WO2011077602A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2011077602A1
WO2011077602A1 PCT/JP2010/003383 JP2010003383W WO2011077602A1 WO 2011077602 A1 WO2011077602 A1 WO 2011077602A1 JP 2010003383 W JP2010003383 W JP 2010003383W WO 2011077602 A1 WO2011077602 A1 WO 2011077602A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
air conditioner
blower fan
detection microphone
detection device
Prior art date
Application number
PCT/JP2010/003383
Other languages
English (en)
French (fr)
Inventor
道籏聡
辻雅之
八嶋昇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP10838843A priority Critical patent/EP2518414A1/en
Priority to CN2010800586323A priority patent/CN102686951A/zh
Publication of WO2011077602A1 publication Critical patent/WO2011077602A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/665Sound attenuation by means of resonance chambers or interference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0029Axial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • G10K11/17833Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by using a self-diagnostic function or a malfunction prevention function, e.g. detecting abnormal output levels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/40Noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/104Aircos

Definitions

  • the present invention relates to an air conditioner equipped with a silencer for reducing noise such as a blower fan.
  • an active noise reduction method in which noise is reduced by outputting a control sound having the same amplitude and opposite phase with respect to noise from a speaker or the like and causing interference with the noise.
  • Such an active mute method generally includes a sound receiver (such as a sensing microphone), a signal processing device composed of a digital filter and an adaptive algorithm, a sound generator (such as a control speaker), and error signal detection. And a sensor (evaluation microphone or the like). Then, a sound receiver is arranged on the downstream side of the sound source to detect sound generated from the sound source, and a control signal having the same amplitude and opposite phase as the noise is created based on the detected sound.
  • the control signal created by the signal processing device is input to the sound generator and output as a control sound. Further, the control result of active silencing is evaluated by the error signal detection sensor arranged at the control point to be silenced, and the filter coefficient of the digital filter of the signal processing device is set so that the error signal detected by the error signal detection sensor is minimized. Update.
  • a network between the sound source (fan) 6 and the sound receiver (sensing microphone) 1 disposed in the flow path in the duct 5 is used.
  • the rectifying member 10 With the configuration in which the rectifying member 10 is provided, the sound radiated from the sound source 6, that is, the flow of the fluid (air) propagating the sound can be rectified so as to have a substantially uniform flow to obtain coherence.
  • An active noise control can be effectively performed by bringing the sounder 1 close to the sound source 6 side "(for example, see Patent Document 1).
  • a microphone 21 that detects noise generated by the fan blade 23 of the blower 20 and supplies this to the controller as a reference signal x is placed inside the rotating shaft 31 of the electric motor 30 that drives the fan blade 23 to rotate.
  • Provisioned (see, for example, Patent Document 2) has also been proposed.
  • Japanese Patent Laid-Open No. 5-188976 (summary, FIG. 1)
  • Japanese Patent Laid-Open No. 5-289777 (summary, FIG. 2)
  • the silencer described in Patent Document 1 since the silencer described in Patent Document 1 must sandwich a rectifying member between the blower fan and the sound receiver, the sound receiver cannot be installed directly under the fan. For this reason, the silencer described in Patent Document 1 has a problem that the system cannot be downsized. Furthermore, the silencer described in Patent Literature 1 has a problem that the cost increases because the number of parts increases.
  • the silencer described in Patent Document 2 may come into contact with the rotating shaft where the sound receiver rotates at high speed.
  • the sound receiver comes into contact with a rotating shaft that rotates at a high speed, the sound receiver not only detects abnormal noise due to the contact, but also leads to failure of the sound receiver. For this reason, it is necessary to attach a sound receiver so that it may not contact a rotating shaft, and there existed a subject that installation freedom was almost lost.
  • precise attachment is required, the mechanism of the blower fan becomes complicated, and there is a problem that the cost of the blower fan increases.
  • the present invention has been made to solve such a problem.
  • An air conditioner capable of performing active silencing with high accuracy without increasing the number of parts of the silencing device and without changing the mechanism of the blower fan. For the purpose of provision.
  • An air conditioner includes a housing in which an inlet and an outlet are formed, a blower fan having an impeller, a heat exchanger, and a noise detection device that detects noise generated from the blower fan, The control sound output device that outputs the control sound for reducing the noise, the mute effect detection device that detects the mute effect of the control sound, the control sound based on the detection results of the noise detection device and the mute effect detection device
  • An air conditioner comprising: a control sound generating device that generates a control sound generating device, wherein the noise detecting device extends an inscribed circle in contact with an inner peripheral portion of a blade of the impeller in a rotation axis direction of the impeller. It is arrange
  • the noise detection device is disposed in a cylindrical region in which an inscribed circle that is in contact with the inner peripheral portion of the impeller extends in the rotation axis direction of the impeller, and the stationary member of the blower fan or the blower It is provided on the downstream side of the fan. Therefore, it is possible to obtain an air conditioner that can perform active silencing with high accuracy without increasing the number of parts of the silencer and without changing the mechanism of the blower fan.
  • FIG. 3 is a front view of an air conditioner according to Embodiments 1 to 3 of the present invention. It is a bottom view of the ventilation fan in Embodiment 1 of this invention. It is sectional drawing of the ventilation fan shown in FIG. It is the figure which showed the signal processing apparatus which produces
  • FIG. 1 is a cross-sectional view of the air conditioner 1 shown in FIG. 2 cut along a cross-section X, and is a diagram illustrating a configuration of the air conditioner 1 according to the first embodiment.
  • the air conditioner 1 in FIG. 1 constitutes an indoor unit.
  • the air inlet 1 (more specifically, the casing of the air conditioner 1) has an inlet 3 at the top and a blower 5 at the lower end. Each is open.
  • An air flow path is formed in the air conditioner 1 so as to communicate the suction port 3 and the blowout port 5.
  • An axial flow fan having a substantially vertical rotation axis is provided below the suction port 3 of the air flow path.
  • the provided blower fan 2 is provided.
  • a heat exchanger 4 that cools or heats the air by exchanging heat is disposed below the blower fan 2.
  • the heat exchanger 4 is fixed in the housing by a heat exchanger fixing bracket 30. As indicated by the white arrow in FIG. 1, when the blower fan 2 is activated, indoor air is sucked into the air flow path in the air conditioner 1 from the suction port 3, and this intake air is present at the lower part of the blower fan 2. After cooling or heating with the heat exchanger 4, the air is blown out into the room from the outlet 5.
  • FIG. 3 is a bottom view of the blower fan according to Embodiment 1 of the present invention (viewed from the lower side of FIG. 1).
  • 4 is a cross-sectional view of the blower fan 2 shown in FIG.
  • the blower fan 2 includes an impeller 25 called a moving blade, a stationary blade 26, a stationary blade mounting member 7 to which the stationary blade 26 is attached to an outer peripheral portion, a motor (not shown), and a rotation that transmits power from the motor to the impeller 25.
  • a shaft (not shown) is provided.
  • 3 indicates a portion corresponding to the inner periphery of the blades of the blower fan 2 (that is, an inscribed circle in contact with the inner periphery of the blades of the impeller 25).
  • a motor that is a power source of the impeller 25 is provided in the stationary blade mounting member 7.
  • the motor and the boss 27 of the impeller 25 are connected by a rotating shaft 28. Thereby, the rotation of the motor is transmitted to the impeller 25 via the rotating shaft 28, and the impeller 25 rotates.
  • the impeller 25 rotates, air flows (blows) in the direction indicated by the white arrow in FIG.
  • the part shown with the oblique line in FIG. 4 has shown the part rotated at the time of the operation
  • the part without a diagonal line has shown the part (namely, immovable member) which does not rotate even when the ventilation fan 2 is operation
  • a portion corresponding to the inner periphery of the blade of the blower fan 2 (that is, an inscribed circle in contact with the inner periphery of the blade of the impeller 25) is an outer periphery of the boss portion 27.
  • the diameter of the stationary blade mounting member 7 is formed to be substantially the same as the diameter of the boss portion 27.
  • noise detection for detecting the operation sound (noise) of the air conditioner 1 including the blowing sound of the blowing fan 2 is applied to the stationary blade mounting member 7 corresponding to the inner periphery of the blade of the blowing fan 2.
  • a noise detection microphone 6 is attached as a device. That is, the noise detection microphone 6 is arranged in a cylindrical region (hereinafter referred to as a cylindrical region A) in which an inscribed circle that is in contact with the inner peripheral portion of the blade of the impeller 25 extends in the direction of the rotation axis of the impeller 25.
  • the stationary blade mounting member 7 is configured to be independent of the rotating impeller 25 and not to rotate as shown in FIG. 4 when the blower fan 2 is operated.
  • the noise detection microphone 6 also does not rotate during the operation of the blower fan 2. Further, below the noise detection microphone 6, a control speaker 8 as a control sound output device that outputs a control sound for noise is disposed so as to face the center of the air flow path from the wall of the housing.
  • a muffler effect detection microphone 9 is attached to the bottom wall of the air conditioner, for example, at the top of the outlet 5 as a muffler effect detecting device for detecting noise coming out of the outlet 5 and detecting the muffler effect. Yes.
  • the silencing effect detection microphone 9 is attached in the direction opposite to the flow path.
  • the installation position of the muffler effect detection microphone 9 is not limited to the upper part of the air outlet 5, but may be an opening of the air outlet 5.
  • the muffler effect detection microphone 9 may be attached to the lower part or the side part of the air outlet 5.
  • the silencing effect detection microphone 9 does not need to be provided in the direction opposite to the flow path accurately.
  • the muffler effect detection microphone 9 only needs to be provided toward the outside of the air conditioner 1 (housing). That is, the silencing effect detection microphone 9 may be installed at a position where noise radiated indoors can be detected.
  • the output signals of the noise detection microphone 6 and the silencing effect detection microphone 9 are input to a signal processing device 10 which is a control sound generation device for generating a signal (control sound) for controlling the control speaker 8.
  • the silencing mechanism of the air conditioner 1 includes the noise detection microphone 6, the control speaker 8, the silencing effect detection microphone 9, and the signal processing device 10.
  • FIG. 5 shows a configuration diagram of the signal processing apparatus 10.
  • the electric signal input from the noise detection microphone 6 is amplified by the microphone amplifier 11 and converted from an analog signal to a digital signal by the A / D converter 12.
  • the electric signal input from the muffler effect detection microphone 9 is amplified by the microphone amplifier 11, converted from an analog signal to a digital signal by the A / D converter 12, and averaged by multiplying the weighting coefficient by the weighting means 13. .
  • Each digital signal converted in this way is input to the FIR filter 18 and the LMS algorithm 19.
  • the FIR filter 18 generates a control signal that is corrected so that the noise detected by the noise detection microphone 6 has the same amplitude and opposite phase as the noise when the noise detection effect detection microphone 9 is installed. .
  • This control signal is converted from a digital signal to an analog signal by the D / A converter 14, amplified by the amplifier 15, and emitted from the control speaker 8 as a control sound.
  • FIG. 6 shows the results of an experiment in which the airflow blown from the blower fan 2 was visualized.
  • FIG. 6 is a photograph when the blower fan 2 is operated after the blower fan 2 is attached to the right end of the duct-shaped cylinder and white smoke is retained in the duct.
  • the smoke staying white is thin, and the white smoke is being swept away by the airflow.
  • white smoke remains in the vicinity of the stationary blade mounting member 7 of the blower fan 2 and the cylindrical region A, and the influence of the airflow is small. That is, it can be seen that the vicinity of the stationary blade mounting member 7 of the blower fan 2 and the columnar region A are not easily affected by the air current, and the pressure fluctuation due to the air current disturbance is small.
  • the air sent by the blower fan 2 passes through the air flow path and is sent to the heat exchanger 4.
  • the heat exchanger 4 is supplied with refrigerant from a pipe connected to an outdoor unit (not shown).
  • the air sent to the heat exchanger 4 is cooled by the refrigerant flowing through the heat exchanger 4 to become cold air, and is directly discharged into the room from the outlet 5.
  • the operation sound (noise) including the blowing sound of the blower fan 2 in the air conditioner 1 is detected by the noise detection microphone 6 attached to the stationary blade attachment member 7 of the blower fan 2.
  • the noise detected by the noise detection microphone 6 becomes a digital signal via the microphone amplifier 11 and the A / D converter 12 and is input to the FIR filter 18 and the LMS algorithm 19.
  • the tap coefficient of the FIR filter 18 is updated sequentially by the LMS algorithm 19.
  • h is a filter tap coefficient
  • e is an error signal
  • x is a filter input signal
  • is a step size parameter.
  • the step size parameter ⁇ controls the filter coefficient update amount for each sampling.
  • the digital signal having the tap coefficient updated by the LMS algorithm 19 and passing through the FIR filter 18 is converted into an analog signal by the D / A converter 14, amplified by the amplifier 15, and outputted as a control sound from the control speaker 8. It is discharged into the air flow path in the air conditioner 1.
  • the muffler effect detection microphone 9 attached to the upper part of the air outlet 1 of the air conditioner 1 in the direction opposite to the flow path, it propagates from the blower fan 2 through the air flow path and is released into the room from the air outlet 5 The sound after the control sound emitted from the control speaker 8 interferes with the generated noise is detected. As described above, the signal detected by the mute effect detection microphone 9 is converted into a digital signal and averaged by the weighting means 13.
  • FIG. 7 is a diagram showing a circuit of weighting means in Embodiment 1 of the present invention.
  • the weighting unit 13 includes an integrator including a multiplier 21 that multiplies an input signal by a weighting coefficient, an adder 32, a delay element 33 for one sampling, and a multiplier 34.
  • the weighting coefficient of the multiplier 21 can be set from the outside depending on the installation environment or the like. For example, in an environment where the disturbance is large and the operation is unstable, the weighting coefficient of the multiplier 21 may be set small. Conversely, in an environment where the disturbance is small, the weighting coefficient of the multiplier 21 may be set large. Thereby, the sensitivity with respect to an environmental change can be changed.
  • the averaging by the weighting means 13 may not be performed until the LMS algorithm 19 is stabilized. This is because the noise cannot be sufficiently reduced while the LMS algorithm 19 is not stable, and the output value of the weighting means 13 may run away. Furthermore, resetting may be performed when the output value of the weighting means 13 exceeds a certain value.
  • the signal averaged in this way is treated as the error signal e of the LMS algorithm 19 described above. Then, feedback control is performed so that the error signal e approaches zero, and the tap coefficient of the FIR filter 18 is appropriately updated. As a result, noise in the vicinity of the outlet 5 can be suppressed by the control sound that has passed through the FIR filter 18.
  • the silencing effect detection microphone 9 Since noise from the air conditioner 1 felt by humans is noise after being discharged into the room from the air outlet 5, the silencing effect detection microphone 9 is directed to the room on the opposite side of the flow path, so that The emitted noise can be detected. That is, by attaching the muffler effect detection microphone 9 to the upper part of the outlet 5 in the direction opposite to the flow path, it is possible to detect noise emitted into the room and sound with high coherence. Further, the muffler effect detection microphone 9 does not detect wind noise due to the air current because the air current is not directly applied. On the other hand, when the muffler effect detection microphone 9 is directed into the flow path, noise in the flow path is detected.
  • the silencing effect detection microphone 9 detects wind noise and further reduces the coherence.
