CN1260126C - 超细颗粒五元环型沸石的制备方法 - Google Patents

超细颗粒五元环型沸石的制备方法 Download PDF

Info

Publication number
CN1260126C
CN1260126C CN 99102700 CN99102700A CN1260126C CN 1260126 C CN1260126 C CN 1260126C CN 99102700 CN99102700 CN 99102700 CN 99102700 A CN99102700 A CN 99102700A CN 1260126 C CN1260126 C CN 1260126C
Authority
CN
China
Prior art keywords
zeolite
zsm
water
solution
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 99102700
Other languages
English (en)
Other versions
CN1240193A (zh
Inventor
王学勤
王祥生
郭新闻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
China Petrochemical Corp
Original Assignee
Dalian University of Technology
China Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology, China Petrochemical Corp filed Critical Dalian University of Technology
Priority to CN 99102700 priority Critical patent/CN1260126C/zh
Publication of CN1240193A publication Critical patent/CN1240193A/zh
Application granted granted Critical
Publication of CN1260126C publication Critical patent/CN1260126C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

以水玻璃、硅溶胶、硫酸铝为原料,在有机胺或季铵盐或碱的存在下,与碱、盐、水和晶种,按一定的摩尔比,经变温晶化、分离、水洗、干燥,制得10~500nm纳米级的超细颗粒Pentasil型ZSM-5和ZSM-11沸石。它们具有高反应活性、稳定性、抗积炭失活能力强等性能,可用来制备用于苯、甲苯、乙苯等芳烃的烷基化、歧化、烷基转移、苯中脱除噻吩、汽油中脱除硫等反应的催化剂。

Description

超细颗粒五元环型沸石的制备方法
本发明属于沸石分子筛及其制备方法。
沸石分子筛是一种微孔结晶材料,用它作为催化剂在石油加工、石油化工、精细化工等领域得到广泛地应用。如用于催化裂化的Y型沸石、甲苯歧化的丝光M型沸石、苯或乙苯选择乙基化的ZSM-5型沸石、催化裂化助催化剂HZSM-5型沸石等,这些催化剂使用的沸石分子筛晶粒尺寸为微米(μm)级,它们普遍存在的问题是反应温度偏高,催化剂因积炭失活较快。为了改善物质分子在晶体内的表面反应状况,一直对微米级沸石分子筛进行改进,但没有质的飞跃进步。小晶粒沸石的生产,已有许多专利报导,如:EP173,901采用乙二醇和少量四丙基氢氧化铵正离子(TPA+)或通过加人TPA+合成晶种的方法来制备晶粒小于0.3μm的ZSM-5沸石,实际上得到的是0.1~0.3μm的聚集体。美国专利US 4,205,053报导了生产ZSM-5和ZSM-35沸石的工艺过程,最小的晶粒为0.2~0.5μm或0.1μm的层状孪晶。US 3,781,226和US 3,926,782专利报导了KL和ZSM-5型沸石的生产方法,它是采用四丙基氢氧化铵(TPAOH)为模板剂,合成出晶粒大小为0.005~0.1μm的ZSM-5沸石,期望得到稳定的胶体悬浮液,实际上得到的是0.1~1.0μm的聚集体,并不能形成稳定的悬浮液。美国专利US 4,526,879报导了低钠ZSM-5的合成方法,合成体系为碱金属氧化物、氧化铝、氧化硅、胺、卤化物及助溶剂的混合物,晶粒为0.05~20μm,实际上仍是聚集体,控制晶粒大小及均匀度的方法未见报导。欧洲专利EP130,809采用三丙胺为模板剂,在102℃晶化制得了0.02~0.05μm的ZSM-5型沸石,合成体系中要加入表面活性剂,硅源为沉淀的二氧化硅。
随着超细颗粒纳米(nm)级材料科学的发展,粒度从微米级细化到纳米级,已由量的变化引起了质的飞跃。超细颗粒沸石是指晶粒尺寸小于500nm(纳米)超微粒子,它是由数目很少的原子组成的原子群,其主要特点是表面原子的比例大,比表面积大,表现为高的表面能和表面活性。超细粒子产生的表面效应和体效应,对以表面作用为特征的催化反应带来了革命性的发展机遇。
长期以来,高对位烷基苯的择形催化,是使用了大晶粒的改性ZSM-5型沸石做成的催化剂,需要高温操作,而且催化剂快速失活,这一问题成了择形催化反应技术工业化的最大障碍。
本发明的目的是制备具有高反应活性、稳定性和强抗积炭失活能力的超细颗粒五元环型沸石。使之进一步做成各种催化剂,用于苯、甲苯、乙苯等芳烃的烷基化、歧化、烷基转移、苯中脱除噻吩、汽油中脱除硫等反应。
本发明在制备超细颗粒五元环型沸石的方法中,使用不同的模板剂,可以得到不同结构的ZSM-5或ZSM-11型沸石。采用的硅源,可以是硅溶胶、水玻璃、硅酸、硅酸钠;所采用的铝源可以是Al2(SO4)3·18H2O、Na2AlO2、AlCl3等;所采用的模板剂可以是正丁胺、乙胺、丙胺,在一定的条件下合成超细颗粒ZSM-5型沸石;而在制备超细颗粒ZSM-11型沸石时,模板剂可采用四丁基氢氧化铵(TBAOH)、四丁基溴化铵(TBABr)、四丁基氯化铵(TBACl)、三丁胺和溴丁烷的混合物。
超细颗粒ZSM-5型沸石的合成是以水玻璃、硫酸铝为原料,在有机胺(正丁胺、乙胺或丙胺)为模板剂的存在下,按下列化学组成(摩尔比)配料:
Al2O3               1
SiO2                 20~100
Na2O                2~4
有机胺                10~15
NaCl                 15~60
H2O                 800~4000
晶种                  2~5%(以产品计)
将硫酸铝、硫酸、氯化钠和水配成A溶液;水玻璃、晶种和水配成B溶液;有机胺为C溶液,分别装入反应釜中,在强烈搅拌下,于100℃左右维持24小时,在150~170℃晶化2~8天,然后降温、分离、水洗、干燥、制得白色10~500nm(纳米)的超细颗粒ZSM-5型沸石。
超细颗粒ZSM-11型沸石的合成是以硅溶胶、硫酸铝为原料,在四丁基氢氧化铵(TBAOH)或四丁基溴化铵(TBABr)为模板剂的存在下,按下列化学组成(摩尔比)配料:
Al2O3                      1
SiO2                        20~100
Na2O                       2~10
有机胺                       5~10
NaCl                        5~15
H2O                        400~1200
晶种                         2~5%(以产品计)
将硫酸铝、硫酸、氯化钠和水配成A溶液;硅溶胶、晶种和水配成B溶液;有机胺和氢氧化钠配成C溶液;分别装入反应釜中,在强烈搅拌下,于60~90℃维持1~8天,然后降温、分离、水洗、干燥,制得白色的100~500nm(纳米)超细颗粒ZSM-11型沸石。
若不加铝源,可直接配制B与C溶液,按上述步骤得到100~500nm超细高硅ZSM-11型沸石,其成型步骤参见超细颗粒ZSM-5型沸石。
超细颗粒五元环型沸石的晶粒大小或聚集体尺寸,通过调变晶化温度而得到改变。一般来说,晶化温度越低,晶粒越小。另外,晶种及电解质的量对晶粒大小也有明显地影响。
采用本发明制得的超细颗粒沸石与微米沸石的物理化学性能有着明显地差别,见下面表1:
                    表1超细ZSM-5沸石和微米级沸石的性能
颗粒大小   孔体积(cm3/g)   比表面积(m2/g)   吸附量(wt%)   Si/Al
  nC6   cC6   2,2,3TMB   体相   表面
  20nm10μm   0.7280.610   436366   12.7011.80   7.706.05   640   12.1612.10   11.969.05
超细ZSM-5沸石有较大孔容、比表面积和高吸附量,尤其是2,2,3TMB(2,2,3三甲基丁烷)吸附量大,证明有二次孔存在,体相硅铝比和表面硅铝比接近。
其它的物理化学性能还表现在:
1.在不同的有机胺体系中,合成的纳米级ZSM-5型沸石的晶粒大小也不相同,见表2
                        表2不同有机胺体系中ZSM-5型沸石的晶貌
样品   胶中硅铝比SiO2/Al2O3 合成体系   沸石晶貌
  晶粒形状   晶粒大小(nm)
  NZE-1NZB-1NZT-1*   93.531.2104.2   乙胺正丁胺三乙胺+溴乙烷+丙酮   聚集体聚集体聚集体   502230
*TEA∶EBr∶Ac=1∶1∶3.2
2.不同体系合成的纳米级ZSM-5型沸石的粒度分布。见图1-a为乙胺体系,纵座标为晶粒百分数,横座标为晶粒大小(nm);图1-b为正丁胺体系,纵座标为晶粒百分数,横座标为晶粒大小(nm);图1-c为三乙胺体系,纵座标为晶粒百分数,横座标为晶粒大小(nm)。乙胺体系合成的ZSM-5型沸石的粒度主要在50nm,正丁胺体系合成的ZSM-5型沸石的粒度主要在20nm,而三乙胺体系合成的ZSM-5型沸石的粒度主要在30nm。
3.合成纳米级ZSM-5型沸石的相图
配料组成是能否合成出纳米级(nm)沸石的重要因素,见图2相图,由图可以看出1-μmZSM-5,2-nmZSM-5,3-无定形,4-α-SiO2,纳米级ZSM-5型沸石的合成相区很小,真正得到纳米级沸石的关键是在于成胶及陈化技术,控制好成核阶段。
4.纳米级沸石的孔隙结构
                           表3乙胺体系和正丁胺体系中合成的
                                NaZSM-5沸石吸附烷烃能力
样品   体系 晶粒大小/μm   吸附量/%
  2,2,3-三甲基丁烷   3-甲基戊烷   正己烷
  4-2-34-2-5NZE-1   乙胺   2×41×10.05   0125   100100100   100100100
  ZB-5ZB-3NZB-1   正丁胺   18.83.40.022   05.564.0   100100100   100100100
表3数据说明,用乙胺或正丁胺体系合成的纳米级ZSM-5型沸石与微米级沸石对不同分子尺寸和构形的烷烃吸附量进行对比发现,3-甲基戊烷和正己烷分子可进入沸石骨架孔道吸附在孔内,而分子尺寸大于ZSM-5型沸石孔口的2,2,3-三甲基丁烷分子不能通过孔口吸附在沸石的骨架孔道(即一级孔道)内。而微米级沸石对2,2,3-三甲基丁烷几乎没有吸附能力,纳米级沸石团聚体堆积形成晶间空隙(即二次孔道),使2,2,3-三甲基丁烷分子可以进入晶间空隙吸附在二级孔道内,具有高的大分子吸附能力。
5.沸石的表面积
流动色谱法测得沸石的表面积随沸石晶粒的减小而增大。见表4:
                        表4不同晶粒大小沸石的表面积
  样品   NZB-1   ZB-2   ZB-3   ZB-4   ZB-5
  晶粒大小/μmS总表面积(BET)S外表面积   0.02243676   0.2441848   3.439210.17   10.23664.17   18.83480.17
6.沸石的硅铝比
不同晶粒大小沸石,由原子吸收法测得的总包Si/Al基本相同,XPS测得的沸石外表面Si/Al随晶粒尺寸的增大而降低,说明沸石体相的Al分布是不均一的。从沸石体相中心到外壳层Al含量逐渐增加这一结果支持富硅成核机理。图3为不同晶粒大小的沸石外表面硅铝比(Si/Al)。纵座标为硅铝比,横座标为晶粒大小。
7.沸石的酸性质
用NH3-TPD研究氢型纳米沸石的酸性质,并与微米级ZSM-5沸石进行比较,结果见表5:
