WO2011077735A1 - 半導体基板、半導体基板の製造方法及び光電変換装置の製造方法 - Google Patents

半導体基板、半導体基板の製造方法及び光電変換装置の製造方法 Download PDF

Info

Publication number
WO2011077735A1
WO2011077735A1 PCT/JP2010/007467 JP2010007467W WO2011077735A1 WO 2011077735 A1 WO2011077735 A1 WO 2011077735A1 JP 2010007467 W JP2010007467 W JP 2010007467W WO 2011077735 A1 WO2011077735 A1 WO 2011077735A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
crystal layer
crystal
semiconductor substrate
epitaxially growing
Prior art date
Application number
PCT/JP2010/007467
Other languages
English (en)
French (fr)
Inventor
秦 雅彦
山田 永
高田 朋幸
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2010800555274A priority Critical patent/CN102668110A/zh
Publication of WO2011077735A1 publication Critical patent/WO2011077735A1/ja
Priority to US13/531,192 priority patent/US20120273839A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a semiconductor substrate, a method for manufacturing a semiconductor substrate, and a method for manufacturing a photoelectric conversion device.
  • Non-Patent Document 1 describes a compound semiconductor solar cell.
  • an InGaP / GaAs / InGaAs (1 eV) structure cell is disclosed as an optimum combination of band gaps in a three-junction structure.
  • Non-Patent Document 1 FY2006-2007 Results Report, New Energy Technology Development Research and Development of Future Technology for Photovoltaic Power Generation Systems Research and Development of Ultra-High Efficiency Multijunction Solar Cells, New Energy and Industrial Technology Development Organization , March 2008
  • each layer of the multijunction solar cell is preferably a good quality crystal.
  • a base substrate a sacrificial layer lattice-matched or pseudo-lattice-matched to the base substrate, and Si x Ge 1 ⁇ formed on the sacrificial layer are provided.
  • a first crystal layer made of an epitaxial crystal of x (0 ⁇ x ⁇ 1), and an epitaxial crystal of a Group 3-5 compound semiconductor formed on the first crystal layer and having a larger forbidden band than the first crystal layer.
  • a second semiconductor layer is provided.
  • the base substrate is made of single crystal GaAs, for example.
  • the sacrificial layer is, for example, an epitaxial crystal of In m Al n Ga 1-mn As (0 ⁇ m ⁇ 0.2, 0.8 ⁇ n ⁇ 1, 0.8 ⁇ n + m ⁇ 1) or In 0.5 Al 0.5 P.
  • the sacrificial layer is preferably made of Al n Ga 1-n As (0.8 ⁇ n ⁇ 1) or In 0.48 Al 0.52 P.
  • the semiconductor substrate may further include an intermediate crystal layer made of an epitaxial crystal of a Group 3-5 compound semiconductor formed between the first crystal layer and the second crystal layer.
  • the intermediate crystal layer has, for example, a forbidden band width larger than that of the first crystal layer and a forbidden band width smaller than that of the second crystal layer.
  • the intermediate crystal layer is, for example, In y Ga 1-y As z P 1-z (0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1)
  • the second crystal layer is, for example, Al w In t Ga 1-w—.
  • t As z ′ P 1 ⁇ z ′ (0 ⁇ w ⁇ 1, 0 ⁇ t ⁇ 1, 0 ⁇ w + t ⁇ 1, 0 ⁇ z ′ ⁇ 1).
  • the semiconductor substrate includes, on the sacrificial layer, a first back surface field layer, a first crystal layer, a first window layer, a first tunnel junction layer, a second back surface field layer, an intermediate crystal layer, a second crystal layer, A window layer, a second tunnel junction layer, a third back surface field layer, a second crystal layer, and a third window layer in this order; a first back surface field layer, a second back surface field layer, The third back surface field layer, the first window layer, the second window layer, and the third window layer are more forbidden than any of the first crystal layer, the intermediate crystal layer, and the second crystal layer.
  • the width may be large.
  • a sacrificial layer lattice-matched or pseudo-lattice-matched with the base substrate is formed on the base substrate, and Si x Ge 1-x (0 ⁇ x ⁇ 1) the step of epitaxially growing the first crystal layer, the step of epitaxially growing an intermediate crystal layer made of a Group 3-5 compound semiconductor on the first crystal layer, and the first crystal layer on the intermediate crystal layer. And a method for epitaxially growing a second crystal layer made of a Group 3-5 compound semiconductor having a larger forbidden band width.
  • the base substrate is made of single crystal GaAs, for example.
  • an epitaxial crystal layer made of In m Al n Ga 1-mn As (0 ⁇ m ⁇ 0.2, 0.8 ⁇ n ⁇ 1, 0.8 ⁇ n + m ⁇ 1) Is epitaxially grown.
  • the intermediate crystal layer has a forbidden band width larger than that of the first crystal layer and a forbidden band width smaller than that of the second crystal layer.
  • a tunnel junction layer is further formed between each of the first crystal layer and the intermediate crystal layer and between the intermediate crystal layer and the second crystal layer.
  • the intermediate crystal layer is, for example, In y Ga 1-y As z P 1-z (0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1)
  • the second crystal layer is, for example, Al w In t Ga 1-w—.
  • t As z ′ P 1 ⁇ z ′ (0 ⁇ w ⁇ 1, 0 ⁇ t ⁇ 1, 0 ⁇ w + t ⁇ 1, 0 ⁇ z ′ ⁇ 1).
  • the semiconductor substrate manufacturing method includes a step of forming a first back surface field layer on a sacrificial layer, a step of forming a first crystal layer on the first back surface field layer, and the first crystal layer. Forming a first window layer on the first window; forming a first tunnel junction layer on the first window layer; and forming a second back surface field layer on the first tunnel junction layer. A step of forming an intermediate crystal layer on the second back surface field layer, a step of forming a second window layer on the intermediate crystal layer, and a second tunnel on the second window layer A step of forming a bonding layer, a step of forming a third back surface field layer on the second tunnel junction layer, and the third back surface field.
  • the width may be large.
  • the step of epitaxially growing the sacrificial layer and the step of epitaxially growing the first crystal layer are performed in different atmospheres, and the step of epitaxially growing the first crystal layer and the intermediate crystal layer are performed.
  • the step of epitaxial growth may be performed in different atmospheres.
  • the semiconductor substrate manufacturing method includes a step of epitaxially growing the sacrificial layer and a step of epitaxially growing the first crystal layer, and a step of epitaxially growing the first crystal layer and a step of epitaxially growing the intermediate crystal layer.
  • the method further comprises the step of replacing the inside of the reaction furnace for carrying out each step with one or more gases selected from hydrogen, nitrogen and argon, or the step of depressurizing the inside of the reaction furnace.
  • the step of epitaxially growing the first crystal layer, the step of epitaxially growing the intermediate crystal layer, and the step of epitaxially growing the second crystal layer may be performed in different reactors.
  • a step of forming a sacrificial layer lattice-matched or pseudo-lattice-matched with the base substrate on the base substrate, and a forbidden band width larger than the sacrificial layer on the sacrificial layer 3-5 Epitaxially growing a second crystal layer made of a group III compound semiconductor, epitaxially growing an intermediate crystal layer made of a group 3-5 compound semiconductor on the second crystal layer, and Si x Ge on the intermediate crystal layer And a step of epitaxially growing a first crystal layer made of 1-x (0 ⁇ x ⁇ 1).
  • the step of preparing the semiconductor substrate according to the first aspect the step of attaching the first support to the second crystal layer, the sacrificial layer is removed, and the first crystal layer And a step of separating the substrate from the base substrate.
  • the manufacturing method includes a step of bonding a second support made of a material of metal, plastic, or ceramic to a separation surface of a first crystal layer separated from a base substrate, and a step of removing the first support And may be further provided.
  • the first support is transparent, and the manufacturing method includes a step of bonding a second support made of any one of a metal, a plastic, and a ceramic to the separation surface of the first crystal layer separated from the base substrate. May be further provided.
  • the separated base substrate may be reused for manufacturing the semiconductor substrate according to the first aspect.
  • the method includes preparing the semiconductor substrate according to claim 1 and forming a plurality of electrodes electrically coupled to the base substrate and the second crystal layer, A method for manufacturing a photoelectric conversion device which is a semiconductor having a p-type or n-type conductivity is provided.
  • the cross section of the photoelectric conversion apparatus 100 is shown.
  • the cross section of the photoelectric conversion apparatus 200 is shown.
  • the cross section of the photoelectric conversion apparatus 300 is shown.
  • the cross section of the photoelectric conversion apparatus 400 is shown.
  • the cross section of the semiconductor substrate 500 is shown.
  • the cross section of the semiconductor substrate 500 is shown.
  • the cross section in the middle of the manufacturing process of the photoelectric conversion apparatus 200 is shown.
  • the cross section in the middle of the manufacturing process of the photoelectric conversion apparatus 200 is shown.
  • a cross section of a semiconductor substrate 600 is shown.
  • the cross section in the middle of the manufacturing process of the photoelectric conversion apparatus 200 is shown.
  • FIG. 1 shows a cross section of the photoelectric conversion device 100.
  • the photoelectric conversion device 100 includes a support 102, a first crystal layer 104, and a second crystal layer 106.
  • the second crystal layer 106 and the first crystal layer 104 are arranged in this order along the light incident direction.
  • the first crystal layer 104 is a bottom layer formed in a region farthest from the light incident side.
  • the second crystal layer 106 is a top layer to which light first reaches.
  • the photoelectric conversion device 100 may include another layer between the second crystal layer 106 and the first crystal layer 104.
  • the first crystal layer 104 absorbs light and generates an electromotive force.
  • the first crystal layer 104 is an epitaxial crystal layer of Si x Ge 1-x (0 ⁇ x ⁇ 1), preferably an epitaxial crystal layer of Si x Ge 1-x (0 ⁇ x ⁇ 0.2). .
  • the first crystal layer 104 is preferably lattice-matched or pseudo-lattice-matched to single crystal gallium arsenide (GaAs).
  • the first crystal layer 104 preferably includes a stack of an epitaxial crystal layer of p-type Si x Ge 1-x and an epitaxial crystal layer of n-type Si x Ge 1-x .
  • the second crystal layer 106 and other epitaxial crystal layers in this specification are also preferably lattice-matched or pseudo-lattice-matched to the single crystal gallium arsenide.
  • the second crystal layer 106 absorbs light and generates an electromotive force.
  • the second crystal layer 106 is an epitaxial crystal layer made of a Group 3-5 compound semiconductor having a larger forbidden band width than the first crystal layer 104.
  • Al w In t Ga 1 -w-t As z 'P 1-z' (0 ⁇ w ⁇ 1,0 ⁇ t ⁇ 1,0 ⁇ w + t ⁇ 1,0 ⁇ z ' ⁇ 1 ).
  • In 0.5 Ga 0.5 P is preferable, and In 0.48 Ga 0.52 P is more preferable.
  • the first crystal layer 104 of the bottom layer is an Si x Ge 1-x (0 ⁇ x ⁇ 1) epitaxial crystal layer having a smaller forbidden band width than the second crystal layer 106 of the top layer.
  • Si x Ge 1-x (0 ⁇ x ⁇ 1) can be lattice-matched or pseudo-lattice-matched with the Group 3-5 compound semiconductor, the crystallinity of the second crystal layer 106 made of the Group 3-5 compound semiconductor is improved. Therefore, the conversion efficiency of the photoelectric conversion device 100 is improved.
  • the support 102 includes one or more materials selected from the group consisting of metals, plastics, and ceramics.
  • the metal include aluminum, copper, and stainless steel.
  • the plastic include polyimide, liquid crystal polymer, cycloolefin polymer, polycarbonate, acrylic resin, and polyolefins.
  • the ceramic include a polycrystalline alumina sintered body, a polycrystalline aluminum nitride sintered body, a polycrystalline silicon carbide sintered body, and polycrystalline silica. As the ceramic, glass (amorphous material) may be used instead of the crystalline material.
  • FIG. 2 shows a cross section of the photoelectric conversion device 200.
  • the photoelectric conversion device 200 is obtained by adding an intermediate crystal layer 108 to the configuration of the photoelectric conversion device 100.
  • the intermediate crystal layer 108 is formed between the first crystal layer 104 and the second crystal layer 106.
  • the intermediate crystal layer 108 absorbs light and generates an electromotive force.
  • the intermediate crystal layer 108 is an epitaxial crystal layer made of a Group 3-5 compound semiconductor.
  • the intermediate crystal layer 108 has a forbidden band width larger than that of the first crystal layer 104 and a forbidden band width smaller than that of the second crystal layer 106.
  • the intermediate crystal layer 108 is, for example, In y Ga 1-y As z P 1-z (0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1).
  • the intermediate crystal layer 108 is preferably In y Ga 1-y As (0 ⁇ y ⁇ 0.1), and more preferably GaAs can be used.
  • the intermediate crystal layer 108 may include a stack of an epitaxial crystal layer of p-type In y Ga 1-y As z P 1-z and an epitaxial crystal layer of n-type In y Ga 1-y As z P 1-z. preferable.
  • the photoelectric conversion device 200 includes the intermediate crystal layer 108, light that is not absorbed by the second crystal layer 106 is absorbed by the intermediate crystal layer 108, and light that is not absorbed by the intermediate crystal layer 108 is absorbed by the first crystal layer 104. Therefore, the conversion efficiency of the photoelectric conversion device 200 is improved more than the conversion efficiency of the photoelectric conversion device 100.
  • FIG. 3 shows a cross section of the photoelectric conversion device 300.
  • the photoelectric conversion device 300 is obtained by adding a tunnel junction layer 110 to the configuration of the photoelectric conversion device 200.
  • the tunnel junction layer 110 is disposed between the first crystal layer 104 and the intermediate crystal layer 108 and between the intermediate crystal layer 108 and the second crystal layer 106.
  • the tunnel junction layer 110 improves the connection at the junction interface among the first crystal layer 104, the intermediate crystal layer 108, and the second crystal layer 106.
  • the tunnel junction layer 110 examples include a PN junction layer in which an N layer doped with a donor impurity at a high concentration and a P layer doped with an acceptor impurity at a high concentration are combined.
  • an N layer an In y Ga 1-y As z P 1-z (0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1) layer or an Al w In t Ga layer having a donor impurity concentration of 5 ⁇ 10 18 / cm 3 or more.
  • 1-wt As z ′ P 1-z ′ (0 ⁇ w ⁇ 1, 0 ⁇ t ⁇ 1, 0 ⁇ w + t ⁇ 1, 0 ⁇ z ′ ⁇ 1) layer.
  • an In y Ga 1-y As z P 1-z (0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1) layer or an Al w In t Ga layer having an acceptor impurity concentration of 5 ⁇ 10 18 / cm 3 or more.
  • 1-wt As z ′ P 1-z ′ (0 ⁇ w ⁇ 1, 0 ⁇ t ⁇ 1, 0 ⁇ w + t ⁇ 1, 0 ⁇ z ′ ⁇ 1) layer.
  • Donor impurities are, for example, Si, S, Se, Te. Acceptor impurities are, for example, C, Be, Mg, Zn.
  • the thickness of each of the N layer and the P layer is preferably 50 nm or less, more preferably 30 nm or less.
  • the N layer and the P layer are preferably lattice-matched or pseudo-lattice-matched with the first crystal layer 104, the intermediate crystal layer 108, or the second crystal layer 106.
  • the tunnel junction layer 110 in contact with the first crystal layer 104 is an N-type Si x Ge 1-x (0 ⁇ 0) doped with a donor impurity at a high concentration (5 ⁇ 10 18 / cm 3 or more) in addition to the above PN junction layer.
  • the PN junction layer is a combination of an x ⁇ 1) layer and a P-type Si x Ge 1-x (0 ⁇ x ⁇ 1) layer doped with an acceptor impurity at a high concentration (5 ⁇ 10 18 / cm 3 or more). May be.
  • the donor impurity may be P, As or Sb.
  • the acceptor impurity may be B, Al or Ga.
  • the thicknesses of the N-type Si x Ge 1-x layer and the P-type Si x Ge 1-x layer are both preferably 50 nm or less, more preferably 30 nm or less. Both the N-type Si x Ge 1-x layer and the P-type Si x Ge 1-x layer are preferably lattice-matched or pseudo-lattice-matched with the first crystal layer 104 or the intermediate crystal layer 108.
  • FIG. 4 shows a cross section of the photoelectric conversion device 400.
  • the photoelectric conversion device 400 is different from the photoelectric conversion device 300 in that a plurality of window layers 112 and a plurality of back surface field layers 114 are added.
  • the photoelectric conversion device 400 includes a back surface field layer 114-1, a first crystal layer 104, a window layer 112-1, a tunnel junction layer 110-1, a back surface field layer 114- 2.
  • An intermediate crystal layer 108, a window layer 112-2, a tunnel junction layer 110-2, a back surface field layer 114-3, a second crystal layer 106, and a window layer 112-3 are provided in this order.
  • Each of the plurality of window layers 112 and the plurality of back surface field layers 114 has a forbidden band width larger than any of the first crystal layer 104, the intermediate crystal layer 108, and the second crystal layer 106. Accordingly, the photocarriers generated in the first crystal layer 104, the intermediate crystal layer 108, and the second crystal layer 106 may be emitted out of the first crystal layer 104, the intermediate crystal layer 108, and the second crystal layer 106. Therefore, the optical carrier can be effectively extracted by the window layer 112 and the back surface field layer 114.
  • a window layer 112 In y Ga 1-y As z P 1-z (0 ⁇ y ⁇ 1,0 ⁇ z ⁇ 1) layer, or Al w In t Ga 1-w -t As z 'P 1-z ' (0 ⁇ w ⁇ 1, 0 ⁇ t ⁇ 1, 0 ⁇ w + t ⁇ 1, 0 ⁇ z ′ ⁇ 1) layers.
  • a Si x Ge 1-x (0 ⁇ x ⁇ 1) layer can also be used as the window layer 112 in contact with the first crystal layer 104.
  • a Si x Ge 1-x (0 ⁇ x ⁇ 1) layer can also be used as the back surface field layer 114 in contact with the first crystal layer 104.
  • each of the window layer 112 and the back surface field layer 114 is preferably 50 nm or less, more preferably 30 nm or less.
  • the window layer 112 and the back surface field layer 114 are doped to the same conductivity type as the first crystal layer 104, the intermediate crystal layer 108, or the second crystal layer 106 with which the window layer 112 and the back surface field layer 114 are in contact, and the concentration thereof is either P-type or N-type. Also in this case, it is preferably 1 ⁇ 10 18 / cm 3 or more, more preferably 3 ⁇ 10 18 / cm 3 or more.
  • FIG. 5A shows a cross section of the semiconductor substrate 500.
  • the semiconductor substrate 500 includes a first crystal layer 104, an intermediate crystal layer 108, and a second crystal layer 106 on the base substrate 120 instead of the support 102 in FIGS. They are stacked in order.
  • the first crystal layer 104, the intermediate crystal layer 108, and the second crystal layer 106 are the first crystal layer 104, the intermediate crystal layer 108, and the second crystal layer included in the photoelectric conversion device 200, the photoelectric conversion device 300, and the photoelectric conversion device 400. 106.
  • the base substrate 120 is made of single crystal gallium arsenide.
  • the semiconductor substrate 500 includes a sacrificial layer 122 between the first crystal layer 104 and the base substrate 120.
  • the sacrificial layer 122 and the base substrate 120 are lattice matched or pseudo lattice matched.
  • the sacrificial layer 122 is made of an epitaxial crystal of In m Al n Ga 1-mn As (0 ⁇ m ⁇ 1, 0 ⁇ n ⁇ 1, 0 ⁇ n + m ⁇ 1).
  • the sacrificial layer 122 may be In m Al n Ga 1-mn As (0 ⁇ m ⁇ 0.2, 0.8 ⁇ n ⁇ 1, 0.8 ⁇ n + m ⁇ 1).
  • the lattice constant of the sacrificial layer 122 is a size between the lattice constant of the base substrate 120 and the lattice constant of the first crystal layer 104.
  • the semiconductor substrate 500 is suitable for manufacturing the photoelectric conversion device 200.
  • the sacrificial layer 122 is removed from the semiconductor substrate 500, so that the photoelectric conversion device 200 does not have the base substrate 120 and the sacrificial layer 122.
  • FIG. 5B shows another embodiment of the semiconductor substrate 500.
  • the semiconductor substrate 500 includes a first back surface field layer 114-1, a first crystal layer 104, a first window layer 112-1, a tunnel junction layer 110-1, and a second back surface formed on the sacrificial layer 122.
  • Surface field layer 114-2, intermediate crystal layer 108, second window layer 112-2, tunnel junction layer 110-2, third back surface field layer 114-3, second crystal layer 106, and third window layer 112-3 may be provided in this order.
  • the third window layer 112-3 has a larger forbidden band width than any of the first crystal layer 104, the intermediate crystal layer 108, and the second crystal layer 106.
  • FIG. 6 and 7 show a cross section during the manufacturing process of the semiconductor substrate 500.
  • a base substrate 120 made of single-crystal gallium arsenide
  • In m Al n Ga 1-mn As (0 ⁇ m ⁇ 0.2, 0.8 ⁇ n ⁇ 1, 0
  • the sacrificial layer 122 with .8 ⁇ n + m ⁇ 1) is epitaxially grown.
  • the first crystal layer 104 of Si x Ge 1-x (0 ⁇ x ⁇ 1) is epitaxially grown on the sacrificial layer 122.
  • an intermediate crystal layer 108 made of a Group 3-5 compound semiconductor having a forbidden band width larger than that of the first crystal layer 104 is epitaxially grown on the first crystal layer 104.
  • a second crystal layer 106 made of a Group 3-5 compound semiconductor having a forbidden band width larger than that of the intermediate crystal layer 108 is epitaxially grown on the intermediate crystal layer 108.
  • the step of epitaxially growing the sacrificial layer 122 and the step of epitaxially growing the first crystal layer 104 are preferably performed in different atmospheres. Further, it is preferable that the step of epitaxially growing the first crystal layer 104, the step of epitaxially growing the intermediate crystal layer 108, and the step of epitaxially growing the second crystal layer 106 are performed in different atmospheres.
  • the sacrificial layer 122 is epitaxially grown.
  • the inside of the reactor in which each layer is epitaxially grown is replaced with one or more gases selected from hydrogen, nitrogen and argon.
  • the pressure in the reaction furnace may be reduced.
  • the step of epitaxially growing the first crystal layer 104, the step of epitaxially growing the intermediate crystal layer 108, and the step of epitaxially growing the second crystal layer 106 may be performed in different reactors. As described above, by performing gas replacement or depressurization in the reactor, or by using different reactors in each process, the film formation process between the SiGe epitaxial growth and the GaAs epitaxial growth is clearly separated. Since contamination of impurities and the like can be suppressed, a crystal film with good crystallinity can be formed.
  • the semiconductor substrate 500 can be formed through the above steps.
  • the tunnel junction layer 110, the window layer 112, and the back surface field layer 114 are formed between the step of epitaxially growing the sacrificial layer 122, the step of epitaxially growing the first crystal layer 104, and the step of epitaxially growing the second crystal layer 106. It is preferable to form.
  • the temporary support 130 is attached to the second crystal layer 106 of the semiconductor substrate 500.
  • the sacrificial layer 122 is removed, and the first crystal layer 104, the second crystal layer 106, the intermediate crystal layer 108, and the base substrate 120 are separated.
  • the support 102 is bonded to the separation surface of the first crystal layer 104 in the first crystal layer 104, the intermediate crystal layer 108, and the second crystal layer 106 separated from the base substrate 120.
  • the photoelectric conversion device 200 can be manufactured. If the temporary support 130 is a transparent support, a photoelectric conversion device in which light is incident through the transparent support can be configured.
  • the removed base substrate can be reused for manufacturing another semiconductor substrate.
  • FIG. 8 shows a cross section of the semiconductor substrate 600.
  • the sacrificial layer 122, the second crystal layer 106, the intermediate crystal layer 108, and the first crystal layer 104 are stacked on the base substrate 120 in this order from the side close to the base substrate 120.
  • the positions of the first crystal layer 104 and the second crystal layer 106 are opposite to those of the semiconductor substrate 500 illustrated in FIG. 5A.
  • the first crystal layer 104, the intermediate crystal layer 108, and the second crystal layer 106 are epitaxial crystal layers corresponding to the semiconductor layers included in the photoelectric conversion device 200, the photoelectric conversion device 300, and the photoelectric conversion device 400.
  • the base substrate 120 is made of, for example, single crystal gallium arsenide.
  • the semiconductor substrate 600 has a sacrificial layer 122 between the second crystal layer 106 and the base substrate 120.
  • the sacrificial layer 122 and the base substrate 120 are lattice matched or pseudo lattice matched.
  • the sacrificial layer 122 is an epitaxial crystal of, for example, In m Al n Ga 1-mn As (0 ⁇ m ⁇ 1, 0 ⁇ n ⁇ 1, 0 ⁇ n + m ⁇ 1).
  • the sacrificial layer 122 may be an epitaxial crystal of In m Al n Ga 1-mn As (0 ⁇ m ⁇ 0.2, 0.8 ⁇ n ⁇ 1, 0.8 ⁇ n + m ⁇ 1).
  • the semiconductor substrate 600 is suitable for manufacturing the photoelectric conversion device 200.
  • FIG. 9 shows a cross-section during the manufacturing process of the semiconductor substrate 600.
  • a base substrate 120 made of single crystal gallium arsenide, In m Al n Ga 1-mn As (0 ⁇ m ⁇ 0.2, 0.8 ⁇ n ⁇ 1, 0.8 ⁇ n + m ⁇ 1).
  • a sacrificial layer 122 made of is epitaxially grown.
  • the second crystal layer 106 made of a Group 3-5 compound semiconductor is epitaxially grown on the sacrificial layer 122.
  • an intermediate crystal layer 108 made of a Group 3-5 compound semiconductor having a forbidden band width smaller than that of the second crystal layer 106 is epitaxially grown on the second crystal layer 106.
  • the first crystal layer 104 made of Si x Ge 1-x (0 ⁇ x ⁇ 1) and having a forbidden band width smaller than that of the intermediate crystal layer 108 is epitaxially grown on the intermediate crystal layer 108.
  • the step of epitaxially growing the sacrificial layer 122, the step of epitaxially growing the second crystal layer 106, the step of epitaxially growing the intermediate crystal layer 108, and the step of epitaxially growing the first crystal layer 104 are performed in different atmospheres. Is preferred.
  • the reaction furnace in which each layer is epitaxially grown is selected from hydrogen, nitrogen, and argon. Replace with the above gas.
  • the pressure in the reaction furnace may be reduced.
  • the step of epitaxially growing the sacrificial layer 122 and the step of epitaxially growing the first crystal layer 104 may be performed in different reactors. As described above, by performing gas replacement or decompression, or by using different reactors in each process, the film formation process of SiGe-based epitaxial growth and GaAs-based epitaxial growth is clearly separated, and impurities such as Since mixing can be suppressed, a crystal film with good crystallinity can be formed.
  • tunnel junction layer 110 the window layer 112, and the back surface field layer 114 are preferably formed.
  • epitaxial growth it is possible to clearly separate the film formation process between SiGe-based epitaxial growth and GaAs-based epitaxial growth, and to suppress the incorporation of impurities and the like, thereby forming a crystal film with good crystallinity. .
  • the plurality of epitaxial crystal layers including the first crystal layer 104, the second crystal layer 106, and the intermediate crystal layer 108 of the semiconductor substrate 600 are supported by one or more materials selected from the group consisting of metals, plastics, and ceramics.
  • the photoelectric conversion device 200 can be manufactured by bonding the body 102, removing the sacrificial layer 122, and separating the plurality of epitaxial crystal layers and the base substrate 120.
  • the ceramic may be glass.
  • another transparent support is bonded to the second crystal layer 106 to constitute a photoelectric conversion device. You can also.
  • a plurality of electrodes electrically coupled to the base substrate 120 and the epitaxial crystal layer can be formed without removing the base substrate 120 from the semiconductor substrate.
  • the base substrate 120 is a semiconductor having p-type or n-type conductivity having the same conductivity type as the epitaxial crystal layer in contact with the base substrate 120, the base substrate 120 is used as a common electrode, and a photoelectric conversion device is used. The area efficiency can be increased.
  • This semiconductor is preferably a low-resistance semiconductor, and specifically has a resistivity of 10 ⁇ 1 ⁇ cm or less.
  • the support 102 made of one or more materials selected from the group consisting of metals, plastics, and ceramics is bonded to the epitaxial crystal layer or the base substrate 120
  • the epitaxial crystal layer is preliminarily bonded to the bonding surface of the epitaxial crystal layer.
  • An electrode electrically coupled to the layer or base substrate 120 may be formed in advance.
  • a wiring that can be electrically coupled to the epitaxial crystal layer or the electrode that is electrically coupled to the base substrate 120 may be formed in advance on the bonding surface. Good.
  • photoelectric conversion device 102 support, 104 first crystal layer, 106 second crystal layer, 108 intermediate crystal layer, 110 tunnel junction layer, 112 window layer, 114 back surface field layer, 120 base substrate, 122 sacrificial layer, 130 Temporary support, 200 photoelectric conversion device, 300 photoelectric conversion device, 400 photoelectric conversion device, 500 semiconductor substrate, 600 semiconductor substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 ベース基板と、ベース基板と格子整合又は擬格子整合している犠牲層と、犠牲層上に形成されたSiGe1-x(0≦x<1)のエピタキシャル結晶からなる第1結晶層と、第1結晶層上に形成された、第1結晶層よりも禁制帯幅が大きい3-5族化合物半導体のエピタキシャル結晶からなる第2結晶層とを備える半導体基板を提供する。ベース基板は、例えば単結晶GaAsからなる。犠牲層は、例えばInAlGa1-m-nAs(0≦m<1、0<n≦1、0<n+m≦1)のエピタキシャル結晶からなる。

Description

半導体基板、半導体基板の製造方法及び光電変換装置の製造方法
 本発明は、半導体基板、半導体基板の製造方法及び光電変換装置の製造方法に関する。
 非特許文献1には、化合物半導体太陽電池が記載されている。当該文献には、3接合構造でバンドギャップの組み合わせが最適と考えられるものとして、InGaP/GaAs/InGaAs(1eV)構造セルが開示されている。
 非特許文献1 平成18年度~平成19年度成果報告書、新エネルギー技術開発 太陽光発電システム未来技術研究開発 超高効率多接合型太陽電池の研究開発、独立行政法人新エネルギー・産業技術総合開発機構、平成20年3月
 多接合型太陽電池においては、多接合型太陽電池の各層を構成する材料のバンドギャップの相違を最適化して、光-電気変換効率の向上を目指している。しかし、より高い変換効率を達成するには、長波長側での光吸収係数に優れた材料を用いる必要があり、かつ、当該材料の製造が容易であることが好ましい。さらに、多接合型太陽電池の各層は良質な結晶であることが好ましい。
 上記課題を解決するために、本発明の第1の態様においては、ベース基板と、ベース基板と格子整合又は擬格子整合している犠牲層と、犠牲層上に形成されたSiGe1-x(0≦x<1)のエピタキシャル結晶からなる第1結晶層と、第1結晶層上に形成された、第1結晶層よりも禁制帯幅が大きい3-5族化合物半導体のエピタキシャル結晶からなる第2結晶層とを備える半導体基板を提供する。ベース基板は、例えば単結晶GaAsからなる。
 犠牲層は、例えばInAlGa1-m-nAs(0≦m<0.2、0.8≦n≦1、0.8<n+m≦1)のエピタキシャル結晶またはIn0.5Al0.5Pからなる。犠牲層は、AlGa1-nAs(0.8≦n≦1)またはIn0.48Al0.52Pからなることが好ましい。
 半導体基板は、第1結晶層と第2結晶層との間に形成された3-5族化合物半導体のエピタキシャル結晶からなる中間結晶層をさらに備えてもよい。中間結晶層は、例えば、第1結晶層より禁制帯幅が大きく、第2結晶層より禁制帯幅が小さい。中間結晶層は、例えばInGa1-yAs1-z(0≦y<1、0<z≦1)であり、第2結晶層は、例えばAlInGa1-w-tAsz'1-z'(0≦w≦1、0≦t≦1、0≦w+t≦1、0≦z'≦1)である。
 当該半導体基板は、犠牲層上に、第1のバックサーフェイスフィールド層、第1結晶層、第1のウィンドウ層、第1のトンネル接合層、第2バックサーフェイスフィールド層、中間結晶層、第2のウィンドウ層、第2のトンネル接合層、第3のバックサーフェイスフィールド層、第2結晶層、及び第3のウィンドウ層をこの順に備え、第1のバックサーフェイスフィールド層、第2のバックサーフェイスフィールド層、第3のバックサーフェイスフィールド層、第1のウィンドウ層、第2のウィンドウ層、及び、第3のウィンドウ層が、第1結晶層、中間結晶層及び第2結晶層のいずれの層よりも禁制帯幅が大きくてもよい。
 本発明の第2の態様においては、ベース基板上に、ベース基板と格子整合又は擬格子整合する犠牲層を形成する工程と、当該犠牲層上に、SiGe1-x(0≦x<1)からなる第1結晶層をエピタキシャル成長させる工程と、当該第1結晶層上に、3-5族化合物半導体からなる中間結晶層をエピタキシャル成長させる工程と、当該中間結晶層上に、第1結晶層より禁制帯幅が大きい3-5族化合物半導体からなる第2結晶層をエピタキシャル成長させる工程とを備える半導体基板の製造方法を提供する。
 ベース基板は、例えば単結晶GaAsからなる。犠牲層をエピタキシャル成長させる工程においては、InAlGa1-m-nAs(0≦m<0.2、0.8≦n≦1、0.8<n+m≦1)からなるエピタキシャル結晶層をエピタキシャル成長させる。
 中間結晶層は、第1結晶層より禁制帯幅が大きく、第2結晶層より禁制帯幅が小さい。第1結晶層と中間結晶層との間、及び、中間結晶層と第2結晶層との間の各々にトンネル接合層をさらに形成することが好ましい。中間結晶層は、例えばInGa1-yAs1-z(0≦y<1、0<z≦1)であり、第2結晶層は、例えばAlInGa1-w-tAsz'1-z'(0≦w≦1、0≦t≦1、0≦w+t≦1、0≦z'≦1)である。
 当該半導体基板の製造方法は、犠牲層上に第1のバックサーフェイスフィールド層を形成する工程と、当該第1のバックサーフェイスフィールド層上に第1結晶層を形成する工程と、当該第1結晶層上に第1のウィンドウ層を形成する工程と、当該第1のウィンドウ層上に第1のトンネル接合層を形成する工程と、当該第1のトンネル接合層上に第2バックサーフェイスフィールド層を形成する工程と、第2バックサーフェイスフィールド層上に中間結晶層を形成する工程と、当該中間結晶層上に第2のウィンドウ層を形成する工程と、当該第2のウィンドウ層上に第2のトンネル接合層を形成する工程と、当該第2のトンネル接合層上に第3のバックサーフェイスフィールド層を形成する工程と、当該第3のバックサーフェイスフィールド層上に前記第2結晶層を形成する工程と、当該第2結晶層上に第3のウィンドウ層を形成する工程とを備え、第1のバックサーフェイスフィールド層、第2のバックサーフェイスフィールド層、第3のバックサーフェイスフィールド層、第1のウィンドウ層、第2のウィンドウ層、及び、第3のウィンドウ層が、第1結晶層、中間結晶層及び第2結晶層のいずれの層よりも禁制帯幅が大きくてもよい。
 当該半導体基板の製造方法においては、犠牲層をエピタキシャル成長させる工程と第1結晶層をエピタキシャル成長させる工程とを、それぞれ異なる雰囲気内で実施し、かつ、第1結晶層をエピタキシャル成長させる工程と中間結晶層をエピタキシャル成長させる工程とを、それぞれ異なる雰囲気内で実施してもよい。例えば、当該半導体基板の製造方法は、犠牲層をエピタキシャル成長させる工程と第1結晶層をエピタキシャル成長させる工程との間、及び、第1結晶層をエピタキシャル成長させる工程と中間結晶層をエピタキシャル成長させる工程との間において、それぞれの工程を実施する反応炉内を、水素、窒素及びアルゴンから選択された1以上のガスで置換する工程、又は、反応炉内を減圧する工程をさらに備える。
 当該半導体基板の製造方法においては、第1結晶層をエピタキシャル成長させる工程と、中間結晶層をエピタキシャル成長させる工程及び第2結晶層をエピタキシャル成長させる工程とを、それぞれ異なる反応炉で実施してもよい。
 本発明の第3の態様においては、ベース基板上に、ベース基板と格子整合又は擬格子整合する犠牲層を形成する工程と、犠牲層上に、当該犠牲層より禁制帯幅が大きい3-5族化合物半導体からなる第2結晶層をエピタキシャル成長させる工程と、当該第2結晶層上に、3-5族化合物半導体からなる中間結晶層をエピタキシャル成長させる工程と、当該中間結晶層上に、SiGe1-x(0≦x<1)からなる第1結晶層をエピタキシャル成長させる工程とを備える半導体基板の製造方法を提供する。
 本発明の第4の態様においては、第1の態様に係る半導体基板を準備する工程と、第2結晶層に第1の支持体を取り付ける工程と、犠牲層を除去して、第1結晶層をベース基板から分離する工程とを備える光電変換装置の製造方法を提供する。当該製造方法は、ベース基板から分離した第1結晶層の分離面に、金属、プラスチック及びセラミックのいずれかの材料からなる第2の支持体を接着させる工程と、第1の支持体を取り外す工程と、をさらに備えてもよい。第1の支持体が透明であり、当該製造方法は、ベース基板から分離した第1結晶層の分離面に、金属、プラスチック及びセラミックのいずれかの材料からなる第2の支持体を接着させる工程をさらに備えてもよい。分離されたベース基板は、第1の態様に係る半導体基板の製造に再利用してよい。
 本発明の第5の態様においては、請求項1に記載の半導体基板を準備し、ベース基板及び第2結晶層に電気的に結合される複数の電極を形成する工程を有し、ベース基板が、p型又はn型の伝導型を有する半導体である光電変換装置の製造方法を提供する。
光電変換装置100の断面を示す。 光電変換装置200の断面を示す。 光電変換装置300の断面を示す。 光電変換装置400の断面を示す。 半導体基板500の断面を示す。 半導体基板500の断面を示す。 光電変換装置200の製造工程途中の断面を示す。 光電変換装置200の製造工程途中の断面を示す。 半導体基板600の断面を示す。 光電変換装置200の製造工程途中の断面を示す。
 以下、発明の実施の形態を通じて本発明を説明する。図1は、光電変換装置100の断面を示す。光電変換装置100は、支持体102、第1結晶層104及び第2結晶層106を有する。第2結晶層106及び第1結晶層104は、光の入射方向に沿ってこの順に配置されている。第1結晶層104は、光が入射する側から最も離れた領域に形成されたボトム層である。第2結晶層106は、光が最初に届くトップ層である。光電変換装置100は、第2結晶層106と第1結晶層104との間に他の層を備えてもよい。
 第1結晶層104は、光を吸収して起電力を発生する。第1結晶層104は、SiGe1-x(0≦x<1)のエピタキシャル結晶層であり、好ましくはSiGe1-x(0<x<0.2)のエピタキシャル結晶層である。第1結晶層104は、単結晶ガリウム砒素(GaAs)に格子整合または擬格子整合することが好ましい。第1結晶層104は、p型SiGe1-xのエピタキシャル結晶層とn型SiGe1-xのエピタキシャル結晶層との積層を含むことが好ましい。なお、第2結晶層106、及び、本明細書における他のエピタキシャル結晶層も単結晶ガリウム砒素に格子整合または擬格子整合することが好ましい。
 第2結晶層106は、光を吸収して起電力を発生する。第2結晶層106は、第1結晶層104より禁制帯幅が大きい3-5族化合物半導体からなるエピタキシャル結晶層である。第2結晶層106として、AlInGa1-w-tAsz'1-z'(0≦w≦1、0≦t≦1、0≦w+t≦1、0≦z'≦1)が挙げられる。第2結晶層106として、In0.5Ga0.5Pが好ましく、In0.48Ga0.52Pがさらに好ましい。第2結晶層106は、p型AlInGa1-w-tAsz'1-z'のエピタキシャル結晶層とn型AlInGa1-w-tAsz'1-z' のエピタキシャル結晶層との積層を含むことが好ましい。
 光電変換装置100においては、ボトム層の第1結晶層104が、トップ層の第2結晶層106よりも禁制帯幅が小さいSiGe1-x(0≦x<1)のエピタキシャル結晶層なので、第2結晶層106で吸収できなかった長波長域の光を吸収して、光電変換装置100の変換効率を向上できる。また、SiGe1-x(0≦x<1)は3-5族化合物半導体と格子整合あるいは擬格子整合できるので、3-5族化合物半導体からなる第2結晶層106の結晶性が向上するので、光電変換装置100の変換効率が向上する。
 なお、第1結晶層104及び第2結晶層106は、支持体102に支持される。支持体102として、金属、プラスチック及びセラミックからなる群から選択された1以上の材料が挙げられる。金属として、アルミニウム、銅、ステンレス鋼が挙げられる。プラスチックとしては、ポリイミド、液晶ポリマー、シクロオレフィンポリマー、ポリカーボネート、アクリル樹脂、ポリオレフィン類が挙げられる。セラミックとして、多結晶アルミナ焼結体、多結晶窒化アルミニウム焼結体、多結晶炭化シリコン焼結体、多結晶シリカ等が挙げられる。セラミックは、結晶体ではなくガラス(非晶質体)を用いてもよい。
 図2は、光電変換装置200の断面を示す。光電変換装置200は、光電変換装置100の構成に中間結晶層108を付加したものである。中間結晶層108は、第1結晶層104と第2結晶層106との間に形成されている。中間結晶層108は、光を吸収して起電力を発生する。中間結晶層108は、3-5族化合物半導体からなるエピタキシャル結晶層である。中間結晶層108は、第1結晶層104より禁制帯幅が大きく、第2結晶層106より禁制帯幅が小さい。中間結晶層108は、例えばInGa1-yAs1-z(0≦y<1、0<z≦1)である。中間結晶層108は好ましくはInGa1-yAs(0≦y<0.1)であり、より好ましくはGaAsを用いることができる。中間結晶層108は、p型InGa1-yAs1-zのエピタキシャル結晶層とn型InGa1-yAs1-zのエピタキシャル結晶層との積層を含むことが好ましい。
 光電変換装置200が中間結晶層108を有することにより、第2結晶層106で吸収されない光が中間結晶層108で吸収され、また中間結晶層108で吸収されない光は第1結晶層104で吸収されるので、光電変換装置200の変換効率は、光電変換装置100の変換効率よりも向上する。
 図3は、光電変換装置300の断面を示す。光電変換装置300は、光電変換装置200の構成にトンネル接合層110を付加したものである。トンネル接合層110は、第1結晶層104と中間結晶層108との間及び中間結晶層108と第2結晶層106との間の各々に配置される。トンネル接合層110により、第1結晶層104、中間結晶層108及び第2結晶層106のそれぞれの間の接合界面での接続が良好になる。
 トンネル接合層110として、ドナー不純物を高濃度にドープしたN層と、アクセプター不純物を高濃度にドープしたP層とを組み合わせたPN接合層が挙げられる。N層として、ドナー不純物の濃度が5×1018/cm以上のInGa1-yAs1-z(0≦y<1、0<z≦1)層またはAlInGa1-w-tAsz'1-z'(0≦w≦1、0≦t≦1、0≦w+t≦1、0≦z'≦1)層が挙げられる。P層として、アクセプター不純物の濃度が5×1018/cm以上のInGa1-yAs1-z(0≦y<1、0<z≦1)層またはAlInGa1-w-tAsz'1-z'(0≦w≦1、0≦t≦1、0≦w+t≦1、0≦z'≦1)層が挙げられる。
 ドナー不純物は、例えばSi、S、Se、Teである。アクセプター不純物は、例えばC、Be、Mg,Znである。N層及びP層の厚さは、いずれも好ましくは50nm以下、より好ましくは30nm以下である。N層及びP層は、いずれも第1結晶層104、中間結晶層108または第2結晶層106と格子整合または擬格子整合していることが好ましい。
 第1結晶層104に接するトンネル接合層110は、上記のPN接合層の他、ドナー不純物を高濃度(5×1018/cm以上)にドープしたN型SiGe1-x(0≦x<1)層と、アクセプター不純物を高濃度(5×1018/cm以上)にドープしたP型SiGe1-x(0≦x<1)層とを組み合わせたPN接合層であってもよい。この場合、ドナー不純物は、P、AsまたはSbであってよい。アクセプター不純物は、B、AlまたはGaであってよい。
 N型SiGe1-x層及びP型SiGe1-x層の厚さは、いずれも好ましくは50nm以下、より好ましくは30nm以下である。N型SiGe1-x層及びP型SiGe1-x層は、いずれも第1結晶層104または中間結晶層108と格子整合または擬格子整合していることが好ましい。
 図4は、光電変換装置400の断面を示す。光電変換装置400は、複数のウィンドウ層112及び複数のバックサーフェイスフィールド層114が付加されている点で光電変換装置300と異なる。具体的には、光電変換装置400は、支持体102上に、バックサーフェイスフィールド層114-1、第1結晶層104、ウィンドウ層112-1、トンネル接合層110-1、バックサーフェイスフィールド層114-2、中間結晶層108、ウィンドウ層112-2、トンネル接合層110-2、バックサーフェイスフィールド層114-3、第2結晶層106、及びウィンドウ層112-3をこの順に備える。
 複数のウィンドウ層112及び複数のバックサーフェイスフィールド層114の各々は、第1結晶層104、中間結晶層108及び第2結晶層106の何れの層よりも禁制帯幅が大きい。したがって、第1結晶層104、中間結晶層108及び第2結晶層106で生成された光キャリアが、第1結晶層104、中間結晶層108及び第2結晶層106の外に放出されることが抑制されるので、ウィンドウ層112及びバックサーフェイスフィールド層114により、光キャリアを効果的に取り出すことができる。
 ウィンドウ層112として、InGa1-yAs1-z(0≦y<1、0<z≦1)層、またはAlInGa1-w-tAsz'1-z'(0≦w≦1、0≦t≦1、0≦w+t≦1、0≦z'≦1)層が挙げられる。第1結晶層104に接するウィンドウ層112として、SiGe1-x(0≦x<1)層を用いることもできる。
 バックサーフェイスフィールド層114として、InGa1-yAs1-z(0≦y<1、0<z≦1)層、またはAlInGa1-w-tAsz'1-z'(0≦w≦1、0≦t≦1、0≦w+t≦1、0≦z'≦1)層が挙げられる。第1結晶層104に接するバックサーフェイスフィールド層114として、SiGe1-x(0≦x<1)層を用いることもできる。
 ウィンドウ層112及びバックサーフェイスフィールド層114の厚さは、いずれも好ましくは50nm以下、より好ましくは30nm以下である。ウィンドウ層112及びバックサーフェイスフィールド層114は、各々が接する第1結晶層104、中間結晶層108または第2結晶層106と同一導電型にドープされており、その濃度はP型、N型いずれの場合も好ましくは1×1018/cm以上であり、より好ましくは3×1018/cm以上である。
 図5Aは、半導体基板500の断面を示す。半導体基板500は、図1から図4における支持体102に代えて、ベース基板120上に、第1結晶層104、中間結晶層108及び第2結晶層106が、ベース基板120に近い側からこの順で積層されている。第1結晶層104、中間結晶層108及び第2結晶層106は、光電変換装置200、光電変換装置300、光電変換装置400に含まれる第1結晶層104、中間結晶層108及び第2結晶層106に対応する。
 ベース基板120は、単結晶ガリウム砒素からなる。また、半導体基板500は、第1結晶層104とベース基板120との間に犠牲層122を有する。犠牲層122とベース基板120とは、格子整合または擬格子整合している。犠牲層122は、InAlGa1-m-nAs(0≦m<1、0<n≦1、0<n+m≦1)のエピタキシャル結晶からなる。犠牲層122は、InAlGa1-m-nAs(0≦m<0.2、0.8≦n≦1、0.8<n+m≦1)であってもよい。一例として、犠牲層122の格子定数は、ベース基板120の格子定数と第1結晶層104の格子定数の間の大きさである。
 半導体基板500は、光電変換装置200の製造に適している。光電変換装置200を製造する場合には、半導体基板500から犠牲層122を除去することにより、光電変換装置200は、ベース基板120及び犠牲層122を有しない。
 図5Bは、半導体基板500の他の実施形態を示す。半導体基板500は、犠牲層122上に形成された、第1のバックサーフェイスフィールド層114-1、第1結晶層104、第1のウィンドウ層112-1、トンネル接合層110-1、第2バックサーフェイスフィールド層114-2、中間結晶層108、第2のウィンドウ層112-2、トンネル接合層110-2、第3のバックサーフェイスフィールド層114-3、第2結晶層106及び第3のウィンドウ層112-3をこの順に備えてもよい。第1のバックサーフェイスフィールド層114-1、第2のバックサーフェイスフィールド層114-2、第3のバックサーフェイスフィールド層114-3、第1のウィンドウ層112-1、第2のウィンドウ層112-2、及び、第3のウィンドウ層112-3は、例えば、第1結晶層104、中間結晶層108及び第2結晶層106のいずれの層よりも禁制帯幅が大きい。
 図6及び図7は、半導体基板500の製造工程途中の断面を示す。まず、図6に示すように、単結晶ガリウム砒素からなるベース基板120上に、InAlGa1-m-nAs(0≦m<0.2、0.8≦n≦1、0.8<n+m≦1)である犠牲層122をエピタキシャル成長させる。次に、犠牲層122上に、SiGe1-x(0≦x<1)である第1結晶層104をエピタキシャル成長させる。続いて、第1結晶層104上に、第1結晶層104よりも禁制帯幅が大きい3-5族化合物半導体からなる中間結晶層108をエピタキシャル成長させる。さらに、中間結晶層108上に、中間結晶層108よりも禁制帯幅が大きい3-5族化合物半導体からなる第2結晶層106をエピタキシャル成長させる。
 犠牲層122をエピタキシャル成長させる工程と第1結晶層104をエピタキシャル成長させる工程とを、それぞれ異なる雰囲気内で実施することが好ましい。また、第1結晶層104をエピタキシャル成長させる工程と中間結晶層108をエピタキシャル成長させる工程及び第2結晶層106をエピタキシャル成長させる工程とを、それぞれ異なる雰囲気内で実施することが好ましい。
 例えば、犠牲層122をエピタキシャル成長させる工程の後であって、第1結晶層104をエピタキシャル成長させる工程の前、及び、第1結晶層104をエピタキシャル成長させる工程の後であって、犠牲層122をエピタキシャル成長させる工程の前において、それぞれの層をエピタキシャル成長させる反応炉内を、水素、窒素及びアルゴンから選択された1以上のガスで置換する。反応炉内の圧力を低減させてもよい。
 第1結晶層104をエピタキシャル成長させる工程と、中間結晶層108をエピタキシャル成長させる工程及び第2結晶層106をエピタキシャル成長させる工程とを異なる反応炉で実施してもよい。以上のように、反応炉内のガス置換または減圧を行ったり、それぞれの工程で異なる反応炉を用いたりすることにより、SiGe系のエピタキシャル成長とGaAs系のエピタキシャル成長との成膜プロセスを明確に区切って、不純物等の混入を抑制することができるので、結晶性の良い結晶膜を形成することができる。
 以上の工程を経て半導体基板500を形成することができる。なお、犠牲層122をエピタキシャル成長させる工程、第1結晶層104をエピタキシャル成長させる工程及び第2結晶層106をエピタキシャル成長させる工程のそれぞれの間において、トンネル接合層110、ウィンドウ層112及びバックサーフェイスフィールド層114を形成することが好ましい。
 続いて、半導体基板500の第2結晶層106に仮支持体130を取り付ける。そして図7に示すように、犠牲層122を除去して、第1結晶層104、第2結晶層106及び中間結晶層108とベース基板120とを分離する。ベース基板120から分離した第1結晶層104、中間結晶層108及び第2結晶層106における第1結晶層104の分離面に、支持体102を接着する。その後に仮支持体130を取り外すことにより、光電変換装置200を製造することができる。なお、仮支持体130を透明支持体にすれば、透明支持体を通して光が入射される光電変換装置を構成することができる。取り外したベース基板は、別の半導体基板の製造に再利用できる。
 図8は、半導体基板600の断面を示す。半導体基板600は、ベース基板120上に、犠牲層122、第2結晶層106、中間結晶層108及び第1結晶層104がベース基板120に近い側からこの順で積層されている。半導体基板600は、図5Aに示した半導体基板500に対して、第1結晶層104及び第2結晶層106の位置が逆になっている。第1結晶層104、中間結晶層108及び第2結晶層106は、光電変換装置200、光電変換装置300、光電変換装置400に含まれる半導体層に対応するエピタキシャル結晶層である。
 ベース基板120は、例えば単結晶ガリウム砒素からなる。半導体基板600は、第2結晶層106とベース基板120との間に犠牲層122を有する。犠牲層122とベース基板120とは、格子整合または擬格子整合している。犠牲層122は、例えばInAlGa1-m-nAs(0≦m<1、0<n≦1、0<n+m≦1)のエピタキシャル結晶である。犠牲層122は、InAlGa1-m-nAs(0≦m<0.2、0.8≦n≦1、0.8<n+m≦1)のエピタキシャル結晶であってもよい。半導体基板600は、光電変換装置200の製造に適している。
 図9は、半導体基板600の製造工程途中の断面を示す。まず、単結晶ガリウム砒素からなるベース基板120上に、InAlGa1-m-nAs(0≦m<0.2、0.8≦n≦1、0.8<n+m≦1)からなる犠牲層122をエピタキシャル成長させる。次に、犠牲層122上に、3-5族化合物半導体からなる第2結晶層106をエピタキシャル成長させる。続いて、第2結晶層106上に、第2結晶層106よりも禁制帯幅が小さい3-5族化合物半導体からなる中間結晶層108をエピタキシャル成長させる。さらに、中間結晶層108上に、SiGe1-x(0≦x<1)からなり、中間結晶層108よりも禁制帯幅が小さい第1結晶層104をエピタキシャル成長させる。
 ここで犠牲層122をエピタキシャル成長させる工程、第2結晶層106をエピタキシャル成長させる工程及び中間結晶層108をエピタキシャル成長させる工程と、第1結晶層104をエピタキシャル成長させる工程とを、それぞれ異なる雰囲気内で実施することが好ましい。
 例えば、中間結晶層108をエピタキシャル成長させる工程の後であって、第1結晶層104をエピタキシャル成長させる工程の前において、それぞれの層をエピタキシャル成長させる反応炉内を、水素、窒素及びアルゴンから選択された1以上のガスで置換する。反応炉内の圧力を低減させてもよい。
 犠牲層122をエピタキシャル成長させる工程と、第1結晶層104をエピタキシャル成長させる工程とを異なる反応炉で実施してもよい。以上のように、ガス置換または減圧を行ったり、それぞれの工程で異なる反応炉を用いたりすることにより、SiGe系のエピタキシャル成長とGaAs系のエピタキシャル成長との成膜プロセスを明確に区切って、不純物等の混入を抑制することができるので、結晶性の良い結晶膜を形成することができる。
 なお、トンネル接合層110、ウィンドウ層112及びバックサーフェイスフィールド層114を形成することが好ましい。このような異なる反応炉でのエピタキシャルの実施により、SiGe系のエピタキシャル成長とGaAs系のエピタキシャル成長との成膜プロセスを明確に区切って、不純物等の混入を抑制し、結晶性の良い結晶膜が形成できる。
 さらに、半導体基板600の第1結晶層104、第2結晶層106及び中間結晶層108を含む複数のエピタキシャル結晶層に、金属、プラスチック及びセラミックからなる群から選択された1以上の材料からなる支持体102を接着させ、犠牲層122を除去して、複数のエピタキシャル結晶層とベース基板120とを分離すれば、光電変換装置200が製造できる。当該セラミックはガラスであってもよい。また、犠牲層122を除去して、複数のエピタキシャル結晶層とベース基板120とを分離したあとで、第2結晶層106に透明の別の支持体を接着することにより、光電変換装置を構成することもできる。
 なお、ベース基板120を半導体基板から取り外さずに、ベース基板120及びエピタキシャル結晶層に電気的に結合される複数の電極を形成することができる。ここで、ベース基板120を、ベース基板120が接するエピタキシャル結晶層と同一伝導型を有するp型またはn型の伝導型を有する半導体とすれば、ベース基板120を共通電極に用いて、光電変換装置の面積効率を高めることができる。この半導体は、低抵抗半導体であることが好ましく、具体的には抵抗率が10-1Ωcm以下あることが好ましい。
 当該エピタキシャル結晶層またはベース基板120に、金属、プラスチック及びセラミックからなる群から選択された1以上の材料からなる支持体102を接着させるに際しては、当該エピタキシャル結晶層の接着面に予め、当該エピタキシャル結晶層またはベース基板120に電気的に結合される電極を予め形成しておいてもよい。支持体102が絶縁性材料である場合には、その接着面に予め、当該エピタキシャル結晶層またはベース基板120に電気的に結合される電極と電気的に結合可能な配線を形成しておいてもよい。
 請求の範囲、明細書、及び図面中において示した装置及び方法における動作、手順、及び工程等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 100 光電変換装置、102 支持体、104 第1結晶層、106 第2結晶層、108 中間結晶層、110 トンネル接合層、112 ウィンドウ層、114 バックサーフェイスフィールド層、120 ベース基板、122 犠牲層、130 仮支持体、200 光電変換装置、300 光電変換装置、400 光電変換装置、500 半導体基板、600 半導体基板

Claims (25)

  1.  ベース基板と、
     前記ベース基板と格子整合又は擬格子整合している犠牲層と、
     前記犠牲層上に形成されたSiGe1-x(0≦x<1)のエピタキシャル結晶からなる第1結晶層と、
     前記第1結晶層上に形成され、前記第1結晶層よりも禁制帯幅が大きい3-5族化合物半導体のエピタキシャル結晶からなる第2結晶層と
     を備える半導体基板。
  2.  前記ベース基板が単結晶GaAsからなる請求項1に記載の半導体基板。
  3.  前記犠牲層が、InAlGa1-m-nAs(0≦m<0.2、0.8≦n≦1、0.8<n+m≦1)のエピタキシャル結晶からなる
     請求項2に記載の半導体基板。
  4.  前記第1結晶層と前記第2結晶層との間に形成され、3-5族化合物半導体のエピタキシャル結晶からなる中間結晶層をさらに備える請求項1に記載の半導体基板。
  5.  前記中間結晶層が、前記第1結晶層より禁制帯幅が大きく、前記第2結晶層より禁制帯幅が小さい
     請求項4に記載の半導体基板。
  6.  前記第1結晶層と前記中間結晶層との間、及び、前記中間結晶層と前記第2結晶層との間の各々に形成されたトンネル接合層をさらに有する
     請求項4に記載の半導体基板。
  7.  前記中間結晶層が、InGa1-yAs1-z(0≦y<1、0<z≦1)であり、
     前記第2結晶層が、AlInGa1-w-tAsz'1-z'(0≦w≦1、0≦t≦1、0≦w+t≦1、0≦z'≦1)である
     請求項4に記載の半導体基板。
  8.  前記中間結晶層が、GaAsであり、
     前記第2結晶層が、In0.5Ga0.5Pである
     請求項4に記載の半導体基板。
  9.  前記犠牲層上に、第1のバックサーフェイスフィールド層、前記第1結晶層、第1のウィンドウ層、第1のトンネル接合層、第2のバックサーフェイスフィールド層、前記中間結晶層、第2のウィンドウ層、第2のトンネル接合層、第3のバックサーフェイスフィールド層、前記第2結晶層、及び第3のウィンドウ層をこの順に備え、
     前記第1のバックサーフェイスフィールド層、前記第2のバックサーフェイスフィールド層、前記第3のバックサーフェイスフィールド層、前記第1のウィンドウ層、前記第2のウィンドウ層、及び、前記第3のウィンドウ層が、前記第1結晶層、前記中間結晶層及び前記第2結晶層のいずれの層よりも禁制帯幅が大きい請求項4に記載の半導体基板。
  10.  ベース基板上に、前記ベース基板と格子整合又は擬格子整合する犠牲層を形成する工程と、
     前記犠牲層上に、SiGe1-x(0≦x<1)からなる第1結晶層をエピタキシャル成長させる工程と、
     前記第1結晶層上に、3-5族化合物半導体からなる中間結晶層をエピタキシャル成長させる工程と、
     前記中間結晶層上に、前記第1結晶層より禁制帯幅が大きい3-5族化合物半導体からなる第2結晶層をエピタキシャル成長させる工程と
     を備える半導体基板の製造方法。
  11.  ベース基板上に、前記ベース基板と格子整合又は擬格子整合する犠牲層を形成する工程と、
     前記犠牲層上に、前記犠牲層より禁制帯幅が大きい3-5族化合物半導体からなる第2結晶層をエピタキシャル成長させる工程と、
     前記第2結晶層上に、3-5族化合物半導体からなる中間結晶層をエピタキシャル成長させる工程と、
     前記中間結晶層上に、SiGe1-x(0≦x<1)からなる第1結晶層をエピタキシャル成長させる工程と
     を備える半導体基板の製造方法。
  12.  前記ベース基板が単結晶GaAsからなる請求項10に記載の半導体基板の製造方法。
  13.  前記犠牲層をエピタキシャル成長させる工程において、InAlGa1-m-nAs(0≦m<1、0<n≦1、0<n+m≦1)からなるエピタキシャル結晶層をエピタキシャル成長させる
     請求項10に記載の半導体基板の製造方法。
  14.  前記犠牲層をエピタキシャル成長させる工程において、InAlGa1-m-nAs(0≦m<0.2、0.8≦n≦1、0.8<n+m≦1)からなるエピタキシャル結晶層をエピタキシャル成長させる
     請求項13に記載の半導体基板の製造方法。
  15.  前記中間結晶層が、前記第1結晶層より禁制帯幅が大きく、前記第2結晶層より禁制帯幅が小さい
     請求項10に記載の半導体基板の製造方法。
  16.  前記第1結晶層と前記中間結晶層との間、及び、前記中間結晶層と前記第2結晶層との間の各々にトンネル接合層をさらに形成する
     請求項15に記載の半導体基板の製造方法。
  17.  前記中間結晶層が、InGa1-yAs1-z(0≦y<1、0<z≦1)であり、
     前記第2結晶層が、AlInGa1-w-tAsz'1-z'(0≦w≦1、0≦t≦1、0≦w+t≦1、0≦z'≦1)である
     請求項15に記載の半導体基板の製造方法。
  18.  前記犠牲層上に第1のバックサーフェイスフィールド層を形成する工程と、
     前記第1のバックサーフェイスフィールド層上に前記第1結晶層を形成する工程と、
     前記第1結晶層上に第1のウィンドウ層を形成する工程と、
     前記第1のウィンドウ層上に第1のトンネル接合層を形成する工程と、
     前記第1のトンネル接合層上に第2のバックサーフェイスフィールド層を形成する工程と、
     前記第2のバックサーフェイスフィールド層上に前記中間結晶層を形成する工程と、
     前記中間結晶層上に第2のウィンドウ層を形成する工程と、
     前記第2のウィンドウ層上に第2のトンネル接合層を形成する工程と、
     前記第2のトンネル接合層上に第3のバックサーフェイスフィールド層を形成する工程と、
     前記第3のバックサーフェイスフィールド層上に前記第2結晶層を形成する工程と、
     前記第2結晶層上に第3のウィンドウ層を形成する工程と
     を備え、
     前記第1のバックサーフェイスフィールド層、前記第2のバックサーフェイスフィールド層、前記第3のバックサーフェイスフィールド層、前記第1のウィンドウ層、前記第2のウィンドウ層、及び、前記第3のウィンドウ層が、前記第1結晶層、前記中間結晶層及び前記第2結晶層のいずれの層よりも禁制帯幅が大きい請求項15に記載の半導体基板の製造方法。
  19.  前記犠牲層をエピタキシャル成長させる工程と前記第1結晶層をエピタキシャル成長させる工程とを、それぞれ異なる雰囲気内で実施し、かつ、
     前記第1結晶層をエピタキシャル成長させる工程と前記中間結晶層をエピタキシャル成長させる工程とを、それぞれ異なる雰囲気内で実施する
     請求項10に記載の半導体基板の製造方法。
  20.  前記犠牲層をエピタキシャル成長させる工程と前記第1結晶層をエピタキシャル成長させる工程との間、及び、前記第1結晶層をエピタキシャル成長させる工程と前記中間結晶層をエピタキシャル成長させる工程との間において、それぞれの工程を実施する反応炉内を、水素、窒素及びアルゴンから選択された1以上のガスで置換する工程、又は、反応炉内を減圧する工程をさらに備える
     請求項19に記載の半導体基板の製造方法。
  21.  前記第1結晶層をエピタキシャル成長させる工程と、前記中間結晶層をエピタキシャル成長させる工程及び前記第2結晶層をエピタキシャル成長させる工程とを、それぞれ異なる反応炉で実施する
     請求項19に記載の半導体基板の製造方法。
  22.  請求項1に記載の半導体基板を準備する工程と、
     前記第2結晶層に第1の支持体を取り付ける工程と、
     前記犠牲層を除去して、前記第1結晶層を前記ベース基板から分離する工程と
     を備える光電変換装置の製造方法。
  23.  前記ベース基板から分離した前記第1結晶層の分離面に、金属、プラスチック及びセラミックのいずれかの材料からなる第2の支持体を接着させる工程と、
     前記第1の支持体を取り外す工程と、
     をさらに備える請求項22に記載の光電変換装置の製造方法。
  24.  前記第1の支持体が透明であり、
     前記ベース基板から分離した前記第1結晶層の分離面に、金属、プラスチック及びセラミックのいずれかの材料からなる第2の支持体を接着させる工程をさらに備える請求項22に記載の光電変換装置の製造方法。
  25.  請求項1に記載の半導体基板を準備し、前記ベース基板及び前記第2結晶層に電気的に結合される複数の電極を形成する工程を有し、
     前記ベース基板が、p型又はn型の伝導型を有する半導体である
     光電変換装置の製造方法。
PCT/JP2010/007467 2009-12-25 2010-12-24 半導体基板、半導体基板の製造方法及び光電変換装置の製造方法 WO2011077735A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800555274A CN102668110A (zh) 2009-12-25 2010-12-24 半导体基板、半导体基板的制造方法以及光电变换装置的制造方法
US13/531,192 US20120273839A1 (en) 2009-12-25 2012-06-22 Semiconductor wafer, method for producing semiconductor wafer, and method for producing photo-electric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009296104 2009-12-25
JP2009-296104 2009-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/531,192 Continuation-In-Part US20120273839A1 (en) 2009-12-25 2012-06-22 Semiconductor wafer, method for producing semiconductor wafer, and method for producing photo-electric conversion device

Publications (1)

Publication Number Publication Date
WO2011077735A1 true WO2011077735A1 (ja) 2011-06-30

Family

ID=44195288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007467 WO2011077735A1 (ja) 2009-12-25 2010-12-24 半導体基板、半導体基板の製造方法及び光電変換装置の製造方法

Country Status (6)

Country Link
US (1) US20120273839A1 (ja)
JP (1) JP2011151392A (ja)
KR (1) KR20120104228A (ja)
CN (1) CN102668110A (ja)
TW (1) TW201137944A (ja)
WO (1) WO2011077735A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030935A1 (ja) * 2011-08-29 2013-03-07 株式会社日立製作所 太陽電池
WO2015186167A1 (ja) * 2014-06-02 2015-12-10 株式会社日立製作所 太陽電池セル、太陽電池セルの製造方法、および太陽電池システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014123712A (ja) 2012-11-26 2014-07-03 Ricoh Co Ltd 太陽電池の製造方法
US10586884B2 (en) * 2018-06-18 2020-03-10 Alta Devices, Inc. Thin-film, flexible multi-junction optoelectronic devices incorporating lattice-matched dilute nitride junctions and methods of fabrication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285363A (ja) * 1990-04-02 1991-12-16 Hitachi Cable Ltd シリーズ積層型太陽電池
JPH11214726A (ja) * 1998-01-23 1999-08-06 Sumitomo Electric Ind Ltd 積層型太陽電池
JP2001230431A (ja) * 2000-02-14 2001-08-24 Sharp Corp 光電変換装置
JP2004327889A (ja) * 2003-04-28 2004-11-18 Sharp Corp 化合物太陽電池およびその製造方法
JP2007324563A (ja) * 2006-06-02 2007-12-13 Emcore Corp 多接合太陽電池における変成層

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235376A (ja) * 1990-02-10 1991-10-21 Sumitomo Electric Ind Ltd タンデム型太陽電池の製造方法
US6951819B2 (en) * 2002-12-05 2005-10-04 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
JP2006216896A (ja) * 2005-02-07 2006-08-17 Canon Inc 太陽電池の製造方法
US10069026B2 (en) * 2005-12-19 2018-09-04 The Boeing Company Reduced band gap absorber for solar cells
US20090078310A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
CN101388419B (zh) * 2008-10-27 2010-08-18 厦门乾照光电股份有限公司 具有反射层的三结太阳电池及其制造方法
GB2467934B (en) * 2009-02-19 2013-10-30 Iqe Silicon Compounds Ltd Photovoltaic cell
US20100282306A1 (en) * 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Multijunction Solar Cells with Group IV/III-V Hybrid Alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285363A (ja) * 1990-04-02 1991-12-16 Hitachi Cable Ltd シリーズ積層型太陽電池
JPH11214726A (ja) * 1998-01-23 1999-08-06 Sumitomo Electric Ind Ltd 積層型太陽電池
JP2001230431A (ja) * 2000-02-14 2001-08-24 Sharp Corp 光電変換装置
JP2004327889A (ja) * 2003-04-28 2004-11-18 Sharp Corp 化合物太陽電池およびその製造方法
JP2007324563A (ja) * 2006-06-02 2007-12-13 Emcore Corp 多接合太陽電池における変成層

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030935A1 (ja) * 2011-08-29 2013-03-07 株式会社日立製作所 太陽電池
JPWO2013030935A1 (ja) * 2011-08-29 2015-03-23 株式会社日立製作所 太陽電池
WO2015186167A1 (ja) * 2014-06-02 2015-12-10 株式会社日立製作所 太陽電池セル、太陽電池セルの製造方法、および太陽電池システム

Also Published As

Publication number Publication date
KR20120104228A (ko) 2012-09-20
US20120273839A1 (en) 2012-11-01
JP2011151392A (ja) 2011-08-04
CN102668110A (zh) 2012-09-12
TW201137944A (en) 2011-11-01

Similar Documents

Publication Publication Date Title
US10128394B2 (en) Nanowire-based solar cell structure
US20050081910A1 (en) High efficiency tandem solar cells on silicon substrates using ultra thin germanium buffer layers
US8367925B2 (en) Light-electricity conversion device
JP2010118666A (ja) 反転変性多接合太陽電池の代替基板
US10811551B2 (en) Tandem solar cell including metal disk array
JP2010512664A (ja) 酸化亜鉛多接合光電池及び光電子装置
JP2008177539A (ja) 傾斜ハイブリッド非晶質シリコンナノワイヤー太陽電池
JP2008135740A (ja) 非晶質−結晶質タンデムナノ構造化太陽電池
CN101901854A (zh) 一种InGaP/GaAs/InGaAs三结薄膜太阳能电池的制备方法
CN103975449A (zh) 太阳能电池
JP2014199915A (ja) 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
WO2011077735A1 (ja) 半導体基板、半導体基板の製造方法及び光電変換装置の製造方法
JP5548878B2 (ja) 多接合型光学素子
TWI496314B (zh) Compound semiconductor solar cell manufacturing laminated body, compound semiconductor solar cell and manufacturing method thereof
JP5469145B2 (ja) タンデム太陽電池セルおよびその製造方法
Philipps et al. III–V multi-junction solar cells
KR101372305B1 (ko) 태양전지 셀 및 이의 제조방법
JP5548908B2 (ja) 多接合太陽電池の製造方法
Simon et al. Low cost GaAs solar cells grown by hydride vapor phase epitaxy and the development of GaInP cladding layers
TWI395340B (zh) 多接面太陽能電池
CN113013275B (zh) 一种失配结构的太阳能多结电池及制作方法
JP6164685B2 (ja) 太陽電池
TWI383509B (zh) A method of stacking solar cells
EP2615649B1 (en) Lateral solar cell structure
CN116190482A (zh) 一种柔性四结太阳电池及其制备方法与应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055527.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127014794

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838973

Country of ref document: EP

Kind code of ref document: A1