WO2011070926A1 - オゾン生成装置 - Google Patents

オゾン生成装置 Download PDF

Info

Publication number
WO2011070926A1
WO2011070926A1 PCT/JP2010/071159 JP2010071159W WO2011070926A1 WO 2011070926 A1 WO2011070926 A1 WO 2011070926A1 JP 2010071159 W JP2010071159 W JP 2010071159W WO 2011070926 A1 WO2011070926 A1 WO 2011070926A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange membrane
fluororesin
anode
cation exchange
conductive diamond
Prior art date
Application number
PCT/JP2010/071159
Other languages
English (en)
French (fr)
Inventor
昌明 加藤
理恵 川口
剛陸 岸
Original Assignee
クロリンエンジニアズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クロリンエンジニアズ株式会社 filed Critical クロリンエンジニアズ株式会社
Priority to CN201080055426.7A priority Critical patent/CN102648308B/zh
Priority to KR1020127014722A priority patent/KR101340239B1/ko
Priority to US13/393,484 priority patent/US8815064B2/en
Publication of WO2011070926A1 publication Critical patent/WO2011070926A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/20Electrodes used for obtaining electrical discharge
    • C01B2201/24Composition of the electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/30Dielectrics used in the electrical dischargers
    • C01B2201/34Composition of the dielectrics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • an anode and a cathode are adhered to both sides of a fluororesin cation exchange membrane, an electrode having conductive diamond on the surface is used as an anode, water is electrolyzed, ozone from the anode, and hydrogen from the cathode.
  • the present invention relates to an ozone generator that generates water.
  • Ozone is known as a substance having extremely strong oxidizing power in nature, and recently, its use is spreading in various industrial fields by utilizing the strong oxidizing power. For example, in water and sewage facilities, a sterilization / decolorization method using ozone is used. Ozone is self-degrading over time and becomes harmless oxygen, so there is no worry of secondary contamination due to residual chemicals or reaction products compared to conventional sterilization and decolorization methods, and post-treatment is easy. Therefore, it is highly appreciated.
  • an ultraviolet lamp method As a method for generating ozone, an ultraviolet lamp method, a silent discharge method, and an electrolysis method are known.
  • the ultraviolet lamp method is a method in which oxygen is excited by ultraviolet rays to produce ozone, and ozone can be generated with relatively simple equipment, but the amount of generation is small, and the field of use is indoors and in cars. Limited to deodorization.
  • the silent discharge method is the most popular general ozone generation method, and uses a large generator of several tens of kg / h for simple purposes such as indoor deodorization using a small amount of ozone generator. It is used for various purposes up to large-scale water treatment.
  • the silent discharge method is a method in which oxygen gas or oxygen in the air is used as a raw material, and oxygen is excited by a discharge to react with ozone.
  • the electrolysis method is a method of obtaining ozone in the anodic gas by electrolyzing water.
  • Ozone is also generated by electrolyzing an aqueous solution such as an aqueous sulfuric acid solution, but when ultrapure water electrolysis is performed using a fluororesin-based cation exchange membrane as an electrolyte, high-concentration and high-purity ozone can be obtained. ing.
  • ultrapure water is used as a raw material and the impurities in the generated gas are extremely small, ultrapure water electrolysis ozone water production equipment is widely used in the precision cleaning field for cleaning semiconductor wafers and LCD substrates. Yes.
  • the anode used in the ozone generation method by electrolysis has excellent ozone gas generation current efficiency, so lead dioxide (PbO 2 ) supported by a method such as electrolytic plating on a conductive porous metal such as titanium.
  • PbO 2 lead dioxide
  • the ozone generation current efficiency was normally 10-15%, and at high current density, 20%. %.
  • the perfluorosulfonic acid ion exchange membrane is consumed over time, the consumption is small and stable ozone generation and safety can be maintained even after continuous electrolysis for 2 years or more.
  • the lead dioxide anode has high ozone generation current efficiency and excellent stability over time under high current density and continuous electrolysis, but this lead dioxide anode is reduced and altered in a reducing environment. It has easy characteristics. For example, when the electrolysis is stopped, the lead dioxide on the electrode surface is easily converted to lead hydroxide (Pb) by reaction with a reducing substance such as hydrogen remaining in the electrolysis cell or by electroreduction reaction by negative polarization of the lead dioxide anode. (OH) 2 ), lead oxide (PbO), and lead ions (Pb 2+ ). Since neither of these has an ozone generating ability or electronic conductivity, a phenomenon occurs in which the ozone generating ability is reduced during re-operation after the electrolysis is stopped.
  • Pb lead hydroxide
  • a protective current that is 1/10 to 1/1000 of the normal electrolytic current is applied to the electrolytic cell. It has a supply mechanism.
  • This mechanism is composed of a direct current power source for protection current, a storage battery, and a control system, and constantly monitors the status of the apparatus so that an instantaneous non-energized state does not occur in the electrolysis cell.
  • This mechanism protects the lead dioxide anode without being exposed to the reducing environment even when electrolysis is stopped.
  • the existence of this mechanism complicates the operation mechanism and configuration of the electrolytic ozone generator and increases the price of the apparatus. ing.
  • the lead dioxide anode contains a lot of lead, and in recent years, the use of lead tends to be reduced in all industrial products due to the toxicity and legal regulations of lead, such as the ROHS guidelines (Non-patent Document 1). reference).
  • the ozone generation current efficiency is about 40% much higher than that of the lead dioxide anode. I know I can get it.
  • the conductive diamond anode is excellent in chemical and electrochemical stability, it does not change in properties and electrolytic characteristics even in a reducing environment in which lead dioxide is altered or deteriorated by reduction. Therefore, the protective current mechanism which is essential in the electrolytic ozone generator using the lead dioxide anode is not necessary, and the apparatus is simplified.
  • carbon and boron constituting the conductive diamond are not subject to the ROHS guidelines.
  • the conductive diamond electrode has a very strong oxidizing ability, water electrolysis can be performed while contacting the conductive diamond electrode and the perfluorosulfonic acid ion exchange membrane in the same manner as the conventional electrolytic ozone generation cell.
  • rate of a perfluorosulfonic-acid ion exchange membrane was 100 times or more large compared with the case of a lead dioxide electrode.
  • the rapid thinning of the membrane by electrolysis causes a rapid increase in the amount of hydrogen gas generated in the cathode chamber to the anode chamber, and the hydrogen concentration in the anode gas exceeds the lower limit of hydrogen explosion even in short-time electrolysis.
  • An electrolysis cell having a very short period during which stable electrolysis can be performed is obtained. Therefore, although the conductive diamond electrode has an excellent ozone generation capability, it has been difficult to commercially use it as an electrolytic cell in an ozone generator or the like.
  • an ozone generation method in which an anode and a cathode are in close contact with both sides of a fluororesin-based cation exchange membrane, a conductive diamond electrode is used as the anode, and water is electrolyzed to generate ozone from the anode and hydrogen from the cathode.
  • a method of suppressing the consumption of the fluororesin cation exchange membrane the consumption of the fluororesin cation exchange membrane can be suppressed by adjusting the current value to be energized or by including a reinforcing material in the fluororesin cation exchange membrane. (See Patent Document 1).
  • the supply current value to the electrolysis cell is limited to the current value or less that maximizes the ozone generation efficiency, so the apparatus using this electrolysis method has a problem that the adjustment range of the ozone generation amount becomes narrow. Occurs.
  • the reinforcing material is Since it does not have electrical conductivity, there is a problem that ozone cannot be generated because it cannot be energized at that time.
  • the lifetime of the electrolytic cell is the time when the thickness of the fluororesin cation exchange membrane from the surface of the fluororesin cation exchange membrane to the reinforcing material is consumed.
  • the present invention eliminates the drawbacks of the above conventional methods, adheres the anode and cathode to both sides of the fluororesin cation exchange membrane, uses a conductive diamond electrode as the anode, electrolyzes water, To provide an ozone generating apparatus capable of generating ozone stably, for a long period of time with high current efficiency, in a ozone generating apparatus that generates hydrogen from ozone and a cathode, suppressing consumption of a fluororesin cation exchange membrane. With the goal.
  • the present invention uses a conductive diamond electrode provided with anodes and cathodes on both sides of a fluororesin-based cation exchange membrane and having conductive diamond on the surface as the anode, and the anode chamber is pure.
  • the conductive diamond electrode A conductive diamond electrode comprising a substrate having a large number of convex and concave portions and a conductive diamond film coated on the surface of the substrate, and a fluororesin-based cation exchange membrane having no notch is in close contact with the cathode surface, and an electrolytic cell A packed bed closely packed with ion-exchange resin particles is adhered to the anode-side surface of the fluororesin-based cation exchange membrane without being cut. It lies in the configuration of an ozone generating apparatus Te.
  • an ozone generating device is configured by bringing a notched fluororesin cation exchange membrane into close contact with the anode side surface of the packed bed.
  • a third solution according to the present invention is that a positive electrode and a negative electrode are provided on both sides of a fluororesin cation exchange membrane, a conductive diamond electrode having a conductive diamond on the surface is used as the anode, and the anode chamber is pure.
  • the conductive diamond electrode for electrolyzing water by supplying water and supplying a direct current between the positive and negative electrodes, generating ozone from the anode chamber, and generating hydrogen from the cathode chamber
  • a conductive diamond electrode comprising a substrate having a number of convex and concave portions and a conductive diamond film coated on the surface of the substrate is used, and a fluororesin-based cation exchange membrane having no notch is brought into close contact with the cathode surface, and an electrolytic cell Fluorine resin-based cation exchange membrane with a notch on the anode side surface of the fluororesin-based cation exchange membrane Lies in the configuration of the ozone generator is brought into close contact more becomes an ion exchange membrane layer.
  • the fourth solution according to the present invention is a fluororesin-based cation exchange membrane having a notch on the outermost surface on the anode side of the ion exchange membrane layer comprising the plurality of notched fluororesin-based cation exchange membranes. Is fixed to the electrolytic cell to constitute an ozone generator.
  • an ozone generator is configured using a perfluorosulfonic acid cation exchange membrane as the fluororesin cation exchange membrane.
  • an ozone generating device is configured by using fluororesin-based ion exchange resin particles as the ion exchange resin particles.
  • the ozone generator according to the present invention it is possible to suppress the consumption of the fluororesin cation exchange membrane and generate ozone stably for a long period of time.
  • Example 1 the schematic diagram which shows the structure of one example of the electrolysis cell for implementing the ozone generator by this invention.
  • Example 2 the schematic diagram which shows the structure of the other example of the electrolytic cell for implementing the ozone generator by this invention.
  • Example 3 the schematic diagram which shows the structure of the further another example of the electrolytic cell for implementing the ozone generator by this invention.
  • Example 4 the schematic diagram which shows the structure of the further another example of the electrolytic cell for implementing the ozone generator by this invention.
  • Example 2 the figure which shows an example of the fluorine resin type
  • Example 4 the figure which shows the other example of the fluororesin type
  • the surface view which shows the structure of an example of the board
  • Sectional drawing which shows the structure of one example of the board
  • the block diagram which shows one Example of the ozone generator by this invention.