  • the stability of the feedback control is impaired by the sound other than the noise.
  • sounds other than noise are averaged by arranging the weighting means 13 in the preceding stage of the feedback control.
  • sound components other than uncorrelated noise can be canceled, and feedback control can be stably operated. That is, the coherence between the noise detection microphone 6 and the silencing effect detection microphone 9 can be increased.
  • the noise detection microphone 6 since the noise detection microphone 6 is attached to the stationary blade attachment member 7 of the ventilation fan 2, an airflow does not directly hit the noise detection microphone 6. FIG. For this reason, it can reduce that the noise detection microphone 6 detects the pressure fluctuation component by airflow disturbance. Therefore, the noise detection microphone 6 can detect noise that is an operation sound of the blower fan 2 and a sound having high coherence.
  • the muffler effect detection microphone 9 since the muffler effect detection microphone 9 is attached to the upper part of the outlet 5 in the direction opposite to the flow path, the muffler effect detection microphone 9 is not directly exposed to the airflow, and the muffler effect detection microphone 9 is not affected by the airflow. .
  • the silencing effect detection microphone 9 can detect only the noise emitted into the room, the silencing effect detection microphone 9 can detect the noise actually heard by a person in the room and the noise having high coherence. it can. Further, since the sound detected by the muffling effect detection microphone 9 is averaged by the weighting means 13 and feedback control is performed, the sound detected by the muffler effect detection microphone 9 other than the noise from the air conditioner 1 is included. The components can be averaged and canceled. For this reason, high coherence is obtained for the detection sounds of the noise detection microphone 6 and the silencing effect detection microphone 9.
  • FIG. 8 shows coherence characteristics between the detection sound of the noise detection microphone 6 and the detection sound of the mute effect detection microphone 9 when the noise detection microphone 6 is installed outside the cylindrical region A and the blower fan 2 is operated.
  • FIG. 9 shows coherence characteristics between the detection sound of the noise detection microphone 6 and the detection sound of the mute effect detection microphone 9 when the blower fan 2 is operated by being installed inside the cylindrical region A. Comparing FIG. 8 and FIG. 9, it can be seen that the coherence is clearly higher when the noise detection microphone 6 is installed inside the cylindrical region A.
  • the noise detection microphone 6 can be easily attached without newly increasing the number of parts, and a precise attachment mechanism becomes unnecessary. Moreover, since the distance between the blower fan 2 and the noise detection microphone 6 can be shortened by installing the noise detection microphone 6 on the stationary blade mounting member 7 of the blower fan 2, the height of the air conditioner 1 is shortened. Can do.
  • the noise detection microphone 6 is installed on the stationary blade mounting member 7. However, inherent mechanical vibration accompanying rotation of the blower fan 2 is transmitted to the stationary blade mounting member 7, and the vibration is transmitted to the noise detection microphone 6. May be detected. In this case, the coherence between the noise detection microphone 6 and the silencing effect detection microphone 9 may be locally deteriorated. In such a case, the noise detection microphone 6 may be installed in a portion other than the stationary blade mounting member 7 in the cylindrical region A. For example, as shown in FIG. 10, the noise detection microphone 6 may be installed on the heat exchanger 4 in a range within the cylindrical region A. Further, for example, as shown in FIG. 11, the noise detection microphone 6 may be installed on the heat exchanger fixing bracket 30 in a range within the cylindrical region A.
  • the noise detection microphone 6 By installing the noise detection microphone 6 in this manner, the coherence between the noise detection microphone 6 and the silencing effect detection microphone 9 can be further increased as compared with the case where the noise detection microphone 6 is installed on the stationary blade mounting member 7. A higher silencing effect can be obtained.
  • the noise detection microphone 6 may be covered with a wall member 31 as shown in FIG. Since the air current can be blocked from the wall member, it is less affected by the air current, and a higher silencing effect can be obtained.
  • the wall member 31 is formed in a substantially cylindrical shape, but the shape of the wall member 31 is arbitrary. Even when the noise detection microphone 6 is attached to the heat exchanger 4 or the heat exchanger fixing bracket 30, the noise detection microphone 6 may be covered with the wall member 31. It is less affected by the airflow, and a higher silencing effect can be obtained.
  • the muffler effect detection microphone 9 attached to the upper part of the air outlet 5 in the direction opposite to the flow path may be covered with a wall member. Since the airflow can be blocked, the sound deadening effect detecting microphone 9 is not affected by the airflow, and a higher sound deadening effect can be obtained.
  • an example of an axial fan as the blower fan 2 has been described as an example.
  • any fan that blows air by rotating an impeller may be used.
  • the FIR filter 18 and the LMS algorithm 19 are used for the signal processing device 10.
  • any adaptive signal processing circuit that can bring the sound detected by the mute effect detection microphone 9 close to zero can be used.
  • a filtered-X algorithm generally used in the mute method may be used.
  • the weighting means 13 does not need to be an integrator, and may be any means that can average.
  • the signal processing device 10 does not need to be configured to perform adaptive signal processing, and may be configured to generate a control sound using a fixed tap coefficient.
  • the signal processing device 10 does not need to be a digital signal processing circuit, and may be an analog signal processing circuit.
  • the noise detection microphone 6 that is a noise detection device is provided in the cylindrical region A and on the stationary member of the blower fan 2. For this reason, since the influence of the airflow from the blower outlet of the blower fan 2 can be reduced and a sound with high noise and coherence can be detected, high-accuracy active silencing can be performed. Moreover, since the noise detection microphone 6 can be installed without increasing the number of parts of the air conditioner 1 without changing the mechanism of the blower fan 2, the air conditioner 1 having a high degree of installation freedom can be realized.
  • the stationary member of the blower fan 2 is not limited to the stationary blade mounting member 7. If there is a stationary member in which at least a part of the components of the blower fan 2 is disposed in the cylindrical region A, the noise detection microphone 6 may be provided in a range that is in the cylindrical region A of the stationary member.
  • the noise detection microphone 6 that is a noise detection device is provided in the cylindrical region A and on the downstream side of the blower fan 2. For this reason, since the influence of the airflow from the blower outlet of the blower fan 2 can be reduced and a sound with high noise and coherence can be detected, high-accuracy active silencing can be performed. Moreover, since the noise detection microphone 6 can be installed without increasing the number of parts of the air conditioner 1 without changing the mechanism of the blower fan 2, the air conditioner 1 having a high degree of installation freedom can be realized.
  • the active noise reduction can be performed with higher accuracy than when the noise detection microphone 6 is provided on the stationary member of the blower fan 2. Can do.
  • the components for providing the noise detection microphone 6 are not limited to the heat exchanger 4 or the heat exchanger fixture 30. If there is a component that is at least partially in the cylindrical region A and disposed on the downstream side of the blower fan 2, the noise detection microphone 6 may be provided in a range that is in the cylindrical region A of the component.
  • the muffler effect detection microphone 9 which is a muffler effect detection device is provided at the opening of the air outlet 5 and is arranged toward the outside of the air conditioner 1. Yes. For this reason, the noise emitted into the room can be detected without being influenced by the airflow. Therefore, high coherence can be obtained for the indoor noise radiated from the air conditioner 1 and the detection sound of the muffler effect detection microphone 9. For this reason, it is possible to perform active silencing with high accuracy against the indoor noise radiated from the air conditioner 1.
  • the signal processing device 10 that is the control sound generation device weights the detection result detected by the muffler effect detection microphone 9 that is the muffler effect detection device, A circuit for performing feedback control is provided. For this reason, it can cancel by averaging sounds other than the noise of the air conditioner 1 detected by the muffler effect detection microphone 9. Therefore, a high coherence sound can be detected between the noise detection microphone 6 and the silencing effect detection microphone 9, and active silencing with higher accuracy can be performed.
  • the noise detection microphone 6 is installed in a range in the cylindrical region A of the stationary blade mounting member 7 of the blower fan 2. For this reason, since the influence of the airflow from the blower outlet of the blower fan 2 can be reduced and a sound with high noise and coherence can be detected, high-accuracy active silencing can be performed. Moreover, since the noise detection microphone 6 can be installed without increasing the number of parts of the air conditioner without changing the mechanism of the blower fan 2, the air conditioner 1 having a high degree of freedom in installation can be realized.
  • the noise detection microphone 6 is provided in a range that is in the cylindrical region A of the heat exchanger 4. For this reason, since the influence of the airflow from the blower outlet of the blower fan 2 can be reduced and a sound with high noise and coherence can be detected, high-accuracy active silencing can be performed. Moreover, since the noise detection microphone 6 can be installed without increasing the number of parts of the air conditioner without changing the mechanism of the blower fan 2, the air conditioner 1 having a high degree of freedom in installation can be realized. Furthermore, since the inherent mechanical vibration associated with the rotation of the blower fan 2 is not detected by the noise detection microphone 6, the active noise reduction can be performed with higher accuracy than when the noise detection microphone 6 is provided on the stationary member of the blower fan 2. Can do.
  • the noise detection microphone 6 is provided in a range that is in the cylindrical region A of the heat exchanger fixture 30. For this reason, since the influence of the airflow from the blower outlet of the blower fan 2 can be reduced and a sound with high noise and coherence can be detected, high-accuracy active silencing can be performed. Moreover, since the noise detection microphone 6 can be installed without increasing the number of parts of the air conditioner without changing the mechanism of the blower fan 2, the air conditioner 1 having a high degree of freedom in installation can be realized. Furthermore, since the inherent mechanical vibration associated with the rotation of the blower fan 2 is not detected by the noise detection microphone 6, the active noise reduction can be performed with higher accuracy than when the noise detection microphone 6 is provided on the stationary member of the blower fan 2. Can do.
  • the noise detection microphone 6 is covered with the wall member 31. By blocking the air flow, the noise detection microphone 6 is less affected by the air flow, so that a higher silencing effect can be obtained.
  • the silencing effect detection microphone 9 is covered with a wall member. By blocking the airflow, the muffler effect detection microphone 9 is not further affected by the airflow, so that a higher noise reduction effect can be obtained.
  • a noise / muffling effect detection microphone 16 is arranged as a noise / muffling effect detection device that integrates the noise detection microphone 6 and the muffling effect detection microphone 9 in the first embodiment.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 13 is a cross-sectional view of the air conditioner 1 shown in FIG. 2 cut along a cross-section X, and is a diagram illustrating the configuration of the air conditioner 1 according to the second embodiment.
  • the air conditioner 1 in FIG. 13 constitutes an indoor unit.
  • the air inlet 1 (more specifically, the casing of the air conditioner 1) has an inlet 3 at the top, and a blower 5 at the lower end. Each is open.
  • An air flow path is formed in the air conditioner 1 so as to communicate the suction port 3 and the blowout port 5.
  • An axial flow fan having a substantially vertical rotation axis is provided below the suction port 3 of the air flow path.
  • the provided blower fan 2 is provided.
  • a heat exchanger 4 that cools or heats the air by exchanging heat is disposed below the blower fan 2.
  • the heat exchanger 4 is fixed in the housing by a heat exchanger fixing bracket 30. As shown by the white arrow in FIG. 13, when the blower fan 2 is activated, the indoor air is sucked into the air flow path in the air conditioner 1 from the suction port 3, and this intake air is in the lower part of the blower fan 2. After cooling or heating with the heat exchanger 4, the air is blown out into the room from the outlet 5.
  • the air conditioner 1 described in the first embodiment is different from the air conditioner 1 described in the first embodiment in that the air conditioner 1 described in the first embodiment includes two microphones, a noise detection microphone 6 and a silencing effect detection microphone 9 for active silencing. However, in the air conditioner 1 of the second embodiment, these are replaced with the noise / silencing effect detection microphone 16 which is a single microphone. . Further, since the signal processing method is different, the contents of the signal processing device 17 are different.
  • a control speaker 8 that outputs a control sound for noise is arranged on the side wall portion of the casing of the air conditioner 1 so as to face the center of the air flow path from the wall.
  • the control sound emitted from the control speaker 8 is caused to interfere with the operation sound (noise) of the air conditioner 1 including the blowing sound of the blower fan 2 in the range within the cylindrical region A of the stationary blade mounting member 7.
  • a noise / muffling effect detection microphone 16 for detecting the sound after the sound is disposed.
  • the stationary blade attaching member 7 is independent of the rotating impeller during operation of the blower fan 2 and is configured not to rotate. For this reason, the noise / muffling effect detection microphone 16 also does not rotate during the operation of the blower fan 2.
  • the output signal of the noise / muffling effect detection microphone 16 is input to a signal processing device 17 which is a control sound generating device for generating a signal (control sound) for controlling the control speaker 8.
  • the silencer mechanism of the air conditioner 1 includes the noise / silencer effect detection microphone 16, the control speaker 8, and the signal processing device 17.
  • FIG. 14 shows a configuration diagram of the signal processing device 17.
  • the electric signal converted from the sound signal by the noise / muffling effect detection microphone 16 is amplified by the microphone amplifier 11 and converted from an analog signal to a digital signal by the A / D converter 12.
  • the converted digital signal is input to the LMS algorithm 19.
  • a difference signal from the signal obtained by convolving the FIR filter 20 with the output signal of the FIR filter 18 is input to the FIR filter 18 and the LMS algorithm 19.
  • the difference signal is subjected to a convolution operation by the tap coefficient calculated by the LMS algorithm 19 in the FIR filter 18, then converted from a digital signal to an analog signal by the D / A converter 14, and amplified by the amplifier 15. , And emitted as a control sound from the control speaker 8.
  • the air sent by the blower fan 2 passes through the air flow path and is sent to the heat exchanger 4.
  • the heat exchanger 4 is supplied with refrigerant from a pipe connected to an outdoor unit (not shown).
  • the air sent to the heat exchanger 4 is cooled by the refrigerant flowing through the heat exchanger 4 to become cold air, and is directly discharged into the room from the outlet 5.
  • the sound after the control sound output from the control speaker 8 interferes with the operation sound (noise) including the blowing sound of the blower fan 2 is detected as noise / noise reduction effect attached to the stationary blade mounting member 7 of the blower fan 2. It is detected by the microphone 16.
  • the noise detected by the noise / muffling effect detection microphone 16 becomes a digital signal via the microphone amplifier 11 and the A / D converter 12.
  • FIG. 15 shows the waveform of the sound after interference between the noise and the control sound (a in FIG. 15), the waveform of the control sound (b in FIG. 15), and the waveform of the noise (c in FIG. 15).
  • b + c a. Therefore, in order to obtain c from a, the difference between a and b may be taken. That is, the noise to be silenced can be created from the difference between the interference sound detected by the noise / silence effect detection microphone 16 and the control sound.
  • FIG. 16 shows a route from the control signal output from the FIR filter 18 as a control sound output from the control speaker 8 to the noise / muffling effect detection microphone 16 and input to the signal processing device 17.
  • FIG. It passes through the D / A converter 14, the amplifier 15, the path from the control speaker 8 to the noise / silence effect detection microphone 16, the noise / silence effect detection microphone 16, the microphone amplifier 11, and the A / D converter 12.
