and hardness within a specific range, so that the flatness of the surface to be polished in CMP can be improved. Both improvement and reduction of polishing defects (scratches) can be achieved.
  • FIG. 1A is a schematic diagram for explaining the concept of duro D hardness in a polishing layer.
  • FIG. 1B is a schematic diagram for explaining the concept of duro D hardness in the polishing layer.
  • FIG. 2 is a schematic diagram for explaining the concept of residual strain during tension of the polishing layer.
  • FIG. 3A is an enlarged view of region I in FIG. 2 for explaining the concept of residual strain during polishing of the polishing layer.
  • FIG. 3B is an enlarged view of region I in FIG. 2 for explaining the concept of residual strain during tension of the polishing layer.
  • FIG. 3C is an enlarged view of region I in FIG. 2 for explaining the concept of residual strain when the polishing layer is pulled.
  • FIG. 3D is an enlarged view of region I in FIG.
  • FIG. 4A is a schematic diagram for explaining the concept of the volume change rate in the polishing layer.
  • FIG. 4B is a schematic diagram for explaining the concept of the volume change rate in the polishing layer.
  • FIG. 5A is a schematic diagram for explaining the concept of surface hardness in the polishing layer.
  • FIG. 5B is a schematic diagram for explaining the concept of surface hardness in the polishing layer.
  • the “wet state” refers to a state when the polishing layer is immersed in water at 23 ° C. for 4 hours or more.
  • the term “hardness” simply refers to Duro D hardness
  • the term “surface hardness” refers to universal hardness (HU: N / mm 2 ).
  • the surface hardness in the wet state of the polishing layer is represented by universal hardness (HU: N / mm 2 ) when a constant pressure is applied, as will be described later in Examples.
  • the structure of the chemical mechanical polishing pad according to the present embodiment is not particularly limited as long as it has a polishing layer on at least one surface.
  • the “polishing layer” refers to a single layer having a surface (hereinafter referred to as “polishing surface”) in contact with an object to be polished when chemical mechanical polishing is performed. That is, in the present invention, another layer that does not have a polishing surface may be included between the polishing layer and the support layer, but the other layer does not have a polishing surface and thus is not a “polishing layer”.
  • the polishing layer is formed from a composition containing thermoplastic polyurethane by a production method described later.
  • the specific gravity of the polishing layer is 1.15 or more and 1.30 or less, and the duro D hardness is 50D or more and 80D or less.
  • the chemical mechanical polishing pad according to the present embodiment will be described in detail.
  • the polishing layer constituting the chemical mechanical polishing pad according to the present embodiment is formed from a composition containing thermoplastic polyurethane (hereinafter also simply referred to as “composition”) by a manufacturing method described later.
  • polishing layers containing polyurethane are classified into a foam type and a non-foam type.
  • a non-foaming type polishing layer the specific gravity and hardness are larger than the foaming type due to its structure, and accordingly, the elastic deformation of the polishing layer with respect to the unevenness of the surface to be polished (the surface of the wafer or the like) is reduced. As a result, the flatness of the surface to be polished tends to be good.
  • the hardness of the polishing layer is larger than that of the foam type, there is a tendency that the generation of polishing defects (scratches, etc.) increases due to polishing scraps and pad scraps entering between the surface to be polished and the polishing layer.
  • the present inventors have prepared a polishing layer using a composition containing a thermoplastic polyurethane, and controlled the specific gravity and hardness of the polishing layer, so that the surface to be polished, which has been considered difficult by conventional techniques, has been obtained. It has been found that it is possible to achieve both improvement in flatness (surface of a wafer or the like) and reduction in polishing defects (scratch etc.).
  • composition 1.1.1.1. Thermoplastic polyurethane According to the composition containing thermoplastic polyurethane, a polishing layer having excellent flexibility can be produced. By capturing polishing scraps and pad scraps that enter between the polished surface on the surface of the flexible polishing layer, it is possible to prevent them from contacting the polished surface with a strong pressing pressure. It is considered that the generation of polishing defects can be suppressed. On the other hand, when a polishing layer containing polyurethane cross-linked using a heat-crosslinkable polyurethane (thermosetting polyurethane) is produced, it is difficult to impart sufficient flexibility to the polishing layer, resulting in a polishing defect. It is difficult to suppress the occurrence of.
  • thermoplastic polyurethane thermoplastic polyurethane
  • the polishing layer containing the polyurethane in which the heat-crosslinkable polyurethane is crosslinked and the molecular chain is firmly bonded is less likely to swell even when it comes into contact with water, compared to the polishing layer prepared using the thermoplastic polyurethane. It has properties, and the surface hardness in the wet state cannot be reduced. For this reason, when the polishing layer contains a crosslinked polyurethane, polishing scraps and pad scraps that have entered between the polished surface and the polishing surface will be captured on the surface of the polishing layer having a high surface hardness, Since they come into contact with the surface to be polished with a strong pressing pressure, generation of polishing defects cannot be suppressed.
  • thermoplastic polyurethane contained in the composition preferably includes a repeating unit derived from at least one selected from alicyclic isocyanate and aromatic isocyanate. Since the polishing layer produced from the composition containing the thermoplastic polyurethane having such a chemical structure can easily control the crystallinity, the specific gravity, hardness and the like of the polishing layer can be easily controlled.
  • alicyclic isocyanate examples include isophorone diisocyanate (IPDI), norbornene diisocyanate, hydrogenated 4,4′-diphenylmethane diisocyanate (hydrogenated MDI), and the like. These alicyclic isocyanates may be used alone or in combination of two or more.
  • aromatic isocyanate examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, and naphthalene.
  • aromatic diisocyanates such as diisocyanate, 1,5-naphthalene diisocyanate, p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylene diisocyanate.
  • 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, and 4,4'-diphenylmethane diisocyanate are preferable because the reaction control with a hydroxyl group is easy.
  • aromatic isocyanates may be used alone or in combination of two or more.
  • thermoplastic polyurethane contained in the composition may be used in combination with alicyclic isocyanate and aromatic isocyanate, or in combination with other isocyanates.
  • examples of other isocyanates include aliphatic diisocyanates such as ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • thermoplastic polyurethane contained in the composition contains a repeating unit derived from alicyclic isocyanate.
  • the thermoplastic polyurethane exhibits appropriate hardness, and the surface hardness in the wet state can be more appropriately controlled, and the flexibility becomes larger. Therefore, it is suitable for the implementation of the present invention.
  • thermoplastic polyurethane contained in the composition preferably further includes a repeating unit derived from at least one selected from polyether polyol, polyester polyol, polycarbonate polyol and polyolefin polyol.
  • a repeating unit derived from the exemplified polyols the water resistance of the thermoplastic polyurethane tends to be further improved.
  • thermoplastic polyurethane contained in the composition may include a repeating unit derived from a chain extender.
  • chain extender include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, Low molecular weight dihydric alcohols such as neopentyl glycol, 1,4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, diethylene glycol, triethylene glycol, 1,4-bis (2-hydroxyethoxy) benzene It is done.
  • ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butylene glycol, 1,4-butanediol, 1,5-pentanediol because of easy control of reaction with isocyanate groups, 1,6-hexanediol is preferred, and 1,4-butanediol is more preferred.
  • the thermoplastic polyurethane contained in the composition contains 2 to 60 parts by mass of a repeating unit derived from at least one selected from alicyclic isocyanate and aromatic isocyanate with respect to 100 parts by mass of the thermoplastic polyurethane.
  • the content is preferably 3 to 55 parts by mass.
  • the method for producing the thermoplastic polyurethane contained in the composition is not particularly limited, and can be produced according to a general polyurethane production method (for example, a conventionally known batch method or prepolymer method).
  • the composition may further contain a polymer compound other than thermoplastic polyurethane.
  • the other polymer compound that can be added to the composition is preferably a polymer compound having a water absorption rate of 3 to 3,000% (hereinafter also simply referred to as “water-absorbing polymer compound”).
  • water-absorbing polymer compound By adding the water-absorbing polymer compound, it is possible to impart appropriate water absorption to the polishing layer, and to easily control the volume change of the polishing layer that may occur due to swelling due to water absorption.
  • a water-absorbing polymer compound containing at least one bond selected from an ether bond, an ester bond and an amide bond is more preferable.
  • water-absorbing polymer compound containing an ether bond examples include polyoxyethylene, polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyether ester amide, polyether amide imide, polypropylene glycol, polyoxypropylene butyl ether, polyoxy Propylene glyceryl ether, polyoxypropylene sorbit, oxyethylene-epichlorohydrin copolymer, methoxypolyethylene glycol (meth) acrylate copolymer, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, poly Oxyethylene oleyl cetyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene poly Oxypropylene butyl ether, polyoxyethylene polyoxypropylene hexylene glycol ether, polyoxyethylene polyoxypropylene trimethylolpropane, polyoxyethylene polyoxypropylene glyceryl ether, copolymer of monomer and
  • Examples of the water-absorbing polymer compound containing an ester bond include polyoxyethylene fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, glycerin fatty acid ester, acrylic acid ester copolymer (acrylic rubber) Etc.
  • Examples of the polyoxyethylene fatty acid ester include polyethylene glycol monostearate, polyethylene glycol laurate, polyethylene glycol monooleate, and polyethylene glycol distearate.
  • water-absorbing polymer compound containing an amide bond examples include fatty acid alkanolamides and modified polyamide resins.
  • the molecular weight of the water-absorbing polymer compound is preferably from 500 to 1,000,000, more preferably from 5,000 to 500,000, as a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography.
  • the content thereof is preferably 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the thermoplastic polyurethane and the water-absorbing polymer compound. More preferably, it is 3 to 15 parts by mass, and particularly preferably 5 to 10 parts by mass.
  • the volume change rate in the wet state is easily adjusted to a range of 0.8% to 5.0%.
  • the volume change rate of the polishing layer is in the above range, the polishing layer surface is softened moderately by water absorption, so that the flatness of the surface to be polished is improved and polishing defects (scratches) can be reduced. .
  • the composition may further comprise water-soluble particles.
  • Such water-soluble particles are preferably present in a state of being uniformly dispersed in the composition.
  • a polishing layer in which water-soluble particles are uniformly dispersed can be obtained.
  • the water-soluble particles are held in contact with a polishing aqueous dispersion (hereinafter also referred to as “slurry”) composed of abrasive grains and a chemical solution, so that the water-soluble particles are released from the surface of the polishing layer to hold the slurry.
  • slurry polishing aqueous dispersion
  • It is used for the purpose of forming pores. For this reason, by using water-soluble particles without using a polyurethane foam having a cellular structure, pores are formed on the surface of the polishing layer, and the retention of the slurry becomes better. Moreover, since the pores are formed on the surface of the polishing layer, the surface hardness in the wet state can be controlled. Furthermore, it is possible to increase the specific gravity of the polishing layer by using particles having a large specific gravity.
  • the composition containing the thermoplastic polyurethane contains water-soluble particles, (1) since the water-soluble particles act as a reinforcing agent such as a filler, the elastic deformation of the polishing layer can be reduced. The flatness can be improved, (2) it is a non-foaming type polishing layer, so it has excellent mechanical strength, and (3) it is not necessary to use a precise technique to uniformly control the foamed cell structure. From the viewpoint of excellent productivity.
  • the water-soluble particles are not particularly limited, and examples thereof include organic water-soluble particles and inorganic water-soluble particles. Specifically, in addition to a substance that dissolves in water such as a water-soluble polymer, a substance that can swell or gel by contact with water and be released from the surface of the polishing layer, such as a water-absorbent resin.
  • Examples of the material constituting the organic water-soluble particles include saccharides (polysaccharides such as starch, dextrin and cyclodextrin, lactose, mannitol, etc.), celluloses (hydroxypropylcellulose, methylcellulose, etc.), proteins, polyvinyl alcohol, Examples include polyvinyl pyrrolidone, polyacrylic acid, polyethylene oxide, sulfonated polyisoprene, and sulfonated isoprene copolymers.
  • saccharides polysaccharides such as starch, dextrin and cyclodextrin, lactose, mannitol, etc.
  • celluloses hydroxypropylcellulose, methylcellulose, etc.
  • proteins polyvinyl alcohol
  • Examples include polyvinyl pyrrolidone, polyacrylic acid, polyethylene oxide, sulfonated polyisoprene, and sulfonated isoprene copolymers.
  • Examples of the material constituting the inorganic water-soluble particles include potassium acetate, potassium nitrate, potassium carbonate, potassium hydrogen carbonate, potassium bromide, potassium phosphate, potassium sulfate, magnesium sulfate, and calcium nitrate.
  • the material constituting the water-soluble particles the material constituting the organic water-soluble particles or the inorganic water-soluble particles may be used alone or in combination of two or more.
