WO2011070714A1 - 光電変換装置用カバーガラスおよびその製造方法 - Google Patents

光電変換装置用カバーガラスおよびその製造方法 Download PDF

Info

Publication number
WO2011070714A1
WO2011070714A1 PCT/JP2010/006515 JP2010006515W WO2011070714A1 WO 2011070714 A1 WO2011070714 A1 WO 2011070714A1 JP 2010006515 W JP2010006515 W JP 2010006515W WO 2011070714 A1 WO2011070714 A1 WO 2011070714A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover glass
glass
photoelectric conversion
surface irregularities
conversion device
Prior art date
Application number
PCT/JP2010/006515
Other languages
English (en)
French (fr)
Inventor
小用瑞穂
山本透
河津光宏
木戸優敦
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to EP10835645.2A priority Critical patent/EP2511738B1/en
Priority to JP2011545051A priority patent/JP5718825B2/ja
Priority to KR1020127017014A priority patent/KR101771757B1/ko
Priority to CN201080056103.XA priority patent/CN102782528B/zh
Priority to US13/513,972 priority patent/US9188705B2/en
Publication of WO2011070714A1 publication Critical patent/WO2011070714A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing

Definitions

  • the present invention relates to a cover glass for a photoelectric conversion device, which is disposed on the light incident side of the photoelectric conversion device and transmits light to the photoelectric conversion layer in the device while protecting the photoelectric conversion device.
  • a cover glass is usually disposed on the light incident side of a so-called crystalline photoelectric conversion device.
  • reflected light from the cover glass may be annoying to neighboring houses. For this reason, in an application where consideration should be given to reflected light, such as for a roof of a house, a cover glass having an uneven surface is used so that the reflected light is dispersed.
  • Patent Document 1 discloses a cover glass having a hemispherical recess formed on the surface. The shape and arrangement of the recesses of the cover glass are designed so that the amount of light transmitted through the cover glass increases during the day and throughout the year. When the concave portion is formed for such a purpose, the depth of the concave portion is set deeper than that for the purpose of only anti-glare.
  • a reflection suppressing film may be formed on the surface of the substrate.
  • the most commonly used antireflection film is a dielectric film formed by a vacuum deposition method, a sputtering method, a chemical vapor deposition method (CVD method), or the like, but a fine particle-containing film containing fine particles such as silica fine particles is used as the antireflection film.
  • the fine particle-containing film is formed by applying a coating liquid containing fine particles on a transparent substrate by dipping, flow coating, spraying, or the like.
  • Patent Document 2 a fine particle-containing film is formed as a reflection suppressing film, not on a cover glass, but on the surface of a glass substrate of a so-called thin film photoelectric conversion device. It is disclosed. However, as described in this publication, float glass having a smooth surface is used for a glass substrate used in a thin film photoelectric conversion device.
  • Patent Document 1 an increase in the amount of light transmitted through a cover glass having surface irregularities has been attempted so far mainly by improving the shape of the surface irregularities. For this reason, the details of the antireflection film to be formed on the surface irregularities of the cover glass have hardly been studied so far.
  • An object of the present invention is to suppress unevenness in the appearance of a cover glass for a photoelectric conversion device provided with a glass plate having irregularities on the surface and a reflection suppressing film formed on the surface.
  • the present invention is a cover glass for a photoelectric conversion device provided with a glass plate having surface irregularities, further comprising a reflection suppressing film formed on the surface irregularities of the glass plate, wherein the reflection suppressing film comprises silica fine particles And a binder of the silica fine particles, the silica fine particles are arranged in one layer at the top of the surface unevenness, and the silica fine particles are laminated at a thickness corresponding to at least three layers at the bottom of the surface unevenness.
  • the surface irregularities of the glass plate have an average interval Sm of 0.4 mm to 2.5 mm, and an arithmetic average roughness Ra of 0.5 ⁇ m to 5 ⁇ m, and the antireflection film is formed.
  • a cover glass for a photoelectric conversion device that has a reflectance of 1.5% or more and 3% or less over the entire wavelength range of 380 nm to 780 nm with respect to light incident from the side. .
  • the antireflection film basically suppresses the reflectance of light by utilizing the interference between the reflected light from the interface with the base and the reflected light from the interface with the air. And at a specific wavelength determined according to the refractive index of the film and the thickness of the film. In the cover glass of a photoelectric conversion device, this wavelength is usually set in the visible region or in the vicinity thereof. Therefore, when a reflection suppressing film is formed, a specific reflected color is easily visually recognized. Unevenness due to differences is more noticeable.
  • the cover glass according to the present invention a glass plate having a relatively large unevenness period is used, and the antireflection film is configured so that the number of laminated silica fine particles at the top and bottom of the unevenness is different, which corresponds to the visible region.
  • the reflectance curve was extremely flattened so that unevenness in the appearance of the cover glass was not easily recognized.
  • the cover glass for a photoelectric conversion device includes a glass plate having surface irregularities and a reflection suppressing film formed on the surface irregularities of the glass plate.
  • the average interval Sm of the surface irregularities of the glass plate is 0.1 mm or more and 5.0 mm or less.
  • the average interval Sm is preferably 0.2 mm or more, particularly 0.4 mm or more, particularly 1.0 mm or more, 3.0 mm or less, more preferably 2.5 mm or less, particularly 2.1 mm or less, especially 2.0 mm or less.
  • the average interval Sm is particularly preferably 0.5 mm or more and 1.5 mm or less.
  • the average interval Sm means the average value of the intervals of one mountain valley obtained from the point where the roughness curve intersects the average line, and is specifically defined in JIS (Japanese Industrial Standards) B0601-1994. Value. If the average interval Sm is too small, the influence of light having a wavelength in the vicinity of the visible range from the surface irregularities is averaged, and the reflectance curve is not sufficiently flattened. On the other hand, if the average interval Sm is too large, color unevenness appears in the surface of the reflection color tone, and the requirement for appearance is not satisfied.
  • a template glass produced by a roll-out method is suitable.
  • the roll-out method is a method for producing a glass plate that has been conventionally used for producing a template glass mainly used as a window glass of a building.
  • a molten glass raw material is sandwiched between a pair of rolls and formed into a plate shape. If irregularities are provided on the surface of the roll, the shape corresponding to the irregularities is the surface of the glass plate. Is transcribed.
  • a glass plate having surface irregularities can also be obtained by roughening a glass plate having a flat surface by etching.
  • a glass plate may be the same composition as normal plate glass and building plate glass, it is preferable that a coloring component is not included as much as possible.
  • the content of iron oxide, which is a typical coloring component is preferably 0.06% by mass or less, particularly preferably 0.02% by mass or less in terms of Fe 2 O 3 .
  • the surface irregularities of the glass plate preferably have a maximum height Ry of 0.5 ⁇ m to 10 ⁇ m, particularly 1 ⁇ m to 8 ⁇ m, with an average interval Sm in the above range.
  • the surface roughness of the glass plate is 0.1 ⁇ m to 10 ⁇ m, particularly 0.5 ⁇ m to 5.0 ⁇ m, more preferably 0.5 ⁇ m to 2.0 ⁇ m, especially 0.5 ⁇ m to 1.0 ⁇ m, together with the average interval Sm in the above range. It is preferable to have an arithmetic average roughness Ra.
  • the maximum height Ry and the arithmetic average roughness Ra are defined in JIS B0601-1994 together with the average interval Sm. If the roughness represented by these indices is too small, the antiglare effect due to surface irregularities cannot be sufficiently obtained. On the other hand, if the roughness expressed by these indices is too large, color unevenness appears in the surface of the reflection color tone, or a film is not formed on the top of the convex portion, and the reflectance increases.
  • the average inclination angle ⁇ decreases, the irregularities on the glass surface become gentler, and when the film is formed, it is difficult to form a sufficient film thickness distribution, which may cause poor appearance.
  • the average inclination angle ⁇ increases, the unevenness of the glass surface becomes steeper, the film is not formed on the top of the convex part, and the glass plate may be exposed, so that the reflectance tends to increase.
  • the antireflection film contains silica fine particles, and the silica fine particles constitute the skeleton of the film.
  • the silica fine particles are arranged so as to be a single layer (in other words, without being stacked on each other).
  • the silica fine particles are arranged so as to have a thickness corresponding to 3 layers or more, preferably 4 layers or more, at the bottom of the surface unevenness.
  • the reflection curve from the cover glass in the visible region is flattened by the film thickness distribution of the reflection suppressing film caused by the difference in the number of laminated silica fine particles, and the limited range of 1.5 to 3% in the wavelength region of 380 to 780 nm. Furthermore, the difference between the maximum value and the minimum value of the reflectance in this wavelength region can be reduced to 1% or less.
  • the average particle diameter of the silica fine particles is r, if the thickness of the antireflection film at the bottom of the surface irregularities is 3r or more, this film has a film thickness equivalent to three or more layers of silica fine particles.
  • the number of laminated silica particles and the film thickness can be confirmed by actually observing the cross section of the antireflection film using a scanning electron microscope or the like.
  • the average particle diameter r of the silica fine particles is preferably 10 nm to 1000 nm, particularly 50 nm to 300 nm, especially 70 nm to 200 nm. If the average particle size r is too small or too large, the reflectance in the visible range may not be sufficiently reduced.
