JP6134587B2 - ガスエンジン - Google Patents

ガスエンジン Download PDF

Info

Publication number
JP6134587B2
JP6134587B2 JP2013122700A JP2013122700A JP6134587B2 JP 6134587 B2 JP6134587 B2 JP 6134587B2 JP 2013122700 A JP2013122700 A JP 2013122700A JP 2013122700 A JP2013122700 A JP 2013122700A JP 6134587 B2 JP6134587 B2 JP 6134587B2
Authority
JP
Japan
Prior art keywords
valve
output
oxygen sensor
average value
gas engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013122700A
Other languages
English (en)
Other versions
JP2014240615A (ja
Inventor
大坪 弘幸
弘幸 大坪
一真 岸尾
一真 岸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013122700A priority Critical patent/JP6134587B2/ja
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to EP14810819.4A priority patent/EP2993334B1/en
Priority to CA2914973A priority patent/CA2914973A1/en
Priority to CN201480032877.7A priority patent/CN105283653B/zh
Priority to KR1020157034085A priority patent/KR102011552B1/ko
Priority to US14/897,005 priority patent/US10539089B2/en
Priority to AU2014279324A priority patent/AU2014279324A1/en
Priority to PCT/JP2014/064114 priority patent/WO2014199828A1/ja
Publication of JP2014240615A publication Critical patent/JP2014240615A/ja
Application granted granted Critical
Publication of JP6134587B2 publication Critical patent/JP6134587B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、燃料ガスのカロリー変化に対応することができるガスエンジンに関するものである。
一般に、ガスエンジンにおける空燃比の制御は、一定組成の燃料ガスに対応するように設定されているが、実際に供給されている燃料ガスの組成は、一定ではない。
そこで、従来より、燃料ガスをガスクロマトグラフィ等のガス組成測定装置で測定し、その測定結果に基づいて空燃比を制御するようになされたガスエンジンが提案されている(例えば、特許文献1参照)。
特開2003−148187号公報
しかし、上記従来のガスエンジンの場合、ガスクロマトグラフィ等のガス組成測定装置は、経時的使用によってカラムが劣化するので定期的に交換しなければならず、コストや人件費が嵩むこととなる。
また、ガスクロマトグラフィ等のガス組成測定装置は、気候の変化やカラムの劣化などによって検量線が変化してしまうので、標準ガスを用いて定期的に検量線を作り直さなければならず、取扱いが煩わしく、寒暖の差が激しい場所では使用できない。
さらに、燃料ガスの組成を測定して測定結果が出るまでに時間を要するため、シリンダヘッドに供給した燃料ガスが、組成を測定した燃料ガスとはならず、ズレを生じることとなる。そのため、燃料ガスの供給経路を工夫して測定結果が出た燃料ガスをシリンダヘッドに送り込むことも考えられるが、この場合、装置が複雑化する。
本発明は、係る実情に鑑みてなされたものであって、燃料ガスの組成変化に対応して空燃比制御を行うことができるガスエンジンを提供することを目的としている。
上記課題を解決するための本発明に係るガスエンジンは、第二バルブよりも応答性が低く燃料流量調整幅が大きい第一バルブと、第一バルブよりも応答性が高く燃料流量調整幅が小さい第二バルブとが燃料の供給経路において並列に接続されており、第一バルブを所定の開度に開けた状態で、第二バルブを所定の開度から、排気経路の三元触媒の入口側に設けた酸素センサまたは全領域センサおよび出口側に設けた酸素センサから得られる測定結果に基づいて所定ピッチで所定の空燃比からリーン側およびリッチ側に変動させて、当該第二バルブによるパータベーションを行うように構成された制御部を備えており、当該制御部は、ガスエンジンの運転状況が一定だとみなされる期間内における実際の運転時に、ガスエンジンの排気経路に設けられた酸素センサから得られる出力の平均値が、前記実際の運転時と同じ条件で制御部に設定されている酸素センサの出力目標値から外れている場合に、出力平均値が出力目標値となるように第一バルブの開度を調整するようになされたものである。
上記ガスエンジンにおいて、制御部は、実際の運転時の第二バルブによるパータベーション制御における最大開度と最小開度とに対応した、酸素センサの最大出力と最小出力とを抽出して出力平均値を算出するものであってもよい。
上記ガスエンジンにおいて、制御部は、幅を持たせた出力目標値に収束するように第一バルブの開度を調整するものであってもよい。
上記ガスエンジンにおいて、第一バルブおよび第二バルブは、各シリンダヘッド毎または複数のシリンダヘッド毎に設けられたものであってもよい。
上記ガスエンジンにおいて、第一バルブおよび/または第二バルブが複数設けられたものであってもよい。
上記ガスエンジンにおいて、酸素センサは、排気経路の触媒上流側に設けられた前酸素センサとなされたものであってもよい。
上記ガスエンジンにおいて、酸素センサは、排気経路の触媒下流側に設けられた後酸素センサとなされたものであってもよい。
本発明によると、燃料ガスの組成変化に対応して空燃比制御を行うことができる。
本発明に係るガスエンジンの全体構成の概略図である。 図1に示すガスエンジンにおける燃料ガスと吸入空気との混合部の構成を示すブロック図である。 パータベーション制御における空気過剰率、ソレノイドバルブ開度、センサ出力の各経時的変化を示すグラフである。 出力平均値の算出方法を説明するグラフであって、パータベーション制御時における前酸素センサの出力値の経時的変化を詳細に示すグラフである。 燃料ガスのカロリーの変化によって変動するソレノイドバルブおよびA/Fバルブの燃料ガス流量と吸入空気流量との関係を示すグラフである。 前酸素センサからの出力を基に、燃料ガスのカロリー変化を考慮した際の制御部による制御を説明するフロー図である。 後酸素センサからの出力を基に、燃料ガスのカロリー変化を考慮した際の制御部による制御を説明するフロー図である。 出力平均値の他の算出方法を説明するグラフであって、パータベーション制御時における前酸素センサの出力値の経時的変化を詳細に示すグラフである。 本発明の他の実施の形態に係る、前酸素センサからの出力を基に、ガスエンジンの燃料ガスのカロリー変化を考慮した際の制御部による制御を説明するフロー図である。 本発明の他の実施の形態に係る、後酸素センサからの出力を基に、ガスエンジンの燃料ガスのカロリー変化を考慮した際の制御部による制御を説明するフロー図である。 本発明のさらに他の実施の形態に係る、前酸素センサからの出力を基に、ガスエンジンの燃料ガスのカロリー変化を考慮した際の制御部による制御を説明するフロー図である。 本発明のさらに他の実施の形態に係る、後酸素センサからの出力を基に、ガスエンジンの燃料ガスのカロリー変化を考慮した際の制御部による制御を説明するフロー図である。 (a)は吸気部の他の構成を示す概略図、同図(b)はさらに他の構成を示す概略図である。 混合部の他の構成を示す概略図である。
以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明に係るガスエンジン1の全体構成の概略を示し、図2は同ガスエンジン1における燃料ガスと吸入空気との混合部2aを示し、図3は同ガスエンジン1の制御部10によるパータベーション制御の制御図を示し、図4は出力平均値bの算出方法を説明するグラフを示し、図5はソレノイドバルブ21およびA/Fバルブ22のバルブ特性を説明するグラフを示し、図6は燃料ガスのカロリー変化を考慮した制御部10による制御フローを示している。
このガスエンジン1は、ソレノイドバルブ21とA/Fバルブ22とを具備し、ソレノイドバルブ21によるパータベーションを行うように構成されており、所定のエンジン回転数や負荷でストイキ運転を行ったときに、ガスエンジン1の排気経路13に設けられた前酸素センサ31から得られる出力平均値bが、当該条件で制御部10に設定されている前酸素センサ31の出力目標値aとなるようにA/Fバルブ22の開度を調整するようになされている。
まず、ガスエンジン1の全体構成について説明する。
ガスエンジン1は、シリンダヘッド11に接続された吸気経路12に、空気と燃料ガスとを混合する混合部2aが設けられており、この混合部2aとシリンダヘッド11との間にスロットルバルブ2bが設けられている。これら混合部2aおよびスロットルバルブ2bによって吸気部2が構成されており、この吸気部2は、制御部10からの信号によって制御される。
混合部2aは、図2に示すように、ソレノイドバルブ21とA/Fバルブ22とメインジェット23とアジャストスクリュ24とが、レギュレータ25とミキサー26との間に並列に接続されている。
ソレノイドバルブ21は、理論空燃比となる空気過剰率(λ=1)のストイキ運転を制御するために、燃料ガスが通過する開口面積を調整できるように設計された流量特性の弁によって構成されている。このソレノイドバルブ21は、板バネまたはスプリングなどの付勢力によって流路を閉じるように付勢された可動弁を、電磁コイルで可動させて所定の開度に開くように構成されている。このソレノイドバルブ21は、例えば25ヘルツの速さで開閉を行い、その開閉の際のデューティ比を変更することで開度が調整できるようになされている。なお、ソレノイドバルブ21は、25ヘルツのものに限定されるものではなく、この種のパータベーション制御で使用される各種周波数のソレノイドバルブ21であってもよい。この構成により、ソレノイドバルブ21は、流量調整幅は小さいが、素早い流量調整が可能となされている。また、ソレノイドバルブ21を構成する流量特性の弁は、比例制御弁によって構成されるものであってもよい。
A/Fバルブ22は、理論空燃比となる空気過剰率(λ=1)のストイキ運転から、リーン燃焼となる空気過剰率(λ=1.4〜1.6)のリーン運転までの範囲を制御するために、燃料ガスの通過経路の開口面積を調整できるように設計された流量特性の比例制御弁によって構成されている。このA/Fバルブ22は、ステッピングモータの回転によって可動弁の開度を一段階毎に調整できるように構成されている。この構成によりA/Fバルブ22は、素早い流量調整はできないが、幅広い空気過剰率の範囲に対応できるように流量調整幅が大きく構成されている。
メインジェット23は、ソレノイドバルブ21およびA/Fバルブ22とともに、レギュレータ25からミキサー26へ流れる燃料の量を調整するように構成されたバルブで、上記したソレノイドバルブ21やA/Fバルブ22とは異なり、開度は、使用するメインジェット23の番号で固定されている。
アジャストスクリュ24は、手動で燃料ガスの量を調整するように構成されたバルブで、通常は、上記メインジェット23とともに固定されている。
レギュレータ25は、常に一定の圧力で燃料ガスを供給できるように、燃料ガスの圧力を制御するようになされている。
ミキサー26は、空気と燃料ガスとを混合するベンチュリ管によって構成されている。このミキサー26は、下流側に設けられたスロットルバルブ2bの開度に応じて吸入される空気のベンチュリ効果で燃料ガスと空気とを混合するようになされている。
シリンダヘッド11に接続される排気経路13には、サイレンサ3aが設けられており、このサイレンサ3aとシリンダヘッド11との間に三元触媒3bが設けられている。この三元触媒3bの排気ガス入口側には前酸素センサ31が設けられており、出口側にも別の後酸素センサ32が設けられている。
混合部2aは、リーン運転の際には、空気過剰率の範囲(λ=1.4〜1.6)のリーン運転を行うようになされている。この際、空気過剰率の範囲(λ=1.4〜1.6)の制御は、三元触媒3bの排気ガス入口側に設けられた全領域センサ(図示省略)からの検出結果に基づいて、ソレノイドバルブ21を閉じた状態でA/Fバルブ22を制御部10によって制御することで行われる。
また、混合部2aは、ストイキ運転を行う場合には、理論空燃比の空気過剰率(λ=1)を中心としてリーン側およびリッチ側に空燃比が変動するストイキ運転のパータベーション制御をすることができるようになされている。この際、パータベーション制御は、前酸素センサ31および後酸素センサ32からの検出結果に基づいて、A/Fバルブ22を開閉領域の中間の開度、例えば50%の開度に開けた状態で、ソレノイドバルブ21を開閉領域の中間の開度、例えば50%となる開度に開け、当該ソレノイドバルブ21を50%の開度から所定のピッチで開けたり閉じたりを繰り返し、開度の変動を制御部10によって制御することで行われる。
ここで、ストイキ運転時において、ソレノイドバルブ21およびA/Fバルブ22を、開閉領域の中間の開度に設定しているのは、小さい開度や大きい開度の領域に比べて中間の開度は、比例制御の精度が高いからである。したがって、小さい開度や大きい開度の領域で補正制御すること等によって、開閉領域の全域にわたって比例制御の精度が同じであるような場合にはこのような中間の開度にこだわる必要はない。ただし、リーン運転を行うガスエンジン1の場合、A/Fバルブ22は、リーン運転時に閉じることを考慮し、ストイキ運転の際には中間の開度よりも大きい開度に設定しておくことが好ましい。以下、説明の便宜上、所定カロリーの燃料ガスを用いてストイキ運転を行う場合においては、ソレノイドバルブ21を開度50%、A/Fバルブ22を開度50%と仮定して説明する。
制御部10は、所定カロリーの燃料ガスを用いてストイキ運転やリーン運転を行う場合の、ソレノイドバルブ21およびA/Fバルブ22のそれぞれの開度と、前酸素センサ31、後酸素センサ32、全領域センサ(図示省略)からの検出結果との関係が入力されており、この入力情報に従ってストイキ運転やリーン運転を制御するように構成されている。
例えば、ストイキ運転を制御する場合、制御部10は、三元触媒3bの入口側に設けられた前酸素センサ31の測定検出結果が理論空燃比の空気過剰率(λ=1)となるように、ソレノイドバルブ21の時間平均開度を50%に保ちながら、A/Fバルブ22の開度を調整することによって行われる。この際、基準燃料ガスが供給されていれば、A/Fバルブ22の開度も50%に維持される。
また、理論空燃比の空気過剰率(λ=1)を中心としてリーン側およびリッチ側に空燃比が変動するストイキ運転のパータベーションの制御は、三元触媒3bの入口側に設けられた前酸素センサ31と、その後段である三元触媒3bの出口側に設けられた後酸素センサ32との測定検出結果に基づいて、ソレノイドバルブ21の開閉度を制御することによって行われる。このパータベーションの制御は、制御部10によって以下のようにして行われる。
すなわち、図3に示すように、前酸素センサ31によって三元触媒3bに流入する手前の排気ガスの酸素濃度を測定する。この前酸素センサ31は、ストイキ運転よりもリッチ側に判定された場合には、ソレノイドバルブ21を、ストイキ運転の設定よりも過剰にリーン側に閉じる。
すると、排気ガス中の過剰の酸素は、三元触媒3bに吸蔵され、三元触媒3bに吸蔵された酸素が飽和してくるので、三元触媒3bの後段側に設けられた後酸素センサ32は、ソレノイドバルブ21の切り替えから所定の応答時間後にリーン側に移行する。
また、三元触媒3bよりも前段側の前酸素センサ31は、ストイキよりもリーン側にソレノイドバルブ21を閉じたことにより、リーン側に判定されるので、この判定に合わせてソレノイドバルブ21を、ストイキ運転の設定よりも過剰にリッチ側に開く。
すると、三元触媒3bに吸蔵されていた酸素は、排気ガス中に放出されて排気ガスを浄化するが、そのうち三元触媒3bに吸蔵されていた酸素が枯渇するので、三元触媒3b後段側に設けられた後酸素センサ32は、ソレノイドバルブ21の切り替えから所定の応答時間後にリッチ側に移行する。
以後、約1〜2秒程度の所定のピッチで空燃比を変更(パータベーション)させることで、三元触媒3bの後段側の後酸素センサ32は、理論空燃比の空気過剰率(λ=1)のリーン側とリッチ側とで空燃比がなだらかに変化する。この際、三元触媒3bは、酸素の吸蔵および放出が繰り返されることとなり、触媒の活性化した状態が保たれることとなる。
制御部10には、この図3に示したような制御マップが入力されており、所定カロリーの燃料ガスを用いてストイキ運転を行う場合、この制御マップに従った制御が行われることとなる。
このうち、ソレノイドバルブ21によるバルブ開度の制御パラメータとしては、所定時間で急激にバルブを開くジャンプアップ量J、その後、所定時間でなだらかにバルブが開くランプアップ速度R、次にソレノイドバルブ21を急激に閉じるまでの間のディレイタイムDによって決まる。したがって、制御部10に入力されているソレノイドバルブ21の開度については、このようなパータベーション制御時の開度変化の条件も入力されている。また、制御部10は、ストイキ運転において、前酸素センサ31が、理論空燃比の空気過剰率(λ=1)となるときの酸素濃度の出力値が、出力目標値aとして認識されている。この出力目標値aは、前酸素センサ31の出力値の単位時間当たりの平均値で算出されている。
また、制御部10は、所定のエンジン回転数や負荷でソレノイドバルブ21によるパータベーションを行っている実際の運転状況において、当該運転状況が安定しているとみなされるある一定時間内に、前酸素センサ31の酸素濃度の出力値の履歴から、実際の運転状況における出力平均値bを算出するようになされている。この出力平均値bの算出は、図4に示すように、パータベーション制御によって変化する酸素濃度の出力値を各段階で測定して算出される。図4では、3サイクル分の出力値を平均して算出しているが、特に3サイクル分に限定されるものではなく、1サイクル分または2サイクル分の出力値を平均したものであってもよいし、3サイクル以上の出力値を平均して出力平均値bを算出したものであってもよい。実際の運転状況から出力値の履歴を1サイクル分だけさかのぼって出力平均値bを算出した場合、実際の運転状況に近く、かつ、データ処理を早く行うことができるが、データの安定性が懸念される。実際の運転状況から開度の履歴を3サイクル以上さかのぼって出力平均値bを算出した場合、平均算出のためのデータ数が大きいので安定したデータが得られるが、処理するデータ数が多くなってデータ処理が遅くなってしまう。したがって、実際の運転状況から開度の履歴をどれだけさかのぼって出力平均値bを算出するかについては、使用するガスエンジン1や、その使用環境に応じて適宜決定される。
制御部10は、このようにして算出された実際の運転状況における出力平均値bと、制御部10に入力された同条件における本来の出力目標値aとを比較するようになされている。そして、出力平均値bが出力目標値aよりも小さい場合は、その小さい度合によってA/Fバルブ22の開度を開き、出力平均値bが出力目標値aと同じか大きい場合は、その大きい度合いに応じてA/Fバルブ22の開度を保つ、または、さらに閉じ、出力平均値bと出力目標値aとが一致するように制御される。
次に、制御部10による燃料ガスのカロリー変化を考慮した制御について説明する。
基準となる所定カロリーの燃料ガスが供給されている場合は、上記したように制御部10による制御が行われるが、実際に供給される燃料ガスのカロリーが基準よりも低い場合、または実際に供給される燃料ガスのカロリーが基準よりも高い場合、図5に示すように、流量調整幅の大きいA/Fバルブ22を開閉することによって、当該A/Fバルブ22を、その燃料ガスカロリーに合った開度に設定し直す必要がある。例えば、A/Fバルブ22を低カロリーガスに合わせた開度または高カロリーガスに合わせた開度とした状態において、ソレノイドバルブ21を全開または全閉にしたとしても、ソレノイドバルブ21による流量調整幅Vl,Vhは限られており、当該ソレノイドバルブ21だけで、カロリーの低い燃料ガスからカロリーの高い燃料ガスまでの範囲を制御することはできない。
しかも、上記したパータベーション制御のように制御部10によってA/Fバルブ22の開度を保ちながら、ソレノイドバルブ21を開閉させて制御を行っている時に、燃料ガスのカロリーが変化したような場合、その変化は、ソレノイドバルブ21によるパータベーション制御に混じってしまい、パータベーション制御により生じたものなのか、燃料ガスのカロリー変化により生じたものなのか判断がつかない。したがって、実際の運転状況では、燃料ガスのカロリーが変化したような場合であっても、素早い流量調整が可能なソレノイドバルブ21がその変化に追従し、当該ソレノイドバルブ21によって制御されてしまう。その結果、燃料ガスのカロリー変化による空燃比の変化を生じた場合、ソレノイドバルブ21がより開く方向またはより閉じる方向にずれてパータベーションすることとなるが、当該ソレノイドバルブ21の制御範囲が狭いため、すぐに制御可能範囲から外れて制御不能となってしまうこととなる。
そこで、燃料ガスのカロリー変化が生じてソレノイドバルブ21の開度が、より開く方向またはより閉じる方向にずれ始めた場合に、ソレノイドバルブ21ではなく、A/Fバルブ22によって開度調整をすることができるように、制御部10は、以下のように制御される。
まず、理論空燃比の空気過剰率(λ=1)でガスエンジン1のストイキ運転が開始される。このストイキ運転は、ソレノイドバルブ21の開度の時間平均値が50%となるように保ちながら、A/Fバルブ22の開度調整を行うことによって実行される。この際、燃料ガスが所定のカロリーであれば、A/Fバルブ22の開度も、所定のエンジン回転数や負荷でストイキ運転を行っていれば、あらかじめ制御部10に設定されていた開度、すなわち、50%の開度となるはずである。しかし、実際の運転時にガスエンジン1に供給される燃料ガスは、同じである保証は無く、地域によっては、一日の中で燃料ガスのカロリーが高くなったり、低くなったり変動する。
そこで、図6に示すように、燃料ガスのカロリー変化を掴むために、まず、ストイキ運転時において所定のエンジン回転数や負荷を検出し、これらの条件で制御部10に設定されている前酸素センサ31の出力目標値aを読み出す(ステップ1)。
出力目標値aを読み出した時から実際の運転状況における前酸素センサ31の出力履歴を過去にさかのぼり、一定時間における前酸素センサ31の出力履歴の平均値を出力平均値bとして算出する(ステップ2)。
燃料ガスのカロリーが変化していなければ、ステップ1で読み出した出力目標値aとステップ2で算出した出力平均値bとは一致するので、この出力目標値aと出力平均値bとを比較する(ステップ3)。
出力平均値bが出力目標値aよりも小さい場合、その差の分だけ燃料ガスのカロリーが小さく、前酸素センサ31によって検出される空気過剰率がリーン側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を開く(ステップ4)。
出力平均値bが出力目標値aよりも大きい場合、その差の分だけ燃料ガスのカロリーが大きく、前酸素センサ31によって測定される空気過剰率がリッチ側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を閉じる。また、出力平均値bが出力目標値aと同じ場合は、燃料ガスのカロリーが変化しておらず、前酸素センサ31によって測定される空気過剰率はずれていないので、現在のレートのまま、A/Fバルブ22は開度を保つ(ステップ5)。
以後、ステップ1からの制御を繰り返す。
なお、本実施の形態において、制御部10は、前酸素センサ31から得られる出力目標値aと出力平均値bとを比較してA/Fバルブ22の開度を調整するようになされているが、三元触媒3bの排気ガス出口側に設けた後酸素センサ32から得られる出力目標値aと出力平均値bとを比較してA/Fバルブ22の開度を調整するものであってもよい。
図7は、後酸素センサ32から得られる出力目標値aと出力平均値bとを比較してA/Fバルブ22の開度を調整する場合の制御部10の制御フローを示している。まず、燃料ガスのカロリー変化を掴むために、ストイキ運転時において所定のエンジン回転数や負荷を検出し、これらの条件で制御部10に設定されている後酸素センサ32の出力目標値aを読み出す(ステップ21)。
出力目標値aを読み出した時から実際の運転状況における後酸素センサ32の出力履歴を過去にさかのぼり、一定時間における後酸素センサ32の出力履歴の平均値を出力平均値bとして算出する(ステップ22)。
燃料ガスのカロリーが変化していなければ、ステップ21で読み出した出力目標値aとステップ22で算出した出力平均値bとは一致するので、この出力目標値aと出力平均値bとを比較する(ステップ23)。
出力平均値bが出力目標値aよりも小さい場合、その差の分だけ燃料ガスのカロリーが小さく、後酸素センサ32によって検出される空気過剰率がリーン側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を開く(ステップ24)。
出力平均値bが出力目標値aよりも大きい場合、その差の分だけ燃料ガスのカロリーが大きく、後酸素センサ32によって測定される空気過剰率がリッチ側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を閉じる。また、出力平均値bが出力目標値aと同じ場合は、燃料ガスのカロリーが変化しておらず、後酸素センサ32によって測定される空気過剰率はずれていないので、現在のレートのまま、A/Fバルブ22は開度を保つ(ステップ25)。
以後、ステップ21からの制御を繰り返す。
これら図6および図7に示す制御により、ガスエンジン1は、基準燃料ガスよりもカロリーが低いまたは高い燃料ガスが供給された場合に、パータベーション制御において前酸素センサ31または後酸素センサ32の出力値と連動しているソレノイドバルブ21ではなく、A/Fバルブ22の開度調整によって対応することができるので、燃料ガスのカロリーが大きく変化するような場合であっても、その変化に対応し、ソレノイドバルブ21によるストイキ運転のパータベーション制御を継続して行うことができる。したがって、排ガスの浄化性能を維持できる期間が長くなり、メンテナンスインターバルを長期化できる。また、触媒の貴金属量や容量を大きくしなくてもよくなり、触媒のコスト上昇を防止することができる。さらに、カロリー変化が大きな燃料ガスを使用する場合であっても、ガスエンジン1を運転することができる。また、燃料ガスのカロリーが異なる複数の国や地域で使用することが可能となる。
なお、図5に示すように、低カロリーガスが供給されている場合にソレノイドバルブ21を全閉から全開にしたときのガス流量調整幅Vlと、高カロリーガスが供給されている場合にソレノイドバルブ21を全閉から全開にしたときのガス流量調整幅Vhとは、大きく異なるため、同じ開度変化量でパータベーション制御を行うと、高カロリーガスが供給されている場合には空燃比の変動幅が大きくなり、低カロリーガスが供給されている場合には空燃比の変動幅が小さくなり、パータベーションがうまくいかなくなってしまう。したがって、ソレノイドバルブ21によってストイキ運転のパータベーション制御を行う場合に、A/Fバルブ22の開度を低カロリーガスに合わせ直したときは、ソレノイドバルブ21の開閉度は流量調整幅Vlを考慮して開度変化量を大きくし、A/Fバルブ22の開度を高カロリーガスに合わせ直したときは、ソレノイドバルブ21の開閉度は流量調整幅Vhを考慮して開度変化量を小さくすることで、空燃比の変動幅が安定したパータベーション制御を行うことが好ましい。この場合、流量調整幅Vl、Vhを考慮したソレノイドバルブ21の開度変化量は、A/Fバルブ22の開度と連動する形で、制御部10に入力設定しておくことができる。
