WO2011075925A1 - 一种小晶粒稀土-zsm5/zsm11共结晶沸石的合成方法 - Google Patents
一种小晶粒稀土-zsm5/zsm11共结晶沸石的合成方法 Download PDFInfo
- Publication number
- WO2011075925A1 WO2011075925A1 PCT/CN2010/000179 CN2010000179W WO2011075925A1 WO 2011075925 A1 WO2011075925 A1 WO 2011075925A1 CN 2010000179 W CN2010000179 W CN 2010000179W WO 2011075925 A1 WO2011075925 A1 WO 2011075925A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rare earth
- zsm5
- zsm11
- small
- crystallized zeolite
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/36—Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/36—Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C01B39/38—Type ZSM-5
Definitions
- the invention belongs to the technical field of catalytic chemistry; in particular, to a method for synthesizing a small-grain rare earth-containing co-crystal silicoalumino zeolite.
- ZSM-5 zeolite is a silicon germanium molecular sieve (USP3, 702,886) with MFI configuration developed by Mobil in the 1970s. It has a two-dimensional ten-membered ring channel with a straight line and a Zigzag-shaped cross. It has always played an important role in the field of shape-selective catalytic materials, and is widely used in the fields of petroleum processing, coal chemical industry and fine chemicals.
- ZSM-11 Zeolite was also first developed by Mobil (USP 3, 709, 979) and has an MEL configuration consisting of a two-dimensional intersecting 10-membered ring straight channel.
- ZSM-5 and ZSM-11 belong to the same Pentasil molecular sieve, and their structures have certain similarities, but they are not the same.
- Mobil used a quaternary ammonium salt as a template to synthesize a silica-alumina with ZSM-5 and ZSM-11 intermediaries (USP 4, 229, 424), and further disclosed that the zeolite is methanol-based, olefin oligomeric, aromatic.
- Catalytic applications of processes such as guanidation and xylene isomerization (USP 4, 289, 607).
- ZL94113403.2 USP 5,869,021 and USP 6,093,866, ij disclose a rare earth-ZSM5/ZSM11 co-crystallized zeolite and its alkylation with dilute ethylene and benzene, aromatization of low carbon fired hydrocarbons, and production of low carbon olefins by methanol, etc.
- the co-crystallized zeolite molecular sieve has successfully realized the industrial application of ethylene and benzoquinone in catalytic cracking dry gas, so that the dry gas can react with benzene without special refining, and exhibits high reactivity and
- the rare earth-ZSM5/ZSM11 co-crystallite synthesized by the above patent is of the micron order (average particle size > 1 ⁇ ). Recent studies have shown that reducing the grain size of molecular sieves is one of the effective ways to optimize the catalytic performance of molecular sieves.
- Ultrafine molecular sieves generally have a grain size between tens and hundreds of nanometers, and their spatial dimensions are between clusters and macroscopic objects, and have a larger outer surface area and a higher intragranular diffusion rate than micron-sized molecular sieves. .
- the grain size decreases, the length of the intragranular channel is shortened, which is beneficial to reducing the diffusion resistance of the reactant or product molecules, reducing the reaction depth and improving the stability of the reaction; in addition, the number of surface atoms and the number of bulk atoms of the crystal grains
- the increase in the ratio and the increase in the exposed active sites contribute to the improvement of the utilization rate of the active center. Therefore, the ultrafine refinement of zeolite molecular sieves has become a research field of recent interest.
- ZL 99102700.0 synthesizes ultrafine particles of ZSM-5 and ZSM-11 molecular sieves by using low temperature and high temperature temperature crystallization conditions and low temperature crystallization conditions respectively.
- the template used for synthesizing ZSM-5 is n-butylamine and ethylamine.
- ZSM-11 the templating agent used in the synthesis of ZSM-11 is tetrabutylammonium hydroxide or tetrabutylammonium bromide, and a certain amount of seed crystals and sodium chloride are required in the synthesis system of the two;
- ZL 200610097462.5 developed a synthesis A method of small-grain ZSM-5 zeolite molecular sieve, which uses a relatively expensive silicon orthosilicate, methyl orthosilicate and silicon tetrachloride, and requires a hydrolysis process when compounding;
- ZL 03133546.2 reports A composite molecular sieve having a structure of TON and MFI containing rare earth atoms having a crystal grain size of less than 0.8 ⁇ m, the synthesis system containing a certain amount of halide, the purpose of which is to promote the crystallization of the molecular sieve and shorten the crystallization time thereof;
- the Chinese invention patent of 200610118536.9 discloses a preparation method of
- the object of the present invention is to provide a method for synthesizing a small-grain rare earth-ZSM5/ZSM11 co-crystallized zeolite having an average particle size of less than 500 nm, which is convenient and simple to operate.
- the invention provides a method for synthesizing a small-grain rare earth-ZSM5/ZSM11 co-crystallized zeolite, wherein the reaction raw material is treated in a synthesis kettle at a temperature of 60 98 ⁇ for 4 to 30 h, and then
- the reaction raw material consists of a silicon source, an aluminum source, an inorganic or inorganic acid, 1,6-hexanediamine (HMDA), a rare earth element (RE) salt, an additive, and deionized water.