  • the water-soluble particles are preferably solid from the viewpoint that the hardness and other mechanical strength of the polishing layer can be set to appropriate values.
  • the content of water-soluble particles in the composition is preferably 3 to 150 parts by mass with respect to 100 parts by mass of the thermoplastic polyurethane.
  • a polishing layer having a high polishing rate in chemical mechanical polishing and having an appropriate hardness and other mechanical strength can be produced.
  • the average particle diameter of the water-soluble particles is preferably 0.5 to 200 ⁇ m.
  • the size of the pores formed when the water-soluble particles are released from the surface of the polishing layer of the chemical mechanical polishing pad is preferably 0.1 to 500 ⁇ m, more preferably 0.5 to 200 ⁇ m.
  • a chemical mechanical polishing pad having a polishing layer exhibiting a high polishing rate and excellent mechanical strength can be produced.
  • the specific gravity of the polishing layer provided in the chemical mechanical polishing pad according to the present embodiment is 1.15 or more and 1.30 or less, and preferably 1.18 or more and 1.27 or less.
  • the specific gravity of the polishing layer becomes appropriate, so that the flatness of the surface to be polished becomes good, and the elastic deformation (following property) of the polishing layer with respect to the unevenness of the surface to be polished is moderate Therefore, polishing defects (scratches) can be reduced.
  • the specific gravity of the polishing layer is less than the above range, it is not preferable because the hardness of the polishing layer becomes too low and the flatness of the surface to be polished is deteriorated.
  • the specific gravity of the polishing layer exceeds the above range, the hardness of the polishing layer becomes too high, and polishing defects (scratches) increase, which is not preferable.
  • the upper limit of the specific gravity of the polishing layer is 1.30 or less in view of the balance between the specific gravity of polyurethane currently known and the appropriate hardness of the polishing layer.
  • a material having a large specific gravity in addition to urethane into the polishing layer.
  • a polishing layer having a specific gravity exceeding 1.30 can be produced by mixing a material having a large specific gravity such as silica or alumina with urethane as a filler.
  • the hardness of the polishing layer is increased by the mixed filler, and scratches on the surface to be polished are greatly deteriorated, so that the function and effect of the polishing layer of the present invention cannot be achieved.
  • the specific gravity of the polishing layer can be measured by a method in accordance with “JIS Z8807”. Specifically, a sample with a known mass is placed in a Le Chatelier specific gravity bottle containing water, the volume of the sample is known from the rise of the liquid level due to the sample, and the specific gravity is obtained from the mass and volume of the sample.
  • the polishing layer with which the chemical mechanical polishing pad which concerns on this Embodiment is equipped is a non-foaming type from a viewpoint made into the specific gravity of the said range.
  • the non-foaming type refers to a polishing layer that does not substantially contain bubbles.
  • the specific gravity of a commercially available polishing pad such as “IC1000” manufactured by ROHM & HAAS is currently about 0.40 to 0.90.
  • Duro D hardness of the polishing layer provided in the chemical mechanical polishing pad according to the present embodiment is 50D or more and 80D or less, preferably 55D or more and 80D or less, more preferably 55D or more and 75D or less. 60D or more and 70D or less is particularly preferable.
  • FIG. 1A and 1B are schematic diagrams for explaining the concept of duro D hardness in a polishing layer.
  • the durro D hardness is an index indicating the degree of macro deflection of the polishing layer 10 when a weight is applied in the polishing step. This can also be understood from the measurement method described later.
  • the polishing layer has an appropriate duro D hardness, so that the flatness of the surface to be polished is improved and the elastic deformation of the polishing layer with respect to the irregularities of the surface to be polished ( (Followability) becomes appropriate, so that polishing defects (scratches) can be reduced.
  • the durometer D hardness of the polishing layer is less than the above range, the flatness of the surface to be polished is deteriorated. Further, if the duro D hardness of the polishing layer exceeds the above range, polishing defects (scratches) increase, which is not preferable.
  • the duro D hardness of the polishing layer can be measured by a method according to “JIS K6253”. Specifically, the test piece is placed on a flat and solid surface, the pressure plate of the type D durometer is maintained parallel to the surface of the test piece, and the push needle is perpendicular to the surface of the test piece. Holding the type D durometer, the pressure plate is brought into contact with the test piece so as not to give an impact. The tip of the needle is measured at a position 12 mm or more away from the end of the test piece. After the pressure plate is brought into contact with the test piece, reading is performed 15 seconds later. The number of measurement points is measured 5 times at a position separated by 6 mm or more, and the median value is defined as Duro D hardness.
  • the residual strain at the time of tension of the polishing layer included in the chemical mechanical polishing pad according to the present embodiment is preferably 2% or more and 10% or less, more preferably 2% or more and 9% or less. preferable.
  • polishing waste and pad waste are gradually accumulated therein, resulting in clogging and deterioration of polishing characteristics. Therefore, by dressing with a diamond grindstone (hereinafter also referred to as “diamond conditioning”), the clogged polishing layer surface is scraped off, and the same surface as the initial state below is exposed from the surface and used. During this diamond conditioning, fuzz and pad debris are generated on the surface of the polishing layer.
  • diamond conditioning a diamond grindstone
  • FIG. 2 is a schematic diagram for explaining the concept of residual strain during tension of the polishing layer.
  • 3A to 3E are enlarged views of region I in FIG. 2 for explaining the concept of residual strain during polishing of the polishing layer.
  • the dresser 20 rotates in the direction of the arrow in FIG. 2 to scrape the surface of the polishing layer 10.
  • FIGS. 3A to 3B when the polishing layer 10 is dressed, a part of the surface of the polishing layer 10 is pulled by the dresser 20 and extends. Then, as shown in FIG. 3C, a part of the surface of the polishing layer 10 is cut to generate pad scraps 10a.
  • FIG. 3C a part of the surface of the polishing layer 10 is cut to generate pad scraps 10a.
  • the portion 10b that extends without being cut shrinks to return to the original state due to the elasticity of the polishing layer, but as shown in FIG. 3E, fluffing according to the residual strain of the polishing layer occurs. Part 10b 'is generated.
  • pulling of a polishing layer becomes an parameter
  • the residual strain at the time of tension of the polishing layer is in the above range, generation of pad scraps due to diamond conditioning and fluffing on the surface of the polishing layer are reduced. Further, the deformation of the polishing layer with respect to the unevenness of the surface to be polished (the surface of the wafer or the like) can be reduced. Thereby, the flatness of the surface to be polished can be improved, and the generation of polishing defects can be reduced. If the residual strain at the time of tension of the polishing layer is less than 2%, pad scraps generated when the surface of the polishing layer is conditioned in diamond increase, and this may be mixed into the polishing process to increase polishing defects. Therefore, it is not preferable.
  • the surface of the polishing layer becomes fuzzy when the surface of the polishing layer is conditioned, and the deformation of the polishing layer with respect to the unevenness of the surface to be polished increases. Therefore, the flatness of the surface to be polished may be deteriorated, which is not preferable.
  • the residual strain at the time of tension of the polishing layer can be measured by a method based on “JIS K6270”.
  • the test apparatus includes a fixed-side grip that holds one end of the test piece, a grip that holds the other end of the test piece and reciprocates, a drive device that reciprocates the grip at a constant frequency, and a fixed amplitude.
  • the counter is configured to display the number of reciprocating motions. Specifically, two dumbbell-shaped test pieces are attached to the gripper, the test apparatus is moved, and stopped after 1 ⁇ 10 3 repetitions. Stop at a position where no stress is applied to one test piece, and measure the distance between the marked lines of the test piece after 1 minute. Furthermore, after repeating 100 times, it measures similarly about another test piece.
  • the test frequency is usually in the range of 1 to 5 Hz.
  • Test before gauge length I 0, the gauge length I n by non distorts after tensile repeatedly calculates the residual strain (%) at a tensile by the following equation (2). Residual strain during tension (%) ((I n ⁇ I 0 ) / I 0 ) ⁇ 100 (2)
  • the temperature and humidity at the time of measurement are in accordance with “6.1 Standard temperature of laboratory” and “6.2 Standard humidity of laboratory” of “JIS K6250”. That is, the standard temperature of the test room is 23 ° C., and the tolerance is ⁇ 2 ° C. The standard humidity in the test room is 50% relative humidity, and the tolerance is ⁇ 10%.
  • the polishing layer provided in the chemical mechanical polishing pad according to the present embodiment preferably has a volume change rate of 0.8% or more and 5% or less when the polishing layer is immersed in water at 23 ° C. for 24 hours. It is more preferably 1% or more and 3% or less.
  • FIG. 4A and 4B are schematic diagrams for explaining the concept of the volume change rate in the polishing layer.
  • Chemical mechanical polishing pads are constantly exposed to the slurry during the polishing operation. Then, the concave portion 30 of the polishing layer 10 that has been produced with a predetermined size and shape before water absorption as shown in FIG. 4A is caused by swelling due to water absorption as shown in FIG. The degree of fluffing may change.
  • the volume change rate when immersed in water is in the above range, the surface of the polishing layer is appropriately softened due to swelling due to water absorption, so that the generation of scratches can be reduced.
  • the volume change rate is less than the above range, since the swelling due to water absorption is small and the polishing layer surface is not sufficiently softened, the effect of reducing the generation of scratches cannot be sufficiently exhibited.
  • the volume change rate exceeds the above range, swelling due to water absorption becomes too large, and although the generation of scratches can be reduced, the flatness of the object to be polished is deteriorated.
  • a concave pattern is formed on the polished surface, if the swelling due to water absorption becomes too large, the shape and dimensions of the concave pattern change depending on the polishing time, and stable polishing characteristics may not be obtained. For this reason, it is preferable to swell in order to soften the surface of the polishing layer, but excessive swelling is not preferable because it causes deformation of the polishing surface.
  • Surface hardness in wet condition of the polishing layer comprising the chemical mechanical polishing pad according to surface hardness present embodiment in the wet state is preferably 2N / mm 2 or more 10 N / mm 2 or less, 3N / mm 2 or more 9N / more preferably mm 2 less, and particularly preferably 4N / mm 2 or more 8N / mm 2 or less.
  • the surface hardness of the polishing layer in the wet state is an index representing the surface hardness of the polishing layer during actual use of CMP.
  • 5A and 5B are schematic views for explaining the concept of surface hardness in the polishing layer. As shown in FIG. 5A, a very small probe 40 is pushed into the surface of the polishing layer 10. Then, as shown in FIG.
  • the polishing layer 10 immediately below the probe 40 is deformed so as to be pushed out around the probe 40.
  • the surface hardness is an index representing the degree of deformation or deflection of the extreme surface of the polishing layer. That is, in the Duro D hardness measurement, which is a hardness measurement method in millimeters as shown in FIGS. 1A and 1B, data representing the macro hardness of the entire polishing layer is obtained, whereas as shown in FIGS. 5A and 5B. In the measurement of the surface hardness of the polishing layer in the wet state, data representing the micro hardness of the extreme surface of the polishing layer can be obtained.
  • the indentation depth of the polishing layer in actual use of CMP is 5 micrometers to 50 micrometers.
  • the surface hardness of the polishing layer in the wet state it is preferable to determine the surface hardness of the polishing layer in the wet state.
  • the surface hardness of the polishing layer in the wet state is in the above range, the flexibility of the extreme surface of the polishing layer becomes appropriate, so that polishing defects (scratches) can be reduced.
  • the surface hardness of the polishing layer in the wet state is less than the above range, the flatness of the surface to be polished may be deteriorated, which is not preferable. Further, if the surface hardness in the wet state of the polishing layer exceeds the above range, polishing defects (scratches) may increase, which is not preferable.
  • the surface hardness in the wet state of the polishing layer is determined by using a nano indenter (product name: HM2000) manufactured by FISCHER in a polishing layer immersed in water at 23 ° C. for 4 hours, and pressing 300 mN.
  • HM2000 nano indenter manufactured by FISCHER
  • the shape of the polishing layer and the concave portion The planar shape of the polishing layer is not particularly limited, but may be, for example, a circular shape.
  • the size is preferably 150 mm to 1200 mm in diameter, more preferably 500 mm to 1000 mm in diameter.
  • the thickness of the polishing layer is preferably 0.5 mm to 5.0 mm, more preferably 1.0 mm to 4.0 mm, and particularly preferably 1.5 mm to 3.5 mm.
  • a plurality of recesses may be formed on the polished surface.
  • the concave portion holds the slurry supplied at the time of CMP, distributes it uniformly to the polishing surface, and temporarily retains wastes such as polishing scraps, pad scraps and used slurry to the outside. It has a function as a route for discharging.
  • the depth of the concave portion is preferably 0.1 mm or more, more preferably 0.1 mm to 2.5 mm, and particularly preferably 0.2 mm to 2.0 mm.
  • the width of the concave portion is preferably 0.1 mm or more, more preferably 0.1 mm to 5.0 mm, and particularly preferably 0.2 mm to 3.0 mm.
  • the interval between adjacent recesses is preferably 0.05 mm or more, more preferably 0.05 mm to 100 mm, and particularly preferably 0.1 mm to 10 mm.