  • FIG. 1-1 is a schematic diagram showing a configuration of an example of an electrolysis cell for carrying out an ozone generator according to the present invention.
  • 1 is an anode chamber discharge port
  • 2 is a cathode chamber discharge port
  • 3 is an anode chamber
  • 4 is a cathode chamber
  • 5 is an anode feeding terminal
  • 6 is a cathode feeding terminal
  • 7 is an anode chamber feeding port
  • 8 is a cathode chamber supply port
  • 9 is a non-cut fluororesin cation exchange membrane
  • 10 is a conductive diamond film
  • 11 is a p-type silicon substrate with irregularities
  • 12 is a through-hole
  • 13 is a cathode.
  • a sheet, 14 is a cathode current collector, 15 is a sealing material, 16 is a fastening bolt, 17 is a nut, and 18 is a press plate.
  • Reference numeral 19 denotes a packed bed in which ion-exchange resin particles are closely packed.
  • the anode has a conductive diamond film 10 on the surface of the p-type silicon substrate 11 with unevenness, the through-hole 12 is perforated, and the cathode consists of a cathode sheet 13.
  • the fluororesin-based cation exchange membrane 9 having no notch is in close contact with the surface of the cathode sheet 13.
  • the fluororesin cation exchange membrane 9 having no cut is fixed to the electrolysis cell by a sealing material 15.
  • a filling layer 19 tightly filled with ion exchange resin particles is in close contact with the anode side surface of the fluororesin cation exchange membrane 9 without being cut.
  • the anode and cathode are housed in an anode chamber 3 and a cathode chamber 4, respectively.
  • the anode chamber 3 and the cathode chamber 4 have an anode chamber discharge port 1, a cathode chamber discharge port 2, an anode chamber supply port 7 and a cathode chamber supply port 8, respectively. is doing.
  • the membrane 9 was joined by pressing with a torque using a tightening bolt 16, a nut 17, and a press plate 18.
  • the torque to the bolt and nut was 3 N ⁇ m.
  • the pure water When pure water is supplied into the anode chamber 3 from the anode chamber supply port 7, the pure water passes through the through-hole 12 and the like, and the ion exchange is performed on the surface of the conductive diamond film 10 and the fluororesin cation exchange membrane 9 without being cut. It is supplied to the contact surface of the filling layer 19 tightly filled with resin particles, an electrolytic reaction occurs, ozone gas, oxygen gas, and hydrogen ions are generated in the anode chamber 3, and the ozone gas and oxygen gas pass through the anode chamber outlet 1.
  • the hydrogen ions are discharged from the electrolysis cell to the surface of the cathode sheet 13 through the fluororesin-based cation exchange membrane 9 without being cut, and are combined with electrons to become hydrogen gas, from the cathode chamber outlet 2. It is discharged out of the electrolysis cell.
  • the cathode sheet 13 was manufactured as follows. PTFE dispersion (Mitsui Dupont Fluorochemical Co., Ltd. 31-J) and a dispersion of platinum-supported carbon catalyst dispersed in water were mixed, dried, kneaded with solvent naphtha added thereto, Through the drying step and the firing step, the cathode sheet 13 was obtained with PTFE 40%, platinum-supported carbon catalyst 60% in film thickness, and porosity of 55%. Moreover, a 2.5 mm thick stainless steel fiber sintered body (Tokyo Seizuna Co., Ltd.) was used as the cathode current collector.
  • PTFE dispersion Mitsubishi Dupont Fluorochemical Co., Ltd. 31-J
  • a dispersion of platinum-supported carbon catalyst dispersed in water were mixed, dried, kneaded with solvent naphtha added thereto, Through the drying step and the firing step, the cathode sheet 13 was obtained with PTFE 40%, platinum-supported carbon catalyst 60% in film thickness
  • the ion exchange resin particles used for the packed layer 19 tightly filled with ion exchange resin particles are preferably fluororesin ion exchange resin particles in view of resistance to ozone generated by electrolysis.
  • the filling amount of the packed layer 19 tightly filled with ion-exchange resin particles determines the filling amount of the ion-exchange resin from the consumption rate of the fluororesin cation exchange membrane by electrolysis and the expected electrolytic cell life, It is necessary to configure the electrolytic cell.
  • the exhaustion of the fluororesin cation exchange membrane 9 with no cut on the most cathode side is started, and the hydrogen concentration permeating into the anode gas is 4.5 vol%, which is the lower limit of explosion.
  • the life is reached when it becomes 1% by volume or more, which is a quarter, but by obtaining the required amount of ion exchange resin from the product of the consumption rate of the membrane and the expected life time in advance, the electrolytic cell is constructed. An electrolytic cell that can achieve the expected life can be obtained.
  • FIG. 1-2 is a schematic diagram showing the structure of another example of the electrolytic cell for carrying out the ozone generating apparatus according to the present invention, on the surface on the anode side of the packed layer 19 in which ion-exchange resin particles are closely packed.
  • FIG. 2A shows an example in which a fluororesin cation exchange membrane 21 having a notch 20 is closely attached. The fluororesin cation exchange membrane 21 with the cut 20 is fixed to the electrolytic cell by the sealing material 15.
  • a plurality of fluororesin-based cation exchange membranes 21 in contact with the anode can be provided, but they are arranged on the cathode side. Except for the fluororesin-based cation exchange membrane 9, any membrane is provided with a cut 20 so that no liquid or gas stays in the anode chamber 3.
  • hydrogen gas or oxygen gas that has permeated the fluororesin-based cation exchange membrane 21 stays in the ion exchange resin filling layer 19, the internal pressure in the anode chamber 3 rises, and the ions filled in the anode chamber 3.
  • a plurality of the cuts 20 of the fluororesin ion exchange membrane 21 containing the cuts 20 may be formed in the lateral direction, but the shape of the cuts 20 is formed on a part or the whole of the surface.
  • a plurality of the slits 20 are formed in a straight line or a circle in the vertical direction, the horizontal direction, the concentric circles, or irregularly, and the above effect can be further improved.
  • the hydrogen concentration in the ozone-containing gas generated from the previous anode chamber can be further reduced. At the same time, an increase in cell voltage can be prevented.
  • FIG. 1-3 is a schematic view showing the configuration of still another example of an electrolysis cell for carrying out the ozone generator according to the present invention, in which an anode and a cathode are provided on both sides of a fluororesin cation exchange membrane.
  • the ion exchange membrane layer 22 composed of a plurality of cut fluororesin cation exchange membranes has the same effect as the packed layer 19 in which the ion exchange resin particles shown in FIGS. 1-1 and 1-2 are closely packed. Can be played. The notch of the ion exchange membrane layer 22 is not shown.
  • the number of ion exchange membrane layers 22 made of a plurality of cut fluororesin cation exchange membranes is determined from the consumption rate of the fluororesin cation exchange membrane by electrolysis and the expected electrolytic cell lifetime. Configuration is required.
  • this electrolytic cell the consumption of the fluororesin cation exchange membrane 9 with no notch on the cathode side is started, and the hydrogen concentration permeating into the anode gas is the lower limit of explosion, 4.5 vol% 4
  • the life is reached when the volume is 1% by volume or more, which is a fraction, but the ion exchange membrane layer 22 is composed of a plurality of fluororesin-based cation exchange membranes required in advance from the product of the membrane consumption rate and the expected life time.
  • an electrolytic cell that can achieve the expected life can be obtained by configuring the electrolytic cell.
  • the fluororesin cation exchange membrane 9 having no cut As the fluororesin cation exchange membrane 9 having no cut, the fluororesin ion exchange membrane 21 having a cut and the plurality of fluororesin cation exchange membranes having a cut constituting the ion exchange membrane layer 22, A perfluorosulfonic acid cation exchange membrane is preferable, and a commercially available perfluorosulfonic acid type cation exchange membrane (trade name: Nafion 117, manufactured by DuPont, catalog thickness: 175 ⁇ m) is used and immersed in boiling pure water for 30 minutes. Those subjected to swelling treatment with water can be used.
  • FIG. 1-4 is a schematic view showing the configuration of still another example of an electrolysis cell for carrying out the ozone generating apparatus according to the present invention, which is composed of a plurality of fluororesin cation exchange membranes having notches 20.
  • This shows an example in which a fluororesin cation exchange membrane 21 having a single notch 20 is fixed to the sealing material 15 of the electrolytic cell on the outermost surface on the anode side of the ion exchange membrane layer 22.
  • FIG. 2-2 is a view of the configuration of the fluororesin cation exchange membrane in FIG. 1-4 as viewed from the anode side.
  • FIGS. 3A and 3B are diagrams showing an example of the structure of an anode having conductive diamond on the surface used for the ozone generation method and the ozone generation apparatus according to the present invention.
  • a large number of irregularities with a pitch of 0.5 mm were formed on the surface of the surface of 3 mmt) 11 by dicing, and then drilled from the back surface to obtain a plurality of through holes 12.
  • a hydrofluoric acid solution prepared by mixing 35% hydrofluoric acid and 70% nitric acid at 1: 1 at room temperature for 5 minutes, and further 10% potassium hydroxide aqueous solution at 60 ° C. For 5 minutes.
  • Reference numeral 23 denotes a convex portion
  • 24 denotes a concave portion.
  • diamond powder was placed in isopropyl alcohol, a substrate was placed, and ultrasonic waves were applied to perform seeding treatment.
  • a microwave plasma CVD method at 2.45 GHz was used.
  • H 2 , CH 4 , and B 2 H 6 were used as gases, and the flow rates were 800 sccm, 20 sccm, and 0.2 sccm, respectively, and the gas pressure was 3.2 kPa.
  • a conductive diamond film 10 containing boron as a dopant was formed by microwave plasma CVD.
  • the total area of the convex part top part used as an actual electrolysis area is 6.25 cm ⁇ 2 >.
  • the convex portion 23 on the surface of the conductive diamond film 10 is in contact with both the perfluorosulfonic acid cation exchange membrane 9 and the aqueous phase, and these form a three-phase interface. Further, since the entire contact surface between the convex portion 23 and the perfluorosulfonic acid type cation exchange membrane 9 has a three-phase interface, it has a fine structure, and water penetrates the entire surface of the convex portion 23 so that the electrolytic gas quickly flows. In order to be discharged from the electrolysis field, the width of the projection 23 must be 1 mm or less and the entire surface of the electrode must be present.
  • the three-phase interface also increases the number of flow paths for the electrolytic solution and the generated gas, thereby facilitating fluid flow.
  • the width of the convex portion 23 is 2 mm or more, water does not always enter the intermediate portion of the convex portion 23 even though the convex portion 23 is in contact with the perfluorosulfonic acid cation exchange membrane 9, and electrolysis is performed. An impossible part is formed.
  • the portion formed in the intermediate portion of the convex portion 23 that cannot be electrolyzed because water does not always enter is such that the bubble covers the entire surface of the conductive diamond film 10 after the start of electrolysis, and the portion of the three-phase interface Almost disappears and electrolysis cannot be performed.
  • the convex portion 23 is too fine, in the zero gap structure in which the ion exchange membrane and the electrode are brought into contact with each other by pressing pressure to obtain a three-phase interface, the convex portion 23 is easily damaged.
  • the width of the convex portion 23 is required to be 0.2 mm or more so that the entire surface of the convex portion 23 exists on the electrode surface.
  • the surface of the convex portion 23 needs to have an appropriate surface roughness.
  • the surface roughness Ra needs to be 0.1 ⁇ m or more.
  • the surface roughness Ra is preferably 0.2 to 0.5 ⁇ m.
  • the conductive diamond electrode according to the present invention needs to use machining such as dicing or drilling that can produce an uneven structure without using a plurality of high-precision processing devices in order to reduce costs.
  • each convex portion 23 of the convex concave portion a conductive diamond electrode having a circular shape, an elliptical shape, a polygonal shape or other shapes can be used.
  • a large number of strip-shaped substrates are arranged across the entire surface of the conductive diamond electrode with a gap between each of the strip-shaped substrates.
  • a substrate that is vertically, horizontally and vertically shaped like a projection in a square shape, a circular shape, or other shapes may be used.
  • the anode having the conductive diamond film 10 on its surface is manufactured by supporting diamond, which is a reduced precipitate of an organic compound serving as a carbon source, on an electrode substrate.
  • the material and shape of the electrode substrate are not particularly limited as long as the material is conductive.
  • the electrode substrate is plate-like, mesh-like, or porous, for example, a vibrant fiber sintered body made of conductive silicon, silicon carbide, titanium, niobium, molybdenum or the like. It is particularly preferable to use conductive silicon or silicon carbide having a thermal expansion coefficient that can be used.
  • the substrate surface has a certain degree of roughness.
  • the film thickness be 10 ⁇ m to 50 ⁇ m in order to reduce durability and occurrence of pinholes.
  • a self-supporting film having a thickness of 100 ⁇ m or more can be used from the viewpoint of durability, it is not preferable because the cell voltage becomes high and the control of the electrolyte temperature becomes complicated.
  • the method for supporting the conductive diamond on the substrate is not particularly limited, and any conventional method can be used.
  • Typical conductive diamond production methods include a hot filament CVD (chemical vapor deposition) method, a microwave plasma CVD method, a plasma arc jet method, and a physical vapor deposition (PVD) method.
  • the use of a microwave plasma CVD method is desirable because it is easy to obtain a uniform film.
  • a diamond electrode in which a synthetic diamond powder produced at an ultrahigh pressure is supported on a substrate by using a binder such as a resin can also be used.
  • the microwave plasma CVD method uses a mixed gas obtained by diluting a carbon source such as methane and a dopant source such as borane with hydrogen as a conductive material such as conductive silicon, alumina, or silicon carbide connected to a microwave transmitter through a waveguide.
  • a conductive diamond film is introduced into a reaction chamber provided with a substrate, plasma is generated in the reaction chamber, and conductive diamond is grown on the substrate.
  • ions hardly vibrate, and a pseudo high temperature is achieved in a state where only electrons are vibrated, and the chemical reaction is promoted.
  • the plasma output is 1 to 5 kW. The larger the output, the more active species can be generated, and the diamond growth rate increases.
  • the advantage of using plasma is that diamond can be deposited at high speed using a substrate with a large surface area.
  • the content of boron or phosphorus is preferably 1 to 100,000 ppm, more preferably 100 to 10,000 ppm.
  • boron oxide, diphosphorus pentoxide, or the like having a low toxicity can be used as a raw material for this additive element.
  • the conductive diamond supported on the substrate thus manufactured is a flat plate, stamped plate, wire mesh, powder sintered body made of a conductive material such as titanium, niobium, tantalum, silicon, carbon, nickel, tungsten carbide. In addition, it can be connected to a power feeding body having a form such as a metal fiber body or a metal fiber sintered body.
  • the cathode sheet 13 was manufactured as follows. PTFE dispersion (Mitsui Dupont Fluorochemical Co., Ltd. 31-J) and a dispersion of platinum-supported carbon catalyst dispersed in water were mixed, dried, kneaded with solvent naphtha added thereto, Through the drying step and the firing step, a cathode sheet 13 having a PTFE of 40%, a platinum-supported carbon catalyst of 60%, a film thickness of 120 ⁇ m, and a porosity of 55% was obtained. Moreover, a 2.5 mm thick stainless steel fiber sintered body (Tokyo Seizuna Co., Ltd.) was used as the cathode current collector.
  • Example 1 An electrolytic cell was constructed as shown in FIG. A fluororesin-based cation exchange membrane 9 having no cuts is brought into close contact with the surface of the cathode sheet 13 and fixed to the sealing material 15 of the electrolysis cell, and ions are formed on the anode-side surface of the fluororesin-based cation exchange membrane 9 having no cuts.
  • the packed bed 19 closely packed with exchange resin particles was brought into close contact to constitute an electrolytic cell.
  • the anode and the cathode are housed in an anode chamber 3 and a cathode chamber 4, respectively.
  • the anode chamber 3 and the cathode chamber 4 have supply ports 7 and 8 and discharge ports 1 and 2, respectively.
  • the ion exchange resin particles filled in the packed layer 19 were prepared by boiling a product name: NR50, an ion exchange resin manufactured by DuPont, and immersing in pure water for 30 minutes to perform a swelling treatment with water.
  • the anode made of a conductive diamond electrode is a hydrofluoric acid solution prepared by mixing 35% hydrofluoric acid and 70% nitric acid at a ratio of 1: 1 for texture processing on the surface of a 5 cm square p-type silicon substrate (3 mmt). For 5 minutes at room temperature, and further immersed in a 10% aqueous potassium hydroxide solution at 60 ° C. for 5 minutes. At this time, the surface roughness Ra of the silicon substrate was 0.1 to 4 ⁇ m although there was unevenness depending on the location. Next, many irregularities were produced on the surface by dicing using a diamond saw. Note that the thickness of the diamond saw used for the preparation of each sample is 20 ⁇ m.
  • the produced uneven silicon plate was washed with water and dried, and then, as a pretreatment, diamond powder was placed in isopropyl alcohol, a substrate was placed, and ultrasonic waves were applied to perform seeding treatment.
  • a microwave plasma CVD method at 2.45 GHz was used.
  • H 2 , CH 4 , and B 2 H 6 were used as gases, and the flow rates were 800 sccm, 20 sccm, and 0.2 sccm, respectively, and the gas pressure was 3.2 kPa.
  • a conductive diamond film containing boron as a dopant was formed by microwave plasma CVD.
  • the conductive diamond electrode is obtained by coating the surface of a substrate 11 having a large number of convex and concave portions over the entire surface with a diamond film 10.
  • the shape of the part 23 was formed in a square shape.
  • the substrate 11 was provided with a plurality of through holes 12 so that the gas discharged from the surface of the convex portion 23 to the concave portion 24 and the water supplied to the surface of the convex portion 23 can circulate quickly from the back surface of the electrode.
  • the total area of the protrusions that was the actual electrolysis area was 6.25 cm 2 .
  • the total area of the openings of the through holes was 10% with respect to the projected area of the electrode structure.
  • the surface roughness Ra of each convex portion was 0.2 to 0.5 ⁇ m.
  • PTFE dispersion Mitsubishi DuPont Fluorochemical Co., Ltd. 31-J
  • a dispersion of platinum-supported carbon catalyst dispersed in water are mixed, dried, kneaded with solvent naphtha, and then rolled.
  • a drying step and a firing step a cathode sheet 13 having a film thickness of 120 ⁇ m and a porosity of 55% at a mixing ratio of 40% PTFE and 60% platinum-supported carbon catalyst was obtained.
  • a 2.5 mm-thick stainless steel sintered body (Tokyo Steel Line Co., Ltd.) was used as the cathode current collector 14.
  • the electrolysis cell 25 was connected with the anode side gas-liquid separator 26, the cathode side gas-liquid separator 27, and the DC power supply 28, and water electrolysis was performed.
  • the electrolytic current was 6.25A.
  • the temperature at the start of operation of pure water as an electrolytic solution was 23 ° C., and water electrolysis was performed without cooling.
  • the results shown in Table 1 were obtained.
  • the ozone generation current efficiency is 20%
  • the hydrogen gas concentration contained in the anode gas is 0.1 Vol%
  • the cell voltage is 11.8 V
  • the ozone generation current efficiency is 18% even on the 10th day of continuous electrolysis.
  • the hydrogen gas concentration contained in the anode gas was 0.1 Vol% and the cell voltage was 11.7 V, and no significant change was observed.
  • Example 2 The electrolytic cell shown in FIG. 1-2 was assembled and an electrolytic test was conducted. That is, as shown in FIG. 2-1, a fluororesin cation exchange membrane 21 having a notch 20 was brought into close contact with the anode side surface of the packed layer 19 in which the ion exchange resin particles were closely packed. The fluororesin cation exchange membrane 21 with the cut 20 is fixed to the electrolytic cell by the sealing material 15.
  • fluororesin-based cation exchange membranes 9 and 21 commercially available fluororesin-based cation exchange membranes (trade name: Nafion 117, manufactured by DuPont, catalog thickness: 175 ⁇ m) are used and immersed in boiling pure water for 30 minutes. Then, a swelling treatment with water was performed.
  • PTFE dispersion Mitsubishi Dupont Fluorochemical Co., Ltd. 31-J
  • a dispersion of platinum-supported carbon catalyst dispersed in water are mixed, dried, mixed with solvent naphtha, kneaded, and rolling step
  • a cathode sheet 13 having a PTFE of 40%, a platinum-supported carbon catalyst of 60% and a film thickness of 120 ⁇ m and a porosity of 55% was obtained.
  • a 2.5 mm-thick stainless steel sintered body (Tokyo Steel Line Co., Ltd.) was used as the cathode current collector 14.
  • the ion exchange resin particles filled in the packed layer 19 were prepared by boiling a product name: NR50, an ion exchange resin manufactured by DuPont, and immersing in pure water for 30 minutes to perform a swelling treatment with water.
  • Example 1 As the anode, the same conductive diamond electrode as in Example 1 was used, and an electrolytic test was conducted in the same manner as in Example 1.
  • the results shown in Table 1 were obtained.
  • the ozone generation current efficiency is 20%
  • the hydrogen gas concentration contained in the anode gas is 0.1 Vol%
  • the cell voltage is 12V
  • the ozone generation current efficiency is 18% even on the 10th day of continuous electrolysis.
  • the concentration of hydrogen gas contained in the gas was 0.1 Vol% and the cell voltage was 11.9 V, and no significant change was observed.
  • Example 3 The electrolytic cell shown in FIG. 1-3 was assembled and an electrolytic test was performed. That is, the fluororesin cation exchange membrane 9 having no notch is brought into close contact with the cathode surface and fixed to the sealing material 15 of the electrolysis cell, and the notch is formed on the anode side surface of the fluororesin cation exchange membrane 9 having no notch. A certain 15 sheets of an ion exchange membrane layer 22 made of a fluororesin cation exchange membrane were adhered.
  • the results shown in Table 1 were obtained.
  • the ozone generation current efficiency is 20%
  • the hydrogen gas concentration contained in the anode gas is 0.1 Vol%
  • the cell voltage is 11.8 V
  • the ozone generation current efficiency is 18% even on the 10th day of continuous electrolysis.
  • the hydrogen gas concentration contained in the anode gas was 0.1 Vol% and the cell voltage was 11.7 V, and no significant change was observed.
  • Example 4 The electrolytic cell shown in FIG. 1-4 was assembled and an electrolytic test was performed. That is, the fluororesin-based cation exchange having notches 20 on the outermost surface on the anode side of the ion exchange membrane layer 22 made of a plurality of fluororesin-based cation exchange membranes having notches 20 in the electrolytic cell used in Example 3. The membrane 21 was fixed to the sealing material 15 of the electrolytic cell.
  • the results shown in Table 1 were obtained.
  • the ozone generation current efficiency is 20%
  • the hydrogen gas concentration contained in the anode gas is 0.1 Vol%
  • the cell voltage is 12.1 V
  • the ozone generation current efficiency is 18% even on the 10th day of continuous electrolysis.
  • the hydrogen gas concentration contained in the anode gas was 0.1 Vol% and the cell voltage was 11.9 V, and no significant change was observed.
  • Comparative Example 2 In Comparative Example 2, the electrolytic cell shown in FIG. 5 was configured. In this comparative example 2, two fluororesin cation exchange membranes 9 and 21 were brought into close contact with each other to constitute an electrolytic cell. The fluororesin-based cation exchange membrane 21 in contact with the anode was formed with a notch 20.
  • the ozone generator according to the present invention it is possible to suppress the consumption of the fluororesin cation exchange membrane, stably generate ozone for a long period of time, and the sterilization / decolorization method using ozone is used in water and sewage facilities. be able to.
  • Anode chamber discharge port 2 Cathode chamber discharge port 3: Anode chamber 4: Cathode chamber 5: Anode feed terminal 6: Cathode feed terminal 7: Anode chamber feed port 8: Cathode chamber feed port 9: Fluorine resin system without cut Ion exchange membrane 10: Conductive diamond film 11: P-type silicon substrate 12 with unevenness 12: Through hole 13: Cathode sheet 14: Cathode collector 15: Sealing material 16: Tightening bolt 17: Nut 18: Press plate 19: Ion Packing layer 20 closely packed with exchange resin particles 20: notch 21: notched fluororesin ion exchange membrane 22: notched ion exchange membrane layer 23 made of a plurality of fluororesin cation exchange membranes: convex portion 24 : Recess 25: Electrolytic cell 26: Anode-side gas-liquid separator 27: Cathode-side gas-liquid separator 28: DC power supply 29 for electrolysis: Heat exchanger

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 本発明は、フッ素樹脂系陽イオン交換膜の両側面に陽極及び陰極を設け、陽極として導電性ダイヤモンド電極を使用し、陽極室に純水を供給し、陽陰極間に直流電流を供給することによって、水を電気分解して、陽極室よりオゾンを生成させ、陰極室より水素を生成させるオゾン生成装置において、前記導電性ダイヤモンド電極として、多数の凸凹部を有する基板と該基板の表面に被覆された導電性ダイヤモンド膜よりなる導電性ダイヤモンド電極を用い、フッ素樹脂系陽イオン交換膜の陽極側表面に、イオン交換樹脂粒を緊密に充填した充填層又は切れ込みのあるフッ素樹脂系陽イオン交換膜層を密着させたことを特徴とするオゾン生成装置である。

Description

オゾン生成装置
 本発明は、フッ素樹脂系陽イオン交換膜の両側面に陽極及び陰極を密着させ、陽極として導電性ダイヤモンドを表面に有する電極を使用し、水を電気分解して、陽極よりオゾン、陰極より水素を発生させるオゾン生成装置に関するものである。
 オゾンは、自然界において酸化力が極めて強い物質として知られており、近年その強い酸化力を利用して、さまざまな産業分野において使用用途が広がっている。例えば、上下水道施設において、オゾンを利用した殺菌・脱色方法が利用されている。オゾンは、経時的に自己分解して無害な酸素となるため、従来の薬品を使った殺菌・脱色方法と比較して残留薬品や反応生成物による二次汚染の心配が無く、後処理が容易であることから、高く評価されている。
 オゾンを生成する方法としては、紫外線ランプ法、無声放電法、電気分解法が知られている。
 紫外線ランプ法は、紫外線により酸素を励起してオゾンとする方法であり、比較的簡易な設備でオゾン発生を行うことが出来るが、発生量が少量であり、その利用分野は、室内・車内の消臭等に限られている。
 無声放電法は、最も普及した一般的なオゾン発生方法であり、発生量の少ないオゾン発生器を用いた室内の消臭等の簡易的な用途から、数十kg/hの大型発生装置を用いた大規模な水処理用途まで、様々な用途に利用されている。無声放電法は、原料として酸素ガスや空気中の酸素を用い、放電によって酸素を励起して反応させオゾンとする方法である。
 電気分解法は、水を電気分解することで陽極発生ガス中にオゾンを得る方法である。硫酸水溶液などの水溶液を電解することでもオゾン発生するが、フッ素樹脂系陽イオン交換膜を電解質として用いて超純水電解を行った場合、高濃度且つ高純度なオゾンが得られる特徴を有している。また、超純水を原料することと及び発生ガス中の不純物が極めて少ないことから、超純水電解オゾン水製造装置は、半導体ウェハやLCD基板等の洗浄を行う精密洗浄分野において広く利用されている。
 従来、電気分解法によるオゾン生成方法に使用する陽極には、オゾンガス発生電流効率に優れることから、チタンなどの導電性多孔性金属上に電解めっきなどの方法により担持された二酸化鉛(PbO2)が利用されてきた。パーフルオロスルホン酸イオン交換膜を使用し、二酸化鉛を陽極として室温で超純水電解を行った場合、オゾン発生電流効率は、通常でも10-15%を示し、また高電流密度においては、20%にも達する。経時的にパーフルオロスルホン酸イオン交換膜は消耗していくものの、その消耗は少なく、2年以上の連続電解を行っても安定したオゾン発生量及び安全性を保つことが出来る。
 このように、二酸化鉛陽極は、高電流密度下や連続電解下においては高オゾン発生電流効率であり経時安定性にも優れているが、この二酸化鉛陽極は、還元環境において還元され、変質しやすい特徴を有している。例えば、電解停止時においては、電解セル内に残存する水素等の還元性物質との反応や、二酸化鉛陽極の陰分極による電解還元反応により、電極表面の二酸化鉛が容易に水酸化鉛(Pb(OH)2)や酸化鉛(PbO)、鉛イオン(Pb2+)に還元される。これらは、何れもオゾン発生能力も電子導電性も持たないため、電解停止後の再稼動時にはオゾン発生能力が低下する現象が発生することとなる。
 従って、二酸化鉛電極を用いた電解オゾン発生装置においては、停止時の性能低下を避けるため、装置停止時には、電解セルに通常の電解電流の1/10~1/1000の電流である保護電流を供給する機構を有している。この機構は、保護電流専用直流電源、蓄電池、及び制御システムで構成され、電解セルに瞬間的な無通電状態も発生しないように常時装置の状況を監視している。この機構により、二酸化鉛陽極は、電解停止時においても還元環境に晒されることなく保護されるが、本機構の存在は電解オゾン発生装置の動作機構及び装置構成を複雑にし、装置価格を上昇させている。
 しかも、二酸化鉛陽極は鉛を多く含んでおり、近年、鉛の毒性および法的規制、例えば、ROHSガイドラインのために、鉛の使用は全工業用品において削減される方向である(非特許文献1参照)。
 一方、ホウ素などのドーパントを結晶構造中に付与することにより導電性を与えた導電性ダイヤモンドを陽極として水電解を行うことにより、二酸化鉛陽極よりもはるかに高い40%程度のオゾン発生電流効率が得られることがわかっている。また、導電性ダイヤモンド陽極は、化学的及び電気化学的な安定性に優れているため、二酸化鉛が還元により変質、劣化してしまう還元環境においても、性状及び電解特性に変化ない。従って二酸化鉛陽極を用いた電解オゾン発生装置において必須であった保護電流機構が必要なくなり、装置の簡易化が行われる。もちろん、導電性ダイヤモンドを構成する炭素及びホウ素は、ROHSガイドラインについて対象物質ではない。
 しかるに、導電性ダイヤモンド電極は、非常に強い酸化能力を有しているため、従来の電解オゾン発生セルと同様の方法で導電性ダイヤモンド電極とパーフルオロスルホン酸イオン交換膜を接触させながら水電解を行うと、二酸化鉛電極の場合と比較してパーフルオロスルホン酸イオン交換膜の消耗する速度が100倍以上大きいことが明らかになった。電解による膜の急速な薄化は、陰極室で発生した水素ガスの陽極室への透過量の急増を引き起こし、短時間の電解でも陽極ガス中の水素濃度が水素の爆発下限界を超えるため、安定に電解動作できる期間が極めて短い電解セルとなってしまう。従って、導電性ダイヤモンド電極は優れたオゾン発生能力を有するものの、オゾン発生装置などに電解セルとして商業的に利用することが困難であった。
 従来、フッ素樹脂系陽イオン交換膜の両側面に陽極及び陰極を密着させ、陽極として導電性ダイヤモンド電極を使用し、水を電気分解して、陽極よりオゾン、陰極より水素を発生させるオゾン生成方法において、フッ素樹脂系陽イオン交換膜の消耗を抑制する方法として、通電する電流値の調整やフッ素樹脂系陽イオン交換膜への補強材の内包によってフッ素樹脂系陽イオン交換膜の消耗を抑制できるとしている(特許文献1参照)。
 しかし、この方法においては、電解セルへの供給電流値はオゾン発生効率が極大となる電流値以下に制限されるため、この電解方法を用いた装置は、オゾン発生量の調整範囲が狭くなる問題が発生する。また、補強材を内包したフッ素樹脂系陽イオン交換膜を用いた場合、消耗が進行して補強材がフッ素樹脂系陽イオン交換膜から露出し、導電性ダイヤモンド電極と接触した場合、補強材は導電性を有しないので、その時点で通電できなくなりオゾンが発生しなくなる問題がある。この時、電解セルの寿命は、フッ素樹脂系陽イオン交換膜表面から補強材までのフッ素樹脂系陽イオン交換膜の厚さが消耗する時間になると推測される。
特開2009-7655号公報
電気および電子機器における特定有害材料の使用の制限:2003年1月27日のEGガイドライン2002/95/EG
 本発明は、上記従来方法の欠点を解消し、フッ素樹脂系陽イオン交換膜の両側面に陽極及び陰極を密着させ、陽極として導電性ダイヤモンド電極を使用し、水を電気分解して、陽極よりオゾン、陰極より水素を生成させるオゾン生成装置において、フッ素樹脂系陽イオン交換膜の消耗を抑え、安定に、長期間、高電流効率で、オゾンを生成することのできるオゾン生成装置を提供することを目的とする。
 本発明は、上記の課題を解決するため、フッ素樹脂系陽イオン交換膜の両側面に陽極及び陰極を設け、陽極として導電性ダイヤモンドを表面に有する導電性ダイヤモンド電極を使用し、陽極室に純水を供給し、陽陰極間に直流電流を供給することによって、水を電気分解して、陽極室よりオゾンを生成させ、陰極室より水素を生成させるオゾン生成装置において、前記導電性ダイヤモンド電極として、多数の凸凹部を有する基板と該基板の表面に被覆された導電性ダイヤモンド膜よりなる導電性ダイヤモンド電極を用い、切れ込みのないフッ素樹脂系陽イオン交換膜を陰極表面に密着させるとともに、電解セルに固定し、当該切れ込みのないフッ素樹脂系陽イオン交換膜の陽極側表面に、イオン交換樹脂粒を緊密に充填した充填層を密着させてオゾン生成装置を構成したことにある。
 また、本発明による第2の解決手段は、前記充填層の陽極側表面に、切れ込みのあるフッ素樹脂系陽イオン交換膜を密着させてオゾン生成装置を構成したことにある。
 また、本発明による第3の解決手段は、フッ素樹脂系陽イオン交換膜の両側面に陽極及び陰極を設け、陽極として導電性ダイヤモンドを表面に有する導電性ダイヤモンド電極を使用し、陽極室に純水を供給し、陽陰極間に直流電流を供給することによって、水を電気分解して、陽極室よりオゾンを生成させ、陰極室より水素を生成させるオゾン生成装置において、前記導電性ダイヤモンド電極として、多数の凸凹部を有する基板と該基板の表面に被覆された導電性ダイヤモンド膜よりなる導電性ダイヤモンド電極を用い、切れ込みのないフッ素樹脂系陽イオン交換膜を陰極表面に密着させるとともに、電解セルに固定し、当該切れ込みのないフッ素樹脂系陽イオン交換膜の陽極側表面に、切れ込みのある複数枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層を密着させてオゾン生成装置を構成したことにある。
 また、本発明による第4の解決手段は、前記切れ込みのある複数枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層の陽極側の最表面に、切れ込みのあるフッ素樹脂系陽イオン交換膜を電解セルに固定して設けてオゾン生成装置を構成したことにある。
 また、本発明による第5の解決手段は、前記フッ素樹脂系陽イオン交換膜としてパーフルオロスルホン酸陽イオン交換膜を用いてオゾン生成装置を構成したことにある。
 また、本発明による第6の解決手段は、前記イオン交換樹脂粒としてフッ素樹脂系イオン交換樹脂粒を用いてオゾン生成装置を構成したことにある。
 本発明によるオゾン生成装置によれば、フッ素樹脂系陽イオン交換膜の消耗を抑え、安定して、長期間、オゾンを生成することができる。
実施例1において、本発明によるオゾン生成装置を実施するための電解セルの1例の構成を示す模式図。 実施例2において、本発明によるオゾン生成装置を実施するための電解セルの他の例の構成を示す模式図。 実施例3において、本発明によるオゾン生成装置を実施するための電解セルの更に他の例の構成を示す模式図。 実施例4において、本発明によるオゾン生成装置を実施するための電解セルの更に他の例の構成を示す模式図。 実施例2において、本発明によるオゾン生成装置に使用する、陽極側より見たフッ素樹脂系陽イオン交換膜の一例を示す図。 実施例4において、本発明によるオゾン生成装置に使用する、陽極側より見たフッ素樹脂系陽イオン交換膜の他の例を示す図。 本発明によるオゾン生成装置に使用する、導電性ダイヤモンド電極の基板の1例の構成を示す表面図。 本発明によるオゾン生成装置に使用する、導電性ダイヤモンド電極の基板の1例の構成を示す断面図。 本発明によるオゾン生成装置の一実施例を示すブロック線図。 オゾン生成装置の比較例2に使用する電解セルの1例の構成を示す模式図。
 以下、本発明によるオゾン生成装置について、図面を参照しつつ、詳細に説明する。
 図1-1は、本発明によるオゾン生成装置を実施するための電解セルの1例の構成を示す模式図である。1は、陽極室排出口、2は、陰極室排出口、3は、陽極室、4は、陰極室、5は、陽極給電端子、6は、陰極給電端子、7は、陽極室供給口、8は、陰極室供給口、9は、切れ込みのないフッ素樹脂系陽イオン交換膜、10は、導電性ダイヤモンド膜、11は、凸凹付p型シリコン基板、12は、貫通口、13は、陰極シート、14は、陰極集電体、15は、シール材、16は、締付ボルト、17は、ナット、18は、プレス板である。19は、イオン交換樹脂粒を緊密に充填した充填層である。
 陽極は、凸凹付p型シリコン基板11の表面に導電性ダイヤモンド膜10を有し、貫通口12が穿孔されており、陰極は、陰極シート13よりなる。切れ込みのないフッ素樹脂系陽イオン交換膜9は、陰極シート13の表面に密着させてある。切れ込みのないフッ素樹脂系陽イオン交換膜9は、シール材15により、電解セルに固定されている。また、切れ込みのないフッ素樹脂系陽イオン交換膜9の陽極側表面に、イオン交換樹脂粒を緊密に充填した充填層19が密着されている。陽極及び陰極はそれぞれ陽極室3、陰極室4に収められ、陽極室3、陰極室4はそれぞれ陽極室排出口1と陰極室排出口2及び陽極室供給口7と陰極室供給口8を有している。
 各構成材料間の電気的コンタクト及び凸凹付p型シリコン基板11の表面に導電性ダイヤモンド膜10を有する陽極、陰極シート13よりなる陰極、陰極集電体14、切れ込みのないフッ素樹脂系陽イオン交換膜9の接合は、締付ボルト16、ナット17、プレス板18を用い、トルクにより押付けて行った。ボルト・ナットへのトルクは、3N・mとした。
 純水を陽極室供給口7より陽極室3内に供給すると、この純水は、貫通口12等を通って導電性ダイヤモンド膜10、切れ込みのないフッ素樹脂系陽イオン交換膜9表面のイオン交換樹脂粒を緊密に充填した充填層19の接触面に供給され、電解反応が起こり、陽極室3内において、オゾンガスと酸素ガスと水素イオンが発生し、オゾンガスと酸素ガスは、陽極室排出口1から電解セル外へ排出され、水素イオンは、切れ込みのないフッ素樹脂系陽イオン交換膜9を透過して陰極シート13の表面に達し、電子と結びついて、水素ガスとなり、陰極室排出口2より電解セル外へ排出される。
 陰極シート13は、次のようにして製作した。PTFEディスパージョン(三井デュポンフロロケミカル株式会社31-J)と、白金担持カーボン触媒を水に分散させた分散液を混合した後、乾燥させ、これにソルベントナフサを加えて混練した後、圧延工程と乾燥工程及び焼成工程を経て、PTFE40%、白金担持カーボン触媒60%で膜厚120μm、空隙率55%の陰極シート13と得た。
 また、厚さ2.5mmのステンレス繊維焼結体(東京製綱(株))を陰極集電体とした。
 本発明において、イオン交換樹脂粒を緊密に充填した充填層19に使用するイオン交換樹脂粒としては、電解により発生するオゾンに対する耐性を考慮すると、フッ素樹脂系イオン交換樹脂粒が好ましい。
 また、イオン交換樹脂粒を緊密に充填した充填層19の充填量は、電解によるフッ素樹脂系陽イオン交換膜の消耗速度と、期待する電解槽寿命から、イオン交換樹脂の充填量を決定し、電解槽の構成を行う必要がある。本電解槽においては、最陰極側の切れ込みのないフッ素樹脂系陽イオン交換膜9の膜の消耗が開始され、陽極ガス中へ透過する水素濃度が、爆発下限である、4.5体積%の4分の1である1体積%以上になった場合に寿命となるが、予め膜の消耗速度と期待寿命時間の積から必要なイオン交換樹脂の充填量を求め、電解槽を構成することで期待寿命を達成できる電解槽を得ることが出来る。
 図1-2は、本発明によるオゾン生成装置を実施するための電解セルの他の例の構成を示す模式図であって、イオン交換樹脂粒を緊密に充填した充填層19の陽極側表面に、図2-1に示すとおり、切れ込み20のあるフッ素樹脂系陽イオン交換膜21を密着した例を示したものである。この切れ込み20のあるフッ素樹脂系陽イオン交換膜21は、シール材15により電解槽に固定されている。
 即ち、図1-2に示したオゾン生成装置を実施するための電解セルにおいては、陽極と接触しているフッ素樹脂系陽イオン交換膜21は、複数枚設けることができるが、陰極側に配置したフッ素樹脂系陽イオン交換膜9以外は、いずれの膜にも切れ込み20を設け、陽極室3内に液やガスが滞留しないよう構成されている。フッ素樹脂系陽イオン交換膜21を透過した水素ガスや酸素ガスが、イオン交換樹脂の充填層19内で滞留すると、陽極室3内の内圧が上昇し、陽極室3内に充填されているイオン交換樹脂19やフッ素樹脂系陽イオン交換膜9,21との密着性低下や、含水率低下により、陽極室3全体の導電率の低下が発生し、槽電圧上昇が発生し最終的に電解できなくなることも推測される。この現象を防ぐために、最も陰極側にあって陰極シート13と密着しているフッ素樹脂系陽イオン交換膜9以外のフッ素樹脂系陽イオン交換膜21には、全て切れ込みを入れ、透過ガスが滞留せずに陽極室3側に排出されるように構成されている。
 本発明によれば、前記切れ込み20の入ったフッ素樹脂系イオン交換膜21の切れ込み20は、横方向に複数本形成してもよいが、切れ込み20の形状は、その表面の一部又は全体に亘り、複数形成され、前記切れ込み20が直線状又は円状に、縦方向、横方向、同心円状又は不規則的に配置することにより、上記効果を一層向上することが出来る。
 前記切れ込み20の入ったフッ素樹脂系イオン交換膜21の切れ込み20が、その表裏に貫通する切れ込み20とすることにより、一層、前期陽極室から発生するオゾン含有ガス内の水素濃度を下げることができるとともに、セル電圧の上昇を防ぐことが出来る。
 図1-3は、本発明によるオゾン生成装置を実施するための電解セルの更に他の例の構成を示す模式図であって、フッ素樹脂系陽イオン交換膜の両側面に陽極及び陰極を設け、陽極として導電性ダイヤモンドを表面に有する導電性ダイヤモンド電極を使用し、陽極室に純水を供給し、陽陰極間に直流電流を供給することによって、水を電気分解して、陽極室よりオゾンを生成させ、陰極室より水素を生成させるオゾン生成装置において、切れ込みのないフッ素樹脂系陽イオン交換膜9を陰極表面に密着させて電解セルのシール材15に固定し、当該切れ込みのないフッ素樹脂系陽イオン交換膜9の陽極側表面に、切れ込みのある複数枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層22を密着させた例を示したものである。切れ込みのある複数枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層22は、図1-1及び図1-2に示したイオン交換樹脂粒を緊密に充填した充填層19と同等の効果を奏することができる。前記イオン交換膜層22の切れ込みについては、図示を省略した。
 切れ込みのある複数枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層22の枚数は、電解によるフッ素樹脂系陽イオン交換膜の消耗速度と、期待する電解槽寿命から決定し、電解槽の構成を行う必要がある。本電解槽においては、最陰極側の切れ込みのないフッ素樹脂系陽イオン交換膜9の膜の消耗が開始され、陽極ガス中へ透過する水素濃度が爆発下限である、4.5体積%の4分の1である1体積%以上になった場合に寿命となるが、予め膜の消耗速度と期待寿命時間の積から必要な複数枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層22の枚数を求め、電解槽を構成することで期待寿命を達成できる電解槽を得ることが出来る。
 切れ込みのないフッ素樹脂系陽イオン交換膜9、切れ込みのあるフッ素樹脂系イオン交換膜21及びイオン交換膜層22を構成する切れ込みのある複数枚のフッ素樹脂系陽イオン交換膜としては、いずれも、パーフルオロスルホン酸陽イオン交換膜が好ましく、市販のパーフルオロスルホン酸型陽イオン交換膜(商品名:ナフィオン117、デュポン社製、カタログ厚さ175μm)を使用し、煮沸純水に30分間浸漬し、含水による膨潤処理を行ったものなどが使用できる。
 図1-4は、本発明によるオゾン生成装置を実施するための電解セルの更に他の例の構成を示す模式図であって、切れ込み20のある複数枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層22の陽極側の最表面に、一枚の切り込み20のあるフッ素樹脂系陽イオン交換膜21を電解セルのシール材15に固定した例を示したものである。図2-2は、図1-4におけるフッ素樹脂系陽イオン交換膜の構成を陽極側から見た図である。
 図3-1及び図3-2は、本発明によるオゾン生成方法及びオゾン生成装置に使用する導電性ダイヤモンドを表面に有する陽極の1例の構成を示す図であり、5cm角p型シリコン基板(3mmt)11の表面に、ダイシングにより表面に0.5mmピッチの凸凹を多数作製した後、裏面よりドリル加工を行い複数の貫通孔12を得た。シリコン表面にテクスチャ加工を施すために、35%フッ酸と70%硝酸を1:1で混合して調整したフッ硝酸溶液に室温下で5分間浸漬し、更に60℃の10%水酸化カリウム水溶液に5分間浸漬した。23は、凸部、24は、凹部である。
 シリコン板を水洗し、乾燥した後、前処理としてダイヤモンドパウダーをイソプロピルアルコール内に入れ、基板を入れて超音波を印加することで種付け処理を行った。成膜方法としては2.45GHzでのマイクロ波プラズマCVD法を用いた。ガスとしてH2、CH4、B26を用い、それぞれの流量を800sccm、20sccm、0.2sccm導入し、ガス圧力を3.2kPaとした。マイクロ波プラズマCVDによりドーパントとしてホウ素を含む導電性ダイヤモンド膜10を成膜して作製した。尚、実電解面積となる凸部頂部の総面積は6.25cm2である。
 導電性ダイヤモンド膜10の表面の凸部23は、パーフルオロスルホン酸陽イオン交換膜9と水相の両方とに接しており、これらは、三相界面を形成している。更に、凸部23とパーフルオロスルホン酸型陽イオン交換膜9との接触面全面を三相界面とするために微細構造を有し、且つ凸部23の全面に水が浸入し電解ガスが速やかに電解場から排出されるためには、凸部23の幅は、1mm以下とし、電極表面全面が存在する必要がある。このように、凸部23の数を増やし、電極表面を微細構造とすると、三相界面も電解液及び発生ガスの流路が増え、流体の流通がしやすくなる。
 一方、凸部23の幅が2mm以上になると、凸部23がパーフルオロスルホン酸陽イオン交換膜9に接触しているにもかかわらず、凸部23の中間部に、常に水が入らず電解できない部分が形成されてしまう。このように、凸部23の中間部に形成された、常に水が入らず電解できない部分は、電解開始後には、気泡が導電性ダイヤモンド膜10の全面を覆うようになり、三相界面の部分が殆どなくなり、電解ができない状態になってしまう。
 一方、凸部23が微細すぎると、イオン交換膜と電極を押し圧で接触させて三相界面を得ているゼロギャップ構造では、凸部23が破損しやすいため、凸部23の幅は、0.2mm以上とし、凸部23が電極表面の全面が存在するような幅が凸部23には必要である。
 更に、水を凸部23全面に侵入させ、凸部23表面全面に微細な三相界面を形成するには、凸部23表面が適切な表面粗さを有していることが必要であり、その表面粗さRaは、0.1μm以上とする必要がある。一方、その表面粗さRaが、粗すぎる場合はパーフルオロスルホン酸陽イオン交換膜が破損しやすくなるため、その表面粗さRaは、10μm以下とする必要がある。その表面粗さRaは、0.2~0.5μmとすることが好ましい。
 また、本発明による導電性ダイヤモンド電極は、コスト低減のためには高精度な加工装置を複数使用しないで凸凹構造が作製できるダイシングやドリル加工などの機械加工を用いることが必要である
 また、凸部23表面から凹部24へ排出されたガスや凸部23表面に供給される水が速やかに電極背面から流通できるように基板11には複数の貫通孔12を設けることが有効である。
 また、前記凸凹部の各凸部23の形状は、円形、楕円形あるいは多角形その他の形状の導電性ダイヤモンド電極が使用できる。
 また、本発明によれば、凸凹加工された複数の基板11を設ける代わりに、導電性ダイヤモンド電極の表面の全体に亘り多数の帯状の基板を、隙間を置いて配置し、各帯状の基板の表面にダイヤモンド膜を被覆し、該基板の幅を、0.2mm以上、1mm以下とすることにより、同等の効果を発揮することができる。
 尚、多数の帯状の基板に換えて、角状、円状、その他の形状で突起物状に縦横に林立する基板を用いても良い。
 導電性ダイヤモンド膜10を表面に有する陽極は、電極基体上に炭素源となる有機化合物の還元析出物であるダイヤモンドを担持して製造される。電極基体の材質及び形状は材質が導電性であれば特に限定されず、導電性シリコン、炭化珪素、チタン、ニオブ、モリブデン等から成る板状、メッシュ状あるいは例えばビビリ繊維焼結体である多孔性板等が使用でき、材質は熱膨張率が近い導電性シリコン、炭化珪素の使用が特に好ましい。又導電性ダイヤモンドと基体の密着性向上のため及び導電性ダイヤモンド膜の表面積を増加させ単位面積当たりの電流密度を下げるために、基体表面はある程度の粗さを有することが望ましい。
 導電性ダイヤモンドを膜状にして使用する場合は、耐久性及びピンホール発生を少なくするために、膜厚を10μmから50μmとすることが望ましい。耐久性の面から100μm以上の自立膜も使用可能であるが、槽電圧が高くなり電解液温の制御が煩雑になるため好ましくない。
 基体への導電性ダイヤモンドの担持法も特に限定されず従来法のうちの任意のものを使用できる。代表的な導電性ダイヤモンド製造方法としては熱フィラメントCVD(化学蒸着)法、マイクロ波プラズマCVD法、プラズマアークジェット法及び物理蒸着(PVD)法等があり、これらの中でも成膜速度が速いこと及び均一な膜を得やすいことからマイクロ波プラズマCVD法の使用が望ましい。
 この他に超高圧で製造される合成ダイヤモンド粉末を樹脂等の結着剤を用いて基体に担持したダイヤモンド電極も使用可能である。
 マイクロ波プラズマCVD法は、メタン等の炭素源とボラン等のドーパント源を水素で希釈した混合ガスを、導波管でマイクロ波発信機と接続された導電性シリコンやアルミナ、炭化珪素等の導電性ダイヤモンドの成膜基板が設置された反応チャンバに導入し、反応チャンバ内にプラズマを発生させ、基板上に導電性ダイヤモンドを成長させる方法である。マイクロ波によるプラズマではイオンは殆ど振動せず、電子のみを振動させた状態で擬似高温を達成し、化学反応を促進させる効果を奏する。プラズマの出力は1~5kWで、出力が大きいほど活性種を多く発生させることができ、ダイヤモンドの成長速度が増加する。プラズマを用いる利点は、大表面積の基体を用いて高速度でダイヤモンドを成膜できることである。
 ダイヤモンドに導電性を付与するために、原子価の異なる元素を微量添加する。硼素やリンの含有率は好ましくは1~100000ppm、更に好ましくは100~10000ppmである。この添加元素の原料は毒性の少ない酸化硼素や五酸化二リンなどが使用できる。このように製造された基体上に担持された導電性ダイヤモンドは、チタン、ニオブ、タンタル、シリコン、カーボン、ニッケル、タングステンカーバイドなどの導電性材料から成る、平板、打抜き板、金網、粉末焼結体、金属繊維体、金属繊維焼結体等の形態を有する給電体に接続できる。
 陰極シート13は、次のようにした製作した。PTFEディスパージョン(三井デュポンフロロケミカル株式会社31-J)と、白金担持カーボン触媒を水に分散させた分散液を混合した後、乾燥させ、これにソルベントナフサを加えて混練した後、圧延工程と乾燥工程及び焼成工程を経て、PTFE40%、白金担持カーボン触媒60%で膜厚120μm、空隙率55%の陰極シート13を得た。
 また、厚さ2.5mmのステンレス繊維焼結体(東京製綱(株))を陰極集電体とした。
 次に、本発明の実施例及び比較例を説明する。但し、本発明は、これらの実施例に限定されるものではない。
<実施例1>
 図1-1のように電解セルを構成した。切れ込みのないフッ素樹脂系陽イオン交換膜9を陰極シート13表面に密着させて、電解セルのシール材15に固定し、当該切れ込みのないフッ素樹脂系陽イオン交換膜9の陽極側表面に、イオン交換樹脂粒を緊密に充填した充填層19を密着し、電解セルを構成した。陽極、及び陰極はそれぞれ陽極室3、陰極室4に収められ、陽極室3、陰極室4は、それぞれ供給口7、8と排出口1、2を有している。
 充填層19に充填したイオン交換樹脂粒は、商品名:NR50、デュポン社製のイオン交換樹脂を煮沸し、純水に30分間浸漬して含水による膨潤処理を行って作成した。
 導電性ダイヤモンド電極よりなる陽極は、5cm角p型シリコン基板(3mmt)の表面に、テクスチャ加工を施すために、35%フッ酸と70%硝酸を1:1で混合して調整したフッ硝酸溶液に室温下で5分間浸漬し、更に60℃の10%水酸化カリウム水溶液に5分間浸漬した。この時のシリコン基板の表面粗さRaは、場所によってムラがあるものの0.1~4μmであった。
 次に、ダイヤモンドソーを使ってダイシングにより表面に凸凹を多数作製した。尚、各試料の作製に用いたダイヤモンドソーの厚さは20μmである。
 作製した凸凹形状のシリコン板を水洗し、乾燥した後、前処理としてダイヤモンドパウダーをイソプロピルアルコール内に入れ、基板を入れて超音波を印加することで種付け処理を行った。成膜方法としては2.45GHzでのマイクロ波プラズマCVD法を用いた。ガスとしてH2、CH4、B26を用い、それぞれの流量を800sccm、20sccm、0.2sccm導入し、ガス圧力を3.2kPaとした。マイクロ波プラズマCVDによりドーパントとしてホウ素を含む導電性ダイヤモンド膜を成膜して作製した。
 この導電性ダイヤモンド電極は、図3-1、図3-2に示すように、表面の全体に亘り、多数の凸凹部を有する基板11の表面にダイヤモンド膜10を被覆したものであり、各凸部23の形状は、正方形状に形成した。また、凸部23表面から凹部24へ排出されたガスや凸部23表面に供給される水が速やかに電極背面から流通できるように基板11には、複数の貫通孔12を設けた。
 実電解面積となる凸部の総面積は、6.25cm2あった。
 貫通孔の開口部の面積和は、電極構造体の投影面積に対して10%であった。また、各凸部の表面粗さRaは、0.2~0.5μmであった。
 PTFEディスパージョン(三井デュポンフロロケミカル(株) 31-J)と、白金担持カーボン触媒を水に分散させた分散液を混合した後、乾燥させ、これにソルベントナフサを加えて混練した後、圧延工程と乾燥工程及び焼成工程を経て、PTFE40%、白金担持カーボン触媒60%の混合比で膜厚120μm、空隙率55%の陰極シート13を得た。
 また、厚さ2.5mmのステンレス繊維焼結体(東京製綱(株))を陰極集電体14とした。
 そして、図4に示すように、電解セル25を、陽極側気液分離器26、陰極側気液分離器27及び直流電源28と接続し、水電解を行った。電解電流は6.25Aとした。陽極室には電解液である純水の運転開始時の温度は23℃とし、特に冷却を行わずに水電解を行った。
 直流電源28からの電流供給を行うと、陽極からはオゾンと酸素の混合ガス、陰極からは水素ガスが生成した。給電電流6.25A(1A/cm2)で純水の電気分解を実施した。
 また電解セルへ供給する水は熱交換器29により25-30℃にて電解セル25に供給された。
 各構成材料間の電気的コンタクト、及び各電極とフッ素樹脂系陽イオン交換膜の接合は、セルプレスを締め付けるボルト・ナットへのトルクによる接触によって行い、トルクは3N・mとした。
 その結果、表1に示すような結果が得られた。電解開始時は、オゾン発生電流効率は20%、陽極ガス中に含まれる水素ガス濃度は0.1Vol%、セル電圧11.8Vであり、連続電解10日目においてもオゾン発生電流効率は18%、陽極ガス中に含まれる水素ガス濃度は0.1Vol%、セル電圧11.7Vであり、大きな変化見られなかった。
Figure JPOXMLDOC01-appb-I000001
<実施例2>
 図1-2に示す電解セルを組立て、電解試験を実施した。即ち、イオン交換樹脂粒を緊密に充填した充填層19の陽極側表面に、図2-1に示すとおり、切れ込み20のあるフッ素樹脂系陽イオン交換膜21を密着した。この切れ込み20のあるフッ素樹脂系陽イオン交換膜21は、シール材15により電解槽に固定されている。
 フッ素樹脂系陽イオン交換膜9、21としては、市販のフッ素樹脂系型陽イオン交換膜(商品名:ナフィオン117、デュポン社製、カタログ厚さ175μm)を使用し、煮沸純水に30分間浸漬して含水による膨潤処理を行った。
 PTFEディスパージョン(三井デュポンフロロケミカル(株) 31-J)と、白金担持カーボン触媒を水に分散させた分散液を混合した後、乾燥させ、これにソルベントナフサを加えて混練した後、圧延工程と乾燥工程及び焼成工程を経て、PTFE40%、白金担持カーボン触媒60%で膜厚120μm、空隙率55%の陰極シート13を得た。また、厚さ2.5mmのステンレス繊維焼結体(東京製綱(株))を陰極集電体14とした。
 充填層19に充填したイオン交換樹脂粒は、商品名:NR50、デュポン社製のイオン交換樹脂を煮沸し、純水に30分間浸漬して含水による膨潤処理を行って作成した。
 陽極は、実施例1と同じ導電性ダイヤモンド電極を使用し、実施例1と同様にして電解試験を行った。
 その結果、表1に示すような結果が得られた。電解開始時は、オゾン発生電流効率は20%、陽極ガス中に含まれる水素ガス濃度は0.1Vol%、セル電圧12Vであり、連続電解10日目においてもオゾン発生電流効率は18%、陽極ガス中に含まれる水素ガス濃度は0.1Vol%、セル電圧11.9Vであり、大きな変化見られなかった。
<実施例3>
 図1-3に示す電解セルを組立て、電解試験を実施した。即ち、切れ込みのないフッ素樹脂系陽イオン交換膜9を陰極表面に密着させて電解セルのシール材15に固定し、当該切れ込みのないフッ素樹脂系陽イオン交換膜9の陽極側表面に、切れ込みのある15枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層22を密着させた。
 その他は、実施例1と同様にして、電解セルを組み立て、電解試験を行った。
 その結果、表1に示すような結果が得られた。電解開始時はオゾン発生電流効率は、20%、陽極ガス中に含まれる水素ガス濃度は0.1Vol%、セル電圧11.8Vであり、連続電解10日目においてもオゾン発生電流効率は18%、陽極ガス中に含まれる水素ガス濃度は0.1Vol%、セル電圧11.7Vであり、大きな変化見られなかった。
<実施例4>
 図1-4に示す電解セルを組立て、電解試験を実施した。即ち、実施例3において使用した電解セルの切れ込み20のある複数枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層22の陽極側の最表面に、切れ込み20のあるフッ素樹脂系陽イオン交換膜21を電解セルのシール材15に固定した。
 そのほかは、実施例1と同様にして、電解セルを組み立て、電解試験を行った。
 その結果、表1に示すような結果が得られた。電解開始時は、オゾン発生電流効率は20%、陽極ガス中に含まれる水素ガス濃度は0.1Vol%、セル電圧12.1Vであり、連続電解10日目においてもオゾン発生電流効率は18%、陽極ガス中に含まれる水素ガス濃度は0.1Vol%、セル電圧11.9Vであり、大きな変化見られなかった。
<比較例1>
 実施例2において使用した図1-2に示す電解セルにおいて、陽極と接するフッ素樹脂系陽イオン交換膜として切れ込み20のあるフッ素樹脂系陽イオン交換膜21の代わりに、切れ込みのないフッ素樹脂系陽イオン交換膜を用いた。
 その他は、実施例1と同様にして、電解セルを組み立て、電解試験を行った。
 その結果、表1に示すような結果が得られた。電解開始時は、オゾン発生電流効率は20%、陽極ガス中に含まれる水素ガス濃度は0.1Vol%、セル電圧12Vであったが、セル電圧が徐々に上昇し連続電解2日目には、セル電圧は本試験で使用した直流電源の上限電圧である24Vに達し、更に電解を続けたところ電流値は徐々に低下し、連続電解3日目に供給電流値は0Aとなった。解体して中間室を観察したところ、中間室内にガスが蓄積していた。通電できなくなった理由として、中間室イオン交換樹脂の含水率低下による抵抗の増加、又は中間室内圧上昇による中間室イオン交換樹脂間及びフッ素樹脂系陽イオン交換膜との接触不良が推測された。
<比較例2>
 本比較例2においては、図5に示す電解セルを構成した。本比較例2においては、二枚のフッ素樹脂系陽イオン交換膜9、21を互いに密着させ、電解セルを構成した。陽極と接するフッ素樹脂系陽イオン交換膜21には切れ込み20を入れて構成した。
 そのほかは、実施例1と同様にして、電解セルを組み立て、電解試験を行った。
 その結果、表1に示すような結果が得られた。電解開始時は、オゾン発生電流効率は20%、陽極ガス中に含まれる水素ガス濃度は0.1Vol%、セル電圧12Vであったが、陽極ガス中に含まれる水素ガス濃度は徐々に上昇し、連続電解3日目には陽極ガス中に含まれる水素ガス濃度は4Vol%、セル電圧11.7Vとなり、酸素ガス中での水素の爆発下限界(4.5体積%)を越える値となった。解体してフッ素樹脂系陽イオン交換膜の観察を行ったところ、陽極と接していたフッ素樹脂系陽イオン交換膜は導電性ダイヤモンド電極上の凸部と接している部分において消耗して孔が発生し、凸部が貫通して陰極と接しているフッ素樹脂系陽イオン交換膜と接しており、陰極と接しているフッ素樹脂系陽イオン交換膜も消耗していた。酸素ガス中の水素濃度が急上昇したのは、陽陰極間のフッ素樹脂系陽イオン交換膜が薄くなることにより、陰極から陽極への水素透過量が増加したためと推測された。
 本発明によるオゾン生成装置によれば、フッ素樹脂系陽イオン交換膜の消耗を抑え、安定に、長期間オゾンを生成することができ、オゾンを利用した殺菌・脱色方法は上下水道施設において利用することができる。
1:陽極室排出口
2:陰極室排出口
3:陽極室
4:陰極室
5:陽極給電端子
6:陰極給電端子
7:陽極室供給口
8:陰極室供給口
9:切れ込みのないフッ素樹脂系イオン交換膜
10:導電性ダイヤモンド膜
11:凸凹付p型シリコン基板
12:貫通口
13:陰極シート
14:陰極集電体
15:シール材
16:締付ボルト
17:ナット
18:プレス板
19:イオン交換樹脂粒を緊密に充填した充填層
20:切れ込み
21:切れ込みのあるフッ素樹脂系イオン交換膜
22:切れ込みのある複数枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層
23:凸部
24:凹部
25:電解セル
26:陽極側気液分離器
27:陰極側気液分離器
28:電解用直流電源
29:熱交換器