本実施の形態において、出力平均値bは、図4に示すように、パータベーション制御の各空気過剰率の段階で前酸素センサ31の出力値を測定して算出している。しかし、この場合、出力平均値bを算出するために必要とされるデータ数が多く、制御部10に負担がかかることとなる。したがって、図8に示すように、出力平均値bは、パータベーション制御における前酸素センサ31の最大出力値と最小出力値とを測定して平均化することで簡易に算出するものであってもよい。この際、前酸素センサ31の最大出力値と最小出力値とは、前酸素センサ31から得られる出力値の変動曲線の変曲点の位置で検出される。出力平均値bを算出するために必要なデータ数は、パータベーション制御の1サイクル当たり、2つとなるので、例えば10サイクル分のデータを過去にさかのぼって出力平均値bを測定しても制御部10の情報処理に負担をかけることを防止することができる。図9は、このようにして算出した出力平均値bによる制御部10の制御について開示している。
すなわち、燃料ガスのカロリー変化を掴むために、まず、ストイキ運転時において所定のエンジン回転数や負荷を検出し、これらの条件で制御部10に設定されているソレノイドバルブ21の出力目標値aを読み出す(ステップ31)。
出力目標値aを読み出した時から実際の運転状況における前酸素センサ31の出力履歴を過去にさかのぼり、一定時間における前酸素センサ31の出力履歴の平均値を出力平均値bとして算出する。この際、前酸素センサ31の最大出力値と最小出力値とを過去10サイクル分にさかのぼって測定し、平均化して出力平均値bを算出する(ステップ32)。
燃料ガスのカロリーが変化していなければ、ステップ31で読み出した出力目標値aとステップ32で算出した出力平均値bとは一致するので、この出力目標値aと出力平均値bとを比較する(ステップ33)。
出力平均値bが出力目標値aよりも小さい場合、その差の分だけ燃料ガスのカロリーが小さく、前酸素センサ31によって検出される空気過剰率がリーン側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を開く(ステップ34)。
出力平均値bが出力目標値aよりも大きい場合、その差の分だけ燃料ガスのカロリーが大きく、前酸素センサ31によって検出される空気過剰率がリッチ側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を閉じる。また、出力平均値bが出力目標値aと同じ場合は、燃料ガスのカロリーが変化しておらず、前酸素センサ31によって検出される空気過剰率はずれていないので、現在のレートのまま、A/Fバルブ22は開度を保つ(ステップ35)。
以後、ステップ31からの制御を繰り返す。
なお、本実施の形態において、制御部10は、前酸素センサ31から得られる出力目標値aと出力平均値bとを比較してA/Fバルブ22の開度を調整するようになされているが、三元触媒3bの排気ガス出口側に設けた後酸素センサ32から得られる出力目標値aと出力平均値bとを比較してA/Fバルブ22の開度を調整するものであってもよい。
図10は、後酸素センサ32から得られる出力目標値aと出力平均値bとを比較してA/Fバルブ22の開度を調整する場合の制御部10の制御フローを示している。まず、燃料ガスのカロリー変化を掴むために、ストイキ運転時において所定のエンジン回転数や負荷を検出し、これらの条件で制御部10に設定されている後酸素センサ32の出力目標値aを読み出す(ステップ41)。
出力目標値aを読み出した時から実際の運転状況における後酸素センサ32の出力履歴を過去にさかのぼり、一定時間における後酸素センサ32の出力履歴の平均値を出力平均値bとして算出する。この際、後酸素センサ32の最大出力値と最小出力値とを過去10サイクル分にさかのぼって測定し、平均化して出力平均値bを算出する(ステップ42)。
燃料ガスのカロリーが変化していなければ、ステップ41で読み出した出力目標値aとステップ42で算出した出力平均値bとは一致するので、この出力目標値aと出力平均値bとを比較する(ステップ43)。
出力平均値bが出力目標値aよりも小さい場合、その差の分だけ燃料ガスのカロリーが小さく、後酸素センサ32によって検出される空気過剰率がリーン側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を開く(ステップ44)。
出力平均値bが出力目標値aよりも大きい場合、その差の分だけ燃料ガスのカロリーが大きく、後酸素センサ32によって検出される空気過剰率がリッチ側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を閉じる。また、出力平均値bが出力目標値aと同じ場合は、燃料ガスのカロリーが変化しておらず、後酸素センサ32によって検出される空気過剰率はずれていないので、現在のレートのまま、A/Fバルブ22は開度を保つ(ステップ45)。
以後、ステップ41からの制御を繰り返す。
これら図9および図10に示す制御により、ガスエンジン1は、基準燃料ガスよりもカロリーが低いまたは高い燃料ガスが供給された場合に、ソレノイドバルブ21ではなく、A/Fバルブ22の開度調整によって対応することができるので、燃料ガスのカロリーが大きく変化するような場合であっても、その変化に対応し、ソレノイドバルブ21によるストイキ運転のパータベーション制御を継続して行うことができる。
また、制御部10の情報処理に負担をかけることなく、出力平均値bを算出して空燃比制御を行うことができる。
なお、図9および図10に示す制御において、出力平均値bは、最大出力値と最小出力値とを過去10サイクル分にさかのぼって測定し、平均化して算出するようになされているが(ステップ32、ステップ42)、特に10サイクル分の出力履歴を基にして出力平均値bを算出することに限定されるものではなく、使用するガスエンジン1や、その設置環境に応じて適宜変更するものであってもよい。
また、上記した各実施の形態においては、出力目標値aと出力平均値bとを比べてその差の分だけ、所定のレートに従ってA/Fバルブ22を制御するようになされているが、出力目標値aと出力平均値bとが完全に一致することは難しい。したがって、上記制御による場合、頻繁にA/Fバルブ22が開いたり閉じたりを繰り返すこととなり、制御部10への負担が大きくなってしまうことが懸念される。そこで、図11に示すように、制御部10にマップ化された各出力目標値aとともに、当該出力目標値aと対応する不感帯幅cを制御部10に入力設定しておき、この不感帯幅cを用いて制御するものであってもよい。
この不感帯幅cとは、出力目標値aと出力平均値bとの差に反応してA/Fバルブ22が頻繁に開閉しないように設定される値であって、この値を超えた差にならないとA/Fバルブ22の開度変更が行われないように設定される数値範囲である。したがって、この不感帯幅cは、使用するガスエンジン1や、その使用環境に応じて適宜設定される。
図11は、前酸素センサ31から得られる出力目標値aと出力平均値bとを比較してA/Fバルブ22の開度を調整する場合の制御部10の制御フローを示している。すなわち、燃料ガスのカロリー変化を掴むために、まず、ストイキ運転時において所定のエンジン回転数や負荷を検出し、これらの条件で制御部10に設定されている前酸素センサ31の出力目標値aを読み出す(ステップ51)。
出力目標値aを読み出した時から実際の運転状況における前酸素センサ31の開度履歴を過去にさかのぼり、一定時間における前酸素センサ31の出力履歴の平均値を出力平均値bとして算出する(ステップ52)。
出力目標値aを読み出した時と同じ、エンジン回転数や負荷が一定となった期間内における不感帯幅cを制御部10から読み出す(ステップ53)。
燃料ガスのカロリーの変化が小さければ、ステップ51で読み出した出力目標値aとステップ52で算出した出力平均値bとの差は、不感帯幅cよりも小さいはずなので、この出力目標値aと出力平均値bとの差(|a−b|)を不感帯幅cと比較する(ステップ54)。
出力目標値aと出力平均値bとの差(|a−b|)が、不感帯幅cと同じか小さい場合は、燃料ガスのカロリーの変化は許容される範囲内の変化であるため、ステップ51からの制御が繰り返される。
出力目標値aと出力平均値bとの差(|a−b|)が、不感帯幅cよりも大きい場合は、燃料ガスのカロリー変化は許容される範囲を超えたものであるため、出力目標値aと出力平均値bとを比較する(ステップ55)。
出力平均値bが出力目標値aよりも小さい場合、その差の分だけ燃料ガスのカロリーが小さく、前酸素センサ31によって検出される空気過剰率がリーン側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を開く(ステップ56)。
出力平均値bが出力目標値aよりも大きい場合、その差の分だけ燃料ガスのカロリーが大きく、前酸素センサ31によって検出される空気過剰率がリッチ側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を閉じる。また、出力平均値bが出力目標値aと同じ場合は、燃料ガスのカロリーが変化しておらず、前酸素センサ31によって検出される空気過剰率はずれていないので、現在のレートのまま、A/Fバルブ22は開度を保つ(ステップ57)。
以後、ステップ51からの制御を繰り返す。
なお、本実施の形態において、制御部10は、前酸素センサ31から得られる出力目標値aと出力平均値bとを比較してA/Fバルブ22の開度を調整するようになされているが、三元触媒3bの排気ガス出口側に設けた後酸素センサ32から得られる出力目標値aと出力平均値bとを比較してA/Fバルブ22の開度を調整するものであってもよい。
図12は、後酸素センサ32から得られる出力目標値aと出力平均値bとを比較してA/Fバルブ22の開度を調整する場合の制御部10の制御フローを示している。すなわち、燃料ガスのカロリー変化を掴むために、まず、ストイキ運転時において所定のエンジン回転数や負荷を検出し、これらの条件で制御部10に設定されている後酸素センサ32の出力目標値aを読み出す(ステップ61)。
出力目標値aを読み出した時から実際の運転状況における後酸素センサ32の開度履歴を過去にさかのぼり、一定時間における後酸素センサ32の出力履歴の平均値を出力平均値bとして算出する(ステップ62)。
出力目標値aを読み出した時と同じ、エンジン回転数や負荷が一定となった期間内における不感帯幅cを制御部10から読み出す(ステップ63)。
燃料ガスのカロリーの変化が小さければ、ステップ61で読み出した出力目標値aとステップ62で算出した出力平均値bとの差は、不感帯幅cよりも小さいはずなので、この出力目標値aと出力平均値bとの差(|a−b|)を不感帯幅cと比較する(ステップ64)。
出力目標値aと出力平均値bとの差(|a−b|)が、不感帯幅cと同じか小さい場合は、燃料ガスのカロリーの変化は許容される範囲内の変化であるため、ステップ61からの制御が繰り返される。
出力目標値aと出力平均値bとの差(|a−b|)が、不感帯幅cよりも大きい場合は、燃料ガスのカロリー変化は許容される範囲を超えたものであるため、出力目標値aと出力平均値bとを比較する(ステップ65)。
出力平均値bが出力目標値aよりも小さい場合、その差の分だけ燃料ガスのカロリーが小さく、後酸素センサ32によって検出される空気過剰率がリーン側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を開く(ステップ66)。
出力平均値bが出力目標値aよりも大きい場合、その差の分だけ燃料ガスのカロリーが大きく、後酸素センサ32によって検出される空気過剰率がリッチ側にずれ始めていることとなるので、所定のレートに従って、A/Fバルブ22を閉じる。また、出力平均値bが出力目標値aと同じ場合は、燃料ガスのカロリーが変化しておらず、後酸素センサ32によって検出される空気過剰率はずれていないので、現在のレートのまま、A/Fバルブ22は開度を保つ(ステップ67)。
以後、ステップ61からの制御を繰り返す。
これら図11および図12に示す制御により、ガスエンジン1は、基準燃料ガスよりもカロリーが低いまたは高い燃料ガスが供給された場合に、ソレノイドバルブ21ではなく、A/Fバルブ22の開度調整によって対応することができるので、燃料ガスのカロリーが大きく変化するような場合であっても、その変化に対応し、ソレノイドバルブ21によるストイキ運転のパータベーション制御を継続して行うことができる。
また、不感帯幅cを設けて制御することにより、出力目標値aと出力平均値bとの差に反応してA/Fバルブ22が頻繁に開閉するのを防止することができ、かつ、制御部10による情報処理の負担を軽減できる。したがって、空燃比が意図せずハンチングしたりすることを防止して空燃比制御の安定化を図ることができる。
なお、この図11および図12に示す制御は、図6および図7に示す制御に不感帯幅cを取り入れた場合について説明しているが、図9および図10に示す制御に不感帯幅cを取り入れて制御を行うものであってもよい。
本実施の形態において、混合部2aは、吸気経路12に一つ設けられているが、図13(a)に示すように、ガスエンジン1の各シリンダヘッド11に一つずつ設けられたものであってもよいし、図13(b)に示すように、2つ以上の幾つかのシリンダヘッド11毎に(図面では2つ)一つの単位で設けられたものであってもよい。
また、本実施の形態において、混合部2aは、流量特性の異なるソレノイドバルブ21とA/Fバルブ22とを制御できるように構成しているが、図14に示すように、流量特性が同じ燃料流量調整バルブ20を2個または3個以上(図面では3個)の複数個設けて制御できるように構成したものであってもよい。この場合、本実施の形態におけるソレノイドバルブ21と同じように作用する燃料流量調整バルブ20と、A/Fバルブ22と同じように作用する燃料流量調整バルブ20とを備えるように構成したものであってもよいし、各燃料流量調整バルブ20のそれぞれが、本実施の形態におけるソレノイドバルブ21と同じように作用し、かつ、A/Fバルブ22と同じように作用するように構成したものであってもよい。この場合、燃料流量調整バルブ20として、具体的には、バタフライ弁やソレノイドバルブなど、この種の燃料ガス制御に使用している各種のバルブを使用することができる。
なお、上記において、ガスエンジン1は、ストイキ運転とリーン運転とを切り替えることができるように構成されているが、ストイキ運転のみを行うように構成されたガスエンジン1であってもよい。また、ガスエンジン1は、ストイキ運転の空気過剰率を前酸素センサ31によって検出するようになされているが、この前酸素センサ31に代えて、全領域センサ(図示省略)を用いてストイキ運転の空気過剰率を検出するようにしたものであってもよい。
このようにして構成される上記した各ガスエンジン1は、ガスヒートポンプ装置(図示省略)の駆動源として好適に使用することができる。また、このガスエンジン1は、コージェネレーション装置(図示省略)の駆動源としても好適に使用することができる。