- HMDA 1,6-hexanediamine
- RE rare earth element
- the method for synthesizing the small-grain rare earth-ZSM5/ZSM11 co-crystallized zeolite provided by the present invention wherein the low-temperature aging treatment temperature preferably ranges from 65 to 95 °C.
- the invention provides a method for synthesizing a small-grain rare earth-ZSM5/ZSM11 co-crystallized zeolite, wherein the silicon source is water glass or silica sol; and the aluminum source is selected from the group consisting of aluminum nitrate (A1(N0 3 ) 3 ) and aluminum sulfate ( A1 2 (S0 4 ) 3 ), one of aluminum phosphate (A1P0 4 ), sodium metaaluminate (NaA10 2 )
- the inorganic base is sodium hydroxide (NaOH);
- the inorganic acid is one of sulfuric acid or hydrochloric acid;
- the salt of the rare earth element is a nitrate or a hydrochloride of a single rare earth element, or a rare earth element is mixed.
- a salt; the additive is one of sodium chloride or a polyethylene glycol surfactant; and the polyethylene glycol surfactant has an average molecular weight of 600 to 2000.
- the small-grain rare earth-ZSM5/ZSM11 co-crystallized zeolite synthesized by the invention has an average particle size of less than 500 nm, wherein ZSM-5 accounts for 10 to 90% by weight of the co-crystallized zeolite.
- the present invention provides a small grain rare earth having an average particle size of less than 500 nm.
- the reaction raw materials are first subjected to high-temperature crystallization at a low temperature aging treatment for a certain period of time, and the low temperature aging can promote the formation of more crystal nucleuses, thereby facilitating the small crystal grains.
- suitable additives are added to the reaction raw materials.
- sodium chloride is the most commonly used salt, and polyethylene glycol surfactants are odorless, tasteless and non-corrosive. , widely used in the pharmaceutical industry, these additives are in line with the requirements of green environmental protection.
- the rare earth-ZSM5/ZSM11 co-crystallized zeolite synthesized by the invention can be used for catalytic conversion processes such as thiolation, aromatization and cracking, and the product prepared by the method has better reaction performance than the conventional micro-scale rare earth-ZSM5/ZSM11 co-crystallized zeolite.
- the reaction temperature can be significantly reduced under the premise of maintaining high activity and high selectivity, thereby saving energy and effectively reducing carbon dioxide emissions.
- the sodium type molecular sieve provided by the invention can be made through the existing ion exchange technology Change, replacing the sodium ions with other cations.
- the prepared sodium type molecular sieve raw powder can be converted into other forms by ion exchange technology, such as ammonium type, hydrogen type, magnesium type, zinc type, gallium type, etc., and then applied to different catalytic reaction processes.
- Example 1 Synthesis of small crystallite La-ZSM5/ZSM11 co-crystallized zeolite
- Raw material A 200.0 g of deionized water (part of raw material G) and raw material D are uniformly mixed to obtain working solution I
- raw material B 43.3 g of deionized water (part of raw material G)
- raw materials C and E are mixed , get working fluid II, will work under strong agitation
- the liquids I and II were mixed into a gel in a synthesis kettle, and then the raw material F was added. After stirring for 0.5 h, the synthesis kettle was sealed, firstly treated at 92 Torr for 14 h, and then crystallization at 175 ° C for 30 h.
- the synthesis kettle was cooled, the solid and the mother liquid were centrifuged, and the solid was washed with deionized water until the pH of the washing liquid was 8-9, and air-dried at 100 Torr for 8 hours to obtain a molecular sieve raw powder, which was analyzed by X-ray diffraction (XRD). It was determined that they had the crystal phase structure of ZSM-5 and ZSM-11, respectively, wherein ZSM-5 accounted for 30% by weight of the sample of the co-crystallized zeolite, and the La content was 2.4 wt by X-ray fluorescence (XRF). %, the average particle size (corresponding to the median diameter D50, the same below) measured by a laser particle size analyzer was 270 nm.
- XRD X-ray diffraction
- Example 2 Synthesis of small crystallite La-ZSM5/ZSM11 co-crystallized zeolite
- Example 1 the amount of water glass added was changed to 89.2 ml; the amount of dilute sulfuric acid solution was changed to 16.7 g; strontium nitrate was replaced by lanthanum nitrate [La(N03) y 63 ⁇ 40], which was added in an amount of 2.6 g.
- strontium nitrate was replaced by lanthanum nitrate [La(N03) y 63 ⁇ 40], which was added in an amount of 2.6 g.
- La(N03) y 63 ⁇ 40 lanthanum nitrate
- the amount of addition is 2.5 g
- the amount of polyethylene glycol 1000 is changed to 1.3 g
- the amount of deionized water is changed to 66.3 g ;
- the amount of the remaining synthetic raw materials is unchanged.
- the working solution I was prepared, 46.3 g of deionized water was added, and when the working solution II was prepared, the remaining 20.0 g of deionized water was added.
- Example 3 Synthesis of small crystal La, Ce-ZSM5/ZSM11 co-crystallized zeolite
- the amount of water glass added was changed to 53.5 ml; the dilute sulfuric acid solution was changed to hydrochloric acid (37 wt.% HCl), and the amount added was 5.6 g; 1, the amount of 6-hexanediamine was changed to 10.6 g; a rare earth chloride [RECl y 6H 2 0 in which the weight ratio of La 2 0 3 to Ce 2 0 3 is 0.6] is replaced by cerium and lanthanum in an amount of 1.3 g; The aluminum phosphate rubber [containing Al 2 0 3 6.5 wt.%] was replaced by aluminum sulfate in an amount of 3.1 g; the amount of polyethylene glycol 1000 was changed to 2.0 g; and the amount of deionized water was changed to 267.8 g. Add 200.0 g of deionized water when preparing working solution I, and add the remaining 67.