  • the FIR filter 20 in FIG. 14 estimates the transfer characteristic H.
  • the control sound can be estimated as the signal b detected by the noise / silence effect detection microphone 16, and after the interference detected by the noise / silence effect detection microphone 16
  • the noise c to be silenced is generated by taking the difference from the sound a.
  • the noise c to be silenced generated in this way is supplied to the LMS algorithm 19 and the FIR filter 18 as an input signal.
  • the digital signal that has passed through the FIR filter 18 whose tap coefficient has been updated by the LMS algorithm 19 is converted to an analog signal by the D / A converter 14, amplified by the amplifier 15, and then supplied from the control speaker 8 as a control sound to the air conditioner. 1 is discharged into the air flow path in the body.
  • the noise / silencing effect detection microphone 16 attached to the stationary blade attachment member 7 of the blower fan 2 is the sound after the control sound emitted from the control speaker 8 interferes with the noise generated from the blower fan 2. Is detected. Since the error signal of the LMS algorithm 19 described above is input with the sound detected by the noise / muffling effect detection microphone 16, the tap coefficient of the FIR filter 18 is updated so that the sound after the interference approaches zero. Will be. As a result, noise generated from the blower fan 2 can be suppressed by the control sound that has passed through the FIR filter 18.
  • the noise / silencing effect detection microphone 16 is mounted in a range within the cylindrical region A of the stationary blade mounting member 7. It is possible to reduce the detection of the pressure fluctuation component due to the turbulence of the air flow without direct contact with the air flow. For this reason, the noise which is the driving
  • the noise / silencing effect detecting microphone 16 can be easily attached without increasing the number of parts. No mounting mechanism is required. Moreover, since the noise / silence effect detection microphone 16 is installed on the stationary blade mounting member 7 of the blower fan 2, the distance between the blower fan 2 and the noise / silence effect detection microphone 16 can be shortened. The height can be shortened.
  • the noise / silencing effect detection microphone 16 is installed on the stationary blade mounting member 7, but the inherent mechanical vibration accompanying the rotation of the blower fan 2 is transmitted to the noise / silence effect detection microphone 16.
  • the noise detection microphone 6 may detect the vibration. For this reason, the silencing effect may be reduced.
  • the noise / muffling effect detection microphone 16 may be installed in a portion other than the stationary blade mounting member 7 in the cylindrical region A.
  • the noise detection microphone 6 may be installed on the heat exchanger 4 in the range within the cylindrical region A.
  • a noise / silencing effect detection microphone 16 may be installed on the heat exchanger fixing bracket 30 in a range within the cylindrical region A.
  • the noise / muffling effect detection microphone 16 may be covered with a wall member 31. Since the air current can be blocked from the wall member, it is less affected by the air current, and a higher silencing effect can be obtained.
  • the wall member 31 is formed in a substantially cylindrical shape, but the shape of the wall member 31 is arbitrary. Further, even when the noise / silencing effect detection microphone 16 is attached to the heat exchanger 4 or the heat exchanger fixing bracket 30, the noise / silence effect detection microphone 16 may be covered with the wall member 31. It is less affected by the airflow, and a higher silencing effect can be obtained.
  • the axial fan is used as the blower fan 2 as an example. However, any fan that blows air by rotating the impeller may be used.
  • the FIR filter 18 and the LMS algorithm 19 are used as the adaptive signal processing circuit.
  • any adaptive signal processing circuit may be used as long as the sound detected by the noise / muffling effect detection microphone 16 approaches zero.
  • the signal processing device 17 does not need to be configured to perform adaptive signal processing, and may be configured to generate control sound using a fixed tap coefficient. Further, the signal processing device 17 does not need to be a digital signal processing circuit, and may be an analog signal processing circuit.
  • the noise / silence effect detection microphone 16 that is the noise / silence effect detection device is provided in the cylindrical region A and on the stationary member of the blower fan 2. Yes. For this reason, since the influence of the airflow from the blower outlet of the blower fan 2 can be reduced and a sound with high noise and coherence can be detected, high-accuracy active silencing can be performed. In addition, since the noise / muffling effect detection microphone 16 can be installed without increasing the number of parts of the air conditioner 1, the air conditioner 1 having a high degree of installation freedom can be realized.
  • the noise / silence effect detection microphone 16 that is a noise / silence effect detection device is provided in the cylindrical region A and downstream of the blower fan 2. Yes. For this reason, since the influence of the airflow from the blower outlet of the blower fan 2 can be reduced and a sound with high noise and coherence can be detected, high-accuracy active silencing can be performed. Further, since the noise / silence effect detection microphone 16 can be installed without increasing the number of parts of the air conditioner 1 without changing the mechanism of the blower fan 2, the air conditioner 1 having a high degree of installation freedom can be realized. .
  • the noise / silencing effect detection microphone 16 is more accurate than the case where the noise / silence effect detection microphone 16 is provided on the stationary member of the blower fan 2. High active silencing can be performed.
  • the noise / silencing effect detection microphone 16 is installed in a range that is in the cylindrical region A of the stationary blade mounting member 7 of the blower fan 2. For this reason, since the influence of the airflow from the blower outlet of the blower fan 2 can be reduced and a sound with high noise and coherence can be detected, high-accuracy active silencing can be performed. In addition, since the noise / silencing effect detection microphone 16 can be installed without changing the mechanism of the blower fan 2 and without increasing the number of parts of the air conditioner, the air conditioner 1 having a high degree of freedom in installation can be realized.
  • the noise / muffling effect detection microphone 16 is provided in a range in the cylindrical region A of the heat exchanger 4. For this reason, since the influence of the airflow from the blower outlet of the blower fan 2 can be reduced and a sound with high noise and coherence can be detected, high-accuracy active silencing can be performed. In addition, since the noise / silencing effect detection microphone 16 can be installed without changing the mechanism of the blower fan 2 and without increasing the number of parts of the air conditioner, the air conditioner 1 having a high degree of freedom in installation can be realized.
  • the noise / silencing effect detection microphone 16 is more accurate than the case where the noise / silence effect detection microphone 16 is provided on the stationary member of the blower fan 2. High active silencing can be performed.
  • the noise / muffling effect detection microphone 16 is provided in a range within the cylindrical region A of the heat exchanger fixing bracket 30. For this reason, since the influence of the airflow from the blower outlet of the blower fan 2 can be reduced and a sound with high noise and coherence can be detected, high-accuracy active silencing can be performed. In addition, since the noise / silencing effect detection microphone 16 can be installed without changing the mechanism of the blower fan 2 and without increasing the number of parts of the air conditioner, the air conditioner 1 having a high degree of freedom in installation can be realized.
  • the noise / silencing effect detection microphone 16 is more accurate than the case where the noise / silence effect detection microphone 16 is provided on the stationary member of the blower fan 2. High active silencing can be performed.
  • the noise / muffling effect detection microphone 16 is covered with the wall member 31. By blocking the airflow, the noise / silencing effect detection microphone 16 is less affected by the airflow, so that a higher silencing effect can be obtained.
  • Embodiment 3 > ⁇ C-1. Configuration>
  • a description will be given of an air conditioner in which a noise / silencing effect detection microphone 16 is installed at the upper part of the air outlet 5 so as to face the side opposite to the flow path.
  • items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2, and the same functions and configurations are described using the same reference numerals.
  • FIG. 20 is a cross-sectional view when the front view of the air conditioner 1 shown in FIG. 2 is cut along a cross section X, and is a diagram showing a configuration of the air conditioner 1 according to the third embodiment.
  • the air conditioner 1 in FIG. 20 constitutes an indoor unit.
  • the air inlet 1 (more specifically, the casing of the air conditioner 1) has an inlet 3 at the top, and a blower 5 at the lower end. Each is open.
  • An air flow path is formed in the air conditioner 1 so as to communicate the suction port 3 and the blowout port 5.
  • An axial flow fan having a substantially vertical rotation axis is provided below the suction port 3 of the air flow path.
  • the provided blower fan 2 is provided.
  • a heat exchanger 4 that cools or heats the air by exchanging heat is disposed below the blower fan 2.
  • the heat exchanger 4 is fixed in the housing by a heat exchanger fixing bracket 30. As shown by the white arrow in FIG. 20, when the blower fan 2 is activated, indoor air is sucked into the air flow path in the air conditioner 1 from the suction port 3, and this intake air is present at the lower part of the blower fan 2. After cooling or heating with the heat exchanger 4, the air is blown out into the room from the outlet 5.
  • a different point from the air conditioner 1 described in the second embodiment is that a noise / muffling effect detection microphone is arranged at the upper part of the air outlet 5 so as to face the side opposite to the flow path. Accordingly, the configuration of the signal processing device 22 is also different.
  • the noise / muffling effect detection microphone 16 is attached to the upper part of the air outlet 5 in the direction opposite to the flow path, the noise / muffling effect detection microphone 16 is newly added without increasing the number of parts as in the second embodiment. It can be easily installed, eliminating the need for a precise mounting mechanism.
  • a control speaker 8 that outputs a control sound for noise is arranged on the side wall portion of the casing of the air conditioner 1 so as to face the center of the air flow path from the wall.
  • a noise / silencing effect detection microphone 16 that detects sound after the control sound emitted from the control speaker 8 interferes with the operation sound (noise) of the air conditioner 1 including the sound of the blower fan 2 is provided. It arrange
  • the output signal of the noise / muffling effect detection microphone 16 is input to a signal processing device 22 which is a control sound generation device for generating a signal (control sound) for controlling the control speaker 8.
  • FIG. 21 shows a configuration diagram of the signal processing device 22.
  • the difference from the signal processing device 17 shown in FIG. 14 is that weighting means 13 is arranged between the output of the A / D converter 12 and the input of the LMS algorithm 19.
  • Other configurations are the same as those of the signal processing device 17 of the second embodiment.
  • the noise / silence effect detection microphone 16 is disposed above the air outlet 5 in the direction opposite to the flow path.
  • the vicinity of the blower outlet 5 has a sufficiently large distance from the blower outlet of the blower fan 2 where the turbulence of airflow is large compared to the vicinity of the blower fan 2.
  • the air turbulence is rectified to some extent by the heat exchanger 4. For this reason, the turbulence of the airflow in the vicinity of the noise / silencing effect detection microphone 16 is reduced.
  • the noise / silence effect detection microphone 16 is hardly affected by the airflow turbulence.
  • the noise from the air conditioner 1 felt by the person is the noise after being discharged from the air outlet 5 into the room
  • the noise / silencing effect detection microphone 16 is directed to the room on the opposite side of the flow path.
  • noise emitted into the room can be detected. That is, by attaching the noise / muffling effect detection microphone 16 to the upper part of the air outlet 5 in the direction opposite to the flow path, it is possible to detect noise emitted into the room and sound with high coherence.
  • the control sound generation method of the third embodiment is the same as the method described in the second embodiment.
  • the control sound generation method of the third embodiment is different from the method described in the second embodiment in that the weighting means 13 averages the signal input as an error signal to the LMS algorithm 19. .
  • the noise detected by the noise / muffling effect detection microphone 16 is a sound other than the noise generated from the blower fan 2. Is probably included. For this reason, the stability of feedback control is impaired by sounds other than these noises. Therefore, in Embodiment 3, sounds other than noise are averaged by placing weighting means 13 in the previous stage of feedback control. Thereby, sound components other than uncorrelated noise can be canceled, and feedback control can be stably operated. That is, it is possible to increase the coherence between the noise after being discharged from the blow-out port 5 into the room and the noise / silencing effect detection microphone 16.
  • averaging by the weighting means 13 may not be performed until the LMS algorithm 19 is stabilized. This is because the noise cannot be sufficiently reduced while the LMS algorithm 19 is not stable, and the output value of the weighting means 13 may run away. Furthermore, resetting may be performed when the output value of the weighting means 13 exceeds a certain value.
  • the noise / muffling effect detection microphone 16 may be covered with a wall member 31 so as not to be further affected by the airflow. Since the air current can be blocked from the wall member, it is less affected by the air current, and a higher silencing effect can be obtained.
  • the axial fan is used as the blower fan 2 as an example. However, any fan that blows air by rotating the impeller may be used.
  • the installation position of the noise / muffling effect detection microphone 16 is not limited to the upper part of the air outlet 5, but may be an opening of the air outlet 5.
  • the noise / muffling effect detection microphone 16 may be attached to the lower part or the side part of the air outlet 5.
  • the noise / muffling effect detection microphone 16 does not need to be provided in the direction opposite to the flow path accurately.
  • the noise / muffling effect detection microphone 16 only needs to be provided toward the outside of the air conditioner 1 (housing). That is, the noise / muffling effect detection microphone 16 may be installed at a position where noise radiated indoors can be detected.
  • the FIR filter 18 and the LMS algorithm 19 are used for the signal processing device 22.
  • any adaptive signal processing circuit may be used as long as the sound detected by the noise / muffling effect detection microphone 16 approaches zero.
  • a filtered-X algorithm generally used in the active silencing method may be used.
  • the weighting means 13 does not need to be an integrator, and may be any means that can average.
  • the signal processing device 22 does not need to be configured to perform adaptive signal processing, and may be configured to generate control sound using a fixed tap coefficient. Further, the signal processing device 22 does not have to be a digital signal processing circuit, and may be an analog signal processing circuit.
  • the noise / silence effect detection microphone 16 that is a noise / silence effect detection device is provided at the opening of the air outlet 5 and is directed to the outside of the air conditioner 1. Arranged. For this reason, the noise emitted into the room can be detected without being influenced by the airflow. Therefore, high coherence can be obtained for the indoor noise radiated from the air conditioner 1 and the detection sound of the noise / silencing effect detection microphone 16. For this reason, it is possible to perform active silencing with high accuracy against the indoor noise radiated from the air conditioner 1.
  • the signal processing device 22 that is the control sound generation device uses the detection result detected by the noise / silence effect detection microphone 16 that is the noise / silence effect detection device.
  • a circuit that performs weighting and performs feedback control is provided. For this reason, it can cancel by averaging sounds other than the noise of the air conditioner 1 detected by the noise / silencing effect detection microphone 16. Therefore, it is possible to perform active silencing with higher accuracy.
  • the noise / muffling effect detection microphone 16 is covered with the wall member 31. By blocking the airflow, the noise / silencing effect detection microphone 16 is less affected by the airflow, so that a higher silencing effect can be obtained.
  • Air conditioner 1. Air conditioner, 2. Air blower fan, 3. Air inlet, 4. Heat exchanger, 5. Air outlet, 6. Noise detection microphone, 7. Stator blade mounting member, 8. Control speaker, 9. Silencer effect detection microphone, 10, 17, 22. Signal processing. Equipment, 11 microphone amplifier, 12 A / D converter, 13 weighting means, 14 D / A converter, 15 amplifier, 16 noise / silence detection microphone, 18, 20 FIR filter, 19 LMS algorithm, 21 multiplier, 25 Impeller, 26 stationary blades, 27 boss, 28 rotating shaft, 30 heat exchanger fixture, 31 wall member, 32 adder, 33 delay element, 34 multiplier.