  • the pitch which is the sum of the width of the recess and the distance between adjacent recesses, is preferably 0.15 mm or more, more preferably 0.15 mm to 105 mm, and particularly preferably 0.6 mm to 13 mm. .
  • the recesses can be formed with a certain interval in the above range. By forming the recess having the shape in the above range, a chemical mechanical polishing pad having an excellent effect of reducing scratches on the surface to be polished and having a long life can be easily manufactured.
  • the depth is preferably 0.1 mm or more, the width is 0.1 mm or more, and the interval is 0.05 mm or more, the depth is 0.1 mm to 2.5 mm, and the width is 0.1 mm to 5. More preferably, the distance is 0 mm and the distance is 0.05 mm to 100 mm, the depth is 0.2 mm to 2.0 mm, the width is 0.2 mm to 3.0 mm, and the distance is particularly preferably 0.1 mm to 10 mm. .
  • a multi-blade tool having a shape described in JP-A-2006-167811, JP-A-2001-18164, JP-A-2008-183657, or the like can be used.
  • the cutting blade of the tool used is selected from diamond, at least one metal element selected from metals of Group 4, 5, and 6 of the periodic table such as Ti, Cr, Zr, and V, and nitrogen, carbon, and oxygen.
  • a coating layer composed of at least one nonmetallic element.
  • the number of coating layers is not limited to one, and a plurality of layers may be provided with different materials.
  • the thickness of such a coating layer is preferably from 0.1 to 5 ⁇ m, more preferably from 1.5 to 4 ⁇ m.
  • a known technique such as an arc ion plating apparatus can be selected and used as appropriate according to the tool material, coating material, and the like.
  • the polishing layer used in the present embodiment is obtained by molding a composition containing the thermoplastic polyurethane described above.
  • the composition can be kneaded with a known kneader or the like.
  • the kneader include a roll, a kneader, a Banbury mixer, and an extruder (single screw, multi screw).
  • the composition plasticized at 120 ° C. to 230 ° C. may be molded by press molding, extrusion molding, injection molding, plasticizing and sheeting. The specific gravity and hardness can be controlled by appropriately adjusting the molding conditions.
  • a recess may be formed on the polished surface by cutting.
  • a concave part can be formed simultaneously with the rough shape of the polishing layer by molding the above-described composition using a mold in which a pattern to be a concave part is formed.
  • the chemical mechanical polishing pad according to the present embodiment may be composed of only the polishing layer described above, a support layer may be provided on the surface opposite to the polishing surface of the polishing layer.
  • the support layer is used to support the polishing layer on the polishing apparatus surface plate in the chemical mechanical polishing pad.
  • the support layer may be an adhesive layer or a cushion layer having the adhesive layer on both sides.
  • the adhesive layer can be made of, for example, an adhesive sheet.
  • the thickness of the pressure-sensitive adhesive sheet is preferably 50 ⁇ m to 250 ⁇ m. By having a thickness of 50 ⁇ m or more, the pressure from the polishing surface side of the polishing layer can be sufficiently relaxed, and by having a thickness of 250 ⁇ m or less, it is uniform to the extent that the influence of unevenness is not exerted on the polishing performance. A chemical mechanical polishing pad having a sufficient thickness can be obtained.
  • the material of the pressure-sensitive adhesive sheet is not particularly limited as long as the polishing layer can be fixed to the surface plate for the polishing apparatus, but is preferably an acrylic or rubber material having a lower elastic modulus than the polishing layer.
  • the adhesive strength of the pressure-sensitive adhesive sheet is not particularly limited as long as the chemical mechanical polishing pad can be fixed to the surface plate for a polishing apparatus, but when the adhesive strength of the pressure-sensitive adhesive sheet is measured according to the standard of “JIS Z0237”, the adhesive strength is preferable. Is 3 N / 25 mm or more, more preferably 4 N / 25 mm or more, and particularly preferably 10 N / 25 mm or more.
  • the cushion layer is made of a material having a lower hardness than the polishing layer, the material is not particularly limited, and may be a porous body (foam) or a non-porous body.
  • a cushion layer the layer which shape
  • the thickness of the cushion layer is preferably 0.1 mm to 5.0 mm, more preferably 0.5 mm to 2.0 mm.
  • the chemical mechanical polishing method according to the present embodiment is characterized in that chemical mechanical polishing is performed using the above-described chemical mechanical polishing pad.
  • the chemical mechanical polishing pad described above is formed from a composition containing a thermoplastic polyurethane, and has a polishing layer having a specific gravity and hardness within a specific range. Therefore, according to the chemical mechanical polishing method according to the present embodiment, it is possible to achieve both improvement of the flatness of the surface to be polished and reduction of polishing defects (scratches) particularly in the CMP process.
  • a commercially available chemical mechanical polishing apparatus can be used.
  • Examples of commercially available chemical mechanical polishing apparatuses include model “EPO-112”, model “EPO-222” (above, manufactured by Ebara Corporation); model “LGP-510”, model “LGP-552” (above, Wrap Master SFT); model “Mirra”, model “Reflexion LK” (applied by Applied Materials) and the like.
  • an optimal one can be selected as appropriate according to the object to be polished (copper film, insulating film, low dielectric constant insulating film, etc.).
  • thermoplastic polyurethane composition 50 parts by mass of non-alicyclic thermoplastic polyurethane (BASF, trade name “Elastolan 1174D”, hardness 70D), alicyclic thermoplastic polyurethane (BASF, trade name “Elastolan NY1197A”, hardness 61D) 50 parts by mass, and 29 parts by mass of ⁇ -cyclodextrin (manufactured by Shimizu Minato Sugar Co., Ltd., trade name “Dexipal ⁇ -100”, average particle size 20 ⁇ m) as water-soluble particles are kneaded with a rudder adjusted to 200 ° C.
  • ⁇ -cyclodextrin manufactured by Shimizu Minato Sugar Co., Ltd., trade name “Dexipal ⁇ -100”, average particle size 20 ⁇ m
  • thermoplastic polyurethane composition was compression molded at 180 ° C. in a press mold to prepare a cylindrical molded body having a diameter of 845 mm and a thickness of 3.2 mm.
  • the surface of the molded body is polished with sandpaper, the thickness is adjusted, and a concentric circle having a width of 0.5 mm, a depth of 1.0 mm, and a pitch of 1.5 mm is obtained by a cutting machine (manufactured by Kato Machine Co., Ltd.).
  • a polishing layer having a diameter of 600 mm and a thickness of 2.8 mm was obtained by forming a concave portion and cutting the outer periphery.
  • a double-sided tape # 422JA manufactured by 3M was laminated to the surface of the polishing layer thus prepared where no recess was formed, to prepare a chemical mechanical polishing pad.
  • thermoplastic polyurethane A 31 parts by mass of 4,4′-diphenylmethane diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name “MILLIONATE MT”) dissolved in an oil bath at 80 ° C. was added to the flask, and stirred and mixed for 15 minutes. Next, the obtained mixture was spread on a surface-treated SUS vat, allowed to react at 110 ° C. for 1 hour, and further annealed at 80 ° C. for 16 hours to obtain thermoplastic polyurethane A.
  • a chemical mechanical polishing pad was prepared in the same manner as in Example 1 except that polyurethane A was used as the thermoplastic polyurethane and the other components and content of the composition were changed to those described in Table 1.
  • Example 10 67 parts by mass of thermoplastic polyurethane (manufactured by BASF, trade name “Elastolan 1174D”), 30 parts by weight of thermoplastic polyurethane (made by BASF, trade name “Elastolan NY1197A”), polyolefin-polyether copolymer ( 3 parts by mass of Sanyo Chemical Industries, Ltd., trade name “Perestat 300”, 38% water absorption polymer, ⁇ -cyclodextrin (manufactured by Shimizu Minato Sugar Co., Ltd., trade name “Dexipearl” as water-soluble particles
  • a thermoplastic polyurethane composition was prepared by kneading 20 parts by mass of ⁇ -100 ”) with a rudder adjusted to 180 ° C.
  • a chemical mechanical polishing pad was produced in the same manner as in Example 1 except that the composition thus produced was used.
  • Examples 11-14 Chemical mechanical polishing pads of Examples 11 to 14 were produced in the same manner as in Example 1 except that the types and contents of the components of the composition were changed to those shown in Table 2.
  • Comparative Example 4 In a 2 L four-necked separable flask equipped with a stirrer in an air atmosphere, 25 parts by mass of polybutadiene having a hydroxyl group at the end (trade name “NISSO PB G-1000” manufactured by Nippon Soda Co., Ltd.) 35.8 parts by mass of tetramethylene glycol (trade name “PTMG-1000SN” manufactured by Hodogaya Chemical Co., Ltd.) was added, and the temperature was adjusted to 40 ° C. and stirred.
  • polybutadiene having a hydroxyl group at the end (trade name “NISSO PB G-1000” manufactured by Nippon Soda Co., Ltd.) 35.8 parts by mass of tetramethylene glycol (trade name “PTMG-1000SN” manufactured by Hodogaya Chemical Co., Ltd.) was added, and the temperature was adjusted to 40 ° C. and stirred.
  • thermoplastic polyurethane B 30.5 parts by mass of 4,4′-diphenylmethane diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name “MILLIONATE MT”) dissolved in an oil bath at 80 ° C. was added to the flask and stirred and mixed for 10 minutes. After that, 8.4 parts by mass of 3-methyl-1,5-pentanediol (manufactured by Kuraray Co., Ltd., trade name “MPD”) was added, and the mixture was stirred and mixed. Next, the obtained mixture was spread on a surface-treated SUS vat, left to react at 110 ° C. for 1 hour, and further annealed at 80 ° C. for 16 hours to obtain thermoplastic polyurethane B.
  • a chemical mechanical polishing pad was prepared in the same manner as in Example 1 except that polyurethane B was used as the thermoplastic polyurethane and other components and contents were changed to those described in Table 3.
  • Comparative Example 5 A commercially available chemical mechanical polishing pad (manufactured by ROHM & HAAS, trade name “IC1000”, a polishing layer made of thermally crosslinked polyurethane resin) was used. When the physical properties of the polishing layer were evaluated by the method described later, the specific gravity was 0.81, the Duro D hardness was 63 D, and the surface hardness was 14.5 N / mm 2 .
  • Comparative Example 6 1,2-polybutadiene (manufactured by JSR Corporation, trade name “RB830”, hardness 47D), 100 parts by weight of ⁇ -cyclodextrin (manufactured by Shimizu Minato Sugar Co., Ltd., trade name “Dexipal ⁇ -100”), A composition in which 38 parts by mass of an average particle size of 20 ⁇ m was mixed was obtained. After adding 1 part by mass of an organic peroxide (trade name “Park Mill D-40”, manufactured by NOF Corporation) to 100 parts by mass of the obtained composition, a kneaded composition was obtained. In the same manner as above, a chemical mechanical polishing pad made of a water-soluble particle-containing thermally crosslinked polybutadiene resin was produced.
  • volume change rate was measured for the polishing layer produced in “3.1. Production of Chemical Mechanical Polishing Pad” and the polishing layer of IC1000.
  • the volume change rate of the polishing layer was measured by the following method based on “JIS K6258”. First, a polishing layer molded to a thickness of 2.8 mm was cut into a 2 cm ⁇ 2 cm square and used as a measurement sample. This measurement sample was immersed in water at 23 ° C. for 24 hours.
  • the object to be polished is subjected to chemical mechanical polishing for 1 minute, and the film thickness before and after the processing is measured by an electroconductive film thickness measuring instrument (manufactured by KLA-Tencor Corporation). , Format “Omnimap RS75”), and the polishing rate was calculated from the film thickness before and after the treatment and the polishing treatment time. Then, the end point time at which the Cu is cleared is calculated as the time from the start of polishing to the end point detected by the change of the table torque current, and 1.2 times the end point detection time for the patterned wafer.
  • a precision step gauge (manufactured by KLA-Tencor Corporation) is used for a portion in which a pattern in which copper wiring portions having a width of 100 ⁇ m and insulating portions having a width of 100 ⁇ m are alternately continued in a direction perpendicular to the length direction is 3.0 mm.
  • the type “HRP-240”) was used to evaluate the dishing by measuring the amount of depression of the copper wiring having a wiring width of 100 ⁇ m (hereinafter also referred to as “dishing amount”), and used as an index of flatness.
  • the results are also shown in Tables 1 to 3.
  • the dishing amount is preferably less than 300 mm, more preferably less than 250 mm, and particularly preferably less than 200 mm.
  • the number of scratches on the entire surface of the wafer was measured using a wafer defect inspection apparatus (model “KLA2351” manufactured by KLA-Tencor Corporation). The results are also shown in Tables 1 to 3.
  • the number of scratches is preferably less than 40, more preferably less than 20, and particularly preferably less than 15.
  • the chemical mechanical polishing pads of Comparative Examples 1 to 6 had a result that one or more of the above-mentioned two polishing characteristics were defective.
  • Comparative Example 1 although it was a chemical mechanical polishing pad containing an alicyclic thermoplastic polyurethane, the flatness was poor because the specific gravity requirement was not satisfied.
  • Comparative Example 2 although it was a chemical mechanical polishing pad containing non-alicyclic thermoplastic polyurethane, the scratch performance was poor because it did not satisfy the requirements for Duro D hardness.
  • Comparative Example 3 although it was a chemical mechanical polishing pad containing a non-alicyclic thermoplastic polyurethane, the flatness was remarkably inferior because it did not satisfy the requirements of specific gravity and Duro D hardness.
  • Comparative Example 4 although it was a chemical mechanical polishing pad containing thermoplastic polyurethane B, the flatness was remarkably inferior because it did not satisfy the requirements for Duro D hardness.
  • Comparative Example 6 was a chemical mechanical polishing pad containing polybutadiene and water-soluble particles, did not satisfy the requirements for specific gravity, and was inferior in both polishing properties of flatness and scratch.
  • the chemical mechanical polishing pad according to the present invention provides flatness and scratches by defining the balance between the specific gravity and hardness of the polishing layer containing thermoplastic polyurethane.
  • a chemical mechanical polishing pad with excellent performance could be manufactured.
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 本発明に係る化学機械研磨パッドは、熱可塑性ポリウレタンを含有する組成物から形成された研磨層を有し、前記研磨層の比重が1.15以上1.30以下であり、且つ、前記研磨層のデュロD硬度が50D以上80D以下であることを特徴とする。