  • hollow silica fine particles are also commercially available as silica fine particles, but in antireflection films formed on the cover glass for photoelectric conversion devices, wear resistance should be emphasized, so solid (non-hollow) silica The use of fine particles is preferred.
  • the antireflection film contains a binder of silica fine particles together with the silica fine particles.
  • the binder is interposed between the silica fine particles and the glass plate and between the adjacent silica fine particles, and plays a role of increasing the bonding strength thereof.
  • metal oxides such as silicon, titanium, aluminum, zirconium, and tantalum are suitable, but silicon oxide (silica) is most suitable.
  • Silicon oxide is excellent as a reinforcing agent because of its high affinity with silica fine particles and glass plates, and does not inhibit the antireflection effect of the antireflection film because of its low refractive index. Silicon is not normally classified as a metal as an element, but in accordance with common practice, here, silicon oxide (compound) is one type of metal oxide (compound).
  • a hydrolyzable metal compound typified by silicon alkoxide can be used as a binder supply source.
  • silicon alkoxide examples include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane.
  • the hydrolyzable metal compound may be converted into a binder oxide by hydrolysis and condensation polymerization by a so-called sol-gel method.
  • the hydrolysis of the hydrolyzable metal compound is preferably carried out in a solution containing silica fine particles. Because the condensation polymerization reaction between silanol groups present on the surface of silica fine particles and silanol groups generated by hydrolysis of metal compounds such as silicon alkoxide is promoted, and the ratio of the binder that contributes to improving the binding power of silica fine particles is increased. It is. Specifically, it is preferable to prepare a coating solution for the antireflection film by sequentially adding a hydrolysis catalyst and silicon alkoxide while stirring a solution containing silica fine particles.
  • the ratio of the silica fine particles to the binder in the antireflection coating is preferably 90:10 to 65:35, more preferably 85:15 to 65:35, and particularly preferably 80:20 to 65:35, based on the weight standard. .
  • a reflection suppressing film composed of silica fine particles and a binder having this ratio range has a void secured between the skeletons of the silica fine particles, the apparent refractive index of the film is lowered, and the reflection suppressing effect is increased.
  • the binder contributes to maintaining the strength of the skeleton of the silica fine particles. When the ratio of the binder is too high, voids between the silica fine particles are lost. On the other hand, when the binder ratio is too low, the strength of the skeleton of the silica fine particles is lowered.
  • zirconium oxide zirconia, ZrO 2
  • titanium oxide titanium oxide
  • TiO 2 titanium oxide
  • the content of zirconium oxide and the content of titanium oxide in the antireflection film are each 5% by weight or less. Addition of zirconium oxide or titanium oxide improves the alkali resistance of the antireflection coating.
  • the absolute value of the difference in visible light transmittance measured before and after an alkali resistance evaluation test described later is preferably 1.5% or less.
  • the additive which is zirconium oxide and / or titanium oxide is preferably contained in the antireflection film in an amount of 0.5% by weight or more, more preferably 1% by weight or more, and particularly preferably 1.5% by weight or more.
  • a dielectric multilayer film formed by sputtering, CVD, or the like for example, an alternating laminated film of a high refractive index film made of titanium oxide or the like and a low refractive index film made of silicon oxide or the like
  • vacuum A low refractive index film formed by a vapor deposition method for example, a magnesium fluoride film formed by a vacuum vapor deposition method
  • the film thickness distribution described above can be easily realized as shown in the examples described later.
  • the fine particle-containing film can be formed by supplying a coating liquid containing silica fine particles and a compound serving as a binder supply source to the surface of the glass plate, and then drying and further heating.
  • the coating solution can be supplied by, for example, immersing the glass plate in the coating solution (dipping), but the method of spraying the coating solution onto the glass plate is excellent in production efficiency and suitable for mass production. ing.
  • the spray method is suitable for mass production in terms of production efficiency, but has a problem that non-uniformity in film thickness tends to occur when applied to mass production. This non-uniformity is caused by the overlapping of the mist-like coating liquid released from the spray gun and the distribution of the mist (spray pattern), and appears as color unevenness of a reflection color tone having a diameter of about several millimeters.
  • Color unevenness due to the spray method can be visually recognized regardless of whether the surface of the glass plate forming the antireflection film is smooth or uneven, but the surface unevenness is within the range defined in the present invention. As a result.
  • a method for producing a cover glass for a photoelectric conversion device comprising:
  • the cover glass further comprises a glass plate having surface irregularities and a reflection suppressing film formed on the surface irregularities of the glass plate, and the reflection suppressing film is composed of silica fine particles and a binder of the silica fine particles,
  • the silica fine particles are arranged in one layer at the top of the surface unevenness, and the silica fine particles are laminated in a thickness corresponding to at least three layers at the bottom of the surface unevenness, and the surface unevenness is zero.
  • the reflectance with respect to light incident from the side on which the antireflection film is formed has an average interval Sm of 0.4 mm to 2.5 mm and an arithmetic average roughness Ra of 0.5 ⁇ m to 5 ⁇ m.
  • the cover glass is 1.5% or more and 3% or less, Spraying a coating liquid containing the silica fine particles and a metal compound serving as a supply source of the binder onto the surface irregularities of the glass plate; Drying the coating solution sprayed onto the glass plate; And a step of producing an oxide from the metal compound contained in the dried coating solution by heating the glass plate to form the binder.
  • the spraying of the coating liquid is performed using a spray gun that maintains a constant distance from the glass plate from above the horizontally held glass plate.
  • a surfactant is added to the coating solution.
  • a silicone surfactant or a fluorine surfactant is suitable.
  • the concentration of the surfactant in the coating solution is preferably 0.005% by weight to 0.5% by weight, particularly 0.01% by weight to 0.1% by weight.
  • the reflectance curve (reflection spectrum) of the surface on which the antireflection coating was formed was measured.
  • the measurement was performed in accordance with JIS K5602 by making light incident from the normal direction and introducing directly reflected light having a reflection angle of 8 ° into the integrating sphere.
  • the average reflectance was calculated by averaging the reflectance at wavelengths of 400 nm to 1100 nm.
  • a black paint was applied to the back surface (non-measurement surface) of the glass plate to remove the reflected light from the back surface, and correction based on the reference specular reflector was performed.
  • the transmittance curves (transmission spectra) of the cover glass before and after the formation of the antireflection film were measured.
  • the average transmittance was calculated by averaging the transmittance at a wavelength of 400 to 1100 nm.
  • a value obtained by subtracting the average transmittance before forming the reflection suppressing film from the average transmittance after forming the reflection suppressing film was defined as a transmittance gain.
  • the alkali resistance of the obtained antireflection film was evaluated according to JIS R3221.
  • the cover glass on which the antireflection film was formed was immersed in an aqueous sodium hydroxide solution at a temperature of 23 ° C. and a concentration of 1 kmol / m 3 (1 N) for 24 hours.
  • the appearance change before and after immersion was observed visually, the transmittance before and after immersion was measured with a haze meter (Nippon Denshoku, NDH2000), and the alkali resistance was evaluated by the absolute value of the difference.
  • the alkali resistance was evaluated according to the following criteria. ⁇ : No change in appearance ⁇ : Reflection color changes slightly, but the film remains on the whole surface ⁇ : Reflection color tone changes greatly ⁇ : The film is peeled off
  • Example 1 Preparation of coating solution> Silica fine particle dispersion (Fuso Chemical Co., Ltd., PL-7, average particle size 100 nm, solid content concentration 23 wt%) 36.96 parts by weight, ethyl cellosolve 56.84 parts by weight, 1N hydrochloric acid (hydrolysis catalyst) 1 0.0 part by weight was mixed with stirring, and further 5.2 parts by weight of tetraethoxysilane was added with stirring, followed by stirring for 8 hours while keeping the temperature at 40 ° C. to obtain a stock solution.
  • the solid concentration in this stock solution is 10% by weight, and the ratio of the fine particles to the binder (as oxide) in the solid is 85:15 on a weight basis.
  • the silica fine particles are solid (in other words, not hollow) fine particles.
  • a template glass having a soda lime silicate composition (manufactured by Nippon Sheet Glass, 100 mm ⁇ 300 mm, thickness 3.2 mm) was subjected to alkaline ultrasonic cleaning to prepare a substrate for forming a reflection suppressing film.
  • the surface shape of this template glass was arithmetic average roughness Ra 0.76 ⁇ m of surface irregularities, maximum height Ry 4.54 ⁇ m, average interval Sm 1120 ⁇ m, and average inclination angle ⁇ 0.156 degrees.
  • the average reflectance was 4.54% and the average transmittance was 91.68%.
  • the coating liquid was applied on the template glass by the spray method.
  • the spray method was performed by spraying the coating liquid from above the template glass held horizontally using a commercially available spray gun. At this time, the spray gun was relatively moved between the spray gun and the template glass while keeping the distance from the template glass constant.
  • the template glass was placed in an electric furnace at 300 ° C. for 1 minute to remove the solvent of the coating solution, and further placed in an electric furnace at 610 ° C. for 8 minutes to fire the antireflection film, thereby obtaining a cover glass.
  • the above characteristics were evaluated for the cover glass thus obtained.
  • the evaluation results are shown in Table 1.
  • FIG. 1 (top) and FIG. 2 (bottom) show the results of observing the cross section of the produced antireflection film using FE-SEM.