Abstract

 精度の高い能動消音が可能な空気調和機を得る。 吸込口3及び吹出口5が形成された筐体と、羽根車25を有する送風ファン2と、熱交換器4と、送風ファン2からの騒音を検出する騒音検出マイクロホン6と、騒音を低減させる制御音を出力する制御スピーカー8と、消音効果を検出する消音効果検出マイクロホン9と、騒音検出マイクロホン6及び消音効果検出マイクロホン9の検出結果に基づき、制御音を生成する信号処理装置10と、を備える空気調和機1であって、騒音検出マイクロホン6は、羽根車25の羽根の内周部に接する内接円を羽根車25の回転軸方向に延設した円柱領域Aに配置され、且つ送風ファン2の静翼取付部材7に設けられている。

Description

空気調和機
 本発明は、送風ファン等の騒音を低減する消音手段を取り付けた空気調和機に関する。
 送風ファンの駆動音等に代表されるような騒音の低減を図るために、吸音や遮音等の受動的消音方法が従来より行われてきた。しかし、これらの方法では比較的高い周波数帯の騒音の低減には効果があるが、ファンの回転音等のような低い周波数帯の騒音には効果が低いことが知られている。
 この改善策として、騒音に対して同振幅・逆位相となる制御音をスピーカー等から出力し、騒音との干渉を起こすことにより、騒音を低減する能動的消音方法が用いられている。このような能動的消音方法は、一般的に、受音器(センシングマイク等)と、デジタルフィルター及び適応アルゴリズムにより構成された信号処理装置と、発音器(制御用スピーカー等)と、誤差信号検出センサー(評価マイク等)と、で構成される。そして、受音器を音源の下流側に配置して音源から発生する音を検出し、この検出音を元に騒音と同振幅・逆位相となるような制御信号を作成する。信号処理装置で作成された制御信号は、発音器に入力され、制御音として出力される。さらに、消音したい制御点に配置された誤差信号検出センサーで能動消音の制御結果を評価して、誤差信号検出センサーで検出される誤差信号が最小になるように信号処理装置のデジタルフィルターのフィルター係数を更新する。
 しかしながら、上記した能動的消音方法では、音の空間的なコヒーレンスがとれていないと消音できないことが知られている。特に、送風ファン等のように気流を伴う音源の場合、受音器が音源に近いと、送風ファン吹出口の気流乱れによって誤差信号検出センサーとのコヒーレンスがとれない。このため、受音器と音源との距離を離し、気流乱れの影響を低減させる必要があった。
 このような上記の能動的消音方法が有する課題を解決するため、例えば「ダクト5内の流路中に配設した音源(ファン)6と受音器(センシングマイク)1との間に、網状の整流部材10を配設した構成により、音源6から発せられる音、即ち音を伝播する流体(空気)の流れがほぼ一様流になるように整流してコヒーレンスをとることができるので、受音器1を音源6側に近づけて効果的に能動騒音制御を行うことができる。」(例えば特許文献1参照)というものが提案されている。
 また、例えば「送風機20のファンブレード23で発生する騒音を検出し、これを基準信号xとしてコントローラに供給するマイクロフォン21を、そのファンブレード23を回転駆動させる電動モータ30の回転軸31の内側に設ける。」(例えば特許文献2参照)というものも提案されている。
特開平5-188976号公報(要約、図1) 特開平5-289677号公報(要約、図2)
 しかしながら、特許文献1に記載の消音装置は、送風ファンと受音器との間に整流部材を挟まなければいけないため、ファン直下に受音器を設置することができない。このため、特許文献1に記載の消音装置は、システムの小型化ができないという課題があった。さらに、特許文献1に記載の消音装置は、部品点数が増えるため、コストが大きくなってしまうという課題があった。
 また、特許文献2に記載の消音装置は、受音器が高速回転する回転軸に接触する可能性がある。受音器が高速回転する回転軸に接触すると、受音器が接触による異音を検出してしまうだけでなく、受音器の故障にも繋がってしまう。このため、回転軸に接触しないように受音器を取り付ける必要があり、設置自由度がほとんどなくなるという課題があった。さらに、精密な取付けが必要になるため、送風ファンの機構が複雑になり、送風ファンのコストが高くなってしまうという課題があった。
 本発明はかかる問題を解決するためになされたものであり、消音装置の部品点数を増やすことなく、さらに送風ファンの機構を変えることなく、精度の高い能動消音を行うことができる空気調和機の提供を目的とする。
 本発明に係る空気調和機は、吸込口及び吹出口が形成された筐体と、羽根車を有する送風ファンと、熱交換器と、前記送風ファンから発生する騒音を検出する騒音検出装置と、前記騒音を低減させる制御音を出力する制御音出力装置と、前記制御音の消音効果を検出する消音効果検出装置と、前記騒音検出装置及び前記消音効果検出装置の検出結果に基づき、前記制御音を生成する制御音生成装置と、を備える空気調和機であって、前記騒音検出装置は、前記羽根車の羽根の内周部に接する内接円を前記羽根車の回転軸方向に延設した円柱領域に配置され、且つ前記送風ファンの不動部材又は前記送風ファンの下流側に設けられているものである。
 本発明に係る空気調和機は、騒音検出装置が、羽根車の内周部に接する内接円を羽根車の回転軸方向に延設した円柱領域に配置され、且つ送風ファンの不動部材又は送風ファンの下流側に設けられている。このため、消音装置の部品点数を増やすことなく、さらに送風ファンの機構を変えることなく、精度の高い能動消音を行うことができる空気調和機を得ることができる。
本発明の実施の形態1における空気調和機の構成を示す断面図である。 本発明の実施の形態1~実施の形態3における空気調和機の正面図である。 本発明の実施の形態1における送風ファンの底面図である。 図3に示す送風ファンの断面図である。 本発明の実施の形態1の制御音を生成する信号処理装置を示した図である。 本発明の実施の形態1における送風ファンから吹出される気流を可視化した実験結果の図である。 本発明の実施の形態1における重み付け手段の回路を示す図である。 騒音検出マイクロホン6を円柱領域Aの外側に設置して送風ファン2を動作させた時の、騒音検出マイクロホン6の検出音と消音効果検出マイクロホン9の検出音とのコヒーレンス特性を示す図である。 騒音検出マイクロホン6を円柱領域Aの内側に設置して送風ファン2を動作させた時の、騒音検出マイクロホン6の検出音と消音効果検出マイクロホン9の検出音とのコヒーレンス特性を示す図である。 本発明の実施の形態1における空気調和機の別の構成を示す断面図である。 本発明の実施の形態1における空気調和機のさらに別の構成を示す断面図である。 本発明の実施の形態1における騒音検出マイクロホンの別の取り付け方法を示す断面図である。 本発明の実施の形態2における空気調和機の構成を示す断面図である。 本発明の実施の形態2の制御音を生成する信号処理装置を示した図である。 干渉後の音から消音したい騒音を算出する方法を説明するための波形図である。 本発明の実施の形態2の制御音を推定する方法を説明するためのブロック図である。 本発明の実施の形態2における空気調和機の別の構成を示す断面図である。 本発明の実施の形態2における空気調和機のさらに別の構成を示す断面図である。 本発明の実施の形態2における騒音・消音効果検出マイクロホンの別の取り付け方法を示す断面図である。 本発明の実施の形態3における空気調和機の構成を示す断面図である。 本発明の実施の形態3の制御音を生成する信号処理装置を示した図である。
  <A.実施の形態1>
 以下、本発明の空気調和機について、図面を用いて詳細に説明する。
 <A-1.構成>
 図1は、図2に示した空気調和機1の正面図を断面Xで切った断面図であり、本実施の形態1における空気調和機1の構成を示した図である。
 図1における空気調和機1は室内機を構成するもので、空気調和機1(より詳しくは、空気調和機1の筐体)の上部には吸込口3が、また下端には吹出口5がそれぞれ開口されている。
 空気調和機1内には吸込口3と吹出口5を連通する空気流路が形成され、該空気流路の吸込口3の下側には略垂直方向の回転軸心を有する軸流ファンを備えた送風ファン2が設けられている。また、送風ファン2の下方には、空気を熱交換して冷却又は加熱する熱交換器4が配置されている。熱交換器4は熱交換器固定金具30により、筐体内に固定されている。図1中の白抜き矢印に示すように、送風ファン2が作動すると、吸込口3から空気調和機1内の空気流路に室内の空気を吸い込み、この吸入空気を送風ファン2の下部にある熱交換器4で冷却又は加熱した後、吹出口5から室内に吹き出すようになっている。
 図3は、本発明の実施の形態1における送風ファンの底面図(図1の下側から見た図)である。また、図4は、図3に示した送風ファン2を断面Aで切った断面図である。送風ファン2は、動翼と呼ばれる羽根車25、静翼26、外周部に静翼26が取り付けられる静翼取付部材7、モーター(図示せず)、及びモーターから羽根車25へ動力を伝える回転軸(図示せず)を備えている。図3中の網掛けの部分が、送風ファン2の羽根の内周にあたる部分(つまり、羽根車25の羽根の内周部に接する内接円)を示している。
 羽根車25の動力源となるモーターは、静翼取付部材7の中に設けられている。このモーターと羽根車25のボス部27は、回転軸28によって接続されている。これにより、モーターの回転が回転軸28を介して羽根車25に伝えられ、羽根車25が回転する。羽根車25が回転することにより、図4の白抜き矢印に示す方向へ、空気が流れる(送風される)。なお、図4中、斜線で示している部分が、送風ファン2の動作時に回転する部分を示している。また、斜線のない部分が、送風ファン2の動作時でも回転しない部分(つまり不動部材)を示している。また、送風ファン2の羽根の内周にあたる部分(つまり、羽根車25の羽根の内周部に接する内接円)は、ボス部27の外周部となっている。なお、本実施の形態1では、静翼取付部材7の直径を、ボス部27の直径と略同じに形成している。
 再び、図1に着目すると、送風ファン2の羽根の内周に相当する静翼取付部材7には、送風ファン2の送風音を含む空気調和機1の運転音(騒音)を検出する騒音検出装置として騒音検出マイクロホン6が取り付けられている。つまり、騒音検出マイクロホン6は、羽根車25の羽根の内周部に接する内接円を羽根車25の回転軸方向に延設した円柱領域(以下、円柱領域Aという)に配置されている。なお、この静翼取付部材7は、送風ファン2の動作時、図4に示したとおり、回転する羽根車25とは独立しており、回転しないように構成されている。このため、騒音検出マイクロホン6も送風ファン2の動作時は回転しない。さらに、騒音検出マイクロホン6の下側には、騒音に対する制御音を出力する制御音出力装置として制御スピーカー8が、筐体の壁から空気流路の中央に向くように配置されている。
 さらに空気調和機の下端の壁には、吹出口5から出てくる騒音を検出し、消音効果を検出する消音効果検出装置として消音効果検出マイクロホン9が、吹出口5の例えば上部に取り付けられている。この消音効果検出マイクロホン9は、流路と反対向きに取り付けられている。なお、消音効果検出マイクロホン9の設置位置は、吹出口5の上部に限らず、吹出口5の開口部であればよい。例えば消音効果検出マイクロホン9を、吹出口5の下部や側部に取り付けてもよい。また、消音効果検出マイクロホン9は、正確に流路と反対向きに設けられている必要はない。消音効果検出マイクロホン9は、空気調和機1(筐体)の外側に向かって設けられていればよい。つまり、消音効果検出マイクロホン9は、室内に放射された騒音を検出できる位置に設置すればよい。
 また、騒音検出マイクロホン6と消音効果検出マイクロホン9の出力信号は、制御スピーカー8を制御する信号(制御音)を生成するための制御音生成装置である信号処理装置10に入力されている。
 空気調和機1の消音機構は、これら騒音検出マイクロホン6、制御スピーカー8、消音効果検出マイクロホン9、及び信号処理装置10により構成されている。
 図5は信号処理装置10の構成図を示している。騒音検出マイクロホン6から入力された電気信号は、マイクアンプ11により増幅され、A/D変換器12によりアナログ信号からデジタル信号に変換される。消音効果検出マイクロホン9から入力された電気信号は、マイクアンプ11により増幅され、A/D変換器12によりアナログ信号からデジタル信号に変換され、重み付け手段13により重み付け係数を乗じることで平均化される。このようにして変換された各々のデジタル信号はFIRフィルター18、及びLMSアルゴリズム19に入力される。FIRフィルター18では、騒音検出マイクロホン6で検出した騒音が消音効果検出マイクロホン9が設置されている場所に到達したときの騒音と同振幅・逆位相となるように補正をかけた制御信号を生成する。この制御信号は、D/A変換器14によりデジタル信号からアナログ信号に変換された後、アンプ15により増幅され、制御スピーカー8から制御音として放出される。
 <A-2.動作>
 次に空気調和機1の動作について説明する。空気調和機1が動作すると、送風ファン2の羽根車25が回転し、送風ファン2の上側から室内の空気が吸い込まれ、送風ファン2下側へと空気が送られることにより気流が発生する。これに伴い、送風ファン2の吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。
 送風ファン2の吹出口5近傍では羽根車25の回転により気流乱れが起こっている。また、送風ファン2から吹出される空気は、送風ファン2の吹出口から外側へ向かって吹出されるため、空気調和機1の筐体の側壁にぶつかり、更なる気流乱れが引き起こされる。このため、空気調和機1の側壁では、気流乱れによる圧力変動が大きくなる。それに比べ、送風ファン2の羽根の内周よりも内側の領域(円柱領域A)では気流の乱れが小さく、気流による圧力変動も小さい。
