WO2011077715A1 - ガスエンジンの制御装置及び制御方法 - Google Patents

ガスエンジンの制御装置及び制御方法 Download PDF

Info

Publication number
WO2011077715A1
WO2011077715A1 PCT/JP2010/007422 JP2010007422W WO2011077715A1 WO 2011077715 A1 WO2011077715 A1 WO 2011077715A1 JP 2010007422 W JP2010007422 W JP 2010007422W WO 2011077715 A1 WO2011077715 A1 WO 2011077715A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
value
target value
gas
pressure
Prior art date
Application number
PCT/JP2010/007422
Other languages
English (en)
French (fr)
Inventor
司 今村
杉本 智彦
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020127017494A priority Critical patent/KR101313466B1/ko
Priority to US13/519,017 priority patent/US8983755B2/en
Priority to EP10838953.7A priority patent/EP2518299B9/en
Publication of WO2011077715A1 publication Critical patent/WO2011077715A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/024Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0284Arrangement of multiple injectors or fuel-air mixers per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/26Control of the engine output torque by applying a torque limit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0278Port fuel injectors for single or multipoint injection into the air intake system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a control device and a control method for a gas engine using gas fuel as a main fuel.
  • a gas engine is supplied with gas fuel from a fuel supply source provided by a gas company or the like.
  • Gas fuel from the fuel supply source flows into the engine and is supplied to a fuel supply valve provided for each cylinder, and is injected into the cylinder or the supply port from the fuel supply valve and mixed with the supply air. .
  • gas engine inlet pressure the pressure of the gas fuel immediately before it flows into the engine and is supplied to the fuel supply valve. If it does not exceed, gas fuel cannot be injected properly. In addition, if the gas engine inlet pressure is too higher than the supply air pressure, misfires are likely to occur. Therefore, the differential pressure between the supply air pressure and the gas engine inlet pressure is controlled to be within a predetermined range (for example, Patent Document 1). reference).
  • the source pressure of the gas fuel can fluctuate regardless of the operating condition of the gas engine.
  • the gas engine inlet pressure capable of injecting the gas fuel against the supply air pressure cannot be secured, and a situation in which the operation of the gas engine cannot be continued may occur. .
  • the threshold value is set to the minimum value of the gas source pressure that guarantees the gas engine inlet pressure capable of injecting gas fuel against the supply air pressure, or a value higher than that, and the supply
  • the atmospheric pressure may be set to a supply air pressure that is set according to the total load.
  • an object of the present invention is to make it possible to continue the operation of the gas engine when the source pressure of the gas fuel is lowered without installing a device for boosting the gas fuel.
  • a gas engine control device is a gas engine control device that controls the output of a gas engine that uses gas fuel as a main fuel.
  • a target value setting unit that sets an output limited to the predetermined output as a target value and the target value setting unit
  • An output setting unit that sets an output set value based on the target value and an output request value, and an output control unit that controls the output to be the set value set by the output setting unit, It is characterized by having.
  • the output target value is set to an output limited to the predetermined output, and the target value is set to the target value.
  • the output is controlled so that the set value is set based on this.
  • the supply air pressure also decreases. For this reason, even if the gas source pressure falls below the predetermined pressure value, a situation is ensured in which gas fuel can be injected against the supply air pressure that has decreased according to the output restriction.
  • the control device that executes such control, when the gas source pressure decreases, the operation of the gas engine can be continued without installing a dedicated device for boosting the gas fuel.
  • the predetermined output may be an output according to a required load. Therefore, even if the gas source pressure becomes a pressure value that is difficult to continuously operate at the required load, the operation of the gas engine can be continued.
  • the target value setting unit sets a primary target value of the output of the gas engine according to the detected value of the gas source pressure of the gas fuel, and the change of the primary target value set by the primary setting unit
  • a secondary target value is determined to change the target value according to the allowable change rate when the rate is compared with the allowable change rate, and when the allowable change rate is exceeded, and the secondary target value is set as the target value. And a next setting unit. Thereby, even if the target value changes suddenly, the output can be changed smoothly.
  • the secondary setting unit compares the change rate of the primary target value with the first allowable change rate when the primary target value changes so as to increase, and when the primary target value changes so as to become small,
  • the change rate of the primary target value may be compared with a second allowable change rate that is greater than the first allowable change rate.
  • the output setting unit compares the requested output value with the target value set by the target value setting unit, and when the target value falls below the required value, the output setting unit sets the set value according to the target value.
  • the set value may be set according to the required value.
  • the required load is a partial load, for example, and the pressure of the gas fuel exceeds a predetermined pressure value, the output of the gas engine can be controlled according to the required load.
  • a gas engine control method is a method for controlling the output of a gas engine using gas fuel as a main fuel, the source pressure detecting step for detecting the gas source pressure of the gas fuel, and the source pressure Target value setting for setting the output limited to the predetermined output as the target value when the detected value of the gas source pressure of the gas fuel detected in the detection step is less than a predetermined value determined according to the predetermined output And an output setting step for setting an output set value based on the target value set in the target value setting step and the required output value, and the set value set in the output setting step. And an output control step for controlling the output.
  • the operation of the gas engine is continued without installing a dedicated device for boosting the gas fuel. It becomes possible.
  • the operation of the gas engine can be continued when the source pressure of the gas fuel is reduced without installing a device for boosting the gas fuel.
  • FIG. 1 is a schematic diagram showing a configuration of a gas engine according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view of the gas engine shown in FIG.
  • FIG. 3 is a block diagram showing a configuration of a control system of the gas engine shown in FIG.
  • FIG. 4 is a graph showing a map of the set value of the gas engine inlet pressure with respect to the supply air pressure, which is referred to by the gas pressure control unit shown in FIG.
  • FIG. 5 is a graph showing a map of the target value of the output with respect to the pressure of the gas fuel, which is referred to by the primary setting unit shown in FIG.
  • FIG. 6 is a timing chart showing an example of the transition of the output when the gas source pressure fluctuates, showing the transition of the output controlled by the control device shown in FIG.
  • a gas engine 1 shown in FIG. 1 is a reciprocating multi-cylinder four-cycle engine using gas fuel as a main fuel.
  • the output shaft 2 of the gas engine 1 is connected to a generator 50.
  • the generator 50 is driven by the gas engine 1 and generates electric power according to the generated output of the gas engine 1.
  • the output of the generator 50 becomes a load of the gas engine 1.
  • the power generation gas engine 1 may be configured to perform system linkage with a commercial system, or may be configured to operate independently by being separated from the commercial system. In the present embodiment, system linkage is performed.
  • the gas engine 1 is provided with a supercharger 3. Exhaust gas from the gas engine 1 is supplied to the supercharger 3 through the exhaust passage 4, and intake air from the outside is taken in through the intake passage 5. The supercharger 3 is driven by exhaust and compresses intake air. The air supplied from the supercharger 3 is supplied to the gas engine 1 through the air supply passage 6.
  • FIG. 2 is a partial sectional view of the gas engine 1.
  • FIG. 2 shows only one of a plurality of cylinders, but the same applies to the other cylinders.
  • a piston 9 is removably inserted into the cylinder 8, and a main combustion chamber 10 is formed above the piston 9.
  • the main combustion chamber 10 communicates with the supply port 11 and the exhaust port 12.
  • the air supply port 11 is opened and closed by an air supply valve 13, and the exhaust port 12 is opened and closed by an exhaust valve 14.
  • the upstream portion of the air supply port 11 is connected to the above-described supply passage 6 (see FIG. 1), and the downstream portion of the exhaust port 12 is connected to the above-described exhaust passage 4 (see FIG. 1).
  • the supply port 11 is provided with a main fuel supply valve 15 for injecting gaseous fuel.
  • a sub-combustion chamber 16 is adjacent to the main combustion chamber 10.
  • the sub-combustion chamber 16 is separated from the main combustion chamber 10 by a partition wall 17, and communicates with the main combustion chamber 10 through one or more communication holes 18 formed in the partition wall 17.
  • the auxiliary combustion chamber 16 is provided with an auxiliary fuel supply valve 19 for injecting gaseous fuel and an ignition plug 20 for igniting the air-fuel mixture.
  • an air-fuel mixture including air supply from the supercharger 3 (FIG. 1) and gas fuel injected by the main fuel supply valve 15 is supplied from the air supply port 11 to the main combustion chamber 10. Then, an air-fuel mixture containing gas fuel injected by the auxiliary fuel supply valve 19 is supplied to the air-fuel mixture 16 (air supply stroke).
  • the spark plug 20 operates at an appropriate timing to ignite the air-fuel mixture in the sub-combustion chamber 16.
  • the flame generated in the auxiliary combustion chamber 16 propagates into the main combustion chamber 10 through the communication hole 18, and the compressed air-fuel mixture in the main combustion chamber 10 is burned by this flame.
  • the piston 9 moves downward (expansion stroke), and then the gas in the main combustion chamber 10 is discharged to the exhaust port 12 (exhaust stroke).
  • the output of the gas engine 1 increases as the supply air pressure PB increases and the amount of fuel supplied to the cylinder 8 increases.
  • the rotational speed of the supercharger 3 increases, and the air supply amount and the supply air pressure PB increase.
  • the exhaust passage 4 is provided with an exhaust bypass valve 7 that adjusts the amount of exhaust supplied to the supercharger 3. By adjusting the opening degree of the exhaust bypass valve 7, the supply air pressure PB can be finely adjusted.
  • the main fuel supply valve 15 and the auxiliary fuel supply valve 19 provided for each cylinder 8 are connected in parallel to the downstream end portion of the fuel passage 21.
  • the upstream end of the fuel passage 21 is connected to an external fuel supply source (not shown) provided by, for example, a gas company. Gas fuel from the fuel supply source is supplied to the main fuel supply valve 15 and the sub fuel supply valve 19 through the fuel passage 21.
  • a gas cutoff valve 22 and a gas pressure adjustment valve 23 are provided in this order from the upstream side.
  • the gas cutoff valve 22 normally opens the fuel passage 21 and closes the fuel passage 21 when the gas engine 1 is brought to an emergency stop.
  • the gas pressure adjusting valve 23 opens and closes the fuel passage 21 so that the opening thereof can be varied, thereby adjusting the gas engine inlet pressure P1.
  • This “gas engine inlet pressure P1” is the pressure of the gas fuel immediately before it flows into the engine and is distributed and supplied to the fuel supply valves 15 and 19.
  • the gas engine inlet pressure P1 cannot be set to a value exceeding the gas source pressure P0 due to pressure loss in the fuel passage 21 and the gas pressure regulating valve 23 except when a boosting device is installed.
  • the gas source pressure P0 is the pressure of the gas fuel in the fuel supply source, more broadly, the pressure of the gas fuel upstream of the gas pressure adjustment valve 23, and may vary regardless of the operating condition of the gas engine 1.
  • the main fuel supply valve 15 and the auxiliary fuel supply valve 19 are composed of electromagnetic on-off valves.
  • the amount of fuel injected from the main fuel supply valve 15 and the auxiliary fuel supply valve 19 can be controlled by adjusting the open periods of the main fuel supply valve 15 and the auxiliary fuel supply valve 19 together with the gas engine inlet pressure P1. .
  • the fuel supply valves 15 and 19 can inject gas fuel into the air supply port 11 through which the air supplied from the supercharger 3 flows, in opposition to the supply air pressure PB.
  • gas fuel can be injected from the main fuel supply valve 15 and the auxiliary fuel supply valve 19 against the supply air pressure PB when the gas source pressure P0 of the gas engine 1 decreases.
  • the output of the gas engine 1 is controlled so that the operation of the gas engine 1 can be continued. Since the output of the generator 50 is determined by the output of the gas engine 1 as described above, the output of the gas engine 1 can be controlled by controlling the output of the generator 50, and vice versa. In the present embodiment, the output of the gas engine 1 is controlled through the output control of the generator 50. Further, control for changing the output KW of the generator 50 according to the gas source pressure P0 is performed through control for changing the fuel amount, that is, control for changing the open period of the main fuel supply valve 15 and / or the auxiliary fuel supply valve 19. Trying to do.
  • the gas engine 1 includes a supply air pressure sensor 24 that detects the supply air pressure PB, an inlet pressure sensor 25 that detects the gas engine inlet pressure P1, a source pressure sensor 26 that detects the gas source pressure P0, and power generation.
  • the output sensor 27 which detects the output (namely, load of the gas engine 1) of the machine 50 is provided.
  • FIG. 3 is a block diagram showing a control system of the gas engine 1 shown in FIG.
  • the gas engine 1 includes a control device 30 including a main control device 31 and a fuel control device 32.
  • the main control device 31 includes a supply air pressure control unit 41, a gas pressure control unit 42, a target value setting unit 43, an output setting unit 44, and an output control unit 45.
  • the main controller 31 controls the speed of the output shaft 2 to a rotational speed corresponding to the power frequency of the system cooperation destination with the gas engine 1 and the phase of the generator 50 to the system cooperation destination.
  • a synchronization input device (not shown) for connecting the generator 50 to the system after being synchronized with the phase.
  • the supply air pressure setting unit 41 includes a set value setting unit 51 and a supply air pressure control unit 52.
  • the set value setting unit 51 sets the set value PB SET of the supplied air pressure according to the output KW detected by the output sensor 27 (see FIG. 1) with reference to the supplied air pressure control map.
  • Boost pressure control unit 52 compares the measured values PB P boost pressure detected by the boost pressure sensor 24, and a set value PB SET boost pressure set by the setting value setting section 51.
  • Boost pressure control unit 52 in response to the deviation of the measured values PB P and set value PB SET, controls the opening of the exhaust bypass valve 7 so that the boost pressure PB becomes the set value PB SET.
  • Gas pressure control part 42 set values and P1 SET gas engine inlet pressure obtained by adding only the first predetermined pressure [Delta] P 1 in boost pressure PB P detected by the boost pressure sensor 24 (see FIG. 1), inlet The measured value P1 P of the gas engine inlet pressure detected by the pressure sensor 25 (see FIG. 1) is compared.
  • the gas pressure control unit 42 controls the opening of the gas pressure adjusting valve 23 so that the gas engine inlet pressure P1 becomes the set value P1 SET according to the deviation between the measured value P1 P and the set value P1 SET .
  • the set value PB SET of the supply air pressure PB is set to a larger value as the output KW increases.
  • the case where the transition of the set value PB SET with respect to the output KW is convex downward is illustrated.
  • the illustrated transition follows the transition of the supply air pressure with respect to the output of the gas engine 1.
  • fine adjustment of the supply air pressure PB by adjusting the opening degree of the exhaust bypass valve 7 can absorb minute fluctuations in the performance of the turbocharger 3 due to differences in exhaust temperature and atmospheric temperature, and the supply air pressure PB is set to a set value. It can be controlled to be PB SET .
  • FIG. 4 also shows the gas engine inlet pressure P1 with respect to the output KW.
  • the gas engine inlet pressure P1 is controlled to a value that is higher than the supply air pressure PB by a first predetermined value ⁇ P 1 regardless of the magnitude of the output KW. That is, the transition of the gas engine inlet pressure P1 to the output KW is parallel with changes in set value PB SET boost pressure PB.
  • FIG. 4 shows a lower limit value P0 m of the gas source pressure P0 that guarantees the gas engine inlet pressure P1.
  • the lower limit P0 m, compared gas engine inlet pressure P1, is set to a second predetermined value [Delta] P 2 higher by a value obtained by adding the pressure loss described above.
  • the gas engine inlet pressure P1 for injecting the fuel against the boost pressure PB 100 from the boost pressure PB 100
  • the gas source pressure P0 is changed from the gas engine inlet pressure P1 100. It is necessary that the pressure value is higher than the second predetermined value ⁇ P 2 (P0 m — 100 ).
  • the gas source pressure P0 is less than the lower limit value P0 M_100, can not be against the boost pressure PB 100 in accordance with the output KW 100 injects gas fuel, as a result operation of the gas engine 1 Cannot be continued.
  • the conventional method for dealing with a decrease in the original pressure is to stop the gas engine 1 or increase the gas fuel when the gas original pressure P0 is less than the lower limit P0 m — 100 .
  • the coping method in the present embodiment is such that the gas source pressure P0 is higher than the supply air pressure PB set according to the load by the first predetermined value ⁇ P 1 and the second predetermined value. Focusing on the fact that if the pressure value is higher than P0 m by the sum of ⁇ P 2 , the gas fuel can be injected against the supply air pressure PB and the operation of the gas engine 1 at the load can be continued. Yes.
  • the transition of the lower limit value P0 m gas source pressure P0 to the load is, the transition of the set value PB SET boost pressure, and the transition parallel gas engine inlet pressure P1.
  • the target value setting unit 43 sets the target value of the output of the gas engine 1 in accordance with the gas source pressure P0. More specifically, the target value KW T output KW generator 50 in accordance with the output of the gas engine 1.
  • Output setting unit 44 compares the target value KW T set by the target value setting unit 43, and a required value KW D of the output of the generator 50, to set a set value KW SET output KW generator 50 .
  • the output control unit 45 compares the set value KW SET set by the output setting unit 44, and a measurement value KW P output KW generator 50 detected by the output sensor 27.
  • the output control unit 45 in accordance with a deviation between the set values KW SET and the measured values KW P, command of the opened-state period of the main fuel supply valve 15 to output KW of power generator 50 is required to become a set value KW SET
  • the value INJ is output to the fuel control unit 32.
  • the fuel control unit 32 controls the main fuel supply valve 15 according to the command value INJ input from the output control unit 45. Thereby, the output KW of the generator 50 can be controlled to be the set value KW SET .
  • the target value KW T set by the target value setting unit 43 based on the Viewpoints described above, will be described in detail a set value KW SET set by the output setting unit 44.
  • the target value setting unit 43 includes a primary setting unit 53 and a secondary setting unit 54.
  • the primary setting unit 53 refers to the limit output map and sets a primary target value KW T1 of the output KW of the gas engine 1 according to the measured value of the gas source pressure P0 measured by the source pressure sensor 26.
  • Secondary setting unit 54 based on the primary target value KW T1 that is set by the primary setting unit 53 determines a secondary target value KW T2 of the gas engine 1, the secondary target value KW T2 determined target value KW T Set as.
  • FIG. 5 shows a limited output map referred to by the primary setting unit 53 shown in FIG.
  • the primary target value KW T1 is set to the output KW 100 .
  • Gas source pressure P0 is, when it is less than the pressure value P0 M_100 an output which is limited with respect to the output KW 100 is set as the primary target value KW T1.
  • the primary target value KW T1 is set to a smaller value.
  • the transition of the primary target value KW T1 with respect to the gas source pressure P0 is set based on the transition of the lower limit value P0 m of the gas source pressure P0 indicated by the broken line in FIG.
  • the transition of the primary target value KW T1 with respect to the gas source pressure P0 shown in FIG. 5 is obtained by replacing the transition of the lower limit value P0 m of the gas source pressure P0 shown in FIG. It is equivalent to what is expressed as.
  • a case where the supply air pressure PB increases with a tendency to protrude downward in accordance with the increase in load in FIG. 4 is illustrated, and in association with this, in FIG. 5, according to the decrease in the gas source pressure P0.
  • the primary target value KW T1 decreases with a tendency to protrude upward.
  • the output limited to the output is set as the primary target value, this is also merely an example and can be changed as appropriate. That is, when it is less than the pressure value determined according to the output corresponding to the required load, the primary target value may be set similarly, or when it is less than the pressure value determined according to other predetermined output Similarly, the primary target value may be set.
  • the predetermined output may be a plurality of values.
  • the secondary setting unit 54 uses a predetermined ramp function. That is, the secondary setting unit 54, when the primary target value change rate KW T1 that is set by the primary setting unit 53 is less than the predetermined allowable rate of change sets the primary target value KW T1 as a target value KW T To do. On the other hand, when the rate of change of the primary target value KW T1 is allowable rate of change or obtains a secondary target value KW T2 that changes the target value KW T according allowable change rate, target the secondary target value KW T2 to set as the value KW T.
  • the change rate of the primary target value KW T1 may be a difference between the primary target value set by the primary setting unit 53 in the current process and the primary target value or the secondary target value set in the previous process. .
  • a second acceptable first allowable change rate primary target value KW T1 is compared when changes to increase, the primary target value KW T1 is compared when changes to decrease It is set to be smaller than the rate of change. That is, when the gas source pressure P0 is below the lower limit value P0 m_100 corresponding to the full load and tends to decrease, the change rate of the target value KW T (that is, the secondary target value KW T2 ) Although it is limited by the allowable change rate of 2, it can be set to a relatively large value. Furthermore, when in the upward trend there when the gas source pressure P0 is below the lower limit value P0 M_100, the target value KW T (i.e. secondary target value KW T2) rate of change of the first allowable change It is set to a relatively small value according to the rate.
  • Output setting unit 44 compares the target value KW T set by the target value setting unit 43 in this manner, a required value KW D of the output of the generator 50 which is determined in accordance with the required load, according to the comparison result To set the set value KW SET .
  • the target value KW T exceeds the required value KW D is set based on the set value KW SET request value KW D.
  • the required load is, for example, a partial load
  • the output can be controlled as required.
  • the setting values KW SET is set based on the target value KW T.
  • the output setting unit 44 also sets the final set value using a predetermined ramp function.
  • a predetermined ramp function For example, if the setting value KW SET is set based on the required value KW D, can be required load changes the output gradually be suddenly changed. If the setting value KW SET is set based on the target value KW T, since the target value KW T are multiplied by the filter already ramp function at the secondary setting unit 54, as the target value KW T It can be set as a set value KW SET .
  • the output is controlled by the output control unit 45 and the fuel control unit 32 so that the output becomes the set value KW SET set in this way.
  • the horizontal axis in FIG. 6 is time
  • the vertical axis is the load of the gas engine 1 (the output KW of the generator 50)
  • the vertical axis is the pressure.
  • the behavior when the gas source pressure P0 decreases and increases when the required load is set to the full load is illustrated.
  • the primary setting unit 53 When the gas source pressure P0 is equal to or higher than the lower limit value P0 M_100 corresponding to full load, the primary setting unit 53 continues to set the primary target value KW T1 to full load. Therefore, the output setting unit 44 sets the output corresponding to the full load as the set value KW SET .
  • the primary setting unit 53 sets the output primary target value KW T1 to an output limited to the output KW 100 corresponding to the full load. Then, the target value KW T set by the target value setting unit 43 is below the required value KW D, the output setting unit 44 sets the target value KW T as the set value KW SET. Since the open period of the main fuel supply valve 15 is changed to be shorter based on the setting value KW T, the fuel supply amount is decreased output KW decreases.
  • the gas engine inlet pressure P1 decreases accordingly, and the lower limit value P0 m of the gas source pressure P0 also decreases accordingly. Therefore, even if the gas source pressure P0 falls below the lower limit value P0 m_100 corresponding to the total load, it can be set to the lower limit value P0 m or more determined according to the load at that time. For this reason, the situation where the main fuel supply valve 15 can inject gas fuel into the supply port 11 against the supply air pressure PB is secured, and the operation of the gas engine 1 can be continued. In addition, while the output KW is reduced due to the reduction of the gas source pressure P0 in this way, the load is shared with the commercial system linked with the system.
  • gas source pressure P0 is on a downward trend is going to change as the primary target value KW T1 decreases.
  • the allowable rate of change of the target value is set to a relatively large value when the change to the primary target value KW T1 decreases. Therefore, even when the gas source pressure P0 is rapidly reduced, the output KW can be quickly reduced, whereby the supply pressure PB and the lower limit value P0 m of the gas source pressure P0 are also rapidly reduced in the same manner. It becomes possible. For this reason, it is possible to appropriately cope with the rapid decrease in the gas source pressure P0 and to continue the operation of the gas engine 1.
  • the primary target value KW T1 changes so as to increase.
  • the allowable rate of change of the target value KW T is set to a relatively small value when the change to the primary target value KW T1 increases.
  • the output KW gradually rises with respect to the rising speed of the gas source pressure P0, and the lower limit value P0 m of the supply air pressure PB and the gas source pressure P0 can be gradually raised in the same manner.
  • a large deviation between the gas source pressure P0 and the lower limit value P0 m can be secured. Therefore, even if the gas source pressure P0 does not rise stably, it is possible to ensure a state in which gas fuel can be injected against the supply air pressure PB, and to appropriately suppress the hunting phenomenon. Can do.
  • the said structure can be suitably changed within the scope of the present invention.
  • the method of reducing the output of the gas engine 1 when the main pressure is reduced not only shortens the open period of the main fuel supply valve (that is, reduces the amount of fuel injected by the main fuel supply valve 15), but also supplies auxiliary fuel.
  • the valve 19 may be controlled similarly.
  • the present invention allows the operation of the gas engine to be continued when the gas fuel source pressure is reduced without separately installing a device for boosting the gas fuel, and the gas fuel can be supplied from an external fuel supply source. It is beneficial to apply it to the gas engine for power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 本発明に係るガスエンジン(1)の出力を制御する制御装置(30)は、ガス燃料のガス元圧(P0)が、所定出力に応じた給気圧(PB100)に抗してガス燃料を噴射するために必要とされる所定値(P0m_100)未満であるときに、当該所定出力に対して制限された出力を目標値(KWT)として設定する目標値設定部(43)と、目標値設定部(43)により設定された目標値(KWT)に基づいて、出力(KW)の設定値(KWSET)を設定する出力設定部(44)と、出力設定部(44)により設定された設定値(KWSET)となるよう出力(KW)を制御する出力制御部(45)と、を備える。

Description

ガスエンジンの制御装置及び制御方法
 本発明は、ガス燃料を主燃料とするガスエンジンの制御装置及び制御方法に関する。
 近年、ガスエンジンにより発電機を駆動して電力を発生する発電システムが、産業用プラントなどの設備に導入されている。ガスエンジンの出力は、給気圧及び燃料量により調整され、要求負荷が大きいときほど給気圧が高く且つ燃料量が多くなるよう設定される。
 一般にガスエンジンは、ガス事業者などにより提供される燃料供給源からガス燃料の供給を受ける。燃料供給源からのガス燃料は、機関内に流入して気筒ごとに設けられた燃料供給弁へと供給され、燃料供給弁より気筒内又は給気ポート内に噴射され、給気と混合される。
 このようにガス燃料は給気に対抗して噴射されるため、機関内に流入して燃料供給弁に供給される直前段階におけるガス燃料の圧力(以下、「ガス機関入口圧力」)が給気圧を上回っていなければ、ガス燃料を適切に噴射することができない。また、このガス機関入口圧力が給気圧よりも高すぎると失火を生じやすくなるため、給気圧とガス機関入口圧力との差圧は、所定範囲内に収まるように制御される(例えば特許文献1参照)。
特開2002-317664号公報
 ところで、ガス燃料の元圧は、ガスエンジンの運転状況とは関係なく変動し得る。ガス元圧が大きく低下したときには、給気圧に対抗してガス燃料を噴射可能なガス機関入口圧力を確保することができず、ガスエンジンの運転を継続することができない事態が発生することがある。
 従来の技術において、かかる非常事態に対する対処手法として、ガス元圧が予め定められた一定の閾値未満であるときにガスエンジンの運転を停止させる、というものが考えられる。この手法を採用した場合には、閾値を、給気圧に対抗してガス燃料を噴射可能なガス機関入口圧力を保証するガス元圧の最小値又はそれ以上の値に設定し、ここでいう給気圧を例えば全負荷に応じて設定される給気圧とすることが考えられる。すなわち、この手法によれば、全負荷での運転を継続し得ない状況となるまでガス元圧が低下した場合、ガスエンジンが停止することとなる。
 しかしながら、例えば連続処理を行う化学プラントのように操業を容易に止められない設備には、当該手法を採用したガスエンジンを導入することが運用面から難しくなる。現状このような設備にガスエンジンを導入するためには、ガス燃料の昇圧専用のコンプレッサを別途設置する必要があり、発電システムの設備費用がその分高くなる。
 そこで本発明は、ガス燃料昇圧用の機器を設置しなくても、ガス燃料の元圧が低下したときにガスエンジンの運転を継続可能にすることを目的としている。
 本発明は上記事情に鑑みてなされたものであり、本発明に係るガスエンジンの制御装置は、ガス燃料を主燃料とするガスエンジンの出力を制御するガスエンジンの制御装置であって、ガス燃料のガス元圧が所定出力に応じて定まる所定圧力値未満であるときに、前記所定出力に対して制限された出力を目標値として設定する目標値設定部と、前記目標値設定部により設定された前記目標値と出力の要求値とに基づいて、出力の設定値を設定する出力設定部と、前記出力設定部により設定された前記設定値となるよう出力を制御する出力制御部と、を備えていることを特徴としている。
 前記構成によれば、ガス元圧が所定圧力値を下回って所定出力を維持した運転が困難になると、出力の目標値が当該所定出力に対して制限された出力に設定され、当該目標値に基づいて設定された設定値となるよう出力が制御される。このようにして出力が制限されると、給気圧も低下する。このため、たとえガス元圧が上記所定圧力値を下回っても、出力の制限に応じて低下した給気圧に対抗してガス燃料を噴射可能な状況が確保される。かかる制御を実行する制御装置により、ガス元圧が低下したときにおいて、ガス燃料の昇圧に専用の機器を設置しなくても、ガスエンジンの運転を継続可能となる。
 前記所定出力が、要求負荷に応じた出力であってもよい。これにより、ガス元圧が要求負荷で継続して運転することが困難な圧力値となってもガスエンジンの運転を継続可能となる。
 前記目標値設定部が、ガス燃料のガス元圧の検出値に応じて前記ガスエンジンの出力の一次目標値を設定する一次設定部と、前記一次設定部により設定された前記一次目標値の変化率を許容変化率と比較し、前記許容変化率を超えるときに、前記目標値を前記許容変化率に従って変化させるべく二次目標値を定め、当該二次目標値を前記目標値として設定する二次設定部と、を有していてもよい。これにより、目標値が急変しても、出力をなだらかに変化させることができる。
 前記二次設定部は、前記一次目標値が大きくなるよう変化したときには、前記一次目標値の変化率を第1の前記許容変化率と比較し、前記一次目標値が小さくなるよう変化したときには、前記一次目標値の変化率を前記第1の許容変化率よりも大きい第2の前記許容変化率と比較してもよい。これにより、ガス元圧の低下が生じても出力を比較的速やかに低下させることができ、元圧低下に好適に対処可能となる。また、ガス元圧が上昇しても出力を緩やかに回復させるようにしており、ハンチング現象を好適に抑制することができる。
 前記出力設定部は、出力の要求値と、前記目標値設定部により設定された前記目標値とを比較し、前記目標値が前記要求値を下回るときには、前記目標値に応じて前記設定値を設定し、前記目標値が前記要求値を上回るときには、前記要求値に応じて前記設定値を設定してもよい。これにより、要求負荷が例えば定格出力に定められているときであって、定格出力よりも小さい出力に目標値が設定されたときには、ガス燃料の圧力低下に対処して出力を低下させることができる。他方、要求負荷が例えば部分負荷であるときであって、ガス燃料の圧力が所定圧力値を超えているようなときには、ガスエンジンの出力を要求負荷に応じて制御することができる。
 また、本発明に係るガスエンジンの制御方法は、ガス燃料を主燃料とするガスエンジンの出力を制御する方法であって、ガス燃料のガス元圧を検出する元圧検出ステップと、前記元圧検出ステップにおいて検出されたガス燃料のガス元圧の検出値が、所定出力に応じて定まる所定値未満であるときに、前記所定出力に対して制限された出力を目標値として設定する目標値設定ステップと、前記目標値設定ステップにおいて設定された前記目標値と出力の要求値とに基づいて、出力の設定値を設定する出力設定ステップと、前記出力設定ステップにおいて設定された前記設定値となるよう出力を制御する出力制御ステップと、を有していることを特徴としている。
 前記方法によれば、前述した本発明に係るガスエンジンの制御装置と同様、ガス元圧が低下したときにおいて、ガス燃料の昇圧に専用の機器を設置しなくても、ガスエンジンの運転を継続可能となる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 以上の本発明によれば、ガス燃料昇圧用の機器を設置しなくても、ガス燃料の元圧が低下したときにガスエンジンの運転を継続させることができる。
図1は、本発明の一実施形態に係るガスエンジンの構成を示す模式図である。 図2は、図1に示すガスエンジンの部分断面図である。 図3は、図1に示すガスエンジンの制御系の構成を示すブロック線図である。 図4は、図3に示すガス圧制御部により参照される、給気圧に対するガス機関入口圧力の設定値のマップを示すグラフである。 図5は、図3に示す一次設定部により参照される、ガス燃料の圧力に対する出力の目標値のマップを示すグラフである。 図6は、図3に示す制御装置によって制御される出力の推移を示す図であって、ガス元圧が変動したときの出力の推移の一例を示すタイミングチャートである。
 以下、図面を参照しながら本発明に係る実施形態について説明する。図1に示すガスエンジン1は、ガス燃料を主燃料とするレシプロ型の多気筒4サイクルエンジンである。ガスエンジン1の出力軸2は発電機50と接続されている。発電機50は、ガスエンジン1により駆動され、ガスエンジン1の発生出力に応じた電力を発電する。この発電機50の出力がガスエンジン1の負荷となる。かかる発電用のガスエンジン1は商用系統との系統連携を行う構成でもよく、商用系統から切り離して単独運転する構成でもよい。本実施形態では、系統連携が行われるものとしている。
 ガスエンジン1には過給機3が備え付けられている。過給機3には、ガスエンジン1からの排気が排気通路4を介して供給され、外部からの吸気が吸気通路5を介して取り入れられる。過給機3は排気により駆動されて吸気を圧縮する。過給機3からの給気は、給気通路6を介してガスエンジン1に供給される。
 図2はガスエンジン1の部分断面図である。図2には複数の気筒のうち1つのみが示されているが、他の気筒も同様である。気筒8内にはピストン9が往復可能に挿入され、ピストン9の上方に主燃焼室10が形成される。主燃焼室10は、給気ポート11及び排気ポート12と連通している。給気ポート11は給気弁13により開閉され、排気ポート12は排気弁14により開閉される。給気ポート11の上流部は前述した給気通路6(図1参照)と接続され、排気ポート12の下流部は前述した排気通路4(図1参照)と接続される。給気ポート11には、ガス燃料を噴射する主燃料供給弁15が設けられている。主燃焼室10には副燃焼室16が隣接している。副燃焼室16は、隔壁17によって主燃焼室10と区画される一方、隔壁17に形成された1以上の連通孔18を介して主燃焼室10と連通している。副燃焼室16には、ガス燃料を噴射する副燃料供給弁19と、混合気を点火するための点火プラグ20とが設けられている。
 このガスエンジン1によれば、主燃焼室10に、過給機3(図1)からの給気と主燃料供給弁15が噴射したガス燃料とを含む混合気が給気ポート11より供給され、副燃焼室16に、当該混合気に更に副燃料供給弁19が噴射したガス燃料を含んだ混合気が供給される(給気行程)。主燃焼室10及び副燃焼室16内の混合気が圧縮された(圧縮行程)後に、点火プラグ20が適宜タイミングで動作して副燃焼室16内の圧縮混合気が着火される。副燃焼室16内で発生した火炎は連通孔18を通じて主燃焼室10内に伝播し、この火炎により主燃焼室10内の圧縮混合気が燃焼する。これによりピストン9が下動し(膨張行程)、その後に主燃焼室10内のガスが排気ポート12へと排出される(排気行程)。
 図1に戻り、給気圧PBが高くなり、気筒8に供給される燃料量が多くなるとガスエンジン1の出力は大きくなる。ガスエンジン1の出力が大きくなると、過給機3の回転数が上昇して給気量及び給気圧PBが上昇する。排気通路4には、過給機3に供給される排気量を調節する排気バイパス弁7が設けられている。排気バイパス弁7の開度を調整することにより、給気圧PBを微調整することができる。
 気筒8ごとに設けられた主燃料供給弁15及び副燃料供給弁19は、燃料通路21の下流端部に並列的に接続されている。燃料通路21の上流端部は、例えばガス事業者などによって提供される外部の燃料供給源(図示せず)に接続されている。燃料供給源からのガス燃料は、燃料通路21を介して主燃料供給弁15及び副燃料供給弁19へと供給される。
 燃料通路21上には、ガス遮断弁22及びガス圧力調整弁23が上流側よりこの順で設けられている。ガス遮断弁22は、通常燃料通路21を開放し、ガスエンジン1を非常停止させる際に燃料通路21を閉鎖する。ガス圧力調整弁23は、燃料通路21を開度可変に開閉し、これによりガス機関入口圧力P1が調整される。この「ガス機関入口圧力P1」は、機関内に流入して各燃料供給弁15,19に分配供給される直前段階でのガス燃料の圧力である。ガス機関入口圧力P1は、昇圧用の機器を設置した場合を除き、燃料通路21及びガス圧力調整弁23における圧力損失のため、ガス元圧P0を超える値に設定することができない。ガス元圧P0は、燃料供給源におけるガス燃料の圧力、より広く言えばガス圧力調整弁23よりも上流側におけるガス燃料の圧力であり、ガスエンジン1の運転状況とは関係なく変動し得る。
 主燃料供給弁15及び副燃料供給弁19は電磁開閉弁から成る。ガス機関入口圧力P1とともに、主燃料供給弁15及び副燃料供給弁19の開期間を調整することにより、主燃料供給弁15及び副燃料供給弁19から噴射される燃料量を制御することができる。
 ガス圧力調整弁23の開度は、ガス機関入口圧力P1が給気圧PBよりも第1所定圧ΔP1だけ高くなるよう変更される(P1=PB+ΔP1)。これにより、燃料供給弁15,19は、過給機3からの給気が流れる給気ポート11内にガス燃料を給気圧PBに対抗して良好に噴射可能になる。
 本実施形態に係るガスエンジン1においては、ガスエンジン1のガス元圧P0が低下したときに、給気圧PBに対抗して主燃料供給弁15及び副燃料供給弁19よりガス燃料を噴射可能としてガスエンジン1の運転を継続可能とすべく、ガスエンジン1の出力を制御するよう構成されている。前述したようにガスエンジン1の出力により発電機50の出力が定まることから、発電機50の出力を制御すればガスエンジン1の出力を制御することができ、その逆もまた同様となる。本実施形態では、発電機50の出力制御を通じてガスエンジン1の出力を制御するとしている。また、燃料量を変更する制御、すなわち主燃料供給弁15及び/又は副燃料供給弁19の開期間を変更する制御を通じ、ガス元圧P0に応じて発電機50の出力KWを変更する制御を実行することとしている。
 この制御を実行するため、ガスエンジン1には、給気圧PBを検知する給気圧センサ24、ガス機関入口圧力P1を検知する入口圧センサ25、ガス元圧P0を検知する元圧センサ26、発電機50の出力(すなわちガスエンジン1の負荷)を検知する出力センサ27を備えている。
 図3は、図1に示すガスエンジン1の制御系を示すブロック線図である。ガスエンジン1は、主制御装置31及び燃料制御装置32を含む制御装置30を備えている。主制御装置31は、給気圧制御部41、ガス圧制御部42、目標値設定部43、出力設定部44、及び出力制御部45を有している。なお、主制御装置31は、出力軸2の回転数を当該ガスエンジン1との系統連携先の電力周波数に対応する回転数に制御する速度制御部46と、発電機50の位相を系統連携先の位相と同期させた上で発電機50を系統に接続するための同期投入装置(図示せず)とを更に有している。
 給気圧設定部41は、設定値設定部51及び給気圧制御部52を有している。設定値設定部51は、給気圧制御マップを参照して、出力センサ27(図1参照)により検出された出力KWに応じて給気圧の設定値PBSETを設定する。給気圧制御部52は、給気圧センサ24により検出された給気圧の測定値PBPと、設定値設定部51により設定された給気圧の設定値PBSETとを比較する。給気圧制御部52は、測定値PBP及び設定値PBSETの偏差に応じて、給気圧PBが設定値PBSETとなるよう排気バイパス弁7の開度を制御する。
 ガス圧制御部42は、給気圧センサ24(図1参照)により検出される給気圧PBPに第1所定圧ΔP1だけ加算することにより得られるガス機関入口圧力の設定値P1SETと、入口圧センサ25(図1参照)により検出されるガス機関入口圧力の測定値P1Pとを比較する。ガス圧制御部42は、測定値P1P及び設定値P1SETの偏差に応じて、ガス機関入口圧力P1が設定値P1SETとなるようガス圧力調整弁23の開度を制御する。
 図4に示すように、出力KWが上昇するほど、給気圧PBの設定値PBSETがより大きい値に設定される。本実施形態では、出力KWに対する設定値PBSETの推移が下に凸とした場合を例示している。例示する推移は、ガスエンジン1の出力に対する給気圧の推移に倣うものとなっている。これにより、排気バイパス弁7の開度調整による給気圧PBの微細な調整によって、排気温や大気温の違いによる過給機3の性能の微細な変動を吸収可能となり、給気圧PBを設定値PBSETとなるよう制御することができる。
 図4には、出力KWに対するガス機関入口圧力P1も併せて示している。ガス機関入口圧力P1は、出力KWの大小に関わらず、給気圧PBよりも第1所定値ΔP1だけ高い値に制御される。すなわち、出力KWに対するガス機関入口圧力P1の推移は、給気圧PBの設定値PBSETの推移と平行となる。
 図4には、ガス機関入口圧力P1を保証するガス元圧P0の下限値P0mを示している。当該下限値P0mは、ガス機関入口圧力P1に対し、前述した圧力損失分を加味した第2所定値ΔP2だけ高い値に設定される。例えば全負荷(100%LD)に応じた出力KW100に応じて給気圧PB100が定められると、給気圧PB100に対抗して燃料を噴射するガス機関入口圧力P1が当該給気圧PB100から第1所定値ΔP1だけ高い圧力P1100に設定される必要があるが、当該ガス機関入口圧力P1100の確保を保証するためには、ガス元圧P0が、このガス機関入口圧力P1100から第2所定値ΔP2だけ高い圧力値(P0m_100)以上であることを要する。逆に、ガス元圧P0が当該下限値P0m_100未満であれば、当該出力KW100に応じた給気圧PB100に対抗してガス燃料を噴射することができず、結果としてガスエンジン1の運転を継続させることができなくなる。
 前述したように、元圧低下時における従来の対処手法は、ガス元圧P0がこの下限値P0m_100未満であるときにガスエンジン1を停止し、又はガス燃料を昇圧する、というものである。これに対し、本実施形態における対処手法は、図4に破線で示すように、ガス元圧P0が、負荷に応じて設定される給気圧PBよりも第1所定値ΔP1と第2所定値ΔP2との和だけ高い圧力値P0m以上であれば、給気圧PBに対抗してガス燃料を噴射して当該負荷でのガスエンジン1の運転を継続可能となる、という点に着眼している。この場合、負荷に対するガス元圧P0の下限値P0mの推移が、給気圧の設定値PBSETの推移、及びガス機関入口圧力P1の推移と平行となる。
 図3に戻り、目標値設定部43は、ガス元圧P0に応じてガスエンジン1の出力の目標値を設定する。より具体的には、ガスエンジン1の出力に応じた発電機50の出力KWの目標値KWTを設定する。出力設定部44は、目標値設定部43により設定された目標値KWTと、発電機50の出力の要求値KWDとを比較し、発電機50の出力KWの設定値KWSETを設定する。
 出力制御部45は、出力設定部44により設定された設定値KWSETと、出力センサ27により検出される発電機50の出力KWの測定値KWPとを比較する。出力制御部45は、設定値KWSETと測定値KWPとの偏差に応じて、発電機50の出力KWが設定値KWSETとなるために必要となる主燃料供給弁15の開期間の指令値INJを燃料制御部32に出力する。燃料制御部32は、出力制御部45より入力した指令値INJに従って主燃料供給弁15を制御する。これにより、発電機50の出力KWを設定値KWSETとなるよう制御することができる。
 以下、前述の着眼点に基づき目標値設定部43により設定される目標値KWTと、出力設定部44により設定される設定値KWSETとについて詳細に説明する。
 目標値設定部43は、一次設定部53及び二次設定部54を有している。一次設定部53は、制限出力マップを参照して、元圧センサ26により測定されるガス元圧P0の測定値に応じて、ガスエンジン1の出力KWの一次目標値KWT1を設定する。二次設定部54は、一次設定部53により設定された一次目標値KWT1に基づき、ガスエンジン1の二次目標値KWT2を求め、求めた二次目標値KWT2を上記目標値KWTとして設定する。
 図5は、図3に示す一次設定部53により参照される制限出力マップを示している。図5に示すように、ガス元圧P0が、全負荷に応じた出力KW100での運転の継続を保証する圧力値P0m_100以上であるときには、一次目標値KWT1は当該出力KW100に設定される。ガス元圧P0が、当該圧力値P0m_100未満であるときには、当該出力KW100に対して制限された出力が一次目標値KWT1として設定される。この場合、ガス元圧P0が小さくなればなるほど、一次目標値KWT1がより小さい値に設定される。ガス元圧P0に対する一次目標値KWT1の推移は、図4に破線で示したガス元圧P0の下限値P0mの推移に基づいて設定される。
 具体的には、図5に示すガス元圧P0に対する一次目標値KWT1の推移は、図4に示すガス元圧P0の下限値P0mの推移を縦軸と横軸とを互いに入れ替えた形にして表現したものに相当している。本実施形態では、図4において負荷の上昇に応じて給気圧PBが下に凸の傾向で上昇する場合を例示しており、これに付随して図5では、ガス元圧P0の低下に応じて一次目標値KWT1が上に凸の傾向で低下する場合を例示している。但し、これは単なる一例であり、一次目標値KWT1の推移は、適宜変更可能である。また、本実施形態では、ガス元圧P0が、全負荷に応じた出力に応じた給気圧に対抗してガス燃料を噴射するために必要であるとして定まる圧力値P0m_100未満であるときに、当該出力に対して制限された出力が一次目標値として設定されるとしているが、これも単なる一例に過ぎず、適宜変更可能である。すなわち、要求負荷に応じた出力に応じて定まる圧力値未満であるときに、同様にして一次目標値が設定されてもよいし、その他の所定の出力に応じて定まる圧力値未満であるときに同様にして一次目標値が設定されてもよい。また、当該所定の出力は複数の値であってもよい。
 図3に戻り、二次設定部54では所定のランプ関数が用いられる。つまり、二次設定部54は、一次設定部53により設定される一次目標値KWT1の変化率が所定の許容変化率未満であるときには、当該一次目標値KWT1をそのまま目標値KWTとして設定する。一方、一次目標値KWT1の変化率が許容変化率以上であるときには、許容変化率に従って目標値KWTを変化させるような二次目標値KWT2を求め、当該二次目標値KWT2を目標値KWTとして設定する。一次目標値KWT1の変化率は、今回の処理において一次設定部53により設定された一次目標値と、前回の処理において設定された一次目標値又は二次目標値との差分であってもよい。
 ここでランプ関数は、一次目標値KWT1が上昇するよう変化したときに比較される第1の許容変化率が、一次目標値KWT1が低下するよう変化したときに比較される第2の許容変化率よりも小さくなるように設定される。つまり、ガス元圧P0が全負荷に対応する上記下限値P0m_100を下回っているときであって低下傾向にある場合、目標値KWT(即ち二次目標値KWT2)の変化率を、第2の許容変化率による制限はあるものの、比較的大きい値に設定することができる。また、ガス元圧P0が当該下限値P0m_100を下回っているときであって上昇傾向にある場合には、目標値KWT(即ち二次目標値KWT2)の変化率が第1の許容変化率に応じた比較的小さい値に設定される。
 出力設定部44は、このようにして目標値設定部43により設定された目標値KWTと、要求負荷に応じて定まる発電機50の出力の要求値KWDとを比較し、比較結果に応じて設定値KWSETを設定する。
 目標値KWTが要求値KWDを上回るときには、設定値KWSETが要求値KWDに基づいて設定される。これにより、ガス元圧P0が上記下限値P0m_100を上回るような十分に高い圧力であるが要求負荷が例えば部分負荷であるようなときに、出力を要求どおりに制御することができる。目標値KWTが要求値KWDを下回るときには、設定値KWSETが目標値KWTに基づいて設定される。これにより、要求負荷が例えば全負荷に定められているときであって、ガス元圧P0が上記下限値P0m_100を下回っているようなときに、このガス元圧P0の低下に対処して出力を低下させることができる。
 なお、出力設定部44においても所定のランプ関数を用いて最終的な設定値が設定される。これにより設定値KWSETが要求値KWDに基づいて設定される場合に、要求負荷が急変してもなだらかに出力を変更することができる。設定値KWSETが目標値KWTに基づいて設定される場合は、目標値KWTには二次設定部54にて既にランプ関数のフィルタがかけられているため、この目標値KWTをそのまま設定値KWSETとして設定することができる。
 そして、出力制御部45及び燃料制御部32により、出力がこのようにして設定された設定値KWSETとなるよう制御される。
 次に、図6を参照して、ガス元圧P0が低下した場合における出力の挙動について説明する。図6の横軸は時間、縦軸上部はガスエンジン1の負荷(発電機50の出力KW)、縦軸下部は圧力である。ここでは要求負荷が全負荷に設定されているときに、ガス元圧P0の低下と上昇が生じた場合の挙動を例示している。
 ガス元圧P0が全負荷に応じた下限値P0m_100以上であるときには、一次設定部53が一次目標値KWT1を全負荷に設定し続ける。よって、出力設定部44では全負荷に対応する出力が設定値KWSETとして設定される。
 ガス元圧P0が下限値P0m_100未満になると、一次設定部53が、出力の一次目標値KWT1を全負荷に対応する出力KW100よりも制限された出力に設定する。すると、目標値設定部43により設定される目標値KWTが要求値KWDを下回り、出力設定部44が当該目標値KWTを設定値KWSETとして設定する。この設定値KWTに基づいて主燃料供給弁15の開期間が短くなるように変更されるため、燃料供給量が減少して出力KWが低下する。出力KWの低下により、過給機3の回転数が緩やかではあるものの低下傾向に転じ、且つ給気圧設定部41において設定される設定値PBSETが緩やかではあるものの徐々に小さくなるよう変更され、結果として給気圧PBが低下していく。
 給気圧PBが低下すると、ガス機関入口圧力P1がその分低下し、更にガス元圧P0の下限値P0mもその分低下する。したがって、ガス元圧P0が全負荷に応じた下限値P0m_100を下回っても、そのときの負荷に応じて定まる下限値P0m以上とすることができる。このため、主燃料供給弁15よりガス燃料を給気ポート11内に給気圧PBに対抗して噴射可能な状況が確保され、ガスエンジン1の運転を継続させることができる。なお、このようにガス元圧P0の低下のため出力KWを低下させている間は、系統連携している商用系統に負荷が分担されることとなる。
 このようにガス元圧P0が低下傾向にある間は、一次目標値KWT1が小さくなるよう変化していく。前述したように、一次目標値KWT1が小さくなるよう変化するときには目標値の許容変化率が比較的大きい値に設定される。したがって、ガス元圧P0の低下が急速であっても、出力KWを速やかに低下させることが可能となり、これにより給気圧PB及びガス元圧P0の下限値P0mも同様にして速やかに低下させることが可能となる。このため、ガス元圧P0の急速な低下に好適に対処し、ガスエンジン1の運転を継続させることができるようになる。
 ガス元圧P0が上昇に転じると、一次目標値KWT1が大きくなるよう変化していく。前述したように、一次目標値KWT1が大きくなるよう変化するときには目標値KWTの許容変化率が比較的小さい値に設定される。これにより、ガス元圧P0の上昇速度に対して、出力KWが緩やかに上昇していき、給気圧PB及びガス元圧P0の下限値P0mも同様にして緩やかに上昇させることができる。これによりガス元圧P0と下限値P0mとの偏差を大きく確保することができる。したがって、ガス元圧P0が安定的に上昇しないようなことがあっても、ガス燃料を給気圧PBに対抗して噴射可能な状況を確保することができるとともに、ハンチング現象を好適に抑制することができる。
 以上、本発明の実施形態について説明したが、上記構成は本発明の範囲内で適宜変更可能である。例えば元圧低下時のガスエンジン1の出力を低下させる手法は、主燃料供給弁の開期間を短縮させる(即ち主燃料供給弁15が噴射する燃料量を減少させる)だけでなく、副燃料供給弁19を同様にして制御してもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明は、ガス燃料昇圧用の機器を別途設置しなくても、ガス燃料の元圧が低下したときにガスエンジンの運転を継続することができ、外部の燃料供給源からガス燃料の供給を受ける発電用ガスエンジンに適用すると有益である。
1 ガスエンジン
15 主燃料供給弁
19 副燃料供給弁
21 燃料通路
22 ガス遮断弁
23 ガス圧力調整弁
24 給気圧センサ
25 入口圧センサ
26 元圧センサ
31 主制御装置
41 給気圧設定部
42 ガス圧制御部
43 目標値設定部
44 出力設定部
45 出力制御部
53 一次設定部
54 二次設定部

Claims (6)

  1.  ガス燃料を主燃料とするガスエンジンの出力を制御するガスエンジンの制御装置であって、
     ガス燃料のガス元圧が、所定出力に応じて定まる圧力値未満であるときに、当該所定出力に対して制限された出力を目標値として設定する目標値設定部と、
     前記目標値設定部により設定された前記目標値と出力の要求値とに基づいて、出力の設定値を設定する出力設定部と、
     前記出力設定部により設定された前記設定値となるよう出力を制御する出力制御部と、を備えていることを特徴とするガスエンジンの制御装置。
  2.  前記所定出力が、要求負荷に応じた出力であることを特徴とする請求項1に記載のガスエンジンの制御装置。
  3.  前記目標値設定部が、
     ガス元圧に応じて出力の一次目標値を設定する一次設定部と、
     前記一次設定部により設定された前記一次目標値の変化率を許容変化率と比較し、前記許容変化率を超えるときに、前記目標値を前記許容変化率に従って変化させるべく定められた二次目標値を前記目標値として設定する二次設定部と、
     を有していることを特徴とする請求項1又は2に記載のガスエンジンの制御装置。
  4.  前記二次設定部は、前記一次目標値が大きくなるよう変化したときには、前記一次目標値の変化率を第1の前記許容変化率と比較し、前記一次目標値が小さくなるよう変化したときには、前記一次目標値の変化率を前記第1の許容変化率よりも大きい第2の前記許容変化率と比較することを特徴とする請求項3に記載のガスエンジンの制御装置。
  5.  前記出力設定部は、出力の要求値と、前記目標値設定部により設定された前記目標値とを比較し、前記目標値が前記要求値を下回るときには前記目標値に応じて前記設定値を設定し、前記目標値が前記要求値を上回るときには前記要求値に応じて前記設定値を設定することを特徴とする請求項1乃至4のいずれか1項に記載のガスエンジンの制御装置。
  6.  ガス燃料を主燃料とするガスエンジンの出力を制御する方法であって、
     ガス燃料のガス元圧を検出する元圧検出ステップと、
     前記元圧検出ステップにおいて検出されたガス元圧が、所定出力に応じて定まる所定圧力値未満であるときに、前記所定出力に対して制限された出力を目標値として設定する目標値設定ステップと、
     前記目標値設定ステップにおいて設定された前記目標値と出力の要求値とに基づいて、出力の設定値を設定する出力設定ステップと、
     前記出力設定ステップにおいて設定された前記設定値となるよう出力を制御する出力制御ステップと、
     を有していることを特徴とするガスエンジンの制御方法。
PCT/JP2010/007422 2009-12-24 2010-12-22 ガスエンジンの制御装置及び制御方法 WO2011077715A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127017494A KR101313466B1 (ko) 2009-12-24 2010-12-22 가스 엔진의 제어 장치 및 제어 방법
US13/519,017 US8983755B2 (en) 2009-12-24 2010-12-22 Control system and control method of gas engine
EP10838953.7A EP2518299B9 (en) 2009-12-24 2010-12-22 Device and method of controlling gas engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-293069 2009-12-24
JP2009293069A JP4977752B2 (ja) 2009-12-24 2009-12-24 ガスエンジンの制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2011077715A1 true WO2011077715A1 (ja) 2011-06-30

Family

ID=44195268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007422 WO2011077715A1 (ja) 2009-12-24 2010-12-22 ガスエンジンの制御装置及び制御方法

Country Status (5)

Country Link
US (1) US8983755B2 (ja)
EP (1) EP2518299B9 (ja)
JP (1) JP4977752B2 (ja)
KR (1) KR101313466B1 (ja)
WO (1) WO2011077715A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2647813A3 (de) * 2012-03-02 2014-06-25 Peter Feldgebel Vorrichtung zur Steuerung einer vollsequenziellen Gasanlage für Dieselmotoren insbesondere für Nutzfahrzeuge

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9476347B2 (en) 2010-11-23 2016-10-25 Woodward, Inc. Controlled spark ignited flame kernel flow in fuel-fed prechambers
US9172217B2 (en) 2010-11-23 2015-10-27 Woodward, Inc. Pre-chamber spark plug with tubular electrode and method of manufacturing same
US8584648B2 (en) 2010-11-23 2013-11-19 Woodward, Inc. Controlled spark ignited flame kernel flow
US9856848B2 (en) 2013-01-08 2018-01-02 Woodward, Inc. Quiescent chamber hot gas igniter
US9644556B2 (en) * 2013-05-31 2017-05-09 Ford Global Technologies, Llc Gaseous fuel injector activation
US9765682B2 (en) 2013-06-10 2017-09-19 Woodward, Inc. Multi-chamber igniter
JP6128975B2 (ja) * 2013-06-11 2017-05-17 ヤンマー株式会社 ガスエンジン
JP6134587B2 (ja) * 2013-06-11 2017-05-24 ヤンマー株式会社 ガスエンジン
JP6318011B2 (ja) * 2014-06-03 2018-04-25 ヤンマー株式会社 バイオマスガス専焼エンジンおよびコージェネレーション装置
JP6225841B2 (ja) * 2014-06-09 2017-11-08 マツダ株式会社 多種燃料エンジンの燃料噴射制御装置
EP3034851B1 (de) * 2014-12-15 2019-06-05 Innio Jenbacher GmbH & Co OG Brennkraftmaschine
CN107636275B (zh) 2015-03-20 2019-12-31 伍德沃德有限公司 点燃内燃发动机中的空气燃料混合物的系统和方法
US9653886B2 (en) 2015-03-20 2017-05-16 Woodward, Inc. Cap shielded ignition system
AT517206B1 (de) 2015-06-30 2016-12-15 Ge Jenbacher Gmbh & Co Og Verfahren zur Regelung einer Brennkraftmaschine
GB2530633A (en) * 2015-08-04 2016-03-30 Daimler Ag Method for operating a gaseous-fuel engine for a vehicle as well as drive unit for a vehicle
US9890689B2 (en) * 2015-10-29 2018-02-13 Woodward, Inc. Gaseous fuel combustion
JP6047217B1 (ja) * 2015-11-10 2016-12-21 川崎重工業株式会社 ガスエンジン駆動システム
US10208651B2 (en) * 2016-02-06 2019-02-19 Prometheus Applied Technologies, Llc Lean-burn pre-combustion chamber
JP6899224B2 (ja) * 2017-01-26 2021-07-07 三菱重工エンジン&ターボチャージャ株式会社 副室式ガスエンジン
CH717258A1 (de) * 2020-03-24 2021-09-30 Liebherr Machines Bulle Sa Vorrichtung zum Zuführen eines gasförmigen Kraftstoffs an einen Motor.
US11739702B2 (en) * 2021-02-23 2023-08-29 Aramco Services Company Reheated residual gas ignitor
US11352968B1 (en) * 2021-06-29 2022-06-07 Ford Global Technologies, Llc Methods and systems for reducing catalyst cooling during fuel cut via pre-chamber ignition system
JP2023136490A (ja) * 2022-03-17 2023-09-29 ヤンマーホールディングス株式会社 エンジン

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329913A (ja) * 2000-05-24 2001-11-30 Nissan Diesel Motor Co Ltd ガスエンジンを備えた車両の燃料容器保護装置
JP2002188519A (ja) * 2000-12-18 2002-07-05 Yamaha Motor Co Ltd 内燃機関のガス燃料供給装置
JP2002317664A (ja) 2001-04-19 2002-10-31 Mitsubishi Heavy Ind Ltd ガスエンジンの副室差圧制御装置
JP2004079451A (ja) * 2002-08-22 2004-03-11 Honda Motor Co Ltd ガス利用機関の停止方法
JP2006063831A (ja) * 2004-08-25 2006-03-09 Aisan Ind Co Ltd エンジンの液化ガス燃料供給装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533492A (en) * 1994-07-05 1996-07-09 Ford Motor Company Gaseous fuel injection control system using averaged fuel pressure compensation
US5753805A (en) * 1996-12-02 1998-05-19 General Motors Corporation Method for determining pneumatic states in an internal combustion engine system
JP3877468B2 (ja) * 1999-06-02 2007-02-07 富士通テン株式会社 圧縮天然ガス車の燃料噴射制御装置
IT1321088B1 (it) * 2000-11-24 2003-12-30 Fiat Ricerche Sistema di iniezione di gas, in particolare di metano, per motori acombustione interna, e valvola di regolazione facente parte di tale
JP2003227371A (ja) * 2002-02-05 2003-08-15 Fuji Heavy Ind Ltd 電子スロットル制御装置
US6687597B2 (en) * 2002-03-28 2004-02-03 Saskatchewan Research Council Neural control system and method for alternatively fueled engines
US7318414B2 (en) * 2002-05-10 2008-01-15 Tmc Company Constant-speed multi-pressure fuel injection system for improved dynamic range in internal combustion engine
GB2413824A (en) * 2004-05-07 2005-11-09 Statoil Asa Operating diesel-cycle i.c. engines on gaseous fuels with ignition-improvers
US8113181B2 (en) * 2005-03-09 2012-02-14 Rem Technology Inc. Method and apparatus for capturing and controlling fugitive gases
DE102005016281B4 (de) * 2005-04-08 2010-01-14 Continental Automotive Gmbh Betriebsverfahren und Vorrichtung für eine gasbetriebene Brennkraftmaschine
CA2505455C (en) * 2005-05-18 2007-02-20 Westport Research Inc. Direct injection gaseous fuelled engine and method of controlling fuel injection pressure
JP4192930B2 (ja) * 2005-09-12 2008-12-10 トヨタ自動車株式会社 内燃機関
US7377267B2 (en) * 2006-10-30 2008-05-27 Ford Global Technologies, Llc Injection strategy to maximize efficiency in gaseous engine
US7367312B1 (en) * 2006-11-29 2008-05-06 Ford Global Technologies, Llc Control strategy to better usage of fuel in gaseous engine
US7793620B2 (en) * 2006-12-11 2010-09-14 Ford Global Technologies, Llc Integrated gaseous fuel delivery system
DE102007009688A1 (de) * 2007-02-28 2008-09-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln eines gradientenlimitierten Summen-Solldrehmoments aus einem Solldrehmoment einer Drehzahlregelung
US7546834B1 (en) * 2008-04-29 2009-06-16 Ford Global Technologies, Llc Selectably fueling with natural gas or direct injection ethanol
US20100012090A1 (en) * 2008-07-17 2010-01-21 H2 Solutions, Llc Hydrogen delivery system and method for an internal combustion engine
KR101219954B1 (ko) * 2010-11-30 2013-01-08 현대자동차주식회사 엘피아이 차량의 엘피아이 램프 제어 방법 및 그를 위한 로직

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329913A (ja) * 2000-05-24 2001-11-30 Nissan Diesel Motor Co Ltd ガスエンジンを備えた車両の燃料容器保護装置
JP2002188519A (ja) * 2000-12-18 2002-07-05 Yamaha Motor Co Ltd 内燃機関のガス燃料供給装置
JP2002317664A (ja) 2001-04-19 2002-10-31 Mitsubishi Heavy Ind Ltd ガスエンジンの副室差圧制御装置
JP2004079451A (ja) * 2002-08-22 2004-03-11 Honda Motor Co Ltd ガス利用機関の停止方法
JP2006063831A (ja) * 2004-08-25 2006-03-09 Aisan Ind Co Ltd エンジンの液化ガス燃料供給装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2647813A3 (de) * 2012-03-02 2014-06-25 Peter Feldgebel Vorrichtung zur Steuerung einer vollsequenziellen Gasanlage für Dieselmotoren insbesondere für Nutzfahrzeuge

Also Published As

Publication number Publication date
EP2518299A4 (en) 2017-11-15
EP2518299A1 (en) 2012-10-31
US8983755B2 (en) 2015-03-17
KR20120092693A (ko) 2012-08-21
EP2518299B9 (en) 2019-11-20
US20120310510A1 (en) 2012-12-06
KR101313466B1 (ko) 2013-10-01
EP2518299B1 (en) 2019-02-13
JP4977752B2 (ja) 2012-07-18
JP2011132893A (ja) 2011-07-07

Similar Documents

Publication Publication Date Title
JP4977752B2 (ja) ガスエンジンの制御装置及び制御方法
JP4476317B2 (ja) ガスエンジンの統合制御方法及び装置
JP4599378B2 (ja) ガスエンジンの統合制御方法及び装置
JP4755155B2 (ja) ガスエンジンの統合制御方法及び装置
KR101418226B1 (ko) 가스 엔진의 연료 가스 공급 방법 및 장치
DK2652293T3 (en) METHOD OF OPERATING A Piston Incinerator in Transient Load Change, a Control System to Operate the Function of an Internal Combustion Engine, and a Piston Engine
JP2009057871A (ja) ガスエンジンの始動制御方法及び装置
KR101755969B1 (ko) 가스 엔진의 연소 제어 장치
WO2012111114A1 (ja) 多種燃料内燃機関及びその制御方法
JP2015132206A (ja) ガスエンジンの制御装置および制御方法ならびに制御装置を備えたガスエンジン
JP4319481B2 (ja) 希薄燃焼ガスエンジンの燃料ガス供給、給気装置
WO2015064527A1 (ja) 副室式ガスエンジン
JP2013177855A (ja) 副室式エンジン及びその運転制御方法
JP4627289B2 (ja) ガスタービン及びガスタービンの燃焼器始動制御方法
KR101601091B1 (ko) 터보차저를 구비한 엔진의 제어 장치 및 이를 이용한 제어 방법
JP4653767B2 (ja) 発電システムの制御方法
CN105937450B (zh) 用于操作发动机的方法和闭环控制系统
JP4335840B2 (ja) 発電用ディーゼルエンジンの燃料制御装置及び制御方法
JP4738426B2 (ja) ガスエンジンの制御方法及び装置
US7197878B2 (en) Pump control system
JP2021524555A (ja) ガス状燃料によるガスタービン設備の作動方法
US20220268232A1 (en) Derating operating strategy and gaseous fuel engine control system
JP2007211729A (ja) 4サイクルエンジン
JP2016075166A (ja) ガスエンジンのガス弁動作制御方法及びガスエンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010838953

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127017494

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13519017

Country of ref document: US