WO2011070855A1 - 半導体装置の製造方法および半導体装置 - Google Patents

半導体装置の製造方法および半導体装置 Download PDF

Info

Publication number
WO2011070855A1
WO2011070855A1 PCT/JP2010/068291 JP2010068291W WO2011070855A1 WO 2011070855 A1 WO2011070855 A1 WO 2011070855A1 JP 2010068291 W JP2010068291 W JP 2010068291W WO 2011070855 A1 WO2011070855 A1 WO 2011070855A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
semiconductor device
laser
manufacturing
thin film
Prior art date
Application number
PCT/JP2010/068291
Other languages
English (en)
French (fr)
Inventor
昌弘 三谷
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201080055250.5A priority Critical patent/CN102754185B/zh
Priority to JP2011545139A priority patent/JP5547212B2/ja
Priority to US13/514,104 priority patent/US8759951B2/en
Priority to EP10835777A priority patent/EP2511942A1/en
Publication of WO2011070855A1 publication Critical patent/WO2011070855A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • H01L2221/68322Auxiliary support including means facilitating the selective separation of some of a plurality of devices from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for separating and transferring a single crystal thin film or a semiconductor device made of a single crystal on an insulating substrate.
  • TFT Thin Film Transistor
  • a-Si amorphous silicon
  • poly-Si polycrystalline silicon
  • FIG. 13A shows a case where circuit elements such as pixels are formed on a glass substrate having a large area by an existing large liquid crystal TFT process (a-Si process or poly-Si process).
  • a-Si process or poly-Si process it is necessary to form an a-Si film or the like on the entire surface of the glass substrate, or to crystallize the entire surface of the substrate with a laser.
  • enormous apparatus and enormous investment are required along with the enlargement of the mother glass (10th generation size: 3.1 m ⁇ 2.9 m), and it is difficult to reduce the manufacturing cost.
  • the TFT performance can be obtained only with large variations and large power consumption.
  • FIG. 13B shows a large area glass substrate obtained by dividing a silicon device or a circuit element created on a silicon substrate (hereinafter referred to as “Si substrate”) by an existing IC (Integrated Circuit) process into chips.
  • Si substrate silicon substrate
  • An example of a method of transferring (or pasting) to the above is shown.
  • a smart cut method hydrogen ion separation method
  • affixing using die bonding may be used.
  • Patent Document 1 The transfer using the smart cut method of the element is shown in Patent Document 1 and Patent Document 2 invented by the inventors of the present invention.
  • This method is an effective method in the case of dividing and bonding to several tens to several hundreds of chips (several mm size) such as a panel driver.
  • chips hundreds of chips
  • it is impractical in terms of throughput and handling to divide and bond to several million elements (several tens of ⁇ m size) like pixel TFTs.
  • the smart device is used to attach a silicon device as an element formed on a Si substrate or Si substrate (Si wafer) to a large-area glass substrate or the like without dividing it into chips.
  • a silicon device as an element formed on a Si substrate or Si substrate (Si wafer) to a large-area glass substrate or the like without dividing it into chips.
  • FIG. 13B it is not necessary to divide the Si substrate into a plurality of chips.
  • the silicon device is separated by heat treatment after being bonded to the glass substrate, the entire element on the Si substrate is transferred onto the glass substrate. Therefore, it cannot be transferred at a wide interval such as a pixel pitch.
  • FIG. 13 (d) it is necessary to form the elements formed on the silicon substrate at intervals, but in this case, the utilization efficiency of the silicon substrate is very high. It gets worse.
  • a release layer 12 is formed on a first substrate (base substrate) 11, and a plurality of elements 13 are arranged on the first substrate.
  • the first substrate 11 and the intermediate substrate 15 are separated by a release layer, and the entire device is transferred (first time).
  • a lift-off method using wet etching and an etch stopper layer, or laser ablation in which laser irradiation is performed on the peeling layer from the back surface of the first substrate 11 is used.
  • the first substrate 11 When laser irradiation is performed from the back surface of the first substrate 11, the first substrate 11 needs to be a transparent substrate. Then, as shown in FIG. 14D, a transparent intermediate substrate 15 holding the element 13 shown in FIG. 14C is pasted on the final substrate (transfer destination substrate) 17 to which the adhesive 16 is adhered. Match. Thereafter, as shown in FIGS. 14E and 14F, UV light is selectively irradiated (with a certain pixel pitch interval) from the back surface of the intermediate substrate 15 to UV-releasable adhesive 14. After weakening the adhesive property, the intermediate substrate 15 and the final substrate 17 are separated and only the element 13 to be transferred is transferred to the final substrate 17 (second time). Even when the second transfer is performed by irradiating UV light from the back surface of the intermediate substrate 15, the intermediate substrate 15 needs to be a transparent substrate.
  • an element that can be actually transferred is not a single crystal silicon device, but a low-performance element made of a-Si or poly-Si that can be formed on a transparent base substrate by CVD (Chemical Vapor Deposition) or the like. It is limited to elements that can be formed on a transparent base substrate, such as a TFT or an LED formed of GaN whose interface with the sapphire substrate is easily peeled off by a laser. That is, the above method cannot transfer a single crystal silicon element or the like formed on an opaque silicon substrate that does not transmit light.
  • the elements formed on the base substrate 11 cannot be directly transferred by being dispersed on the transfer destination substrate 17. That is, in order to disperse and transfer the element, the element is once bonded to the transparent intermediate substrate 15 coated with UV peeling adhesive or the like, and lift-off or laser irradiation is performed from the back surface of the first substrate 11. The element must be separated from the first substrate 11 and transferred onto the intermediate substrate 15. Furthermore, it is necessary to selectively irradiate the element formed on the intermediate substrate 15 with UV light or the like from the back surface of the intermediate substrate 15 and to disperse and transfer it onto the transfer destination substrate 17.
  • the present invention has been made in view of such conventional problems, and a transfer target such as a semiconductor thin film or a semiconductor element can be transferred from a base substrate to a transfer destination substrate in a single transfer process with high accuracy. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can realize cost reduction by transferring and shortening the manufacturing process, and a semiconductor device manufactured by this manufacturing method.
  • a method for manufacturing a semiconductor device includes a step of forming an island pattern in which a plurality of elements are arranged on a base substrate to form a first substrate, the first substrate, A step of bonding a second substrate different from the first substrate through a part of the plurality of elements, and forming a part of the plurality of elements formed on the first substrate. Irradiating a certain position with a laser having a wavelength that causes multiphoton absorption, thereby separating the part of the element from the first substrate and selectively transferring the element onto the second substrate. It is characterized by that.
  • the multi-photon absorption phenomenon can be caused by being transmitted through the surface of the base substrate and condensing inside thereof.
  • a modified region (modified layer) in which the crystal structure or the like is modified can be formed inside the base substrate by the multiphoton absorption phenomenon. In this modified region, since the crystal structure and the like are changed, cracks and cracks are generated. Therefore, the part of the element is easily peeled off from the base substrate and bonded through the part of the first element. The substrate and the second substrate can be easily separated.
  • the part of the elements to be transferred can be directly transferred to the second substrate as a transfer destination without using an intermediate substrate. Further, since the laser irradiation can be selectively performed on a predetermined position of the base substrate, only the element to be transferred can be directly transferred to the transfer destination substrate. For this reason, transfer of a semiconductor device or the like can be performed once.
  • the element to be transferred can be directly transferred from the base substrate (first substrate) to the transfer destination substrate (second substrate) in one transfer step, high-precision transfer with little positional deviation is realized, Costs can be reduced by improving yield and shortening the manufacturing process. Thereby, the processing capability (tact time) of the manufacturing process can be improved.
  • a semiconductor device of the present invention is a semiconductor device formed by transferring elements on an insulating substrate, and the insulating substrate has raised portions arranged at a predetermined interval.
  • the element is formed directly on the raised portion so that its upper surface is in contact with the raised portion and its lower surface is separated from the raised portion.
  • the upper surface of the element means a surface facing upward without contacting the base substrate on the base substrate before the element is transferred to the insulating substrate.
  • the lower surface of the surface means a surface in contact with the base substrate on the base substrate before the element is transferred to the insulating substrate.
  • the semiconductor device having the above-described configuration is manufactured by the above-described manufacturing method of the present invention, high performance can be maintained even with a small element configuration.
  • an intermediate substrate is not required in the manufacturing process as described above, there is an advantage that the throughput is high and the manufacturing cost is reduced.
  • the raised portions are also called islands or island patterns.
  • the present invention forms a modified region by multiphoton absorption in the base substrate by using a laser having a multiphoton absorption wavelength that transmits through the silicon surface and condenses inside the silicon substrate.
  • An element such as a single crystal thin film or a device made of a single crystal can be selectively separated and transferred onto a large transfer destination substrate directly from the opaque base substrate.
  • direct transfer from the base substrate to be transferred to the transfer destination substrate can be realized in one transfer step, high-accuracy transfer with little positional deviation can be realized, and cost can be reduced by shortening the manufacturing process. .
  • FIG. 3 is a flowchart showing main steps of a method for manufacturing a semiconductor device according to the present invention. It is sectional drawing which shows the manufacture flow of the base substrate which concerns on the 1st Embodiment of this invention. It is sectional drawing which shows the manufacture flow of the transfer destination board
  • FIG. 9 is a cross-sectional view showing a manufacturing flow of a base substrate including a semiconductor element according to the fifth embodiment of the present invention, following the manufacturing flow shown in FIG. 8. It is sectional drawing which shows the flow for transferring the thin film to the transcription
  • stealth dicing using a laser having a wavelength that causes multiphoton absorption that is transmitted through the surface of the base substrate and condensed inside the base substrate is used as an element bonding technique by the smart cut method.
  • Lasers used in stealth dicing technology (stealth dicing lasers) pass through the surface of an opaque substrate such as a Si substrate and condense inside to form a modified layer inside the substrate, so originally this stealth dicing laser is used. It is used to divide the Si substrate into small elements by scanning the Si substrate in a mesh line shape and separating it in the cross-sectional direction.
  • a predetermined element to be transferred from the back surface of the substrate is selectively irradiated with the laser in a planar manner, whereby the element is planarly separated from the Si substrate, and the element can be selectively separated.
  • the base substrate is a substrate on which a semiconductor element is first formed
  • the transfer destination substrate is a substrate onto which the semiconductor element formed on the base substrate is transferred.
  • a substrate in which a semiconductor element is formed over a base substrate is also called a first substrate
  • a transfer destination substrate is also called a second substrate.
  • the transfer destination substrate is a substrate constituting a final product, it is also called a final substrate.
  • examples of the base substrate include a Si substrate, an SOI (Silicon On Insulator) substrate, a sapphire substrate, a GaN substrate, and a GaAs substrate.
  • examples of the transfer destination substrate include a glass substrate, a plastic substrate, and an insulating substrate such as a film bonded to a support substrate.
  • the elements on the base substrate include a semiconductor thin film (single film) or a semiconductor device.
  • the semiconductor device include a light emitting element, a liquid crystal control element, a photoelectric exchange element, a piezoelectric element, a thin film transistor element, a thin film diode element, a resistance element, a switching element, a minute magnetic element, and a minute optical element.
  • an opaque Si substrate is used as a base substrate
  • a glass substrate is used as a transfer destination substrate
  • the element is a semiconductor device made of a single crystal Si thin film or single crystal Si.
  • FIG. 1 is a flowchart showing main steps of a method of manufacturing a semiconductor device according to the present invention
  • FIG. 2 is a cross-sectional view showing main steps of a method of forming a base substrate
  • FIG. FIG. 4 is a cross-sectional view showing main steps of a method for forming a substrate
  • FIG. 4 is a cross-sectional view showing main steps of a method for transferring a thin film to be transferred from a base substrate to a transfer destination substrate.
  • the planar Si substrate 100 ' is thermally oxidized to form a thermal oxide film 101 of about 50 to 100 nm on the surface (S11 in FIG. 1, thermal oxidation step).
  • the thermal oxidation here is to perform thermal oxidation at a temperature of 900 to 1000 ° C. for about 1 to 3 hours using a general vertical furnace or horizontal furnace.
  • an oxide film may be formed by a CVD method or the like.
  • a resist pattern 102 is formed by photolithography so that a single-film island of a predetermined size can adhere to the substrate.
  • the thermal oxide film 101 and the Si substrate 100 having a predetermined thickness are etched to form an island (bump) 100 ′′ on the Si substrate 100.
  • the Si substrate 100 ′ is formed into an island in a matrix shape, and the etching method employs dry etching using a general fluorine-based or chlorine-based gas, for example, for dry etching of Si, CF 4 , SF 6 , fluorine-based gas such as NF 3 or,, Cl 2, HCl, a chlorine-based gas such as BCl 3, and Ar, the dry etching .SiO 2 used in combination a gas such as O 2 may, CF 4, CHF 3, C 2 F 6, H 2, O 2, may be used in combination a gas such as Ar. Further, instead of dry etching, HF, BHF, Tsu nitrate, KOH, may be employed wet etching using SLA etchant.
  • a general fluorine-based or chlorine-based gas for example, for dry etching of Si, CF 4 , SF 6 , fluorine-based gas such as NF 3 or,, Cl 2, HCl, a chlorine-based gas such as
  • the island 100 ′′ made of the Si substrate material formed here becomes a single-crystal Si thin film (semiconductor element) 100a on the transfer destination substrate 200 obtained in a later process (S12 in FIG. 1, element formation process).
  • the element formation process and the element separation of the thin film can be realized at the same time by forming the Si substrate 100 'into an island (S13 in FIG. 1, element separation process). Then, as shown in FIG. 2D, when the resist pattern 102 is peeled off by performing ashing and peeling cleaning, the Si substrate 100 as the base substrate can be obtained.
  • the Si substrate 100 in order to distinguish the first flat Si substrate 100 ′ from the Si substrate obtained by performing the steps S11 to S13 in FIG.
  • the Si substrate after formation is denoted by Si substrate 100.
  • the back surface of the Si substrate 100 is polished in advance by CMP before the thermal oxide film forming step so that laser light is not scattered by unevenness on the back surface of the Si substrate 100 during a laser irradiation process described later.
  • the back surface of the Si substrate 100 after the resist pattern peeling process may be polished by CMP to make a mirror surface.
  • the back surface of the Si substrate 100 indicates a surface opposite to the surface on which the thermal oxide film 101 is formed.
  • a resist pattern 201 is formed on a flat glass substrate 200 ′ by photolithography so that islands (protrusions) are formed at predetermined intervals (resist pattern forming step).
  • the island 200 ′′ on the glass substrate 200 ′ is preferably a pattern that is slightly larger than the island 100 ′′ on the Si substrate 100 side as shown in FIG.
  • the interval between the islands 200 ′′ is previously set so as to correspond to the pixel pitch, and is desirably a pitch that is an integral multiple of the island 100 ′′ on the Si substrate 100 side. That is, it is desirable to form the resist pattern 201 so as to satisfy this condition.
  • the glass substrate 200 ′ is etched using the resist pattern 201 as a mask to form a matrix-like island 200 ′′ (S21 in FIG. 1, an island formation step).
  • etching method dry etching in which gases such as CF 4 , CHF 3 , C 2 F 6 , H 2 , O 2 , and Ar are combined may be employed, and wet etching using HF, BHF, or the like may be employed.
  • HF a step of about 1 to 2 ⁇ m can be formed by etching for about 10 to 20 minutes.
  • a glass substrate 200 serving as a transfer destination substrate is obtained on which the semiconductor element on the Si substrate 100 can be transferred as shown in FIG. 3C.
  • the glass substrate after the element separation is used. It describes with the glass substrate 200.
  • a surface treatment process and a bonding process are performed on the Si substrate 100 and the glass tip substrate 200 that have been performed through the steps as described above (S31 in FIG. 1).
  • a general smart cut treatment method can be used. That is, the surfaces of both substrates are subjected to plasma treatment or chemical treatment to make the surfaces hydrophilic.
  • plasma treatment Ar plasma, atmospheric pressure plasma, or the like can be used.
  • hydrophilic treatment may be performed by performing chemical treatment such as ozone water cleaning and SC-1 cleaning (mixed solution of hydrogen peroxide water and ammonia water) for several minutes.
  • the two substrates are bonded face-to-face in a surface-treated state, they are joined by intermolecular force (Van der Worth force). Thereafter, by performing pre-annealing at a temperature of 200 ° C. for about 2 hours, a dehydration reaction proceeds, a covalent bond is formed, and the bonding becomes stronger.
  • FIGS. 4A and 4B among the plurality of thermal oxide films 101 that are element-isolated on the Si substrate 100, there is a receiving island 200 ′′ on the glass substrate 200. Only the parts are joined.
  • a laser with a wavelength that causes multiphoton absorption is applied to the Si substrate 100 bonded to the glass substrate 200 from the back surface side of the Si substrate 100. 1 is selectively irradiated (S32 in FIG. 1, laser irradiation step), and the laser beam is condensed inside the Si substrate 100 to form a modified layer (modified region) 103.
  • a crack region formed by cracks formed in the substrate due to thermal strain induced by optical damage due to multiphoton absorption 2) a phase change caused by local heating by multiphoton absorption Or a melt-processed region formed by the formation of a region with a changed crystal structure (for example, in the case of single crystal silicon, a region that has changed to amorphous silicon with disordered crystal structure periodicity due to local heating is melted. 3), or 3) a refractive index change region formed by inducing a permanent structural change such as ionic valence change, crystallization or polarization orientation in the substrate. Whether to form the region can be determined depending on the type of the substrate.
  • a semiconductor substrate such as a Si substrate
  • a transparent substrate such as a glass substrate or a sapphire substrate
  • a refractive index changing region can be formed as the modified region.
  • a crack or a region in which the crystal structure is weakly changed in the Si substrate 100, or a structural change such as an ionic valence or a polarization orientation is induced. Since the region and the like are formed, when the Si substrate 100 and the glass substrate 200 are separated in the opposite directions, the Si substrate 100 is easily separated at a position inside the Si substrate 100 where the modified layer 103 is formed. (S33 in FIG. 1, separation step).
  • the portion on the side bonded to the glass substrate 200 through the thermal oxide film 101 is transferred onto the glass substrate 200 as shown in FIG.
  • the glass substrate 200 to which the thin film (single crystal Si thin film, part of the base substrate) 100a is transferred can be obtained and used as a final substrate for a semiconductor device.
  • the thickness can be appropriately controlled by adjusting the laser condensing position, and if necessary, such as when exceeding the laser adjustment range, after transfer onto the glass substrate 200, the dry etching apparatus is
  • the single crystal Si thin film 100a thin film may be etched back to reduce the film thickness of the single crystal Si thin film 100a.
  • the laser irradiated from the back side of the Si substrate 100 has a wavelength of 1064 nm, and a semiconductor laser pumped Nd: YAG laser of a stealth dicing laser is used.
  • a laser that can be used as a laser light source there is an Nd: YVO4 laser, an Nd: YLF laser, or a titanium sapphire laser in addition to an Nd: YAG laser.
  • Laser irradiation is performed under the condition that the peak power density is 1 ⁇ 10 8 W / cm 2 or more and the pulse width is 1 ⁇ s or less.
  • the peak power density is 1 ⁇ 10 11 W / cm 2 to 1 ⁇ 10 12 W / cm 2 and the pulse width is 1 ns to 200 ns.
  • what kind of laser is used can be determined by the type of the modified region to be formed.
  • a laser having a peak power density of 1 ⁇ 10 8 W / cm 2 or more and a pulse width of 1 ⁇ s or less is used. It is preferable to use a YAG laser, an Nd: YVO4 laser, or an Nd: YLF laser.
  • a laser having a peak power density of 1 ⁇ 10 8 W / cm 2 or more and a pulse width of 1 ns or less (more preferably 1 ps or less) is used.
  • a titanium sapphire laser Since such a laser has a long wavelength, even a substrate that is not transparent to UV light is transmitted through the surface of the substrate and condensed inside the substrate due to the multiphoton absorption phenomenon. It is possible to form a modified layer such as a region in which the change is weak or a region in which a structural change such as ionic valence or polarization orientation is induced.
  • the laser irradiation is preferably performed at a predetermined position where an element to be transferred is formed while scanning the laser light source along the substrate surface.
  • the position of the laser light source may be fixed and the stage on which the substrate is placed may be scanned.
  • the entire surface can be irradiated with a laser at a predetermined position having a peeling area larger than the spot diameter of the laser, and a modified layer for peeling is formed on the entire surface, and separation at the modified layer is more reliably performed. It can be carried out.
  • a method for irradiating these lasers a conventional method can be used.
  • laser irradiation may be performed with the temperature of the Si substrate 100 raised from room temperature.
  • the Si band gap room temperature: 1.12 eV
  • the Si band gap decreases to 1.1 eV or less
  • a YAG laser wavelength inside the substrate
  • the band gap can be reduced to 1.1 eV or less by raising the substrate temperature to 700 ° C. or higher.
  • the element to be transferred is irradiated with the stealth dicing laser, whereby the element The element can be selectively transferred onto a large-area glass 200 to be a planar transfer substrate (second substrate) by peeling the substrate from the base substrate.
  • second substrate planar transfer substrate
  • ⁇ Second Embodiment> As described in the first embodiment, an example will be described in which a single crystal Si thin film (element) of a Si substrate is directly distributed and transferred onto a glass substrate. Compared with the first embodiment, in this embodiment, in order to make separation with the modified layer formed on the glass substrate easier, the base substrate is stronger than the other portions in the substrate in advance. An example of adding a step of forming a weak weak layer will be described.
  • FIG. 5 is a cross-sectional view showing the steps of forming the Si substrate 100 in the present embodiment.
  • the formation of the Si substrate 100 according to the present embodiment further includes a step of forming the fragile layer 104 in advance inside the Si substrate 100. Since the other steps are as described in the first embodiment, they will be described briefly.
  • a thermal oxide film 101 is formed on a flat Si substrate 100 ′, and then in FIG. As shown, a fragile layer 104 is formed inside the Si substrate 100 ′.
  • hydrogen ions are implanted into the Si substrate 100 ′ to a predetermined depth inside the Si substrate 100 ′ by hydrogen ion implantation or hydrogen ion doping.
  • hydrogen ion implantation or doping conditions for example, when H + ions are implanted, the implantation energy is about 20 to 60 keV, and the implantation amount is 5 ⁇ 10 14 / cm 2 to 5 ⁇ 10 15 / cm 2 . Perform under certain conditions.
  • ion doping including ions such as H 3+ is performed, the implantation energy is approximately 20 to 60 keV, and the implantation amount is 1 ⁇ 10 16 / cm 2 to 5 ⁇ 10 16 / cm 2 .
  • the Si substrate 100 ′ Since hydrogen ions are light, they can penetrate deep into the Si substrate by ion implantation or ion doping. At this time, the Si crystal lattice is disturbed and stays inside. Subsequently, when annealing is performed at a low temperature of about 200 ° C. to 400 ° C., the internal pressure rises in a region where hydrogen ions remain, and microbubbles (platelets) are generated to induce microcracks. Therefore, the layer into which hydrogen ions are implanted or doped forms a fragile layer 104 inside the Si substrate 100 ′ by applying a subsequent thermal annealing.
  • the predetermined depth can be appropriately adjusted by changing the implantation energy in consideration of the film thickness of the thin film 100a formed in a later step.
  • a resist pattern 102 forming step and an etching step are performed on the Si substrate 100 '. Thereafter, a Si substrate 100 having a fragile layer 104 therein is obtained as shown in FIG.
  • the glass substrate 200 may be formed according to the steps described in the first embodiment, as shown in FIG.
  • the surface treatment process, the bonding process, and the laser irradiation process for the Si substrate 100 and the glass substrate 200 are also as described in the first embodiment.
  • a modified layer 103 including a melt-processed region (amorphous silicon with disordered crystal structure periodicity) is formed inside the Si substrate 100 after the laser irradiation process. From this, cracks and cracks occur.
  • the fragile layer 104 is formed in advance by hydrogen ion implantation and annealing, cracks and cracks caused by laser irradiation can run along the fragile layer 104. Therefore, the single crystal Si thin film 100a can be more easily separated from the Si substrate 100 as the base substrate.
  • the base is formed in the place of the modified layer 103 that is easily peeled along the fragile layer 104.
  • the substrate (Si substrate 100) and the transfer destination substrate (glass substrate 200) are easily separated. Thereby, the glass substrate 200 to which the thin film (single crystal Si thin film) 100a is transferred can be obtained.
  • the base body of the base substrate is preliminarily placed inside the other portions of the substrate.
  • a light absorption layer that absorbs more light is formed will be described. Processes other than the light absorption layer forming step are as described in the first and second embodiments, and will be briefly described. The description will be made with reference to the same drawings as those in the second embodiment.
  • a thermal oxide film 101 is formed on a flat Si substrate 100 ′, and then in FIG. As shown, a light absorption layer 105 is formed inside the Si substrate 100 ′.
  • ions are implanted into the Si substrate 100 'to a predetermined depth inside the Si substrate 100' by ion implantation or ion doping.
  • the implanted ions form donor or acceptor levels in the band gap and form the light absorption layer 105 on the Si substrate 100 ′.
  • the predetermined depth can be appropriately adjusted in consideration of the film thickness of the thin film 100a formed in a later step.
  • ions boron, phosphorus, arsenic, gallium, indium, titanium, palladium, carbon, silicon, antimony, zinc, tellurium, cadmium, and the like can be used.
  • ion implantation or ion doping conditions for example, when boron is ion-implanted, the implantation energy is about 40 to 150 keV, and the implantation amount is 1 ⁇ 10 15 / cm 2 or more.
  • phosphorus is ion-implanted, the implantation energy is about 100 to 250 keV, and the implantation amount is 1 ⁇ 10 15 / cm 2 or more.
  • a resist pattern 102 forming step and an etching step are performed on the Si substrate 100 '. Then, through the resist pattern 102 peeling step, as shown in FIG. 5E, the Si substrate 100 having the light absorption layer 105 therein is obtained.
  • the glass substrate 200 may be formed according to the steps described in the first embodiment, as shown in FIG.
  • a modified layer 103 including a melt-processed region (amorphous silicon with disordered crystal structure periodicity) is formed inside the Si substrate 100 after the laser irradiation process. From this, cracks and cracks occur.
  • the light absorption layer 105 is formed inside the Si substrate 100, multi-photon absorption through the acceptor level here easily occurs in the light absorption layer 105 when laser irradiation is performed. Amorphous silicon having a more disturbed crystal structure periodicity is formed, and the modified layer 103 that is easy to peel off can be formed.
  • Patent Document 6 irradiation is performed using a YAG laser having a wavelength of 1064 nm as a laser light source, and a Si substrate (thickness of 500 ⁇ m or less) having a band gap of 1.12 eV is used as a base substrate.
  • a YAG laser having a wavelength of 1064 nm as a laser light source
  • Si substrate having a band gap of 1.12 eV
  • most of the light is transmitted (internal transmittance of about 80% or more).
  • the acceptor level is formed only 0.045 eV from the bottom of the valence band, and therefore, via this acceptor level.
  • the light absorption layer 105 is formed in advance by ion implantation of boron or the like, when a laser beam having a multiphoton absorption wavelength is irradiated from the back surface of the substrate body of the base substrate 100, more of the light absorption layer 105 is formed in the substrate. Laser light can be absorbed. Therefore, it is possible to form a modified layer having amorphous silicon (melting treatment region) whose crystal structure periodicity is more disturbed by laser light irradiation.
  • the Si substrate 100 and the glass substrate 200 are separated from each other in the opposite directions, the Si substrate 100 and the glass substrate 200 are easily removed from the modified layer 103. Is easily separated, and the glass substrate 200 to which the thin film (single crystal Si thin film) 100a is transferred can be obtained.
  • the Si substrate 100 and the glass substrate 200 are formed by any of the methods according to the first to third embodiments, and the surface treatment, the bonding process, and the laser irradiation process for the Si substrate 100 and the glass substrate 200 are performed.
  • the modified layer 103 which is easily peeled is formed.
  • the two substrates are separated using a peeling method by a mechanical force or a laminate film peeling method.
  • a blade 301 having a sharp tip from the side surface of the substrate is applied to the Si substrate 100 on which the modified layer 103 is formed by the laser irradiation process.
  • the cracks and cracks formed in the modified layer 103 are expanded by mechanical force, and the thin film 100 a is peeled from the modified layer 103.
  • an adhesive sheet 302 used for dicing or the like as a laminate film is attached to the back surface of the bonded Si substrate 100, and the adhesive sheet 302 and the Si substrate 100 are peeled off simultaneously. As a result, the thin film 100 a is peeled from the modified layer 103.
  • the elements (single crystal Si thin film) on the Si substrate (base substrate) are distributed and transferred to a large-area glass substrate (transfer destination substrate) by the methods of the first to fourth embodiments described above. Can do.
  • the TFT forming step photolithography, etching, film formation, etc.
  • a normal large glass substrate such as a poly-Si process
  • a TFT backplane having high performance and low variation TFTs made of single crystal Si can be formed on the glass substrate. Since a high performance and low variation TFT backplane can be obtained, it can be suitably used not only as a liquid crystal panel but also as a backplane such as an organic EL (OLED) panel.
  • OLED organic EL
  • a part of the semiconductor device is a semi-finished semiconductor device that has not been processed. In other words, it is not a semiconductor device that has been completed up to the final process (multi-layer wiring completion process), but a semi-completed (unfinished) device in which, for example, a gate electrode or even source / drain electrodes are formed. To do.
  • the wiring formation that may be performed means that the wiring may be formed on a large area substrate (transfer destination substrate) after the transfer.
  • a semiconductor element (a minute transistor) is formed over a base substrate using a general process used for IC manufacturing.
  • a general process used for IC manufacturing a general process used for IC manufacturing.
  • this embodiment is merely an example of a general IC process, and the present invention is not limited to this.
  • FIG. 8 is a cross-sectional view for explaining main steps for forming a transistor (element) on a Si substrate
  • FIG. 9 explains main steps for transferring a semiconductor device formed on the Si substrate to a glass substrate.
  • the Si substrate 100 ' is thermally oxidized to form a thermal oxide film 101 of about 50 to 100 nm on the surface (thermal oxidation step).
  • the thermal oxide film is formed by performing thermal oxidation for about 1 to 3 hours at a temperature of 900 to 1000 ° C. using a general vertical furnace or horizontal furnace.
  • an oxide film may be formed by a CVD method or the like.
  • n-well n-well
  • p-well p-well
  • n-well and p-well are separated using LOCOS oxidation used in a general IC process. Thereafter, in order to adjust the threshold voltage of each of the NMOS and PMOS, ion implantation is performed on each channel region in the n-well and p-well as necessary using a resist as a mask. For example, boron ions are implanted under an implantation condition of an implantation energy of 10 to 40 keV and an implantation amount of about 1 ⁇ 10 12 to 1 ⁇ 10 13 / cm 2 .
  • a gate electrode material is formed or sputtered, and then patterned by photolithography to form a gate electrode 108 having a thickness of about 200 to 400 nm (gate electrode formation).
  • a material for the gate electrode 108 an n + Poly gate or a p + Poly gate doped with phosphorus or boron at a high concentration may be formed by CVD, or a metal such as W, Mo, or MoW may be formed by sputtering.
  • Etching methods for forming patterning include chlorine-based gases such as CCl 4 , BCl 3 , SiCl 4 , and Cl 2 , fluorine-based gases such as SF 6 , CF 4 , and NF 3 , and Ar, O 2. For example, dry etching using a combination of such gases.
  • a resist pattern 102b is formed so as to cover the gate electrode 108 on the n-well 106, and low concentration phosphorus is implanted using the gate electrode 108 and the resist pattern 102b as a mask.
  • the LDD region 109 is formed in the NMOS (LDD region forming step). That is, phosphorus is implanted under the conditions that the implantation energy is 10 to 40 keV and the implantation amount is about 1 ⁇ 10 13 to 1 ⁇ 10 14 / cm 2 .
  • the LDD region forming step can be omitted.
  • an insulating film such as a high-temperature oxide film is formed on the entire surface of the Si substrate 100 'to a thickness of about 200 to 600 nm and then etched back.
  • the sidewall 110 is formed on the side portion of the gate electrode 108 with high accuracy in a self-aligned manner (sidewall formation step).
  • the length of the LDD region 109 is defined by the width of the sidewall 110.
  • a resist pattern 102 c is formed so as to cover the gate electrode 108 and the sidewall 109 on the n-well 106. Then, as shown in FIG. 8 (f), high concentration phosphorus is implanted using the gate electrode 108 and the side wall 109 on the p-well 107 and the resist pattern 102c on the n-well 106 as a mask.
  • a source / drain region 111 which is an n + region is formed on the well 107 (source / drain region forming step).
  • high concentration boron is implanted using the gate electrode 108 and the sidewall 109 on the n-well 106 and the resist pattern on the p-well 107 as a mask to form a p + region on the n-well 106.
  • a certain source / drain region 111 is formed.
  • phosphorus or arsenic is implanted into the n + region under the condition that the implantation energy is 20 to 100 keV and the implantation amount is about 1 ⁇ 10 15 to 5 ⁇ 10 15 / cm 2 , and n on the p-well 107.
  • a source / drain region 111 of the + region is formed.
  • boron or BF 2 is implanted into the p + region under the condition that the implantation energy is 20 to 100 keV and the implantation amount is about 1 ⁇ 10 15 to 5 ⁇ 10 15 / cm 2 , and is formed on the n-well 106.
  • a source / drain region 111 of the p + region is formed.
  • an interlayer insulating film 112 is formed on the entire surface of the thermal oxide film 101 by using the CVD method on the Si substrate 100 '(interlayer insulating film forming step).
  • a SiNO film having a thickness of about 50 to 200 nm, a TEOS film having a thickness of about 200 to 600 nm, or a laminated film thereof is used as the interlayer insulating film 112.
  • the Si substrate 100 ′ is subjected to activation annealing at a temperature of 800 to 900 ° C. for about 1 to 2 hours to activate the impurity ions implanted into the source / drain regions.
  • contact holes are formed in the interlayer insulating film 112 by performing photolithography and etching.
  • etching method for forming the contact hole dry etching using a gas such as Cl 2 or wet etching using HF or the like is employed.
  • an interlayer insulating film 114 is further formed on the entire surface of the interlayer insulating film 112 using the CVD method on the Si substrate 100 ′ (interlayer insulating film re-forming step).
  • the interlayer insulating film 114 a SiN film having a thickness of about 100 to 300 nm, a TEOS film having a thickness of about 200 to 600 nm, or a stacked film thereof can be used.
  • hydrogen sintering may be performed at a temperature of 450 degrees for about 30 to 60 minutes.
  • the surface of the interlayer insulating film 114 is polished and planarized by CMP (polishing step).
  • the back surface of the Si substrate 100 ′ may be polished by CMP at the same time so that laser light is not scattered by laser irradiation in a subsequent process.
  • a resist pattern 102d is formed on the entire surface of the interlayer insulating film 114, and photolithography and etching are performed using the resist pattern 102d as a mask.
  • the process is performed until the Si substrate 100 ′ is etched to a predetermined depth, and as shown in FIG. 9D, the transistors are separated for each transistor (element isolation step).
  • etching method for element isolation dry etching of Si includes fluorine-based gas such as CF 4 , SF 6 , NF 3 , chlorine-based gas such as Cl 2 , HCl, BCl 3 , and Ar , O 2 and other gases are used in combination.
  • gases such as CF 4 , CHF 3 , C 2 F 6 , H 2 , O 2 and Ar may be used in combination.
  • wet etching using HF, BHF, hydrofluoric acid, hot phosphoric acid, or the like may be combined.
  • the entire Si substrate 100 ′ is ashed and immersed in an organic stripping solution to remove the resist pattern 102 d on the surface, and the surface of the interlayer insulating film 114 is exposed.
  • a Si base substrate 100 in which minute transistors are formed on the Si substrate 100 ′ as shown in FIG. 9E is obtained.
  • the Si substrate after element isolation is represented by the Si substrate 100.
  • the glass substrate 200 is formed by the same method as described in the first to fourth embodiments (see FIG. 3). Further, the surface treatment of the Si substrate 100 and the glass substrate 200, the bonding step, the subsequent laser irradiation step, the transfer step, and the like are the same as those described in the first embodiment (see FIG. 10). ).
  • the thin film separated from the Si substrate main body is separated in the Si substrate 100 by the portion of the modified layer 103 formed therein. (Single crystal Si thin film, part of the base substrate) is transferred to the glass substrate 200 together with the transistor. A part of the transferred base substrate may be removed by performing etch back with a dry etching apparatus.
  • a sub-micron level fine transistor that is difficult to be finely processed on a large-area insulating substrate such as a glass substrate can be formed on the large-area insulating substrate.
  • the surface of the interlayer insulating film 112 is polished and planarized by CMP.
  • the fragile layer 104 is formed by implanting or doping hydrogen ions to a predetermined depth inside the Si substrate 100 ′.
  • the implantation energy is about 150 to 250 keV, and the implantation amount is 1 ⁇ 10 16 to 1 ⁇ 10 17 / cm 2. do it.
  • the implantation energy is about 150 to 250 keV, and the implantation amount is 2 ⁇ 10 17 / cm 2 to 1 ⁇ 10 18 / cm 2. Ion doping may be used.
  • the implanted or doped hydrogen ion layer forms a fragile layer 104 in the Si substrate 100 by subsequent thermal annealing (fragile layer forming step).
  • the predetermined depth can be appropriately adjusted by changing the implantation energy in consideration of the thickness of the thin film transferred to the glass substrate in a later step.
  • This fragile layer forming step may be performed after the thermal oxide film 101 is formed on the Si substrate 100 ′ (FIG. 8A).
  • the steps after the fragile layer forming step are the same as those described in the first to fifth embodiments.
  • the transfer process of a minute transistor will be briefly described.
  • multiphoton absorption is performed from the back surface of the Si substrate 100 to the bonded Si substrate 100 and the glass substrate 200.
  • a modified layer 103 including a melt-processed region (amorphous silicon having a disordered crystal structure periodicity) is formed at the laser irradiation position inside the Si substrate 100, and this is the starting point. Cracks and cracks occur.
  • the fragile layer 104 is formed in advance by implantation of hydrogen ions, cracks and cracks run along the fragile layer 104, and as shown in FIG.
  • the substrate 100 is separated, and the Si substrate 100 and the glass substrate 200 are separated.
  • the light absorbing layer 105 can be formed by the same process as the light absorbing layer forming process in the third embodiment, detailed description is omitted.
  • the light absorbing layer 105 may be formed after the thermal oxide film 101 is formed on the Si substrate 100 ′ (FIG. 8A).
  • the surface of the interlayer insulating film 112 may be polished and planarized by CMP.
  • the implantation energy is higher than the conditions in the third embodiment. Is preferably increased.
  • the implantation energy is about 150 to 300 keV and the implantation amount is 1 ⁇ 10 15 / cm 2 or more.
  • the steps after the formation process of the light absorption layer are the same as those described in the sixth embodiment. That is, when a laser having a multiphoton absorption wavelength is irradiated to the bonded Si substrate 100 and glass substrate 200 from the back surface of the Si substrate 100, a melt processing region (crystal structure) is formed at the laser irradiation position inside the Si substrate 100. A reformed layer 103 containing amorphous silicon having a disturbed periodicity is formed, and cracks and cracks are generated.
  • the light absorption layer 105 is formed by ion implantation of boron or the like in advance, it absorbs more laser light and has amorphous silicon (melting treatment region) whose crystal structure periodicity is more disturbed.
  • the modified layer 103 can be formed. Therefore, the Si substrate 100 and the glass substrate 200 can be more easily separated.
  • the Si substrate 100 and the glass substrate 200 are formed by any of the methods according to the fifth to seventh embodiments, and the surface treatment, the bonding process, and the laser irradiation process for the Si substrate 100 and the glass substrate 200 are performed.
  • the modified layer 103 which is easily peeled is formed.
  • the two substrates are separated by using a mechanical peeling method or a laminate film peeling method.
  • a blade 301 having a sharp tip from the side surface of the substrate is applied to the Si substrate 100 on which the modified layer 103 is formed by the laser irradiation process.
  • the cracks and cracks formed in the modified layer 103 are expanded by mechanical force, and on the Si substrate 100 along with the thin film made of the Si substrate material on the Si substrate 100 at the position of the modified layer 103.
  • the formed transistor is peeled from the Si substrate 100.
  • an adhesive sheet 302 used for dicing or the like as a laminate film is attached to the back surface of the bonded Si substrate 100, and the adhesive sheet 302 and the Si substrate 100 are peeled off simultaneously.
  • the transistor formed on the Si substrate 100 together with the thin film made of the Si substrate material on the Si substrate 100 is peeled off from the Si substrate 100 at the position of the modified layer 103.
  • the semiconductor devices on the Si substrate can be distributed and transferred onto a large-area glass substrate (transfer destination substrate).
  • an adhesive when the element is transferred from the base substrate to the transfer destination substrate, an adhesive may be required depending on the transfer destination substrate.
  • plastic substrates with high warpage, undulation, and surface roughness can be bonded to glass substrates with low surface roughness (surface roughness Ra) by intermolecular force without using an adhesive.
  • bonding with an adhesive or the like is necessary because bonding is not performed by intermolecular force.
  • an adhesive in the flat transfer destination substrate, an adhesive may be applied in advance only to the position where the element is bonded, or in the transfer destination substrate on which the island pattern ridges are formed, An adhesive may be applied only on the top.
  • the present invention can also be realized by the following configuration.
  • the transferred partial elements form a matrix island pattern on the second substrate.
  • the elements to be transferred transferred onto the transfer destination substrate can be distributed and arranged in a matrix, a high-performance and low-cost semiconductor device can be manufactured.
  • a pitch of the island pattern of the second substrate is an integral multiple of a pitch of the island pattern of the first substrate.
  • the pitch of the island pattern of the second substrate of the transfer destination is an integer multiple of the island pattern of the first substrate, even if the pitch of the island pattern of the second substrate is changed by an integral multiple, (For example, even when the pitch is changed from 2 times to 4 times), the layout of the island pattern of the first substrate is kept as it is, and only the layout of the second substrate needs to be changed. It can be arranged in a distributed manner corresponding to the transfer position of the substrate.
  • the laser irradiation may be performed at a predetermined position of the base substrate while scanning a laser light source along the substrate surface or scanning a stage on which the substrate is mounted along the substrate surface. It is preferable to carry out with respect to.
  • the laser irradiation can be performed on the entire surface even at a predetermined position having a peeling area larger than the spot diameter of the laser. This can be done more reliably.
  • a fragile layer is formed inside the base substrate and the fragile layer is irradiated with the laser.
  • the fragile layer can be formed by ion implantation or ion doping of at least one of hydrogen atoms, hydrogen molecules, hydrogen ions, and rare gas ions into the base substrate.
  • the fragile layer refers to a layer whose strength is weaker than other portions in the base substrate. According to the above method, since the modified region by laser irradiation is formed along the fragile layer inside the base substrate, the separation in the modified region becomes easier.
  • a light absorption layer is formed inside the base substrate and the light absorption layer is irradiated with the laser.
  • the light absorption layer may be formed by ion implantation of boron, phosphorus, arsenic, gallium, indium, titanium, palladium, carbon, silicon, antimony, zinc, tellurium, and cadmium into the base substrate. It can be formed by ion doping.
  • the light absorption layer refers to a layer that has more levels for carrier transition and absorbs more light than other portions in the base substrate. According to the above method, when the laser irradiation is performed inside the base substrate, more light can be absorbed by the light absorption layer, and the multiphoton absorption phenomenon easily occurs. For this reason, the modification by laser irradiation becomes more intense and separation becomes easier.
  • the semiconductor device manufacturing method it is preferable to perform laser irradiation in a state where the temperature of the base substrate is raised to room temperature or higher.
  • the band gap is narrowed and more light can be absorbed. For this reason, a multiphoton absorption phenomenon easily occurs, and a modified region having a weaker structure can be formed.
  • an Nd: YAG laser In the semiconductor device manufacturing method, it is preferable to use any one of an Nd: YAG laser, an Nd: YVO4 laser, an Nd: YLF laser, and a titanium sapphire laser.
  • the laser mentioned above since the laser mentioned above has a long wavelength, the surface of the substrate is transmitted even to a substrate that is not transparent with UV light, and is condensed inside the substrate by a multiphoton absorption phenomenon. A modified region having a weak structure can be formed.
  • a part of the element to be transferred is separated from the first substrate by applying a mechanical force from the side surface of the base substrate.
  • the separation in the modified region inside the base substrate becomes easier by the external mechanical force.
  • the element is a semiconductor thin film, a semiconductor device, or a part of a semiconductor device.
  • the semiconductor device semi-finished product being formed can be selectively transferred to the transfer destination substrate, which is difficult on a large area substrate.
  • the above element a part of a semiconductor device
  • the above element can be transferred and then formed on a larger area substrate.
  • fine processing is not required, after the semiconductor thin film is transferred as an element to a large area substrate, batch processing can be performed on the large area substrate.
  • fine processing is necessary in all steps, a fine semiconductor device completed on a small area substrate as an element can be transferred onto a large area substrate.
  • Examples of the semiconductor device include a light emitting element, a liquid crystal control element, a photoelectric exchange element, a piezoelectric element, a thin film transistor element, a thin film diode element, a resistance element, a switching element, a minute magnetic element, and a minute optical element.
  • the element may be a single crystal Si thin film or a semiconductor device containing single crystal Si.
  • a single crystal Si thin film or a semiconductor device containing single crystal Si can be selectively transferred to the second substrate.
  • the semiconductor device containing the single crystal Si includes a transistor.
  • the laser is irradiated under conditions where a peak power density is 1 ⁇ 10 8 W / cm 2 or more and a pulse width is 1 ⁇ s or less. More preferably, the laser is irradiated with a peak power density of 1 ⁇ 10 11 W / cm 2 to 1 ⁇ 10 12 W / cm 2 and a pulse width of 1 ns to 200 ns.
  • a modified layer having a weak structure such as a modified layer including cracks or a modified layer including a melt processing region, inside the base substrate.
  • the modified layer including the refractive index change region can be stably formed.
  • any one of a silicon substrate, an SOI substrate, a sapphire substrate, a GaN substrate, and a GaAs substrate as the base substrate.
  • various semiconductor devices such as transistors, power generation elements, and light emitting elements can be dispersed and disposed on the second substrate.
  • the method for manufacturing a semiconductor device it is preferable to use any one of a glass substrate, a plastic substrate, and a film bonded to a supporting substrate as the substrate constituting the second substrate. According to the above method, elements can be dispersed and arranged on a soft substrate.
  • the element is preferably a single crystal Si thin film, a semiconductor device containing single crystal Si, or a part of a semiconductor element.
  • the present invention is applied to a manufacturing method of a semiconductor device in which minute semiconductor elements formed on a small substrate are dispersed and transferred to a large-area substrate.

Abstract

 本発明は、中間基板を利用せずに、ベース基板(100)から、単結晶Si薄膜または単結晶Siからなるデバイスなどの素子を、絶縁性基板に選択的に転写する方法を提供する。素子が形成されているベース基板(第1基板)(100)に、多光子吸収波長を有するレーザを選択的に照射して、転写したい一部の素子とともに、それに対応するベース基板(100)上の薄膜を、転写先基板(第2基板)(100)に転写する。

Description

半導体装置の製造方法および半導体装置
 本発明は、半導体装置の製造方法に関し、特に、絶縁性基板に単結晶薄膜あるいは単結晶からなる半導体デバイスを分離配置して転写する方法に関する。
 現在、超高性能で低コストのディスプレイを製造するためには、単結晶シリコン並みのTFT(Thin Film Transistor;薄膜トランジスタ)性能と、製造コスト低減の両立が必要となる。従来の非晶質シリコン(以下、「a-Si」という)や多結晶シリコン(以下、「poly-Si」という)等のTFTプロセスでは、所望の性能を有するTFTが得られないばかりでなく、巨大な真空装置、レーザ結晶化装置、露光機等が必要となり、製造コストを下げることも難しい。
 例えば、図13の(a)は、既存の大型液晶用TFTプロセス(a-Siプロセスやpoly-Siプロセス)で大面積のガラス基板上に画素などの回路素子を形成する場合を示している。この方法では、ガラス基板全面に、a-Si膜等を成膜したり、レーザで基板全面を結晶化したりする必要がある。そのため、マザーガラスの巨大化(第10世代サイズ:3.1m×2.9m)に伴い巨大な装置と莫大な投資が必要になり、製造コストを下げることが難しい。また、TFTの性能も、ばらつきが大きく消費電力の大きいものしか得られない。
 そこで、大面積のガラス基板上に、小面積の別基板上で作製した素子をアレイ状に分散して配置することで、超高性能で低コストのディスプレイを作るという方法が考え出された。例えば、図13の(b)は、既存のIC(Integrated Circuit)プロセスでシリコン基板(以下、「Si基板」という)上に作成したシリコンデバイスや回路素子をチップに分断し、大面積のガラス基板などに転写する(あるいは貼り付ける)方法の一例を示している。ここでの転写には、スマートカット法(水素イオン分離法)を用いてもよいし、ダイボンディングを用いた貼り付けを用いてもよい。
 素子のスマートカット法を用いた転写については、本願発明の発明者らにより発明された特許文献1および特許文献2などに示されている。この方法は、パネルのドライバーなどのように、数十~数百個程度のチップ(数mmサイズ)に分断して貼り合わせる場合には有効な方法である。しかしながら、画素TFTのように数百万個というような数の素子(数十μmサイズ)に分断して貼り合わせることは、スループットの面でも、ハンドリングの面でも非現実的である。
 図13の(c)では、スマートカット法を用いて、Si基板あるいは、Si基板(Siウェハ)上に作成した素子となるシリコンデバイスをチップに分断せずに、大面積のガラス基板などに貼り付ける場合を示している。上記図13の(b)の場合と違って、Si基板を複数のチップに分断する必要はない。しかしながら、シリコンデバイスを、ガラス基板に貼り合わせた後に熱処理で分離するため、Si基板上の素子全体がガラス基板上に転写されてしまう。そのため、画素ピッチのような広い間隔で転写することができない。広い間隔で転写する時は、図13の(d)に示すように、シリコン基板上に形成する素子同士に間隔をあけて形成する必要があるが、その場合、シリコン基板の利用効率が非常に悪くなってしまう。
 また、従来技術によると、シリコン基板上に形成された高性能なシリコンデバイスや回路素子を、1回で分散転写させることは非常に困難である。例えば、単結晶シリコンデバイスの転写に使えるスマートカット法によると、基板全体が加熱されてしまうため、転写したい単結晶シリコンデバイスだけを選択的に転写することは困難である。
 一方、製造コストを下げるため、素子を選択的に分散して配置する手法として、特許文献3および特許文献4のように、小さい基板上で作成した微小な素子を分散させて、大面積の基板に転写する方法が知られている。例えば、図14を参照して説明すると、素子の転写方法は下記の通りである。
 まず、図14の(a)に示すように、第1基板(ベース基板)11に剥離層12を形成し、この上に複数の素子13を配列形成する。そして、図14の(b)および(c)に示すように、例えば、UV剥離性接着剤14を付着した中間基板15に、素子13を貼り合わせた後、第1基板11と中間基板15とを剥離層で分離して素子全体を転写する(1回目)。この時の分離には、ウェットエッチングとエッチストッパー層を用いたリフトオフ法、あるいは、第1基板11の裏面から剥離層にレーザ照射を行うレーザアブレーションなどを利用する。第1基板11の裏面からレーザ照射を行う場合、第1基板11は透明基板である必要がある。そして、図14の(d)のように、接着剤16を付着した最終基板(転写先基板)17に、図14の(c)に示す素子13が保持されている透明な中間基板15を貼り合わせる。その後、図14の(e)および(f)に示すように、UV光を中間基板15の裏面から、選択的に(一定の画素ピッチの間隔を空けて)照射してUV剥離性接着剤14の接着性を弱めた後に、中間基板15と最終基板17とを分離して転写したい素子13だけを最終基板17へ転写する(2回目)。中間基板15の裏面からUV光を照射して2回目の転写を行う場合も、中間基板15を透明な基板にする必要がある。
日本国公開特許公報「特開2006-032435号公報(2006年2月2日公開)」 日本国公開特許公報「特開2006-053171号公報(2006年2月23日公開)」 日本国特許公報「特許第3447619号(2001年1月12日公開)」 日本国特許公報「特許第3994681号(2002年10月25日公開)」 日本国特許公報「特許第3048201号(1993年8月20日公開)」 日本国特許公報「特許第3408805号(2002年7月10日公開)」 日本国特許公報「特許第3406207号(1999年5月28日公開)」 日本国特許公報「特許第3474187号(2003年9月19日公開)」
技術資料「ステルスダイシング技術とその応用」、TLAS9004J01、2005年3月発行 ステルスダイシング技術資料「Stealth Dicing Technical Information for Mems」、TLAS9005J02、2009年5月発行
 しかしながら、上記方法において、実際に転写できる素子は、単結晶シリコンデバイスではなく、透明なベース基板上にCVD(Chemical Vaper Deposition)等で成膜可能なa-Siまたはpoly-Siからなる低性能のTFT、あるいはレーザでサファイア基板との界面が剥れやすいGaNで形成されたLEDなど、透明なベース基板上に形成できる素子に限られている。つまり、上記方法は、光を通さない不透明なシリコン基板上に形成した単結晶シリコン素子などを転写させることができない。
 また、ベース基板11上に形成した素子を転写先基板17に分散して直接転写することができない。つまり、素子を分散して転写するためには、素子を、一旦、UV剥離接着剤などを塗布した透明な中間基板15に貼り合わせ、リフトオフあるいは第1基板11の裏面からレーザ照射などを行って、素子を第1基板11から分離して中間基板15上に転写しなければならない。さらに、中間基板15上に形成された素子を、中間基板15の裏面からUV光などを選択的に照射して、転写先基板17に分散して転写する必要がある。
 このように、従来技術によると分散して配置するためには、少なくとも2回の転写が必要である。そのため、転写を繰り返すうちに位置ズレが生じやすく、位置ズレにより転写精度が低下し、その後のコンタクトホール形成や配線形成において歩留まりが低下してコストが増える、あるいは製造プロセスが長くなってコストが増えるという問題がある。
 本発明は、係る従来の課題に鑑みてなされたものであり、半導体薄膜または半導体素子などの転写対象を、1回の転写工程によりベース基板から転写先基板に分散して転写でき、高精度の転写と、製造プロセスの短縮によるコスト削減が実現できる半導体装置の製造方法、およびこの製造方法により製造された半導体装置を提供することを目的とする。
 上記課題を解決するために、本発明の半導体装置の製造方法は、ベース基板上に複数の素子が配列したアイランドパターンを形成して第1基板を形成する工程と、上記第1基板と、上記第1基板とは異なる第2基板とを上記複数の素子の一部を介して貼り合わせる工程と、上記第1基板上に形成された複数の素子のうちの上記一部の素子が形成されている位置に対して、多光子吸収を起こす波長を有するレーザを照射することで、上記一部の素子を上記第1基板から分離し、上記第2基板上に選択的に転写する工程とを含むことを特徴とする。
 上記の方法では、転写対象の素子をベース基板から分離するために、多光子吸収を起こす波長を有するレーザを用いてベース基板の所定位置にレーザ照射を行う。この方法によれば、ベース基板が例えばUV光では非透過なSi基板などであっても、ベース基板の表面を透過し、かつその内部で集光して多光子吸収現象を起こすことができる。そして、この多光子吸収現象によりベース基板の内部に、その結晶構造等が改変された改質領域(改質層)を形成することができる。この改質領域では、その結晶構造等が変化することによってクラックや割れが生じるため、上記一部の素子を容易にベース基板から剥離し、上記一部の素子を介して貼り合わされていた第1基板と第2基板とを容易に分離することができる。
 これにより、転写対象である上記一部の素子を、中間基板を使用することなく転写先の第2基板に直接転写することができる。また、レーザ照射は、ベース基板の所定位置に対して選択的に行うことができるので、転写したい素子のみを転写先基板に直接転写することができる。このため、半導体デバイスなどの転写を1回で行うことができる。
 つまり、1回の転写工程で転写対象の素子をベース基板(第1基板)から転写先基板(第2基板)に直接転写することができるので、位置ズレが少ない高精度の転写を実現し、歩留まり向上と製造プロセスの短縮によるコスト削減を図ることができる。また、これにより、製造工程の処理能力(タクトタイム)を向上させることもできる。
 また、上記課題を解決するために、本発明の半導体装置は、絶縁基板上に素子が転写されて形成された半導体装置であって、上記絶縁基板は、所定の間隔で配列した隆起部を有しており、上記素子は、その上面が上記隆起部に接し、かつその下面が上記隆起部から離れるように上記隆起部に直接形成されていることを特徴とする。
 ここで、上記素子の上面とは、該素子が絶縁基板に転写される前のベース基板上において、該ベース基板とは接触しておらず上方を向いている面のことを意味し、上記素子の下面とは、該素子が絶縁基板に転写される前のベース基板上において、該ベース基板に接触している面のことを意味する。
 上記の構成を有する半導体装置は、上記した本発明の製造方法によって製造されたものであるため、微小な素子構成であっても、高性能を維持することができる。また、上記のように製造工程において中間基板が不要となるため、スループットが高く、製造コストが低減されるという利点を有している。なお、上記隆起部は、アイランドまたはアイランドパターンとも呼ばれる。
 本発明は、シリコン表面を透過しシリコン基板内部で集光する、多光子吸収波長を有するレーザを利用することにより、ベース基板中に多光子吸収による改質領域を形成し、従来技術では転写困難だった不透明なベース基板から、直接的に単結晶薄膜または単結晶からなるデバイスなどの素子を、大面積の転写先基板上に選択的に分離転写することができる。また、1回の転写工程で転写対象のベース基板から転写先基板への直接転写を実現できるので、位置ズレが少ない高精度の転写を実現し、製造プロセスの短縮によるコスト削減を図ることができる。
本発明に係る半導体装置の製造方法の主なステップを示すフローチャートである。 本発明の第1の実施の形態に係るベース基板の製造フローを示す断面図である。 本発明の実施の形態に係る転写先基板の製造フローを示す断面図である。 本発明の実施の形態に係る半導体素子をベース基板から転写先基板に転写するフローを示す断面図である。 本発明の第2,3の実施の形態に係るベース基板の製造フローを示す断面図である。 本発明の第2,3の実施の形態に係るベース基板から転写先基板に薄膜を転写するためのフローを示す断面図である。 本発明の第4の実施の形態に係るベース基板と転写先基板とを分離するための方法を示す断面図である。 本発明の第5の実施の形態に係る半導体素子を含むベース基板の製造フローを示す断面図である。 図8に示す製造フローに続いて、本発明の第5の実施の形態に係る半導体素子を含むベース基板の製造フローを示す断面図である。 本発明の第5の実施の形態に係るベース基板上の半導体素子を転写先基板に薄膜を転写するためのフローを示す断面図である。 本発明の第6,7の実施の形態に係るベース基板の一部の製造フローおよびベース基板上の半導体素子を転写先基板に薄膜を転写するためのフローを示す断面図である。 本発明の第8の実施の形態に係るベース基板と転写先基板とを分離するための方法を示す断面図である。 (a)~(d)は、従来技術に係る大面積のガラス基板に半導体素子を転写する様子を示す図である。また、(e)は、本発明において大面積のガラス基板に半導体素子を転写する様子を示す図である。 従来技術に係るベース基板から中間基板を経由して転写先基板に薄膜を転写するフローを示す断面図である。
 以下、図面を参照して本発明の実施の形態について詳細に説明する。もちろん、本発明はこれに限定されるものではなく、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に限定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。また、本発明の各実施の形態において、同じ構成を有するものに対しては、同じ名称かつ同じ符号を付けて説明する。
 本発明の半導体装置の製造方法では、スマートカット法による素子の貼り合わせ技術に、ベース基板の表面を透過しベース基板の内部で集光する多光子吸収を起こす波長を有するレーザを用いたステルスダイシング技術を組み合わせている。ステルスダイシング技術に使用するレーザ(ステルスダイシングレーザ)は、Si基板などの不透明な基板の表面を透過して内部で集光し基板内部に改質層を形成するので、本来はこのステルスダイシングレーザをSi基板に対して網目ライン状にスキャンすることで断面方向に分離して、Si基板を小さな素子に分断するために用いられている。本発明では、基板の裏面から転写したい所定の素子に選択的に当該レーザを平面的に照射することで、素子をSi基板から平面的に剥離し、素子の選択的な剥離を可能とした。これにより、中間基板を使用することなく、ベース基板上の素子のうち、転写したい素子のみを大面積の転写先基板上に選択的に転写することができる(図13の(e)参照)。
 なお、ステルスダイシング技術については、特許文献6、非特許文献1,2などに記載されている。
 ここで、ベース基板とは、半導体素子が最初に形成される基板であり、転写先基板とは、ベース基板上に形成された半導体素子が転写される基板である。ベース基板上に半導体素子が形成された基板は、第1基板とも呼ばれ、転写先基板は、第2基板とも呼ばれる。また、転写先基板は、最終的な製品を構成する基板であるため、最終基板とも呼ばれる。
 本発明において、ベース基板として、例えば、Si基板、SOI(Silicon On Insulator)基板、サファイア基板、GaN基板、GaAs基板などが挙げられる。また、転写先基板として、ガラス基板、プラスチック基板、支持基板に貼り合わせたフィルムなどの絶縁性基板が挙げられる。
 また、ベース基板上の素子には、半導体薄膜(単膜)または半導体デバイスなどが含まれる。ここで、半導体デバイスとして、例えば、発光素子、液晶制御素子、光電交換素子、圧電素子、薄膜トランジスタ素子、薄膜ダイオード素子、抵抗素子、スイッチング素子、微小磁気素子、微小光学素子などが挙げられる。
 以下実施の形態の説明では、ベース基板として不透明なSi基板を用い、転写先基板としてガラス基板を用い、素子が単結晶Si薄膜または単結晶Siからなる半導体デバイスである場合を例として説明する。
 〔単結晶Si薄膜の転写方法〕
 以下の第1~第4の実施の形態では、半導体装置の製造工程において、Si基板(ベース基板)上の単結晶Si薄膜を、大面積のガラス基板(転写先基板)に分散配置して転写する方法について説明する。
 <第1の実施の形態>
 以下図1~4を参照して、本発明の第1の実施の形態を説明する。図1は、本発明に係る半導体装置の製造方法の主なステップを示すフローチャートであり、図2は、ベース基板を形成する方法の主なステップを示す断面図であり、図3は、転写先基板を形成する方法の主なステップを示す断面図であり、図4は、転写したい薄膜をベース基板から転写先基板に転写する方法の主なステップを示す断面図である。
 まず、図2に基づいて、Si基板100の形成における各ステップを説明する。
 図2の(a)のように、平板状のSi基板100’を熱酸化し、表面に50~100nm程度の熱酸化膜101を形成する(図1のS11、熱酸化工程)。ここでの熱酸化は、一般的な縦型炉または横型炉を用い、温度900~1000℃で、1~3時間程度の熱酸化を行うことである。なお、ベース基板としてSi基板以外の基板を用いる場合は、CVD法などで酸化膜を成膜してもよい。
 続いて、図2の(b)に示すように、フォトリソグラフィにより、所定の大きさの単膜のアイランドが基板上に密着できるようにレジストパターン102を形成する。その後、図2の(c)に示すように、熱酸化膜101および所定厚さのSi基板100をエッチングすることで、Si基板100にアイランド(隆起部)100”を形成する。すなわち、Si基板100’をマトリクス状にアイランド化する。なお、エッチング方法は、一般的なフッ素系や塩素系のガスを用いたドライエッチングを採用する。例えば、Siのドライエッチングには、CF、SF、NFなどのフッ素系のガス、あるいは、Cl、HCl、BClなどの塩素系のガス、およびAr,Oなどのガスを組み合わせて用いる。SiOのドライエッチングには、CF、CHF,C、H,O,Arなどのガスを組み合わせて用いればよい。また、ドライエッチングの代わりに、HF、BHF,フッ硝酸、KOH、SLAエッチャントなどを用いたウェットエッチングを採用してもよい。
 ここで形成されたSi基板材料からなるアイランド100”が、後の工程で得られる転写先基板200上の単結晶Si薄膜(半導体素子)100aとなる(図1のS12、素子形成工程)。
 転写したい素子が単結晶Si薄膜である場合は、Si基板100’をアイランド化することにより、素子形成工程と薄膜の素子分離が同時に実現できる(図1のS13、素子分離工程)。そして、図2の(d)に示すように、アッシングおよび剥離洗浄を行ってレジストパターン102を剥離すると、ベース基板となるSi基板100を得ることができる。ここで、最初の平板状のSi基板100’と、当該Si基板100’に対し、図1のS11~S13などのステップを行って得たSi基板とを区別するために、素子分離後(アイランド形成後)のSi基板をSi基板100で表記する。
 また、図示はしないが、後述のレーザ照射工程の際に、レーザ光がSi基板100の裏面の凹凸で散乱しないように、熱酸化膜形成工程の前に予めSi基板100の裏面をCMPで研磨して鏡面にするか、もしくは、レジストパターン剥離工程後のSi基板100の裏面をCMPで研磨して鏡面にしておいてもよい。ここで、Si基板100の裏面とは、熱酸化膜101が形成された面の反対面を指す。
 次に、図3に基づいて、ガラス基板(絶縁基板)200の形成ステップを説明する。
 まず、図3の(a)に示すように、平板状のガラス基板200’上に、フォトリソグラフィにより所定の間隔でアイランド(隆起部)ができるようにレジストパターン201を形成する(レジストパターン形成工程)。ここで、ガラス基板200’上のアイランド200”は、図2に示すようなSi基板100側のアイランド100”よりも一回り大きいパターンが望ましい。また、アイランド200”の間隔は、画素ピッチに対応するように予め間隔が空けられており、Si基板100側のアイランド100”の整数倍のピッチになることが望ましい。つまり、この条件を満たすようにレジストパターン201を形成することが望ましい。
 続いて、図3の(b)に示すように、レジストパターン201をマスクとしてガラス基板200’をエッチングすることで、マトリクス状のアイランド200”を形成する(図1のS21、アイランド化工程)。ここで、エッチング方法として、CF、CHF,C、H,O,Arなどのガスを組み合わせたドライエッチングを採用してもよく、HF、BHFなどを用いたウェットエッチングを採用してもよい。BHFの場合、10~20分程度のエッチングにより、1~2μm程度の段差を形成することができる。
 これにより、素子分離されて、図3の(c)に示すように、図2に示すようなSi基板100上の半導体素子が転写できる、転写先基板となるガラス基板200が得られる。ここでも、最初の平板状のガラス基板200’と、当該ガラス基板200’に対し、図1のS2などのステップを行って得たガラス基板とを区別するために、素子分離後のガラス基板をガラス基板200で表記する。
 また次に、図4に基づいて、Si基板100およびガラス基板200を用いて、薄膜(単結晶Si薄膜)を転写するステップを説明する。
 まず、上記説明のようなステップを通してなされたSi基板100およびガラス先基板200に対して、表面処理工程および貼り合わせ工程を行う(図1のS31)。表面処理として、一般的なスマートカットの処理方法を用いることができる。即ち、両基板の表面に、プラズマ処理あるいは薬液処理を行って、表面を親水性にする。プラズマ処理はArプラズマ、大気圧プラズマなどを用いることができる。また、オゾン水洗浄、SC-1洗浄(過酸化水素水とアンモニア水の混合溶液)などの薬液処理を数分程度行って親水化処理してもよい。
 表面処理した状態で、両基板を向かい合わせに貼り合わせると、分子間力(ファンデルワース力)により接合する。この後、温度200℃で、2時間程度のプレアニールを行うことで、脱水反応が進み共有結合が形成され、接合がより強固になる。なお、図4の(a)および(b)から明らかなように、Si基板100上に素子分離された複数の熱酸化膜101のうち、ガラス基板200上に受けとなるアイランド200”が存在する部分のみが接合される。
 続いて、図4の(b)に示すように、ガラス基板200と貼り合わせたSi基板100に対し、Si基板100の裏面側から、多光子吸収を起こすような波長のレーザを、アイランド100”の転写したい部分のみに選択的に照射する(図1のS32、レーザ照射工程)。そしてSi基板100の内部では、レーザ光が集光し、改質層(改質領域)103が形成される。改質領域としては、1)多光子吸収による光学的損傷により誘起された熱ひずみによって基板内部にクラックが形成されて成すクラック領域、2)多光子吸収により局所的に加熱されて、相変化や結晶構造が変化した領域が形成されて成す溶融処理領域(例えば、単結晶シリコンの場合、局所的加熱により結晶構造周期性の乱れた非晶質シリコンに変化した領域が溶融処理領域に相当する)、あるいは、3)基板内部にイオン価数変化、結晶化又は分極配向等の永続的な構造変化が誘起されて成す屈折率変化領域が挙げられる。なお、どのような改質領域を形成するかは、基板の種類によって決めることができる。
 例えば、本実施の形態のように、Si基板などの半導体基板を用いた場合は、改質領域として溶融処理領域を形成するのが最適である。また、ガラス基板やサファイア基板などの透明基板を用いる場合は、改質領域として屈折率変化領域を形成することができる。このようなSi基板100の内部に形成された改質層103は、Si基板100の内部にクラック、あるいは結晶構造が弱く変化した領域、あるいはイオン価数や分極配向等の構造変化が誘起された領域などが形成されているため、Si基板100およびガラス基板200を、互いに反対方向に引き離すと、改質層103が形成されたSi基板100の内部の位置で、Si基板100が容易に分離される(図1のS33、分離工程)。
 つまり、改質層103により分けられたアイランド100”において、熱酸化膜101を通してガラス基板200と接合した側の部分が、図4の(c)に示すように、ガラス基板200上に転写される。これにより、薄膜(単結晶Si薄膜、ベース基板の一部)100aが転写されたガラス基板200を得て、最終基板として半導体装置に用いることができる。ここで、単結晶Si薄膜100aの膜厚は、レーザの集光位置を調整することで、適切に制御することができる。また、レーザの調整範囲を超える場合など必要に応じて、ガラス基板200上に転写した後に、ドライエッチング装置を用いて単結晶Si薄膜100a薄膜のエッチバックを行い、単結晶Si薄膜100aの膜厚をさらに薄くしても良い。
 また、Si基板100の裏面側から照射されるレーザは、波長が1064nmであり、ステルスダイシング用レーザの半導体レーザ励起Nd:YAGレーザを用いる。もちろん、レーザ光源に採用できるレーザとして、Nd:YAGレーザの他、Nd:YVO4レーザ、Nd:YLFレーザ、またはチタンサファイアレーザもある。レーザ照射は、ピークパワー密度が1×10W/cm以上であり、パルス幅が1μs以下の条件で行う。より好ましい数値としては、ピークパワー密度が1×1011W/cm~1×1012W/cmで、かつパルス幅が1ns~200nsの条件で照射することが好ましい。
 ここで、どのようなレーザを用いるかは、形成しようとする改質領域の種類によって決めることができる。例えば、クラック領域または溶融処理領域含む改質層103を形成する場合には、ピークパワー密度が1×10W/cm以上であり、パルス幅が1μs以下のレーザを用い、詳しくはNd:YAGレーザ、Nd:YVO4レーザ、またはNd:YLFレーザを用いるのが好適である。また、屈折率変化領域を含む改質層103を形成する場合は、ピークパワー密度が1×10W/cm以上であり、パルス幅が1ns以下(さらに望ましくは1ps以下)のレーザを用い、詳しくはチタンサファイアレーザを用いるのが好適である。このようなレーザは、波長が長いため、UV光では非透過な基板に対しても、基板の表面を透過し、多光子吸収現象により基板内部で集光して、内部にクラック、あるいは結晶構造が弱く変化した領域、あるいはイオン価数や分極配向等の構造変化が誘起された領域などの改質層を形成することができる。
 また、レーザの照射は、レーザ光源を基板面に沿って走査しながら、転写したい素子が形成されている所定の位置に対して行うことが好ましい。あるいは、レーザ光源の位置は固定して、基板を載せたステージを走査しながら行っても良い。これにより、レーザのスポット径よりも大きい剥離面積を有する所定位置に対して、全面にレーザ照射できて、剥離するための改質層を全面に形成し、改質層での分離をより確実に行うことができる。これらレーザを照射する方法としては、従来から行われている方法を用いることができる。
 また、Si基板100の温度を室温から上げた状態で、レーザ照射を行ってもよい。これは、ベース基板がSi基板である場合、基板温度を100℃以上に上げると、Siのバンドギャップ(室温時:1.12eV)が1.1eV以下に低下し、基板内部でYAGレーザ(波長1064nm、hν=1.16eV)の光をより吸収することができて、多光子吸収が起こりやすくなるためである。そのため、Si-Si結合のより弱い改質領域が形成され、改質領域の形成位置での分離がより容易になる。
 なお、同様に、ベース基板がGaAs基板(バンドギャップ、室温時:1.42eV)である場合は、基板温度を700℃以上に上げることで、バンドギャップを1.1eV以下にすることができる。
 以上の方法により、本実施の形態では、ベース基板(第1基板)となるSi基板100上にマトリクス状に配列された素子のうち、転写したい素子のみにステルスダイシングレーザ照射を行うことで、素子をベース基板から平面的に剥離して転写先基板(第2基板)となる大面積のガラス200上に選択的に素子を転写することができる。これにより、転写先基板(第2基板)に対して、ベース基板上に配置された各素子のピッチの整数倍のピッチで各素子がマトリクス状に配列したアイランドパターンを形成することができる(図13の(e)参照)。
 <第2の実施の形態>
 本実施の形態では、上記第1の実施の形態における説明のように、Si基板の単結晶Si薄膜(素子)をガラス基板に直接分散配置し転写する場合の例を説明する。第1の実施の形態に比べ、本実施の形態では、ガラス基板に形成される改質層での分離をより容易にするために、ベース基板の内部に予め基板内の他の部分よりも強度の弱い脆弱層を形成する工程を追加した場合の例を説明する。
 図5は、本実施の形態におけるSi基板100の形成ステップを示す断面図である。第1の実施の形態によるSi基板100の形成ステップと比べ、本実施の形態によるSi基板100の形成には、Si基板100の内部に予め脆弱層104を形成するステップをさらに備える。これ以外のステップは、第1の実施の形態の説明のとおりであるので、それについては簡単に説明する。
 本実施の形態によるSi基板100の形成工程において、まず、図5の(a)に示すように、平板状のSi基板100’に熱酸化膜101を形成した後、図5の(b)に示すように、Si基板100’の内部に脆弱層104を形成する。
 すなわち、Si基板100’に対し、水素イオン注入または水素イオンドープにより、Si基板100’の内部の所定の深さに、水素イオンを打ち込む。水素イオンの注入またはドーピング条件としては、例えば、Hイオンを注入する場合は、注入エネルギーが20~60keV程度であり、注入量が5×1014/cm~5×1015/cmである条件で行う。H3+のようなイオンを含むイオンドーピングを行う場合は、注入エネルギーが20~60keV程度であり、注入量が1×1016/cm~5×1016/cmである条件で行う。水素イオンは軽いので、イオン注入又はイオンドーピングにより、Si基板内部深くに侵入できる。この時、Siの結晶格子を乱すと同時に内部に留まる。続いて、200℃~400℃程度の低い温度でアニールすると、水素イオンが留まっている領域では内圧が上昇して微小気泡(プレートレット)が発生して微小クラックを誘起する。したがって、水素イオンが注入またはドーピングされた層は、その後の熱アニールを加えることで、Si基板100’の内部に脆弱層104を形成する。上記所定の深さは、後工程で形成される薄膜100aの膜厚を考慮して、注入エネルギーを変えることにより適宜に調整することができる。
 そして、図5の(c)および(d)に示すように、Si基板100’に対してレジストパターン102の形成工程およびエッチング工程を行う。その後、レジストパターン102の剥離工程を経由して、図5の(e)に示すように、内部に脆弱層104を備えたSi基板100を得る。
 ガラス基板200は、図3に示すように、上記第1の実施の形態で説明したステップの通りに形成すればよい。
 次に、Si基板100とガラス基板200とに対する表面処理工程、貼り合わせ工程およびレーザ照射工程も上記第1の実施の形態で説明の通りである。そして、図6の(a)に示すように、レーザ照射工程後のSi基板100の内部において、溶融処理領域(結晶構造周期性が乱れた非晶質シリコン)を含む改質層103が形成され、これを起点にクラックや割れが発生する。この場合、予め水素イオンの注入およびアニールにより脆弱層104が形成されているので、レーザ照射によるクラックや割れを脆弱層104に沿って走らせることができる。そのため、単結晶Si薄膜100aをベース基板のSi基板100からより容易に分離させることができる。そして、Si基板100とガラス基板200とを互いに反対方向に引き離すと、図6の(b)に示すように、脆弱層104に沿って剥れやすく形成された改質層103の処で、ベース基板(Si基板100)と転写先基板(ガラス基板200)とが容易に分離される。これにより、薄膜(単結晶Si薄膜)100aが転写されたガラス基板200を得ることができる。
 <第3の実施の形態>
 本実施の形態では、Si基板に形成される改質層での分離をより容易にするために、脆弱層の代わりに、ベース基板の基板本体の内部に、予め基板内の他の部分よりも光をより多く吸収する光吸収層を形成しておく場合の例を説明する。光吸収層形成ステップ以外の工程は、上記第1,2の実施の形態の説明のとおりであるので、それについては簡単に説明する。なお、上記第2の実施の形態と同じ図面を参照して説明する。
 本実施の形態によるSi基板100の形成工程において、まず、図5の(a)に示すように、平板状のSi基板100’に熱酸化膜101を形成した後、図5の(b)に示すように、Si基板100’の内部に光吸収層105を形成する。
 すなわち、Si基板100’に対し、イオン注入又はイオンドープにより、Si基板100’の内部の所定の深さにイオンを打ち込む。打ち込まれたイオンは、バンドギャップ中にドナー又はアクセプター準位を形成し、Si基板100’に光吸収層105を形成する。上記所定の深さは、後工程で形成される薄膜100aの膜厚を考慮して、適宜に調整することができる。
 ここで、イオンの種類としては、ボロン、リン、ヒ素、ガリウム、インジウム、チタン、パラジウム、炭素、シリコン、アンチモン、亜鉛、テルル、カドミウムなどを用いることができる。また、イオンの注入またはイオンドーピング条件としては、例えばボロンをイオン注入する場合は、注入エネルギーが40~150keV程度であり、注入量が1×1015/cm以上の条件で行う。リンをイオン注入する場合は、注入エネルギーが100~250keV程度であり、注入量が1×1015/cm以上の条件で行う。
 そして、図5の(c)および(d)に示すように、Si基板100’に対してレジストパターン102の形成工程およびエッチング工程を行う。そして、レジストパターン102の剥離工程を経由して、図5の(e)に示すように、内部に光吸収層105を備えたSi基板100を得る。
 ガラス基板200は、図3に示すように、上記第1の実施の形態で説明したステップの通りに形成すればよい。
 次に、Si基板100とガラス基板200とに対する表面処理工程、貼り合わせ工程およびレーザ(例えばYAGレーザ、波長1064nm)照射工程も上記第1の実施の形態で説明の通りである。そして、図6の(a)に示すように、レーザ照射工程後のSi基板100の内部において、溶融処理領域(結晶構造周期性が乱れた非晶質シリコン)を含む改質層103が形成され、これを起点にクラックや割れが発生する。ここで、Si基板100の内部に光吸収層105が形成されているため、レーザを照射する際に、光吸収層105においてここでのアクセプター準位を介した多光子吸収が起こりやすくなって、結晶構造周期性がより乱れた非晶質シリコンが形成され、剥れやすい改質層103を形成することができる。
 これについて、従来技術(例えば、特許文献6)によれば、レーザ光源に波長1064nmのYAGレーザを用いて照射を行い、ベース基板にバンドギャップが1.12eVのSi基板(膜厚500μm以下)を使用した場合、大部分の光は透過してしまう(内部透過率約80%以上)。これに対して、本発明のようにボロンを注入した光吸収層105を形成すると、アクセプター準位は価電子帯の底から0.045eVだけ上に形成されるので、このアクセプター準位を介したレーザ光の吸収がこの層のみで起こりやすくなり(内部透過率が実効的に下がる方向に働く)、その結果、多光子吸収が起こりやすくなる。但し、ドナーやアクセプターの密度はSiの密度に比べて小さいため、高濃度で注入する必要がある。
 このように、予めボロンなどのイオン注入により光吸収層105形成しておくと、ベース基板100の基板本体の裏面から多光子吸収波長を有するレーザ光を照射したときに、基板内においてより多くのレーザ光を吸収することができる。そのため、レーザ光の照射によって結晶構造周期性がより乱れた非晶質シリコン(溶融処理領域)を有する改質層を形成することができる。
 以上のステップにより、図6の(b)に示すように、Si基板100とガラス基板200とを互いに反対方向に引き離すと、剥れやすい改質層103の処でSi基板100とガラス基板200とが容易に分離され、薄膜(単結晶Si薄膜)100aが転写されたガラス基板200を得ることができる。
 <第4の実施の形態>
 本実施の形態では、Si基板とガラス基板とを分離する方法について説明する。
 まず、上記第1~3の実施の形態による何れかの方法により、Si基板100およびガラス基板200を形成し、Si基板100とガラス基板200とに対する表面処理、貼り合わせ工程およびレーザ照射工程を経由して、剥れやすい改質層103を形成する。
 そして、Si基板100とガラス基板200との分離による薄膜の転写工程において、図7に示すように、機械的力による剥離またはラミネート膜剥離方法を用いて、両基板を分離する。
 つまり、図7の(a)に示すように、レーザ照射工程により改質層103が形成されたSi基板100に、当該基板の側面から先端が鋭利なブレード301を当てる。これにより、機械的な力で改質層103に形成されたクラックや割れを拡大させて、改質層103から薄膜100aが剥離される。
 あるいは、図7の(b)に示すように、貼り合わせたSi基板100の裏面に、ラミネート膜としてダイシングなどに用いられる接着シート302を貼り付け、この接着シート302およびSi基板100を同時に引き剥がすことによって、改質層103から薄膜100aが剥離される。
 以上の第1~第4の実施の形態の方法で、Si基板(ベース基板)上の素子(単結晶Si薄膜)を、大面積のガラス基板(転写先基板)に分散配置して転写することができる。これ以降の工程としては、第1~第4の実施の形態の方法とも、poly-Siプロセスのような通常の大型ガラス基板を用いたTFT形成工程(フォトリソグラフィやエッチング、成膜など)を行えばよい。これにより、ガラス基板上に単結晶Siからなる高性能で低ばらつきのTFTを有するTFTバックプレーンを形成することができる。高性能で低ばらつきなTFTバックプレーンが得られるので、液晶パネルだけでなく、有機EL(OLED)パネルなどのバックプレーンとしても好適に用いる事ができる。
 続いて、以下の幾つかの実施の形態を通して、ベース基板上に半導体デバイスもしくはその一部を予め形成し、それらを転写先基板に分散配置して転写する場合を説明する。ここで、半導体デバイスの一部とは、加工未完成の半導体デバイス半完成品である。つまり、最終工程(多層配線完了工程)まで完成した半導体デバイスではなく、例えば、途中のゲート電極までが、あるいはソース・ドレイン電極までが形成されているような半完成(未完成)のデバイスを意味する。詳しく言うと、ベース基板上に半導体デバイスを形成する時、大面積基板上では困難な微細加工(特にゲート電極の微細加工まで)は小面積基板(ベース基板)上で加工し、加工精度が粗くてもよい配線形成などは、転写後に大面積基板(転写先基板)上で形成してもよいということを意味する。
 〔単結晶Siからなる半導体デバイス〕
 以下の実施の形態においては、素子の一例となる微小なトランジスタの転写ステップを説明する。また、上記第1~第4の実施の形態のように、ベース基板としてSi基板を用い、転写先基板としてガラス基板を用いた場合の例を説明する。
 <第5の実施の形態>
 本実施の形態において、IC製造に用いられる一般的なプロセス用いてベース基板に半導体素子(微小なトランジスタ)を形成する。もちろん、本実施の形態は、一般的なICプロセスの一例を示すものに過ぎず、本発明はこれに限定されるものではない。
 図8は、Si基板にトランジスタ(素子)を形成する主なステップを説明するための断面図であり、図9は、Si基板に形成した半導体デバイスをガラス基板に転写する主なステップを説明するための断面図である。
 本実施の形態において、図8の(a)に示すように、Si基板100’を熱酸化し、表面に50~100nm程度の熱酸化膜101を形成する(熱酸化工程)。熱酸化膜は、一般的な縦型炉あるいは横型炉を用い、900~1000℃の温度で1~3時間程度の熱酸化を行って形成する。なお、ベース基板としてSi基板以外の基板を用いる場合は、CVD法などで酸化膜を成膜してもよい。
 続いて、図8の(b)に示すように、熱酸化膜101上にフォトリソグラフィにより所定の領域上にレジストパターン102aを形成し、Si基板100’上に、リンを注入したn型のウェル領域(以下、「n-well」という)106およびボロンを注入したp型のウェル領域(以下、「p-well」という)107を形成する(ウェル形成工程)。
 そして、図示はしないが、一般的なICプロセスに用いられるLOCOS酸化を用いて、n-wellとp-wellとの素子分離を行う。その後、NMOS、PMOS各々の閾値電圧を調整するために、必要に応じてレジストをマスクとしてn-well、p-well内の各チャネル領域にイオン注入を行う。例えば、ボロンイオンを、注入エネルギーが10~40keVであり、注入量が1×1012~1×1013/cm程度の注入条件で注入する。
 続いて、図8の(c)に示すように、ゲート電極材料を成膜あるいはスパッタした後、フォトリソグラフィによりパターニングして、厚さが200~400nm程度のゲート電極108を形成する(ゲート電極形成工程)。ゲート電極108の材料としては、高濃度にリンやボロンをドープしたn+Polyゲート、p+PolyゲートをCVDで成膜したものでもよいし、W、Mo、MoWなどの金属をスパッタで形成したものでもよい。パターニングを形成するためのエッチング方法としては、CCl、BCl、SiCl、Clなどの塩素系を用いたガスやSF、CF、NFなどのフッ素系ガス、およびAr,Oなどのガスを組み合わせて用いたドライエッチングが挙げられる。
 続いて、図8の(d)に示すように、n-well106上のゲート電極108を覆うようにレジストパターン102bを形成し、ゲート電極108およびレジストパターン102bをマスクとして、低濃度のリンを注入し、NMOSにLDD領域109を形成する(LDD領域形成工程)。つまり、リンを、注入エネルギーが10~40keVであり、注入量が1×1013~1×1014/cm程度である条件で注入する。もちろん、LDD構造を必要としない場合、LDD領域形成工程は省略できる。
 続いて、レジストパターン102b剥離した後、Si基板100’の基板全面に、高温酸化膜などの絶縁膜を厚さ200~600nm程度形成してから、エッチバックを行う。これにより、図8の(e)に示すように、ゲート電極108の側部にサイドウォール110を自己整合的に高精度に形成する(サイドウォール形成工程)。サイドウォール110の幅によりLDD領域109の長さが規定される。
 次に、n-well106上のゲート電極108とサイドウォール109とを覆うように、レジストパターン102cを形成する。そして、図8の(f)に示すように、p-well107上のゲート電極108とサイドウォール109、およびn-well106上のレジストパターン102cをマスクとして、高濃度のリンを注入して、p-well107上にn領域であるソース・ドレイン領域111を形成する(ソース・ドレイン領域形成工程)。また、図示はしないが、n-well106上のゲート電極108とサイドウォール109、およびp-well107上のレジストパターンをマスクとして、高濃度のボロンを注入して、n-well106上にp領域であるソース・ドレイン領域111を形成する。
 すなわち、注入エネルギーが20~100keVであり、注入量が1×1015~5×1015/cm程度である条件で、リン又はヒ素をn領域に注入して、p-well107上にn領域のソース・ドレイン領域111を形成する。また、注入エネルギーが20~100keVであり、注入量が1×1015~5×1015/cm程度である条件で、ボロン又はBFをp領域に注入して、n-well106上にp領域のソース・ドレイン領域111を形成する。
 そして、図9の(a)に示すように、Si基板100’に対し、CVD法を用いて熱酸化膜101の全面に層間絶縁膜112を成膜する(層間絶縁膜形成工程)。層間絶縁膜112としては、膜厚が50~200nm程度のSiNO膜、膜厚が200~600nm程度のTEOS膜、あるいはそれらの積層膜を用いる。その後、Si基板100’を、温度800~900℃で1~2時間程度の活性化アニールを行って、ソース・ドレイン領域に注入した不純物イオンを活性化させる。
 続いて、フォトリソグラフィおよびエッチングを行って、層間絶縁膜112にコンタクトホールを形成する。ここで、コンタクトホールを形成するためのエッチング方法は、Clなどのガスを用いたドライエッチングや、HFなどを用いたウェットエッチングを採用する。
 そして、スパッタによりAl、AlSi、Ti、あるいはこれらの積層膜などを、層間絶縁膜112の全面に成膜し、コンタクトホールを介して層間絶縁膜112上に形成された膜とソース・ドレイン領域111とのコンタクトをとる。その後、フォトリソグラフィを行ってパターニングすることにより、図9の(b)に示すように、厚さが400nm程度のソース・ドレイン電極113を形成する(ソース・ドレイン電極形成工程)。
 続いて、図9の(c)に示すように、Si基板100’に対し、CVD法を用いて層間絶縁膜112の全面にさらに層間絶縁膜114を成膜する(層間絶縁膜再形成工程)。層間絶縁膜114として、膜厚が100~300nm程度のSiN膜、膜厚が200~600nm程度のTEOS膜、あるいはそれらの積層膜等を用いることができる。SiN膜を成膜した後に温度450度で30~60分程度の水素シンターを行ってもよい。
 層間絶縁膜114を形成した後、CMPにより層間絶縁膜114の表面を研磨して平坦化を行う(研磨工程)。後工程のレーザ照射で、レーザ光が散乱しないようにSi基板100’の裏面も同時にCMPで研磨してもよい。
 続いて、層間絶縁膜114の全面にレジストパターン102dを形成し、それをマスクとしてフォトリソグラフィとエッチングを行う。これにより、Si基板100’が所定深さにエッチングされるまで処理して、図9の(d)に示すように、トランジスタ毎に分離する(素子分離工程)。素子分離のためのエッチング方法としては、Siのドライエッチングには、CF、SF、NFなどのフッ素系のガス、あるいは、Cl、HCl、BClなどの塩素系のガス、およびAr,Oなどのガスを組み合わせて用いる。SiO、SiNのドライエッチングには、CF、CHF,C、H,O,Arなどのガスを組み合わせて用いればよい。また、HF、BHF,フッ硝酸、熱リン酸などを用いたウェットエッチングなどを組み合わせて行ってもよい。
 続いて、Si基板100’全体をアッシングし、有機剥離液に浸漬させて表面のレジストパターン102dを除去し、層間絶縁膜114の表面を露出させる。これにより、図9の(e)に示すようなSi基板100’上に微小なトランジスタが形成されたSiベース基板100を得る。ここで、Si基板100’と、当該Si基板100’上に微小なトランジスタが形成されたSi基板とを区別するために、素子分離後のSi基板をSi基板100で表記する。
 次に、ガラス基板200を、上記第1~第4の実施の形態で説明したものと同様の方法で形成する(図3参照)。また、Si基板100およびガラス基板200の表面処理、貼り合わせ工程、およびそれ以降のレーザ照射工程、転写工程などは、上記第1の実施の形態で説明したものと同じである(図10を参照)。ここで、上記のように、素子として微小なトランジスタ形成した場合には、Si基板100において、その内部に形成された改質層103の部分で分離されるので、Si基板本体から分離された薄膜(単結晶Si薄膜、ベース基板の一部)は、トランジスタと共にガラス基板200に転写される。この転写されたベース基板の一部は、ドライエッチング装置にてエッチバックを行うことにより除去しても良い。
 このようにして、ガラス基板などの大面積絶縁性基板上では微細加工が困難なサブミクロンレベルの微細なトランジスタを、大面積絶縁性基板上に形成することができる。
 <第6の実施の形態>
 本実施の形態においては、Si基板上の微小なトランジスタをガラス基板に転写する時、レーザ照射によりSi基板の内部で形成された改質層での分離をより容易にするために、Si基板の内部に予め基板内の他の部分よりも強度の弱い脆弱層を形成する工程を追加した場合の例を説明する。
 本実施の形態では、図9の(a)に示すような層間絶縁膜112の形成工程に続いて、CMPにより、層間絶縁膜112の表面を研磨して平坦化を行う。次に、図11の(a)に示すように、Si基板100’の内部の所定の深さに水素イオンを注入、または、ドーピングして、脆弱層104を形成する。
 水素イオンの注入またはドーピングの条件としては、例えば、Hイオンの場合は、注入エネルギーが150~250keV程度であり、注入量が1×1016~1×1017/cmである条件で注入すればよい。また、H、H2+、H3+などの各種水素イオンを含む場合は、注入エネルギーが150~250keV程度であり、注入量が2×1017/cm~1×1018/cmという条件でイオンドーピングすればよい。注入またはドーピングされた水素イオン層は、その後の熱アニールにより、Si基板100の内部に脆弱層104を形成する(脆弱層形成工程)。上記所定の深さは、後工程でガラス基板に転写される薄膜の厚さを考慮して、注入エネルギーを変えることにより適宜に調整することができる。
 この脆弱層形成工程は、Si基板100’上に熱酸化膜101を形成した(図8の(a))後に行ってもよい。
 また、脆弱層形成工程以降のステップは、上記第1~第5の実施の形態の説明と同じである。ここで、微小なトランジスタの転写工程を簡単に説明すると、図11の(b)に示すように、貼り合わせたSi基板100とガラス基板200に対して、Si基板100の裏面から多光子吸収を起こす波長を有するレーザを照射すると、Si基板100の内部のレーザ照射位置には溶融処理領域(結晶構造周期性が乱れた非晶質シリコン)を含む改質層103が形成され、これを起点としてクラックや割れが発生する。この時、予め水素イオンの注入により脆弱層104が形成されているので、脆弱層104に沿ってクラックや割れが走り、図11の(c)に示すように、脆弱層104の形成位置でSi基板100が分離され、Si基板100とガラス基板200とが分離される。
 <第7の実施の形態>
 上記第6の実施の形態に対して、本実施の形態では、脆弱層104の代わりに、Si基板100の内部に予め光吸収層105を形成しておく場合の例を説明する。光吸収層105により、レーザを照射する際に、光吸収層105でこれら準位を介した多光子吸収が起こりやすくなって、結晶構造周期性がより乱れた非晶質シリコン(溶融処理領域)が形成され、剥れやすい改質層103を形成することができる。
 光吸収層105については、上記第3の実施の形態における光吸収層の形成工程と同じ工程によって形成することができるので、詳しい説明は省略する。
 また、上記第6の実施の形態に説明したように、光吸収層105の形成工程は、Si基板100’に熱酸化膜101を形成した(図8の(a))後に行ってもよいし、層間絶縁膜112の形成工程(図9の(a))後に、CMPにより層間絶縁膜112の表面を研磨し平坦化してから行ってもよい。
 なお、層間絶縁膜112の表面を研磨し平坦化してからイオンの注入またはイオンドーピングを行う場合には、イオンをより深く注入するために、上記第3の実施の形態での条件よりも注入エネルギーを高くすることが好ましい。例えばボロンを注入する場合は、注入エネルギーが150~300keV程度で、注入量が1×1015/cm以上の条件で行う。
 また、光吸収層の形成工程以降のステップは、上記第6の実施の形態の説明と同じである。つまり、貼り合わせたSi基板100とガラス基板200に対して、Si基板100の裏面から多光子吸収波長を有するレーザを照射すると、Si基板100の内部のレーザ照射位置には溶融処理領域(結晶構造周期性が乱れた非晶質シリコン)を含む改質層103が形成され、クラックや割れが発生する。この時、予めボロンなどのイオン注入により光吸収層105が形成されているので、より多くのレーザ光を吸収して、結晶構造周期性がより乱れた非晶質シリコン(溶融処理領域)を有する改質層103を形成できる。そのため、Si基板100とガラス基板200とをより容易に分離することができる。
 <第8の実施の形態>
 本実施の形態では、Si基板100とガラス基板200とを分離する方法について説明する。ここで、Si基板100とガラス板200とを分離するステップ以外は、上記第5~7の実施の形態と同じである。つまり、上記第5~7の実施の形態による何れかの方法により、Si基板100およびガラス基板200を形成し、Si基板100とガラス基板200とに対する表面処理、貼り合わせ工程およびレーザ照射工程を経由して、剥れやすい改質層103を形成する。
 そして、Si基板100とガラス基板200との分離によるトランジスタの転写工程において、図11に示すように、機械的力による剥離またはラミネート膜剥離方法を用いて、両基板を分離する。
 つまり、図12の(a)に示すように、レーザ照射工程により改質層103が形成されたSi基板100に、当該基板の側面から先端が鋭利なブレード301を当てる。これにより、機械的な力で改質層103に形成されたクラックや割れを拡大させて、改質層103の位置で、Si基板100上のSi基板材料からなる薄膜と共に、Si基板100上に形成されたトランジスタをSi基板100から剥離する。
 あるいは、図12の(b)に示すように、貼り合わせたSi基板100の裏面に、ラミネート膜としてダイシングなどに用いられる接着シート302を貼り付け、この接着シート302およびSi基板100を同時に引き剥がすことによって、改質層103の位置で、Si基板100上のSi基板材料からなる薄膜と共に、Si基板100上に形成されたトランジスタをSi基板100から剥離する。
 このように、以上の実施の形態のように、Si基板(ベース基板)上の半導体デバイスを、大面積のガラス基板(転写先基板)に分散配置して転写することができる。
 なお、本発明において、素子をベース基板から転写先基板に転写する際、転写先基板によって接着剤が必要な場合もある。例えば、反りやうねり、表面ラフネス(面粗さRa)が小さいガラス基板へは接着剤を使わずに分子間力で接合可能だが、反りやうねり、表面ラフネス(面粗さRa)の大きいプラスチック基板などになると分子間力では接合しないため、接着剤等による接着が必要になる。その場合は平面でフラットな転写先基板において、素子が貼り合わされる位置だけに予め接着剤を塗布しておいても良いし、あるいはアイランドパターンの隆起部を形成した転写先基板において、隆起部の上だけに接着剤を塗布しておいても良い。
 また、本発明は下記のような構成によっても実現できる。
 本発明の半導体装置の製造方法において、転写された上記一部の素子が、上記第2基板にマトリクス状のアイランドパターンを形成することが好ましい。
 上記方法によれば、転写先基板上に転写された転写対象の素子を、マトリクス状に分散配置させることができるので、高性能で低コストの半導体装置を製造することができる。
 上記半導体装置の製造方法において、上記第2基板の上記アイランドパターンのピッチが、上記第1基板の上記アイランドパターンのピッチの整数倍であることが好ましい。
 上記方法によれば、転写先の第2基板のアイランドパターンのピッチが、第1基板のアイランドパターンの整数倍であるので、第2基板のアイランドパターンのピッチが整数倍で変更になった場合でも(例えばピッチが2倍から4倍に変更になった場合でも)、第1基板のアイランドパターンのレイアウトはそのままで、第2基板のレイアウトだけを変更すればよく、転写対象を効率的に第2基板の転写位置に対応させて分散配置することができる。
 上記半導体装置の製造方法において、上記レーザの照射は、レーザ光源を基板面に沿って走査しながら、あるいは基板が搭載されたステージを基板面に沿って走査しながら、上記ベース基板の所定の位置に対して行うことが好ましい。
 上記方法によれば、レーザのスポット径よりも大きい剥離面積を有する所定位置に対しても全面にレーザ照射できるので、剥離するための改質領域を全面に形成し、改質領域での分離をより確実に行うことができる。
 上記半導体装置の製造方法において、上記ベース基板の内部に脆弱層を形成し、当該脆弱層に対して上記レーザを照射することが好ましい。また、脆弱層は、水素原子、水素分子、水素イオン、および希ガスイオンのうち、少なくとも1つを、上記ベース基板の内部にイオン注入またはイオンドーピングして形成することができる。
 ここで、上記脆弱層とは、ベース基板内の他の部分と比較して、その強度がより弱い層のことをいう。上記方法によれば、ベース基板の内部において、レーザ照射による改質領域が脆弱層に沿って形成されるので、改質領域での分離がより容易になる。
 上記半導体装置の製造方法において、上記ベース基板の内部に光吸収層を形成し、当該光吸収層に対して上記レーザを照射することが好ましい。また、光吸収層は、ボロン、リン、ヒ素、ガリウム、インジウム、チタン、パラジウム、炭素、シリコン、アンチモン、亜鉛、テルル、およびカドミウムのうち、何れか1つを、ベース基板の内部にイオン注入又はイオンドーピングして形成することができる。
 ここで、上記光吸収層とは、ベース基板内の他の部分と比較して、キャリアが遷移するための準位が多く存在し光をより多く吸収する層のことをいう。上記方法によれば、ベース基板の内部において、レーザ照射する際、光吸収層でより多くの光を吸収できて、多光子吸収現象が起こりやすくなる。このため、レーザ照射による改質がより激しくなって、分離がより容易になる。
 上記半導体装置の製造方法において、ベース基板の温度を室温以上に上げた状態で、レーザ照射を行うことが好ましい。
 上記方法によれば、ベース基板の温度を室温以上に上げることによって、バンドギャップが狭くなり、より多くの光を吸収できるようになる。このため、多光子吸収現象が起こりやすくなり、より弱い構造の改質領域を形成することができる。
 上記半導体装置の製造方法において、Nd:YAGレーザ、Nd:YVO4レーザ、Nd:YLFレーザ、およびチタンサファイアレーザのうちの何れかを用いることが好ましい。
 上記方法によれば、上記に挙げたレーザは、波長が長いため、UV光では非透過な基板に対しても、基板の表面を透過し、多光子吸収現象により基板内部で集光して、構造の弱い改質領域を形成することができる。
 上記半導体装置の製造方法において、ベース基板の側面から機械的力を加えて、転写したい上記一部の素子を、上記第1基板から分離することが好ましい。
 上記方法によれば、外部の機械的力によって、ベース基板内部の改質領域での分離がより容易になる。
 上記半導体装置の製造方法において、素子は、半導体薄膜、半導体デバイスまたは半導体デバイスの一部であることを特徴とする。
 上記方法によれば、素子として、半導体デバイスの一部を転写するので、形成途中の半導体デバイス半完成品を、転写先基板に選択的に転写することができ、大面積基板上では困難な微細加工のみを小面積基板上で加工し、加工精度の要求が高くない加工については、上記素子(半導体デバイスの一部)を転写した後に、さらに大面積基板上に形成することが可能となる。微細加工を必要としない場合は、素子として半導体薄膜を大面積基板に転写した後に、大面積基板上で一括加工を行うことができる。また、全工程において微細加工が必要な場合は、素子として小面積基板上で完成させた微細な半導体デバイスを、大面積基板上に転写することができる。これにより、半導体デバイスを加工精度に応じて加工できるので、生産コストを下げるとともに、スループットを高めることができる。
 上記半導体デバイスとして、発光素子、液晶制御素子、光電交換素子、圧電素子、薄膜トランジスタ素子、薄膜ダイオード素子、抵抗素子、スイッチング素子、微小磁気素子、微小光学素子が挙げられる。
 また、上記素子は、単結晶Si薄膜または単結晶Siを含む半導体デバイスであってもよい。
 上記方法によれば、単結晶Si薄膜または単結晶Siを含む半導体デバイスを第2基板へ選択的に転写することができる。ここで上記単結晶Siを含む半導体デバイスとしては、トランジスタが挙げられる。
 上記半導体装置の製造方法において、上記レーザを、ピークパワー密度が1×10W/cm以上で、かつパルス幅が1μs以下の条件で照射することが好ましい。より好ましくは、上記レーザを、ピークパワー密度が1×1011W/cm~1×1012W/cmで、かつパルス幅が1ns~200nsの条件で照射する。
 上記方法によれば、ベース基板内部にクラックを含む改質層や溶融処理領域を含む改質層など構造の弱い改質層を安定して形成することができる。
 また、上記レーザを、ピークパワー密度が1×10W/cm以上で、かつパルス幅が1ns以下の条件で照射することが好ましい。これにより、屈折率変化領域を含む改質層を安定して形成することができる。
 上記半導体装置の製造方法において、上記ベース基板として、シリコン基板、SOI基板、サファイア基板、GaN基板、およびGaAs基板のうちの何れかを用いることが好ましい。上記方法によれば、トランジスタ、発電素子、発光素子など様々な半導体デバイスを分散して第2基板上に配置することができる。
 上記半導体装置の製造方法において、上記第2基板を構成する基板として、ガラス基板、プラスチック基板、および支持基板に貼り合わせたフィルムのうちの何れかを用いることが好ましい。上記方法によれば、柔らかい基板上にも素子を分散して配置することができる。
 また、本発明の半導体装置において、上記素子は、単結晶Si薄膜、単結晶Siを含む半導体デバイスまたは半導体素子の一部であることが好ましい。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、小さい基板上で作成した微小な半導体素子を分散させて、大面積の基板に転写する半導体装置の製造方法に適用される。
 100  Si基板(ベース基板、第1基板)
 100” アイランド(隆起部)
 103  改質層
 104  脆弱層
 105  光吸収層
 108  ゲート電極
 113  ソース・ドレイン電極
 200  ガラス基板(転写先基板、第2基板)
 200” アイランド(隆起部)
 301  ブレード
 302  接着シート

Claims (21)

  1.  ベース基板上に複数の素子が配列したアイランドパターンを形成して第1基板を形成する工程と、
     上記第1基板と、上記第1基板とは異なる第2基板とを上記複数の素子の一部を介して貼り合わせる工程と、
     上記第1基板上に形成された複数の素子のうちの上記一部の素子が形成されている位置に対して、多光子吸収を起こす波長を有するレーザを照射することで、上記一部の素子を上記第1基板から分離し、上記第2基板上に選択的に転写する工程と、
    を含むことを特徴とする半導体装置の製造方法。
  2.  転写された上記一部の素子が、上記第2基板にマトリクス状のアイランドパターンを形成することを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  上記第2基板の上記アイランドパターンのピッチが、上記第1基板の上記アイランドパターンのピッチの整数倍であることを特徴とする請求項2に記載の半導体装置の製造方法。
  4.  上記レーザの照射は、レーザ光源を基板面に沿って走査しながら、あるいは基板が搭載されたステージを基板面に沿って走査しながら、上記ベース基板の所定の位置に対して行うことを特徴とする請求項1~3の何れか1項に記載の半導体装置の製造方法。
  5.  上記ベース基板の内部に脆弱層を形成し、当該脆弱層に対して上記レーザを照射することを特徴とする請求項1~4の何れか1項に記載の半導体装置の製造方法。
  6.  上記脆弱層は、水素原子、水素分子、水素イオン、および希ガスイオンのうち、少なくとも1つを、上記第1基板の内部にイオン注入またはイオンドーピングして形成されることを特徴とする請求項5に記載の半導体装置の製造方法。
  7.  上記ベース基板の内部に光吸収層を形成し、当該光吸収層に対して上記レーザを照射することを特徴とする請求項1~4の何れか1項に記載の半導体装置の製造方法。
  8.  上記光吸収層は、ボロン、リン、ヒ素、ガリウム、インジウム、チタン、パラジウム、炭素、シリコン、アンチモン、亜鉛、テルル、およびカドミウムのうち、何れか1つを、上記ベース基板の内部にイオン注入又はイオンドーピングして形成されることを特徴とする、請求項7に記載の半導体装置の製造方法。
  9.  上記ベース基板の温度を室温以上に上げた状態で、上記レーザを照射することを特徴とする、請求項1~8の何れか1項に記載の半導体装置の製造方法。
  10.  上記レーザは、Nd:YAGレーザ、Nd:YVO4レーザ、Nd:YLFレーザ、およびチタンサファイアレーザのうちの何れかであることを特徴とする請求項1~9の何れか1項に記載の半導体装置の製造方法。
  11.  上記ベース基板の側面から機械的力を加えて、転写したい上記一部の素子を、上記第1基板から分離することを特徴とする請求項1~10の何れか1項に記載の半導体装置の製造方法。
  12.  上記素子は、半導体薄膜、半導体デバイスまたは半導体デバイスの一部であることを特徴とする請求項1~11の何れか1項に記載の半導体装置の製造方法。
  13.  上記半導体デバイスは、発光素子、液晶制御素子、光電交換素子、圧電素子、薄膜トランジスタ素子、薄膜ダイオード素子、抵抗素子、スイッチング素子、微小磁気素子、微小光学素子であることを特徴とする請求項12に記載の半導体装置の製造方法。
  14.  上記素子は、単結晶Si薄膜または単結晶Siを含む半導体デバイスであることを特徴とする請求項12に記載の半導体装置の製造方法。
  15.  上記レーザを、ピークパワー密度が1×10W/cm以上で、かつパルス幅が1μs以下の条件で照射することを特徴とする、請求項1~14の何れか1項に記載の半導体装置の製造方法。
  16.  上記レーザを、ピークパワー密度が1×1011W/cm~1×1012W/cmで、かつパルス幅が1ns~200nsの条件で照射することを特徴とする請求項15に記載の半導体装置の製造方法。
  17.  上記レーザを、ピークパワー密度が1×10W/cm以上で、かつパルス幅が1ns以下の条件で照射することを特徴とする、請求項1~14の何れか1項に記載の半導体装置の製造方法。
  18.  上記ベース基板として、シリコン基板、SOI基板、サファイア基板、GaN基板、およびGaAs基板のうちの何れかを用いることを特徴とする請求項1~17の何れか1項に記載の半導体装置の製造方法。
  19.  上記第2基板を構成する基板として、ガラス基板、プラスチック基板、および支持基板に貼り合わせたフィルムのうちの何れかを用いることを特徴とする請求項1~18の何れか1項に記載の半導体装置の製造方法。
  20.  絶縁基板上に素子が転写されて形成された半導体装置であって、
     上記絶縁基板は、所定の間隔で配列した隆起部を有しており、
     上記素子は、その上面が上記隆起部に接し、かつその下面が上記隆起部から離れるように上記隆起部に直接形成されていることを特徴とする半導体装置。
  21.  上記素子は、単結晶Si薄膜、単結晶Siを含む半導体デバイスまたは半導体デバイスの一部であることを特徴とする請求項20に記載の半導体装置。
PCT/JP2010/068291 2009-12-11 2010-10-18 半導体装置の製造方法および半導体装置 WO2011070855A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080055250.5A CN102754185B (zh) 2009-12-11 2010-10-18 半导体装置的制造方法和半导体装置
JP2011545139A JP5547212B2 (ja) 2009-12-11 2010-10-18 半導体装置の製造方法
US13/514,104 US8759951B2 (en) 2009-12-11 2010-10-18 Method for manufacturing semiconductor device, and semiconductor device
EP10835777A EP2511942A1 (en) 2009-12-11 2010-10-18 Method for manufacturing semiconductor device, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009282189 2009-12-11
JP2009-282189 2009-12-11

Publications (1)

Publication Number Publication Date
WO2011070855A1 true WO2011070855A1 (ja) 2011-06-16

Family

ID=44145408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068291 WO2011070855A1 (ja) 2009-12-11 2010-10-18 半導体装置の製造方法および半導体装置

Country Status (5)

Country Link
US (1) US8759951B2 (ja)
EP (1) EP2511942A1 (ja)
JP (1) JP5547212B2 (ja)
CN (1) CN102754185B (ja)
WO (1) WO2011070855A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032690A (ja) * 2013-08-02 2015-02-16 株式会社ディスコ 積層ウェーハの加工方法

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948562B2 (en) * 2008-11-25 2015-02-03 Regents Of The University Of Minnesota Replication of patterned thin-film structures for use in plasmonics and metamaterials
US8669778B1 (en) 2009-04-14 2014-03-11 Monolithic 3D Inc. Method for design and manufacturing of a 3D semiconductor device
US8058137B1 (en) 2009-04-14 2011-11-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9509313B2 (en) 2009-04-14 2016-11-29 Monolithic 3D Inc. 3D semiconductor device
US8754533B2 (en) 2009-04-14 2014-06-17 Monolithic 3D Inc. Monolithic three-dimensional semiconductor device and structure
US9577642B2 (en) 2009-04-14 2017-02-21 Monolithic 3D Inc. Method to form a 3D semiconductor device
US8362482B2 (en) 2009-04-14 2013-01-29 Monolithic 3D Inc. Semiconductor device and structure
US8395191B2 (en) 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
US11018133B2 (en) 2009-10-12 2021-05-25 Monolithic 3D Inc. 3D integrated circuit
US10366970B2 (en) 2009-10-12 2019-07-30 Monolithic 3D Inc. 3D semiconductor device and structure
US8148728B2 (en) 2009-10-12 2012-04-03 Monolithic 3D, Inc. Method for fabrication of a semiconductor device and structure
US10910364B2 (en) 2009-10-12 2021-02-02 Monolitaic 3D Inc. 3D semiconductor device
US8742476B1 (en) 2012-11-27 2014-06-03 Monolithic 3D Inc. Semiconductor device and structure
US9099424B1 (en) 2012-08-10 2015-08-04 Monolithic 3D Inc. Semiconductor system, device and structure with heat removal
US8536023B2 (en) * 2010-11-22 2013-09-17 Monolithic 3D Inc. Method of manufacturing a semiconductor device and structure
US10354995B2 (en) 2009-10-12 2019-07-16 Monolithic 3D Inc. Semiconductor memory device and structure
US11374118B2 (en) 2009-10-12 2022-06-28 Monolithic 3D Inc. Method to form a 3D integrated circuit
US10388863B2 (en) 2009-10-12 2019-08-20 Monolithic 3D Inc. 3D memory device and structure
US10043781B2 (en) 2009-10-12 2018-08-07 Monolithic 3D Inc. 3D semiconductor device and structure
US10157909B2 (en) 2009-10-12 2018-12-18 Monolithic 3D Inc. 3D semiconductor device and structure
US8461035B1 (en) 2010-09-30 2013-06-11 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US9099526B2 (en) 2010-02-16 2015-08-04 Monolithic 3D Inc. Integrated circuit device and structure
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
US9953925B2 (en) 2011-06-28 2018-04-24 Monolithic 3D Inc. Semiconductor system and device
US8901613B2 (en) 2011-03-06 2014-12-02 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US8642416B2 (en) 2010-07-30 2014-02-04 Monolithic 3D Inc. Method of forming three dimensional integrated circuit devices using layer transfer technique
US10217667B2 (en) 2011-06-28 2019-02-26 Monolithic 3D Inc. 3D semiconductor device, fabrication method and system
US9219005B2 (en) 2011-06-28 2015-12-22 Monolithic 3D Inc. Semiconductor system and device
US11482440B2 (en) 2010-12-16 2022-10-25 Monolithic 3D Inc. 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits
US8273610B2 (en) 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure
US8163581B1 (en) 2010-10-13 2012-04-24 Monolith IC 3D Semiconductor and optoelectronic devices
US10497713B2 (en) 2010-11-18 2019-12-03 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11227897B2 (en) 2010-10-11 2022-01-18 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US10896931B1 (en) 2010-10-11 2021-01-19 Monolithic 3D Inc. 3D semiconductor device and structure
US11257867B1 (en) 2010-10-11 2022-02-22 Monolithic 3D Inc. 3D semiconductor device and structure with oxide bonds
US11024673B1 (en) 2010-10-11 2021-06-01 Monolithic 3D Inc. 3D semiconductor device and structure
US11469271B2 (en) 2010-10-11 2022-10-11 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11158674B2 (en) 2010-10-11 2021-10-26 Monolithic 3D Inc. Method to produce a 3D semiconductor device and structure
US11315980B1 (en) 2010-10-11 2022-04-26 Monolithic 3D Inc. 3D semiconductor device and structure with transistors
US10290682B2 (en) 2010-10-11 2019-05-14 Monolithic 3D Inc. 3D IC semiconductor device and structure with stacked memory
US11018191B1 (en) 2010-10-11 2021-05-25 Monolithic 3D Inc. 3D semiconductor device and structure
US11600667B1 (en) 2010-10-11 2023-03-07 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US10679977B2 (en) 2010-10-13 2020-06-09 Monolithic 3D Inc. 3D microdisplay device and structure
US11404466B2 (en) 2010-10-13 2022-08-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US10978501B1 (en) 2010-10-13 2021-04-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US10943934B2 (en) 2010-10-13 2021-03-09 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11437368B2 (en) 2010-10-13 2022-09-06 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11327227B2 (en) 2010-10-13 2022-05-10 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US11869915B2 (en) 2010-10-13 2024-01-09 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11063071B1 (en) 2010-10-13 2021-07-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US11163112B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US11164898B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11855100B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11694922B2 (en) 2010-10-13 2023-07-04 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11855114B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US9197804B1 (en) 2011-10-14 2015-11-24 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US11133344B2 (en) 2010-10-13 2021-09-28 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US10833108B2 (en) 2010-10-13 2020-11-10 Monolithic 3D Inc. 3D microdisplay device and structure
US11929372B2 (en) 2010-10-13 2024-03-12 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11043523B1 (en) 2010-10-13 2021-06-22 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11605663B2 (en) 2010-10-13 2023-03-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US10998374B1 (en) 2010-10-13 2021-05-04 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11443971B2 (en) 2010-11-18 2022-09-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11482439B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors
US11355380B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. Methods for producing 3D semiconductor memory device and structure utilizing alignment marks
US11610802B2 (en) 2010-11-18 2023-03-21 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes
US11031275B2 (en) 2010-11-18 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11854857B1 (en) 2010-11-18 2023-12-26 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11569117B2 (en) 2010-11-18 2023-01-31 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11521888B2 (en) 2010-11-18 2022-12-06 Monolithic 3D Inc. 3D semiconductor device and structure with high-k metal gate transistors
US11923230B1 (en) 2010-11-18 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11508605B2 (en) 2010-11-18 2022-11-22 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11862503B2 (en) 2010-11-18 2024-01-02 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11735462B2 (en) 2010-11-18 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11164770B1 (en) 2010-11-18 2021-11-02 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11901210B2 (en) 2010-11-18 2024-02-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11804396B2 (en) 2010-11-18 2023-10-31 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11211279B2 (en) 2010-11-18 2021-12-28 Monolithic 3D Inc. Method for processing a 3D integrated circuit and structure
US11355381B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11018042B1 (en) 2010-11-18 2021-05-25 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11094576B1 (en) 2010-11-18 2021-08-17 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11121021B2 (en) 2010-11-18 2021-09-14 Monolithic 3D Inc. 3D semiconductor device and structure
US11615977B2 (en) 2010-11-18 2023-03-28 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11107721B2 (en) 2010-11-18 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure with NAND logic
US11004719B1 (en) 2010-11-18 2021-05-11 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11784082B2 (en) 2010-11-18 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11482438B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11495484B2 (en) 2010-11-18 2022-11-08 Monolithic 3D Inc. 3D semiconductor devices and structures with at least two single-crystal layers
US8975670B2 (en) 2011-03-06 2015-03-10 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US10388568B2 (en) 2011-06-28 2019-08-20 Monolithic 3D Inc. 3D semiconductor device and system
US8687399B2 (en) 2011-10-02 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
CN103890908B (zh) * 2011-10-18 2016-08-24 富士电机株式会社 固相键合晶片的支承基板的剥离方法及半导体装置的制造方法
US9029173B2 (en) 2011-10-18 2015-05-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9218968B2 (en) * 2011-11-29 2015-12-22 Joled Inc Method for forming crystalline thin-film and method for manufacturing thin film transistor
US9000557B2 (en) 2012-03-17 2015-04-07 Zvi Or-Bach Semiconductor device and structure
US9847445B2 (en) * 2012-04-05 2017-12-19 Koninklijke Philips N.V. LED thin-film device partial singulation prior to substrate thinning or removal
US11735501B1 (en) 2012-04-09 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11476181B1 (en) 2012-04-09 2022-10-18 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11694944B1 (en) 2012-04-09 2023-07-04 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US8557632B1 (en) 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US11164811B2 (en) 2012-04-09 2021-11-02 Monolithic 3D Inc. 3D semiconductor device with isolation layers and oxide-to-oxide bonding
US11616004B1 (en) 2012-04-09 2023-03-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11410912B2 (en) 2012-04-09 2022-08-09 Monolithic 3D Inc. 3D semiconductor device with vias and isolation layers
US11881443B2 (en) 2012-04-09 2024-01-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11088050B2 (en) 2012-04-09 2021-08-10 Monolithic 3D Inc. 3D semiconductor device with isolation layers
US10600888B2 (en) 2012-04-09 2020-03-24 Monolithic 3D Inc. 3D semiconductor device
US11594473B2 (en) 2012-04-09 2023-02-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US8686428B1 (en) 2012-11-16 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US8574929B1 (en) 2012-11-16 2013-11-05 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US8674470B1 (en) 2012-12-22 2014-03-18 Monolithic 3D Inc. Semiconductor device and structure
US11916045B2 (en) 2012-12-22 2024-02-27 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11784169B2 (en) 2012-12-22 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11217565B2 (en) 2012-12-22 2022-01-04 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11018116B2 (en) 2012-12-22 2021-05-25 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11063024B1 (en) 2012-12-22 2021-07-13 Monlithic 3D Inc. Method to form a 3D semiconductor device and structure
US11309292B2 (en) 2012-12-22 2022-04-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US10903089B1 (en) 2012-12-29 2021-01-26 Monolithic 3D Inc. 3D semiconductor device and structure
US10600657B2 (en) 2012-12-29 2020-03-24 Monolithic 3D Inc 3D semiconductor device and structure
US11430668B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11087995B1 (en) 2012-12-29 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US9385058B1 (en) 2012-12-29 2016-07-05 Monolithic 3D Inc. Semiconductor device and structure
US11004694B1 (en) 2012-12-29 2021-05-11 Monolithic 3D Inc. 3D semiconductor device and structure
US10651054B2 (en) 2012-12-29 2020-05-12 Monolithic 3D Inc. 3D semiconductor device and structure
US10115663B2 (en) 2012-12-29 2018-10-30 Monolithic 3D Inc. 3D semiconductor device and structure
US9871034B1 (en) 2012-12-29 2018-01-16 Monolithic 3D Inc. Semiconductor device and structure
US11177140B2 (en) 2012-12-29 2021-11-16 Monolithic 3D Inc. 3D semiconductor device and structure
US10892169B2 (en) 2012-12-29 2021-01-12 Monolithic 3D Inc. 3D semiconductor device and structure
US11430667B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11869965B2 (en) 2013-03-11 2024-01-09 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US11935949B1 (en) 2013-03-11 2024-03-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US10325651B2 (en) 2013-03-11 2019-06-18 Monolithic 3D Inc. 3D semiconductor device with stacked memory
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US8994404B1 (en) 2013-03-12 2015-03-31 Monolithic 3D Inc. Semiconductor device and structure
US11398569B2 (en) 2013-03-12 2022-07-26 Monolithic 3D Inc. 3D semiconductor device and structure
US11088130B2 (en) 2014-01-28 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US10840239B2 (en) 2014-08-26 2020-11-17 Monolithic 3D Inc. 3D semiconductor device and structure
US11923374B2 (en) 2013-03-12 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US9117749B1 (en) 2013-03-15 2015-08-25 Monolithic 3D Inc. Semiconductor device and structure
US10224279B2 (en) 2013-03-15 2019-03-05 Monolithic 3D Inc. Semiconductor device and structure
US11574109B1 (en) 2013-04-15 2023-02-07 Monolithic 3D Inc Automation methods for 3D integrated circuits and devices
US11487928B2 (en) 2013-04-15 2022-11-01 Monolithic 3D Inc. Automation for monolithic 3D devices
US11341309B1 (en) 2013-04-15 2022-05-24 Monolithic 3D Inc. Automation for monolithic 3D devices
US11030371B2 (en) 2013-04-15 2021-06-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US9021414B1 (en) 2013-04-15 2015-04-28 Monolithic 3D Inc. Automation for monolithic 3D devices
US11720736B2 (en) 2013-04-15 2023-08-08 Monolithic 3D Inc. Automation methods for 3D integrated circuits and devices
US11270055B1 (en) 2013-04-15 2022-03-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11107808B1 (en) 2014-01-28 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure
US10297586B2 (en) 2015-03-09 2019-05-21 Monolithic 3D Inc. Methods for processing a 3D semiconductor device
US11031394B1 (en) 2014-01-28 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure
US11011507B1 (en) 2015-04-19 2021-05-18 Monolithic 3D Inc. 3D semiconductor device and structure
US10825779B2 (en) 2015-04-19 2020-11-03 Monolithic 3D Inc. 3D semiconductor device and structure
US10381328B2 (en) 2015-04-19 2019-08-13 Monolithic 3D Inc. Semiconductor device and structure
US11056468B1 (en) 2015-04-19 2021-07-06 Monolithic 3D Inc. 3D semiconductor device and structure
WO2017008253A1 (en) * 2015-07-14 2017-01-19 Goertek. Inc Transferring method, manufacturing method, device and electronic apparatus of micro-led
US11956952B2 (en) 2015-08-23 2024-04-09 Monolithic 3D Inc. Semiconductor memory device and structure
CN115942752A (zh) 2015-09-21 2023-04-07 莫诺利特斯3D有限公司 3d半导体器件和结构
US10522225B1 (en) 2015-10-02 2019-12-31 Monolithic 3D Inc. Semiconductor device with non-volatile memory
US10847540B2 (en) 2015-10-24 2020-11-24 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11114464B2 (en) 2015-10-24 2021-09-07 Monolithic 3D Inc. 3D semiconductor device and structure
US11296115B1 (en) 2015-10-24 2022-04-05 Monolithic 3D Inc. 3D semiconductor device and structure
US10418369B2 (en) 2015-10-24 2019-09-17 Monolithic 3D Inc. Multi-level semiconductor memory device and structure
US11937422B2 (en) 2015-11-07 2024-03-19 Monolithic 3D Inc. Semiconductor memory device and structure
US11114427B2 (en) 2015-11-07 2021-09-07 Monolithic 3D Inc. 3D semiconductor processor and memory device and structure
DE102016100565B4 (de) * 2016-01-14 2022-08-11 Infineon Technologies Ag Verfahren zum herstellen einer halbleitervorrichtung
GB2546966B (en) * 2016-01-21 2021-08-04 Univ Southampton Trimming optical device structures
US10410883B2 (en) * 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10134657B2 (en) 2016-06-29 2018-11-20 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
CN109690757B (zh) * 2016-10-04 2023-02-28 维耶尔公司 施体衬底中的微装置布置
US11869591B2 (en) 2016-10-10 2024-01-09 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11812620B2 (en) 2016-10-10 2023-11-07 Monolithic 3D Inc. 3D DRAM memory devices and structures with control circuits
US11930648B1 (en) 2016-10-10 2024-03-12 Monolithic 3D Inc. 3D memory devices and structures with metal layers
US11251149B2 (en) 2016-10-10 2022-02-15 Monolithic 3D Inc. 3D memory device and structure
US11711928B2 (en) 2016-10-10 2023-07-25 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11329059B1 (en) 2016-10-10 2022-05-10 Monolithic 3D Inc. 3D memory devices and structures with thinned single crystal substrates
US20180138357A1 (en) * 2016-11-11 2018-05-17 QMAT, Inc. Micro-light emitting diode (led) fabrication by layer transfer
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
JP6990577B2 (ja) * 2017-12-22 2022-01-12 東レエンジニアリング株式会社 実装方法および実装装置
KR102113200B1 (ko) * 2017-12-22 2020-06-03 엘씨스퀘어(주) 변형필름을 이용한 전사방법
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
JP6431631B1 (ja) * 2018-02-28 2018-11-28 株式会社フィルネックス 半導体素子の製造方法
US11152294B2 (en) 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
WO2019217976A2 (en) * 2018-04-26 2019-11-14 QMAT, Inc. Patterning on layer transferred templates
WO2019239829A1 (ja) * 2018-06-13 2019-12-19 国立大学法人東北大学 Memsデバイスの製造方法およびmemsデバイス
US10796938B2 (en) 2018-10-17 2020-10-06 X Display Company Technology Limited Micro-transfer printing with selective component removal
US10573544B1 (en) * 2018-10-17 2020-02-25 X-Celeprint Limited Micro-transfer printing with selective component removal
US11414782B2 (en) 2019-01-13 2022-08-16 Bing Hu Method of separating a film from a main body of a crystalline object
WO2020171940A1 (en) 2019-02-21 2020-08-27 Corning Incorporated Glass or glass ceramic articles with copper-metallized through holes and processes for making the same
CN109904065B (zh) * 2019-02-21 2021-05-11 中国科学院上海微系统与信息技术研究所 异质结构的制备方法
KR20200104981A (ko) * 2019-02-27 2020-09-07 삼성디스플레이 주식회사 표시 장치 및 그 리페어 방법
US11296106B2 (en) 2019-04-08 2022-04-05 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11018156B2 (en) 2019-04-08 2021-05-25 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11763864B2 (en) 2019-04-08 2023-09-19 Monolithic 3D Inc. 3D memory semiconductor devices and structures with bit-line pillars
US11158652B1 (en) 2019-04-08 2021-10-26 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US10892016B1 (en) 2019-04-08 2021-01-12 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11328942B1 (en) * 2019-09-10 2022-05-10 Facebook Technologies, Llc Liquid crystalline elastomer for pick and place of semiconductor devices
CN112967982B (zh) * 2020-09-10 2022-04-19 重庆康佳光电技术研究院有限公司 转移基板及制作方法、芯片转移方法及显示面板
JP2022136755A (ja) 2021-03-08 2022-09-21 キオクシア株式会社 半導体製造装置および半導体装置の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348201B2 (ja) 1981-03-11 1991-07-23 Daiichi Togyo Kk
JPH11142878A (ja) * 1997-11-12 1999-05-28 Sharp Corp 表示用トランジスタアレイパネルの形成方法
JP3408805B2 (ja) 2000-09-13 2003-05-19 浜松ホトニクス株式会社 切断起点領域形成方法及び加工対象物切断方法
JP3447619B2 (ja) 1999-06-25 2003-09-16 株式会社東芝 アクティブマトリクス基板の製造方法、中間転写基板
JP3474187B1 (ja) 2002-11-19 2003-12-08 英樹 松村 画素制御素子の選択転写方法、及び、画素制御素子の選択転写方法に使用される画素制御素子の実装装置
JP2006032435A (ja) 2004-07-12 2006-02-02 Sharp Corp 半導体装置の製造方法及び半導体装置の製造装置
JP2006041430A (ja) * 2004-07-30 2006-02-09 Denso Corp 半導体基板の製造方法
JP2006053171A (ja) 2004-08-09 2006-02-23 Sharp Corp 半導体装置の製造方法、半導体装置及び半導体回路基板
JP3994681B2 (ja) 2001-04-11 2007-10-24 ソニー株式会社 素子の配列方法及び画像表示装置の製造方法
JP2009064831A (ja) * 2007-09-04 2009-03-26 Sharp Corp 半導体装置、表示装置及びそれらの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681472B1 (fr) 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
US6872635B2 (en) 2001-04-11 2005-03-29 Sony Corporation Device transferring method, and device arraying method and image display unit fabricating method using the same
JP4524561B2 (ja) * 2001-07-24 2010-08-18 セイコーエプソン株式会社 転写方法
JP2003077940A (ja) * 2001-09-06 2003-03-14 Sony Corp 素子の転写方法及びこれを用いた素子の配列方法、画像表示装置の製造方法
US7585703B2 (en) 2002-11-19 2009-09-08 Ishikawa Seisakusho, Ltd. Pixel control element selection transfer method, pixel control device mounting device used for pixel control element selection transfer method, wiring formation method after pixel control element transfer, and planar display substrate
TWI520269B (zh) * 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
JP2004319538A (ja) * 2003-04-10 2004-11-11 Seiko Epson Corp 半導体装置の製造方法、集積回路、電子光学装置及び電子機器
US7052978B2 (en) * 2003-08-28 2006-05-30 Intel Corporation Arrangements incorporating laser-induced cleaving
US7202141B2 (en) * 2004-03-29 2007-04-10 J.P. Sercel Associates, Inc. Method of separating layers of material
US7875530B2 (en) * 2005-12-02 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348201B2 (ja) 1981-03-11 1991-07-23 Daiichi Togyo Kk
JPH11142878A (ja) * 1997-11-12 1999-05-28 Sharp Corp 表示用トランジスタアレイパネルの形成方法
JP3406207B2 (ja) 1997-11-12 2003-05-12 シャープ株式会社 表示用トランジスタアレイパネルの形成方法
JP3447619B2 (ja) 1999-06-25 2003-09-16 株式会社東芝 アクティブマトリクス基板の製造方法、中間転写基板
JP3408805B2 (ja) 2000-09-13 2003-05-19 浜松ホトニクス株式会社 切断起点領域形成方法及び加工対象物切断方法
JP3994681B2 (ja) 2001-04-11 2007-10-24 ソニー株式会社 素子の配列方法及び画像表示装置の製造方法
JP3474187B1 (ja) 2002-11-19 2003-12-08 英樹 松村 画素制御素子の選択転写方法、及び、画素制御素子の選択転写方法に使用される画素制御素子の実装装置
JP2006032435A (ja) 2004-07-12 2006-02-02 Sharp Corp 半導体装置の製造方法及び半導体装置の製造装置
JP2006041430A (ja) * 2004-07-30 2006-02-09 Denso Corp 半導体基板の製造方法
JP2006053171A (ja) 2004-08-09 2006-02-23 Sharp Corp 半導体装置の製造方法、半導体装置及び半導体回路基板
JP2009064831A (ja) * 2007-09-04 2009-03-26 Sharp Corp 半導体装置、表示装置及びそれらの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Stealth Dicing Technical Information for Mems", TLAS9005J02, May 2009 (2009-05-01)
"The Stealth Dicing Technologies and Their Applications", TLAS9004J01, March 2005 (2005-03-01)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032690A (ja) * 2013-08-02 2015-02-16 株式会社ディスコ 積層ウェーハの加工方法

Also Published As

Publication number Publication date
CN102754185A (zh) 2012-10-24
EP2511942A1 (en) 2012-10-17
US20120241919A1 (en) 2012-09-27
JPWO2011070855A1 (ja) 2013-04-22
CN102754185B (zh) 2015-06-03
US8759951B2 (en) 2014-06-24
JP5547212B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5547212B2 (ja) 半導体装置の製造方法
KR100532557B1 (ko) 반도체 장치 및 그의 제조 방법, soi기판 및 그것을사용하는 표시 장치 및 soi기판의 제조 방법
US8685837B2 (en) Transfer method, method for manufacturing semiconductor device, and semiconductor device
JP4451488B2 (ja) 半導体素子の転写方法及び半導体装置の製造方法
US6759277B1 (en) Crystalline silicon die array and method for assembling crystalline silicon sheets onto substrates
JP4027740B2 (ja) 半導体装置の作製方法
JP5072946B2 (ja) 液晶表示装置の作製方法
TW200416965A (en) Single-crystal silicon substrate, SOI substrate, semiconductor device, display device, and manufacturing method of semiconductor device
JP4527068B2 (ja) 剥離方法、半導体装置の作製方法、及び電子書籍の作製方法
JP5866086B2 (ja) 半導体装置の作製方法
CN107170759A (zh) 一种阵列基板及其制作方法、显示装置
US8946820B2 (en) Method for manufacturing semiconductor substrate, substrate for forming semiconductor substrate, stacked substrate, semiconductor substrate, and electronic device
WO2010109712A1 (ja) 半導体装置用の絶縁基板、及び、半導体装置
KR100879047B1 (ko) 반도체 장치 및 그 제조방법
WO2009084312A1 (ja) 半導体装置、単結晶半導体薄膜付き基板及びそれらの製造方法
JP2010141246A (ja) 半導体装置の製造方法
JP5172250B2 (ja) 半導体装置、表示装置及びそれらの製造方法
JP2004119636A (ja) 半導体装置およびその製造方法
JP4545449B2 (ja) 半導体装置の製造方法
WO2009084284A1 (ja) 半導体装置用の絶縁基板、半導体装置、及び、半導体装置の製造方法
US9041147B2 (en) Semiconductor substrate, thin film transistor, semiconductor circuit, liquid crystal display apparatus, electroluminescent apparatus, semiconductor substrate manufacturing method, and semiconductor substrate manufacturing apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055250.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835777

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835777

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545139

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13514104

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010835777

Country of ref document: EP