                   表5氢型纳米级沸石与微米级沸石酸性质比较
晶粒尺寸   峰1   峰2
  Tmax/K   n(×10-4/mol/g   Tmax/K   n(×10-4)/mol/g
  20nm10μm   544551   3.493.36   744755   2.482.01
氢型纳米级沸石酸中心多,酸强度弱,即氨脱附峰顶温度比氢型微米级沸石脱附峰顶温度低。
吡啶碱性分子可以通过HZSM-5沸石孔口扩散到孔道内吸附在酸中心上;而2,8-二甲基喹啉碱性分子不能进人到HZSM-5沸石孔内,只能吸附在外表面及孔口处酸中心上。
                表6乙胺体系中合成的HZSM-5沸石吸附碱性分子能力
样品 晶粒大小/μm   吸附量/mmol/g   2,8二甲基喹啉
  吡啶   2,8-二甲基喹啉×102   吡啶×102
  4-2-134-2-15NZE-1   4×21×10.05   0.2650.3010.362   0.1090.2620.498   4.118.7010.99
由表6结果可以看出随晶粒减小,沸石内外表面酸中心增多,外表面和孔口酸中心占总酸量的比例增高。
8.沸石的热稳定性
纳米级沸石的热稳定性低于微米级沸石,见表7:
     表7不同晶粒的ZSM-5型沸石的热稳定性
样品   ZSM-5
  NZB-1   ZB-5
  晶粒尺寸/μmNa2O/wt%RE2O2/wt%相对结晶度%760℃816℃843℃   0.229888   18.810097
不同晶粒大小的ZSM-5型沸石的TG-DTA结果见图4-a纵座标为重量损失百分数,横座标为温度,TG-DTA(18.8μm)、图4-b TG-DTA(0.5μm)和图4-c TG-DTA(22nm),随着晶粒尺寸的减小,ZSM-5沸石的骨架破坏温度降低。
9.沸石的水热稳定性
用100%水蒸汽在750℃处理5小时纳米级ZSM-5(22nm)及微米级ZSM-5(18.8μm),考查水热稳定性能,见表8:
      表8不同晶粒大小的ZSM-5型沸石的水热稳定性
样品   HZSM-5
  NZB-1   ZB-5
  晶粒尺寸/μmSi/Al相对结晶度/%(处理前)100%水蒸汽,750℃,5小时   0.02212.210087   18.812.1100100
由表8可以看出,经高温水汽处理后,微米级沸石在处理前后,相对结晶度没有明显变化,而纳米级沸石下降至87%,说明纳米级沸石的水热稳定性不如微米级沸石。
超细颗粒沸石的独特结构,使其具有高反应活性和稳定性以及强抗积炭性能;制备的重复性好。
本发明的特点是采用了先低温后高温的变温晶化,从而缩短了晶化时间。另外,也可采用一直低温晶化的制备方法,具有合成方法简单,适于工业化生产。
                                实施例1
按化学组成(摩尔比)Al2O2∶SiO2∶Na2O∶n-C4H9NH2∶NaCl∶H2O=1.0∶31.2∶2.0∶12.2∶18∶833.3配制B溶液(水玻璃+水+晶种),A溶液(硫酸铝+水+硫酸+氯化钠)及C溶液正丁胺。
首先将B溶液装入100立升的反应釜内,将C溶液在强烈搅拌下,缓缓加到B溶液中,搅匀后,将A溶液最后加人釜内,搅拌下逐渐升温至100℃,维持5~24小时,再于2小时内升温至170℃,维持30~40小时,然后降至常温,过滤,分出母液,反应产物经水洗、干燥,得到20~30nm的白色粉状ZSM-5型沸石,硅铝比为30。
                              实施例2
按化学组成Al2O3∶SiO2∶Na2O∶TBAOH∶NaCl∶H2O=1.0∶31.2∶9.9∶5.3∶6.6∶1020(摩尔比)配制B溶液(硅溶胶+水+晶种),A溶液(硫酸铝+水+氯化钠)及C溶液(TBAOH+NaOH)。
首先将B溶液装入250毫升反应釜中,将C溶液在强烈搅拌下,缓缓加到B溶液中,搅匀后,将A溶液最后加入釜内,在连续搅拌下升温至90℃,晶化3天,然后降至室温,高速离心分离,反应产物经水洗、干燥,得到300nm呈均匀球体的白色粉状ZSM-11型沸石,硅铝比为30。
                              实施例3
按化学组成SiO2∶Na2O∶TBAOH∶H2O∶NaCl=1∶0.11∶0.16∶30∶0.2(摩尔比)配制B溶液(硅溶胶+水+晶种),A溶液(氯化钠+水)及C溶液(TBAOH+NaOH)。
首先将B溶液装人250毫升反应釜中,将C溶液在强烈搅拌下,缓缓加到B溶液中,搅匀后,将A溶液最后加到釜内,在连续搅拌下,逐渐升温至90℃,维持3天,然后降至室温,分离出母液,反应产物经水洗、干燥,得到300nm左右呈均匀球体的白色粉状高硅ZSM-11型沸石。(该体系若改为静止晶化,则可得到300~500nm的均匀椭园形)。
附图5为超细颗粒ZSM-11的电镜照片(300~500nm)。

Claims (2)

1、一种采用铝源、硅源和模板剂制备超细颗粒ZSM-5沸石的方法,其特征在于以Al2(SO4)3·18H2O、Na2AlO2或AlCl3为铝源,以水玻璃、硅溶胶、硅酸或硅酸钠为硅源,在有机胺为模板剂的存在下,按照下列摩尔比配料:
Al2O3      1
SiO2        20~100
Na2O       2~4
有机胺       10~15
NaCl        15~60
水           800~4000
晶种         产品的2~5%
首先,配制A、B、C溶液:A溶液是用上述铝源、硫酸、氯化钠和水配成;B溶液是用上述硅源、晶种和水配成;C溶液是乙胺、丙胺或正丁胺;然后,分别将它们装入反应釜中,在强烈搅拌下,于100℃维持24小时,再于150~170℃晶化2~8天,降至常温,分出母液,水洗产物,干燥,制得10~500nm超细颗粒ZSM-5沸石。
2、一种采用铝源、硅源和模板剂制备超细颗粒ZSM-11沸石的方法,其特征在于以硫酸铝为铝源,以硅溶胶为硅源,在四丁基氢氧化铵或四丁基溴化铵为模板剂的存在下,按照下列摩尔比配料:
Al2O3           1
SiO2             20~100
Na2O            2~10
四丁基氢氧化铵    5~10
或四丁基溴化铵
NaCl             5~15
水                400~1200
晶种              产品的2~5%
将硫酸铝、硫酸、氯化钠和水配成A溶液;将硅溶胶、晶种和水配成B溶液;将四丁基氢氧化铵或四丁基溴化铵于氢氧化钠配成C溶液;然后,分别将它们装入反应釜中,在强烈搅拌下,于60~90℃维持1~8天,降温,离心分离,水洗产物,干燥,制得100~500nm超细颗粒ZSM-11沸石。
CN 99102700 1999-04-21 1999-04-21 超细颗粒五元环型沸石的制备方法 Expired - Fee Related CN1260126C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 99102700 CN1260126C (zh) 1999-04-21 1999-04-21 超细颗粒五元环型沸石的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 99102700 CN1260126C (zh) 1999-04-21 1999-04-21 超细颗粒五元环型沸石的制备方法

Publications (2)

Publication Number Publication Date
CN1240193A CN1240193A (zh) 2000-01-05
CN1260126C true CN1260126C (zh) 2006-06-21

Family

ID=5270941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 99102700 Expired - Fee Related CN1260126C (zh) 1999-04-21 1999-04-21 超细颗粒五元环型沸石的制备方法

Country Status (1)

Country Link
CN (1) CN1260126C (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277355B1 (en) * 1999-07-13 2001-08-21 Exxonmobil Chemical Patents Inc. Synthesis of ZSM-5 and ZSM-11
DE10356184A1 (de) 2003-12-02 2005-07-07 Basf Ag Zeolithisches Material vom Pentasil-Strukturtyp, seine Herstellung und seine Verwendung
DE602004028766D1 (de) * 2004-04-23 2010-09-30 Uop Llc Siliciumreiche zeolithe uzm-5hs
JP2006143508A (ja) * 2004-11-18 2006-06-08 Sumitomo Chemical Co Ltd ゼオライト成形体の解砕方法
CN100393415C (zh) * 2005-03-09 2008-06-11 北京化工大学 一种烷烃芳构化催化剂及其制备方法
CN100364890C (zh) * 2005-06-14 2008-01-30 大连理工大学 一种高硅铝比的小晶粒zsm-5沸石分子筛的合成方法
CN101837298B (zh) * 2010-05-14 2012-06-27 广西壮族自治区化工研究院 用于生物乙醇制乙烯的小晶粒zsm-5分子筛催化剂及其制备方法
CN102302945B (zh) * 2011-10-04 2013-01-30 大连理工大学 一种催化裂解制丙烯的方法
CN102557071B (zh) * 2012-01-06 2013-08-21 中国石油大学(华东) 一种具有多级孔结构zsm-11分子筛及其制备方法
CN104445253B (zh) * 2013-09-24 2016-08-24 中国石油化工股份有限公司 合成纳米晶mel沸石团簇的方法
CN104192859B (zh) 2014-08-21 2018-02-06 陕西延长石油(集团)有限责任公司研究院 一种小晶粒zsm‑5分子筛的快速合成法
CN106673001B (zh) * 2015-11-09 2018-11-20 中国石油化工股份有限公司 Zsm-11分子筛的合成方法及其合成的zsm-11分子筛
CN106673002B (zh) * 2015-11-09 2018-11-20 中国石油化工股份有限公司 Zsm-11/zsm-5复合分子筛的合成方法及其合成的复合分子筛
CN111392745B (zh) * 2020-04-24 2021-11-16 中国石油大学(北京) 一种高硅铝比镁碱沸石及其制备方法和应用
CN112619688B (zh) * 2020-12-31 2022-09-09 西北大学 一种用于合成气与联苯/4-甲基联苯一步法甲基化的催化剂的制备方法和应用

Also Published As

Publication number Publication date
CN1240193A (zh) 2000-01-05

Similar Documents

Publication Publication Date Title
JP4880104B2 (ja) 特殊な粒度の結晶および結晶の集合体を含むゼオライトeuo、並びにc8芳香族化合物の異性化触媒としてのその使用
CN1260126C (zh) 超细颗粒五元环型沸石的制备方法
Javdani et al. Nano-sized ZSM-5 zeolite synthesized via seeding technique for methanol conversions: A review
RU2092241C1 (ru) Цеолит nu-86 и способ его получения
CN108726535B (zh) 一种具有多级孔的磷改性zsm-5分子筛的制备方法
CN106904636B (zh) 一种具有微孔-介孔的多级孔道结构的ssz-13分子筛及其合成方法和应用
CN108745410B (zh) 一种含磷的多级孔zsm-5/y复合分子筛的制备方法
EP1701913A2 (en) Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
BRPI0713674A2 (pt) formulações farmarcêuticas e composições de um antagonista seletivo cxcr2 ou cxcr1 e métodos para o uso do mesmo visando o tratamento de distúrbios inflamatórios
CN111569935B (zh) 一种用于制备对二甲苯的催化剂及其制备方法和用途
WO2011075925A1 (zh) 一种小晶粒稀土-zsm5/zsm11共结晶沸石的合成方法
JP5588973B2 (ja) 結晶質メタロシリケートの製造方法
CN101190418B (zh) 小晶粒zsm-5/丝光沸石复合分子筛的制备方法
JP5805878B2 (ja) 均質アモルファスシリカアルミナからゼオライトを形成するための方法
CN109046444B (zh) 一种c8芳烃异构化的双功能催化剂及其制备方法
CN103842318B (zh) 用于烃转化的催化剂及方法
JP5588972B2 (ja) 結晶質メタロシリケートの製造方法
WO2003029144A1 (en) Crystalline molecular sieves
WO2016086361A1 (zh) 一种纳米zsm-5分子筛的合成方法
CN112794338A (zh) Zsm-5分子筛及其制备方法和应用
US6821503B1 (en) Molecular sieves and processes for their manufacture
CN107020145B (zh) 一种介孔im-5分子筛及制备方法
CN112279268A (zh) 一种多级孔zsm-5纳米层片沸石的制备方法及应用
CN102441438B (zh) 一种复合分子筛及其制备方法
CN108946756B (zh) 一种多级孔euo结构分子筛及其合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060621

Termination date: 20100421