- the product was ZSM5/ZSM11 cocrystal Zeolite, wherein ZSM-5 accounts for 80% by weight of the sample of the co-crystallized zeolite, and the content of La and Ce is 0.4 ⁇ .% and 0.8 wt.% respectively by XRF, and the average particle size is measured by a laser particle size analyzer. It is 290 nm.
- Raw material B 134.7 g of deionized water (part of the raw material G), (:, D and F are uniformly mixed, and then the raw material A is sequentially added to the mixed solution under strong stirring, and dissolved in 20 g of deionized water (raw material)
- the raw material E of a part of G) was stirred for 0.5 h, and then the synthesis kettle was sealed, firstly treated at 90 ° C for 24 h, and then crystallization at 168 ° C for 65 h. After the synthesis kettle was cooled, the solid and the mother liquid were centrifuged.
- ZSM-5 accounts for 40% by weight of the sample of the co-crystallized zeolite, and has a La content of 0.5 wt.% as measured by XRF, and an average particle size of 370 nm as measured by a laser particle size analyzer.
- Comparative Example 1 Synthesis of conventional micron-sized La-ZSM5/ZSM11 co-crystallized zeolite
- Example 1 polyethylene glycol 1000 (raw material F) was not added, and the amount of other raw materials added and the raw material ratio were unchanged.
- the reaction mixture was directly crystallized at 175 ° C for 68 h, and the product was a ZSM5/ZSM11 co-crystallized zeolite, wherein ZSM-5 accounted for 30% by weight of the co-crystallized zeolite sample, and its La content was 2.5 wt. %, the average particle size measured by a laser particle size analyzer was 1.72 ⁇ .
- Example 5 Application of the products of Example 1 and Comparative Example 1 in the process of distilling ethylene and benzene
- the weight ratio is evenly mixed, and is mixed with an appropriate amount of 15% HN0 3 solution and tianjing powder to form ⁇ 2x (2 ⁇ 3) mm particles, dried at 110 ⁇ 120 °C for 12 h, and then calcined at 350 ° C for 1 h.
- HZ1 and HRZ1 were treated in .520 soil at 10 ° C and 100% water vapor for 4 h, respectively, to obtain catalysts C1 and RC1.
- the thiolation properties of dilute ethylene and benzene of C1 and RC1 catalysts were investigated on a continuous flow fixed bed reactor.
- the reaction results are shown in Table 1, from which it can be seen that the small crystal rare earth-ZSM5/ZSM11 co-crystal synthesized by the present invention Zeolite has good low temperature home-based properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
一种小晶粒稀土 -ZSM5/ZSM11共结晶沸石的合成方法 技术领域