Description

化学機械研磨パッドおよびそれを用いた化学機械研磨方法
 本発明は、化学機械研磨パッドおよび該化学機械研磨パッドを用いた化学機械研磨方法に関する。
 従来、ガラスや半導体素子を研磨するための研磨パッドとしては、不織布にポリウレタン溶液を含浸させて得られる多孔質不織布やポリウレタン成型物が使用されてきた。特に、半導体基板表面を平坦化する化学機械研磨(Chemical Mechanical Polishing、以下「CMP」ともいう)に好適な化学機械研磨パッドとしては、以下に例示するようなポリウレタン製の研磨パッドが検討されてきた。
 例えば、特表平8-500622号公報にはポリウレタンにフィラー状の成分を分散させた研磨パッド、特開2000-17252号公報や特許第3956364号公報には発泡ポリウレタンを使用した研磨パッド、特開2007-284625号公報にはポリオールやイソシアネートの使用量を調整してウレタン樹脂の架橋度を調節することにより物性値を制御した研磨パッド、特開2003-332277号公報には研磨層の極表面の特性を制御した研磨パッド等が記載されている。
 しかしながら、これらの従来の材料を用いた化学機械研磨パッドは、CMPにおける被研磨面の平坦性を向上させることを目的としているため、特に研磨層の高弾性率化に着目することが多く、研磨層の比重と硬度との関係については十分な議論がなされてこなかった。
 例えば、特許第3956364号公報に記載されている研磨パッドは、研磨層を多孔質構造とすることにより高弾性率化を図っている。該研磨パッドは、研磨層を構成する材質自体の硬度が高いものの、その多孔質構造のために研磨層の比重が低くなり、且つ、その多孔質構造によるクッション効果のために被研磨面の凹凸に追随して容易に変形するので、CMPにおける被研磨面の平坦性が不十分となりやすい。
 その一方で、被研磨面の凹凸に追随しないように単純に研磨層の比重を高めるだけでは、研磨層が硬くなり、被研磨面と研磨層との間に入り込んだ研磨屑やパッド屑により研磨欠陥(スクラッチ)が増大しやすい。
 そこで、本発明に係る幾つかの態様は、上記課題を解決することで、CMPにおける被研磨面の平坦性の向上と研磨欠陥(スクラッチ)の低減とを両立させることができる化学機械研磨パッド、および該化学機械研磨パッドを用いた化学機械研磨方法を提供するものである。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 本発明に係る化学機械研磨パッドの一態様は、
 熱可塑性ポリウレタンを含有する組成物から形成された研磨層を有し、
 前記研磨層の比重が1.15以上1.30以下であり、且つ、前記研磨層のデュロD硬度が50D以上80D以下であることを特徴とする。
 [適用例2]
 適用例1の化学機械研磨パッドにおいて、
 前記研磨層の引張時における残留歪が2%以上10%以下であることができる。
 [適用例3]
 適用例1または適用例2の化学機械研磨パッドにおいて、
 前記研磨層を23℃の水に24時間浸漬したときの体積変化率が0.8%以上5.0%以下であることができる。
 [適用例4]
 適用例1ないし適用例3のいずれか一例に記載の化学機械研磨パッドにおいて、
 前記研磨層を23℃の水に4時間浸漬したときの表面硬度が2N/mm以上10N/mm以下であることができる。
 [適用例5]
 適用例1ないし適用例4のいずれか一例に記載の化学機械研磨パッドにおいて、
 前記熱可塑性ポリウレタンは、脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を含むことができる。
 [適用例6]
 適用例1ないし適用例5のいずれか一例に記載の化学機械研磨パッドにおいて、
 前記組成物は、水溶性粒子をさらに含むことができる。
 [適用例7]
 本発明に係る化学機械研磨方法の一態様は、
 適用例1ないし適用例6のいずれか一例に記載の化学機械研磨パッドを用いて化学機械研磨することを特徴とする。
 本発明に係る化学機械研磨パッドは、熱可塑性ポリウレタンを含有する組成物から形成され、且つ、特定の範囲にある比重および硬度を有する研磨層を備えることにより、CMPにおける被研磨面の平坦性の向上と研磨欠陥(スクラッチ)の低減とを両立させることができる。
図1Aは、研磨層におけるデュロD硬度の概念を説明するための模式図である。 図1Bは、研磨層におけるデュロD硬度の概念を説明するための模式図である。 図2は、研磨層の引張時における残留歪の概念を説明するための模式図である。 図3Aは、研磨層の引張時における残留歪の概念を説明するための図2における領域Iの拡大図である。 図3Bは、研磨層の引張時における残留歪の概念を説明するための図2における領域Iの拡大図である。 図3Cは、研磨層の引張時における残留歪の概念を説明するための図2における領域Iの拡大図である。 図3Dは、研磨層の引張時における残留歪の概念を説明するための図2における領域Iの拡大図である。 図3Eは、研磨層の引張時における残留歪の概念を説明するための図2における領域Iの拡大図である。 図4Aは、研磨層における体積変化率の概念を説明するための模式図である。 図4Bは、研磨層における体積変化率の概念を説明するための模式図である。 図5Aは、研磨層における表面硬度の概念を説明するための模式図である。 図5Bは、研磨層における表面硬度の概念を説明するための模式図である。
 以下、本発明の好適な実施の形態について詳細に説明する。本発明において、「ウエット状態」とは、研磨層を23℃の水に4時間以上浸漬させたときの状態をいう。また、本明細書中において、単に「硬度」というときはデュロD硬度のことを指し、「表面硬度」というときはユニバーサル硬さ(HU:N/mm)のことを指す。なお、研磨層のウエット状態における表面硬度は、後述の実施例にも示すように、一定圧力をかけた時のユニバーサル硬さ(HU:N/mm)で示される。
 1.化学機械研磨パッド
 本実施の形態に係る化学機械研磨パッドの構成としては、少なくとも一方の面に研磨層を備えていれば特に限定されない。なお、本発明において、「研磨層」とは、化学機械研磨を行う際に被研磨物と接触する面(以下、「研磨面」という)を有する単層のことをいう。すなわち、本発明では、研磨層と支持層との間に研磨面を有しない他の層を含んでいてもよいが、該他の層は研磨面を有しないので「研磨層」ではない。前記研磨層は、熱可塑性ポリウレタンを含有する組成物から後述する製造方法により形成される。また、前記研磨層の比重は1.15以上1.30以下であり、且つ、デュロD硬度は50D以上80D以下である。以下、本実施の形態に係る化学機械研磨パッドについて、詳細に説明する。
 1.1.研磨層
 本実施の形態に係る化学機械研磨パッドを構成する研磨層は、熱可塑性ポリウレタンを含有する組成物(以下、単に「組成物」ともいう)から後述する製造方法により形成される。
 一般的に、ポリウレタンを含む研磨層は、発泡タイプと非発泡タイプに分類される。非発泡タイプの研磨層の場合、その構造から比重や硬度が発泡タイプと比較し大きくなり、これに伴って被研磨面(ウエハ等の表面)の凹凸に対する研磨層の弾性変形が小さくなる。その結果、被研磨面の平坦性が良好になる傾向がある。その反面、研磨層の硬度が発泡タイプと比較して大きいため、被研磨面と研磨層の間に入り込んだ研磨屑やパッド屑により研磨欠陥(スクラッチ等)の発生が増大する傾向がある。
 一方、発泡タイプの研磨層の場合、その構造から比重や硬度が小さくなる傾向がある。これにより、被研磨面(ウエハ等の表面)と研磨層の間に入り込んだ研磨屑やパッド屑を柔軟な研磨層の表面で捕捉し、被研磨面に対して強い押し付け圧で研磨屑やパッド屑が接触することを回避させることができるので、研磨欠陥の発生を低減させることができる。その反面、被研磨面の凹凸に追随して研磨層の弾性変形が大きくなるため、被研磨面の平坦性が悪化する傾向がある。以上のことから、被研磨面(ウエハ等の表面)の平坦性の向上と研磨欠陥(スクラッチ等)の低減とは、相反する特性であると考えられてきた。
 しかしながら、本発明者らは、熱可塑性ポリウレタンを含有する組成物を用いて研磨層を作製し、該研磨層の比重および硬度をコントロールすることにより、従来の技術では困難とされてきた被研磨面(ウエハ等の表面)の平坦性の向上と研磨欠陥(スクラッチ等)の低減とを両立できることを見出したのである。
 1.1.1.組成物
 1.1.1.1.熱可塑性ポリウレタン
 熱可塑性ポリウレタンを含有する組成物によれば、柔軟性に優れた研磨層を作製することができる。柔軟な研磨層の表面で被研磨面と研磨面との間に入り込んだ研磨屑やパッド屑を捕捉することにより、それらが強い押し付け圧で被研磨面に接触することを回避させることができるので、研磨欠陥の発生を抑制できると考えられる。これに対して、熱架橋性ポリウレタン(熱硬化性ポリウレタン)を用いて架橋されたポリウレタンを含有する研磨層を作製した場合、研磨層に充分な柔軟性を付与することは困難であり、研磨欠陥の発生を抑制することは困難である。
 なお、熱架橋性ポリウレタンが架橋されて分子鎖が強固に結合したポリウレタンを含有する研磨層は、熱可塑性ポリウレタンを用いて作製された研磨層と比較して、水と接触しても膨潤しにくい性質があり、ウエット状態における表面硬度を低下させることができない。このため、研磨層が架橋されたポリウレタンを含有する場合には、被研磨面と研磨面との間に入り込んだ研磨屑やパッド屑を表面硬度の高い研磨層の表面で捕捉することになり、それらが強い押し付け圧で被研磨面と接触することとなるため、研磨欠陥の発生を抑制することができない。
 前記組成物に含まれる熱可塑性ポリウレタンは、脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を含むことが好ましい。かかる化学構造を有する熱可塑性ポリウレタンを含有する組成物から作製された研磨層は、結晶性のコントロールが容易となるため、研磨層の比重や硬度等を制御することが容易となる。
 前記脂環式イソシアネートとしては、例えば、イソホロンジイソシアネート(IPDI)、ノルボルネンジイソシアネート、水添4,4’-ジフェニルメタンジイソシアネート(水添MDI)等が挙げられる。これらの脂環式イソシアネートは1種単独で用いてもよいし、2種以上を併用してもよい。
 前記芳香族イソシアネートとしては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシレンジイソシアネート等の芳香族ジイソシアネート類が挙げられる。これらの中でも、水酸基との反応制御が容易な点から、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートが好ましい。これらの芳香族イソシアネートは1種単独で用いてもよいし、2種以上を併用してもよい。
 前記組成物に含まれる熱可塑性ポリウレタンは、脂環式イソシアネートおよび芳香族イソシアネートを併用してもよいし、これら以外の他のイソシアネートを併用してもよい。他のイソシアネートとしては、例えば、エチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類が挙げられる。
 なお、前記組成物に含まれる熱可塑性ポリウレタンは、脂環式イソシアネートに由来する繰り返し単位を含むことがより好ましい。脂環式イソシアネートに由来する繰り返し単位を含むことにより、前記熱可塑性ポリウレタンが適切な硬度を発現すると共に、ウエット状態における表面硬度をより適切にコントロールすることができ、且つ、柔軟性がより大きくなるため、本発明の実施に好適となる。
 また、前記組成物に含まれる熱可塑性ポリウレタンは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオールおよびポリオレフィンポリオールから選択される少なくとも1種に由来する繰り返し単位をさらに含むことが好ましい。前記例示したポリオール類に由来する繰り返し単位を含むことで、熱可塑性ポリウレタンの耐水性がさらに向上する傾向がある。
 また、前記組成物に含まれる熱可塑性ポリウレタンは、鎖延長剤に由来する繰り返し単位を含んでもよい。前記鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン等の低分子量二価アルコールが挙げられる。これらの中でも、イソシアネート基との反応制御が容易な点から、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオールが好ましく、1,4-ブタンジオールがより好ましい。
 前記組成物に含まれる熱可塑性ポリウレタンは、熱可塑性ポリウレタン100質量部に対して、脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を2~60質量部含有することが好ましく、3~55質量部含有することがより好ましい。脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を前記範囲で含むことにより、熱可塑性ポリウレタンが適切な硬度を発現すると共に、ウエット状態における表面硬度を適切にコントロールすることができ、且つ、柔軟性が大きくなるため、本発明の実施に好適となる。
 前記組成物に含まれる熱可塑性ポリウレタンの製造方法は、特に限定されず、一般的なポリウレタンの製造方法(例えば、従来公知の一括法またはプレポリマー法等)に準じて製造することができる。