  • Example 2 The ratio of each raw material when preparing the stock solution was changed to 30.43 parts by weight of silica fine particle dispersion, 58.17 parts by weight of ethyl cellosolve, 1.0 part by weight of concentrated hydrochloric acid, and 10.4 parts by weight of tetraethoxysilane.
  • a stock solution was obtained.
  • the concentration of the solid content of this stock solution is 10% by weight, and the ratio of the fine particles to the binder (as oxide) in the solid content is 70:30 on a weight basis.
  • the ratio of each raw material when preparing the coating solution was as follows: stock solution 17.0 parts by weight, propylene glycol 5.0 parts by weight, 2-propanol 77.95 parts by weight, silicone surfactant 0.05 parts by weight.
  • a coating solution was obtained in the same manner as in Example 1 except that. However, CoatOSil 3505 by Momentive Performance Materials Japan GK was used as the silicone surfactant.
  • the solid concentration in this coating solution is 1.7% by weight, and the surfactant concentration is 0.05% by weight.
  • a cover glass was obtained in the same manner as in Example 1. The above characteristics were evaluated for the cover glass thus obtained. The evaluation results are shown in Table 1.
  • Example 3 A cover glass was obtained in the same manner as in Example 1 using the template glass having the surface shape shown in Table 1 and the coating liquid prepared as shown in Table 1. Each characteristic was evaluated about the cover glass of each Example obtained in this way. The evaluation results are shown in Table 1.
  • Example 9 A cover glass was obtained in the same manner as in Example 1 using a template glass having the surface shape shown in Table 2 and a coating solution prepared as shown in Table 2. However, a fluorosurfactant was used as the surfactant in the coating solution. Specifically, in each Example, F444 by DIC Corporation, Footage 251 by Neos Corporation, and 215M by Neos Corporation were used, respectively. Each characteristic was evaluated about the cover glass of each Example obtained in this way. The evaluation results are shown in Table 2.
  • Example 12 and 13 A cover glass was obtained in the same manner as in Example 1 using a template glass having the surface shape shown in Table 2 and a coating solution prepared as shown in Table 2.
  • ZrO 2 is added to the antireflection films of Examples 12 and 13.
  • zirconium oxychloride octahydrate (special grade, Kanto Chemical Co., Inc.) was used.
  • the coating liquid was obtained by stirring and mixing the raw materials in the ratios shown in Table 3.
  • the stock solution was prepared as in Example 2.
  • the ratio in terms of oxides of SiO 2 and ZrO 2 in the solid content is 100: 3 on a weight basis in Example 12, and 100: 5 on a weight basis in Example 13.
  • the ratio between the fine particles and the binder (as oxide) in the solid content was 70:30 on a weight basis in any of the examples.
  • Each characteristic was evaluated about the cover glass of each Example obtained in this way.
  • the evaluation results are shown in Table 2.
  • FIG. 3 (top) and FIG. 4 (bottom) show the results of observing the cross section of the antireflection film prepared in Example 12 using FE-SEM.
  • Example 14 and 15 A cover glass was obtained in the same manner as in Example 1 using a template glass having the surface shape shown in Table 2 and a coating solution prepared as shown in Table 2. TiO 2 is added to the antireflection films of Examples 14 and 15. ORGATICS TC-401 (Matsumoto Co., Ltd., titanium acetylacetonate, solid content concentration 65% by weight, 2-propanol solution) was used as a starting material for TiO 2 .
  • the coating liquid was obtained by stirring and mixing the raw materials in the ratios shown in Table 3.
  • the stock solution was prepared as in Example 2.
  • the ratio in terms of oxides of SiO 2 and TiO 2 in the solid content is 100: 3 on a weight basis in Example 14, and 100: 5 on a weight basis in Example 15.
  • the ratio between the fine particles and the binder (as oxide) in the solid content was 70:30 on a weight basis in any of the examples.
  • Each characteristic was evaluated about the cover glass of each Example obtained in this way. The evaluation results are shown in Table 2.
  • Example 16 A cover glass was obtained in the same manner as in Example 1 using a template glass having the surface shape shown in Table 2 and a coating solution prepared as shown in Table 2. In the same manner as in Example 12, the coating liquid was obtained so that each raw material had the ratio shown in Table 3. As the surfactant, Fluorent surfactant 251 was used. The above characteristics were evaluated for the cover glass thus obtained. The evaluation results are shown in Table 2. In addition, FIG. 5 (top) and FIG. 6 (bottom) show the results of observing the cross section of the produced antireflection film using FE-SEM.
  • Example 17 A cover glass was obtained in the same manner as in Example 1 using a template glass having the surface shape shown in Table 2 and a coating solution prepared as shown in Table 2.
  • the ratio of the fine particles to the binder (as oxide) in the solid content of the stock solution is 95: 5 on a weight basis
  • the solid content concentration in the coating solution is 1.3% by weight
  • the agent concentration is 0.02% by weight. The above characteristics were evaluated for the cover glass thus obtained. The evaluation results are shown in Table 2.
  • Example 1 A stock solution was prepared in the same manner as in Example 1, and the ratio of each raw material when preparing the coating solution was 13.0 parts by weight of the stock solution, 5.0 parts by weight of propylene glycol, and 82.0 parts by weight of 2-propanol. Except for this, a coating solution was obtained in the same manner as in Example 1. However, no surfactant is added. The solid concentration in this coating solution is 1.3% by weight. Subsequently, a cover glass was obtained in the same manner as in Example 1. The above characteristics were evaluated for the cover glass thus obtained. Table 4 shows the evaluation results. In addition, FIG. 7 (top) and FIG. 8 (bottom) show the results of observing the cross section of the produced antireflection film using FE-SEM.
  • Example 2 A stock solution was prepared in the same manner as in Example 2, and the ratio of each raw material when preparing the coating solution was 17.0 parts by weight of the stock solution, 5.0 parts by weight of propylene glycol, and 78.0 parts by weight of 2-propanol. Except for this, a coating solution was obtained in the same manner as in Example 1. However, no surfactant is added. The solid content concentration in this coating solution is 1.7% by weight. Subsequently, a cover glass was obtained in the same manner as in Example 1. The above characteristics were evaluated for the cover glass thus obtained. Table 4 shows the evaluation results.
  • Example 7 A cover glass was obtained in the same manner as in Example 1 using a template glass having the surface shape shown in Table 4 and a coating solution prepared as shown in Table 4.
  • the surfactant used in the coating liquid of each comparative example is SN wet L by San Nopco Co., which is a fatty acid ester surfactant, SN wet 970 by San Nopco Co., which is a sulfonic acid surfactant, It was set to Tween80 by Sigma Aldrich Japan Co., Ltd. which is a sorbitan monooleate surfactant.
  • Table 4 shows the evaluation results.
  • the antireflection film has a skeleton composed of silica fine particles arranged in one layer at the top of the concavo-convex portion of the template glass (FIGS. 1, 3 and 5).
  • the antireflection film has a skeleton composed of a laminate in which silica fine particles are laminated in about 3 to 6 layers (FIGS. 2, 4, and 6).
  • the number of layers of the antireflection coating decreases as it approaches the top, and the number of layers increases as it approaches the bottom, at the slope between the top and bottom of the unevenness of the template glass. I was able to confirm.
  • the film thickness of the antireflection film continuously changed along the irregularities on the surface of the template glass.
  • silica fine particles were arranged in a single layer at the top and about 4 to 5 layers of silica fine particles at the bottom. And arranged in layers.
  • the antireflection film has a skeleton composed of silica fine particles arranged in one or two layers.
  • the film thickness of the antireflection film at the top and bottom of the unevenness is almost the same.
  • the antireflection film produced in Comparative Example 2 also had the same film structure as the antireflection film produced in Comparative Example 1.
  • FIG. 9 shows the reflectance curves (reflection spectra) of the cover glasses produced in Examples 1 and 2 and Comparative Examples 1 and 2. From the cover glasses of Examples 1 and 2, the reflectance at a wavelength of 380 nm to 780 nm is in a range of 1.5 to 3% (in Example 2, a range of 2.5 to 3%; both of Examples 1 and 2 have a wavelength of 380 nm to A reflectance curve having a difference between the maximum reflectance and the minimum reflectance at 780 nm of 1% or less was obtained. On the other hand, the reflectance curve of the cover glass of Comparative Example 1 has a large peak near the wavelength of 400 nm.
  • the reflectance curve of the cover glass of Comparative Example 2 is flatter than that of Comparative Example 1, but a small peak is present near the wavelength of 400 nm to 500 nm, so that it is not sufficiently flat and the maximum reflectance is 3%. It was more than.
  • the appearance evaluation of the cover glass produced in Comparative Example 3 was ⁇ , and the appearance evaluation of the cover glass produced in Comparative Example 6 was ⁇ , but these were not practical because the average reflectance was too high.
  • the cover glasses produced in Comparative Examples 7 to 9 do not use a silicone-based surfactant or a fluorine-based surfactant, and thus it is considered that a preferable antireflection film was not formed.
  • the upper limit of the reflectance when light having a wavelength of 380 nm to 780 nm is incident is 3% or less, and the lower limit of the reflectance is 1.5% or more. Therefore, it can be said that a preferable antireflection film is formed on the cover glass of all the examples. Moreover, in the cover glass of all the examples, since average reflectance is 3% or less, it can be said that reflected light can fully be suppressed.
  • the silica fine particles are arranged in one layer at the top, and the silica fine particles have a thickness corresponding to at least three layers at the bottom. It was confirmed that they were stacked.
  • a cover glass for a photoelectric conversion device with improved appearance can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 光電変換装置用カバーガラスの外観のムラを解消するためにカバーガラスの反射率曲線を極度に平坦化する。型板ガラスなどの表面凹凸を有するガラス板とその表面凹凸上に形成された反射抑制膜とを備え、反射抑制膜がシリカ微粒子とシリカ微粒子のバインダーとから構成され、ガラス板の表面凹凸の頂部においてはシリカ微粒子が1層に配置され、表面凹凸の底部においてはシリカ微粒子が少なくとも3層に相当する厚さに積層して配置されており、ガラス板の表面凹凸が0.4mm以上2.5mm以下の平均間隔Sm、および0.5μm~5μmの算術平均粗さRaを有し、反射抑制膜が形成された側から入射する光についての反射率が波長380nm~780nmの全域において1.5%以上3%以下である光電変換装置用カバーガラスとする。