本发明属于催化化学的技术领域;特别涉及一种小晶粒的含稀土 的共结晶硅铝沸石的合成方法。
背景技术
ZSM-5沸石是 Mobil公司于上世纪七十年代开发出的一种具有 MFI构型的髙硅分子筛(USP3, 702,886), 具有直线形和 Zigzag形交 叉的二维十元环孔道,从产生至今一直在择形催化材料领域占有重要 地位,广泛应用于石油加工、煤化工与精细化工等催化领域。 ZSM-11 沸石也是由 Mobil公司最先开发出来的 (USP3, 709, 979), 它具有 MEL构型, 由二维交叉的十元环直孔道构成。 ZSM-5与 ZSM-11同 属 Pentasil分子筛,其结构具有一定相似性,但又不尽相同。 1980年, Mobil公司采用季铵盐为模板剂合成了具有 ZSM-5和 ZSM-11中介结 构的硅铝沸石 (USP4, 229,424), 并进一步公开了该沸石在甲醇制汽 油、 烯烃低聚、 芳经的垸基化和二甲苯异构化等过程的催化应用 (USP4, 289,607)。 ZL94113403.2、 USP5,869,021和 USP6,093,866贝 ij 公开了一种稀土 -ZSM5/ZSM11 共结晶沸石及其在稀乙烯与苯烷基 化、低碳烧烃芳构化和甲醇制低碳烯烃等过程的催化应用, 该共结晶 沸石分子筛已成功实现了催化裂化干气中乙烯与苯垸基化的工业应 用,使得干气不需特殊精制即可与苯反应,表现出较高的反应活性和 选择性,上述专利合成的稀土 -ZSM5/ZSM11共结晶沸石属微米级(平 均粒度 >1 μιη) ο
近年来的研究表明,减小分子筛的晶粒尺寸是优化分子筛催化性 能的有效途径之一。超细分子筛的晶粒尺寸一般在几十至几百纳米之 间, 其空间尺度介于原子簇和宏观物体之间, 具有比微米级分子筛更 大的外比表面积和较高的晶内扩散速率。随着晶粒尺寸的减小, 晶内 孔道长度缩短,有利于降低反应物或产物分子的扩散阻力、减小反应 深度以及提高反应稳定性;此外, 晶粒的表面原子数与体相原子数之 比增大, 暴露的活性位增加, 有助于提高活性中心的利用率, 因而沸 石分子筛的超细化成为近年来倍受关注的研究方向。
ZL 99102700.0采用先低温后高温的变温晶化条件及一直低温的 晶化条件分别合成出超细颗粒的 ZSM-5和 ZSM-11分子筛, 其中合 成 ZSM-5采用的模板剂是正丁胺、 乙胺或丙胺, 合成 ZSM-11采用 的模板剂是四丁基氢氧化胺或四丁基溴化胺,二者的合成体系中均需 加入一定量的晶种和氯化钠; ZL 200610097462.5开发了一种合成小 晶粒 ZSM-5沸石分子筛的方法, 其采用的硅源是价格比较昂贵的正 硅酸乙酯、 正硅酸甲酯和四氯化硅, 且配料时需要水解过程; ZL 03133546.2报导了一种晶粒小于 0.8 μιη的含稀土原子的具有 TON和 MFI两种结构的复合分子筛,其合成体系中含有一定量的卤化物, 目 的是促进分子筛的晶化,缩短其晶化时间; 申请号为 200610118536.9 的中国发明专利公开了一种小晶粒 ZSM-5/丝光沸石复合分子筛的制 备方法, 但其合成产物的粒度区间较宽, 上限达 4 μπι, 甚至 ΙΟ μπι, 已超出小晶粒的范畴。 有关小晶粒 ZSM5/ZSM11共结晶沸石的制备 方法尚未见报导。
发明内容
本发明的目的是提供一种小晶粒稀土 -ZSM5/ZSM11 共结晶沸石 的合成方法, 合成出的共结晶沸石的平均粒度小于 500 nm, 该合成 方法操作方便, 简便易行。
本发明提供了一种小晶粒稀土 -ZSM5/ZSM11共结晶沸石的合成 方法, 反应原料在合成釜中 60 98Ό低温老化处理 4~30 h, 再经
160~195°C晶化 15~70 h,然后将合成釜冷却,对产物混合物进行固液 分离, 其中的固体产物经过洗涤、 过滤和干燥得到小晶粒稀土
-ZSM5/ZSM11共结晶沸石; 其中: 反应原料由硅源、 铝源、 无机碱 或无机酸、 1,6-己二胺(HMDA)、 稀土元素 (RE) 的盐、 添加剂和 去离子水构成, 摩尔配比为: SiO2/Al2O3=35~400, Na20/Al203=6~l 7, HMDA/SiO2=0.1-0.5, ¾O/SiO2=20~90, RE2O3/Al2O3=0.01~l.l,添加 剂 /Α12Ο3=0.01~20。
本发明提供的小晶粒稀土 -ZSM5/ZSM11共结晶沸石的合成方 法, 所述低温老化处理温度的优选范围为 65~95°C。
本发明提供的小晶粒稀土 -ZSM5/ZSM11共结晶沸石的合成方 法, 所述反应原料摩尔配比优选为: SiO2/Al2O3=40~350,
Na20/Al203=7~15, HMDA/SiO2=0.1-0.4, H2O/SiO2=25~80,
RE203/A1203= 0.02-1.0 , 添加剂 /Al2O3=0.05~l 8。
本发明提供的小晶粒稀土 -ZSM5/ZSM11共结晶沸石的合成方 法, 所述硅源为水玻璃或硅溶胶; 所述铝源选自硝酸铝(A1(N03)3)、 硫酸铝(A12(S04)3)、 磷酸铝 (A1P04)、 偏铝酸钠 (NaA102) 中的一
种;所述无机碱为氢氧化钠(NaOH); 所述无机酸为硫酸或盐酸中的 一种;所述稀土元素的盐为单一稀土元素的硝酸盐或盐酸盐、或者混 和稀土元素的盐酸盐;所述添加剂为氯化钠或聚乙二醇类表面活性剂 中的一种; 所述聚乙二醇类表面活性剂的平均分子量为 600~2000。
本发明合成出的小晶粒稀土 -ZSM5/ZSM11 共结晶沸石, 该共结 晶沸石的平均粒度小于 500 nm, 其中 ZSM-5占共结晶沸石的重量百 分比为 10~90%。
本发明提供了一种平均粒度小于 500 nm的小晶粒稀土
-ZSM5/ZSM11共结晶沸石的合成方法, 该合成方法操作方便, 简便 易行。 同常规微米级稀土 -ZSM5/ZSM11共结晶沸石的合成方法