 1.1.1.2.吸水性高分子化合物
 前記組成物は、熱可塑性ポリウレタン以外の高分子化合物をさらに含んでもよい。前記組成物中に添加し得る他の高分子化合物としては、吸水率が3~3,000%となる高分子化合物(以下、単に「吸水性高分子化合物」ともいう)であることが好ましい。吸水性高分子化合物を添加することにより、研磨層に適度な吸水性を付与することができ、吸水による膨潤によって生じ得る研磨層の体積変化をコントロールしやすくすることができる。
 吸水性高分子化合物の中でも、エーテル結合、エステル結合およびアミド結合から選択される少なくとも1種の結合を含む吸水性高分子化合物であることがより好ましい。
 エーテル結合を含む吸水性高分子化合物としては、例えば、ポリオキシエチレン、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリエーテルエステルアミド、ポリエーテルアミドイミド、ポリプロピレングリコール、ポリオキシプロピレンブチルエーテル、ポリオキシプロピレングリセリルエーテル、ポリオキシプロピレンソルビット、オキシエチレン-エピクロロヒドリン共重合体、メトキシポリエチレングリコール(メタ)アクリレート共重合体、ポリオキエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオレイルセチルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンポリオキシプロピレンブチルエーテル、ポリオキシエチレンポリオキシプロピレンヘキシレングリコールエーテル、ポリオキシエチレンポリオキシプロピレントリメチロールプロパン、ポリオキシエチレンポリオキシプロピレングリセリルエーテル、エーテル結合を含むモノマーとオレフィンとの共重合体、塩素含有ポリエーテル、ポリアセタール樹脂、アルキルグルコシド、ポリオキシエチレン脂肪酸アミン等が挙げられる。
 エステル結合を含む吸水性高分子化合物としては、例えば、ポリオキシエチレン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、アクリル酸エステル共重合体(アクリルゴム)等が挙げられる。前記ポリオキシエチレン脂肪酸エステルとしては、例えばモノステアリン酸ポリエチレングリコール、ポリエチレングリコールラウレート、ポリエチレングリコールモノオレエート、ポリエチレングリコールジステアレート等が挙げられる。
 アミド結合を含む吸水性高分子化合物としては、例えば、脂肪酸アルカノールアミド、変性ポリアミド樹脂等が挙げられる。
 吸水性高分子化合物の分子量は、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量として、好ましくは500~1,000,000であり、より好ましくは5,000~500,000である。
 なお、本発明における吸水性高分子化合物の吸水率は、「JIS K6258」に準拠した以下の方法により求めることができる。まず、高分子化合物を厚さ2mmのシート状に成型し、さらに2cm×2cmの大きさに切り出したものを、23℃の水に24時間浸漬させる。浸漬前の空気中の質量(M1)と浸漬後の空気中の質量(M3)とを測定し、下記式(1)により質量変化率を求め、これを吸水率とした。
 吸水率(%)=((M3-M1)/M1)×100 …(1)
 前記組成物が吸水性高分子化合物を含有する場合のその含有量は、熱可塑性ポリウレタンおよび吸水性高分子化合物の合計量100質量部に対して、好ましくは1質量部以上20質量部以下であり、より好ましくは3質量部以上15質量部以下であり、特に好ましくは5質量部以上10質量部以下である。吸水性高分子化合物の含有量が前記範囲にあると、ウェット状態における体積変化率を0.8%以上5.0%以下の範囲に調整しやすくなる。そして、研磨層の体積変化率が前記範囲にあると、吸水による研磨層表面の軟化が適度となるため被研磨面の平坦性が良好になると共に、研磨欠陥(スクラッチ)を低減させることができる。
 1.1.1.3.水溶性粒子
 前記組成物は、水溶性粒子をさらに含んでもよい。かかる水溶性粒子は、組成物中に均一に分散された状態で存在していることが好ましい。このような組成物を用いることで、水溶性粒子が均一に分散された状態の研磨層が得られる。
 前記水溶性粒子は、砥粒および薬液からなる研磨用水分散体(以下、「スラリー」ともいう)と接触することにより、研磨層表面から水溶性粒子が遊離して、該スラリーを保持することのできる空孔(ポア)を形成する目的で用いられる。このため、気泡構造を有するポリウレタン発泡体を用いることなく、水溶性粒子を用いることで研磨層の表面に空孔が形成され、スラリーの保持がより良好となる。また、研磨層の表面に空孔が形成されることから、ウエット状態における表面硬度をコントロールすることができる。さらに、比重の大きい粒子を使用することで研磨層の比重を大きくすることが可能である。
 熱可塑性ポリウレタンを含有する組成物が水溶性粒子を含有する場合、(1)水溶性粒子がフィラーのような補強剤として作用することにより、前記研磨層の弾性変形を小さくできることから被研磨面の平坦性を向上させることができ、(2)非発泡タイプの研磨層であることから機械的強度に優れ、さらに(3)発泡セル構造を均一に制御するという精緻な技術を用いる必要がないことから生産性に優れる点でより好ましい。
 前記水溶性粒子としては、特に限定されないが、有機水溶性粒子および無機水溶性粒子が挙げられる。具体的には、水溶性高分子のように水に溶解する物質の他、吸水性樹脂のように水との接触により膨潤またはゲル化して研磨層表面から遊離することができる物質が挙げられる。
 前記有機水溶性粒子を構成する材料としては、例えば、糖類(澱粉、デキストリンおよびシクロデキストリン等の多糖類、乳糖、マンニット等)、セルロース類(ヒドロキシプロピルセルロース、メチルセルロース等)、蛋白質、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、ポリエチレンオキサイド、スルホン化ポリイソプレン、スルホン化イソプレン共重合体等が挙げられる。
 前記無機水溶性粒子を構成する材料としては、例えば、酢酸カリウム、硝酸カリウム、炭酸カリウム、炭酸水素カリウム、臭化カリウム、リン酸カリウム、硫酸カリウム、硫酸マグネシウム、硝酸カルシウム等が挙げられる。
 前記水溶性粒子を構成する材料は、有機水溶性粒子または無機水溶性粒子を構成する材料を1種単独で用いてもよく、2種以上を併用してもよい。なお、研磨層の硬度その他の機械的強度を適正な値とすることができるという観点から、水溶性粒子は中実体であることが好ましい。
 前記組成物における水溶性粒子の含有量は、熱可塑性ポリウレタン100質量部に対して、3~150質量部であることが好ましい。水溶性粒子の含有量が前記範囲にあると、化学機械研磨において高い研磨速度を示し、且つ、適正な硬度その他の機械的強度を有する研磨層を製造することができる。
 前記水溶性粒子の平均粒径は、好ましくは0.5~200μmである。水溶性粒子が化学機械研磨パッドの研磨層表面から遊離することにより形成される空孔の大きさは、好ましくは0.1~500μm、より好ましくは0.5~200μmである。水溶性粒子の平均粒径が前記範囲にあると、高い研磨速度を示し、且つ、機械的強度に優れた研磨層を有する化学機械研磨パッドを製造することができる。
 1.1.2.比重
 本実施の形態に係る化学機械研磨パッドが備える研磨層の比重は、1.15以上1.30以下であり、1.18以上1.27以下であることが好ましい。研磨層の比重が前記範囲にあると、研磨層の硬度が適度となるため被研磨面の平坦性が良好になると共に、被研磨面の凹凸に対する研磨層の弾性変形(追随性)が適度となるため研磨欠陥(スクラッチ)を低減させることができる。研磨層の比重が前記範囲未満である場合、研磨層の硬度が低くなりすぎて、被研磨面の平坦性が悪化するため好ましくない。また、研磨層の比重が前記範囲を超える場合、研磨層の硬度が高くなりすぎて、研磨欠陥(スクラッチ)が増大するため好ましくない。
 なお、現在知られているポリウレタンの比重と、研磨層の適切な硬度のバランスを考慮すると、研磨層の比重の上限は1.30以下となる。比重が1.30を超える研磨層を作製するためには、ウレタンの他に比重の大きな材料を研磨層に含有させる必要がある。たとえば、シリカやアルミナのような比重の大きな材料をフィラーとしてウレタンに混合することにより、比重が1.30を超える研磨層を作製することはできる。しかしながら、かかる場合には、混合したフィラーによって研磨層の硬度が大きくなり、被研磨面のスクラッチが大幅に悪化するために本願発明の研磨層のような作用効果を奏することはできない。
 本発明において、研磨層の比重は、「JIS Z8807」に準拠した方法で測定することができる。具体的には、水を入れたルシャテリエ比重びんに質量既知の試料を入れ、試料による液面の上昇から試料の体積を知り、試料の質量と体積とから比重を求める。
 なお、本実施の形態に係る化学機械研磨パッドが備える研磨層は、前記範囲の比重とする観点から、非発泡タイプであることが好ましい。なお、本発明において、非発泡タイプとは、実質的に気泡を含んでいない研磨層であることをいう。参考までに、現在市販されている発泡タイプの研磨層を備えるウレタンパッド、例えばROHM&HAAS社製の「IC1000」等の一般的な市販研磨パッドの比重は、0.40~0.90程度である。
 1.1.3.デュロD硬度
 本実施の形態に係る化学機械研磨パッドが備える研磨層のデュロD硬度は、50D以上80D以下であり、55D以上80D以下であることが好ましく、55D以上75D以下であることがより好ましく、60D以上70D以下であることが特に好ましい。
 図1Aおよび図1Bは、研磨層におけるデュロD硬度の概念を説明するための模式図である。図1Aに示すように研磨工程を模して研磨層10に対して上方から加重をかけると、図1Bに示すように研磨層10が撓むことになる。デュロD硬度とは、このように研磨工程において加重をかけた場合の研磨層10のマクロな撓みの程度を示す指標となる。このことは、後述する測定方法からも理解することができる。したがって、研磨層のデュロD硬度が前記範囲にあると、研磨層のデュロD硬度が適度であるため被研磨面の平坦性が良好になると共に、被研磨面の凹凸に対する研磨層の弾性変形(追随性)が適度となるため研磨欠陥(スクラッチ)を低減させることができる。研磨層のデュロD硬度が前記範囲未満であると、被研磨面の平坦性が悪化するため好ましくない。また、研磨層のデュロD硬度が前記範囲を超えると、研磨欠陥(スクラッチ)が増大するため好ましくない。
 本発明において、研磨層のデュロD硬度は、「JIS K6253」に準拠した方法で測定することができる。具体的には、平坦で堅固な面に試験片を置き、タイプDデュロメータの加圧板が試験片の表面に平行に維持され、且つ、押針が試験片の表面に対して直角となるようにタイプDデュロメータを保持し、衝撃を与えないように加圧板を試験片に接触させる。押針先端は、試験片の端から12mm以上離れた位置で測定する。加圧板を試験片に接触させた後、15秒後に読取りを行う。測定点数は6mm以上離れた位置で5回測定し、その中央値をデュロD硬度とする。
 1.1.4.引張時における残留歪
 本実施の形態に係る化学機械研磨パッドが備える研磨層の引張時における残留歪は、2%以上10%以下であることが好ましく、2%以上9%以下であることがより好ましい。
 一般的に、研磨層表面には微細孔および/または凹部を設けており、そこに研磨屑やパッド屑が徐々に蓄積されることで目詰まりを起こし研磨特性が劣化してしまう。そこで、ダイヤモンドの砥石でドレッシングすること(以下、「ダイヤモンドコンディショニング」ともいう)により、目詰まり状態となった研磨層表面を削り取り、表面から下の初期状態と同様の面を露出して使用する。このダイヤモンドコンディショニングの際に、研磨層表面の毛羽立ちやパッド屑が発生する。
 図2は、研磨層の引張時における残留歪の概念を説明するための模式図である。図3Aないし図3Eは、研磨層の引張時における残留歪の概念を説明するための図2における領域Iの拡大図である。図2に示すように、ダイヤモンドコンディショニングの際にはドレッサー20が図2の矢印方向に回転することによって研磨層10の表面を削り取る。図3Aないし図3Bに示すように、研磨層10をドレッシングすると、研磨層10表面の一部がドレッサー20に引っ張られて伸びる。そして、図3Cに示すように、研磨層10表面の一部が切断されることによりパッド屑10aが発生する。一方、図3Dに示すように、切断されずに伸びた部分10bは、研磨層の弾性により元の状態に戻ろうと収縮するが、図3Eに示すように、研磨層の残留歪に応じた毛羽立ち部10b’が発生する。このように研磨層の引張時における残留歪は、ダイヤモンドコンディショニングの際に研磨層表面の毛羽立ちの程度を示す指標となる。