Description

光電変換装置用カバーガラスおよびその製造方法
 本発明は、光電変換装置の光入射側に配置され、光電変換装置を保護しながら同装置内の光電変換層へと光を透過させる、光電変換装置用のカバーガラスに関する。
 いわゆる結晶系の光電変換装置の光入射側には、通常、カバーガラスが配置される。しかし、光電変換装置を住宅の屋根に設置すると、カバーガラスからの反射光が近隣の住宅に迷惑となる場合がある。このため、住宅の屋根用など反射光に配慮すべき用途では、反射光が分散するように表面に凹凸を形成したカバーガラスが用いられている。
 表面凹凸の形状はカバーガラスを透過する光量に影響を及ぼすため、カバーガラスの表面凹凸の形状を光電変換効率の向上に最適化する試みが報告されている。例えば、特開2003-243689号公報(特許文献1)には、表面に半球状の凹部が形成されたカバーガラスが開示されている。このカバーガラスの凹部の形状および配置は、日中および年間を通じてカバーガラスを透過する光量が増加するように設計されている。このような目的をもって凹部を形成する場合、凹部の深さは防眩のみを目的とする場合よりも深く設定される。
 ところで、ガラス板に代表される透明基体の光線透過率を引き上げるために、その基体の表面に反射抑制膜が形成されることがある。最もよく用いられる反射抑制膜は、真空蒸着法、スパッタリング法、化学蒸着法(CVD法)などによる誘電体膜であるが、シリカ微粒子などの微粒子を含む微粒子含有膜が反射抑制膜として用いられることもある。微粒子含有膜は、微粒子を含むコーティング液を、ディッピング法、フローコート法、スプレー法などによって透明基体上に塗布することにより成膜される。
 特開2007-121786号公報(特許文献2)には、カバーガラスにではなく、いわゆる薄膜系の光電変換装置のガラス基板の表面に対してではあるが、反射抑制膜として微粒子含有膜を形成することが開示されている。ただし、この公報にも記載されているように、薄膜系の光電変換装置に用いるガラス基板には表面が平滑なフロートガラスが用いられる。
特開2003-243689号公報 特開2007-121786号公報
 特許文献1に開示されているように、表面凹凸を有するカバーガラスを透過する光量の増加は、これまで、主として表面凹凸の形状の改善により試みられてきた。このため、カバーガラスの表面凹凸に形成すべき反射抑制膜の詳細については、これまでほとんど検討されてこなかった。
 本発明者が検討したところ、表面凹凸を有するカバーガラスの表面に反射抑制膜を形成すると、反射ムラによって外観が大きく低下する場合があることが確認された。この反射ムラは、特にスプレー法のような膜厚に分布が生じやすい成膜方法を適用したときに顕著となる。
 本発明は、表面に凹凸を有するガラス板と、この表面に形成された反射抑制膜とを備えた光電変換装置用カバーガラスの外観上のムラの抑制を目的とする。
 本発明は、表面凹凸を有するガラス板を備えた光電変換装置用カバーガラスであって、前記ガラス板の前記表面凹凸上に形成された反射抑制膜をさらに備え、前記反射抑制膜が、シリカ微粒子と前記シリカ微粒子のバインダーとから構成され、前記表面凹凸の頂部においては前記シリカ微粒子が1層に配置され、前記表面凹凸の底部においては前記シリカ微粒子が少なくとも3層に相当する厚さに積層して配置されており、前記ガラス板の表面凹凸が0.4mm以上2.5mm以下の平均間隔Sm、および0.5μm~5μmの算術平均粗さRaを有し、前記反射抑制膜が形成された側から入射する光についての反射率が、波長380nm~780nmの全域において、1.5%以上3%以下である光電変換装置用カバーガラス、を提供する。
 反射抑制膜は、基本的に、基体との界面からの反射光と空気との界面からの反射光の干渉を利用して光の反射率を抑制するものであり、その反射抑制効果は、基体および膜の屈折率と膜の厚さとに応じて定まる特定の波長において最大となる。この波長は、光電変換装置のカバーガラスにおいては、通常、可視域またはその近傍に設定されるため、反射抑制膜を形成すると特定の反射色が視認されやすくなり、その結果、膜厚の僅かな相違によるムラが目立ちやすくなる。本発明によるカバーガラスでは、凹凸の周期が比較的大きいガラス板を用いるとともに、凹凸の頂部および底部におけるシリカ微粒子の積層数が相違するように反射抑制膜を構成することにより、可視域に相当する380nm~780nmの波長域において反射率曲線を極度に平坦化し、これによってカバーガラスの外観上のムラが視認されにくくなるようにした。
実施例1で得たカバーガラスの表面凹凸の頂部を電界放射型走査型電子顕微鏡(FE-SEM)で観察した結果を示す図である。 実施例1で得たカバーガラスの表面凹凸の底部をFE-SEMで観察した結果を示す図である。 実施例12で得たカバーガラスの表面凹凸の頂部をFE-SEMで観察した結果を示す図である。 実施例12で得たカバーガラスの表面凹凸の底部をFE-SEMで観察した結果を示す図である。 実施例16で得たカバーガラスの表面凹凸の頂部をFE-SEMで観察した結果を示す図である。 実施例16で得たカバーガラスの表面凹凸の底部をFE-SEMで観察した結果を示す図である。 比較例1で得たカバーガラスの表面凹凸の頂部をFE-SEMで観察した結果を示す図である。 比較例1で得たカバーガラスの表面凹凸の底部をFE-SEMで観察した結果を示す図である。 実施例1,2および比較例1,2で得たカバーガラスの反射スペクトルである。
 本発明による光電変換装置用カバーガラスは、表面凹凸を有するガラス板と、このガラス板の表面凹凸上に形成された反射抑制膜とを備えている。ガラス板の表面凹凸の平均間隔Smは0.1mm以上5.0mm以下である。平均間隔Smは、0.2mm以上、特に0.4mm以上、とりわけ1.0mm以上であることが好ましく、3.0mm以下、さらに2.5mm以下、特に2.1mm以下、とりわけ2.0mm以下であることが好ましい。平均間隔Smは、特に0.5mm以上1.5mm以下であることが好ましい。ここで、平均間隔Smは、粗さ曲線が平均線と交差する点から求めた山谷一周期の間隔の平均値を意味し、具体的には、JIS(日本工業規格) B0601-1994に規定された値である。平均間隔Smが小さすぎると可視域近傍の波長を有する光が表面凹凸から受ける影響が平均化されるため、反射率曲線が十分に平坦化しない。他方、平均間隔Smが大きすぎると反射色調の面内での色ムラが現れ、外観に対する要求が満たされない。
 上記範囲の平均間隔Smを有するガラス板としては、ロールアウト法により製造された型板ガラスが適している。ロールアウト法は、主として建築物の窓ガラスとして用いる型板ガラスを製造するために、従来から用いられてきたガラス板の製造方法である。ロールアウト法では、溶融したガラス原料を一対のロールの間に挟み込んで板状に成形されるが、このロールの表面に凹凸を付与しておくと、この凹凸に対応する形状がガラス板の表面に転写される。表面凹凸を有するガラス板は、平坦な表面を有するガラス板をエッチングによって荒らすことによっても得ることができる。しかし、エッチングによる表面加工では平均間隔Smが小さくなり過ぎるため、エッチング法による表面凹凸は本発明の適用には適していない。なお、ガラス板は、通常の型板ガラスや建築用板ガラスと同様の組成であってよいが、着色成分を極力含まないことが好ましい。ガラス板において、代表的な着色成分である酸化鉄の含有率は、Fe23に換算して、0.06質量%以下、特に0.02質量%以下が好適である。
 ガラス板の表面凹凸は、上記範囲の平均間隔Smとともに、0.5μm~10μm、特に1μm~8μmの最大高さRyを有することが好ましい。
 また、ガラス板の表面凹凸は、上記範囲の平均間隔Smとともに、0.1μm~10μm、特に0.5μm~5.0μm、さらに0.5μm~2.0μm、とりわけ0.5μm~1.0μmの算術平均粗さRaを有することが好ましい。最大高さRyおよび算術平均粗さRaは、平均間隔Smとともに、JIS B0601-1994に規定されている。これらの指標で表される粗度が小さすぎると、表面凹凸による防眩効果が十分に得られない。他方、これらの指標で表される粗度が大きすぎると、反射色調の面内での色ムラが現れたり、凸部の頂部に膜が形成されず、反射率が上昇してしまう。
 ガラス板の表面凹凸は、θ=tan-1(4Ra/Sm)で表わされる平均傾斜角θが、0.05~1.0度、特に0.1~0.5度であることが好ましい。平均傾斜角θが小さくなるほどガラス表面の凹凸が緩やかになり、膜を形成した際に十分な膜厚分布が形成されにくく、外観不良が生じる可能性がある。また、平均傾斜角θが大きくなるほどガラス表面の凹凸が急峻になり、凸部の頂部に膜が形成されず、ガラス板が露出する可能性があるため、反射率が上昇する傾向がある。
 反射抑制膜はシリカ微粒子を含み、このシリカ微粒子が膜の骨格を構成する。ガラス板の表面凹凸の頂部において、シリカ微粒子は、単層(1層)となるように、言い換えれば互いに積み重なることなく配置されている。これに対し、表面凹凸の底部において、シリカ微粒子は、3層以上、好ましくは4層以上、に相当する厚さとなるように配置されている。シリカ微粒子の積層数の相違がもたらす反射抑制膜の膜厚分布により、可視域におけるカバーガラスからの反射率曲線は平坦化し、380~780nmの波長域において1.5~3%の限られた範囲に収まり、さらにはこの波長域における反射率の最大値と最小値との差を1%以下にすることができる。
 シリカ微粒子の平均粒径がrであるとき、表面凹凸の底部における反射抑制膜の膜厚が3r以上であれば、この膜はシリカ微粒子3層相当以上の膜厚を有することになる。シリカ微粒子の積層数や膜厚は、走査型電子顕微鏡などを用い、反射抑制膜の断面を実際に観察することによって確認できる。シリカ微粒子の平均粒径rは、10nm~1000nm、特に50nm~300nm、とりわけ70nm~200nmが好適である。平均粒径rが小さすぎても大きすぎても、可視域における反射率が十分に低下しないことがある。
 なお、シリカ微粒子には、中空のシリカ微粒子も市販されているが、光電変換装置用カバーガラスに形成する反射抑制膜では耐摩耗性を重視すべきであるため、中実(中空でない)のシリカ微粒子の使用が好ましい。
 反射抑制膜は、シリカ微粒子とともに、シリカ微粒子のバインダーを含んでいる。バインダーは、シリカ微粒子とガラス板との間、および隣接するシリカ微粒子の間に介在し、これらの接合強度を高める役割を担う。バインダーとしては、シリコン、チタン、アルミニウム、ジルコニウム、タンタルなどの金属酸化物が好適であるが、シリコン酸化物(シリカ)が最も適している。シリコン酸化物は、シリカ微粒子およびガラス板との親和性が高いために補強剤として優れており、屈折率が低いために反射抑制膜による反射抑制効果を阻害しない。なお、シリコンは、通常、元素としては金属に分類されないが、慣用に従い、ここではシリコン酸化物(化合物)を金属酸化物(化合物)の1種とする。
 バインダーの供給源としては、シリコンアルコキシドに代表される加水分解性金属化合物を用いることができる。シリコンアルコキシドとしては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシランを例示できる。加水分解性金属化合物は、いわゆるゾルゲル法により加水分解および縮重合してバインダー酸化物とすればよい。
 加水分解性金属化合物の加水分解は、シリカ微粒子が存在する溶液中で実施することが好ましい。シリカ微粒子の表面に存在するシラノール基と、シリコンアルコキシドなどの金属化合物が加水分解して生成したシラノール基との縮重合反応が促進され、シリカ微粒子の結合力向上に寄与するバインダーの割合が高まるためである。具体的には、シリカ微粒子を含む溶液を撹拌しながら、加水分解触媒およびシリコンアルコキシドを順次添加することにより、反射抑制膜のコーティング液を調製することが好ましい。
 反射抑制膜におけるシリカ微粒子とバインダーとの比は、重量基準に基づいて、90:10~65:35、さらには85:15~65:35、特に80:20~65:35とすることが好ましい。この比の範囲からなるシリカ微粒子とバインダーとから構成されている反射抑制膜は、シリカ微粒子の骨格の間に空隙が確保されて膜の見かけの屈折率が下がり、反射抑制効果が増大するとともに、バインダーがシリカ微粒子の骨格の強度の維持に寄与する。バインダーの比率が高すぎると、シリカ微粒子の間の空隙が失われることとなる。反対に、バインダーの比率が低すぎると、シリカ微粒子の骨格の強度が低下する。
 反射抑制膜には、シリカ微粒子、バインダー以外に、金属酸化物であるジルコニウム酸化物(ジルコニア,ZrO2)またはチタン酸化物(チタニア,TiO2)がさらに添加されていることが好ましい。反射抑制膜における、ジルコニウム酸化物の含有量およびチタン酸化物の含有量は、それぞれ5重量%以下であることが好ましい。ジルコニウム酸化物またはチタン酸化物が添加されることにより、反射抑制膜の耐アルカリ性が向上する。型板ガラスに反射抑制膜を形成することで作製されたカバーガラスにおいて、後述する耐アルカリ性評価試験の前後において測定した可視光透過率の差の絶対値が1.5%以下であることが好ましい。ジルコニウム酸化物および/またはチタン酸化物である添加物は、反射抑制膜に0.5重量%以上、さらには1重量%以上、特に1.5重量%以上含まれていることが好ましい。
 反射抑制膜としては、スパッタリング法、CVD法などにより形成された誘電体多層膜(例えば、酸化チタンなどからなる高屈折率膜と酸化シリコンなどからなる低屈折率膜との交互積層膜)、真空蒸着法により形成された低屈折率膜(例えば、真空蒸着法によるフッ化マグネシウム膜)も知られている。しかし、これらの反射抑制膜を表面凹凸の頂部において薄く底部においてその3倍以上に厚く成膜することは極めて困難である。これに対し、微粒子含有膜では、後述する実施例に示すように、上述の膜厚分布を容易に実現できる。
 微粒子含有膜(反射抑制膜)は、シリカ微粒子とバインダーの供給源となる化合物とを含むコーティング液をガラス板の表面に供給し、その後乾燥させ、さらに加熱することによって、成膜できる。コーティング液の供給は、例えば、コーティング液にガラス板を浸すこと(ディッピング)によって行うことができるが、コーティング液をガラス板上に噴霧(スプレー)する方法が製造効率に優れており、量産に適している。
 スプレー法は、製造効率の点では量産に適しているが、量産に適用したときには膜厚に不均一性が生じやすいという問題も抱えている。この不均一性は、スプレーガンから放たれたミスト状のコーティング液やそのミストの分布(スプレーパターン)の重なりに起因し、サイズが直径数mm程度の反射色調の色ムラとして現れる。
 スプレー法による色ムラは、反射抑制膜を形成するガラス板の表面が、平滑であっても凹凸を有していても視認されうるが、表面凹凸が本発明で規定した範囲内にあるときに、結果的に解消される。
 すなわち、本発明は、その別の側面から、
 光電変換装置用カバーガラスの製造方法であって、
 前記カバーガラスが、表面凹凸を有するガラス板と前記ガラス板の前記表面凹凸上に形成された反射抑制膜をさらに備え、前記反射抑制膜が、シリカ微粒子と前記シリカ微粒子のバインダーとから構成され、前記表面凹凸の頂部においては前記シリカ微粒子が1層に配置され、前記表面凹凸の底部においては前記シリカ微粒子が少なくとも3層に相当する厚さに積層して配置されており、前記表面凹凸が0.4mm以上2.5mm以下の平均間隔Sm、および0.5μm~5μmの算術平均粗さRaを有し、前記反射抑制膜が形成された側から入射する光についての反射率が、波長380nm~780nmの全域において、1.5%以上3%以下であるカバーガラスであり、
 前記シリカ微粒子と、前記バインダーの供給源となる金属化合物とを含むコーティング液を、前記ガラス板の前記表面凹凸上に噴霧する工程と、
 前記ガラス板上に噴霧されたコーティング液を乾燥させる工程と、
 前記ガラス板を加熱して前記乾燥させたコーティング液に含まれる前記金属化合物から酸化物を生成させて前記バインダーとする工程と、を含む光電変換装置用カバーガラスの製造方法、を提供する。
 上記製造方法の一態様では、前記コーティング液の噴霧が、水平に保持されたガラス板の上方からガラス板との距離を一定に保持したスプレーガンを用いて実施される。
 また、上記製造方法の一態様では、前記コーティング液に界面活性剤が添加される。前記界面活性剤としては、シリコーン系界面活性剤あるいはフッ素系界面活性剤が適している。また、前記コーティング液における前記界面活性剤の濃度は、0.005重量%以上0.5重量%以下、特に0.01重量%以上0.1重量%以下、が好適である。界面活性剤が添加されることで、コーティング液の表面張力が低下し、ガラス板の表面に供給されたコーティング液が乾燥する際に液膜が濃縮されるのに伴い微粒子の凝集が促進され、ガラス板の凹部に微粒子が堆積されることで、好ましい反射抑制膜が形成されると考えられる。
 以下、実施例により、本発明をさらに詳細に説明する。まず、各実施例、比較例で作製したカバーガラスの特性を評価するために実施した試験の内容を説明する。
(型板ガラスの表面形状測定)
 非接触三次元形状測定装置(三鷹光器株式会社、NH-3N)を用い、JIS B0601-1994に準じて、評価長さ5.0mm、カットオフ値2.5mmとして、基板として用いた型板ガラスの表面凹凸の算術平均粗さRa、最大高さRy、平均間隔Smを測定点10点の平均により求めた。また、算術平均粗さRaおよび平均間隔Smを用いて、平均傾斜角θを求めた。
(反射特性)
 分光光度計(島津製作所、UV-3100)を用い、反射抑制膜を形成した面の反射率曲線(反射スペクトル)を測定した。測定は、JIS K5602に準拠し、法線方向から光を入射させ、反射角8°の直接反射光を積分球に導入して行った。平均反射率は、波長400nm~1100nmにおける反射率を平均化して算出した。なお、測定に際しては、ガラス板裏面(非測定面)に黒色塗料を塗布して裏面からの反射光を除き、基準鏡面反射体に基づく補正を行った。
(透過特性)
 上記分光光度計を用い、反射抑制膜の形成前後におけるカバーガラスの透過率曲線(透過スペクトル)をそれぞれ測定した。平均透過率は、波長400~1100nmにおける透過率を平均化して算出した。反射抑制膜を形成した後の平均透過率から、反射抑制膜を形成する前の平均透過率を引いた値を透過率ゲインとした。
(外観評価)
 目視により、反射抑制膜を形成したカバーガラスの外観を下記基準で評価した。
 ◎ : 均一性および反射色調が反射抑制膜を形成していない型板ガラスとほぼ同等
 ○ : 特定の反射色は認められるが、均一性は良好
 △ : 場所によって反射色調が異なり、均一性にやや劣る
 × : 場所による反射色調の差がかなり大きく、均一性不良
(SEM観察)
 反射抑制膜の凸部および凹部における30°斜め上方からの断面を電界放射型走査型電子顕微鏡(FE-SEM、日立製作所、S-4500)によって観察した。撮影条件は、加速電圧10kV、撮影倍率5万倍とした。
(耐アルカリ性評価)
 得られた反射抑制膜の耐アルカリ性を、JIS R3221に準拠して評価した。反射抑制膜を形成したカバーガラスを、温度23℃、濃度1kmol/m3(1規定)の水酸化ナトリウム水溶液に24時間浸漬した。浸漬前後の外観変化を目視により観察するとともに、浸漬前後の透過率をヘイズメータ(日本電色、NDH2000)にて測定し、それらの差の絶対値によって耐アルカリ性を評価した。耐アルカリ性の評価は下記基準で評価した。
 ◎ : 外観変化なし
 ○ : 反射色調が若干変化するが、膜は全面に残っている
 △ : 反射色調が大きく変化する
 × : 膜が剥離している
(実施例1)
<コーティング液の調製>
 シリカ微粒子分散液(扶桑化学工業(株)、PL-7、平均粒径100nm、固形分濃度23重量%)36.96重量部、エチルセロソルブ56.84重量部、1N塩酸(加水分解触媒)1.0重量部を撹拌混合し、さらに撹拌しながらテトラエトキシシラン5.2重量部を添加し、引き続き40℃に保温しながら8時間撹拌して原液を得た。この原液における固形分濃度は10重量%であり、固形分中の微粒子とバインダー(酸化物換算)との比率は、重量基準で85:15である。なお、上記シリカ微粒子は、中実の(言い換えれば中空ではない)微粒子である。
 原液13.0重量部、プロピレングリコール5.0重量部、2-プロパノール81.98重量部、シリコーン系界面活性剤(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社、CoatOSil1211)0.02重量部を撹拌混合し、コーティング液を得た。このコーティング液における固形分濃度は1.3重量%であり、界面活性剤濃度は0.02重量%である。
<反射抑制膜の形成>
 ソーダライムシリケート組成からなる型板ガラス(日本板硝子製、100mm×300mm、厚さ3.2mm)をアルカリ超音波洗浄し、反射抑制膜を形成するための基板として準備した。この型板ガラスの表面形状は、表面凹凸の算術平均粗さRa0.76μm、最大高さRy4.54μm、平均間隔Sm1120μm、平均傾斜角θ0.156度であった。なお、この型板ガラスの反射および透過特性を上述の方法により測定したところ、平均反射率4.54%、平均透過率91.68%であった。
 スプレー法により、コーティング液を型板ガラス上に塗布した。スプレー法は、市販のスプレーガンを用い、水平に保持された型板ガラスの上方からコーティング液を噴霧して行った。この際、スプレーガンを型板ガラスとの距離を一定に保ったまま、スプレーガンと型板ガラスとの間で相対的に移動させた。次いで、この型板ガラスを、300℃の電気炉に1分間入れてコーティング液の溶媒を除去し、さらに610℃の電気炉に8分間入れて反射抑制膜を焼成し、カバーガラスを得た。こうして得たカバーガラスについて、上記各特性を評価した。評価の結果を表1に示す。また、作製した反射抑制膜をFE-SEMを用いて断面を観察した結果を図1(頂部)、図2(底部)に示す。
(実施例2)
 原液を調製するときの各原料の比率を、シリカ微粒子分散液30.43重量部、エチルセロソルブ58.17重量部、濃塩酸1.0重量部、テトラエトキシシラン10.4重量部とした以外は、実施例1と同様にして、原液を得た。この原液の固形分濃度は10重量%であり、固形分中の微粒子とバインダー(酸化物換算)との比率は、重量基準で70:30である。
 また、コーティング液を調製するときの各原料の比率を、原液17.0重量部、プロピレングリコール5.0重量部、2-プロパノール77.95重量部、シリコーン系界面活性剤0.05重量部とした以外は、実施例1と同様にして、コーティング液を得た。ただし、シリコーン系界面活性剤としては、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社によるCoatOSil3505を用いた。このコーティング液における固形分濃度は1.7重量%であり、界面活性剤濃度は0.05重量%である。引き続き、実施例1と同様にして、カバーガラスを得た。こうして得たカバーガラスについて、上記各特性を評価した。評価の結果を表1に示す。
(実施例3~8)
 表1に示した表面形状を有する型板ガラスと、表1に示すように調製したコーティング液とを用いて、実施例1と同様にして、カバーガラスを得た。こうして得た各実施例のカバーガラスについて、上記各特性を評価した。評価の結果を表1に示す。
(実施例9~11)
 表2に示した表面形状を有する型板ガラスと、表2に示すように調製したコーティング液とを用いて、実施例1と同様にして、カバーガラスを得た。ただし、コーティング液における界面活性剤としては、フッ素系界面活性剤を用いた。具体的には、各実施例において、DIC株式会社によるF444、株式会社ネオスによるフタージェント251、株式会社ネオスによるフタージェント215Mをそれぞれ用いた。こうして得た各実施例のカバーガラスについて、上記各特性を評価した。評価の結果を表2に示す。
(実施例12、13)
 表2に示した表面形状を有する型板ガラスと、表2に示すように調製したコーティング液とを用いて、実施例1と同様にして、カバーガラスを得た。実施例12、13の反射抑制膜にはZrO2が添加されている。ZrO2の出発物質としてオキシ塩化ジルコニウム八水和物(特級、関東化学株式会社)を用いた。コーティング液は、表3に示した比率の各原料を撹拌混合することで得た。原液は実施例2と同様に調製した。固形分中のSiO2とZrO2との酸化物換算による比率は、実施例12では重量基準で100:3であり、実施例13では重量基準で100:5である。固形分中の微粒子とバインダー(酸化物換算)との比率は、いずれの実施例においても重量基準で70:30であった。こうして得た各実施例のカバーガラスについて、上記各特性を評価した。評価の結果を表2に示す。また、実施例12において作製した反射抑制膜を、FE-SEMを用いて断面を観察した結果を図3(頂部)、図4(底部)に示す。
(実施例14、15)
 表2に示した表面形状を有する型板ガラスと、表2に示すように調製したコーティング液とを用いて、実施例1と同様にして、カバーガラスを得た。実施例14、15の反射抑制膜にはTiO2が添加されている。TiO2の出発物質としてオルガチックスTC-401(株式会社マツモト交商、チタンアセチルアセトネート、固形分濃度65重量%、2-プロパノール溶液)を用いた。コーティング液は、表3に示した比率の各原料を撹拌混合することで得た。原液は実施例2と同様に調製した。固形分中のSiO2とTiO2との酸化物換算による比率は、実施例14では重量基準で100:3であり、実施例15では重量基準で100:5である。固形分中の微粒子とバインダー(酸化物換算)との比率は、いずれの実施例においても重量基準で70:30であった。こうして得た各実施例のカバーガラスについて、上記各特性を評価した。評価の結果を表2に示す。
(実施例16)
 表2に示した表面形状を有する型板ガラスと、表2に示すように調製したコーティング液とを用いて、実施例1と同様にして、カバーガラスを得た。実施例12と同様に、各原料が表3に示した比率となるようにしてコーティング液を得た。界面活性剤にはフッ素系界面活性剤であるフタージェント251を用いた。こうして得たカバーガラスについて、上記各特性を評価した。評価の結果を表2に示す。また、作製した反射抑制膜をFE-SEMを用いて断面を観察した結果を図5(頂部)、図6(底部)に示す。
(実施例17)
 表2に示した表面形状を有する型板ガラスと、表2に示すように調製したコーティング液とを用いて、実施例1と同様にして、カバーガラスを得た。実施例17において、原液の固形分中の微粒子とバインダー(酸化物換算)との比率は、重量基準で95:5であり、コーティング液における固形分濃度は1.3重量%であり、界面活性剤濃度は0.02重量%である。こうして得たカバーガラスについて、上記各特性を評価した。評価の結果を表2に示す。
(比較例1)
 実施例1と同様にして原液を調製し、コーティング液を調製するときの各原料の比率を、原液13.0重量部、プロピレングリコール5.0重量部、2-プロパノール82.0重量部とした以外は、実施例1と同様にして、コーティング液を得た。ただし、界面活性剤は添加していない。このコーティング液における固形分濃度は1.3重量%である。引き続き、実施例1と同様にして、カバーガラスを得た。こうして得たカバーガラスについて、上記各特性を評価した。評価の結果を表4に示す。また、作製した反射抑制膜をFE-SEMを用いて断面を観察した結果を図7(頂部)、図8(底部)に示す。
(比較例2)
 実施例2と同様にして原液を調製し、コーティング液を調製するときの各原料の比率を、原液17.0重量部、プロピレングリコール5.0重量部、2-プロパノール78.0重量部とした以外は、実施例1と同様にして、コーティング液を得た。ただし、界面活性剤は添加していない。このコーティング液における固形分濃度は1.7重量%である。引き続き、実施例1と同様にして、カバーガラスを得た。こうして得たカバーガラスについて、上記各特性を評価した。評価の結果を表4に示す。
(比較例3~6)
 表4に示した表面形状を有する型板ガラスと、表4に示すように調製したコーティング液とを用いて、実施例1と同様にして、カバーガラスを得た。こうして得た各比較例のカバーガラスについて、上記各特性を評価した。評価の結果を表4に示す。
(比較例7~9)
 表4に示した表面形状を有する型板ガラスと、表4に示すように調製したコーティング液とを用いて、実施例1と同様にして、カバーガラスを得た。ただし、各比較例のコーティング液に用いた界面活性剤は、それぞれ、脂肪酸エステル系界面活性剤であるサンノプコ株式会社によるSNウェットL、スルホン酸系界面活性剤であるサンノプコ株式会社によるSNウェット970、ソルビタンモノオレエート系界面活性剤であるシグマ アルドリッチ ジャパン株式会社によるTween80とした。こうして得た各比較例のカバーガラスについて、上記各特性を評価した。評価の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 図1~図6より、型板ガラスの凹凸の頂部では、反射抑制膜は1層に配列したシリカ微粒子からなる骨格を有している(図1,3,5)。他方、型板ガラスの凹凸の底部では、反射抑制膜はシリカ微粒子が3~6層程度に積層されてなる積層体からなる骨格を有している(図2,4,6)。また、FE-SEMを用いた観察の結果、型板ガラスの凹凸の頂部と底部との間の斜面部において、反射抑制膜は、頂部に近づくにつれて積層数が減り、底部に近づくにつれて積層数が増していくことが確認できた。このように、型板ガラスの表面の凹凸に沿って、反射抑制膜の膜厚は連続して変化していた。実施例2で作製した反射抑制膜を同様にして観察したところ、実施例1で作製した反射抑制膜と同様、頂部ではシリカ微粒子が単層で配列し、底部ではシリカ微粒子が4~5層程度に積層して配列していた。
 図7,8によると、型板ガラスの凹凸の頂部および底部において、反射抑制膜は1~2層に配列したシリカ微粒子からなる骨格を有している。凹凸の頂部および底部における反射抑制膜の膜厚はほぼ同一である。比較例2で作製した反射抑制膜も、比較例1で作製した反射抑制膜と同様の膜構造を有していた。
 図9に、実施例1,2および比較例1,2で作製したカバーガラスの反射率曲線(反射スペクトル)を示す。実施例1,2のカバーガラスからは、波長380nm~780nmにおける反射率が1.5~3%の範囲(実施例2では2.5~3%の範囲;実施例1,2とも波長380nm~780nmにおける最大反射率と最小反射率との差は1%以下)にある反射率曲線が得られた。他方、比較例1のカバーガラスの反射率曲線は、波長400nm附近に大きなピークを有している。また、比較例2のカバーガラスの反射率曲線は、比較例1よりは平坦であるものの、波長400nm~500nm附近に小さなピークが存在するため、十分に平坦ではなく反射率の最高値は3%を上回っていた。
 なお、実施例2の反射率曲線が、実施例1の反射率曲線よりもさらに平坦になったのは、バインダーに対する微粒子の割合が低くなったからと考えられる。
 比較例3で作製したカバーガラスの外観評価は◎であり、比較例6で作製したカバーガラスの外観評価は○であったが、これらは平均反射率が高すぎるため実用的ではなかった。比較例7~9で作製したカバーガラスは、シリコーン系界面活性剤あるいはフッ素系界面活性剤を用いていないため、好ましい反射抑制膜が形成されなかったと考えられる。
 これに対して、全ての実施例で作製したカバーガラスにおいて、波長380nm~780nmの光が入射した場合の反射率の上限が3%以下であり、反射率の下限が1.5%以上であることから、全ての実施例のカバーガラスには好ましい反射抑制膜が形成されているといえる。また、全ての実施例のカバーガラスにおいて、平均反射率が3%以下であることから、十分に反射光を抑制することができるといえる。全ての実施例のカバーガラスの表面凹凸の頂部および底部をFE-SEMで観察した結果、頂部においてはシリカ微粒子が1層に配置され、底部においてはシリカ微粒子が少なくとも3層に相当する厚さに積層して配置されていることが確認された。
 実施例12~16のカバーガラスにおいて、ZrO2またはTiO2を反射抑制膜に添加したことから、耐アルカリ性が向上している。
 本発明によれば、外観を改善した光電変換装置用カバーガラスを提供できる。

Claims (14)

  1.  表面凹凸を有するガラス板を備えた光電変換装置用カバーガラスであって、
     前記ガラス板の前記表面凹凸上に形成された反射抑制膜をさらに備え、
     前記反射抑制膜が、シリカ微粒子と前記シリカ微粒子のバインダーとから構成され、
     前記表面凹凸の頂部においては前記シリカ微粒子が1層に配置され、前記表面凹凸の底部においては前記シリカ微粒子が少なくとも3層に相当する厚さに積層して配置されており、
     前記ガラス板の表面凹凸が0.4mm以上2.5mm以下の平均間隔Sm、および0.5μm~5μmの算術平均粗さRaを有し、
     前記反射抑制膜が形成された側から入射する光についての反射率が、波長380nm~780nmの全域において、1.5%以上3%以下である光電変換装置用カバーガラス。
  2.  前記ガラス板の前記表面凹凸が0.5μm~10μmの最大高さRyを有する請求項1に記載の光電変換装置用カバーガラス。
  3.  前記ガラス板の前記表面凹凸が0.5μm~1.0μmの算術平均粗さRaを有する請求項1に記載の光電変換装置用カバーガラス。
  4.  前記ガラス板の前記表面凹凸が0.5mm以上1.5mm以下の平均間隔Smを有する請求項1に記載の光電変換装置用カバーガラス。
  5.  前記ガラス板の前記表面凹凸が0.05~1.0度の平均傾斜角θを有する請求項1に記載の光電変換装置用カバーガラス。
  6.  前記ガラス板の前記表面凹凸が0.1~0.5度の平均傾斜角θを有する請求項5に記載の光電変換装置用カバーガラス。
  7.  前記ガラス板がロールアウト法により製造された型板ガラスである請求項1に記載の光電変換装置用カバーガラス。
  8.  前記シリカ微粒子と前記バインダーとの比が、重量基準に基づいて、90:10~65:35である請求項1に記載の光電変換装置用カバーガラス。
  9.  前記シリカ微粒子と前記バインダーとの比が、重量基準に基づいて、85:15~65:35である請求項8に記載の光電変換装置用カバーガラス。
  10.  前記シリカ微粒子と前記バインダーとの比が、重量基準に基づいて、80:20~65:35である請求項9に記載の光電変換装置用カバーガラス。
  11.  前記バインダーがシリカからなる請求項1に記載の光電変換装置用カバーガラス。
  12.  前記反射抑制膜が、さらにジルコニアを含み、その含有量は5重量%以下である請求項1に記載の光電変換装置用カバーガラス。
  13.  前記反射抑制膜が、さらにチタニアを含み、その含有量は5重量%以下である請求項1に記載の光電変換装置用カバーガラス。
  14.  表面凹凸を有するガラス板を備えた光電変換装置用カバーガラスの製造方法であって、
     前記カバーガラスが、請求項1に記載されたカバーガラスであり、
     前記シリカ微粒子と、前記バインダーの供給源となる金属化合物とを含むコーティング液を前記ガラス板の前記表面凹凸上に噴霧する工程と、
     前記ガラス板上に噴霧されたコーティング液を乾燥させる工程と、
     前記ガラス板を加熱して前記乾燥させたコーティング液に含まれる前記金属化合物から酸化物を生成させて前記バインダーとする工程と、を含む光電変換装置用カバーガラスの製造方法。
PCT/JP2010/006515 2009-12-11 2010-11-05 光電変換装置用カバーガラスおよびその製造方法 WO2011070714A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10835645.2A EP2511738B1 (en) 2009-12-11 2010-11-05 Cover glass for photoelectric converter and process for producing same
JP2011545051A JP5718825B2 (ja) 2009-12-11 2010-11-05 光電変換装置用カバーガラスおよびその製造方法
KR1020127017014A KR101771757B1 (ko) 2009-12-11 2010-11-05 광전 변환 장치용 커버 유리 및 그 제조 방법
CN201080056103.XA CN102782528B (zh) 2009-12-11 2010-11-05 光电转换装置用玻璃罩及其制造方法
US13/513,972 US9188705B2 (en) 2009-12-11 2010-11-05 Cover glass for photoelectric conversion devices and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009281234 2009-12-11
JP2009-281234 2009-12-11

Publications (1)

Publication Number Publication Date
WO2011070714A1 true WO2011070714A1 (ja) 2011-06-16

Family

ID=44145281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006515 WO2011070714A1 (ja) 2009-12-11 2010-11-05 光電変換装置用カバーガラスおよびその製造方法

Country Status (6)

Country Link
US (1) US9188705B2 (ja)
EP (1) EP2511738B1 (ja)
JP (1) JP5718825B2 (ja)
KR (1) KR101771757B1 (ja)
CN (1) CN102782528B (ja)
WO (1) WO2011070714A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130420A (zh) * 2011-11-25 2013-06-05 三菱综合材料株式会社 带抗反射膜的玻璃基材
JP2014006443A (ja) * 2012-06-26 2014-01-16 Jgc Catalysts & Chemicals Ltd 反射防止膜付基材の製造方法および光電気セル
WO2014020836A1 (ja) 2012-08-01 2014-02-06 日本板硝子株式会社 光電変換装置用カバーガラス
WO2016051718A1 (ja) * 2014-09-30 2016-04-07 日本板硝子株式会社 低反射コーティング、低反射コーティング付ガラス板、低反射コーティングを有するガラス板、ガラス基板、および光電変換装置
WO2016051750A1 (ja) * 2014-09-30 2016-04-07 日本板硝子株式会社 低反射コーティング、ガラス板、ガラス基板、及び光電変換装置
JP2017040937A (ja) * 2016-11-04 2017-02-23 大日本印刷株式会社 光学積層体、偏光板及び画像表示装置
US9874658B2 (en) 2013-01-31 2018-01-23 Nippon Sheet Glass Company, Limited Low reflection coating glass sheet and method for producing the same
JP2023014241A (ja) * 2017-03-10 2023-01-26 キヤノン株式会社 光学部材及び光学部材の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012020609B4 (de) * 2012-10-19 2014-11-27 Audi Ag Bedienelement für einen Kraftwagen sowie Verfahren zum Herstellen eines Bedienelements
JP6285152B2 (ja) * 2013-11-12 2018-02-28 旭化成株式会社 積層体の製造方法、積層体、太陽電池用カバーガラス、及び太陽熱発電用ミラー
WO2016043014A1 (ja) * 2014-09-17 2016-03-24 株式会社カネカ 太陽電池モジュール
MY183280A (en) * 2015-01-29 2021-02-18 Nippon Sheet Glass Co Ltd Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate
US10908320B2 (en) * 2015-10-01 2021-02-02 Nippon Sheet Glass Company, Limited Coated glass sheet and method for producing same
US10120111B2 (en) 2016-12-14 2018-11-06 Google Llc Thin ceramic imaging screen for camera systems
CN109407186A (zh) * 2017-05-08 2019-03-01 法国圣戈班玻璃公司 光学组件及光伏器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047019A (ja) * 2000-07-28 2002-02-12 Asahi Glass Co Ltd 板状ガラス製品のロールアウト成形方法及びその装置
JP2003243689A (ja) 2001-12-13 2003-08-29 Asahi Glass Co Ltd 太陽電池用カバーガラス、その製法及び該カバーガラスを使用した太陽電池モジュール
JP2007121786A (ja) 2005-10-31 2007-05-17 Nippon Sheet Glass Co Ltd コーティング液の製造方法、およびそのコーティング液を用いた反射防止膜の製造方法
JP2009088503A (ja) * 2007-09-14 2009-04-23 Mitsubishi Chemicals Corp 太陽電池用積層カバー基板、太陽電池、並びに、太陽電池用積層カバー基板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216417A (ja) * 1999-01-25 2000-08-04 Goyo Paper Working Co Ltd 微細凹凸パタ―ン付き基板
WO2001042155A1 (en) * 1999-12-13 2001-06-14 Nippon Sheet Glass Co., Ltd. Low-reflection glass article
JP4527272B2 (ja) * 1999-12-13 2010-08-18 日本板硝子株式会社 低反射ガラス物品
CN1468383A (zh) * 2001-06-29 2004-01-14 �ձ�������ʽ���� 光散射/反射基板用感光性树脂组合物、光散射/反射基板、及其制造方法
JP2003075604A (ja) 2001-09-03 2003-03-12 Nitto Denko Corp 反射防止防眩フィルムおよびその製造方法、光学素子、画像表示装置
WO2003054974A1 (en) 2001-12-13 2003-07-03 Asahi Glass Company, Limited Cover glass for a solar battery
JP2003322704A (ja) * 2002-05-07 2003-11-14 Nitto Denko Corp 反射防止シートの製造方法、反射防止シート、光学素子および画像表示装置
JP2008201633A (ja) * 2007-02-21 2008-09-04 Asahi Glass Co Ltd 反射防止膜付きガラス板および窓用合わせガラス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047019A (ja) * 2000-07-28 2002-02-12 Asahi Glass Co Ltd 板状ガラス製品のロールアウト成形方法及びその装置
JP2003243689A (ja) 2001-12-13 2003-08-29 Asahi Glass Co Ltd 太陽電池用カバーガラス、その製法及び該カバーガラスを使用した太陽電池モジュール
JP2007121786A (ja) 2005-10-31 2007-05-17 Nippon Sheet Glass Co Ltd コーティング液の製造方法、およびそのコーティング液を用いた反射防止膜の製造方法
JP2009088503A (ja) * 2007-09-14 2009-04-23 Mitsubishi Chemicals Corp 太陽電池用積層カバー基板、太陽電池、並びに、太陽電池用積層カバー基板の製造方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130420A (zh) * 2011-11-25 2013-06-05 三菱综合材料株式会社 带抗反射膜的玻璃基材
CN103130420B (zh) * 2011-11-25 2017-08-01 三菱综合材料株式会社 带抗反射膜的玻璃基材
JP2014006443A (ja) * 2012-06-26 2014-01-16 Jgc Catalysts & Chemicals Ltd 反射防止膜付基材の製造方法および光電気セル
CN103515457B (zh) * 2012-06-26 2017-08-25 日挥触媒化成株式会社 带防反射膜的基材的制造方法及光电池
TWI572045B (zh) * 2012-06-26 2017-02-21 日揮觸媒化成股份有限公司 附抗反射膜基材的製造方法及光電單元
CN104508518A (zh) * 2012-08-01 2015-04-08 日本板硝子株式会社 光电转换装置用玻璃盖片
US9664822B2 (en) 2012-08-01 2017-05-30 Nippon Sheet Glass Company, Limited Cover glass for photoelectric conversion device
KR101939871B1 (ko) 2012-08-01 2019-01-17 니혼 이타가라스 가부시키가이샤 광전 변환 장치용 커버 유리
WO2014020836A1 (ja) 2012-08-01 2014-02-06 日本板硝子株式会社 光電変換装置用カバーガラス
CN104508518B (zh) * 2012-08-01 2016-09-07 日本板硝子株式会社 光电转换装置用玻璃盖片
KR20150038015A (ko) 2012-08-01 2015-04-08 니혼 이타가라스 가부시키가이샤 광전 변환 장치용 커버 유리
JP2014032248A (ja) * 2012-08-01 2014-02-20 Nippon Sheet Glass Co Ltd 光電変換装置用カバーガラス
EP2881765A4 (en) * 2012-08-01 2016-03-02 Nippon Sheet Glass Co Ltd COVER GLASS FOR PHOTOELECTRIC CONVERSION DEVICE
US9874658B2 (en) 2013-01-31 2018-01-23 Nippon Sheet Glass Company, Limited Low reflection coating glass sheet and method for producing the same
WO2016051750A1 (ja) * 2014-09-30 2016-04-07 日本板硝子株式会社 低反射コーティング、ガラス板、ガラス基板、及び光電変換装置
JPWO2016051750A1 (ja) * 2014-09-30 2017-08-31 日本板硝子株式会社 低反射コーティング、ガラス板、ガラス基板、及び光電変換装置
WO2016051718A1 (ja) * 2014-09-30 2016-04-07 日本板硝子株式会社 低反射コーティング、低反射コーティング付ガラス板、低反射コーティングを有するガラス板、ガラス基板、および光電変換装置
US10600923B2 (en) 2014-09-30 2020-03-24 Nippon Sheet Glass Company, Limited Low-reflection coating, glass sheet, glass substrate, and photoelectric conversion device
JP2017040937A (ja) * 2016-11-04 2017-02-23 大日本印刷株式会社 光学積層体、偏光板及び画像表示装置
JP2023014241A (ja) * 2017-03-10 2023-01-26 キヤノン株式会社 光学部材及び光学部材の製造方法

Also Published As

Publication number Publication date
CN102782528A (zh) 2012-11-14
JPWO2011070714A1 (ja) 2013-04-22
EP2511738A1 (en) 2012-10-17
US20120244318A1 (en) 2012-09-27
US9188705B2 (en) 2015-11-17
EP2511738A4 (en) 2017-01-04
KR101771757B1 (ko) 2017-08-25
KR20120102097A (ko) 2012-09-17
EP2511738B1 (en) 2017-12-27
CN102782528B (zh) 2015-02-25
JP5718825B2 (ja) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5718825B2 (ja) 光電変換装置用カバーガラスおよびその製造方法
JP6039962B2 (ja) 光電変換装置用カバーガラス
US10478803B2 (en) Glass article provided with photocatalyst film, process for producing glass article, and coating liquid
JP7242720B2 (ja) コーティング膜付きガラス板及びその製造方法
JP2020170171A (ja) 低反射コーティング付ガラス基板、低反射コーティング付ガラス基板を製造する方法、及び光電変換装置
JP2016185886A (ja) 低反射コーティング付ガラス板
JP5989808B2 (ja) 低反射コーティング付きガラス板の製造方法とそれに用いるコーティング液
JP6560210B2 (ja) 低反射コーティング、低反射コーティング付き基板および光電変換装置
WO2016002223A1 (ja) 低反射コーティング付きガラス板
JP2018127366A (ja) ガラス物品およびその製造方法
JP6487933B2 (ja) 低反射コーティング、低反射コーティング付ガラス板、低反射コーティングを有するガラス板、ガラス基板、光電変換装置、及び低反射コーティングを製造する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056103.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545051

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13513972

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010835645

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127017014

Country of ref document: KR

Kind code of ref document: A