(ZL94113403.2 USP5,869,021 )相比, 本发明的主要特点在于: 反 应原料先在低温老化处理一定时间再进行高温晶化,低温老化可促进 更多晶核的生成, 从而有利于小晶粒分子筛的形成; 此外, 反应原料 中需加入合适的添加剂, 在使用的添加剂中, 氯化钠是最常用的盐, 聚乙二醇类表面活性剂则具有无臭、无味、无腐蚀性的特点, 广泛应 用于制药工业中, 这些添加剂均符合绿色环保的要求。
本发明合成的稀土 -ZSM5/ZSM11 共结晶沸石可用于垸基化、 芳 构化和裂解等催化转化过程,该方法制备的产品具有优于常规微米级 稀土 -ZSM5/ZSM11 共结晶沸石的反应性能, 尤其用于稀乙烯与苯的 气相垸基化中, 可在保持高活性和高选择性的前提下, 明显降低反应 温度, 从而节约能源、 有效减少二氧化碳的排放。
本发明提供的钠型分子筛可以通过现有的离子交换技术迸行交
换, 用其它阳离子取代其中的钠离子。换言之, 制备出的钠型分子筛 原粉可以通过离子交换技术转化为其它的形式,如铵型、氢型、镁型、 锌型、 镓型等, 进而应用于不同的催化反应过程。
本发明最佳实施方式
下面的实施例将对本发明予以进一步的说明,但并不因此而限制 本发明。
实施例 1: 小晶粒 La-ZSM5/ZSM11共结晶沸石的合成
(1)原料:
A.水玻璃(201.9 g Si02/L, 65.7 g Na20/L, 比重为 1.19 g ml): 76.3 ml;
B.硫酸铝 [A12(S04)3-18H20, 纯度≥98 wt.%]: 3.1 g;
C.稀硫酸溶液(30 wt.% H2SO4): 11.2g;
D. l,6-己二胺 (HMDA, C6H16N2,纯度≥98 wt.%): 9.9 g;
E.氯化镧 (LaCl3. 6H20): 1.1 g
F. 聚乙二醇 1000 (PEG1000): 0.7 g
G 去离子水: 243.3 g
反应混合物的摩尔组成为: Si02/Al203=55, Na2O/Al2O3=10 , HMDA/SiO2=0.33 , H2O/SiO2=70 , La2O3/Al2O3=0.32 , PEG1000/Al2O3=0.15
(2)操作步骤:
将原料 A、 200.0 g去离子水(原料 G中的一部分)和原料 D混 合均匀, 得到工作液 I, 将原料 B、 43.3 g去离子水(原料 G中的一 部分) 原料 C和 E混合均勾, 得到工作液 II, 在强烈搅拌下将工作
液 I和 II于合成釜中混合成胶, 然后加入原料 F, 继续搅拌 0.5 h后, 将合成釜密封, 先在 92Ό处理 14 h, 再经 175°C晶化 30 h。合成釜冷 却后, 将固体与母液离心分离, 固体经去离子水洗涤至洗液的 pH为 8-9, 在 100Ό下空气干燥 8小时, 制得分子筛原粉, 经 X射线衍射 (XRD)分析确定其分别具有 ZSM-5 和 ZSM-11 的晶相结构, 其中 ZSM-5占该共结晶沸石样品的重量百分比为 30%, 采用 X射线荧光 法 (XRF)测得其 La含量为 2.4 wt.%,采用激光粒度仪测得其平均粒度 (对应于中位径 D50, 以下同) 为 270 nm。
实施例 2: 小晶粒 La-ZSM5/ZSM11共结晶沸石的合成
在实施例 1中, 将水玻璃的加入量改为 89.2 ml; 稀硫酸溶液的 加入量改为 16.7 g; 以硝酸镧 [La(N03)y6¾0]代替氯化镧, 其加入 量为 2.6 g; 以硝酸铝 [Α1(Ν03)3·9Η20]代替硫酸铝,其加入量为 2.5 g;聚乙二醇 1000的加入量改为 1.3 g;去离子水的加入量改为 66.3 g; 其余合成原料的加入量不变。 配制工作液 I时加入 46.3 g去离子水, 配制工作液 II时加入其余的 20.0 g去离子水。
反应混合物的摩尔组成为: SiO2/Al2O3=90, Na20/Al203=12 , HMDA/SiO2=0.2 , H2O/SiO2=30 , La2O3/Al2O3=0.9 , PEG1000/Al2O3=0.4, 低温老化温度和时间分别为 70°C和 26h, 晶化 温度和时间分别为 180°C和 24 h, 产物为 ZSM5/ZSM11共结晶沸石, 其中 ZSM-5占该共结晶沸石样品的重量百分比为 60%,采用 XRF测 得其 La含量为 4.1wt.%,采用激光粒度仪测得其平均粒度为 300 nm。 实施例 3: 小晶粒 La, Ce-ZSM5/ZSM11共结晶沸石的合成
在实施例 1中, 将水玻璃的加入量改为 53.5 ml; 稀硫酸溶液改 为盐酸(37 wt.% HCl), 其加入量为 5.6 g; 1, 6-己二胺的加入量改为 10.6 g; 以镧和铈混合稀土的氯化物 [RECly 6H20, 其中 La203与 Ce203的重量比为 0.6]代替氯化镧, 其加入量为 1.3 g; 以含水的磷酸 铝胶 [其中含 Al2036.5 wt.%】代替硫酸铝, 其加入量为 3.1 g; 聚乙 二醇 1000的加入量改为 2.0 g; 去离子水的加入量改为 267.8 g。配制 工作液 I时加入 200.0 g去离子水,配制工作液 II时加入其余的 67.8 g 去离子水。
反应混合物的摩尔组成为: SiO2/Al2O3=300, Na20/Al203=14, HMDA/SiO2=0.15 , H2O/SiO2=30 , RE2O3/Al2O3=0.9 , PEG1000/Al2O3=1.0, 低温老化温度和时间分别为 94°C和 20 h, 晶化 温度和时间分别为 184°C和 20 h, 产物为 ZSM5/ZSM11共结晶沸石, 其中 ZSM-5占该共结晶沸石样品的重量百分比为 80%,采用 XRF测 得其 La、 Ce的含量分别为 0.4 ^.%和 0.8wt.%, 采用激光粒度仪测得 其平均粒度为 290 nm。
实施例 4: 小晶粒 La-ZSM5/ZSM11共结晶沸石的合成
(1)原料:
A.硅溶胶(25.7 t.% Si02、 0.3 wt.% Na20): 54.5 g;
B.偏铝酸钠溶液(NaA102: 16.8 wt%Al203 31.2 wt.% NaOH): 2 g
C.氢氧化钠溶液 ( 10 wt.% NaOH): 15.6 g;
D. 1, 6-己二胺(HMDA, C6H16N2,纯度≥98 %): 6.8g;
E.氯化镧 (LaCl3.6H20): 0.24 g
F. 氯化钠 (NaCl, 纯度≥99 wt.%): 2.9 g
G 去离子水: 154.7 g
反应混合物的摩尔组成为: SiO2/Al2O3=70 , Na20/Al203=9 , HMDA/SiO2=0.25, H2O/SiO2=50, La2O3/Al2O3=0.1, NaCl/Al203=15 (2)操作步骤:
将原料 B、 134.7 g去离子水(原料 G中的一部分)、 (:、 D和 F 混合均匀,然后在强烈搅泮下向该混合液依次加入原料 A及溶于 20 g 去离子水(原料 G中的一部分) 的原料 E, 继续搅拌 0.5 h后, 将合 成釜密封,先在 90°C处理 24 h,再经 168°C晶化 65 h。合成釜冷却后, 将固体与母液离心分离, 固体经去离子水洗涤至 pH为 8~9, 在 100 °C下空气干燥 8 h, 制得分子筛原粉, 经 XRD分析确定其分别具有 ZSM-5和 ZSM-11的晶相结构, 其中 ZSM-5占该共结晶沸石样品的 重量百分比为 40%, 采用 XRF测得其 La含量为 0.5wt.%, 采用激光 粒度仪测得其平均粒度为 370 nm。
对比例 1 : 常规微米级 La-ZSM5/ZSM11共结晶沸石的合成
在实施例 1中, 不加聚乙二醇 1000 (原料 F), 其它原料加入量 及原料配比不变。 反应混合物直接在 175'C下晶化 68 h, 产物为 ZSM5/ZSM11共结晶沸石, 其中 ZSM-5占该共结晶沸石样品的重量 百分比为 30%, 采用 XRF测得其 La含量为 2.5wt.%, 采用激光粒度 仪测得其平均粒度为 1.72 μπι。
实施例 5: 实施例 1和对比例 1的产物在稀乙烯与苯烧基化过程中的 应用
将实施例 1和对比例 1得到的产物(代号为 Z1和 RZ1 )分别与 SB粉(A1203含量 75.6 wt.°/。) 按照沸石(干基): Al203 = 65; 35的 重量比混合均匀,辅以适量的 15% HN03溶液和田菁粉混捏挤压成 φ 2x (2〜3) mm的颗粒, 在 110~120°C干燥 12 h, 再经 350°C焙烧 l h、 450Ό焙烧 1 h及 540°C焙烧 4 h; 然后用 0.8 mol/L NH4NO3溶液分别 对其进行铵离子交换, 再经去离子水洗漆、 过滤、 110~120'C干燥 12 h、 520°C焙烧 3 h, 得到氢型样品 HZ1和 HRZ1。
将 HZ1和 HRZ1分别在 .520土 10°C、 100 %水蒸汽存在的条件下 处理 4 h, 得到催化剂 C1和 RC1。
在连续流动固定床反应装置上考察 C1和 RC1催化剂的稀乙烯与 苯的垸基化性能, 原料气的组成(vol.%)为: 乙烯 22.0, 氢气 15.0、 氮气 63.0; 反应条件为: 压力 0.8 MPa, 乙烯重量空速 1.0 h"1,苯 /乙 烯 =5.0 (分子比), 反应时间 6 h。 反应结果列于表 1 , 从中可见, 本 发明合成的小晶粒稀土 -ZSM5/ZSM11 共结晶沸石具有很好的低温院 基化性能。
表 1 C1和 RC1催化剂的稀乙烯与苯的烷基化性能 催化剂 反应温度(°C ) 乙烯转化率(%) 垸基化选择性(%)
C1 350 99.0 99.2
RC1 320 99.6 99.5
Claims
1、一种小晶粒稀土 -ZSM5/ZSM11共结晶沸石的合成方法, 其特 征在于: 反应原料在 6( 98Ό低温老化处理 4~30 h, 再经 160〜195°C 晶化 15~70 h, 水热合成出小晶粒稀土 -ZSM5/ZSM11共结晶沸石; 其中: 反应原料由硅源、 铝源、 无机碱或无机酸、 1,6-己二胺、 稀土元素 RE 的盐、 添加剂和去离子水构成, 摩尔配比为: SiO2/Al2O3=35~ 00,
Na20/Al203=6~l 7,HMDA/SiO2=0. 0.5,H2O/SiO2=20~90,RE2O3/Al2O3 =0.01-1.1,添加剂 /Α12Ο3=0.01~20。
2、按照权利要求 1所述小晶粒稀土 -ZSM5/ZSM11共结晶沸石的 合成方法, 其特征在于: 所述反应原料进行晶化之前, 先在 65〜95°C 进行低温老化处理。
3、按照权利要求 1所述小晶粒稀土 -ZSM5/ZSM11共结晶沸石的 合成方法, 其特征在于: 所述反应原料摩尔配比为: SiO2/Al2O3=40~350 , Na20/Al203=7~15, HMDA/SiO2=0.1-0.4 , H2O/SiO2=25~80, RE203/A1203= 0.02-1.0, 添加剂 /Α12Ο3=0.05~18。
4、按照权利要求 1所述小晶粒稀土 -ZSM5/ZSM11共结晶沸石的 合成方法, 其特征在于: 所述硅源为水玻璃或硅溶胶。
5、按照权利要求 1所述小晶粒稀土 -ZSM5/ZSM11共结晶沸石的 合成方法, 其特征在于: 所述铝源选自硝酸铝、硫酸铝、 磷酸铝、 偏 铝酸钠中的一种。
6、按照权利要求 1所述小晶粒稀土 -ZSM5/ZSM11共结晶沸石的 合成方法, 其特征在于: 所述无机碱为氢氧化钠, 无机酸为硫酸或盐 酸中的一种。
7、按照权利要求 1所述小晶粒稀土 -ZSM5/ZSM11共结晶沸石的 合成方法,其特征在于:所述稀土元素的盐为单一稀土元素的硝酸盐 或盐酸盐、 或者混和稀土元素的盐酸盐。
8、按照权利要求 1所述小晶粒稀土 -ZSM5/ZSM11共结晶沸石的 合成方法,其特征在于:所述添加剂为氯化钠或聚乙二醇类表面活性 剂中的一种。
9、按照权利要求 8所述小晶粒稀土 -ZSM5/ZSM11共结晶沸石的 合成方法,其特征在于:所述聚乙二醇类表面活性剂的平均分子量为
600~2000。
10、 权利要求 1所述方法合成出的小晶粒稀土 -ZSM5/ZSM11共 结晶沸石, 其特征在于: 该共结晶沸石的平均粒度小于 500 nm, 其 中 ZSM-5占共结晶沸石的重量百分比为 10~90%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102486672A CN101717095B (zh) | 2009-12-23 | 2009-12-23 | 一种小晶粒稀土-zsm5/zsm11共结晶沸石的合成方法 |
CN200910248667.2 | 2009-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011075925A1 true WO2011075925A1 (zh) | 2011-06-30 |
Family
ID=42431744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/000179 WO2011075925A1 (zh) | 2009-12-23 | 2010-02-08 | 一种小晶粒稀土-zsm5/zsm11共结晶沸石的合成方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101717095B (zh) |
WO (1) | WO2011075925A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103357431A (zh) * | 2012-03-30 | 2013-10-23 | 中国科学院大连化学物理研究所 | 一种废塑料裂解生产车用燃料催化剂、制备方法及其应用 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102372282B (zh) * | 2010-08-18 | 2013-01-09 | 中国科学院大连化学物理研究所 | 一种zsm5/zsm11共结晶沸石的无胺合成方法 |
CN102745715A (zh) * | 2011-04-20 | 2012-10-24 | 中国石油化工股份有限公司 | 小晶粒zsm-5/zsm-11复合沸石的制备方法 |
CN102389830A (zh) * | 2011-10-31 | 2012-03-28 | 中国科学院大连化学物理研究所 | 一种超细共结晶分子筛催化剂的制备方法 |
CN103357430B (zh) * | 2012-03-30 | 2015-08-19 | 中国科学院大连化学物理研究所 | 一种芳构化用共结晶分子筛催化剂、制备方法及其应用 |
CN103539153B (zh) * | 2012-07-12 | 2015-11-18 | 中国石油化工股份有限公司 | 纳米多级孔zsm-11/zsm-5共晶沸石的制备方法 |
CN103071523B (zh) * | 2013-01-31 | 2015-04-22 | 惠生工程(中国)有限公司 | 一种镧、磷双杂原子zsm-5分子筛催化剂及其制备方法 |
CN104338554B (zh) * | 2013-08-01 | 2016-09-07 | 中国科学院大连化学物理研究所 | 一种zsm-35/mor共晶分子筛的绿色合成方法 |
CN105731489B (zh) * | 2014-12-06 | 2018-02-09 | 中国石油化工股份有限公司 | 一种Silicalite‑2全硅分子筛的制备方法 |
CN105731490B (zh) * | 2014-12-06 | 2018-02-09 | 中国石油化工股份有限公司 | 一种Silicalite‑2全硅分子筛的合成方法 |
CN105645429B (zh) * | 2014-12-06 | 2018-02-09 | 中国石油化工股份有限公司 | 一种合成Silicalite‑2全硅分子筛的方法 |
CN106673000B (zh) * | 2015-11-09 | 2018-10-23 | 中国石油化工股份有限公司 | 含稀土金属的zsm-11分子筛的合成方法及其合成的分子筛 |
CN106673003B (zh) * | 2015-11-09 | 2018-11-20 | 中国石油化工股份有限公司 | 含卤素的zsm-11分子筛的合成方法及其合成的含卤素的zsm-11分子筛 |
CN111484033B (zh) * | 2019-01-25 | 2022-03-29 | 中国石油天然气股份有限公司 | 一种zsm-5和zsm-11共晶分子筛及其制备方法和应用 |
CN114797961B (zh) * | 2021-01-19 | 2023-09-26 | 中国科学院大连化学物理研究所 | 一种用于乙醇和苯烷基化反应zsm5/zsm11共结晶沸石催化剂的合成方法 |
CN115382567B (zh) * | 2021-05-24 | 2023-09-26 | 中国科学院大连化学物理研究所 | 一种用于环己烯水合反应zsm5/zsm11共结晶沸石的合成方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1137022A (zh) * | 1994-12-30 | 1996-12-04 | 中国石油化工总公司 | 稀土-zsm5/zsm11共结晶沸石 |
CN1749164A (zh) * | 2004-09-17 | 2006-03-22 | 中国科学院大连化学物理研究所 | 一种zsm-35分子筛的制备方法 |
CN1837046A (zh) * | 2006-04-24 | 2006-09-27 | 南开大学 | 纳米丝光沸石分子筛的合成方法 |
CN101007639A (zh) * | 2006-01-27 | 2007-08-01 | 中国石油化工股份有限公司 | 一种制备小晶粒NaY分子筛的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1242917C (zh) * | 2003-05-31 | 2006-02-22 | 中国石油化工股份有限公司 | 一种小晶粒含稀土原子复合分子筛及其制备方法 |
CN100336724C (zh) * | 2004-05-17 | 2007-09-12 | 中国科学院大连化学物理研究所 | 一种小晶粒mcm-22分子筛的合成方法 |
-
2009
- 2009-12-23 CN CN2009102486672A patent/CN101717095B/zh active Active
-
2010
- 2010-02-08 WO PCT/CN2010/000179 patent/WO2011075925A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1137022A (zh) * | 1994-12-30 | 1996-12-04 | 中国石油化工总公司 | 稀土-zsm5/zsm11共结晶沸石 |
CN1749164A (zh) * | 2004-09-17 | 2006-03-22 | 中国科学院大连化学物理研究所 | 一种zsm-35分子筛的制备方法 |
CN101007639A (zh) * | 2006-01-27 | 2007-08-01 | 中国石油化工股份有限公司 | 一种制备小晶粒NaY分子筛的方法 |
CN1837046A (zh) * | 2006-04-24 | 2006-09-27 | 南开大学 | 纳米丝光沸石分子筛的合成方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103357431A (zh) * | 2012-03-30 | 2013-10-23 | 中国科学院大连化学物理研究所 | 一种废塑料裂解生产车用燃料催化剂、制备方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN101717095A (zh) | 2010-06-02 |
CN101717095B (zh) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011075925A1 (zh) | 一种小晶粒稀土-zsm5/zsm11共结晶沸石的合成方法 | |
CN102049285B (zh) | 一种多级孔结构分子筛催化剂及其制备方法 | |
CN103537315B (zh) | 甲醇制芳烃催化剂及其制备方法 | |
CN100453461C (zh) | 纳米丝光沸石分子筛的合成方法 | |
TWI360435B (en) | Process for manufacturing molecular sieve of mfs f | |
WO2014082587A1 (zh) | 一种zsm-5型分子筛的合成方法 | |
CN106904634B (zh) | 一种zsm-5分子筛及其合成方法 | |
CN102666385A (zh) | 使用纳米晶态zsm-5晶种制备zsm-5沸石的方法 | |
CN105502433B (zh) | 一种甲醇制汽油催化剂纳米Zn‑ZSM‑5的制备方法 | |
CN103842318B (zh) | 用于烃转化的催化剂及方法 | |
CN104549452A (zh) | 一种甲苯与甲醇烷基化催化剂及其制备方法和应用 | |
CN1260126C (zh) | 超细颗粒五元环型沸石的制备方法 | |
EP3573949B1 (en) | Process for the conversion of monoethanolamine to ethylenediamine employing a nanocrystalline zeolite of the mor framework structure | |
Ge et al. | One-pot synthesis of hierarchically structured ZSM-5 zeolites using single micropore-template | |
JP2014024007A (ja) | ゼオライト触媒、ゼオライト触媒の製造方法および低級オレフィンの製造方法 | |
CN107020145B (zh) | 一种介孔im-5分子筛及制备方法 | |
TWI411578B (zh) | Synthesis of a Small Grain Rare Earth - ZSM5 / ZSM11 Co - Crystallized Zeolite | |
CN105712371A (zh) | 一种usy-y复合分子筛及其制备方法 | |
CN109692704B (zh) | 芳烃甲基化催化剂及其制备方法 | |
JP2559066B2 (ja) | 結晶性シリケートzsm−11の合成法 | |
CN103418426A (zh) | 无粘结剂甲醇制芳烃催化剂及其制备方法 | |
CN108262061B (zh) | 一种铁改性薄板型zsm-5沸石催化剂的制备方法 | |
CN101863492A (zh) | 一种4a型沸石的合成方法 | |
CN102441438B (zh) | 一种复合分子筛及其制备方法 | |
CN111017942B (zh) | 一种合成l型分子筛的晶种及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10838491 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10838491 Country of ref document: EP Kind code of ref document: A1 |