Claims (6)

  1. フッ素樹脂系陽イオン交換膜の両側面に陽極及び陰極を設け、陽極として導電性ダイヤモンドを表面に有する導電性ダイヤモンド電極を使用し、陽極室に純水を供給し、陽陰極間に直流電流を供給することによって、水を電気分解して、陽極室よりオゾンを生成させ、陰極室より水素を生成させるオゾン生成装置において、前記導電性ダイヤモンド電極として、多数の凸凹部を有する基板と該基板の表面に被覆された導電性ダイヤモンド膜よりなる導電性ダイヤモンド電極を用い、切れ込みのないフッ素樹脂系陽イオン交換膜を陰極表面に密着させるとともに、電解セルに固定し、当該切れ込みのないフッ素樹脂系陽イオン交換膜の陽極側表面に、イオン交換樹脂粒を緊密に充填した充填層を密着させたことを特徴とするオゾン生成装置。
  2. 前記充填層の陽極側表面に、切れ込みのあるフッ素樹脂系陽イオン交換膜を密着させたことを特徴とする請求項1に記載のオゾン生成装置。
  3. フッ素樹脂系陽イオン交換膜の両側面に陽極及び陰極を設け、陽極として導電性ダイヤモンドを表面に有する導電性ダイヤモンド電極を使用し、陽極室に純水を供給し、陽陰極間に直流電流を供給することによって、水を電気分解して、陽極室よりオゾンを生成させ、陰極室より水素を生成させるオゾン生成装置において、前記導電性ダイヤモンド電極として、多数の凸凹部を有する基板と該基板の表面に被覆された導電性ダイヤモンド膜よりなる導電性ダイヤモンド電極を用い、切れ込みのないフッ素樹脂系陽イオン交換膜を陰極表面に密着させるとともに、電解セルに固定し、当該切れ込みのないフッ素樹脂系陽イオン交換膜の陽極側表面に、切れ込みのある複数枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層を密着させたことを特徴とするオゾン生成装置。
  4. 前記切れ込みのある複数枚のフッ素樹脂系陽イオン交換膜よりなるイオン交換膜層の陽極側の最表面に、切れ込みのあるフッ素樹脂系陽イオン交換膜を電解セルに固定して設けたことを特徴とする請求項3に記載のオゾン生成装置。
  5. 前記フッ素樹脂系陽イオン交換膜がパーフルオロスルホン酸陽イオン交換膜であることを特徴とする請求項1~4の何れか1項に記載のオゾン生成装置。
  6. 前記イオン交換樹脂粒がフッ素樹脂系イオン交換樹脂粒よりなることを特徴とする請求項1に記載のオゾン生成装置。
PCT/JP2010/071159 2009-12-07 2010-11-26 オゾン生成装置 WO2011070926A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080055426.7A CN102648308B (zh) 2009-12-07 2010-11-26 臭氧发生器
KR1020127014722A KR101340239B1 (ko) 2009-12-07 2010-11-26 오존 생성 장치
US13/393,484 US8815064B2 (en) 2009-12-07 2010-11-26 Ozone generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-277373 2009-12-07
JP2009277373A JP5457810B2 (ja) 2009-12-07 2009-12-07 オゾン生成装置

Publications (1)

Publication Number Publication Date
WO2011070926A1 true WO2011070926A1 (ja) 2011-06-16

Family

ID=44145473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071159 WO2011070926A1 (ja) 2009-12-07 2010-11-26 オゾン生成装置

Country Status (6)

Country Link
US (1) US8815064B2 (ja)
JP (1) JP5457810B2 (ja)
KR (1) KR101340239B1 (ja)
CN (1) CN102648308B (ja)
TW (1) TWI484070B (ja)
WO (1) WO2011070926A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144779A (ja) * 2011-01-12 2012-08-02 Kobe Steel Ltd 電解用電極の製造方法
JP2012144778A (ja) * 2011-01-12 2012-08-02 Kobe Steel Ltd 電解用電極及びその電解用電極を用いたオゾン生成装置
US20140076724A1 (en) * 2012-09-14 2014-03-20 Cashido Corporation Cell module, ozone generator thereof and methods for generating ozone using the same
JP2019202295A (ja) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 電解水生成装置および電解水生成システム
WO2019225414A1 (ja) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 電解水生成装置および電解水生成システム
JP2019202296A (ja) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 電解水生成装置
JP2019202297A (ja) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 電解水生成システム
US11975992B2 (en) * 2018-03-27 2024-05-07 Lam Research Ag Method of producing rinsing liquid

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2697730A4 (en) 2011-04-15 2015-04-15 Advanced Diamond Technologies Inc ELECTROCHEMICAL SYSTEM AND METHOD FOR PROPORTION OF OXIDIZERS AT HIGH CURRENT DENSITY
US9380920B2 (en) * 2011-10-18 2016-07-05 Minuteman International, Inc. Ozone injection for continuous flow cleaning systems
JP5069379B1 (ja) * 2012-02-15 2012-11-07 日科ミクロン株式会社 オゾン水生成装置
JP5069380B1 (ja) * 2012-03-16 2012-11-07 日科ミクロン株式会社 オゾン水生成装置
CN103588258B (zh) * 2012-08-14 2016-01-20 虞文豪 一种水产养殖的杀菌系统
US10662523B2 (en) 2015-05-27 2020-05-26 John Crane Inc. Extreme durability composite diamond film
US10239772B2 (en) 2015-05-28 2019-03-26 Advanced Diamond Technologies, Inc. Recycling loop method for preparation of high concentration ozone
US10907264B2 (en) 2015-06-10 2021-02-02 Advanced Diamond Technologies, Inc. Extreme durability composite diamond electrodes
JP6096258B1 (ja) * 2015-09-11 2017-03-15 株式会社ウォーターエージェンシー オゾン水製造装置
CN105112937A (zh) * 2015-09-30 2015-12-02 广州市德百顺电气科技有限公司 一种直接连接镀膜电极的电解臭氧水装置
WO2018075920A1 (en) 2016-10-20 2018-04-26 Advanced Diamond Technologies, Inc. Ozone generators, methods of making ozone generators, and methods of generating ozone
US10662550B2 (en) 2016-11-03 2020-05-26 John Crane Inc. Diamond nanostructures with large surface area and method of producing the same
GB2557182B (en) * 2016-11-29 2020-02-12 Roseland Holdings Ltd Electrode and electrochemical cell comprising the same
JP6220957B1 (ja) * 2016-12-12 2017-10-25 日科ミクロン株式会社 ダイヤモンド電極、ダイヤモンド電極の製造方法及び電解水生成装置
CN108034960A (zh) * 2017-12-29 2018-05-15 唐锋机电科技(深圳)有限公司 臭氧发生系统及便携式臭氧发生器
WO2019127527A1 (zh) * 2017-12-29 2019-07-04 唐锋机电科技(深圳)有限公司 臭氧发生系统及便携式臭氧发生器
CN108330503B (zh) * 2018-02-11 2019-08-02 中氧科技(广州)有限公司 一种电解臭氧发生器
CN110123472B (zh) * 2019-04-18 2021-08-03 湖州中科水滴石科技有限公司 一种可监视的臭氧水冲牙器
CN111304678A (zh) * 2020-04-22 2020-06-19 广州市德百顺电气科技有限公司 一种电解式臭氧发生器
US11875974B2 (en) 2020-05-30 2024-01-16 Preservation Tech, LLC Multi-channel plasma reaction cell
US12012661B2 (en) 2020-06-27 2024-06-18 Aquamox Inc. Electrolytic generators
TWI766780B (zh) * 2021-07-29 2022-06-01 鄭益 可分離氫氣與氧氣之電解槽裝置
CN114990595A (zh) * 2022-05-27 2022-09-02 国网江苏电力设计咨询有限公司 一种制氢系统
CN117418247B (zh) * 2023-12-18 2024-03-15 中国科学院生态环境研究中心 电化学耦合氧气解离的臭氧生成装置及生成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240074A (ja) * 2004-02-24 2005-09-08 Permelec Electrode Ltd 導電性ダイヤモンド電極及びその製造方法
JP2007070701A (ja) * 2005-09-08 2007-03-22 Ebara Corp 固体高分子電解質型オゾン生成装置
JP2009007655A (ja) * 2007-06-29 2009-01-15 Central Japan Railway Co オゾン生成方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140218B2 (ja) * 2001-09-14 2013-02-06 有限会社コヒーレントテクノロジー 表面洗浄・表面処理に適した帯電アノード水の製造用電解槽及びその製造法、並びに使用方法
JP4220978B2 (ja) * 2004-04-28 2009-02-04 東海旅客鉄道株式会社 電極、オゾン生成装置、及び、オゾン生成方法
JP4903405B2 (ja) * 2005-08-10 2012-03-28 東海旅客鉄道株式会社 オゾン水生成方法及びオゾン水生成装置
EP1953271A4 (en) * 2005-11-24 2011-08-31 Sumitomo Elec Hardmetal Corp DIAMOND ELECTRODE, ASSOCIATED METHOD OF MANUFACTURE AND ELECTROLYZE CELL
HUP0501204A2 (en) * 2005-12-23 2007-07-30 Thales Rt Ozone generating electrolytic cell
JP4598698B2 (ja) * 2006-03-13 2010-12-15 クロリンエンジニアズ株式会社 オゾン製造方法
GB0612094D0 (en) * 2006-06-19 2006-07-26 Clarizon Ltd Electrode, method of manufacture and use thereof
GB0622482D0 (en) * 2006-11-10 2006-12-20 Element Six Ltd Diamond electrode
JP4323535B2 (ja) * 2007-04-26 2009-09-02 クロリンエンジニアズ株式会社 水電解装置
CN101250710B (zh) * 2008-03-28 2010-06-09 陕西科技大学 电解式臭氧发生器及其阴极催化层的制备工艺
JP5480542B2 (ja) * 2009-06-23 2014-04-23 クロリンエンジニアズ株式会社 導電性ダイヤモンド電極並びに導電性ダイヤモンド電極を用いたオゾン生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240074A (ja) * 2004-02-24 2005-09-08 Permelec Electrode Ltd 導電性ダイヤモンド電極及びその製造方法
JP2007070701A (ja) * 2005-09-08 2007-03-22 Ebara Corp 固体高分子電解質型オゾン生成装置
JP2009007655A (ja) * 2007-06-29 2009-01-15 Central Japan Railway Co オゾン生成方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144779A (ja) * 2011-01-12 2012-08-02 Kobe Steel Ltd 電解用電極の製造方法
JP2012144778A (ja) * 2011-01-12 2012-08-02 Kobe Steel Ltd 電解用電極及びその電解用電極を用いたオゾン生成装置
US20140076724A1 (en) * 2012-09-14 2014-03-20 Cashido Corporation Cell module, ozone generator thereof and methods for generating ozone using the same
US11975992B2 (en) * 2018-03-27 2024-05-07 Lam Research Ag Method of producing rinsing liquid
JP2019202295A (ja) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 電解水生成装置および電解水生成システム
WO2019225414A1 (ja) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 電解水生成装置および電解水生成システム
JP2019202296A (ja) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 電解水生成装置
JP2019202297A (ja) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 電解水生成システム
CN112154124A (zh) * 2018-05-25 2020-12-29 松下知识产权经营株式会社 电解水生成装置和电解水生成系统
US11795072B2 (en) 2018-05-25 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrolyzed water generator and electrolyzed water generation system

Also Published As

Publication number Publication date
TWI484070B (zh) 2015-05-11
JP2011117052A (ja) 2011-06-16
KR101340239B1 (ko) 2013-12-10
CN102648308A (zh) 2012-08-22
CN102648308B (zh) 2014-07-02
KR20120091322A (ko) 2012-08-17
US8815064B2 (en) 2014-08-26
TW201129723A (en) 2011-09-01
JP5457810B2 (ja) 2014-04-02
US20120168302A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5457810B2 (ja) オゾン生成装置
JP5480542B2 (ja) 導電性ダイヤモンド電極並びに導電性ダイヤモンド電極を用いたオゾン生成装置
JP2011117052A5 (ja)
CA2630792C (en) Diamond electrode, method for producing same, and electrolytic cell
US6855242B1 (en) Electrochemical production of peroxopyrosulphuric acid using diamond coated electrodes
JP2007242433A (ja) 電気化学反応用電極触媒、その製造方法及び前記電極触媒を有する電気化学用電極
TWI453302B (zh) 硫酸電解方法
WO2016047629A1 (ja) 有機ケミカルハイドライド製造用電解セル
CN108611655B (zh) 一种电极单元及其组成的电极
TW201347282A (zh) 使用於液體中之碳電極裝置及相關方法
JP2007332441A (ja) 過硫酸の製造方法及び製造用電解槽
TWI467058B (zh) 硫酸電解槽及使用硫酸電解槽之硫酸循環型清洗系統
JP5408653B2 (ja) オゾン生成方法及びオゾン生成装置
KR20130108435A (ko) 도전성 다이아몬드 전극, 이것을 이용한, 황산 전해방법 및 황산 전해장치
JP2004332108A (ja) 電解用ダイヤモンド電極
EP4392380A1 (en) Diamond electrode with ablated surface
JP2010053400A (ja) 電解装置用多孔質導電体の製造方法
JP2004115825A (ja) 水電解装置用セパレータの製造方法
JP2007146255A (ja) ダイヤモンド被覆基板及び電極
JPH11333457A (ja) 電解水の製造方法
TWM478024U (zh) 石墨烯生成裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055426.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13393484

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127014722

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835848

Country of ref document: EP

Kind code of ref document: A1