 研磨層の引張時における残留歪が前記範囲にあると、ダイヤモンドコンディショニングによるパッド屑の発生や研磨層表面の毛羽立ちが低減される。また、被研磨面(ウエハ等の表面)の凹凸に対する研磨層の変形を小さくすることができる。これにより、被研磨面の平坦性を向上できると共に、研磨欠陥の発生を低減させることができる。研磨層の引張時における残留歪が2%未満であると、研磨層の表面をダイヤモンドコンディショニングした場合に発生するパッド屑が増加し、これが研磨工程に混入することで研磨欠陥が増大する場合があるため好ましくない。一方、研磨層の引張時における残留歪が10%を超えると、研磨層の表面をダイヤモンドコンディショニングした場合に研磨層表面の毛羽立ちが増加し、被研磨面の凹凸に対する研磨層の変形が大きくなることで、被研磨面の平坦性が悪化する場合があるため好ましくない。
 なお、本発明において、研磨層の引張時における残留歪は、「JIS K6270」に準拠した方法で測定することができる。試験装置は、試験片の一端を保持する固定側のつかみ具、試験片の他端を保持し往復運動するつかみ具、つかみ具を一定の周波数で一定の振幅を往復させる駆動装置、つかみ具の往復運動回数を表示するカウンタ等によって構成されている。具体的な測定方法は、2個のダンベル状試験片をつかみ具に取り付けて試験装置を動かし、繰返し回数1×10回後停止させる。1個の試験片に応力が掛からないような位置に停止し、1分後に試験片の標線間距離を測定する。さらに、100回繰り返した後、もう1個の試験片についても同様に測定する。試験周波数は、通常1~5Hzの範囲で行う。試験前の標線間距離I、繰返し引張後の歪みを与えない状態での標線間距離Iから、下記式(2)により引張時における残留歪(%)を算出する。
 引張時における残留歪(%)=((I-I)/I)×100 …(2)
 また、測定時の温度および湿度は、「JIS K6250」の「6.1 試験室の標準温度」および「6.2 試験室の標準湿度」に準ずる。すなわち、試験室の標準温度は23℃とし、許容差は±2℃とする。試験室の標準湿度は相対湿度で50%とし、許容差は±10%とする。
 1.1.5.体積変化率
 本実施の形態に係る化学機械研磨パッドが備える研磨層は、研磨層を23℃の水に24時間浸漬したときの体積変化率が0.8%以上5%以下であることが好ましく、1%以上3%以下であることがより好ましい。
 図4Aおよび図4Bは、研磨層における体積変化率の概念を説明するための模式図である。化学機械研磨パッドは、研磨作業中スラリーに常に晒されている。そうすると、図4Aに示すような吸水する前には所定の寸法や形状で作製されていた研磨層10の凹部30が、図4Bに示すように吸水による膨潤によって、特に凹部30の寸法や形状、毛羽立ちの度合い等が変化することがある。水に浸漬したときの体積変化率が前記範囲にある場合には、吸水による膨潤により研磨層表面が適度に軟化するので、スクラッチの発生を低減させることができる。体積変化率が前記範囲未満の場合には、吸水による膨潤が小さく研磨層表面の軟化が不十分なため、スクラッチの発生を低減させる効果を十分に発揮できない。体積変化率が前記範囲を超える場合には、吸水による膨潤が大きくなりすぎて、スクラッチの発生を低減できるものの、被研磨物の平坦性が悪くなってしまう。特に研磨面に凹部パターンが形成されている場合、吸水による膨潤が大きくなりすぎると凹部パターンの形状や寸法が、研磨時間に応じて変化し、安定した研磨特性が得られなくなる場合がある。このため、研磨層表面を軟化させるために膨潤することは好ましいが、過剰な膨潤は研磨面の変形を引き起こすため好ましくない。
 なお、本発明における研磨層の体積変化率は、「JIS K6258」に準拠した以下の方法により測定した。まず、厚さ2.8mmに成形した研磨層を2cm×2cmの大きさに切り出し、それを23℃の水に24時間浸漬させる。浸漬前の空気中の質量(M1)と浸漬前の水中の質量(M2)、浸漬後の空気中の質量(M3)と浸漬後の水中の質量(M4)を測定し、下記式(3)により体積変化率を算出した。
 体積変化率(%)=(((M3-M4)-(M1-M2))/(M1-M2))×100 …(3)
 1.1.6.ウエット状態における表面硬度
 本実施の形態に係る化学機械研磨パッドが備える研磨層のウエット状態における表面硬度は、2N/mm以上10N/mm以下であることが好ましく、3N/mm以上9N/mm以下であることがより好ましく、4N/mm以上8N/mm以下であることが特に好ましい。研磨層のウエット状態における表面硬度は、CMP実使用時における研磨層の表面硬度を表す指標となる。図5Aおよび図5Bは、研磨層における表面硬度の概念を説明するための模式図である。図5Aに示すように、微小なサイズの探針40を研磨層10の表面へ押し込む。そうすると、図5Bに示すように、探針40直下の研磨層10は、探針40の周囲へ押し出されるように変形する。このように、表面硬度とは、研磨層の極表面の変形や撓みの程度を表す指標となる。すなわち、図1Aおよび図1Bに示すようなミリメートル単位の硬度測定法である前記デュロD硬度測定では研磨層全体のマクロな硬度を表すデータが得られるのに対し、図5Aおよび図5Bに示すような研磨層のウエット状態における表面硬度測定では研磨層の極表面のミクロな硬度を表すデータが得られる。CMP実使用時における研磨層の押し込み深さは、5マイクロメートルから50マイクロメートルである。したがって、このような研磨層の極表面の柔軟性を判断するためには、研磨層のウエット状態における表面硬度により判断することが好ましい。研磨層のウエット状態における表面硬度が前記範囲にあると、研磨層の極表面の柔軟性が適度となるため研磨欠陥(スクラッチ)を低減させることができる。研磨層のウエット状態における表面硬度が前記範囲未満であると、被研磨面の平坦性が悪化することがあるため好ましくない。また、研磨層のウエット状態における表面硬度が前記範囲を超えると、研磨欠陥(スクラッチ)が増大することがあるため好ましくない。なお、本発明において、研磨層のウエット状態における表面硬度は、23℃の水に4時間浸漬させた研磨層において、FISCHER社製のナノインデンター(製品名:HM2000)を使用し、300mN押し込み時のユニバーサル硬さ(HU)で示される。
 1.1.7.研磨層の形状および凹部
 研磨層の平面形状は、特に限定されないが、例えば円形状であることができる。研磨層の平面形状が円形状である場合、その大きさは、好ましくは直径150mm~1200mm、より好ましくは直径500mm~1000mmである。研磨層の厚さは、好ましくは0.5mm~5.0mm、より好ましくは1.0mm~4.0mm、特に好ましくは1.5mm~3.5mmである。
 研磨面には、複数の凹部を形成してもよい。前記凹部は、CMPの際に供給されるスラリーを保持し、これを研磨面に均一に分配すると共に、研磨屑、パッド屑および使用済みのスラリー等の廃棄物を一時的に滞留させ、外部へ排出するための経路となる機能を有する。
 凹部の深さは、好ましくは0.1mm以上、より好ましくは0.1mm~2.5mm、特に好ましくは0.2mm~2.0mmとすることができる。凹部の幅は、好ましくは0.1mm以上、より好ましくは0.1mm~5.0mm、特に好ましくは0.2mm~3.0mmとすることができる。研磨面において、隣接する凹部の間隔は、好ましくは0.05mm以上、より好ましくは0.05mm~100mm、特に好ましくは0.1mm~10mmとすることができる。また、凹部の幅と隣り合う凹部の間の距離との和であるピッチは、好ましくは0.15mm以上、より好ましくは0.15mm~105mm、特に好ましくは0.6mm~13mmとすることができる。凹部は、前記範囲の一定の間隔を設けて形成されたものであることができる。前記範囲の形状を有する凹部を形成することで、被研磨面のスクラッチ低減効果に優れ、寿命の長い化学機械研磨パッドを容易に製造することができる。
 前記各好ましい範囲は、各々の組合せとすることができる。すなわち、例えば、深さが0.1mm以上、幅が0.1mm以上、間隔が0.05mm以上であることが好ましく、深さが0.1mm~2.5mm、幅が0.1mm~5.0mm、間隔が0.05mm~100mmであることがより好ましく、深さが0.2mm~2.0mm、幅が0.2mm~3.0mm、間隔が0.1mm~10mmであることが特に好ましい。
 前記凹部を加工するための工具は、特開2006-167811号公報、特開2001-18164号公報、特開2008-183657号公報等に記載されている形状の多刃工具を用いることができる。使用する工具の切削刃は、ダイヤモンドあるいは、Ti、Cr、Zr、V等の周期表第4、5、6族金属から選択される少なくとも1種の金属元素と、窒素、炭素および酸素から選択される少なくとも1種の非金属元素と、で構成されるコーティング層を有してもよい。さらにコーティング層は1層設ける場合に限らず、材料を違えて複数層設けてもよい。このようなコーティング層の膜厚は、0.1~5μmが好ましく、1.5~4μmがより好ましい。コーティング層の成膜には、アークイオンプレーティング装置等の公知の技術を工具材質、コーティング材質等に応じて適時選択して使用することができる。
 1.1.8.製造方法
 本実施の形態で用いられる研磨層は、前述した熱可塑性ポリウレタンを含有する組成物を成型することにより得られる。組成物の混練は、公知の混練機等により行うことができる。混練機としては、例えば、ロール、ニーダー、バンバリーミキサー、押出機(単軸、多軸)等が挙げられる。組成物から研磨層を成型する方法としては、120℃~230℃で可塑化した前記組成物をプレス成形、押出成形または射出成形し、可塑化・シート化する方法により成型すればよい。かかる成型条件を適宜調整することで比重や硬度をコントロールすることもできる。
 このようにして成型した後、切削加工により研磨面に凹部を形成してもよい。また、凹部となるパターンが形成された金型を用いて上述した組成物を金型成型することにより、研磨層の概形と共に凹部を同時に形成することもできる。
 1.2.支持層
 本実施の形態に係る化学機械研磨パッドは、前述した研磨層のみで構成される場合もあるが、前記研磨層の研磨面とは反対側の面に支持層を設けてもよい。
 支持層は、化学機械研磨パッドにおいて、研磨装置用定盤に研磨層を支持するために用いられる。支持層は、接着層であってもよいし、接着層を両面に有するクッション層であってもよい。
 接着層は、例えば粘着シートからなることができる。粘着シートの厚さは、50μm~250μmであることが好ましい。50μm以上の厚さを有することで、研磨層の研磨面側からの圧力を十分に緩和することができ、250μm以下の厚さを有することで、凹凸の影響を研磨性能に与えない程度に均一な厚みを有する化学機械研磨パッドが得られる。
 粘着シートの材質としては、研磨層を研磨装置用定盤に固定することができれば特に限定されないが、研磨層より弾性率の低いアクリル系またはゴム系の材質であることが好ましい。
 粘着シートの接着強度は、化学機械研磨パッドを研磨装置用定盤に固定することができれば特に限定されないが、「JIS Z0237」の規格で粘着シートの接着強度を測定した場合、その接着強度が好ましくは3N/25mm以上、より好ましくは4N/25mm以上、特に好ましくは10N/25mm以上である。
 クッション層は、研磨層よりも硬度が低い材質からなれば、その材質は特に限定されず、多孔質体(発泡体)または非多孔質体であってもよい。クッション層としては、例えば、発泡ポリウレタン等を成形した層が挙げられる。クッション層の厚さは、好ましくは0.1mm~5.0mm、より好ましくは0.5mm~2.0mmである。
 2.化学機械研磨方法
 本実施の形態に係る化学機械研磨方法は、前述の化学機械研磨パッドを用いて化学機械研磨することを特徴とする。前述の化学機械研磨パッドは、熱可塑性ポリウレタンを含有する組成物から形成され、特定の範囲の比重および硬度を兼ね備えた研磨層を有している。そのため、本実施の形態に係る化学機械研磨方法によれば、特にCMP工程における被研磨面の平坦性の向上と研磨欠陥(スクラッチ)の低減とを両立させることができる。
 本実施の形態に係る化学機械研磨方法においては、市販の化学機械研磨装置を用いることができる。市販の化学機械研磨装置としては、例えば、型式「EPO-112」、型式「EPO-222」(以上、株式会社荏原製作所製);型式「LGP-510」、型式「LGP-552」(以上、ラップマスターSFT社製);型式「Mirra」、型式「Reflexion LK」(以上、アプライドマテリアル社製)等が挙げられる。
 また、スラリーとしては、研磨対象(銅膜、絶縁膜、低誘電率絶縁膜等)に応じて適宜最適なものを選択することができる。
 3.実施例
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 3.1.化学機械研磨パッドの製造
 3.1.1.実施例1
 非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1174D」、硬度70D)を50質量部、脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストランNY1197A」、硬度61D)を50質量部、水溶性粒子としてβ-サイクロデキストリン(塩水港精糖株式会社製、商品名「デキシパールβ-100」、平均粒径20μm)29質量部を、200℃に調温されたルーダーにより混練して熱可塑性ポリウレタン組成物を作製した。作製した熱可塑性ポリウレタン組成物を、プレス金型内で180℃で圧縮成型し、直径845mm、厚さ3.2mmの円柱状の成型体を作製した。次に、作製した成型体の表面をサンドペーパーで研磨し、厚みを調整し、さらに切削加工機(加藤機械株式会社製)により幅0.5mm、深さ1.0mm、ピッチ1.5mmの同心円状の凹部を形成し外周部を切り離すことで、直径600mm、厚さ2.8mmの研磨層を得た。このようにして作製した研磨層のうち凹部を形成していない面へ両面テープ#422JA(3M社製)をラミネートし、化学機械研磨パッドを作製した。
 3.1.2.実施例2~7、比較例1~3
 組成物の各成分の種類および含有量を表1または表3に記載のものに変更したこと以外は、実施例1と同様にして実施例2~7、比較例1~3の化学機械研磨パッドを作製した。
 3.1.3.実施例8、9
 空気雰囲気下で、撹拌機を備えた2Lの4つ口セパラブルフラスコに、ポリオキシエチレンビスフェノールAエーテル(日油株式会社製、商品名「ユニオールDA400」)を38質量部およびポリテトラメチレングリコール(保土谷化学工業株式会社製、商品名「PTG-1000SN」、Mn=1012)を31質量部投入し、40℃に調温して撹拌した。次いで、前記フラスコに、80℃の油浴で溶解させた4,4’-ジフェニルメタンジイソシアネート(日本ポリウレタン工業株式会社製、商品名「MILLIONATE MT」)を31質量部加え、15分撹拌・混合した。次いで、得られた混合物を表面加工されたSUS製のバットに拡げ、110℃で1時間静置して反応させ、さらに80℃で16時間アニールし、熱可塑性のポリウレタンAを得た。熱可塑性ポリウレタンとしてポリウレタンAを用い、組成物の他の成分および含有量を表1に記載したものに変更したこと以外は、実施例1と同様にして化学機械研磨パッドを作製した。
 3.1.4.実施例10
 熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1174D」)を67質量部、熱可塑性ポリウレタン(BASF社製、商品名「エラストランNY1197A」)を30質量部、ポリオレフィン-ポリエーテル共重合体(三洋化成工業株式会社製、商品名「ペレスタット300」、吸水率38%の吸水性高分子化合物)を3質量部、水溶性粒子としてβ-サイクロデキストリン(塩水港精糖株式会社製、商品名「デキシパールβ-100」)20質量部を180℃に調温されたルーダーにより混練して熱可塑性ポリウレタン組成物を作製した。このようにして作製した組成物を用いたこと以外は、実施例1と同様にして化学機械研磨パッドを作製した。
 3.1.5.実施例11~14
 組成物の各成分の種類および含有量を表2に記載のものに変更したこと以外は、実施例1と同様にして実施例11~14の化学機械研磨パッドを作製した。
 3.1.6.比較例4
 空気雰囲気下で、撹拌機を備えた2Lの4つ口セパラブルフラスコに、末端が水酸基化されたポリブタジエン(日本曹達株式会社製、商品名「NISSO PB G-1000」)を25質量部およびポリテトラメチレングリコール(保土谷化学工業株式会社製、商品名「PTMG-1000SN」)を35.8質量部投入し、40℃に調温して撹拌した。次いで、前記フラスコに、80℃の油浴で溶解させた4,4’-ジフェニルメタンジイソシアネート(日本ポリウレタン工業株式会社製、商品名「MILLIONATE MT」)を30.5質量部加え、10分撹拌・混合した後、3-メチル-1,5-ペンタンジオール(株式会社クラレ製、商品名「MPD」)を8.4質量部加え、撹拌・混合した。次いで、得られた混合物を表面加工されたSUS製のバットに拡げ、110℃で1時間静置して反応させ、さらに80℃で16時間アニールし、熱可塑性のポリウレタンBを得た。熱可塑性ポリウレタンとしてポリウレタンBを用い、他の成分および含有量を表3に記載したものに変更したこと以外は、実施例1と同様にして化学機械研磨パッドを作製した。
 3.1.7.比較例5
 市販の化学機械研磨パッド(ROHM&HAAS社製、商品名「IC1000」、熱架橋ポリウレタン樹脂により研磨層が作製されている)を使用した。後述する方法により研磨層の物性を評価したところ、比重は0.81であり、デュロD硬度は63D、表面硬度は14.5N/mmであった。
 3.1.8.比較例6
 1,2-ポリブタジエン(JSR株式会社製、商品名「RB830」、硬度47D)100質量部に、水溶性粒子としてβ-サイクロデキストリン(塩水港精糖株式会社製、商品名「デキシパールβ-100」、平均粒径20μm)38質量部を混合した組成物を得た。得られた組成物100質量部に対して、さらに有機過酸化物(日油株式会社製、商品名「パークミルD-40」)を1質量部加え混練した組成物を得た後、実施例1と同様にして、水溶性粒子含有熱架橋ポリブタジエン樹脂からなる化学機械研磨パッドを作製した。
 なお、表1~表3における各成分の略称は、以下の通りである。
・「PU1-1」:非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1174D」、硬度70D)
・「PU1-2」:非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1164D」、硬度64D)
・「PU1-3」:非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1180A」、硬度41D)
・「PU2-1」:脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストランNY1197A」、硬度61D)
・「PU2-2」:脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストランNY1164D」、硬度64D)
・「β-CD」:β-サイクロデキストリン(平均粒径20μm、塩水港精糖株式会社製、商品名「デキシパールβ-100」)
・「熱架橋ポリブタジエン樹脂」:1,2-ポリブタジエン(硬度47D、JSR株式会社製、商品名「RB830」)
・「有機過酸化物」:ジクミルパーオキサイド(日油株式会社製、商品名「パークミルD-40」、架橋剤)
・「PM1」:ポリオレフィン-ポリエーテル共重合体(三洋化成工業株式会社製、商品名「ペレスタット300」、吸水率38%)
・「PM2」:ポリアルキレンオキサイド(住友精化株式会社製、商品名「アクアコークTWB」、吸水率2050%)
 3.2.研磨層の物性測定
 3.2.1.比重
 前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の研磨層について、比重を測定した。研磨層の比重は、「JIS Z8807」に準拠して測定した。その結果を表1~表3に併せて示す。
 3.2.2.デュロD硬度
 前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の研磨層について、デュロD硬度を測定した。研磨層のデュロD硬度は、「JIS K6253」に準拠して測定した。その結果を表1~表3に併せて示す。
 3.2.3.引張時における残留歪
 前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の各研磨層の凹部が形成されていない部分から試験片を作製し、引張時における残留歪を測定した。引張時における残留歪は、「JIS K6270」に準拠して測定した。なお、測定時の温度は23℃であり、湿度は相対湿度で50%であった。その結果を表1~表3に併せて示す。
 3.2.4.体積変化率
 前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の研磨層について、体積変化率を測定した。研磨層の体積変化率は、「JIS K6258」に準拠した以下の方法により測定した。まず、厚さ2.8mmに成形した研磨層を2cm×2cmの角形に切り出して、これを測定用試料とした。この測定用試料を23℃の水に24時間浸漬させた。浸漬前の空気中の質量(M1)と浸漬前の水中の質量(M2)、浸漬後の空気中の質量(M3)と浸漬後の水中の質量(M4)を電子天秤(チョウバランス株式会社製、型式「JP-300」)を用いて測定し、下記式(3)により、体積変化率を算出した。その結果を表1~表3に併せて示す。
 体積変化率(%)=(((M3-M4)-(M1-M2))/(M1-M2))×100 …(3)
 3.2.5.ウエット状態における表面硬度
 前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の研磨層について、研磨層のウエット状態の表面硬度を測定した。研磨層のウエット状態における表面硬度は、23℃の水に4時間浸漬させた研磨層について、ナノインデンター(FISCHER社製、型式「HM2000」)を使用し、300mN押し込み時のユニバーサル硬さ(HU)を表面硬度として測定した。その結果を表1~表3に併せて示す。
 3.3.化学機械研磨の評価
 前記「3.1.化学機械研磨用パッドの製造」で製造した化学機械研磨パッドを化学機械研磨装置(荏原製作所社製、形式「EPO-112」)に装着し、ドレッサー(アライド社製、商品名「#325-63R」)を用いてテーブル回転数20rpm、ドレッシング回転数19rpm、ドレッシング荷重5.1kgfの条件でドレッシングを30分行った。その後、ドレッシングした化学機械研磨パッドを用いて以下の条件にて化学機械研磨を行い、研磨特性を評価した。
・ヘッド回転数:61rpm
・ヘッド荷重:3psi(20.6kPa)
・テーブル回転数:60rpm
・スラリー供給速度:300cm/分
・スラリー:CMS8401/CMS8452(JSR株式会社製)
 3.3.1.平坦性の評価
 被研磨物として、シリコン基板上にPETEOS膜を5,000オングストローム順次積層させた後、「SEMATECH 854」マスクパターン加工し、その上に250オングストロームのタンタルナイトライド膜、1,000オングストロームの銅シード膜および10,000オングストロームの銅膜を順次積層させたテスト用の基板を用いた。
 前記「3.3.化学機械研磨の評価」に記載の条件で、前記被研磨物を1分間化学機械研磨処理し、処理前後の膜厚を電気伝導式膜厚測定器(ケーエルエー・テンコール社製、形式「オムニマップRS75」)を用いて測定し、処理前後の膜厚および研磨処理時間から研磨速度を算出した。その上でCuクリアになる終点時間を、研磨開始からテーブルトルク電流の変化によって検出した終点に至るまでの時間で算出し、前記パターン付きウエハに対して終点検出時間の1.2倍の時間を研磨した後に、幅100μmの銅配線部と幅100μmの絶縁部とが交互に連続したパターンが長さ方向に対して垂直方向に3.0mm連続した部分について、精密段差計(ケーエルエー・テンコール社製、形式「HRP-240」)を使用して、配線幅100μm部分の銅配線の窪み量(以下、「ディッシング量」ともいう)を測定することによりディッシングを評価し、平坦性の指標とした。その結果を表1~表3に併せて示す。なお、ディッシング量は、好ましくは300Å未満、より好ましくは250Å未満、特に好ましくは200Å未満である。
 3.3.2.スクラッチの評価
 研磨処理後の前記パターン付きウエハの被研磨面において、ウエハ欠陥検査装置(ケーエルエー・テンコール社製、型式「KLA2351」)を使用して、ウエハ全面におけるスクラッチの個数を測定した。その結果を表1~表3に併せて示す。なお、スクラッチは、好ましくは40個未満、より好ましくは20個未満、特に好ましくは15個未満である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 3.4.化学機械研磨パッドの評価結果
 表1および表2によれば、実施例1~14の化学機械研磨パッドは、平坦性、スクラッチの2項目の研磨特性においていずれも好ましい結果が得られた。
 これに対して表3によれば、比較例1~6の化学機械研磨パッドは、上述した2項目の各研磨特性のうち、1項目以上が不良となる結果が得られた。比較例1では、脂環式熱可塑性ポリウレタンを含有する化学機械研磨パッドではあるが、比重の要件を満たさないことにより平坦性が不良となった。また、比較例2では、非脂環式熱可塑性ポリウレタンを含有する化学機械研磨パッドではあるが、デュロD硬度の要件を満たさないことによりスクラッチ性能が不良となった。比較例3では、非脂環式熱可塑性ポリウレタンを含有する化学機械研磨パッドではあるが、比重およびデュロD硬度の要件を満たさないことにより平坦性が著しく劣る結果となった。比較例4では、熱可塑性のポリウレタンBを含有する化学機械研磨パッドではあるが、デュロD硬度の要件を満たさないことにより平坦性が著しく劣る結果となった。比較例6では、ポリブタジエンおよび水溶性粒子を含有する化学機械研磨パッドであり、比重の要件を満たさず、平坦性およびスクラッチの2項目の研磨特性においていずれも劣る結果となった。
 また、比較例5のように発泡構造を有する熱架橋ポリウレタンで構成される場合、平坦性およびスクラッチの2項目の研磨特性においていずれも劣る結果となった。
 以上の実施例および比較例の結果から明らかであるように、本発明にかかる化学機械研磨パッドは、熱可塑性ポリウレタンを含有する研磨層の比重と硬度のバランスを規定することで、平坦性およびスクラッチ性能に優れた化学機械研磨パッドを製造することができた。
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
10…研磨層、10a…パッド屑、10b…伸びた部分、10b’…毛羽立ち部、20…ドレッサー、30…凹部、40…探針

Claims (7)

  1.  熱可塑性ポリウレタンを含有する組成物から形成された研磨層を有し、
     前記研磨層の比重が1.15以上1.30以下であり、且つ、前記研磨層のデュロD硬度が50D以上80D以下であることを特徴とする、化学機械研磨パッド。
  2.  前記研磨層の引張時における残留歪が2%以上10%以下である、請求項1に記載の化学機械研磨パッド。
  3.  前記研磨層を23℃の水に24時間浸漬したときの体積変化率が0.8%以上5.0%以下である、請求項1または請求項2に記載の化学機械研磨パッド。
  4.  前記研磨層を23℃の水に4時間浸漬したときの表面硬度が2N/mm以上10N/mm以下である、請求項1ないし請求項3のいずれか一項に記載の化学機械研磨パッド。
  5.  前記熱可塑性ポリウレタンは、脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を含む、請求項1ないし請求項4のいずれか一項に記載の化学機械研磨パッド。
  6.  前記組成物は、水溶性粒子をさらに含む、請求項1ないし請求項5のいずれか一項に記載の化学機械研磨パッド。
  7.  請求項1ないし請求項6のいずれか一項に記載の化学機械研磨パッドを用いて化学機械研磨する、化学機械研磨方法。
PCT/JP2010/072430 2009-12-22 2010-12-14 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 WO2011077999A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/518,230 US20120322348A1 (en) 2009-12-22 2010-12-14 Pad for chemical mechanical polishing and method of chemical mechanical polishing using same
EP10839232A EP2517828A1 (en) 2009-12-22 2010-12-14 Pad for chemical mechanical polishing and method of chemical mechanical polishing using same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-290213 2009-12-22
JP2009290213 2009-12-22
JP2009-291613 2009-12-24
JP2009291613 2009-12-24
JP2010-169319 2010-07-28
JP2010169319 2010-07-28
JP2010169318 2010-07-28
JP2010-169318 2010-07-28

Publications (1)

Publication Number Publication Date
WO2011077999A1 true WO2011077999A1 (ja) 2011-06-30

Family

ID=44195529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072430 WO2011077999A1 (ja) 2009-12-22 2010-12-14 化学機械研磨パッドおよびそれを用いた化学機械研磨方法

Country Status (5)

Country Link
US (1) US20120322348A1 (ja)
EP (1) EP2517828A1 (ja)
KR (1) KR20120112476A (ja)
TW (1) TWI507435B (ja)
WO (1) WO2011077999A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5528169B2 (ja) 2010-03-26 2014-06-25 東洋ゴム工業株式会社 研磨パッドおよびその製造方法、ならびに半導体デバイスの製造方法
KR101532990B1 (ko) * 2011-09-22 2015-07-01 도요 고무 고교 가부시키가이샤 연마 패드
JP5759888B2 (ja) * 2011-12-28 2015-08-05 東洋ゴム工業株式会社 研磨パッド
JP5893413B2 (ja) 2012-01-17 2016-03-23 東洋ゴム工業株式会社 積層研磨パッドの製造方法
US10995298B2 (en) 2014-07-23 2021-05-04 Becton, Dickinson And Company Self-lubricating polymer composition
US10995175B2 (en) * 2015-10-14 2021-05-04 Becton, Dickinson And Company Thermoplastic polyurethane materials for forming medical devices
WO2020150044A1 (en) * 2019-01-15 2020-07-23 Polyone Corporation Lubricious thermoplastic compounds and thermoplastic articles made therefrom
CN110003426B (zh) * 2019-03-08 2021-05-25 合肥宏光研磨科技有限公司 一种聚氨酯海绵复合抛光盘
KR102298114B1 (ko) * 2019-11-05 2021-09-03 에스케이씨솔믹스 주식회사 연마패드, 이의 제조방법 및 이를 이용한 반도체 소자의 제조방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500622A (ja) 1992-08-19 1996-01-23 ロデール インコーポレーテッド 高分子微小エレメントを含む高分子基材
JP2000017252A (ja) 1998-06-29 2000-01-18 Dainippon Ink & Chem Inc 研磨材組成物及びその研磨材
JP2001018164A (ja) 1999-07-08 2001-01-23 Toho Engineering Kk 半導体デバイス加工用硬質発泡樹脂溝付パッド及びそのパッド旋削溝加工用工具
JP2001047355A (ja) * 1999-08-06 2001-02-20 Jsr Corp 研磨パッド用重合体組成物及びそれを用いた研磨パッド
JP2003332277A (ja) 2002-05-15 2003-11-21 Toray Ind Inc 樹脂含浸体および研磨パッドおよびその研磨パッドを用いた研磨装置と研磨方法
JP2005532176A (ja) * 2002-05-23 2005-10-27 キャボット マイクロエレクトロニクス コーポレイション 微小孔性研磨パッド
JP2006167811A (ja) 2004-12-10 2006-06-29 Toho Engineering Kk パッド溝加工用バイトおよびそれを用いた研磨用パッドの製造方法
JP3956364B2 (ja) 2001-04-09 2007-08-08 東洋ゴム工業株式会社 ポリウレタン組成物および研磨パッド
JP2007284625A (ja) 2006-04-19 2007-11-01 Nippon Polyurethane Ind Co Ltd 発泡ポリウレタンエラストマーおよびその製造方法並びに鉄道用パッド
JP2008183657A (ja) 2007-01-30 2008-08-14 National Institute Of Advanced Industrial & Technology 単結晶ダイヤモンド多刃工具及びその製造方法
JP2009024213A (ja) * 2007-07-19 2009-02-05 Sumitomo Metal Ind Ltd 破断分離性に優れる高炭素鋼およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454634B1 (en) * 2000-05-27 2002-09-24 Rodel Holdings Inc. Polishing pads for chemical mechanical planarization
CN100379522C (zh) * 2000-12-01 2008-04-09 东洋橡膠工业株式会社 研磨垫及其制造方法和研磨垫用缓冲层
TW567114B (en) * 2000-12-01 2003-12-21 Toyo Boseki Polishing pad and manufacture method thereof and buffer layer for polishing pad
KR20040066193A (ko) * 2001-12-28 2004-07-23 아사히 가세이 일렉트로닉스 가부시끼가이샤 연마패드, 그의 제조방법 및 연마방법
JP4475404B2 (ja) * 2004-10-14 2010-06-09 Jsr株式会社 研磨パッド
US20080318505A1 (en) * 2004-11-29 2008-12-25 Rajeev Bajaj Chemical mechanical planarization pad and method of use thereof
US20090061744A1 (en) * 2007-08-28 2009-03-05 Rajeev Bajaj Polishing pad and method of use
JP4237201B2 (ja) * 2006-06-02 2009-03-11 エルピーダメモリ株式会社 半導体装置の製造方法及び半導体装置の製造装置
JP2008027971A (ja) * 2006-07-18 2008-02-07 Jsr Corp 化学機械研磨パッドおよび化学機械研磨方法
CN101489721B (zh) * 2006-08-28 2014-06-18 东洋橡胶工业株式会社 抛光垫
JP5078000B2 (ja) * 2007-03-28 2012-11-21 東洋ゴム工業株式会社 研磨パッド
JP4971028B2 (ja) * 2007-05-16 2012-07-11 東洋ゴム工業株式会社 研磨パッドの製造方法
US20090061743A1 (en) * 2007-08-29 2009-03-05 Stephen Jew Method of soft pad preparation to reduce removal rate ramp-up effect and to stabilize defect rate
EP2083027B8 (en) * 2008-01-24 2012-05-16 JSR Corporation Mechanical polishing pad and chemical mechanical polishing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500622A (ja) 1992-08-19 1996-01-23 ロデール インコーポレーテッド 高分子微小エレメントを含む高分子基材
JP2000017252A (ja) 1998-06-29 2000-01-18 Dainippon Ink & Chem Inc 研磨材組成物及びその研磨材
JP2001018164A (ja) 1999-07-08 2001-01-23 Toho Engineering Kk 半導体デバイス加工用硬質発泡樹脂溝付パッド及びそのパッド旋削溝加工用工具
JP2001047355A (ja) * 1999-08-06 2001-02-20 Jsr Corp 研磨パッド用重合体組成物及びそれを用いた研磨パッド
JP3956364B2 (ja) 2001-04-09 2007-08-08 東洋ゴム工業株式会社 ポリウレタン組成物および研磨パッド
JP2003332277A (ja) 2002-05-15 2003-11-21 Toray Ind Inc 樹脂含浸体および研磨パッドおよびその研磨パッドを用いた研磨装置と研磨方法
JP2005532176A (ja) * 2002-05-23 2005-10-27 キャボット マイクロエレクトロニクス コーポレイション 微小孔性研磨パッド
JP2006167811A (ja) 2004-12-10 2006-06-29 Toho Engineering Kk パッド溝加工用バイトおよびそれを用いた研磨用パッドの製造方法
JP2007284625A (ja) 2006-04-19 2007-11-01 Nippon Polyurethane Ind Co Ltd 発泡ポリウレタンエラストマーおよびその製造方法並びに鉄道用パッド
JP2008183657A (ja) 2007-01-30 2008-08-14 National Institute Of Advanced Industrial & Technology 単結晶ダイヤモンド多刃工具及びその製造方法
JP2009024213A (ja) * 2007-07-19 2009-02-05 Sumitomo Metal Ind Ltd 破断分離性に優れる高炭素鋼およびその製造方法

Also Published As

Publication number Publication date
KR20120112476A (ko) 2012-10-11
EP2517828A1 (en) 2012-10-31
US20120322348A1 (en) 2012-12-20
TWI507435B (zh) 2015-11-11
TW201130871A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
WO2011077999A1 (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP5725300B2 (ja) 研磨層形成用組成物、ならびに化学機械研磨用パッドおよびそれを用いた化学機械研磨方法
JPWO2012077592A1 (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP5347524B2 (ja) 化学機械研磨パッドの研磨層形成用組成物、化学機械研磨パッドおよび化学機械研磨方法
JP5708913B2 (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
EP2090401A1 (en) Chemical mechanical polishing pad
WO2006123559A1 (ja) 研磨パッド
WO2016067588A1 (ja) 研磨層用非多孔性成形体,研磨パッド及び研磨方法
JP2005236200A (ja) 研磨パッドおよびそれを使用する半導体デバイスの製造方法
JP4338150B2 (ja) 発泡ポリウレタンおよびその製造方法
KR20170089845A (ko) 연마층용 성형체 및 연마 패드
JP2007521980A (ja) 研磨パッドのベースパッド及びそれを含む多層パッド
TWI429503B (zh) Polishing pad and manufacturing method thereof, and manufacturing method of semiconductor device
WO2022210037A1 (ja) 研磨パッド及び研磨パッドの製造方法
JP5630610B2 (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP5630609B2 (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP5549111B2 (ja) 化学機械研磨パッドの研磨層形成用組成物、化学機械研磨パッドおよび化学機械研磨方法
JP2012056021A (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP2010005746A (ja) 研磨パッドおよびその製造方法
WO2022210676A1 (ja) 研磨パッド及び研磨パッドの製造方法
JP2012182314A (ja) 組成物および化学機械研磨パッド、ならびに化学機械研磨方法
JP2023146016A (ja) 研磨パッド及び研磨パッドの製造方法
JP2006233174A (ja) ポリウレタンフォームおよびその製造方法
JP2022155896A (ja) 研磨パッド
JP2022153967A (ja) 研磨パッド及び研磨パッドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127016065

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010839232

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13518230

Country of ref document: US