 これを裏付けるため、送風ファン2から吹出される気流を可視化した実験の結果を図6に示す。図6は、ダクト形状の筒の右端に送風ファン2を取り付け、ダクト内に白煙を滞留させた後、送風ファン2を動作させた時の写真である。送風ファン2の吹出口近傍に着目すると、静翼取付部材7付近及び円柱領域Aを除いた領域は、白く滞留していた煙が薄くなっており、白煙が気流によって流されていることが分かる。一方、送風ファン2の静翼取付部材7付近及び円柱領域Aは、白煙が滞留したままとなっており、気流の影響が小さい。つまり、送風ファン2の静翼取付部材7付近及び円柱領域Aは、気流の影響を受けにくく、気流乱れによる圧力変動が小さいことが分かる。
 送風ファン2により送られた空気は、空気流路を通り、熱交換器4へと送られる。例えば、冷房運転の場合、熱交換器4には、室外機(図示せず)とつながっているパイプから冷媒が送られる。熱交換器4へと送られた空気は、熱交換器4を流れる冷媒に冷やされて冷気となり、そのまま吹出口5から室内へ放出される。
 次に空気調和機1の運転音の抑制方法について説明する。空気調和機1における送風ファン2の送風音を含む運転音(騒音)は、送風ファン2の静翼取付部材7に取り付けられた騒音検出マイクロホン6で検出される。騒音検出マイクロホン6で検出された騒音は、マイクアンプ11、A/D変換器12を介してデジタル信号となり、FIRフィルター18とLMSアルゴリズム19に入力される。
 FIRフィルター18のタップ係数はLMSアルゴリズム19により逐次更新される。LMSアルゴリズム19では、式1(h(n+1)=h(n)+2・μ・e(n)・x(n))に従い、誤差信号eがゼロに近づくように最適なタップ係数が更新される。
 なお、h:フィルターのタップ係数、e:誤差信号、x:フィルター入力信号、μ:ステップサイズパラメータである。また、ステップサイズパラメータμはサンプリングごとのフィルター係数更新量を制御するものである。
 このようにLMSアルゴリズム19でタップ係数が更新されてFIRフィルター18を通過したデジタル信号は、D/A変換器14にてアナログ信号に変換され、アンプ15で増幅され、制御スピーカー8から制御音として空気調和機1内の空気流路に放出される。
 一方、空気調和機1の吹出口5の上部に流路と反対向きに取り付けられた消音効果検出マイクロホン9には、送風ファン2から空気流路を通って伝播し、吹出口5から室内へ放出された騒音に、制御スピーカー8から放出された制御音を干渉させた後の音が検出される。消音効果検出マイクロホン9で検出した信号は、上述した通り、デジタル信号に変換され、重み付け手段13にて平均化される。
 図7は、本発明の実施の形態1における重み付け手段の回路を示す図である。
 重み付け手段13は、入力信号に対して重み付け係数を乗じる乗算器21、加算器32、1サンプリング分の遅延素子33、及び乗算器34からなる積分器で構成される。
 本実施の形態1では、乗算器21の重み付け係数は、設置環境等により外部から設定可能となっている。
 例えば、外乱が大きく動作が不安定となる環境下では、乗算器21の重み付け係数を小さく設定してもよい。逆に外乱が小さい環境下では、乗算器21の重み付け係数を大きく設定してもよい。これにより、環境変化に対する感度を変化させることができる。ここで、LMSアルゴリズム19が安定するまでは、重み付け手段13による平均化は行わないようにしてもよい。これは、LMSアルゴリズム19が安定していない間は騒音が十分低減できておらず、重み付け手段13の出力値が暴走する場合があるからである。さらに、重み付け手段13の出力値が一定の値を超えた場合にリセットがかかるようにしておいてもよい。
 このようにして平均化された信号は、上述したLMSアルゴリズム19の誤差信号eとして扱われる。そして、この誤差信号eがゼロに近づくようにフィードバック制御され、FIRフィルター18のタップ係数が適宜更新される。その結果、FIRフィルター18を通過した制御音により吹出口5近傍の騒音を抑制することができる。
 人が感じる空気調和機1からの騒音は吹出口5から室内へと放出された後の騒音であるため、消音効果検出マイクロホン9を流路の反対側である室内に向けることで、室内へと放出された騒音を検出することができる。すなわち、消音効果検出マイクロホン9を吹出口5の上部に流路と反対向きに取り付けることで、室内へ放出された騒音とコヒーレンスの高い音を検出することが可能となる。さらに、消音効果検出マイクロホン9は、気流が直接当たらないため、気流による風切音を検出することがない。一方、消音効果検出マイクロホン9を流路内に向けると、流路内の騒音を検出することになる。このため、吹出口から放出されるところでの音の特性の変化を検出することができないので、消音効果検出マイクロホン9の検出する音は、室内の騒音と特性が異なってしまう。したがって、消音効果検出マイクロホン9で検出した音と室内へ放出された音とのコヒーレンスの低下を招いてしまう。さらに、消音効果検出マイクロホン9には気流が直接当たるため、消音効果検出マイクロホン9は、風切音を検出してしまい、更なるコヒーレンスの低下を招いてしまう。
 また、室内では、送風ファン2から発生する騒音以外の音が多分に含まれているため、これらの騒音以外の音により、フィードバック制御の安定性が損なわれてしまう。このため、フィードバック制御の前段に重み付け手段13を配置することで、騒音以外の音を平均化している。これにより、無相関な騒音以外の音の成分をキャンセルすることができ、フィードバック制御を安定的に動作させることができる。すなわち、騒音検出マイクロホン6と消音効果検出マイクロホン9とのコヒーレンスを高めることが可能となる。
 そして、本実施の形態1では、騒音検出マイクロホン6を送風ファン2の静翼取付部材7に取り付けているため、騒音検出マイクロホン6に気流が直接当たらない。このため、騒音検出マイクロホン6が気流乱れによる圧力変動成分を検出することを低減できる。したがって、騒音検出マイクロホン6は、送風ファン2の運転音である騒音とコヒーレンスの高い音を検出することができる。また、消音効果検出マイクロホン9を吹出口5の上部に流路と反対向きに取り付けているため、消音効果検出マイクロホン9には気流が直接当たらず、消音効果検出マイクロホン9は気流の影響を受けない。さらに、消音効果検出マイクロホン9は室内へと放出された騒音のみを検出することができるため、実際に室内にいる人が聞く騒音とコヒーレンスの高い騒音を消音効果検出マイクロホン9にて検出することができる。さらに、消音効果検出マイクロホン9で検出した音に対して重み付け手段13による平均化を行い、フィードバック制御を行うため、消音効果検出マイクロホン9で検出した音に含まれる空気調和機1からの騒音以外の成分を平均化し、キャンセルすることができる。このため、騒音検出マイクロホン6と消音効果検出マイクロホン9の検出音について高いコヒーレンスが得られる。これらのことから、送風ファン2から発生する騒音、騒音検出マイクロホン6の検出音、消音効果検出マイクロホン9の検出音、及び空気調和機1から騒音が放射された室内の騒音の間で、高いコヒーレンスを得ることができ、高い消音効果を得ることができる。
 騒音検出マイクロホン6を実際に送風ファン2の羽根内周(円柱領域A)よりも内側に取り付けたときの、騒音検出マイクロホン6-消音効果検出マイクロホン9間のコヒーレンスを測定した実験結果について説明する。
 図8は、騒音検出マイクロホン6を円柱領域Aの外側に設置して送風ファン2を動作させた時の、騒音検出マイクロホン6の検出音と消音効果検出マイクロホン9の検出音とのコヒーレンス特性である。次に、図9は、円柱領域Aの内側に設置して送風ファン2を動作させた時の、騒音検出マイクロホン6の検出音と消音効果検出マイクロホン9の検出音とのコヒーレンス特性である。
 図8と図9を比較すると、騒音検出マイクロホン6を円柱領域Aの内側に設置した場合の方が、明らかにコヒーレンスが高いことが分かる。
 さらに、送風ファン2の静翼取付部材7に騒音検出マイクロホン6を取り付けることで、新たに部品点数を増やすことなく、騒音検出マイクロホン6を容易に取り付けることができ、精密な取付け機構が不要となる。また、送風ファン2の静翼取付部材7に騒音検出マイクロホン6を設置することで、送風ファン2と騒音検出マイクロホン6との距離が短くてすむため、空気調和機1の高さを短くすることができる。
 なお、本実施の形態1では騒音検出マイクロホン6を静翼取付部材7に設置したが、送風ファン2の回転に伴う固有の機械振動が静翼取付部材7に伝わり、その振動を騒音検出マイクロホン6が検出してしまう場合がある。この場合、局所的に騒音検出マイクロホン6と消音効果検出マイクロホン9とのコヒーレンスが悪化してしまうことがある。このような場合、円柱領域A内で静翼取付部材7以外の箇所に騒音検出マイクロホン6を設置してもよい。例えば図10に示すように、円柱領域A内となる範囲の熱交換器4上に騒音検出マイクロホン6を設置してもよい。また例えば図11に示すように、円柱領域A内となる範囲の熱交換器固定金具30上に騒音検出マイクロホン6を設置してもよい。このように騒音検出マイクロホン6を設置することにより、騒音検出マイクロホン6を静翼取付部材7に設置した場合よりも、騒音検出マイクロホン6と消音効果検出マイクロホン9とのコヒーレンスをさらに高めることができ、より高い消音効果を得ることができる。
 また、図12に示すように、騒音検出マイクロホン6を壁部材31で覆ってもよい。壁部材より気流を遮断することができるため、気流の影響を一層受けなくなり、より高い消音効果を得ることができる。図12では、壁部材31を略円筒状に形成しているが、壁部材31の形状は任意である。
 また、熱交換器4や熱交換器固定金具30に騒音検出マイクロホン6を取り付けた場合にも、騒音検出マイクロホン6を壁部材31で覆うとよい。気流の影響を一層受けなくなり、より高い消音効果を得ることができる。
 また、吹出口5の上部に流路と反対向きに取り付けられた消音効果検出マイクロホン9を、壁部材で覆ってもよい。気流を遮断することができるため、消音効果検出マイクロホン9においても気流の影響を受けなくなり、より高い消音効果を得ることができる。
 また、本実施の形態1では、送風ファン2として軸流ファンの場合を例に挙げたが、羽根車が回転することにより送風を行うファンであればよい。
 また、本実施の形態1では、信号処理装置10にFIRフィルター18とLMSアルゴリズム19を用いたが、消音効果検出マイクロホン9で検出した音をゼロに近づける適応信号処理回路であればよく、能動的消音方法で一般的に使用されているfiltered-Xアルゴリズムを用いたものでもよい。
 また、重み付け手段13は、積分器である必要はなく、平均化できる手段であればよい。
 また、信号処理装置10は、適応信号処理をする構成である必要はなく、固定のタップ係数により制御音を生成する構成にしてもよい。
 また、信号処理装置10は、デジタル信号処理回路である必要はなく、アナログ信号処理回路であってもよい。
 <A-3.効果>
 以上、本実施の形態1に係る空気調和機1においては、騒音検出装置である騒音検出マイクロホン6は、円柱領域A内で、且つ送風ファン2の不動部材に設けられている。このため、送風ファン2の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、送風ファン2の機構を変えずに、空気調和機1の部品点数を増やすことなく騒音検出マイクロホン6を設置できるため、設置自由度が高い空気調和機1を実現することができる。
 なお、送風ファン2の不動部材は、静翼取付部材7に限定されるものではない。送風ファン2の構成要素のうち、少なくとも一部が円柱領域A内に配置される不動部材があれば、その不動部材の円柱領域A内となる範囲に騒音検出マイクロホン6を設けてもよい。
 また、本実施の形態1に係る空気調和機1においては、騒音検出装置である騒音検出マイクロホン6は、円柱領域A内で、且つ送風ファン2の下流側に設けられている。このため、送風ファン2の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、送風ファン2の機構を変えずに、空気調和機1の部品点数を増やすことなく騒音検出マイクロホン6を設置できるため、設置自由度が高い空気調和機1を実現することができる。さらに、送風ファン2の回転に伴う固有の機械振動を騒音検出マイクロホン6により検出しないため、騒音検出マイクロホン6を送風ファン2の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。
 なお、騒音検出マイクロホン6を送風ファン2の下流側に設ける場合、騒音検出マイクロホン6を設ける構成要素は、熱交換器4や熱交換器固定金具30に限定されるものではない。少なくとも一部が円柱領域A内であって送風ファン2の下流側に配置された構成要素があれば、その構成要素の円柱領域A内となる範囲に騒音検出マイクロホン6を設けてもよい。
 また、本実施の形態1に係る空気調和機1においては、消音効果検出装置である消音効果検出マイクロホン9を、吹出口5の開口部に設け、空気調和機1の外側に向けて配置している。このため、気流の影響を受けず、室内へと放出された騒音を検出することができる。したがって、空気調和機1から放射された室内の騒音と消音効果検出マイクロホン9の検出音について高いコヒーレンスが得られる。このため、空気調和機1から放射された室内の騒音に対して精度の高い能動消音を行うことができる。