また、本実施の形態においては、ガスエンジン1について述べているが、ガスエンジン1の他に、パータベーション制御が行われる各種エンシンに適用するものであってもよい。
1 ガスエンジン
10 制御部
11 シリンダヘッド
13 排気経路
2 吸気部
20 燃料流量調整バルブ(第一バルブおよび/まはた第二バルブ)
21 ソレノイドバルブ(第二バルブ)
22 A/Fバルブ(第一バルブ)
31 前酸素センサ
32 後酸素センサ
a 出力目標値
b 出力平均値

Claims (7)

  1. 第二バルブよりも応答性が低く燃料流量調整幅が大きい第一バルブと、第一バルブよりも応答性が高く燃料流量調整幅が小さい第二バルブとが燃料の供給経路において並列に接続されており
    第一バルブを所定の開度に開けた状態で、第二バルブを所定の開度から、排気経路の三元触媒の入口側に設けた酸素センサまたは全領域センサおよび出口側に設けた酸素センサから得られる測定結果に基づいて所定ピッチで所定の空燃比からリーン側およびリッチ側に変動させて、当該第二バルブによるパータベーションを行うように構成された制御部を備えており、
    当該制御部は、ガスエンジンの運転状況が一定だとみなされる期間内における実際の運転時に、ガスエンジンの排気経路に設けられた酸素センサから得られる出力の平均値が、前記実際の運転時と同じ条件で制御部に設定されている酸素センサの出力目標値から外れている場合に、出力平均値が出力目標値となるように第一バルブの開度を調整するようになされたことを特徴とするガスエンジン。
  2. 制御部は、実際の運転時の第二バルブによるパータベーション制御における最大開度と最小開度とに対応した、酸素センサの最大出力と最小出力とを抽出して出力平均値を算出するものである請求項1記載のガスエンジン。
  3. 制御部は、幅を持たせた出力目標値に収束するように第一バルブの開度を調整するものである請求項1または2記載のガスエンジン。
  4. 第一バルブおよび第二バルブは、各シリンダヘッド毎または複数のシリンダヘッダ毎に設けられたことを特徴とする請求項1ないし3の何れか一に記載のガスエンジン。
  5. 第一バルブおよび/または第二バルブが複数設けられたことを特徴とする請求項1ないし4の何れか一に記載のガスエンジン。
  6. 酸素センサは、排気経路の触媒上流側に設けられた前酸素センサとなされた請求項1ないし5の何れか一に記載のガスエンジン。
  7. 酸素センサは、排気経路の触媒下流側に設けられた後酸素センサとなされた請求項1ないし5の何れか一に記載のガスエンジン。
JP2013122700A 2013-06-11 2013-06-11 ガスエンジン Expired - Fee Related JP6134587B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2013122700A JP6134587B2 (ja) 2013-06-11 2013-06-11 ガスエンジン
CA2914973A CA2914973A1 (en) 2013-06-11 2014-05-28 Gas engine
CN201480032877.7A CN105283653B (zh) 2013-06-11 2014-05-28 燃气发动机
KR1020157034085A KR102011552B1 (ko) 2013-06-11 2014-05-28 가스 엔진
EP14810819.4A EP2993334B1 (en) 2013-06-11 2014-05-28 Gas engine
US14/897,005 US10539089B2 (en) 2013-06-11 2014-05-28 Gas engine
AU2014279324A AU2014279324A1 (en) 2013-06-11 2014-05-28 Gas engine
PCT/JP2014/064114 WO2014199828A1 (ja) 2013-06-11 2014-05-28 ガスエンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013122700A JP6134587B2 (ja) 2013-06-11 2013-06-11 ガスエンジン

Publications (2)

Publication Number Publication Date
JP2014240615A JP2014240615A (ja) 2014-12-25
JP6134587B2 true JP6134587B2 (ja) 2017-05-24

Family

ID=52022127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013122700A Expired - Fee Related JP6134587B2 (ja) 2013-06-11 2013-06-11 ガスエンジン

Country Status (8)

Country Link
US (1) US10539089B2 (ja)
EP (1) EP2993334B1 (ja)
JP (1) JP6134587B2 (ja)
KR (1) KR102011552B1 (ja)
CN (1) CN105283653B (ja)
AU (1) AU2014279324A1 (ja)
CA (1) CA2914973A1 (ja)
WO (1) WO2014199828A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6482946B2 (ja) * 2015-05-14 2019-03-13 ヤンマー株式会社 ガスエンジン
US9745903B2 (en) * 2015-07-10 2017-08-29 General Electric Company Dual fuel system for a combustion engine
JP6047217B1 (ja) * 2015-11-10 2016-12-21 川崎重工業株式会社 ガスエンジン駆動システム
US10914246B2 (en) 2017-03-14 2021-02-09 General Electric Company Air-fuel ratio regulation for internal combustion engines
JP6439207B1 (ja) * 2018-06-29 2018-12-19 三菱重工環境・化学エンジニアリング株式会社 排ガス水銀除去システム

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255229A (ja) * 1985-05-07 1986-11-12 Yanmar Diesel Engine Co Ltd ガス機関の出力制御装置
CH671609A5 (de) * 1985-06-24 1989-09-15 Mitsui Shipbuilding Eng Vorrichtung zum verhindern eines uebermaessigen durchflusses von gasfoermigem brennstoff durch eine einspritzduese eines dieselmotors.
US5186137A (en) * 1987-02-27 1993-02-16 Salzmann Willy E Rocking-piston machine
JPH0776545B2 (ja) * 1987-10-27 1995-08-16 ヤンマーディーゼル株式会社 火花点火機関の空燃比制御装置
US5230321A (en) * 1992-07-21 1993-07-27 Gas Research Institute Lean-burn internal combustion gas engine
US5363831A (en) * 1993-11-16 1994-11-15 Unisia Jecs Corporation Method of and an apparatus for carrying out feedback control on an air-fuel ratio in an internal combustion engine
KR100222527B1 (ko) * 1994-11-24 1999-10-01 정몽규 내연기관의 흡기조절장치
JPH11200845A (ja) * 1998-01-06 1999-07-27 Nissan Motor Co Ltd 触媒の劣化検出装置
US6253744B1 (en) * 1999-03-19 2001-07-03 Unisia Jecs Corporation Method and apparatus for controlling fuel vapor, method and apparatus for diagnosing fuel vapor control apparatus, and method and apparatus for controlling air-fuel ratio
JP2000282914A (ja) * 1999-03-31 2000-10-10 Yanmar Diesel Engine Co Ltd 内燃機関の空燃比制御装置
JP3680217B2 (ja) * 2000-06-26 2005-08-10 トヨタ自動車株式会社 内燃機関の空燃比制御装置
US6681564B2 (en) * 2001-02-05 2004-01-27 Komatsu Ltd. Exhaust gas deNOx apparatus for engine
JP2003148187A (ja) 2001-11-12 2003-05-21 Tokyo Gas Co Ltd 内燃機関の制御装置及び制御方法
JP2003262139A (ja) * 2002-03-08 2003-09-19 Mitsubishi Heavy Ind Ltd ガスエンジンの空燃比制御方法及びその装置
US6752135B2 (en) * 2002-11-12 2004-06-22 Woodward Governor Company Apparatus for air/fuel ratio control
JP2006322403A (ja) * 2005-05-19 2006-11-30 Toyota Industries Corp 内燃機関のガス燃料供給装置及び供給制御方法
JP2007239698A (ja) * 2006-03-10 2007-09-20 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2008038729A (ja) * 2006-08-04 2008-02-21 Yanmar Co Ltd ガスエンジンの制御方法
JP2008038782A (ja) 2006-08-07 2008-02-21 Yanmar Co Ltd エンジン駆動式ヒートポンプのエンスト防止制御装置
JP4616878B2 (ja) * 2007-12-14 2011-01-19 三菱重工業株式会社 ガスエンジンシステムの制御方法及び該システム
JP4563443B2 (ja) * 2007-12-14 2010-10-13 三菱重工業株式会社 ガスエンジンシステムの制御方法及び該システム
US9097188B2 (en) * 2008-10-01 2015-08-04 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine device
JP2011012593A (ja) * 2009-07-01 2011-01-20 Hitachi Automotive Systems Ltd 内燃機関の制御装置
US8336300B2 (en) * 2009-09-29 2012-12-25 Ford Global Technologies, Llc System and method for regenerating a particulate filter accompanied by a catalyst
JP4977752B2 (ja) * 2009-12-24 2012-07-18 川崎重工業株式会社 ガスエンジンの制御装置及び制御方法
DE102010014843B4 (de) * 2010-04-13 2020-06-25 Pierburg Gmbh Abgaskühlmodul für eine Verbrennungskraftmaschine
JP5667413B2 (ja) * 2010-10-22 2015-02-12 ヤンマー株式会社 エンジン制御方法
JP2012154276A (ja) 2011-01-27 2012-08-16 Honda Motor Co Ltd 制御装置及び同装置を備えたコージェネレーション装置
JP5308466B2 (ja) * 2011-01-31 2013-10-09 三菱重工業株式会社 ガスエンジンの燃料ガス供給方法および装置
JP5615872B2 (ja) * 2012-06-12 2014-10-29 日立オートモティブシステムズ株式会社 内燃機関の制御装置
US9151249B2 (en) * 2012-09-24 2015-10-06 Elwha Llc System and method for storing and dispensing fuel and ballast fluid
JP6014474B2 (ja) * 2012-11-30 2016-10-25 ヤンマー株式会社 ガスエンジン
JP6128975B2 (ja) * 2013-06-11 2017-05-17 ヤンマー株式会社 ガスエンジン
US10244258B2 (en) * 2014-06-23 2019-03-26 Mediatek Singapore Pte. Ltd. Method of segmental prediction for depth and texture data in 3D and multi-view coding systems
JP6482946B2 (ja) * 2015-05-14 2019-03-13 ヤンマー株式会社 ガスエンジン

Also Published As

Publication number Publication date
EP2993334A4 (en) 2016-05-04
CN105283653B (zh) 2018-02-23
AU2014279324A1 (en) 2016-01-28
AU2014279324A2 (en) 2016-03-03
KR20160018502A (ko) 2016-02-17
WO2014199828A1 (ja) 2014-12-18
JP2014240615A (ja) 2014-12-25
CN105283653A (zh) 2016-01-27
US20160123266A1 (en) 2016-05-05
US10539089B2 (en) 2020-01-21
KR102011552B1 (ko) 2019-08-16
CA2914973A1 (en) 2014-12-18
EP2993334A1 (en) 2016-03-09
EP2993334B1 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6128975B2 (ja) ガスエンジン
JP6014474B2 (ja) ガスエンジン
JP6134587B2 (ja) ガスエンジン
JP6482946B2 (ja) ガスエンジン
EP2899386B1 (en) Internal combustion engine
WO2018096785A1 (ja) 模擬ガス発生装置、評価装置及び模擬ガス発生方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6134587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees