WO2011074678A1 - 赤外線センサモジュール - Google Patents

赤外線センサモジュール Download PDF

Info

Publication number
WO2011074678A1
WO2011074678A1 PCT/JP2010/072811 JP2010072811W WO2011074678A1 WO 2011074678 A1 WO2011074678 A1 WO 2011074678A1 JP 2010072811 W JP2010072811 W JP 2010072811W WO 2011074678 A1 WO2011074678 A1 WO 2011074678A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared sensor
sensor module
substrate
infrared
module according
Prior art date
Application number
PCT/JP2010/072811
Other languages
English (en)
French (fr)
Inventor
植田 充彦
敬未 奥林
杉山 貴則
佐名川 佳治
孝典 明田
中村 雄志
桐原 昌男
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to KR1020127015578A priority Critical patent/KR20120089342A/ko
Priority to BR112012014958A priority patent/BR112012014958A2/pt
Priority to US13/513,426 priority patent/US8952331B2/en
Priority to CN201080057710.8A priority patent/CN102656430B/zh
Priority to EP10837702A priority patent/EP2515091A1/en
Publication of WO2011074678A1 publication Critical patent/WO2011074678A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J5/14Electrical features thereof
    • G01J5/16Arrangements with respect to the cold junction; Compensating influence of ambient temperature or other variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0205Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0215Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to an infrared sensor module, and more particularly to a mounting structure for reducing thermal noise.
  • infrared sensors can detect temperature without contact. Therefore, an automatic lighting system that detects the presence of a person, controls the lighting according to the movement of the person, and a warehouse for a microwave oven. It is widely used for detecting the internal temperature and detecting the temperature distribution of the object to be cooked.
  • An infrared sensor is a device that outputs a voltage corresponding to the amount of infrared light received by a built-in sensor chip.
  • the detection viewing angle of this infrared sensor is defined in the specification, but in reality, unnecessary infrared light from outside the viewing angle also enters the device, and the infrared light enters the sensor chip from within the reflection inside the package. There is a problem that detection noise is deteriorated due to thermal noise.
  • an infrared sensor for example, a large number of resistors (single elements) are arranged in a matrix and a change in resistance value accompanying a rise in temperature when infrared rays are projected is taken out as a signal. Some of them generate and output an image signal based on the above.
  • it is necessary to supply a predetermined bias current in order to extract a resistance change as a signal and the temperature of the infrared sensor may increase due to Joule heat due to the bias current. For this reason, a new signal is generated from the infrared sensor due to the temperature rise due to the Joule heat, and this signal is output as noise in the infrared sensor.
  • Patent Document 2 As shown in FIG. 9, a circuit board 110, an electronic cooling device 140, and an infrared detection element 130 are sequentially mounted on a package 120, and a shield cylinder 150 is provided so as to cover the infrared detection element 130.
  • the shield cylinder 150 is arranged to be cooled by the electronic cooling device 140.
  • the infrared detecting element 130 is cooled by the electronic cooling device 140 to prevent the temperature of the infrared detecting element 130 from being increased due to the bias current, and the temperature of the infrared detecting element 130 due to radiant heat through the shield cylinder 150 is cooled by cooling the shield cylinder 150. Prevent rise and reduce noise.
  • the incident window 150a that opens in the shield tube 150 with an appropriate opening diameter, incident infrared rays are not leaked outside each single element of the infrared detection element 130, and noise generation is prevented. To do.
  • thermopile element infrared sensor element
  • the thermopile element 330 is covered with an inner cap 350 that is thermally connected to the stem 310.
  • An infrared sensor module has also been proposed in which the temperature followability of the cold junction of the thermopile element 330 against temperature fluctuation is improved (Patent Document 3).
  • Patent Document 3 the thermopile element and the thermistor are covered with the inner cap so that the internal atmosphere is thermally connected to the stem so that secondary radiation from the case 320 and the inner cap 350 is not irradiated to the thermopile element 330. Yes.
  • the infrared sensor module incorporating the signal processing circuit element as described above, it is necessary to use a metal housing as a countermeasure against electric noise. In this case, in particular, internal reflection tends to occur due to the high light reflectance of the metal. was there. Further, there is a problem of thermal noise due to heat generation of the signal processing circuit element, and the structure is more likely to generate thermal noise.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an infrared sensor module capable of reducing thermal noise and performing highly accurate and reliable infrared detection.
  • an infrared sensor module is disposed on a substrate and receives an infrared sensor element that receives an infrared signal, a signal processing circuit element that processes an output of the infrared sensor element, and a predetermined distance from the infrared sensor element.
  • an incident window provided with an optical system for imaging an external infrared signal on the infrared sensor element, and a metal case for housing the infrared sensor element and the signal processing circuit element;
  • An infrared sensor element and a sensor cover having a translucent portion for guiding the infrared signal incident through the optical system to the infrared sensor element are provided between the case and the signal processing circuit element.
  • the sensor cover in the infrared sensor module, includes a side wall abutted against the substrate so as to surround the infrared sensor element, and the infrared sensor element and the optical system from the side wall.
  • the translucent part has a top surface constituting the opening.
  • the present invention is characterized in that in the infrared sensor module, the sensor cover is made of a metal material.
  • the sensor cover is bonded to the substrate with a heat conductive material.
  • the sensor cover is bonded to the substrate with a conductive material.
  • a band-shaped metal ring is placed in a region surrounding the infrared sensor element mounting region and the signal processing circuit element region of the substrate, and the metal ring is an end on the substrate side of the case.
  • the seal portion is configured by abutting with a collar portion provided in the portion.
  • the present invention is characterized in that in the above infrared sensor module, an inner case made of a resin molded body is provided inside the case.
  • the present invention is characterized in that in the above infrared sensor module, a black plating layer is formed on the inner wall of the case.
  • the infrared sensor element is connected to the substrate via a wire, and the sensor cover covers a peripheral edge of the infrared sensor element except for a lead-out region of the wire. It was formed as follows.
  • the wire of the infrared sensor element is led out from two opposite sides of the infrared sensor element, and the sensor cover is two opposite sides where the wire is not disposed, It is characterized by being bonded to a substrate.
  • the present invention is characterized in that in the infrared sensor module, the infrared sensor element is connected to the substrate via a bump.
  • the present invention is characterized in that in the infrared sensor module, the infrared sensor element is mounted on the substrate by surface mounting.
  • the present invention is characterized in that, in the infrared sensor module, the sensor cover is in contact with the substrate all around the infrared sensor element.
  • the present invention is characterized in that the connection between the infrared sensor element and the signal processing circuit element is realized through an internal wiring formed on the substrate.
  • the present invention is characterized in that in the infrared sensor module, a heat blocking part is formed on the substrate between the infrared sensor element and the sensor cover.
  • the present invention is characterized in that, in the infrared sensor module, the heat blocking part is a ring-shaped groove part.
  • the present invention is characterized in that, in the infrared sensor module, the substrate forms a thin region in a region where the signal processing circuit element is mounted.
  • the substrate is a ceramic substrate, and a wiring conductor layer is formed in a region where the sensor cover abuts.
  • the sensor cover prevents infrared noise from outside the viewing angle reflected by the case and reduces the influence of infrared noise due to generation of radiant heat due to heating of the case.
  • the accuracy can be improved.
  • FIG. 3 The figure which shows the infrared sensor module of Embodiment 3 of this invention It is a figure which shows the infrared sensor module of Embodiment 4 of this invention, (a) is sectional drawing, (b) is a top view which shows the state which removed the case and the sensor cover, (c) is side sectional drawing.
  • FIG. 1A and 1B are diagrams showing an infrared sensor module according to Embodiment 1 of the present invention, in which FIG. 1A is a cross-sectional view, FIG. 1B is a top view showing a state where a case and a sensor cover are removed, and FIG. FIG. FIG. 2 is an exploded perspective view showing the infrared sensor module.
  • the infrared sensor module according to the first embodiment of the present invention is arranged on the substrate 10 and receives an infrared sensor element 30 that receives an infrared signal, a signal processing circuit element 40 that processes an output of the infrared sensor element 30, and the infrared light.
  • An incident window provided at a predetermined distance from the sensor element 30 and provided with a lens 22 as an optical system for imaging an external infrared signal on the infrared sensor element 30;
  • the substrate 10 has a wiring pattern (not shown) on the surface.
  • the infrared sensor element used here is a thermopile sensor mounted on the substrate 10 by surface mounting.
  • the infrared sensor element is fixed to the substrate 10 and is electrically connected to the substrate 10 by wire bonding.
  • Reference numeral 32 denotes a bonding wire.
  • the thermopile type sensor is a thermocouple formed by polysilicon micromachining, which generates a temperature difference between the contacts due to infrared heat and generates a potential difference between the contacts due to the temperature difference.
  • the power effect Seebeck effect
  • thermopile infrared sensor converts the received infrared light into heat with an infrared absorbing film, adds this heat to the thermocouples connected in series, and generates a temperature change at the hot junction using a thermocouple. Output as.
  • thermopile as a material of an infrared absorption film that absorbs infrared rays, a gold black film, a carbon film, or the like having a high infrared absorption rate is used.
  • the sensor cover 50 is bonded to the substrate 10 with a heat conductive material such as a silver paste 52.
  • the silver paste makes it easy for the sensor cover 50 to exchange heat with the substrate 10. , It is possible to prevent heat from being partially trapped around the sensor.
  • a band-shaped metal ring 13 is placed in a region surrounding the infrared sensor element mounting region Rt and the signal processing circuit element mounting region Rs of the substrate 10, and the metal ring 13 is provided on the substrate side end of the case 20.
  • the seal portion 24 is configured in contact with the portion 23.
  • 11 is a wiring conductor layer formed on the surface of the substrate, and is electrically connected to the infrared sensor element 30 via the bonding wire 32.
  • the electrical connection between the infrared sensor element 30 and the signal processing circuit element 40 is also made through a bonding wire 32.
  • the sensor cover 50 includes a side wall 50S that is brought into contact with the substrate 10 so as to surround the infrared sensor element 30, and the side wall 50S between the infrared sensor element 30 and the lens 22 as the optical system.
  • the translucent part 51 is formed and has a top surface 50U constituting an opening.
  • the infrared sensor element 30 is covered with the sensor cover 50 but also the sensor cover 50 is provided between the signal processing circuit element 40 and the infrared sensor element 30.
  • the sensor cover 50 is disposed so as to surround the infrared sensor element 30 as much as possible, so that it is reliable against noise not only from the top surface but also from the side surface. Removal is possible.
  • the bonding wire 32 of the infrared sensor element 30 is led out from two opposite sides of the infrared sensor element, and the sensor cover 50 is bonded to the substrate 10 at two opposite sides where the bonding wire 32 is not disposed. Yes. For this reason, the side on the sensor cover fixing side and the side on the wire bond side can be separated, and the size of the infrared sensor module can be reduced.
  • the sensor cover 50 is made of Kovar, but other metals such as copper and stainless steel may be used. Further, by connecting the sensor cover 50 to the substrate with a conductive material, the sensor cover 50 can be electrically connected to the shield surface and can have electromagnetic shielding properties.
  • the band-shaped metal ring 13 formed in the region surrounding the infrared sensor element mounting region Rt and the signal processing circuit element mounting region Rs of the substrate 10 abuts on the flange portion 23 provided at the substrate side end portion of the case, and the seal portion Therefore, it is possible to improve the hermetic sealing property and the electrical shielding property.
  • the band-shaped metal ring also has a role as a heat shield. Furthermore, you may comprise a ring-shaped groove part as a heat interruption
  • the heat dissipation can be further improved. Further, since the mounting region Rs of the signal processing circuit element 40 constitutes a thin region, heat dissipation is good and thermal noise to the infrared sensor element 30 can be reduced.
  • the infrared sensor element 30 and the signal processing circuit element 40 are electrically connected via the bonding wires 32.
  • the inner layer can be electrically connected through the through hole h and the inner layer 10c.
  • the multilayer wiring board 10S is composed of a laminate of an insulating layer 10i such as ceramic and a conductor layer as the inner layer 10c.
  • the multilayer wiring board 10S can easily form desired wiring by firing the green sheet laminate. Connection between the signal processing circuit element 40 and the infrared sensor element 30 is obtained via the bonding wire 32, the through hole h, and the inner layer 10c.
  • 3A is a cross-sectional view, and FIG.
  • 3B is an enlarged cross-sectional view of the main part of FIG.
  • the side wall part 50S of the sensor cover 50 can be disposed so as to contact the multilayer wiring board 10S. Therefore, it is possible to surely remove the noise from the side surface direction by reliably enclosing the sensor cover around the infrared sensor element.
  • the heat dissipation can be further improved.
  • the infrared sensor element 30 is connected to the substrate 10 via the bonding wire 32 by wire bonding.
  • the infrared sensor element 30 is connected via the bump 31 as shown in FIG. And is directly connected to the substrate.
  • the infrared sensor element 30 and the signal processing circuit element 40 are connected in the substrate 10S through the through hole h. Therefore, the sensor cover 50 is disposed so as to reliably surround the infrared sensor element 30 at a position very close to the infrared sensor element 30.
  • the infrared sensor element 30 and the signal processing circuit element 40 are connected by the wiring conductor layer 11 formed on the substrate 10.
  • the infrared sensor element 30 is more efficiently heat shielded and electrically shielded, so that generation of thermal noise due to generation of radiant heat can also be suppressed. Further, by arranging the sensor cover in the vicinity, the size can be further reduced. As in the second embodiment, in this case as well, if the multilayer wiring board 10S is used as the substrate, the infrared sensor element 30 and the signal processing circuit element 40 are formed through a through hole in the inner layer (not shown). Can be electrically connected, and the sensor cover can be more closely attached to the substrate.
  • FIG. 5A and 5B are diagrams showing an infrared sensor module according to Embodiment 4 of the present invention, in which FIG. 5A is a cross-sectional view, FIG. 5B is a top view showing a state where a case and a sensor cover are removed, and FIG. FIG. FIG. 6 is an exploded perspective view showing the infrared sensor module.
  • the infrared sensor module according to the fourth embodiment of the present invention is characterized in that, in addition to the configuration of the infrared sensor module according to the first embodiment, an interior case 60 made of an insulating resin is formed inside the case 20. is there.
  • an antireflection member can be arranged inside without being limited to the interior case.
  • a black metal plating layer 26 provided inside the metal case 20 may be used.
  • the same parts as those in the first embodiment are denoted by the same reference numerals.
  • the infrared sensor element is covered with the sensor cover, but also the sensor cover is provided between the signal processing circuit element and the infrared sensor element. Thermal noise due to radiation from the infrared sensor element to the circuit element can be prevented. Therefore, since the infrared signal that becomes noise is removed and the infrared signal of only the object can be detected, the measurement accuracy is improved.
  • the infrared sensor element may be mounted on the substrate by surface mounting.
  • the thermal change of the infrared sensor element itself also has a great influence on the signal processing circuit element.
  • the sensor cover is provided, thermal noise due to radiation from the infrared sensor element to the signal processing circuit element can be prevented.
  • the sensor cover is in contact with the substrate so as to surround the infrared sensor element, and between the infrared sensor element and the optical system from the sidewall part. It may be formed and the translucent part may have a top surface constituting the opening. According to this configuration, since the sensor cover has the side wall portion that is in contact with the substrate so as to surround the infrared sensor element, the sensor cover is surrounded as much as possible around the infrared sensor element. By disposing in this way, it is possible to remove noise not only from the top surface but also from the side surface direction.
  • the sensor cover may be made of a metal material. According to this configuration, noise incident on the sensor can be reflected by the sensor cover made of a metal material, and noise can be prevented from entering the sensor.
  • the sensor cover may be bonded to the substrate with a heat conductive material. According to this configuration, the sensor cover can easily exchange heat with the substrate, and heat can be prevented from being partially trapped around the sensor.
  • the sensor cover may be bonded to the substrate with a conductive material. According to this configuration, the sensor cover can be electrically connected to the shield surface, and electromagnetic shielding can be provided.
  • a band-shaped metal ring is placed in a region surrounding the infrared sensor element mounting region and the signal processing circuit element region of the substrate, and the metal ring is provided at an end of the case on the substrate side.
  • the seal portion may be configured by abutting against the flange portion. According to this configuration, it is possible to improve the sealing performance at the peripheral edge of the substrate and the electrical shielding performance.
  • an inner case made of a resin molded body may be provided inside the case. According to this configuration, it is possible to prevent the noise from entering the sensor by absorbing the thermal noise entering the case with the resin internal case.
  • a black plating layer may be formed on the inner wall of the case. According to this configuration, the thermal noise entering the case can be absorbed by the black plating layer, and the noise can be prevented from entering the sensor.
  • the infrared sensor element is connected to the substrate via a wire, and the sensor cover is formed so as to cover a peripheral edge of the infrared sensor element except for a lead-out region of the wire. You may be made to do. According to this structure, the avoidance of the thermal noise to an infrared sensor element can be improved more.
  • the wire of the infrared sensor element is led out from two opposite sides of the infrared sensor element, and the sensor cover is bonded to the substrate at two opposite sides where the wire is not arranged. You may be made to do. According to this configuration, the sensor cover fixing side and the wire bond side can be separated, and the size of the infrared sensor module can be reduced.
  • the infrared sensor element may be connected to the substrate via a bump. According to this configuration, since the infrared sensor element can be mounted without leading the wire, the periphery of the infrared sensor element can be completely surrounded by the sensor cover.
  • the sensor cover may be brought into contact with the substrate around the entire periphery of the infrared sensor element.
  • connection between the infrared sensor element and the signal processing circuit element may be realized via an internal wiring formed on the substrate.
  • a heat blocking part may be formed on the substrate between the infrared sensor element and the sensor cover.
  • the heat blocking part may be a ring-shaped groove part.
  • the substrate may constitute a thin region in a region where the signal processing circuit element is mounted.
  • the substrate may be a ceramic substrate, and a wiring conductor layer may be formed in a region where the sensor cover abuts. With this configuration, heat can be discharged through the wiring conductor layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

 熱ノイズを低減し、高精度で信頼性の高い赤外線検出を行うことが可能な赤外線センサモジュールを提供する。 赤外線センサモジュールは、基板上に配置され、赤外線信号を受信する赤外線センサ素子と、前記赤外線センサ素子の出力を処理する信号処理回路素子と、前記赤外線センサ素子から所定の距離を隔てて設けられ、外部の赤外線信号を前記赤外線センサ素子に結像するための光学系を備えた入射窓を有し、前記赤外線センサ素子および前記信号処理回路素子を収容する金属製のケースと、前記赤外線センサ素子と、前記ケースおよび前記信号処理回路素子との間に、前記光学系を介して入射する前記赤外線信号を前記赤外線センサ素子に導く透光部を有するセンサカバーとを具備している。

Description

赤外線センサモジュール
 本発明は、赤外線センサモジュールに係り、特に、その熱ノイズ低減のための実装構造に関する。
 従来より、赤外線センサは、非接触で温度検出を図ることができることから、人の存在を検出し、人の動きに追随して、点灯制御を行うようにした自動点灯システムや、電子レンジの庫内温度の検出、被調理物の温度分布の検出などに、広く用いられている。赤外線センサは、内蔵のセンサチップに受光した赤外線量に応じた電圧を出力するデバイスである。
 この赤外線センサの検知視野角は仕様で定められているが、実際は視野角外からの不要な赤外線もデバイス内に入光し、その赤外線がパッケージ内部での反射内よりセンサチップに入射した場合は、熱ノイズとなり、検知精度の劣化を招いてしまうという問題があった。
 このような赤外線センサの一例としては、例えば、多数個の抵抗(単素子)をマトリクス状に平面配置し赤外線が投射されたときに生じる温度上昇に伴う抵抗値の変化を信号として取り出し、この信号に基づいて画像信号を作成し出力するものがある。このような赤外線センサでは、抵抗変化を信号として取り出すために所定バイアス電流を供給する必要があり、このバイアス電流によるジュール熱によって赤外線センサの温度上昇が発生することがある。このため、このジュール熱による温度上昇によって赤外線センサから新たな信号が発生され、この信号が赤外線センサにおける雑音として出力されることになる。
 このようなバイアス電流による雑音を防止するために、図8に示すように、ケース220内にリング状のインナー250を固定し、ケース220内に外乱ノイズが入射してしまった場合であっても、外乱ノイズは、回路基板210上に搭載されたセンサチップ230に届かずに、放射され、レンズにより集光された赤外線エネルギーのみをセンサチップ230に導くようにした構造が提案されている(特許文献1)。
 また、特許文献2では、図9に示すように、パッケージ120上に回路基板110、電子冷却装置140、赤外線検知素子130を順次搭載し、かつ赤外線検知素子130を覆うようにシールド筒150を設け、このシールド筒150が電子冷却装置140により冷却されるように配設する。赤外線検知素子130を電子冷却装置140で冷却することで、バイアス電流による赤外線検知素子130の温度上昇を防ぎ、かつシールド筒150を冷却することでシールド筒150を通しての輻射熱による赤外線検知素子130の温度上昇を防ぎ、雑音を低減する。また、シールド筒150に開口する入射窓150aを適切な開口径に形成することで、入射される赤外線が赤外線検知素子130の各単素子外に洩光されることがなく、雑音の発生を防止する。
 さらにまた、図10に示すように、サーモパイル素子(赤外線センサ素子)330をシールドするのではなく、ステム310と熱的に接続されたインナーキャップ350で、サーモパイル素子330を覆うことにより、ステム310の温度変動に対するサーモパイル素子330の冷接点の温度追随性を向上させるようにした赤外線センサモジュールも提案されている(特許文献3)。この構成では、サーモパイル素子とサーミスタを、インナーキャップで覆い、内部雰囲気がステムと熱的に接続されるようにし、ケース320やインナーキャップ350からの二次輻射がサーモパイル素子330に照射されないようにしている。
 ところで、近年、信号の増幅処理のためにASIC(Application Specific Integrated Circuit)などのICチップを内蔵した実装構造が提案されている。この構成によれば、配線の引き回しを低減することができ、理論的には、検出精度のさらなる向上をはかることができる。しかしながら、このようにICチップをハウジング内に内蔵する場合は、電気ノイズ対策として金属ハウジングを用いる必要がある。この場合は特に、金属の光反射率が高いために内部反射が起こりやすくなり、熱ノイズがさらに発生しやすい構造となっている。また、信号の増幅処理のためのICチップへの熱ノイズの影響も無視できない大きさとなることがあった。
日本国特開2007-101513号公報 日本国特開平08-101062号公報 日本国特開2003-344156号公報
 このように信号処理回路素子を内蔵した赤外線センサモジュールにおいては、電気ノイズ対策として金属ハウジングを用いる必要があり、この場合は特に、金属の光反射率が高いために内部反射が起こりやすくなるという問題があった。さらに、信号処理回路素子の発熱による熱ノイズの問題もあり、熱ノイズがさらに発生しやすい構造となっている。
 本発明は、前記実情に鑑みてなされたもので、熱ノイズを低減し、高精度で信頼性の高い赤外線検出を行うことが可能な赤外線センサモジュールを提供することを目的とする。
 そこで本発明の赤外線センサモジュールは、基板上に配置され、赤外線信号を受信する赤外線センサ素子と、前記赤外線センサ素子の出力を処理する信号処理回路素子と、前記赤外線センサ素子から所定の距離を隔てて設けられ、外部の赤外線信号を前記赤外線センサ素子に結像するための光学系を備えた入射窓を有し、前記赤外線センサ素子および前記信号処理回路素子を収容する金属製のケースと、前記赤外線センサ素子と、前記ケースおよび前記信号処理回路素子との間に、前記光学系を介して入射する前記赤外線信号を前記赤外線センサ素子に導く透光部を有するセンサカバーとを具備したことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記センサカバーが、前記赤外線センサ素子の周囲を囲むように前記基板に当接せしめられた側壁部と、前記側壁部から前記赤外線センサ素子と前記光学系との間に形成され、前記透光部が開口部を構成する天面とを有することを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、センサカバーは金属材料で構成されたことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記センサカバーは、熱伝導性材料で前記基板に接合されたことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記センサカバーは導電性材料で前記基板に接合されたことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記基板の前記赤外線センサ素子搭載領域および信号処理回路素子領域を囲む領域に帯状の金属リングが載置され、前記金属リングは前記ケースの前記基板側端部に設けられた鍔部と当接し、シール部を構成したことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記ケースの内側には樹脂成形体からなる内装ケースを具備したことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記ケースの内壁に黒色めっき層を形成してなることを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記赤外線センサ素子は、前記基板にワイヤを介して接続されており、前記センサカバーは、前記ワイヤの導出領域を除く、前記赤外線センサ素子の周縁を覆うように形成されたことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記赤外線センサ素子のワイヤは、前記赤外線センサ素子の相対向する2辺から導出され、前記センサカバーは前記ワイヤの配置されない相対向する2辺で、前記基板に接合されたことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記赤外線センサ素子は、前記基板にバンプを介して接続してなることを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記赤外線センサ素子が面実装によって前記基板に搭載されたことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記センサカバーは、赤外線センサ素子の周囲全体で、前記基板に当接されたことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記赤外線センサ素子と前記信号処理回路素子との間の接続は、前記基板に形成された内部配線を介して実現されたことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記赤外線センサ素子と前記センサカバーとの間の、前記基板上に熱遮断部を形成したことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記熱遮断部は、リング状の溝部であることを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記基板は、前記信号処理回路素子の搭載領域で、肉薄領域を構成したことを特徴とする。
 また本発明は、上記赤外線センサモジュールにおいて、前記基板はセラミック基板であり、前記センサカバーの当接する領域に配線導体層が形成されたことを特徴とする。
 本発明に係る赤外線センサモジュールによれば、センサカバーによって、ケースで反射されて入射する視野角外からの赤外線ノイズを防止するとともに、ケースの加熱による輻射熱発生による赤外線ノイズの影響を低減し、検出精度の向上をはかることができる。
本発明の実施の形態1の赤外線センサモジュールを示す図であり、(a)は断面図、(b)はケースとセンサカバーを外した状態を示す上面図、(c)は側断面図 同赤外線センサモジュールを示す分解斜視図 本発明の実施の形態2の赤外線センサモジュールを示す図であり、(a)は断面図、(b)は要部拡大断面図 本発明の実施の形態3の赤外線センサモジュールを示す図 本発明の実施の形態4の赤外線センサモジュールを示す図であり、(a)は断面図、(b)はケースとセンサカバーを外した状態を示す上面図、(c)は側断面図 同赤外線センサモジュールを示す分解斜視図 本発明の実施の形態4の赤外線センサモジュールの変形例を示す図であり、(a)は断面図、(b)はケースとセンサカバーを外した状態を示す上面図、(c)は側断面図 従来例の赤外線センサモジュールを示す図 従来例の他の赤外線センサモジュールを示す図 従来例の他の赤外線センサモジュールを示す図
 以下、本発明の実施の形態の赤外線センサモジュールについて図面を参照しつつ詳細に説明する。
(実施の形態1)
 図1は本発明の実施の形態1の赤外線センサモジュールを示す図であり,(a)は断面図、(b)はケースとセンサカバーを外した状態を示す上面図、(c)は側断面図である。また図2はこの赤外線センサモジュールを示す分解斜視図である。
 本発明の実施の形態1の赤外線センサモジュールは、基板10上に配置され、赤外線信号を受信する赤外線センサ素子30と、前記赤外線センサ素子30の出力を処理する信号処理回路素子40と、前記赤外線センサ素子30から所定の距離を隔てて設けられ、外部の赤外線信号を前記赤外線センサ素子30に結像するための光学系としてのレンズ22を備えた入射窓を有し、前記赤外線センサ素子30および前記信号処理回路素子40を収容する金属製のケース20と、前記赤外線センサ素子30と、前記ケース20および前記信号処理回路素子40との間に、前記光学系を介して入射する前記赤外線信号を前記赤外線センサ素子30に導く透光部51を有するコバールで構成されたセンサカバー50とを具備したことを特徴とする。基板10は表面に図示しない配線パターンを有する。
 なおここで用いられる赤外線センサ素子は、面実装によって基板10に搭載されたサーモパイル型センサである。この赤外線センサ素子は、基板10に固定されるとともに、ワイヤボンディングによって基板10に電気的に接続されている。32はボンディングワイヤである。サーモパイル型センサは、ここでは図示しないが、ポリシリコンのマイクロマシニングによって形成した熱電対において、赤外線による熱によりこれら接点間に温度差を生じさせ、この温度差により接点間に電位差を発生させる熱起電力効果(ゼーベック効果)を利用して、赤外線を電圧として検知するように構成したものである。このサーモパイル型赤外線センサは、受光した赤外線を赤外線吸収膜で熱に変換し、この熱を、直列に多数個接続された熱電対に加え、発生した温接点部の温度変化を、熱電対により電圧として出力する。このサーモパイルにおいて、赤外線を吸収する赤外線吸収膜の材料としては、赤外線吸収率の高い金黒膜やカーボン膜などが用いられている。
 そしてセンサカバー50は、銀ペースト52などの熱伝導性材料で前記基板10に接合されており、この銀ペーストによって、センサカバー50が基板10との間での熱のやり取りをし易くしており、センサ周囲で熱が部分的にこもることがないようにすることができる。
 また、基板10の赤外線センサ素子搭載領域Rtおよび信号処理回路素子搭載領域Rsを囲む領域に帯状の金属リング13が載置され、この金属リング13はケース20の基板側端部に設けられた鍔部23と当接し、シール部24を構成している。
 ここで11は基板表面に形成された配線導体層であり、ボンディングワイヤ32を介して赤外線センサ素子30と電気的に接続されている。また赤外線センサ素子30と信号処理回路素子40との間の電気的接続もボンディングワイヤ32を介してなされている。
 また、センサカバー50は、赤外線センサ素子30の周囲を囲むように基板10に当接せしめられた側壁部50Sと、側壁部50Sから前記赤外線センサ素子30と前記光学系としてのレンズ22の間に形成され、前記透光部51が開口部を構成する天面50Uとを有する。
 この構成によれば、赤外線センサ素子30をセンサカバー50で覆うだけでなく、信号処理回路素子40と赤外線センサ素子30との間にもセンサカバー50を設けるようにしているため、信号処理回路素子から赤外線センサ素子および赤外線センサ素子から信号処理回路素子への輻射による熱ノイズを防ぐことができ、非対象物体からの赤外線信号IR0が金属ケースを経て入射する輻射線IR2、金属ケースからの反射による輻射線IR3による赤外線信号が除去され、対象物だけの赤外線信号IR1を検知することができるので、測定精度が向上する。
 また、この側壁部50Sを有しているため、センサカバー50を赤外線センサ素子30の周囲を可能な限り囲うように配置することで、上面だけでなく側面方向からのノイズに対しても確実な除去が可能となる。
 また、ここで赤外線センサ素子30のボンディングワイヤ32は、赤外線センサ素子の相対向する2辺から導出され、センサカバー50はボンディングワイヤ32の配置されない相対向する2辺で、基板10に接合されている。このため、センサカバー固定側の辺とワイヤボンド側の辺が分離でき、赤外線センサモジュールのサイズを小さくすることができる。
 前記実施の形態では、センサカバー50はコバールで構成したが、銅、ステンレスなど他の金属を用いるようにしてもよい。また、センサカバー50を導電性材料で基板に接続することにより、シールド面と電気的に接続することができ、電磁シールド性を持たせることができる。
 また基板10の赤外線センサ素子搭載領域Rtおよび信号処理回路素子搭載領域Rsを囲む領域に形成された帯状の金属リング13がケースの基板側端部に設けられた鍔部23と当接し、シール部を構成しているため、気密シール性を高めるとともに、電気的なシールド性を高めることが可能となる。またこの帯状の金属リングは、熱遮断部としての役割も有する。さらにまた熱遮断部としては、リング状の溝部を構成してもよい。
 さらに、基板10として窒化アルミニウムなどの放熱性の高いセラミック基板を用いるとともに、センサカバーの当接する領域に配線導体層が形成されるようにすることで、より放熱性を高めることができる。
 また、信号処理回路素子40の搭載領域Rsで、肉薄領域を構成しているため、放熱性が良好で、赤外線センサ素子30への熱ノイズを低減することができる。
(実施の形態2)
 なお、前記実施の形態では、赤外線センサ素子30と信号処理回路素子40とをボンディングワイヤ32を介して電気的に接続したが、図3(a)および(b)に示すように、基板として多層配線基板10Sを用いることで、内層でスルーホールhおよび内層10cを介して電気的に接続することができる。多層配線基板10Sはセラミックなどの絶縁層10iと内層10cとしての導体層との積層体で構成される。この多層配線基板10Sはグリーンシート積層体を焼成することにより、容易に所望の配線が形成可能である。信号処理回路素子40と赤外線センサ素子30との接続はボンディングワイヤ32およびスルーホールh、内層10cを介して得られる。図3(a)は断面図、図3(b)は図3(a)の要部拡大断面図である。
 これにより、センサカバー50の側壁部50Sを、多層配線基板10Sに当接するように配置することが可能となる。従って、センサカバーを赤外線センサ素子の周囲を確実に囲むことで、側面方向からのノイズに対しても確実な除去が可能となる。
 さらに、基板として窒化アルミニウムなどの放熱性の高いセラミック基板を用いるとともに、センサカバー50の当接する領域に配線導体層21が形成されるようにすることで、より放熱性を高めることができる。
(実施の形態3)
 次に本発明の実施の形態3について説明する。
 前記実施の形態1では、赤外線センサ素子30はワイヤボンディングによりボンディングワイヤ32を介して基板10に接続したが、本実施の形態では、図4に示すように、赤外線センサ素子30をバンプ31を介して直接基板に接続したことを特徴とするものである。赤外線センサ素子30と信号処理回路素子40との間は、前記実施の形態2と同様に、スルーホールhを介して基板10S内で接続される。従って、センサカバー50は、赤外線センサ素子30の周囲を、赤外線センサ素子30に極めて近い位置で、確実に囲むように配置されている。また、赤外線センサ素子30と信号処理回路素子40との接続は、基板10上に形成された配線導体層11によって接続される。他の部分については前記実施の形態1および2と同様に形成されているため、ここでは説明を省略する。
 従って、この場合も、赤外線センサ素子30はより効率的に熱シールドおよび電気的シールドがなされているため、輻射熱発生による熱ノイズの発生も抑制することができる。また、近接してセンサカバーを配置することで、さらに小型化を図ることができる。
 なお、前記実施の形態2と同様、この場合も、基板として多層配線基板10Sを用いるようにすれば、内層(図示せず)でスルーホールを介して赤外線センサ素子30と信号処理回路素子40とを、電気的に接続することができ、センサカバーをより確実に基板に密着させることができる。
(実施の形態4)
 次に本発明の実施の形態4について説明する。
 図5は本発明の実施の形態4の赤外線センサモジュールを示す図であり,(a)は断面図、(b)はケースとセンサカバーを外した状態を示す上面図、(c)は側断面図である。また図6はこの赤外線センサモジュールを示す分解斜視図である。
 本発明の実施の形態4の赤外線センサモジュールは、前記実施の形態1の赤外線センサモジュールの構成に加え、ケース20の内側に絶縁性樹脂からなる内装ケース60を形成したことを特徴とするものである。他は前記実施の形態1で示した赤外線センサモジュールと同様に形成されている。ここは同一部位には同一符号を付し、説明を省略する。
 この構成により、前記実施の形態1の効果に加え、さらなる熱ノイズの抑制を達成することが可能となる。
 なお、内装ケースに限定されることなく、内側に反射防止部材を配することで同様の効果を得ることができる。例えば、この反射防止部材としては、図7(a)乃至(c)に示すように、前記金属製のケース20の内側に設けられた黒色の金属めっき層26を用いるようにしてもよい。なおここでも実施の形態1と同一部位には同一符号を付した。
 以上説明してきたように、本発明によれば、赤外線センサ素子をセンサカバーで覆うだけでなく、信号処理回路素子と赤外線センサ素子との間にもセンサカバーを設けるようにしているため、信号処理回路素子への赤外線センサ素子からの輻射による熱ノイズを防ぐことができる。従って、ノイズとなる赤外線信号が除去され、対象物だけの赤外線信号を検知することができるので、測定精度が向上する。
 以下に、各構成における作用効果を説明する。
 まず、上記赤外線センサモジュールにおいて、前記赤外線センサ素子が面実装によって前記基板に搭載されるようにしてもよい。
 特に上記赤外線センサモジュールにおいて面実装の場合、赤外線センサ素子が基板に面接触するように配されるため、赤外線センサ素子自体の熱変化も信号処理回路素子に大きな影響を与えることになる。このような構成の場合にも、本発明によれば、センサカバーを有しているため信号処理回路素子への赤外線センサ素子からの輻射による熱ノイズを防ぐことができる。
 また上記赤外線センサモジュールにおいて、前記センサカバーが、前記赤外線センサ素子の周囲を囲むように前記基板に当接せしめられた側壁部と、前記側壁部から前記赤外線センサ素子と前記光学系との間に形成され、前記透光部が開口部を構成する天面とを有するように構成してもよい。
 この構成によれば、センサカバーが前記赤外線センサ素子の周囲を囲むように前記基板に当接せしめられた側壁部を有しているため、センサカバーを赤外線センサ素子の周囲を可能な限り囲うように配置することで、上面だけでなく側面方向からのノイズに対しても除去が可能となる。
 また、上記赤外線センサモジュールにおいて、センサカバーは金属材料で構成してもよい。
 この構成によれば、センサに向かって入射してくるノイズを金属材料からなるセンサカバーで反射して、ノイズがセンサに入るのを防ぐことができる。
 また、上記赤外線センサモジュールにおいて、前記センサカバーは、熱伝導性材料で前記基板に接合されるようにしてもよい。
 この構成によれば、センサカバーが基板との間で熱のやり取りをし易くなり、センサ周囲で熱が部分的にこもることがないようにすることができる。
 また、上記赤外線センサモジュールにおいて、前記センサカバーは導電性材料で前記基板に接合されるようにしてもよい。
 この構成によれば、センサカバーをシールド面と電気的に接続することができ、電磁シールド性を持たせることができる。
 また、上記赤外線センサモジュールにおいて、前記基板の前記赤外線センサ素子搭載領域および信号処理回路素子領域を囲む領域に帯状の金属リングが載置され、前記金属リングは前記ケースの前記基板側端部に設けられた鍔部と当接し、シール部を構成してもよい。
 この構成によれば、基板周縁部のシール性を高めるとともに、電気的なシールド性を高めることが可能となる。
 また本発明は、上記赤外線センサモジュールにおいて、前記ケースの内側には樹脂成形体からなる内装ケースを具備してもよい。
 この構成によれば、ケース内に入射してくる熱ノイズを樹脂の内装ケースで吸収して、ノイズがセンサに入るのを防ぐことができる。
 また、上記赤外線センサモジュールにおいて、前記ケースの内壁に黒色めっき層を形成してもよい。
 この構成によれば、ケース内に入射してくる熱ノイズを黒色めっき層で吸収して、ノイズがセンサに入るのを防ぐことができる。
 また、上記赤外線センサモジュールにおいて、前記赤外線センサ素子は、前記基板にワイヤを介して接続されており、前記センサカバーは、前記ワイヤの導出領域を除く、前記赤外線センサ素子の周縁を覆うように形成されるようにしてもよい。
 この構成によれば、赤外線センサ素子への熱ノイズの回避をより高めることができる。
 また、上記赤外線センサモジュールにおいて、前記赤外線センサ素子のワイヤは、前記赤外線センサ素子の相対向する2辺から導出され、前記センサカバーは前記ワイヤの配置されない相対向する2辺で、前記基板に接合されるようにしてもよい。
 この構成によれば、センサカバー固定側の辺とワイヤボンド側の辺が分離でき、赤外線センサモジュールのサイズを小さくすることができる。
 また、上記赤外線センサモジュールにおいて、前記赤外線センサ素子は、前記基板にバンプを介して接続してもよい。
 この構成によれば、ワイヤを導出することなく、赤外線センサ素子を実装することができるため、赤外線センサ素子の周囲をセンサカバーで完全に囲むことができる。
 また、上記赤外線センサモジュールにおいて、前記センサカバーは、赤外線センサ素子の周囲全体で、前記基板に当接されるようにしてもよい。
 また、上記赤外線センサモジュールにおいて、前記赤外線センサ素子と前記信号処理回路素子との間の接続は、前記基板に形成された内部配線を介して実現されてもよい。
 また、上記赤外線センサモジュールにおいて、前記赤外線センサ素子と前記センサカバーとの間の、前記基板上に熱遮断部を形成してもよい。
 また、上記赤外線センサモジュールにおいて、前記熱遮断部は、リング状の溝部であるようにしてもよい。
 また、上記赤外線センサモジュールにおいて、前記基板は、前記信号処理回路素子の搭載領域で、肉薄領域を構成してもよい。
 また、上記赤外線センサモジュールにおいて、前記基板はセラミック基板であり、前記センサカバーの当接する領域に配線導体層が形成されてもよい。
 この構成により、配線導体層を介して熱が排出されるようにすることができる。
 本出願は、2009年12月18日出願の日本特許出願(特願2009-288032)に基づくものであり、その内容はここに参照として取り込まれる。
10 基板
10i 絶縁層
10c 内層
10S 多層配線基板
11 配線導体層
13 金属リング
20 ケース
21 配線導体層
22 レンズ
23 鍔部
24 シール部
26 黒色めっき層
30 赤外線センサ素子
31 バンプ
32 ボンディングワイヤ
40 信号処理回路素子
50 センサカバー
50U 天面
50S 側壁部
51S 透光部
60 内装ケース
IR0 非対象物からの赤外線信号
IR1 対象物からの赤外線信号
IR2 非対象物からの輻射線
IR3 非対象物からの輻射線

Claims (18)

  1.  基板上に配置され、赤外線信号を受信する赤外線センサ素子と、
     前記赤外線センサ素子の出力を処理する信号処理回路素子と、
     前記赤外線センサ素子から所定の距離を隔てて設けられ、外部の赤外線信号を前記赤外線センサ素子に結像するための光学系を備えた入射窓を有し、前記赤外線センサ素子および前記信号処理回路素子を収容する金属製のケースと、
     前記赤外線センサ素子と、前記ケースおよび前記信号処理回路素子との間に、前記光学系を介して入射する前記赤外線信号を前記赤外線センサ素子に導く透光部を有するセンサカバーとを具備した赤外線センサモジュール。
  2.  請求項1に記載の赤外線センサモジュールであって、
     前記センサカバーは、
     前記赤外線センサ素子の周囲を囲むように前記基板に当接せしめられた側壁部と、
     前記側壁部から前記赤外線センサ素子と前記光学系との間に形成され、前記透光部が開口部を構成する天面とを有する赤外線センサモジュール。
  3.  請求項1または2に記載の赤外線センサモジュールであって、
     センサカバーは金属材料で構成された赤外線センサモジュール。
  4.  請求項1乃至3のいずれか1項に記載の赤外線センサモジュールであって、
     前記センサカバーは、熱伝導性材料で前記基板に接合された赤外線センサモジュール。
  5.  請求項1乃至4のいずれか1項に記載の赤外線センサモジュールであって、
     前記センサカバーは、導電性材料で前記基板に接合された赤外線センサモジュール。
  6.  請求項1乃至5のいずれか1項に記載の赤外線センサモジュールであって、
     前記基板の前記赤外線センサ搭載領域および信号処理回路素子搭載領域を囲む領域に帯状の金属リングが載置され、前記金属リングは、前記ケースの開口端部に設けられた鍔部と当接し、シール部を構成した赤外線センサモジュール。
  7.  請求項1乃至6のいずれか1項に記載の赤外線センサモジュールであって、
     前記ケースの内側には樹脂成形体からなる内装ケースを具備した赤外線センサモジュール。
  8.  請求項7に記載の赤外線センサモジュールであって、
     前記ケースの内壁に黒色めっき層を形成してなる赤外線センサモジュール。
  9.  請求項1乃至8のいずれか1項に記載の赤外線センサモジュールであって、
     前記赤外線センサ素子は、前記基板もしくは前記信号処理回路素子の少なくとも一方に、ワイヤを介して接続されており、前記センサカバーは、前記ワイヤの導出領域を除く、前記赤外線センサ素子の周縁を覆うように形成された赤外線センサモジュール。
  10.  請求項9に記載の赤外線センサモジュールであって、
     前記赤外線センサ素子のワイヤは、前記赤外線センサ素子の相対向する2辺から導出され、前記センサカバーは前記ワイヤの配置されない相対向する2辺で、前記基板に接合された赤外線センサモジュール。
  11.  請求項1乃至8のいずれか1項に記載の赤外線センサモジュールであって、
     前記赤外線センサ素子は、前記基板にバンプを介して接続してなる赤外線センサモジュール。
  12.  請求項1乃至11のいずれか1項に記載の赤外線センサモジュールであって、
     前記赤外線センサ素子は面実装によって前記基板に搭載された赤外線センサモジュール。
  13.  請求項12に記載の赤外線センサモジュールであって、
     前記センサカバーは、赤外線センサ素子の周囲全体で、前記基板に当接された赤外線センサモジュール。
  14.  請求項1乃至13のいずれか1項に記載の赤外線センサモジュールであって、
     前記赤外線センサ素子と前記信号処理回路素子との間の接続は、前記基板に形成された内部配線を介して実現された赤外線センサモジュール。
  15.  請求項1乃至14のいずれか1項に記載の赤外線センサモジュールであって、
     前記赤外線センサ素子と前記センサカバーとの間の、前記基板上に熱遮断部を形成した赤外線センサモジュール。
  16.  請求項15に記載の赤外線センサモジュールであって、
     前記熱遮断部は、リング状の溝部である赤外線センサモジュール。
  17.  請求項1乃至16のいずれか1項に記載の赤外線センサモジュールであって、
     前記基板は、前記信号処理回路素子の搭載領域で、肉薄領域を構成した赤外線センサモジュール。
  18.  請求項1乃至17のいずれか1項に記載の赤外線センサモジュールであって、
     前記基板はセラミック基板であり、前記センサカバーの当接する領域に配線導体層が形成された赤外線センサモジュール。
PCT/JP2010/072811 2009-12-18 2010-12-17 赤外線センサモジュール WO2011074678A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127015578A KR20120089342A (ko) 2009-12-18 2010-12-17 적외선 센서 모듈
BR112012014958A BR112012014958A2 (pt) 2009-12-18 2010-12-17 módulo de sensor infravermelho
US13/513,426 US8952331B2 (en) 2009-12-18 2010-12-17 Infrared sensor module
CN201080057710.8A CN102656430B (zh) 2009-12-18 2010-12-17 红外线传感器模块
EP10837702A EP2515091A1 (en) 2009-12-18 2010-12-17 Infrared sensor module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-288032 2009-12-18
JP2009288032A JP5793679B2 (ja) 2009-12-18 2009-12-18 赤外線センサモジュール

Publications (1)

Publication Number Publication Date
WO2011074678A1 true WO2011074678A1 (ja) 2011-06-23

Family

ID=44167428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072811 WO2011074678A1 (ja) 2009-12-18 2010-12-17 赤外線センサモジュール

Country Status (8)

Country Link
US (1) US8952331B2 (ja)
EP (1) EP2515091A1 (ja)
JP (1) JP5793679B2 (ja)
KR (1) KR20120089342A (ja)
CN (1) CN102656430B (ja)
BR (1) BR112012014958A2 (ja)
TW (1) TW201135198A (ja)
WO (1) WO2011074678A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162346A1 (ja) * 2010-06-24 2011-12-29 パナソニック電工株式会社 赤外線センサ
WO2013014707A1 (ja) * 2011-07-26 2013-01-31 株式会社芝浦電子 赤外線温度センサ、及び、それを用いた定着器
RU2515190C1 (ru) * 2012-11-12 2014-05-10 Открытое акционерное общество "НПО "Орион" (ОАО "НПО "Орион") СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРИЕМНОГО МОДУЛЯ НА ОСНОВЕ PbSe
CN114143943A (zh) * 2021-12-02 2022-03-04 深圳市源立信照明科技有限公司 一种灯具控制电路

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132223B2 (ja) * 2011-12-14 2017-05-24 パナソニックIpマネジメント株式会社 赤外線センサ
US8899828B2 (en) * 2012-03-22 2014-12-02 Texas Instruments Incorporated Heat sensor correction
CN102784747B (zh) * 2012-07-16 2014-12-10 京东方科技集团股份有限公司 一种高温固化炉
JP6287233B2 (ja) * 2014-01-15 2018-03-07 オムロン株式会社 赤外線検出器のキャップ及び赤外線検出器
JP6194799B2 (ja) * 2014-01-15 2017-09-13 オムロン株式会社 赤外線センサ
DE102014200883A1 (de) * 2014-01-20 2015-07-23 BSH Hausgeräte GmbH Temperaturabfühlvorrichtung zum Abfühlen einer Temperatur eines Gargeschirrs
KR20150103944A (ko) * 2014-03-04 2015-09-14 (주)파트론 비접촉식 온도 센서가 장착된 전자 장치 및 비접촉식 온도 센서 모듈
KR101810419B1 (ko) * 2016-04-26 2017-12-19 (주)파트론 온도센서 패키지
WO2017209349A1 (ko) * 2016-05-30 2017-12-07 엘지전자 주식회사 비접촉식 적외선 온도 센서 모듈
CN106679827B (zh) * 2016-11-29 2023-07-04 美的集团武汉制冷设备有限公司 热释电红外传感装置和电器
KR101876898B1 (ko) * 2018-01-25 2018-07-10 주식회사 아이알티코리아 불꽃 감지기
CN108469305A (zh) * 2018-05-31 2018-08-31 中电科技德清华莹电子有限公司 一种贴片型热释电红外传感器
TWI815945B (zh) * 2018-08-10 2023-09-21 美商應用材料股份有限公司 多陰極沉積系統
CN112113664A (zh) * 2019-06-19 2020-12-22 孙春元 红外温度传感器及包括其的探头、红外体温计
TWM609393U (zh) * 2020-10-21 2021-03-21 友冠微系統科技有限公司 紅外線溫度感測裝置及其紅外線測溫模組
US11766000B2 (en) 2021-06-28 2023-09-26 Haier Us Appliance Solutions, Inc. Gas sensing assembly for an indoor garden center
TWI841861B (zh) * 2021-07-29 2024-05-11 原相科技股份有限公司 高穩定度溫度計結構及使用該溫度計結構的系統

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395422A (ja) * 1989-09-08 1991-04-19 Tokin Corp サーモパイル
JPH0626926A (ja) * 1992-05-12 1994-02-04 Fujitsu Ltd 赤外線検知器
JPH08101062A (ja) 1994-09-30 1996-04-16 Nec Corp 赤外線検知器
JP2002340668A (ja) * 2001-05-18 2002-11-27 Denso Corp サーモパイル式赤外線センサおよびその検査方法
JP2003149045A (ja) * 2001-11-16 2003-05-21 Horiba Ltd 熱型赤外線検出器
JP2003344156A (ja) 2002-05-31 2003-12-03 Murata Mfg Co Ltd 赤外線センサおよびそれを用いた電子装置
JP2004140171A (ja) * 2002-10-17 2004-05-13 Denso Corp 多層プリント基板、多層プリント基板の放熱構造および多層プリント基板の製造方法
JP2006058228A (ja) * 2004-08-23 2006-03-02 Nippon Ceramic Co Ltd 多素子型サーモパイルモジュール
JP2007101513A (ja) 2005-10-07 2007-04-19 Seiko Npc Corp 赤外線センサ
WO2007088959A1 (ja) * 2006-02-02 2007-08-09 Nec Corporation 光モジュール
JP2008180633A (ja) * 2007-01-25 2008-08-07 Alps Electric Co Ltd センサ素子用基板
JP2009288032A (ja) 2008-05-28 2009-12-10 Hitachi High-Technologies Corp 表面検査装置および表面検査方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135739A (ja) * 1989-10-20 1991-06-10 Tdk Corp 赤外線検出装置
JPH10261507A (ja) * 1997-03-18 1998-09-29 Murata Mfg Co Ltd サーミスタ素子
JPH11132857A (ja) * 1997-10-28 1999-05-21 Matsushita Electric Works Ltd 赤外線検出器
US6890834B2 (en) * 2001-06-11 2005-05-10 Matsushita Electric Industrial Co., Ltd. Electronic device and method for manufacturing the same
JP2005050974A (ja) 2003-07-31 2005-02-24 Toshiba Corp 半導体パッケージおよび光通信モジュール並びに半導体装置
US20050081905A1 (en) * 2003-10-17 2005-04-21 Lan Alex H. Thermopile IR detector package structure
JP2005147768A (ja) 2003-11-12 2005-06-09 Denso Corp 赤外線検出器
JP4483366B2 (ja) 2004-03-25 2010-06-16 ヤマハ株式会社 半導体パッケージおよびその製造方法
JP2006145501A (ja) 2004-11-24 2006-06-08 Hamamatsu Photonics Kk 赤外線検出装置
JPWO2006120862A1 (ja) * 2005-05-11 2008-12-18 株式会社村田製作所 赤外線センサおよびその製造方法
JP2009079946A (ja) * 2007-09-26 2009-04-16 Seiko Npc Corp サーモパイル型赤外線センサ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395422A (ja) * 1989-09-08 1991-04-19 Tokin Corp サーモパイル
JPH0626926A (ja) * 1992-05-12 1994-02-04 Fujitsu Ltd 赤外線検知器
JPH08101062A (ja) 1994-09-30 1996-04-16 Nec Corp 赤外線検知器
JP2002340668A (ja) * 2001-05-18 2002-11-27 Denso Corp サーモパイル式赤外線センサおよびその検査方法
JP2003149045A (ja) * 2001-11-16 2003-05-21 Horiba Ltd 熱型赤外線検出器
JP2003344156A (ja) 2002-05-31 2003-12-03 Murata Mfg Co Ltd 赤外線センサおよびそれを用いた電子装置
JP2004140171A (ja) * 2002-10-17 2004-05-13 Denso Corp 多層プリント基板、多層プリント基板の放熱構造および多層プリント基板の製造方法
JP2006058228A (ja) * 2004-08-23 2006-03-02 Nippon Ceramic Co Ltd 多素子型サーモパイルモジュール
JP2007101513A (ja) 2005-10-07 2007-04-19 Seiko Npc Corp 赤外線センサ
WO2007088959A1 (ja) * 2006-02-02 2007-08-09 Nec Corporation 光モジュール
JP2008180633A (ja) * 2007-01-25 2008-08-07 Alps Electric Co Ltd センサ素子用基板
JP2009288032A (ja) 2008-05-28 2009-12-10 Hitachi High-Technologies Corp 表面検査装置および表面検査方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162346A1 (ja) * 2010-06-24 2011-12-29 パナソニック電工株式会社 赤外線センサ
US9478682B2 (en) 2010-06-24 2016-10-25 Panasonic Intellectual Property Management Co., Ltd. IR sensor package including a cover member and a sensor chip recessed into the package body
WO2013014707A1 (ja) * 2011-07-26 2013-01-31 株式会社芝浦電子 赤外線温度センサ、及び、それを用いた定着器
JP5207329B1 (ja) * 2011-07-26 2013-06-12 株式会社芝浦電子 赤外線温度センサ、及び、それを用いた定着器
EP2743658A4 (en) * 2011-07-26 2015-06-10 Shibaura Electronics Co Ltd INFRARED TEMPERATURE SENSOR AND FIXING DEVICE USING THE SAME
US9176443B2 (en) 2011-07-26 2015-11-03 Shibaura Electronics Co., Ltd. Infrared temperature sensor and fixing device using the same
RU2515190C1 (ru) * 2012-11-12 2014-05-10 Открытое акционерное общество "НПО "Орион" (ОАО "НПО "Орион") СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРИЕМНОГО МОДУЛЯ НА ОСНОВЕ PbSe
CN114143943A (zh) * 2021-12-02 2022-03-04 深圳市源立信照明科技有限公司 一种灯具控制电路

Also Published As

Publication number Publication date
JP2011128067A (ja) 2011-06-30
CN102656430A (zh) 2012-09-05
JP5793679B2 (ja) 2015-10-14
BR112012014958A2 (pt) 2016-04-05
TW201135198A (en) 2011-10-16
US8952331B2 (en) 2015-02-10
EP2515091A1 (en) 2012-10-24
US20120235044A1 (en) 2012-09-20
CN102656430B (zh) 2015-04-01
KR20120089342A (ko) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5793679B2 (ja) 赤外線センサモジュール
US8366317B2 (en) Sensor for detecting electromagnetic radiation
US20060169902A1 (en) Infrared sensor
WO2012117568A1 (ja) 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法
US7276697B2 (en) Infrared apparatus
JP6350933B2 (ja) 赤外線検出器
JP2006317232A (ja) 赤外線センサ
JP2011128065A (ja) 赤外線アレイセンサ装置
JP5564681B2 (ja) 赤外線センサ
JP2009276126A (ja) サーモパイル型赤外線検出装置
JP2008519972A (ja) 赤外線検出器
JP2011095143A (ja) 赤外線センサ
JP2010151639A (ja) サーモパイル型赤外線検出装置
US20220279632A1 (en) Domestic microwave appliance having a dome-shaped microwave shield
WO2012063915A1 (ja) 赤外線センサモジュールおよびその製造方法
CN219416452U (zh) 一种非制冷红外焦平面探测器
JP2011128066A (ja) 赤外線センサモジュール
JP5706217B2 (ja) 赤外線センサ
JP2015200559A (ja) 赤外線センサ
JP5206484B2 (ja) 温度センサ
JP2011216741A (ja) 光デバイス、光デバイスの製造方法
JP2005195435A (ja) 非接触型温度検出器
WO2022038828A1 (ja) 赤外線センサ
JP2016090377A (ja) 赤外線センサ
JP2010175303A (ja) 赤外線センサ素子のパッケージ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057710.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837702

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13513426

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127015578

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010837702

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012014958

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012014958

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120618