 また、本実施の形態1に係る空気調和機1においては、制御音生成装置である信号処理装置10は、消音効果検出装置である消音効果検出マイクロホン9にて検出した検出結果に重み付けをし、フィードバック制御を行う回路を備えている。このため、消音効果検出マイクロホン9にて検出した空気調和機1の騒音以外の音を平均化することでキャンセルすることができる。したがって、騒音検出マイクロホン6と消音効果検出マイクロホン9との間で高いコヒーレンスの音を検出することができ、さらに精度の高い能動消音を行うことができる。
 また、本実施の形態1に係る空気調和機1においては、騒音検出マイクロホン6は、送風ファン2の静翼取付部材7における円柱領域A内となる範囲に設置されている。このため、送風ファン2の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、送風ファン2の機構を変えずに、空気調和機の部品点数を増やすことなく騒音検出マイクロホン6を設置できるため、設置自由度が高い空気調和機1を実現することができる。
 また、本実施の形態1に係る空気調和機1においては、騒音検出マイクロホン6は、熱交換器4の円柱領域A内となる範囲に設けられている。このため、送風ファン2の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、送風ファン2の機構を変えずに、空気調和機の部品点数を増やすことなく騒音検出マイクロホン6を設置できるため、設置自由度が高い空気調和機1を実現することができる。さらに、送風ファン2の回転に伴う固有の機械振動を騒音検出マイクロホン6により検出しないため、騒音検出マイクロホン6を送風ファン2の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。
 また、本実施の形態1に係る空気調和機1においては、騒音検出マイクロホン6は、熱交換器固定金具30の円柱領域A内となる範囲に設けられている。このため、送風ファン2の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、送風ファン2の機構を変えずに、空気調和機の部品点数を増やすことなく騒音検出マイクロホン6を設置できるため、設置自由度が高い空気調和機1を実現することができる。さらに、送風ファン2の回転に伴う固有の機械振動を騒音検出マイクロホン6により検出しないため、騒音検出マイクロホン6を送風ファン2の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。
 また、本実施の形態1に係る空気調和機1においては、騒音検出マイクロホン6を壁部材31で覆っている。気流を遮断することにより、騒音検出マイクロホン6が気流の影響を一層受けなくなるので、より高い消音効果を得ることができる。
 また、本実施の形態1に係る空気調和機1においては、消音効果検出マイクロホン9を壁部材で覆っている。気流を遮断することにより、消音効果検出マイクロホン9が気流の影響を一層受けなくなるので、より高い消音効果を得ることができる。
 <B.実施の形態2>
 <B-1.構成>
 本実施の形態2では、実施の形態1における騒音検出マイクロホン6と消音効果検出マイクロホン9とを集約した騒音・消音効果検出装置として騒音・消音効果検出マイクロホン16を配置した空気調和機について説明する。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図13は、図2に示した空気調和機1の正面図を断面Xで切った断面図であり、本実施の形態2における空気調和機1の構成を示す図である。
 図13における空気調和機1は室内機を構成するもので、空気調和機1(より詳しくは、空気調和機1の筐体)の上部には吸込口3が、また下端には吹出口5がそれぞれ開口されている。
 空気調和機1内には吸込口3と吹出口5を連通する空気流路が形成され、該空気流路の吸込口3の下側には略垂直方向の回転軸心を有する軸流ファンを備えた送風ファン2が設けられている。また、送風ファン2の下方には、空気を熱交換して冷却又は加熱する熱交換器4が配置されている。熱交換器4は熱交換器固定金具30により、筐体内に固定されている。図13中の白抜き矢印に示すように、送風ファン2が作動すると、吸込口3から空気調和機1内の空気流路に室内の空気を吸い込み、この吸入空気を送風ファン2の下部にある熱交換器4で冷却又は加熱した後、吹出口5から室内に吹き出すようになっている。
 実施の形態1に記載した空気調和機1と異なる点は、実施の形態1に記載の空気調和機1では能動的消音を行うための騒音検出マイクロホン6と消音効果検出マイクロホン9の二つのマイクロホンを用いて信号処理装置17にて制御音の生成を行っていたが、本実施の形態2の空気調和機1では、これらを一つのマイクロホンである騒音・消音効果検出マイクロホン16に置き換えているところである。また、それに伴い、信号処理の方法が異なるため、信号処理装置17の内容が異なっている。
 空気調和機1の筐体の側壁部には、騒音に対する制御音を出力する制御スピーカー8が壁から空気流路の中央に向くように配置されている。また、静翼取付部材7の円柱領域A内となる範囲には、送風ファン2の送風音を含む空気調和機1の運転音(騒音)に、制御スピーカー8から放出された制御音を干渉させた後の音を検出する騒音・消音効果検出マイクロホン16が配置されている。なお、この静翼取付部材7は、送風ファン2の動作時、回転する羽根車とは独立しており、回転しないように構成されている。このため、騒音・消音効果検出マイクロホン16も送風ファン2の動作時は回転しないことになる。
 騒音・消音効果検出マイクロホン16の出力信号は、制御スピーカー8を制御する信号(制御音)を生成するための制御音生成装置である信号処理装置17に入力されている。
 空気調和機1の消音機構は、これら騒音・消音効果検出マイクロホン16、制御スピーカー8、及び信号処理装置17により構成されている。
 図14は信号処理装置17の構成図を示している。騒音・消音効果検出マイクロホン16により音声信号から変換された電気信号は、マイクアンプ11により増幅され、A/D変換器12によりアナログ信号からデジタル信号に変換される。変換されたデジタル信号は、LMSアルゴリズム19に入力される。また、FIRフィルター18の出力信号にFIRフィルター20を畳み込んだ信号との差分信号が、FIRフィルター18とLMSアルゴリズム19に入力される。次に、差分信号は、FIRフィルター18でLMSアルゴリズム19により算出されたタップ係数による畳み込み演算が施された後、D/A変換器14によりデジタル信号からアナログ信号に変換され、アンプ15により増幅され、制御スピーカー8から制御音として放出される。
 <B-2.動作>
 次に空気調和機1の動作について説明する。空気調和機1が動作すると、送風ファン2の羽根車25が回転し、送風ファン2の上側から室内の空気が吸い込まれ、送風ファン2下側へと空気が送られることにより気流が発生する。これに伴い、送風ファン2の吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。
 送風ファン2の吹出口近傍では、実施の形態1と同様に、羽根車25の回転により気流乱れが起こっている。また、送風ファン2から吹出される空気は、送風ファン2の吹出口から外側へ向かって吹出すため、空気調和機1の筐体の側壁にぶつかり、更なる気流乱れが引き起こされる。このため、空気調和機1の側壁では気流乱れによる圧力変動が大きくなる。それに比べ、送風ファン2の羽根内周よりも内側の領域(円柱領域A)では気流の乱れが小さく、気流による圧力変動も小さい。
 送風ファン2により送られた空気は、空気流路を通り、熱交換器4へと送られる。例えば、冷房運転の場合、熱交換器4には、室外機(図示せず)とつながっているパイプから冷媒が送られる。熱交換器4へと送られた空気は、熱交換器4を流れる冷媒に冷やされて冷気となり、そのまま吹出口5から室内へ放出される。
 次に空気調和機1の運転音の抑制方法について説明する。送風ファン2の送風音を含む運転音(騒音)に制御スピーカー8から出力される制御音を干渉させた後の音は、送風ファン2の静翼取付部材7に取り付けられた騒音・消音効果検出マイクロホン16で検出される。騒音・消音効果検出マイクロホン16で検出された騒音は、マイクアンプ11、A/D変換器12を介してデジタル信号となる。
 実施の形態1に記述した運転音の抑制方法と同等の抑制方法を行うには、FIRフィルター18には消音したい騒音を入力する必要がある。また、LMSアルゴリズム19には、式1にも示した通り、入力信号となる消音したい騒音と誤差信号となる制御音を干渉させた後の音を入力する必要がある。しかし、騒音・消音効果検出マイクロホン16では制御音を干渉させた後の音しか検出することができないため、騒音・消音効果検出マイクロホン16で検出した音から消音したい騒音を作り出すことが必要となる。
 図15は、騒音と制御音との干渉後の音の波形(図15中のa)、制御音の波形(図15中のb)、及び騒音の波形(図15中のc)を示したものである。音の重ね合わせの原理からb+c=aとなる。したがって、aからcを得るためには、aとbとの差分を取ればよい。すなわち、騒音・消音効果検出マイクロホン16で検出した干渉後の音と制御音との差分から、消音したい騒音を作り出すことができる。
 図16は、FIRフィルター18から出力される制御信号が制御音となって制御スピーカー8から出力された後、騒音・消音効果検出マイクロホン16で検出され、信号処理装置17に入力されるまでの経路を示した図である。D/A変換器14、アンプ15、制御スピーカー8から騒音・消音効果検出マイクロホン16までの経路、騒音・消音効果検出マイクロホン16、マイクアンプ11、A/D変換器12を経ている。
 この経路がもつ伝達特性をHとすると、図14のFIRフィルター20は、この伝達特性Hを推定したものである。FIRフィルター18の出力信号に対してFIRフィルター20を畳み込むことで、制御音を騒音・消音効果検出マイクロホン16にて検出した信号bとして推定でき、騒音・消音効果検出マイクロホン16にて検出した干渉後の音aとの差分を取ることで消音したい騒音cが生成される。
 このようにして生成した消音したい騒音cが、入力信号として、LMSアルゴリズム19及びFIRフィルター18に供給される。LMSアルゴリズム19でタップ係数が更新されたFIRフィルター18を通過したデジタル信号は、D/A変換器14にてアナログ信号に変換され、アンプ15で増幅され、制御スピーカー8から制御音として空気調和機1内の空気流路に放出される。
 一方、送風ファン2の静翼取付部材7に取り付けられた騒音・消音効果検出マイクロホン16には、送風ファン2から発生する騒音に、制御スピーカー8から放出された制御音を干渉させた後の音が検出される。上述したLMSアルゴリズム19の誤差信号には、騒音・消音効果検出マイクロホン16で検出された音を入力しているため、この干渉後の音がゼロに近づくようにFIRフィルター18のタップ係数が更新されることになる。その結果、FIRフィルター18を通過した制御音により、送風ファン2から発生する騒音を抑制することができる。
 このように、本実施の形態2では、能動的消音方法を適用した空気調和機1において、騒音・消音効果検出マイクロホン16を静翼取付部材7の円柱領域A内となる範囲に取り付けているため、空気流れが直接当たらず、気流乱れによる圧力変動成分の検出を低減することができる。このため、送風ファン2の運転音である騒音とコヒーレンスの高い音を検出することができ、高い消音効果を得ることができる。
 さらに、送風ファン2の静翼取付部材7に騒音・消音効果検出マイクロホン16を取り付けることで、新たに部品点数を増やすことなく、騒音・消音効果検出マイクロホン16を容易に取り付けることができ、精密な取付け機構が不要となる。また、送風ファン2の静翼取付部材7に騒音・消音効果検出マイクロホン16を設置することで、送風ファン2と騒音・消音効果検出マイクロホン16との距離が短くてすむため、空気調和機1の高さを短くすることができる。
 なお、本実施の形態2では、騒音・消音効果検出マイクロホン16を静翼取付部材7に設置したが、送風ファン2の回転に伴う固有の機械振動が騒音・消音効果検出マイクロホン16に伝わり、その振動を騒音検出マイクロホン6が検出してしまう場合がある。このため、消音効果が低減してしまうことがある。このような場合、円柱領域A内で静翼取付部材7以外の箇所に騒音・消音効果検出マイクロホン16を設置してもよい。例えば図17に示すように、円柱領域A内となる範囲の熱交換器4上に騒音検出マイクロホン6を設置してもよい。また例えば図18に示すように、円柱領域A内となる範囲の熱交換器固定金具30上に騒音・消音効果検出マイクロホン16を設置してもよい。このように騒音・消音効果検出マイクロホン16を設置することにより、騒音・消音効果検出マイクロホン16を静翼取付部材7に設置した場合よりも、より高い消音効果を得ることができる。
 また、図19に示すように、騒音・消音効果検出マイクロホン16を壁部材31で覆ってもよい。壁部材より気流を遮断することができるため、気流の影響を一層受けなくなり、より高い消音効果を得ることができる。図19では、壁部材31を略円筒状に形成しているが、壁部材31の形状は任意である。
 また、熱交換器4や熱交換器固定金具30に騒音・消音効果検出マイクロホン16を取り付けた場合にも、騒音・消音効果検出マイクロホン16を壁部材31で覆うとよい。気流の影響を一層受けなくなり、より高い消音効果を得ることができる。
 また、本実施の形態2では、送風ファン2として軸流ファンの場合を例に挙げたが、羽根車が回転することにより送風を行うファンであればよい。
 また、本実施の形態2では、適応信号処理回路としてFIRフィルター18とLMSアルゴリズム19を用いたが、騒音・消音効果検出マイクロホン16で検出した音をゼロに近づける適応信号処理回路であればよい。
 また、信号処理装置17は、適応信号処理をする構成である必要はなく、固定のタップ係数により制御音を生成する構成にしてもよい。
 また、信号処理装置17は、デジタル信号処理回路である必要はなく、アナログ信号処理回路であってもよい。
 <B-3.効果>
 以上、本実施の形態2に係る空気調和機1においては、騒音・消音効果検出装置である騒音・消音効果検出マイクロホン16は、円柱領域A内で、且つ送風ファン2の不動部材に設けられている。このため、送風ファン2の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、空気調和機1の部品点数を増やすことなく騒音・消音効果検出マイクロホン16を設置できるため、設置自由度が高い空気調和機1を実現することができる。
 また、本実施の形態2に係る空気調和機1においては、騒音・消音効果検出装置である騒音・消音効果検出マイクロホン16は、円柱領域A内で、且つ送風ファン2の下流側に設けられている。このため、送風ファン2の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、送風ファン2の機構を変えずに、空気調和機1の部品点数を増やすことなく騒音・消音効果検出マイクロホン16を設置できるため、設置自由度が高い空気調和機1を実現することができる。さらに、送風ファン2の回転に伴う固有の機械振動を騒音・消音効果検出マイクロホン16により検出しないため、騒音・消音効果検出マイクロホン16を送風ファン2の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。
 また、本実施の形態2に係る空気調和機1においては、騒音・消音効果検出マイクロホン16は、送風ファン2の静翼取付部材7における円柱領域A内となる範囲に設置されている。このため、送風ファン2の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、送風ファン2の機構を変えずに、空気調和機の部品点数を増やすことなく騒音・消音効果検出マイクロホン16を設置できるため、設置自由度が高い空気調和機1を実現することができる。
 また、本実施の形態2に係る空気調和機1においては、騒音・消音効果検出マイクロホン16は、熱交換器4の円柱領域A内となる範囲に設けられている。このため、送風ファン2の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、送風ファン2の機構を変えずに、空気調和機の部品点数を増やすことなく騒音・消音効果検出マイクロホン16を設置できるため、設置自由度が高い空気調和機1を実現することができる。さらに、送風ファン2の回転に伴う固有の機械振動を騒音・消音効果検出マイクロホン16により検出しないため、騒音・消音効果検出マイクロホン16を送風ファン2の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。
 また、本実施の形態2に係る空気調和機1においては、騒音・消音効果検出マイクロホン16は、熱交換器固定金具30の円柱領域A内となる範囲に設けられている。このため、送風ファン2の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、送風ファン2の機構を変えずに、空気調和機の部品点数を増やすことなく騒音・消音効果検出マイクロホン16を設置できるため、設置自由度が高い空気調和機1を実現することができる。さらに、送風ファン2の回転に伴う固有の機械振動を騒音・消音効果検出マイクロホン16により検出しないため、騒音・消音効果検出マイクロホン16を送風ファン2の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。
 また、本実施の形態2に係る空気調和機1においては、騒音・消音効果検出マイクロホン16を壁部材31で覆っている。気流を遮断することにより、騒音・消音効果検出マイクロホン16が気流の影響を一層受けなくなるので、より高い消音効果を得ることができる。
 <C.実施の形態3>
 <C-1.構成>
 本実施の形態3では、騒音・消音効果検出マイクロホン16を吹出口5の上部に流路と反対側を向くように設置した空気調和機について説明する。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図20は、図2に示した空気調和機1の正面図を断面Xで切った時の断面図であり、本実施の形態3における空気調和機1の構成を示す図である。
 図20における空気調和機1は室内機を構成するもので、空気調和機1(より詳しくは、空気調和機1の筐体)の上部には吸込口3が、また下端には吹出口5がそれぞれ開口されている。
 空気調和機1内には吸込口3と吹出口5を連通する空気流路が形成され、該空気流路の吸込口3の下側には略垂直方向の回転軸心を有する軸流ファンを備えた送風ファン2が設けられている。また、送風ファン2の下方には、空気を熱交換して冷却又は加熱する熱交換器4が配置されている。熱交換器4は熱交換器固定金具30により、筐体内に固定されている。図20中の白抜き矢印に示すように、送風ファン2が作動すると、吸込口3から空気調和機1内の空気流路に室内の空気を吸い込み、この吸入空気を送風ファン2の下部にある熱交換器4で冷却又は加熱した後、吹出口5から室内に吹き出すようになっている。
 実施の形態2に記載した空気調和機1と異なる点は、騒音・消音効果検出マイクロホンを、吹出口5の上部に流路と反対側を向くように配置した点である。これに伴い、信号処理装置22の構成も異なっている。
 騒音・消音効果検出マイクロホン16を吹出口5の上部に流路と反対向きに取り付けた場合も、実施の形態2と同様に、新たに部品点数を増やすことなく、騒音・消音効果検出マイクロホン16を容易に取り付けることができ、精密な取付け機構が不要となる。
 空気調和機1の筐体の側壁部には、騒音に対する制御音を出力する制御スピーカー8が壁から空気流路の中央に向くように配置されている。また、送風ファン2の送風音を含む空気調和機1の運転音(騒音)に、制御スピーカー8から放出された制御音を干渉させた後の音を検出する騒音・消音効果検出マイクロホン16が、吹出口5の上部に流路の反対側を向くように配置されている。
 騒音・消音効果検出マイクロホン16の出力信号は、制御スピーカー8を制御する信号(制御音)を生成するための制御音生成装置である信号処理装置22に入力されている。
 図21は信号処理装置22の構成図を示している。図14に示した信号処理装置17と異なる点は、A/D変換器12の出力とLMSアルゴリズム19の入力との間に重み付け手段13が配置されている点である。それ以外の構成は実施の形態2の信号処理装置17と同様である。
 <C-2.動作>
 次に空気調和機1の動作について説明する。空気調和機1が動作すると、送風ファン2の羽根車25が回転し、送風ファン2上側から室内の空気が吸い込まれ、送風ファン2下側へと空気が送られることにより気流が発生する。これに伴い、送風ファン2の吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。
 送風ファン2の吹出口近傍では、実施の形態1と同様に、羽根車25の回転により気流乱れが起こっている。また、送風ファン2から吹出される空気は、送風ファン2の吹出口から外側へ向かって吹出すため、空気調和機1の筐体の側壁にぶつかり、更なる気流乱れが引き起こされる。このため、空気調和機1の側壁では気流乱れによる圧力変動が大きくなる。
 しかし、本実施の形態3では、騒音・消音効果検出マイクロホン16が、吹出口5の上部に流路と反対向きに配置されている。吹出口5付近は、送風ファン2近傍に比べると、気流乱れの大きい送風ファン2の吹出口からの距離が十分に大きい。さらに、吹出口5付近では、熱交換器4によって気流乱れがある程度整流される。このため、騒音・消音効果検出マイクロホン16の付近での気流乱れは小さくなっている。さらに、騒音・消音効果検出マイクロホン16が設けられている領域には気流が直接当たらないため、騒音・消音効果検出マイクロホン16は気流乱れによる影響をほとんど受けない。さらに、人が感じる空気調和機1からの騒音は、吹出口5から室内へと放出された後の騒音であるため、騒音・消音効果検出マイクロホン16を流路の反対側である室内に向けることで、室内へと放出された騒音を検出することができる。
 すなわち、騒音・消音効果検出マイクロホン16を吹出口5の上部に流路と反対向きに取り付けることで、室内へ放出された騒音とコヒーレンスの高い音を検出することが可能となる。
 次に、空気調和機1の運転音の抑制方法について説明する。本実施の形態3の制御音の生成方法は、実施の形態2に記述した方法と同様である。本実施の形態3の制御音の生成方法が実施の形態2に記述した方法と異なる点は、LMSアルゴリズム19に誤差信号として入力される信号に対して重み付け手段13により平均化を行う点である。
 騒音・消音効果検出マイクロホン16を吹出口5の上部に流路と反対向きに配置した場合、騒音・消音効果検出マイクロホン16が検出する騒音の中には、送風ファン2から発生する騒音以外の音が多分に含まれている。このため、これらの騒音以外の音によりフィードバック制御の安定性が損なわれてしまう。そこで、本実施の形態3では、フィードバック制御の前段に重み付け手段13を配置することで騒音以外の音を平均化している。これにより、無相関な騒音以外の音の成分をキャンセルすることができ、フィードバック制御を安定的に動作させることができる。すなわち、吹出口5から室内へと放出された後の騒音と騒音・消音効果検出マイクロホン16とのコヒーレンスを高めることが可能となる。
 なお、実施の形態1と同様に、LMSアルゴリズム19が安定するまでは、重み付け手段13による平均化は行わないようにしてもよい。これは、LMSアルゴリズム19が安定していない間は騒音が十分低減できておらず、重み付け手段13の出力値が暴走する場合があるからである。さらに、重み付け手段13の出力値が一定の値を超えた場合にリセットがかかるようにしておいてもよい。
 また、気流の影響をさらに受けなくするために、騒音・消音効果検出マイクロホン16を壁部材31で覆ってもよい。壁部材より気流を遮断することができるため、気流の影響を一層受けなくなり、より高い消音効果を得ることができる。
 また、本実施の形態3では、送風ファン2として軸流ファンの場合を例に挙げたが、羽根車が回転することにより送風を行うファンであればよい。
 また、騒音・消音効果検出マイクロホン16の設置位置は、吹出口5の上部に限らず、吹出口5の開口部であればよい。例えば騒音・消音効果検出マイクロホン16を、吹出口5の下部や側部に取り付けてもよい。また、騒音・消音効果検出マイクロホン16は、正確に流路と反対向きに設けられている必要はない。騒音・消音効果検出マイクロホン16は、空気調和機1(筐体)の外側に向かって設けられていればよい。つまり、騒音・消音効果検出マイクロホン16は、室内に放射された騒音を検出できる位置に設置すればよい。
 また、本実施の形態1では、信号処理装置22にFIRフィルター18とLMSアルゴリズム19を用いたが、騒音・消音効果検出マイクロホン16で検出した音をゼロに近づける適応信号処理回路であればよく、能動的消音方法で一般的に使用されているfiltered-Xアルゴリズムを用いたものでもよい。
 また、重み付け手段13は、積分器である必要はなく、平均化できる手段であればよい。
 また、信号処理装置22は、適応信号処理をする構成である必要はなく、固定のタップ係数により制御音を生成する構成にしてもよい。
 また、信号処理装置22は、デジタル信号処理回路である必要はなく、アナログ信号処理回路であってもよい。
 <C-3.効果>
 以上、本実施の形態3に係る空気調和機1においては、騒音・消音効果検出装置である騒音・消音効果検出マイクロホン16を、吹出口5の開口部に設け、空気調和機1の外側に向けて配置している。このため、気流の影響を受けず、室内へと放出された騒音を検出することができる。したがって、空気調和機1から放射された室内の騒音と騒音・消音効果検出マイクロホン16の検出音について高いコヒーレンスが得られる。このため、空気調和機1から放射された室内の騒音に対して精度の高い能動消音を行うことができる。
 また、本実施の形態3に係る空気調和機1においては、制御音生成装置である信号処理装置22は、騒音・消音効果検出装置である騒音・消音効果検出マイクロホン16にて検出した検出結果に重み付けをし、フィードバック制御を行う回路を備えている。このため、騒音・消音効果検出マイクロホン16にて検出した空気調和機1の騒音以外の音を平均化することでキャンセルすることができる。したがって、さらに精度の高い能動消音を行うことができる。
 また、本実施の形態3に係る空気調和機1においては、騒音・消音効果検出マイクロホン16を壁部材31で覆っている。気流を遮断することにより、騒音・消音効果検出マイクロホン16が気流の影響を一層受けなくなるので、より高い消音効果を得ることができる。
 1 空気調和機、2 送風ファン、3 吸込口、4 熱交換器、5 吹出口、6 騒音検出マイクロホン、7 静翼取付部材、8 制御スピーカー、9 消音効果検出マイクロホン、10,17,22 信号処理装置、11 マイクアンプ、12 A/D変換器、13 重み付け手段、14 D/A変換器、15 アンプ、16 騒音・消音効果検出マイクロホン、18,20 FIRフィルター、19 LMSアルゴリズム、21 乗算器、25 羽根車、26 静翼、27 ボス部、28 回転軸、30 熱交換器固定金具、31 壁部材、32 加算器、33 遅延素子、34 乗算器。

Claims (15)

  1.  吸込口及び吹出口が形成された筐体と、
     羽根車を有する送風ファンと、
     熱交換器と、
     前記送風ファンから発生する騒音を検出する騒音検出装置と、
     前記騒音を低減させる制御音を出力する制御音出力装置と、
     前記制御音の消音効果を検出する消音効果検出装置と、
     前記騒音検出装置及び前記消音効果検出装置の検出結果に基づき、前記制御音を生成する制御音生成装置と、
     を備える空気調和機において、
     前記騒音検出装置は、
     前記羽根車の羽根の内周部に接する内接円を前記羽根車の回転軸方向に延設した円柱領域に配置され、且つ前記送風ファンの不動部材又は前記送風ファンの下流側に設けられていることを特徴とする空気調和機。
  2.  前記消音効果検出装置は、
     前記吹出口の開口部に設けられ、前記筐体の外側に向けて配置されていることを特徴とする請求項1に記載の空気調和機。
  3.  前記制御音生成装置は、
     前記消音効果検出装置が検出した検出結果に重み付けをしてフィードバック制御を行う回路を備えたことを特徴とする請求項1又は請求項2に記載の空気調和機。
  4.  前記送風ファンは、羽根車の下流側に静翼を備え、
     該静翼は、少なくとも一部が前記円柱領域に配置された静翼取付部材に設けられ、
     前記騒音検出装置は、前記静翼取付部材の前記円柱領域となる範囲に設けられていることを特徴とする請求項1~請求項3のいずれか一項に記載の空気調和機。
  5.  前記熱交換器は、少なくとも一部が前記円柱領域に配置されるように、前記送風ファンの下流側に設けられ、
     前記騒音検出装置は、前記熱交換器の前記円柱領域となる範囲に設けられていることを特徴とする請求項1~請求項3のいずれか一項に記載の空気調和機。
  6.  前記熱交換器は、前記送風ファンの下流側に設けられ、
     該熱交換器は、少なくとも一部が前記円柱領域に配置された金具によって、前記筐体に固定され、
     前記騒音検出装置は、前記金具の前記円柱領域となる範囲に設けられていることを特徴とする請求項1~請求項3のいずれか一項に記載の空気調和機。
  7.  前記騒音検出装置が壁部材で覆われていることを特徴とする請求項1~請求項6のいずれか一項に記載の空気調和機。
  8.  前記消音効果検出装置が壁部材で覆われていることを特徴とする請求項1~請求項7のいずれか一項に記載の空気調和機。
  9.  吸込口及び吹出口が形成された筐体と、
     羽根車を有する送風ファンと、
     熱交換器と、
     前記送風ファンから発生する騒音を低減させる制御音を出力する制御音出力装置と、
     前記騒音を検出するとともに、前記制御音の消音効果を検出する騒音・消音効果検出装置と、
     前記騒音・消音効果検出装置の検出結果に基づき、前記制御音を生成する制御音生成装置と、
     を備える空気調和機において、
     前記騒音・消音効果検出装置は、
     前記羽根車の羽根の内周部に接する内接円を前記羽根車の回転軸方向に延設した円柱領域に配置され、且つ前記送風ファンの不動部材又は前記送風ファンの下流側に設けられていることを特徴とする空気調和機。
  10.  前記送風ファンは、羽根車の下流側に静翼を備え、
     該静翼は、少なくとも一部が前記円柱領域に配置された静翼取付部材に設けられ、
     前記騒音・消音効果検出装置は、前記静翼取付部材の前記円柱領域となる範囲に設けられていることを特徴とする請求項9に記載の空気調和機。
  11.  前記熱交換器は、少なくとも一部が前記円柱領域に配置されるように、前記送風ファンの下流側に設けられ、
     前記騒音・消音効果検出装置は、前記熱交換器の前記円柱領域となる範囲に設けられていることを特徴とする請求項9に記載の空気調和機。
  12.  前記熱交換器は、前記送風ファンの下流側に設けられ、
     該熱交換器は、少なくとも一部が前記円柱領域に配置された金具によって、前記筐体に固定され、
     前記騒音・消音効果検出装置は、前記金具の前記円柱領域となる範囲に設けられていることを特徴とする請求項9に記載の空気調和機。
  13.  吸込口及び吹出口が形成された筐体と、
     羽根車を有する送風ファンと、
     熱交換器と、
     前記送風ファンから発生する騒音を低減させる制御音を出力する制御音出力装置と、
     前記騒音を検出するとともに、前記制御音の消音効果を検出する騒音・消音効果検出装置と、
     前記騒音・消音効果検出装置の検出結果に基づき、前記制御音を生成する制御音生成装置と、
     を備える空気調和機において、
     前記騒音・消音効果検出装置は、
     前記吹出口の開口部に設けられ、前記筐体の外側に向けて配置されていることを特徴とする空気調和機。
  14.  前記制御音生成装置は、
     前記騒音・消音効果検出装置が検出した検出結果に重み付けをしてフィードバック制御を行う回路を備えたことを特徴とする請求項13に記載の空気調和機。
  15.  前記騒音・消音効果検出装置が壁部材で覆われていることを特徴とする請求項9~請求項14のいずれか一項に記載の空気調和機。
PCT/JP2010/003383 2009-12-25 2010-05-20 空気調和機 WO2011077602A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10838843A EP2518414A1 (en) 2009-12-25 2010-05-20 Air conditioner
CN2010800586323A CN102686951A (zh) 2009-12-25 2010-05-20 空调机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-295931 2009-12-25
JP2009295931A JP2011137560A (ja) 2009-12-25 2009-12-25 空気調和機

Publications (1)

Publication Number Publication Date
WO2011077602A1 true WO2011077602A1 (ja) 2011-06-30

Family

ID=44195157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003383 WO2011077602A1 (ja) 2009-12-25 2010-05-20 空気調和機

Country Status (4)

Country Link
EP (1) EP2518414A1 (ja)
JP (1) JP2011137560A (ja)
CN (1) CN102686951A (ja)
WO (1) WO2011077602A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527445A (zh) * 2013-08-30 2014-01-22 青岛海信日立空调系统有限公司 一种空调及其噪声消除方法
EP2597393A3 (en) * 2011-10-26 2014-07-16 Mitsubishi Electric Corporation Indoor unit of air-conditioning apparatus
CN110843831A (zh) * 2019-11-18 2020-02-28 中科振声(苏州)电子科技有限公司 一种降噪分配箱、空调管路系统及空调
WO2021174782A1 (zh) * 2020-03-03 2021-09-10 青岛海尔空调器有限总公司 主动降噪空调器及其控制方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686543A (zh) * 2013-12-10 2014-03-26 苏州市峰之火数码科技有限公司 适应性滤噪航拍器
US10013900B2 (en) * 2014-09-23 2018-07-03 Amazon Technologies, Inc. Vehicle noise control and communication
CN104848432A (zh) * 2015-05-29 2015-08-19 东南大学 一种带主动降噪装置的空气净化器
CN105840462A (zh) * 2016-05-23 2016-08-10 苏州艾柏特精密机械有限公司 一种压缩机有源主动消声降噪系统
DE102016210418A1 (de) * 2016-06-13 2017-12-14 Robert Bosch Gmbh Verfahren und Steuereinheit zur Detektion von Fehlzuständen in einem Heizsystem und/oder in einer Klimaanlage sowie ein Heizsystem und/oder eine Klimaanlage
JP6689218B2 (ja) 2017-02-02 2020-04-28 株式会社東芝 電子装置および方法
CN107452368B (zh) * 2017-08-14 2021-05-07 海尔优家智能科技(北京)有限公司 一种家电设备的降噪方法及装置
JP2019164263A (ja) 2018-03-20 2019-09-26 株式会社東芝 騒音低減装置
CN109282479B (zh) * 2018-09-17 2021-02-23 青岛海信日立空调系统有限公司 空调降噪装置及降噪方法
DE102019111076A1 (de) * 2019-04-29 2020-10-29 Ebm-Papst Landshut Gmbh Vorrichtung zur Betriebsüberwachung eines Ventilators
CN110762728B (zh) * 2019-09-23 2021-07-06 宁波奥克斯电气股份有限公司 一种室内空调模拟降噪控制方法及室内空调
CN111076409B (zh) * 2019-12-16 2021-01-15 珠海格力电器股份有限公司 一种用于空调的消声器、窗式空调及控制方法
CN111946640B (zh) * 2020-08-12 2022-02-15 安声(重庆)电子科技有限公司 吹风机及其降噪方法
CN112797557A (zh) * 2021-01-15 2021-05-14 珠海格力电器股份有限公司 净化设备

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261450A (ja) * 1988-08-24 1990-03-01 Matsushita Electric Ind Co Ltd 空気調和機の消音装置
JPH02224500A (ja) * 1989-02-25 1990-09-06 Calsonic Corp アクティブ・ノイズ・キャンセラー
JPH05188976A (ja) 1992-01-16 1993-07-30 Toshiba Corp 能動騒音制御装置
JPH05231706A (ja) * 1992-02-19 1993-09-07 Hitachi Ltd 三次元空間の能動消音装置
JPH05289677A (ja) 1992-04-10 1993-11-05 Nissan Motor Co Ltd 能動型騒音制御装置
JPH06138883A (ja) * 1992-10-23 1994-05-20 Sanyo Electric Co Ltd 消音装置
JPH0728479A (ja) * 1993-07-14 1995-01-31 Fujitsu Ltd 消音装置におけるマイクロホンの取付け構造
JPH08190388A (ja) * 1994-11-11 1996-07-23 Matsushita Electric Ind Co Ltd 消音装置
JPH08200780A (ja) * 1995-01-25 1996-08-06 Toshiba Corp 空気調和機
JPH08248964A (ja) * 1995-03-13 1996-09-27 Nippon Sharyo Seizo Kaisha Ltd アクティブ型騒音低減装置
JP2004053235A (ja) * 2002-07-22 2004-02-19 Kiyoshi Yanagimachi 空気調和機
JP2005003244A (ja) * 2003-06-10 2005-01-06 Daikin Ind Ltd 空気調和機
JP2009103079A (ja) * 2007-10-24 2009-05-14 Nippon Densan Corp 送風装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261450A (ja) * 1988-08-24 1990-03-01 Matsushita Electric Ind Co Ltd 空気調和機の消音装置
JPH02224500A (ja) * 1989-02-25 1990-09-06 Calsonic Corp アクティブ・ノイズ・キャンセラー
JPH05188976A (ja) 1992-01-16 1993-07-30 Toshiba Corp 能動騒音制御装置
JPH05231706A (ja) * 1992-02-19 1993-09-07 Hitachi Ltd 三次元空間の能動消音装置
JPH05289677A (ja) 1992-04-10 1993-11-05 Nissan Motor Co Ltd 能動型騒音制御装置
JPH06138883A (ja) * 1992-10-23 1994-05-20 Sanyo Electric Co Ltd 消音装置
JPH0728479A (ja) * 1993-07-14 1995-01-31 Fujitsu Ltd 消音装置におけるマイクロホンの取付け構造
JPH08190388A (ja) * 1994-11-11 1996-07-23 Matsushita Electric Ind Co Ltd 消音装置
JPH08200780A (ja) * 1995-01-25 1996-08-06 Toshiba Corp 空気調和機
JPH08248964A (ja) * 1995-03-13 1996-09-27 Nippon Sharyo Seizo Kaisha Ltd アクティブ型騒音低減装置
JP2004053235A (ja) * 2002-07-22 2004-02-19 Kiyoshi Yanagimachi 空気調和機
JP2005003244A (ja) * 2003-06-10 2005-01-06 Daikin Ind Ltd 空気調和機
JP2009103079A (ja) * 2007-10-24 2009-05-14 Nippon Densan Corp 送風装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597393A3 (en) * 2011-10-26 2014-07-16 Mitsubishi Electric Corporation Indoor unit of air-conditioning apparatus
CN103527445A (zh) * 2013-08-30 2014-01-22 青岛海信日立空调系统有限公司 一种空调及其噪声消除方法
CN110843831A (zh) * 2019-11-18 2020-02-28 中科振声(苏州)电子科技有限公司 一种降噪分配箱、空调管路系统及空调
WO2021174782A1 (zh) * 2020-03-03 2021-09-10 青岛海尔空调器有限总公司 主动降噪空调器及其控制方法

Also Published As

Publication number Publication date
JP2011137560A (ja) 2011-07-14
EP2518414A1 (en) 2012-10-31
CN102686951A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2011077602A1 (ja) 空気調和機
JP5430763B2 (ja) 空気調和機
EP3511930B1 (en) Outdoor unit of an air-conditioning-apparatus equipped with noise control system
JP2011137560A5 (ja)
JP2009036142A (ja) 消音機能付筐体、消音方法及び消音パターン作成方法
US20040194776A1 (en) Method for reducing noise of a cooking hood and a cooking hood based on such method
JPH0413073A (ja) 低騒音冷蔵庫
JPH07162979A (ja) マイクロホン取付け構造
JP2009103079A (ja) 送風装置
WO2005115285A2 (en) Integral active noise cancellation section
JP3250001B2 (ja) 包囲型エンジンの騒音低減装置
JP2006118422A (ja) 電子機器内のファン音低減装置
JP3072174B2 (ja) 三次元空間の能動消音装置
JP3177646B2 (ja) 能動形消音装置を備えた空気調和室外機
JP3240628B2 (ja) 空気調和機
JP5641808B2 (ja) 空気調和機
KR0128604Y1 (ko) 공기조화기의 소음제어장치
KR0111191Y1 (ko) 공기조화기의 소음제어장치
JP2005037447A (ja) 空気調和機の騒音制御装置
JPH0777991A (ja) アクティブ型消音装置
JP3446242B2 (ja) アクティブ消音装置
JPH0772873A (ja) アクティブ消音装置
JPH05134684A (ja) 消音装置
JPH0598926A (ja) 低騒音機器
JP3003329B2 (ja) 消音装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058632.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838843

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010838843

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE