WO2011077789A1 - サーボ制御装置 - Google Patents

サーボ制御装置 Download PDF

Info

Publication number
WO2011077789A1
WO2011077789A1 PCT/JP2010/065464 JP2010065464W WO2011077789A1 WO 2011077789 A1 WO2011077789 A1 WO 2011077789A1 JP 2010065464 W JP2010065464 W JP 2010065464W WO 2011077789 A1 WO2011077789 A1 WO 2011077789A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
signal
contraction amount
ball screw
compensation
Prior art date
Application number
PCT/JP2010/065464
Other languages
English (en)
French (fr)
Inventor
博久 倉本
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201080047468.6A priority Critical patent/CN102577096B/zh
Priority to US13/501,223 priority patent/US20120249041A1/en
Priority to KR1020127010051A priority patent/KR101455480B1/ko
Publication of WO2011077789A1 publication Critical patent/WO2011077789A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41428Feedforward of position and speed

Definitions

  • the present invention relates to a servo control device, so that the load position can be accurately servo-controlled even when the ball screw of the feed mechanism expands and contracts due to aging or temperature change and the rigidity of the ball screw changes. It is a devised one.
  • Some industrial machines use a servo control device to servo-control the load position and speed.
  • the rotational movement of the servo motor is converted into a linear movement by a ball screw, and the load is linearly moved.
  • a representative example of such an industrial machine is a machine tool.
  • An example of the machine tool will be described with reference to FIG.
  • a table 02 is arranged on a bed 01, and the table 02 is provided on the bed 01 so as to be movable along the X direction.
  • a cross rail 04 is disposed so as to be movable up and down (movable along the Z direction).
  • a saddle 05 having a ram 06 is provided on the cross rail 04 so as to be movable along the Y direction.
  • the X direction movement of the table 02 which is a load is performed by a feed mechanism.
  • the saddle 05 which is a load, is also moved in the Y direction by another feeding mechanism installed on the cross rail 04. In this case, the position and moving speed of the table 02 and the saddle 05 are required to be controlled with high accuracy.
  • the feed mechanism 10 which drives the table 02 and the surrounding apparatus structure are demonstrated.
  • the feed mechanism 10 includes a speed reducer 20 composed of gears and the like, and a ball screw 30 as main members.
  • the speed reducer 20 is illustrated in a simplified manner.
  • the threaded portion 31 of the ball screw 30 has a base end side (left end side in FIG. 3) rotatably supported by a rotation support bracket 32a and a tip end side (right end side in FIG. 3) supported by a rotation support bracket 32b. It is supported rotatably.
  • the rotation support brackets 32a and 32b are each composed of a bearing and a bracket, and are disposed on the bed 01 so as to be separated from each other. Among these, the rotation support bracket 32 b is disposed so as to apply a tensile tension to the screw portion 31 by pulling the screw portion 31 toward the base end side (right side in FIG. 3).
  • the nut portion 33 of the ball screw 30 is screwed to the screw portion 31 and is connected to the table 02.
  • the rotational motion of the servo motor 40 is converted into a linear motion by the ball screw 30 of the feed mechanism 10. That is, when the servo motor 40 rotates, this rotational force is transmitted to the screw portion 31 via the speed reducer 20 and the screw portion 31 rotates.
  • the screw portion 31 rotates, the nut portion 33 moves linearly along the screw portion 31, and the table 02 moves linearly according to the linear movement of the nut portion 33.
  • the rotational position of the servo motor 40 is detected by a pulse encoder 41 arranged in the servo motor 40.
  • the pulse encoder 41 outputs a pulse signal each time the rotor of the servo motor 40 rotates by a predetermined rotation angle. Therefore, a signal (pulse signal) output from the pulse encoder 41 becomes a motor position signal ⁇ M indicating the rotation position of the rotor of the servo motor 40 and a motor speed signal ⁇ M indicating the rotation speed of the servo motor 40. It also becomes.
  • the linear movement position of the table 02 is detected by a position detector 34 such as a linear scale.
  • the position detector 34 outputs a load position signal ⁇ L indicating the position of the table (load) 02.
  • control unit 100 includes a subtractor 101, a multiplier 102, a subtractor 103, and a proportional-plus-integral calculator 104.
  • Subtractor 101 outputs a position deviation signal ⁇ is the difference between the position command signal theta and the load position signal theta L.
  • the multiplier 102 multiplies the position deviation signal ⁇ by the position loop gain K P and outputs a speed deviation signal ⁇ V.
  • the subtracter 103 outputs a speed command signal V that is the difference between the speed deviation signal ⁇ V and the motor speed signal ⁇ M.
  • the proportional-plus-integral calculator 104 performs a proportional-integral calculation on the speed command signal V and outputs a torque command signal ⁇ .
  • the proportional-plus-integral calculator 104 uses the speed loop gain K v and the integration time constant T v ,
  • s is a Laplace operator (in the following description, “s” represents a Laplace operator).
  • the current control unit 110 supplies a current having a current value corresponding to the torque command signal ⁇ to the servo motor 40. As a result, the servo motor 40 is driven to rotate. In this case, although not shown, current feedback control is performed so that the current value corresponds to the torque command signal ⁇ .
  • control unit 100 that controls the servo motor 40 that drives the table 02 performs feedback control by a triple loop in which the position loop is the main loop and the speed loop and the current loop are minor loops.
  • FIG. 4 shows a control system of the feed mechanism 10 that drives the table 02 along the X direction, but the configuration of the feed mechanism that drives the saddle 05 along the Y direction and the control system thereof have the same configuration.
  • the actual position of the table (load) 02 follows with a delay from the position commanded by the position command signal ⁇ .
  • FIG. 5 is obtained by incorporating a feedforward control unit 150 and adders 151 and 152 into the feedback control circuit shown in FIG.
  • the feed-forward control unit 150 multiplies the ⁇ position control loop delay compensation factor as well as the derivative with respect to the position command signal theta, obtains a position delay compensation signal C 1. Further, the position delay compensation signal C 1 is differentiated and multiplied by the speed control loop delay compensation coefficient ⁇ to obtain the speed delay compensation signal C 2 . Then, the adder 151 adds the position delay compensation signal C 1 to the speed deviation signal ⁇ V, and the adder 152 adds the speed delay compensation signal C 2 to the torque command signal ⁇ , thereby performing feedforward control. is doing.
  • the position lag compensation signal C 1 is added to compensate for the position lag
  • the speed lag compensation signal C 2 is added to compensate for the speed lag, so that the position lag and the speed lag generated in the feedback control are almost complete. Can be compensated for.
  • the feed mechanism 10 includes a speed reducer 20 and a ball screw 30. Since the rigidity of the ball screw 30 is finite, the ball screw 30 is twisted or bent during movement such as axial movement. This is a cause of deterioration of processing accuracy.
  • the characteristics of the mechanical system are specified as a two-mass system mechanical system model using the servo motor 40 and the table 02 as a load as mass points.
  • the mechanical system is subjected to feedforward compensation control by the inverse characteristic model 300 while the servo control (feedback control) is performed by the control unit 100 as a basic control.
  • a block 40-1 and a block 40-2 when the characteristics of the servo motor 40 are modeled and represented by a transfer function, they are represented by a block 40-1 and a block 40-2.
  • J M represents motor inertia and D M represents motor viscosity.
  • a motor speed signal ⁇ M is output from the block 40-1, and a motor position signal ⁇ M is output from the block 40-2.
  • J L indicates the inertia of the load (table)
  • D L indicates the viscosity of the load (table)
  • C L indicates the ball screw 30 (screw portion 31, support brackets 32a and 32b, nut portion 33 of the feed mechanism 10. shows the spring viscosity along the axial direction of)
  • K L denotes a spring stiffness along the axial direction of the ball screw 30 of the feed mechanism 10 (screw portion 31, the support bracket 32a, 32b, the nut portion 33).
  • the subtractor 201 obtains a deviation ( ⁇ M ⁇ L ) between the motor position signal ⁇ M and the load position signal ⁇ L.
  • the block 02-1 outputs a reaction force torque signal ⁇ L.
  • the reaction torque signal ⁇ L is input to the block 02-2, the load position signal ⁇ L is output from the block 02-3.
  • the subtractor 202 obtains a deviation ( ⁇ L ) between the torque command signal ⁇ and the reaction force torque signal ⁇ L. This deviation ( ⁇ L ) is input to block 40-1.
  • the control unit 100 includes a subtractor 101, a multiplier 102, a subtractor 103a, and a proportional-plus-integral calculator 104.
  • Subtractor 101 outputs a position deviation signal ⁇ is the difference between the position command signal theta and the load position signal theta L.
  • the multiplier 102 multiplies the position deviation signal ⁇ by the position loop gain K P and outputs a speed deviation signal ⁇ V.
  • the subtractor 103a outputs a speed command signal V obtained by subtracting the motor speed signal ⁇ M from the value obtained by adding the speed compensation signal V 300 output from the inverse characteristic model 300 to the speed deviation signal ⁇ V.
  • the details of the speed compensation signal V 300 will be described later.
  • the proportional-integral calculator 104 performs a proportional-integral calculation on the speed command signal V and outputs a torque command signal ⁇ .
  • the servo motor 40 is driven to rotate by being supplied with a current corresponding to the torque command signal ⁇ from a current controller (not shown in FIG. 6). In this case, although not shown, current feedback control is performed so that the current value corresponds to the torque command signal ⁇ .
  • control unit 100 performs feedback control by a triple loop in which the position loop is the main loop and the speed loop and the current loop are minor loops.
  • the inverse characteristic model 300 includes a first derivative term computing unit 301, a second derivative term computing unit 302, a third derivative term computing unit 303, a fourth derivative term computing unit 304, and a fifth derivative term computing unit 305.
  • the differential term calculation units 301 to 305 and the addition unit 310 include a dynamic error cause in the servo motor 40, a dynamic error factor in the feed mechanism 10, and a dynamic error factor in the table 02 that is a load.
  • theta L is compensation control transfer function compensation control so as to match the position indicated by the position command signal theta is set.
  • This transfer function for compensation control is an inverse transfer function of the transfer function of the mechanical system including the servo motor 40, the feed mechanism 10, and the table (load) 02. Note that this inverse transfer function is a function in which some computation elements are omitted.
  • the first to fifth differential term calculation units 301 to 305 have calculation terms a1s, a2s 2 , a3s 3 , a4s 4 , and a5s 5 , and for the position command signal ⁇ , An operation signal obtained by multiplying each operation term is output.
  • s is a Laplace operator (differential operator).
  • the values of the coefficients a1 to a5 are set as follows.
  • K V is the speed loop gain
  • T V is the integration time constant
  • D M is the viscosity of the servo motor 40
  • D L is the viscosity of the load (table 02)
  • J M is the inertia of the servo motor 40
  • J L is the load (table 02) inertia.
  • the proportional-integral inverse transfer function unit 311 includes ⁇ Tv / K v (Tvs + 1) ⁇ ⁇ s, which is the inverse transfer function of K v (1+ (1 / Tvs)), which is the transfer function of the proportional-integral calculation unit 104, ⁇ Tv / K v (Tvs + 1) ⁇ as a transfer function.
  • the differential operator s is assigned to each coefficient a1 to a5.
  • the transfer function ⁇ Tv / K v (Tvs + 1) ⁇ set in the proportional-integral inverse transfer function unit 311 is a fixed value (a constant value) determined by the characteristics of the control system.
  • control compensation is performed using the inverse characteristic model 300 as described above, the dynamic error cause in the servo motor 40, the dynamic error factor in the feed mechanism 10, and the dynamic in the table 02 which is a load. It is possible to accurately control the position of the table 02 by compensating for such an error factor.
  • Patent Document 3 By the way, in the prior art (Patent Document 3) shown in FIG. 6 and the technique of Patent Document 2, compensation is made by an inverse characteristic model (compensation circuit) with a constant physical constant of the feed system. For example, the compensation is performed by using the rigidity value of the feed system measured in advance by the position of the table). For this reason, in the techniques of Patent Documents 1 to 3, the ball screw 30 (screw portion 31, support brackets 32a and 32b, nut portion 33) of the feed mechanism 10 that is a feed system expands and contracts due to aging and temperature change, When a change in rigidity of the screw 30 occurs, there is a problem that accurate compensation cannot be performed.
  • the spring stiffness K L along the axial direction of the ball screw 30, FIG. 7 (a), FIG. 7 (b), the FIG. 7 (c) It changes as shown. 7A, 7B, and 7C, the horizontal axis indicates the load position (the position of the table 02 and the nut portion 33), and the left side of the horizontal axis indicates the rotation support bracket 32a. side, the horizontal axis right is rotating support bracket 32b side, the vertical axis represents the spring stiffness K L.
  • FIG. 7A shows the load when the screw portion 31 is securely pulled by the support bracket 32a and the screw portion 31 is firmly supported by the support bracket 32a and the support bracket 32b (both ends are fixedly supported). It shows the spring rigidity K L corresponding to the position.
  • the screw portion 31 extends slightly in the axial direction due to a temperature change or the like, and the screw portion 31 is firmly supported (one end is fixedly supported) by the support bracket 32a, but is supported by the support bracket 32b. at the time when came loose (when the other end of the semi-fixed support), showing a spring stiffness K L corresponding to the load position.
  • FIG. 7A shows the load when the screw portion 31 is securely pulled by the support bracket 32a and the screw portion 31 is firmly supported by the support bracket 32a and the support bracket 32b (both ends are fixedly supported). It shows the spring rigidity K L corresponding to the position.
  • the screw portion 31 extends slightly in the axial direction due to a temperature change or the like, and the screw portion 31 is firmly supported
  • the screw portion 31 extends greatly in the axial direction due to a temperature change or the like, and the screw portion 31 is firmly supported by the support bracket 32a (one end is fixedly supported), but is supported by the support bracket 32b. at the time when came loose completely (when the other end of the free (free)), showing a spring stiffness K L corresponding to the load position.
  • An object of the present invention is to provide a servo control device capable of accurately servo-controlling the position of the servo.
  • the configuration of the present invention for solving the above problems is as follows.
  • a compensation transfer function that is an inverse transfer function of a transfer function of a mechanical system including the servo motor, the feed mechanism, and the load is set, and a position command signal ( ⁇ ) indicating the load command position is used for the compensation.
  • An inverse characteristic model that outputs a compensation signal (V 300 ) that compensates for a dynamic error factor of the mechanical system when input to a transfer function;
  • the position deviation signal ( ⁇ ) which is the deviation between the position command signal ( ⁇ ) and the load position signal ( ⁇ L ) indicating the position of the load, is set to zero, and the speed deviation proportional to the position deviation signal ( ⁇ )
  • the feedback control is performed so that the deviation between the signal ( ⁇ V) and the motor speed signal ( ⁇ M ) indicating the speed of the servo motor is zero, and the feed forward compensation control is further performed by the compensation signal (V 300 ).
  • a rigidity change compensator constituted by:
  • the configuration of the present invention is as follows.
  • the ball screw expansion / contraction amount calculation unit of the rigidity change compensation unit is:
  • the expansion / contraction amount (st) of the screw portion is calculated based on the load position signal ( ⁇ L ) and the motor position signal ( ⁇ M ) indicating the rotational position of the servo motor.
  • the configuration of the present invention is as follows.
  • the ball screw expansion / contraction amount calculation unit of the rigidity change compensation unit is:
  • the expansion / contraction amount (st) of the screw portion is calculated by applying the temperature of the screw portion of the ball screw to the relational characteristic indicating the relationship between the temperature of the screw portion and the expansion / contraction amount of the screw portion.
  • the configuration of the present invention is as follows.
  • the ball screw expansion / contraction amount calculation unit of the rigidity change compensation unit is: A servo control device that calculates an expansion / contraction amount (st) of the screw portion based on a displacement of the screw portion of the ball screw.
  • the configuration of the present invention is as follows.
  • the spring stiffness calculator of the stiffness change compensator is According to the amount of expansion and contraction (st) of the threaded portion, it has a plurality of relationship characteristics indicating the relationship between the load position and the spring stiffness (K L ), From the plurality of relational characteristics, a relational characteristic corresponding to the expansion / contraction amount (st) of the screw part calculated by the ball screw expansion / contraction amount calculating unit is selected, and the load position signal ( ⁇ ) is selected for the selected relational characteristic.
  • the spring stiffness (K L ) is calculated by applying the load position indicated by L ).
  • the configuration of the present invention is as follows.
  • the spring stiffness calculator of the stiffness change compensator is According to the expansion / contraction amount (st) of the threaded portion, it has a plurality of arithmetic expressions for obtaining the spring stiffness (K L ), An arithmetic expression corresponding to the expansion / contraction amount (st) of the screw part calculated by the ball screw expansion / contraction amount calculation unit is selected from the plurality of arithmetic expressions, and the spring stiffness (K L ) is calculated using the selected arithmetic expression. It is characterized by calculating.
  • a servo control device for controlling an industrial machine that converts a rotary motion of a servo motor into a linear motion by a feed mechanism including a ball screw and linearly moves a load by the converted linear motion
  • the ball of the feed mechanism Even if the screw expands or contracts due to aging or temperature change and the rigidity along the axial direction of the ball screw changes, such rigidity change can be compensated and the position of the load can be accurately servo-controlled.
  • the block diagram which shows the servo control apparatus which concerns on the Example of this invention The perspective view which shows an example of a machine tool.
  • the characteristic view which shows the relationship between a load position and the spring rigidity of a ball screw when the expansion-contraction amount of a screw part is small.
  • the characteristic view which shows the relationship between a load position and the spring rigidity of a ball screw when the expansion-contraction amount of a screw part is medium.
  • the characteristic view which shows the relationship between a load position and the spring rigidity of a ball screw when the expansion-contraction amount of a screw part is large.
  • FIG. 1 shows a servo control apparatus according to an embodiment of the present invention.
  • the present invention is applied to a feed mechanism 10 that drives a table 02 of a machine tool. That is, when the servo motor 40 rotates, this rotational force is transmitted to the screw portion 31 of the ball screw 30 via the speed reducer 20 and the screw portion 31 rotates.
  • the screw portion 31 supported by the rotation support brackets 32a and 32b rotates, the nut portion 33 moves linearly along the screw portion 31, and the table 02 moves linearly according to the linear movement of the nut portion 33.
  • the rotation support bracket 32 a is arranged so as to apply a tensile tension to the screw portion 31 by pulling the screw portion 31 toward the base end side (left side in FIG. 1).
  • the rotational position of the servo motor 40 can be detected based on the motor position signal ⁇ M that is a signal (pulse signal) output from the pulse encoder 41 arranged in the servo motor 40.
  • the linear movement position of the table 02 can be detected based on the load position signal ⁇ L output from the position detector 34 such as a linear scale.
  • the control means includes a control unit 100 that performs feedback control, an inverse characteristic model 300 that performs feedforward compensation control, and a stiffness change compensation unit 400 that sets and changes coefficient values of the inverse characteristic model.
  • the control unit 100 has the same configuration as the control unit 100 shown in FIG. 6 and performs the same control operation.
  • the subtractor 101 of the control unit 100 outputs a position deviation signal ⁇ is the difference between the position command signal theta and the load position signal theta L.
  • the multiplier 102 multiplies the position deviation signal ⁇ by the position loop gain K P and outputs a speed deviation signal ⁇ V.
  • the subtractor 103a outputs a speed command signal V obtained by subtracting the motor speed signal ⁇ M from the value obtained by adding the speed compensation signal V 300 output from the inverse characteristic model 300 to the speed deviation signal ⁇ V.
  • the proportional-plus-integral calculator 104 performs a proportional-integral calculation on the speed command signal V and outputs a torque command signal ⁇ .
  • the current controller 110 supplies a current corresponding to the torque command signal ⁇ to the servo motor 40.
  • the inverse characteristic model 300 includes a first derivative term computing unit 301, a second derivative term computing unit 302, a third derivative term computing unit 303, a fourth derivative term computing unit 304, and a fifth derivative term computing unit 305. And an addition unit 310 and a proportional-integral inverse transfer function unit 311. That is, in the inverse characteristic model 300, a transfer function for compensation control that compensates for an error factor is set by the respective arithmetic expressions set in the differential term calculation units 301 to 305, the addition unit 310, and the proportional-integral inverse transfer function unit 311. Has been.
  • the differential term calculation units 301 to 305 and the addition unit 310 include a dynamic error cause in the servo motor 40, a dynamic error factor in the feed mechanism 10, and a dynamic error factor in the table 02 that is a load.
  • theta L is compensation control transfer function compensation control so as to match the position indicated by the position command signal theta is set.
  • This transfer function for compensation control is an inverse transfer function of the transfer function of the mechanical system including the servo motor 40, the feed mechanism 10, and the table (load) 02. Note that this inverse transfer function is a function in which some computation elements are omitted.
  • the first to fifth differential term calculation units 301 to 305 have calculation terms a1s, a2s 2 , a3s 3 , a4s 4 , and a5s 5 , and for the position command signal ⁇ , An operation signal obtained by multiplying each operation term is output.
  • s is a Laplace operator (differential operator).
  • the values of the coefficients a1 to a5 are set as follows.
  • K V is the speed loop gain
  • T V is the integration time constant
  • D M is the viscosity of the servo motor 40
  • D L is the viscosity of the load (table 02)
  • J M is the inertia of the servo motor 40
  • J L is the load (table 02) inertia.
  • the proportional-integral inverse transfer function unit 311 includes ⁇ Tv / K v (Tvs + 1) ⁇ ⁇ s, which is the inverse transfer function of K v (1+ (1 / Tvs)), which is the transfer function of the proportional-integral calculation unit 104, ⁇ Tv / K v (Tvs + 1) ⁇ as a transfer function.
  • the differential operator s is assigned to each coefficient a1 to a5.
  • the transfer function ⁇ Tv / K v (Tvs + 1) ⁇ set in the proportional-integral inverse transfer function unit 311 is a fixed value (a constant value) determined by the characteristics of the control system.
  • the value of the spring stiffness K L along the axial direction of the ball screw 30 that is included in the coefficient a2 ⁇ a5 are in response to expansion and contraction of the threaded portion 31 of the ball screw 30, is calculated by the rigidity changing compensation section 400 sets Is done.
  • the value of the spring stiffness K L, be varied according to the expansion and contraction of the threaded portion 31 of the ball screw 30 is a characteristic technique of the present embodiment.
  • the stiffness change compensation unit 400 includes a ball screw expansion / contraction amount calculation unit 401, a spring stiffness calculation unit 402, and a spring stiffness setting unit 403.
  • the ball screw expansion / contraction amount calculation unit 401 calculates the expansion / contraction amount st of the screw portion 31 of the ball screw 30. Specifically, the deviation between the load position signal ⁇ L and the position conversion signal obtained by converting the motor position signal ⁇ M into the load position signal is obtained, and the expansion / contraction amount st of the screw portion 31 is obtained based on this deviation.
  • a temperature detection sensor is provided in the screw portion 31. Then, a relational characteristic indicating the relationship between the temperature of the screw part 31 and the expansion / contraction amount of the screw part 31 is set in advance in the ball screw expansion / contraction amount calculation unit 401, and the detected temperature detected by the temperature detection sensor is applied to the relational characteristic. Thus, the expansion / contraction amount st of the screw part 31 is obtained.
  • a displacement detection sensor is provided on the screw portion 31. Then, the ball screw expansion / contraction amount calculation unit 401 obtains the expansion / contraction amount st of the screw portion 31 from the displacement amount detected by the displacement detection sensor.
  • the spring stiffness calculation unit 402 uses the expansion / contraction amount st of the screw portion 31 of the ball screw 30 and the load position signal ⁇ L indicating the position of the table 02 as a load, and the spring stiffness K L along the axial direction of the ball screw 30. Is calculated.
  • the spring stiffness calculation unit 402 in accordance with the expansion and contraction amount st of the value of the screw portion 31 (large and small value), representing the relationship between the load position and the spring rigidity K L, FIG. 7 (a), (b ) And (c) are set in advance.
  • FIG. 7 (c) definitive when expansion amount st of the screw portion 31 is large, showing a spring stiffness K L corresponding to the load position.
  • the screw portion 31 extends greatly in the axial direction due to a temperature change or the like, and the screw portion 31 is firmly supported by the support bracket 32a (one end is fixedly supported), but the support by the support bracket 32b is completely loosened. when in the (when the other end of the free (free)), showing a spring stiffness K L corresponding to the load position.
  • the spring stiffness calculation unit 402 classifies the expansion / contraction amount st calculated by the ball screw expansion / contraction amount calculation unit 401 into “small”, “medium”, and “large” according to the value (large / small value). This classification is performed by comparing with a preset threshold value.
  • the relationship characteristic shown in FIG. 7A is selected, and by applying the load position indicated by the load position signal ⁇ L to the selected relationship characteristic, seek the spring rigidity K L.
  • the relational characteristic shown in FIG. 7B is selected, and by applying the load position indicated by the load position signal ⁇ L to the selected relational characteristic, seek the spring rigidity K L.
  • the relation characteristic shown in FIG. 7C is selected, and by applying the load position indicated by the load position signal ⁇ L to the selected relation characteristic, seek the spring rigidity K L.
  • the expansion and contraction amount st calculated in ballscrew deformation amount calculation unit 401 in accordance with the value (magnitude value) " Classify as “Small”, “Medium”, or “Large”. This classification is performed by comparing with a preset threshold value.
  • Calculation terms a2s 2 , a3s 3 , a4s 4 , and a5s 5 are set in the second to fifth differential term calculation units 302 to 305 of the inverse characteristic model 300, and the calculation formulas for obtaining the coefficients a2 to a5 are set.
  • the threaded portion 31 of the ball screw 30 expands and contracts due to aging and temperature change, even when the value changes of a spring stiffness K L along the axial direction of the ball screw 30, the spring rigidity K L was the change Calculations are performed in the differential term calculation units 302 to 305 using the values.
  • the speed compensation signal V 300 which is computed by the inverse characteristic model 300, the threaded portion 31 even have stretch due to aging or temperature change, etc., an optimum value.
  • the speed compensation signal V 300 becomes an optimum value, causing a dynamic error in the servo motor 40 and the movement in the feed mechanism 10.
  • specific error factors, and load a is to compensate for the dynamic error factors at the table 02, the position indicated by the load position signal theta L compensates controlled so accurately match the position indicated by the position command signal theta Can do.
  • the arithmetic expression of the inverse characteristic model 300 changes depending on what kind of mechanical system the mechanical system (motor, table, and feed mechanism) is specified or how much the arithmetic expression is simplified. come, but even in this case, sets the value of the spring stiffness K L included in the calculation equation of the inverse characteristic model 300, the value of the spring stiffness K L calculated in spring rigidity calculating section 402. By doing so, even if the screw portion 31 expands and contracts due to aging, temperature change, etc., the speed compensation signal V300 becomes an optimum value, causing a dynamic error in the servo motor 40, and the feed mechanism 10. dynamic error factors in, and a load at which compensates for dynamic error factors at the table 02, compensated to a position indicated by a load position signal theta L is precisely matched to the position indicated by the position command signal theta Can be controlled.
  • the present invention can be applied not only to machine tools but also to various industrial machines in which the rotational motion of a servo motor is converted into linear motion by a ball screw and the load is linearly moved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

 制御部(100)は、サーボモータ(40)をフィードバック制御して、負荷であるテーブル(02)をサーボ制御する。逆特性モデル(300)は、機械系の動的誤差を補償する速度補償信号(V300)を求めて、フィードフォワード補償制御をする。剛性変化補償部(400)は、ボールスクリュー(30)のネジ部(31)の軸方向に沿う剛性が変化したら、この剛性変化に応じて、逆特性モデル(300)の補償制御用伝達関数に含まれているネジ部の軸方向に沿う剛性値を変化させる。これにより、送り機構のボールスクリュー(30)が、経年変化や温度変化で伸縮して、軸方向に沿う剛性が変化しても、このような剛性変化を補償して、テーブル(02)の位置を正確にサーボ制御する。

Description

サーボ制御装置
 本発明はサーボ制御装置に関するものであり、送り機構のボールスクリューが経年変化や温度変化により伸縮してボールスクリューの剛性が変化しても、負荷の位置を正確にサーボ制御することができるように工夫したものである。
 産業機械の中には、サーボ制御装置により負荷の位置・速度をサーボ制御するものがある。このような産業機械では、サーボモータの回転運動を、ボールスクリューにより直線運動に変換して、負荷を直線移動させている。
  <工作機械の構成>
 このような産業機械の代表例として、工作機械がある。
 工作機械の一例を、図2を基に説明する。同図に示すように、ベッド01上にテーブル02が配置されており、テーブル02はベッド01上でX方向に沿い移動可能に設けられている。
 門形のコラム03には、クロスレール04が昇降自在(Z方向に沿い移動自在)に配置されている。クロスレール04には、ラム06を備えたサドル05が、Y方向に沿い移動可能に設けられている。
 負荷であるテーブル02のX方向移動は、送り機構により行なわれるようになっている。また、負荷であるサドル05のY方向移動も、クロスレール04に設置した別の送り機構により行なわれるようになっている。この場合、テーブル02やサドル05の位置及び移動速度は、高精度に制御することが要求されている。
 ここで、図3を参照して、テーブル02を駆動する送り機構10と、その周囲の装置構成を説明する。
 送り機構10は、ギヤ等から構成される減速機20と、ボールスクリュー30を主要部材として構成されている。なお、図3において、減速機20は簡略化して図示している。
 ボールスクリュー30のネジ部31は、その基端側(図3では左端側)が回転支持ブラケット32aにより回転自在に支持されており、その先端側(図3では右端側)が回転支持ブラケット32bにより回転自在に支持されている。回転支持ブラケット32a,32bは、それぞれベアリングとブラケットから構成されており、ベッド01上に離間して配置されている。このうち、回転支持ブラケット32bは、ネジ部31を基端側(図3では右側)に引っ張ってネジ部31に対して引っ張り張力を与えるように、配置されている。
 ボールスクリュー30のナット部33は、ネジ部31に螺合すると共に、テーブル02に連結されている。
 サーボモータ40の回転運動は、送り機構10のボールスクリュー30により直線運動に変換される。
 つまりサーボモータ40が回転すると、この回転力は減速機20を介してネジ部31に伝わりネジ部31が回転する。ネジ部31が回転するとナット部33がネジ部31に沿い直線移動し、このナット部33の直線移動に応じてテーブル02が直線移動する。
 このとき、サーボモータ40の回転位置は、サーボモータ40に配置したパルスエンコーダ41により検出している。パルスエンコーダ41は、サーボモータ40の回転子が予め決めた回転角度回転する毎にパルス信号を出力する。このため、パルスエンコーダ41から出力される信号(パルス信号)は、サーボモータ40の回転子の回転位置を示すモータ位置信号θMになると共に、サーボモータ40の回転速度を示すモータ速度信号ωMともなる。
 テーブル02の直線移動位置は、リニアスケール等の位置検出器34により検出している。位置検出器34は、テーブル(負荷)02の位置を示す負荷位置信号θLを出力する。
  <フィードバック制御の説明>
 図3に示すような機構において、テーブル02の位置制御をするには、古典制御理論であるフィードバック制御が一般的に使用されている。
 このフィードバック制御の手法を、図4を参照して説明する。
 図4に示すように、制御部100は、減算器101と、乗算器102と、減算器103と、比例積分演算器104を有している。
 減算器101は、位置指令信号θと負荷位置信号θLとの差である位置偏差信号Δθを出力する。乗算器102は、位置偏差信号Δθに位置ループゲインKPを乗算して速度偏差信号ΔVを出力する。減算器103は、速度偏差信号ΔVとモータ速度信号ωMとの差である速度指令信号Vを出力する。
 比例積分演算器104は、速度指令信号Vを比例積分演算してトルク指令信号τを出力する。
 即ち、比例積分演算器104では、速度ループゲインKvと積分時定数Tvを用いて、
τ=V×{Kv(1+(1/Tvs))}という演算をしてトルク指令信号τを求めている。なお、sは、ラプラス演算子である(なお以降の説明においても「s」はラプラス演算子を示す)。
 電流制御部110は、トルク指令信号τに応じた電流値となっている電流をサーボモータ40に供給する。これによりサーボモータ40が回転駆動する。
 この場合、図示は省略するが、トルク指令信号τに応じた電流値になるように、電流のフィードバック制御を行なっている。
 このように、テーブル02を駆動するサーボモータ40を制御する制御部100は、位置ループをメインループとし、速度ループと電流ループをマイナーループとした3重のループによってフィードバック制御をしている。
 図4は、テーブル02をX方向に沿い駆動する送り機構10の制御系であるが、サドル05をY方向に沿い駆動する送り機構の構成及びその制御系も、同様な構成となっている。
 ところで、図4に示すようなフィードバック制御では、位置指令信号θで指令する位置に対して、実際のテーブル(負荷)02の位置は、遅れて追従する。
  <フィードフォワード制御の説明>
 フィードバック制御において発生する制御遅れを補償する手段として、フィードバック制御に、フィードフォワード制御を組み込むことが行われている。
 図5は、図4に示すフィードバック制御回路に、フィードフォワード制御部150及び加算器151,152を組み込んだものである。
 フィードフォワード制御部150では、位置指令信号θに対して微分をすると共に位置制御ループ遅れ補償係数αを乗算して、位置遅れ補償信号C1を求める。更に、位置遅れ補償信号C1に対して微分をすると共に速度制御ループ遅れ補償係数βを乗算して、速度遅れ補償信号C2を求める。
 そして、加算器151により、速度偏差信号ΔVに位置遅れ補償信号C1を加算し、更に、加算器152により、トルク指令信号τに速度遅れ補償信号C2を加算することにより、フィードフォワード制御をしている。
 このように位置遅れ補償信号C1を加算して位置遅れを補償し、速度遅れ補償信号C2を加算して速度遅れを補償することにより、フィードバック制御において発生する位置遅れ及び速度遅れをほぼ完全に補償することができる。
 しかし、フィードバック制御にフィードフォワード制御を加えた制御をしたとしても、制御対象である機械要素の撓みや捩れ等の動的な変形による遅れや振動を補償することはできない。
 より具体的に説明すると、送り機構10は、減速機20とボールスクリュー30とから構成されており、ボールスクリュー30の剛性は有限であるため、軸移動等の運動時にはボールスクリュー30において捩れや撓みが発生し、これが加工精度を悪化させる原因となっている。
  <制御対象の近似モデル及び逆特性モデルを使用した制御の説明>
 そこで、制御対象の近似モデルを求めると共に、この近似モデルの逆極性モデル(補償回路)を求め、制御回路に逆特性モデル(補償回路)を組み込むことにより、制御対象である機械要素の撓みや捩れ等の動的な変形による遅れや振動を補償する技術が提案されている(例えば特許文献1~3参照)。
 このような逆特性モデル(補償回路)を制御部に組み込んだ制御手法の一例(特許文献3に示す技術)を、図6を参照して説明する。なお図6においては、図4と同一機能を果たす部分には同一符号を付している。
 図6に示す例では、機械系の特性を、サーボモータ40と、負荷であるテーブル02を質点とした、2質点系の機械系のモデルとして特定している。
 そして、この機械系を、制御部100によりサーボ制御(フィードバック制御)することを基本制御としつつ、逆特性モデル300によりフィードフォワード補償制御をするものである。
 図6に示すように、サーボモータ40の特性をモデル化して伝達関数で示すと、ブロック40-1とブロック40-2とで示される。なお、JMはモータイナーシャを示し、DMはモータ粘性を示す。
 ブロック40-1からはモータ速度信号ωMが出力され、ブロック40-2からはモータ位置信号θMが出力される。
 また負荷であるテーブル02の特性をモデル化して伝達関数で示すと、ブロック02-1とブロック02-2とブロック02-3とで示される。
 なお、JLは負荷(テーブル)のイナーシャを示し、DLは負荷(テーブル)の粘性を示し、CLは送り機構10のボールスクリュー30(ネジ部31,支持ブラケット32a,32b,ナット部33)の軸方向に沿うバネ粘性を示し、KLは送り機構10のボールスクリュー30(ネジ部31,支持ブラケット32a,32b,ナット部33)の軸方向に沿うバネ剛性を示す。
 減算器201は、モータ位置信号θMと負荷位置信号θLとの偏差(θM-θL)を求める。ブロック02-1は、偏差(θM-θL)が入力されると、反力トルク信号τLを出力する。
 反力トルク信号τLが、ブロック02-2に入力されると、ブロック02-3から負荷位置信号θLが出力される。
 減算器202は、トルク指令信号τと反力トルク信号τLとの偏差(τ-τL)を求める。この偏差(τ-τL)がブロック40-1に入力される。
 制御部100は、減算器101と、乗算器102と、減算器103aと、比例積分演算器104を有している。
 減算器101は、位置指令信号θと負荷位置信号θLとの差である位置偏差信号Δθを出力する。乗算器102は、位置偏差信号Δθに位置ループゲインKPを乗算して速度偏差信号ΔVを出力する。
 減算器103aは、速度偏差信号ΔVに、逆特性モデル300から出力される速度補償信号V300を加えた値から、モータ速度信号ωMを減算した速度指令信号Vを出力する。
 速度補償信号V300の詳細については後述するが、この速度補償信号V300を追加(補償)することにより、サーボモータ40や送り機構10やテーブル(負荷)02に生ずる「歪み」や「撓み」や「粘性」といった誤差要因を補償して、正確にテーブル02の位置制御(サーボ制御)をすることができる。
 比例積分演算器104は、速度指令信号Vを比例積分演算してトルク指令信号τを出力する。
 サーボモータ40は、電流制御器(図6では図示省略)からトルク指令信号τに応じた電流が供給されて回転駆動する。この場合、図示は省略するが、トルク指令信号τに応じた電流値になるように、電流のフィードバック制御を行なっている。
 このように制御部100は、位置ループをメインループとし、速度ループと電流ループをマイナーループとした3重のループによってフィードバック制御をしている。
 逆特性モデル300は、1次微分項演算部301と、2次微分項演算部302と、3次微分項演算部303と、4次微分項演算部304と、5次微分項演算部305と、加算部310と、比例積分逆伝達関数部311とを有している。
 つまり逆特性モデル300には、各微分項演算部301~305と、加算部310と、比例積分逆伝達関数部311にそれぞれ設定した演算式により、誤差要因を補償する補償制御用伝達関数が設定されている。
 各微分項演算部301~305と加算部310には、サーボモータ40での動的な誤差原因、送り機構10での動的な誤差要因、及び負荷であるテーブル02での動的な誤差要因を補償して、負荷位置信号θLで示す位置が位置指令信号θで示す位置に一致するように補償制御する補償制御用伝達関数が設定されている。
 この補償制御用伝達関数は、サーボモータ40,送り機構10及びテーブル(負荷)02からなる機械系の伝達関数の逆伝達関数である。なお、この逆伝達関数は、演算要素を一部省略した関数にしている。
 具体的には、1次~5次の各微分項演算部301~305は、演算項a1s、a2s2、a3s3、a4s4、a5s5を有しており、位置指令信号θに対して、各演算項を乗算した演算信号を出力する。なお、sはラプラス演算子(微分演算子)である。
 この場合、係数a1~a5の値は次の通りに設定している。
但し、
Vは速度ループゲイン、
Lはボールスクリュー30の軸方向に沿うバネ剛性、
Vは積分時定数、
Mはサーボモータ40の粘性、
Lは負荷(テーブル02)の粘性、
Mはサーボモータ40のイナーシャ、
Lは負荷(テーブル02)のイナーシャ、である。
Figure JPOXMLDOC01-appb-M000001
 比例積分逆伝達関数部311は、比例積分演算部104の伝達関数であるKv(1+(1/Tvs))の逆伝達関数である{Tv/Kv(Tvs+1)}×sのうち、{Tv/Kv(Tvs+1)}を伝達関数として有している。そして、微分演算子sは、各係数a1~a5に、それぞれ割り振っている。
 なお、比例積分逆伝達関数部311に設定した伝達関数{Tv/Kv(Tvs+1)}は、制御系の特性によって決定される固定値(一定値)である。
 上述したような逆特性モデル300を使用して制御補償をすれば、サーボモータ40での動的な誤差原因、送り機構10での動的な誤差要因、及び負荷であるテーブル02での動的な誤差要因を補償して、テーブル02の位置制御を正確に行うことができる。
特許第3351990号公報 特許第3739749号公報 特開2009-201169号公報
 ところで図6に示す従来技術(特許文献3)や、特許文献2の技術では、送り系の物理定数を一定として逆特性モデル(補償回路)により補償をしており、特許文献1では機械位置(例えばテーブルの位置)により予め計測しておいた送り系の剛性値を使用して補償を行うものであった。
 このため、特許文献1~3の技術では、送り系である送り機構10のボールスクリュー30(ネジ部31,支持ブラケット32a,32b,ナット部33)が経年変化や温度変化で伸縮して、ボールススクリュー30の剛性変化が発生した場合には、精度の良い補償をすることができないという問題があった。
 即ち、経年変化や温度変化によりネジ部31の伸び状態が変化すると、ボールスクリュー30の軸方向に沿うバネ剛性KLは、図7(a),図7(b),図7(c)に示すように変化する。
 なお、図7(a),図7(b),図7(c)において、横軸は負荷位置(テーブル02,ナット部33の位置)を示しており、横軸の左側が回転支持ブラケット32a側、横軸の右側が回転支持ブラケット32b側であり、縦軸はバネ剛性KLを示している。
 図7(a)は、ネジ部31が支持ブラケット32aにより確実に引っ張られており、ネジ部31が支持ブラケット32aと支持ブラケット32bにより堅固に支持(両端が固定支持)されているときにおける、負荷位置に応じたバネ剛性KLを示す。
 図7(b)は、ネジ部31が温度変化等により軸方向にやや伸びて、ネジ部31は、支持ブラケット32aでは堅固に支持(一端が固定支持)されるが、支持ブラケット32bでの支持が緩んできたとき(他端が半固定支持のとき)における、負荷位置に応じたバネ剛性KLを示す。
 図7(c)は、ネジ部31が温度変化等により軸方向に大きく伸びて、ネジ部31は、支持ブラケット32aでは堅固に支持(一端が固定支持)されるが、支持ブラケット32bでの支持が完全に緩んできたとき(他端が自由(フリー)のとき)における、負荷位置に応じたバネ剛性KLを示す。
 特許文献1~3の技術では、図7(a),図7(b),図7(c)に示すような、ネジ部31が伸縮してネジ部31の支持状態が変化することに起因してバネ剛性KLが変化することを考慮していないので、精度の良い補償をすることができない。
 本発明は、上記従来技術に鑑み、送り機構のボールスクリューが経年変化や温度変化で伸縮してボールスクリューの軸方向に沿う剛性が変化しても、このような剛性変化を補償して、負荷の位置を正確にサーボ制御することができるサーボ制御装置を提供することを目的とする。
 上記課題を解決する本発明の構成は、
 サーボモータの回転運動を、ボールスクリューを含む送り機構により直線運動に変換し、変換した直線運動により負荷を直線移動させる産業機械を制御するサーボ制御装置において、
 前記サーボモータ,前記送り機構及び前記負荷からなる機械系の伝達関数の逆伝達関数である補償用伝達関数が設定されており、前記負荷の指令位置を示す位置指令信号(θ)を前記補償用伝達関数に入力すると、前記機械系の動的な誤差要因を補償する補償信号(V300)を出力する逆特性モデルと、
 前記位置指令信号(θ)と前記負荷の位置を示す負荷位置信号(θL)との偏差である位置偏差信号(Δθ)を零にすると共に、前記位置偏差信号(Δθ)に比例した速度偏差信号(ΔV)と前記サーボモータの速度を示すモータ速度信号(ωM)との偏差を零にするようにフィードバック制御し、更に前記補償信号(V300)によりフィードフォワード補償制御をして、前記サーボモータに供給する電流を制御する制御部と、
 前記ボールスクリューのネジ部の伸縮量(st)を算出するボールスクリュー伸縮量算出部と、算出されたネジ部の伸縮量(st)から前記ボールスクリューの軸方向に沿うバネ剛性(KL)の値を算出するバネ剛性算出部と、算出されたバネ剛性(KL)の値を前記補償用伝達関数の演算式に含まれているバネ剛性(KL)の値として設定するバネ剛性設定部とで構成される剛性変化補償部とを備えていることを特徴とする。
 また本発明の構成は、
 前記剛性変化補償部のボールスクリュー伸縮量算出部は、
 前記負荷位置信号(θL)と、前記サーボモータの回転位置を示すモータ位置信号(θM)とを基に、ネジ部の伸縮量(st)を算出することを特徴とする。
 また本発明の構成は、
 前記剛性変化補償部のボールスクリュー伸縮量算出部は、
 ネジ部の温度とネジ部の伸縮量との関係を示す関係特性に、前記ボールスクリューのネジ部の温度を適用することにより、ネジ部の伸縮量(st)を算出することを特徴とする。
 また本発明の構成は、
 前記剛性変化補償部のボールスクリュー伸縮量算出部は、
 前記ボールスクリューのネジ部の変位を基に、ネジ部の伸縮量(st)を算出することを特徴とするサーボ制御装置。
 また本発明の構成は、
 前記剛性変化補償部のバネ剛性算出部は、
 ネジ部の伸縮量(st)に応じて、負荷位置とバネ剛性(KL)との関係を示す複数の関係特性を有しており、
 前記複数の関係特性の中から、前記ボールスクリュー伸縮量算出部により算出したネジ部の伸縮量(st)に応じた関係特性を選び、この選んだ関係特性に対して、前記負荷位置信号(θL)で示す負荷位置を適用することによりバネ剛性(KL)を算出することを特徴とする。
 また本発明の構成は、
 前記剛性変化補償部のバネ剛性算出部は、
 ネジ部の伸縮量(st)に応じて、バネ剛性(KL)を求める複数の演算式を有しており、
 前記複数の演算式の中から、前記ボールスクリュー伸縮量算出部により算出したネジ部の伸縮量(st)に応じた演算式を選び、この選んだ演算式を用いてバネ剛性(KL)を算出することを特徴とする。
 本発明によれば、サーボモータの回転運動を、ボールスクリューを含む送り機構により直線運動に変換し、変換した直線運動により負荷を直線移動させる産業機械を制御するサーボ制御装置において、送り機構のボールスクリューが経年変化や温度変化で伸縮してボールスクリューの軸方向に沿う剛性が変化しても、このような剛性変化を補償して、負荷の位置を正確にサーボ制御することができる。
本発明の実施例に係るサーボ制御装置を示す構成図。 工作機械の一例を示す斜視図。 送り機構を示す構成図。 フィードバック制御回路を示す構成図。 フィードフォワード制御回路を組み込んだ回路を示す構成図。 逆特性モデルを組み込んだ回路を示す構成図。 ネジ部の伸縮量が小さい場合の、負荷位置とボールスクリューのバネ剛性との関係を示す特性図。 ネジ部の伸縮量が中の場合の、負荷位置とボールスクリューのバネ剛性との関係を示す特性図。 ネジ部の伸縮量が大きい場合の、負荷位置とボールスクリューのバネ剛性との関係を示す特性図。
 以下、発明を実施するための形態について、実施例に基づき詳細に説明する。
 なお、従来技術と同一機能を果たす部分には同一符号を付し、同一部分の説明は簡略にする。
  <実施例の全体構成の説明>
 図1は本発明の実施例に係るサーボ制御装置を示す。
 この実施例は、本発明を、工作機械のテーブル02を駆動する送り機構10に適用したものである。即ち、サーボモータ40が回転すると、この回転力は減速機20を介してボールスクリュー30のネジ部31に伝わりネジ部31が回転する。回転支持ブラケット32a,32bにより支持されたネジ部31が回転すると、ナット部33がネジ部31に沿い直線移動し、このナット部33の直線移動に応じてテーブル02が直線移動する。
 なお、回転支持ブラケット32aは、ネジ部31を基端側(図1では左側)に引っ張ってネジ部31に対して引っ張り張力を与えるように、配置されている。
 このとき、サーボモータ40の回転位置は、サーボモータ40に配置したパルスエンコーダ41から出力される信号(パルス信号)であるモータ位置信号θMを基に検出することができる。
 テーブル02の直線移動位置は、リニアスケール等の位置検出器34から出力される、負荷位置信号θLを基に検出することができる。
 制御手段としては、フィードバック制御をする制御部100と、フィードフォワード補償制御をする逆特性モデル300と、逆特性モデルの係数値を設定・変化させる剛性変化補償部400を有している。
  <制御部の説明>
 制御部100は、図6に示す制御部100と同一構成であり、同一の制御動作をする。つまり、制御部100の減算器101は、位置指令信号θと負荷位置信号θLとの差である位置偏差信号Δθを出力する。乗算器102は、位置偏差信号Δθに位置ループゲインKPを乗算して速度偏差信号ΔVを出力する。
 減算器103aは、速度偏差信号ΔVに、逆特性モデル300から出力される速度補償信号V300を加えた値から、モータ速度信号ωMを減算した速度指令信号Vを出力する。
 比例積分演算器104は、速度指令信号Vを比例積分演算してトルク指令信号τを出力する。
 電流制御器110は、トルク指令信号τに応じた電流を、サーボモータ40に供給する。
  <逆特性モデルの説明>
 逆特性モデル300の基本的な構成・動作は、図6に示す逆特性モデル300と同じである。
 この逆特性モデル300は、1次微分項演算部301と、2次微分項演算部302と、3次微分項演算部303と、4次微分項演算部304と、5次微分項演算部305と、加算部310と、比例積分逆伝達関数部311とを有している。
 つまり逆特性モデル300には、各微分項演算部301~305と、加算部310と、比例積分逆伝達関数部311にそれぞれ設定した演算式により、誤差要因を補償する補償制御用伝達関数が設定されている。
 各微分項演算部301~305と加算部310には、サーボモータ40での動的な誤差原因、送り機構10での動的な誤差要因、及び負荷であるテーブル02での動的な誤差要因を補償して、負荷位置信号θLで示す位置が位置指令信号θで示す位置に一致するように補償制御する補償制御用伝達関数が設定されている。
 この補償制御用伝達関数は、サーボモータ40,送り機構10及びテーブル(負荷)02からなる機械系の伝達関数の逆伝達関数である。なお、この逆伝達関数は、演算要素を一部省略した関数にしている。
 具体的には、1次~5次の各微分項演算部301~305は、演算項a1s、a2s2、a3s3、a4s4、a5s5を有しており、位置指令信号θに対して、各演算項を乗算した演算信号を出力する。なお、sはラプラス演算子(微分演算子)である。
 この場合、係数a1~a5の値は次の通りに設定している。
但し、
Vは速度ループゲイン、
Lはボールスクリュー30の軸方向に沿うバネ剛性、
Vは積分時定数、
Mはサーボモータ40の粘性、
Lは負荷(テーブル02)の粘性、
Mはサーボモータ40のイナーシャ、
Lは負荷(テーブル02)のイナーシャ、である。
Figure JPOXMLDOC01-appb-M000002
 比例積分逆伝達関数部311は、比例積分演算部104の伝達関数であるKv(1+(1/Tvs))の逆伝達関数である{Tv/Kv(Tvs+1)}×sのうち、{Tv/Kv(Tvs+1)}を伝達関数として有している。そして、微分演算子sは、各係数a1~a5に、それぞれ割り振っている。
 なお、比例積分逆伝達関数部311に設定した伝達関数{Tv/Kv(Tvs+1)}は、制御系の特性によって決定される固定値(一定値)である。
 更に、係数a2~a5に含まれているボールスクリュー30の軸方向に沿うバネ剛性KLの値は、ボールスクリュー30のネジ部31の伸縮に応じて、剛性変化補償部400により算出されて設定される。
 このように、バネ剛性KLの値を、ボールスクリュー30のネジ部31の伸縮に応じて変化させることが、本実施例の特徴的な技術である。
  <剛性変化補償部の説明>
 剛性変化補償部400は、ボールスクリュー伸縮量算出部401と、バネ剛性算出部402と、バネ剛性設定部403とで構成されている。
 ボールスクリュー伸縮量算出部401は、ボールスクリュー30のネジ部31の伸縮量stを算出するものである。
 具体的には、負荷位置信号θLと、モータ位置信号θMを負荷位置信号に変換した位置変換信号との偏差を求め、この偏差を基に、ネジ部31の伸縮量stを求める。
 なお、ネジ部31の伸縮量stを求める手法としては、次のような2つの別手法を採用することもできる。
 第1の別手法では、ネジ部31に温度検出センサを設けておく。そして、ボールスクリュー伸縮量算出部401に、ネジ部31の温度とネジ部31の伸縮量との関係を示す関係特性を予め設定しておき、温度検出センサにより検出した検出温度を関係特性に適用することにより、ネジ部31の伸縮量stを求める。
 第2の別手法では、ネジ部31に変位検出センサを設けておく。そして、ボールスクリュー伸縮量算出部401は、変位検出センサにより検出した変位量から、ネジ部31の伸縮量stを求める。
 バネ剛性算出部402は、ボールスクリュー30のネジ部31の伸縮量stと、負荷であるテーブル02の位置を示す負荷位置信号θLを用いて、ボールスクリュー30の軸方向に沿うバネ剛性KLを算出する。
 具体的には、バネ剛性算出部402に、ネジ部31の伸縮量stの値(大小値)に応じて、負荷位置とバネ剛性KLとの関係を表す、図7(a),(b),(c)に示す複数の関係特性を予め設定している。
 図7(a)は、ネジ部31の伸縮量stが小さいときにおける、負荷位置に応じたバネ剛性KLを示す。つまり、ネジ部31が支持ブラケット32bにより確実に引っ張られており、ネジ部31が支持ブラケット32aと支持ブラケット32bにより堅固に支持(両端が固定支持)されているときにおける、負荷位置に応じたバネ剛性KLを示す。
 図7(b)は、ネジ部31の伸縮量stが中程度のときにおける、負荷位置に応じたバネ剛性KLを示す。つまり、ネジ部31が温度変化等により軸方向にやや伸びて、ネジ部31は、支持ブラケット32aでは堅固に支持(一端が固定支持)されるが、支持ブラケット32bでの支持が緩んできたとき(他端が半固定支持のとき)における、負荷位置に応じたバネ剛性KLを示す。
 図7(c)は、ネジ部31の伸縮量stが大きいときにおける、負荷位置に応じたバネ剛性KLを示す。つまり、ネジ部31が温度変化等により軸方向に大きく伸びて、ネジ部31は、支持ブラケット32aでは堅固に支持(一端が固定支持)されるが、支持ブラケット32bでの支持が完全に緩んできたとき(他端が自由(フリー)のとき)における、負荷位置に応じたバネ剛性KLを示す。
 更にバネ剛性算出部402は、ボールスクリュー伸縮量算出部401にて算出した伸縮量stを、その値(大小値)に応じて「小」,「中」,「大」に分類する。この分類は、予め設定した閾値と比較することにより行う。
 伸縮量stの値が「小」である場合には、図7(a)に示す関係特性を選択し、この選択した関係特性に、負荷位置信号θLが示す負荷位置を適用することにより、バネ剛性KLを求める。
 伸縮量stの値が「中」である場合には、図7(b)に示す関係特性を選択し、この選択した関係特性に、負荷位置信号θLが示す負荷位置を適用することにより、バネ剛性KLを求める。
 伸縮量stの値が「大」である場合には、図7(c)に示す関係特性を選択し、この選択した関係特性に、負荷位置信号θLが示す負荷位置を適用することにより、バネ剛性KLを求める。
 このように、ネジ部31の伸縮量stの値(小,中,大)に応じて、使用する関係特性を異ならせることにより、ネジ部31が経年変化や温度変化により伸縮しても、そのときの伸縮状態に応じた正確なバネ剛性KLを求めることができる。
 なお、ネジ部31の伸縮状態に応じた正確なバネ剛性KLを求める手法としては、複数のバネ剛性演算式を予め設定している、次のような別の手法を採用することもできる。
 ネジ部31の伸縮状態に応じた正確なバネ剛性KLを求める別の手法では、まず、ボールスクリュー伸縮量算出部401にて算出した伸縮量stを、その値(大小値)に応じて「小」,「中」,「大」に分類する。この分類は、予め設定した閾値と比較することにより行う。
 そして、ネジ部31の伸縮量stの値(小,中,大)に応じて、次に示す演算をして、伸縮状態に応じた正確なバネ剛性KLを求める。
 ただし、
 Aはネジ部31の断面積[m2]、
 drはネジ部31のネジ谷径[m]、
 Eはネジ部31の縦弾性係数[N/m2]、
 Xは荷重作用点距離[m]、つまり、図1に示すように支持ブラケット32aとナット部33との間の距離、
 Lは取付間距離[m]、つまり、図1に示すように支持ブラケット32a,32b間の距離、
 kは係数(0.0~1.0)であり、伸縮量stの値により変化させるものである。
 ネジ部31の伸縮量stが「小」である場合には、予め設定した次式による演算をして、バネ剛性KL[N/m]を求める。
 KL=(A・E・L)/{X・(L-X)}
 ネジ部31の伸縮量stが「中」である場合には、予め設定した次式による演算をして、バネ剛性KL[N/m]を求める。
 KL=k{(A・E)/X}+(1-k)〔(A・E・L)/{X・(L-X)}〕
 ネジ部31の伸縮量stが「大」である場合には、予め設定した次式による演算をして、バネ剛性KL[N/m]を求める。
 KL=(A・E)/X
 逆特性モデル300の2次~5次の各微分項演算部302~305には、演算項a2s2、a3s3、a4s4、a5s5が設定されており、その係数a2~a5を求める演算式には、上述したようにバネ剛性KLが含まれている。
 そこで、バネ剛性設定部403は、バネ剛性算出部402にて算出したバネ剛性KLの値を、係数a2~a5を求める演算式に含まれているバネ剛性KLの値として設定する。
 このため、ボールスクリュー30のネジ部31が経年変化や温度変化等により伸縮して、ボールスクリュー30の軸方向に沿うバネ剛性KLの値が変化しても、その変化したバネ剛性KLの値を用いて、各微分項演算部302~305での演算が行われる。
 この結果、逆特性モデル300により演算した速度補償信号V300は、ネジ部31が経年変化や温度変化等により伸縮していたとしても、最適な値となる。
 このように、ネジ部31が経年変化や温度変化等により伸縮していたとしても、速度補償信号V300が最適な値となり、サーボモータ40での動的な誤差原因、送り機構10での動的な誤差要因、及び負荷であるテーブル02での動的な誤差要因を補償して、負荷位置信号θLで示す位置が位置指令信号θで示す位置に精度良く一致するように補償制御することができる。
 なお、逆特性モデル300の演算式は、機械系(モータやテーブルや送り機構)を、どのような機械系モデルとして特定するか、または演算式をどの程度まで簡略化するか、によって変化してくるが、その場合であっても、逆特性モデル300の演算式に含まれるバネ剛性KLの値を、バネ剛性算出部402にて算出したバネ剛性KLの値に設定する。
 このようにすることにより、ネジ部31が経年変化や温度変化等により伸縮していたとしても、速度補償信号V300が最適な値となり、サーボモータ40での動的な誤差原因、送り機構10での動的な誤差要因、及び負荷であるテーブル02での動的な誤差要因を補償して、負荷位置信号θLで示す位置が位置指令信号θで示す位置に精度良く一致するように補償制御することができる。
 本発明は、工作機械のみならず、サーボモータの回転運動をボールスクリューにより直線運動に変換して負荷を直線移動させる各種の産業機械に適用することができる。
 01 ベッド
 02 テーブル
 03 コラム
 04 クロスレール
 05 サドル
 06 ラム
 10 送り機構
 20 減速機
 30 ボールスクリュー
 31 ネジ部
 32a,32b 回転支持ブラケット
 33 ナット部
 34 位置検出器
 40 サーボモータ
 41 パルスエンコーダ
 100 制御部
 110 電流制御部
 300 逆特性モデル
 400 剛性変化補償部
 401 ボールスクリュー伸縮量算出部
 402 バネ剛性算出部
 403 バネ剛性設定部

Claims (6)

  1.  サーボモータの回転運動を、ボールスクリューを含む送り機構により直線運動に変換し、変換した直線運動により負荷を直線移動させる産業機械を制御するサーボ制御装置において、
     前記サーボモータ,前記送り機構及び前記負荷からなる機械系の伝達関数の逆伝達関数である補償用伝達関数が設定されており、前記負荷の指令位置を示す位置指令信号(θ)を前記補償用伝達関数に入力すると、前記機械系の動的な誤差要因を補償する補償信号(V300)を出力する逆特性モデルと、
     前記位置指令信号(θ)と前記負荷の位置を示す負荷位置信号(θL)との偏差である位置偏差信号(Δθ)を零にすると共に、前記位置偏差信号(Δθ)に比例した速度偏差信号(ΔV)と前記サーボモータの速度を示すモータ速度信号(ωM)との偏差を零にするようにフィードバック制御し、更に前記補償信号(V300)によりフィードフォワード補償制御をして、前記サーボモータに供給する電流を制御する制御部と、
     前記ボールスクリューのネジ部の伸縮量(st)を算出するボールスクリュー伸縮量算出部と、算出されたネジ部の伸縮量(st)から前記ボールスクリューの軸方向に沿うバネ剛性(KL)の値を算出するバネ剛性算出部と、算出されたバネ剛性(KL)の値を前記補償用伝達関数の演算式に含まれているバネ剛性(KL)の値として設定するバネ剛性設定部とで構成される剛性変化補償部と、
     を備えていることを特徴とするサーボ制御装置。
  2.  請求項1において、
     前記剛性変化補償部のボールスクリュー伸縮量算出部は、
     前記負荷位置信号(θL)と、前記サーボモータの回転位置を示すモータ位置信号(θM)とを基に、ネジ部の伸縮量(st)を算出することを特徴とするサーボ制御装置。
  3.  請求項1において、
     前記剛性変化補償部のボールスクリュー伸縮量算出部は、
     ネジ部の温度とネジ部の伸縮量との関係を示す関係特性に、前記ボールスクリューのネジ部の温度を適用することにより、ネジ部の伸縮量(st)を算出することを特徴とするサーボ制御装置。
  4.  請求項1において、
     前記剛性変化補償部のボールスクリュー伸縮量算出部は、
     前記ボールスクリューのネジ部の変位を基に、ネジ部の伸縮量(st)を算出することを特徴とするサーボ制御装置。
  5.  請求項1において、
     前記剛性変化補償部のバネ剛性算出部は、
     ネジ部の伸縮量(st)に応じて、負荷位置とバネ剛性(KL)との関係を示す複数の関係特性を有しており、
     前記複数の関係特性の中から、前記ボールスクリュー伸縮量算出部により算出したネジ部の伸縮量(st)に応じた関係特性を選び、この選んだ関係特性に対して、前記負荷位置信号(θL)で示す負荷位置を適用することによりバネ剛性(KL)を算出することを特徴とするサーボ制御装置。
  6.  請求項1において、
     前記剛性変化補償部のバネ剛性算出部は、
     ネジ部の伸縮量(st)に応じて、バネ剛性(KL)を求める複数の演算式を有しており、
     前記複数の演算式の中から、前記ボールスクリュー伸縮量算出部により算出したネジ部の伸縮量(st)に応じた演算式を選び、この選んだ演算式を用いてバネ剛性(KL)を算出することを特徴とするサーボ制御装置。
PCT/JP2010/065464 2009-12-24 2010-09-09 サーボ制御装置 WO2011077789A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080047468.6A CN102577096B (zh) 2009-12-24 2010-09-09 伺服控制装置
US13/501,223 US20120249041A1 (en) 2009-12-24 2010-09-09 Servo control apparatus
KR1020127010051A KR101455480B1 (ko) 2009-12-24 2010-09-09 서보 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-291904 2009-12-24
JP2009291904A JP5422368B2 (ja) 2009-12-24 2009-12-24 サーボ制御装置

Publications (1)

Publication Number Publication Date
WO2011077789A1 true WO2011077789A1 (ja) 2011-06-30

Family

ID=44195337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065464 WO2011077789A1 (ja) 2009-12-24 2010-09-09 サーボ制御装置

Country Status (6)

Country Link
US (1) US20120249041A1 (ja)
JP (1) JP5422368B2 (ja)
KR (1) KR101455480B1 (ja)
CN (1) CN102577096B (ja)
TW (1) TW201144966A (ja)
WO (1) WO2011077789A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137014A (zh) * 2012-03-05 2014-11-05 三菱重工业株式会社 伺服控制装置及伺服控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667147B2 (ja) * 2012-10-30 2015-02-12 ファナック株式会社 ボールねじの伸縮量に基づいて補正処理を実行するサーボ制御装置
JP6290602B2 (ja) 2013-11-15 2018-03-07 オークマ株式会社 油圧制御装置
JP6046182B2 (ja) 2015-02-27 2016-12-14 ファナック株式会社 振動を抑制する機能を備えたモータ制御装置
CN105048898A (zh) * 2015-07-12 2015-11-11 北京理工大学 一种直流无刷电机柔性控制方法
JP6445079B2 (ja) * 2017-04-26 2018-12-26 ファナック株式会社 サーボモータ制御装置、及び、サーボモータ制御システム
JP6568147B2 (ja) * 2017-06-06 2019-08-28 ファナック株式会社 サーボモータ制御装置
CN110989357B (zh) * 2019-12-18 2021-05-04 中国科学院长春光学精密机械与物理研究所 一种复杂机电系统的辨识控制方法和系统
CN111251288B (zh) * 2020-04-01 2022-08-02 重庆邮电大学 一种基于时变干扰补偿的柔性机器人串级控制系统及方法
CN113189868B (zh) * 2021-03-26 2022-07-26 哈尔滨工大航博科技有限公司 伺服系统动态误差的精确补偿方法
CN115793600B (zh) * 2022-11-15 2024-05-14 北京精密机电控制设备研究所 一种基于数据和模型的伺服控制系统测试平台及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004322283A (ja) * 2003-04-28 2004-11-18 Toyota Motor Corp 姿勢と剛性を独立に制御できるワイヤ式ロボット
JP2007219689A (ja) * 2006-02-15 2007-08-30 Okuma Corp 位置制御装置
JP2009061557A (ja) * 2007-09-07 2009-03-26 Kira Corporation:Kk ボールねじの熱変位補償方法と、その補償方法を実行するnc工作機械
JP2009201169A (ja) * 2008-01-09 2009-09-03 Mitsubishi Heavy Ind Ltd サーボ制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3154946B2 (ja) * 1996-11-11 2001-04-09 ファナック株式会社 工作機械の熱変位補正方法
JP3351990B2 (ja) * 1997-05-27 2002-12-03 オークマ株式会社 ボールネジ駆動系の位置制御装置
WO2000019288A1 (fr) * 1998-09-28 2000-04-06 Kabushiki Kaisha Yaskawa Denki Dispositif de commande de position
JP3739749B2 (ja) * 2003-01-07 2006-01-25 ファナック株式会社 制御装置
WO2004092859A1 (ja) * 2003-04-11 2004-10-28 Mitsubishi Denki Kabushiki Kaisha サーボ制御器
JP4063744B2 (ja) * 2003-09-24 2008-03-19 トヨタ自動車株式会社 ハイブリッド車輌の制御装置
JP4283214B2 (ja) * 2004-12-16 2009-06-24 ファナック株式会社 機械先端点の制御装置
JP4174543B2 (ja) * 2007-01-29 2008-11-05 ファナック株式会社 サーボモータの制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004322283A (ja) * 2003-04-28 2004-11-18 Toyota Motor Corp 姿勢と剛性を独立に制御できるワイヤ式ロボット
JP2007219689A (ja) * 2006-02-15 2007-08-30 Okuma Corp 位置制御装置
JP2009061557A (ja) * 2007-09-07 2009-03-26 Kira Corporation:Kk ボールねじの熱変位補償方法と、その補償方法を実行するnc工作機械
JP2009201169A (ja) * 2008-01-09 2009-09-03 Mitsubishi Heavy Ind Ltd サーボ制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137014A (zh) * 2012-03-05 2014-11-05 三菱重工业株式会社 伺服控制装置及伺服控制方法

Also Published As

Publication number Publication date
KR20120054658A (ko) 2012-05-30
CN102577096A (zh) 2012-07-11
KR101455480B1 (ko) 2014-10-27
US20120249041A1 (en) 2012-10-04
CN102577096B (zh) 2014-11-26
JP5422368B2 (ja) 2014-02-19
TW201144966A (en) 2011-12-16
JP2011135677A (ja) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5422368B2 (ja) サーボ制御装置
JP5112100B2 (ja) サーボ制御装置
JP5411978B2 (ja) ボールネジの伸縮量を補正する機能を備えたサーボ制御装置
US11148282B2 (en) Control device for motor drive device, control device for multi-axial motor, and control method for motor drive device
JP5370392B2 (ja) ロボットシステム、ロボット制御装置およびロボット制御方法
WO2012053352A1 (ja) 負荷イナーシャ推定方法及び制御パラメータ調整方法
JP5512954B2 (ja) 数値制御機械の位置制御装置
JP5302639B2 (ja) サーボ制御装置
WO2011083596A1 (ja) 工作機械の機械変位補正システム
JP5739400B2 (ja) 被駆動体の位置補正機能を有するサーボ制御装置
JP5943650B2 (ja) サーボ制御装置及びサーボ制御方法
JP2008296310A (ja) 加工ロボットの制御装置
US9152142B2 (en) Servo controller for correcting position error when moving member reverses
JP2011101938A (ja) ロボットおよびその制御装置
JP2014087880A (ja) ボールねじの伸縮量に基づいて補正処理を実行するサーボ制御装置
JP4183057B2 (ja) 数値制御システム
JP4123377B2 (ja) 材料試験機
JP2001202136A (ja) モーションコントローラにおける動的たわみ補正方法およびモーションコントローラ
JP4939388B2 (ja) フィードフォワード制御装置
JP2006231391A (ja) 長尺材の曲げ加工装置
JP2004009176A (ja) バランス調整装置
JP6048174B2 (ja) 数値制御装置とロストモーション補償方法
KR20240016203A (ko) 동역학 토크 보상에 기초하는 제어 방법 및 제어 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047468.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 974/MUMNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127010051

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13501223

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839026

Country of ref document: EP

Kind code of ref document: A1