WO2011067829A1 - エンジンの冷却装置 - Google Patents

エンジンの冷却装置 Download PDF

Info

Publication number
WO2011067829A1
WO2011067829A1 PCT/JP2009/070189 JP2009070189W WO2011067829A1 WO 2011067829 A1 WO2011067829 A1 WO 2011067829A1 JP 2009070189 W JP2009070189 W JP 2009070189W WO 2011067829 A1 WO2011067829 A1 WO 2011067829A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
flow rate
engine
cylinder
flow
Prior art date
Application number
PCT/JP2009/070189
Other languages
English (en)
French (fr)
Inventor
能川真一郎
▲高▼橋大志
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN200980162682.3A priority Critical patent/CN102667092B/zh
Priority to EP09851837.6A priority patent/EP2508727B1/en
Priority to JP2011544137A priority patent/JP5494672B2/ja
Priority to US13/513,064 priority patent/US8746187B2/en
Priority to PCT/JP2009/070189 priority patent/WO2011067829A1/ja
Publication of WO2011067829A1 publication Critical patent/WO2011067829A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed

Definitions

  • the present invention relates to an engine cooling device.
  • Patent Document 1 or 2 discloses a technique that is considered to be relevant to the present invention as a technique related to a water jacket for circulating cooling water.
  • Patent Document 1 discloses a water jacket structure for an engine in which the surface property of a water jacket formed inside the engine is different for each part.
  • Patent Document 2 discloses a cooling structure for a cylinder liner in which an annular fin is provided on the outer peripheral surface of a cylinder liner that forms a water jacket.
  • an engine particularly a spark ignition type internal combustion engine, generates a lot of heat not used for net work such as exhaust loss and cooling loss.
  • the reduction of the cooling loss which accounts for a large proportion of the total energy loss, is a very important factor for improving the thermal efficiency (fuel consumption).
  • a general engine is not configured to locally change the state of heat transfer. That is, in a general engine, it is difficult to cool a part that needs to be cooled to a necessary degree and to suppress heat transfer to a part where a lot of cooling loss occurs due to the configuration.
  • the flow rate of the cooling water is changed according to the engine speed by a mechanical water pump driven by the output of the engine. .
  • the water pump that adjusts the flow rate of the cooling water as a whole even if a variable water pump that makes the flow rate variable is used, the heat transfer state can be locally changed according to the engine operating state. I can't do it.
  • each surface portion is cooled in accordance with the cooling requirement by changing the surface property of the water jacket for each portion.
  • the technique disclosed in Patent Document 1 has a problem in that it is not always possible to perform appropriate cooling for each part from the viewpoint of improving thermal efficiency.
  • the present invention has been made in view of the above-mentioned problems, and it is possible to reduce the cooling loss by locally changing the state of heat transfer of the engine in a rational manner, and further reducing the cooling loss and knocking performance.
  • An object of the present invention is to provide an engine cooling device capable of satisfying both requirements.
  • the present invention for solving the above-mentioned problems forms a first cooling medium passage having a plurality of partial cooling medium passages separately incorporated in a plurality of different cooling systems, and is within the range of the maximum flow velocity of the cooling medium.
  • An engine including a cylinder head provided with a first concavo-convex portion in the first cooling medium passage capable of causing separation of the flow of the cooling medium in accordance with a change in flow velocity, and depending on an engine operating state, Control means for performing control for changing the flow rate of the cooling medium flowing through the first cooling medium passage, including a case where the flow velocity of the cooling medium is partially changed in each of the plurality of partial cooling medium passages.
  • the flow rate of the cooling medium to be circulated through the first cooling medium passage is separated at the first uneven portion by the control means. It is preferable that the control is performed to change the flow rate at which the gas is generated.
  • the engine forms a second cooling medium passage in a peripheral portion of the cylinder, and causes the flow of the cooling medium to be separated in accordance with the change in the flow rate within the range of the maximum flow velocity of the cooling medium.
  • the control means has a low rotation and high load engine operation state.
  • the flow rate of the cooling medium flowing through the second cooling medium passage may be further controlled to change to a flow rate at which the separation of the cooling medium flow does not occur in the second uneven portion. preferable.
  • the present invention also provides a cylinder in which a cooling medium passage is formed in the periphery of the cylinder, and an uneven portion is provided in the cooling medium passage to change the thermal conductivity to the cooling water in accordance with a change in the flow direction of the cooling water.
  • An engine including a block; cooling capacity adjusting means capable of adjusting the cooling capacity of the cylinder head; and a flow direction of the cooling water in the cooling medium passage according to the first direction and the uneven portion rather than the first direction.
  • the cylinder head by controlling the flow direction changing means that can be changed between the second direction in which the thermal conductivity is increased and the cooling capacity adjusting means when the engine operating state is a low rotation and high load. And controlling the flow direction changing means to control the flow direction of the cooling water in the cooling medium passage to the second direction.
  • control means for performing a cooling system for an engine comprising.
  • the present invention it is possible to reduce the cooling loss by locally changing the state of heat transfer of the engine in a rational manner, and it is possible to achieve both reduction of the cooling loss and knock performance.
  • FIG. 1 is a diagram schematically showing an engine cooling device (hereinafter simply referred to as a cooling device) 1A.
  • a cooling device 1A.
  • FIG. It is a figure which shows engine 50A typically in a cross section per cylinder. It is a figure which shows an example of the specific shape of 1st and 2nd uneven
  • FIG. 3A shows a non-uniform porous shape
  • FIG. 3B shows a uniform porous shape as an example.
  • FIG. 10A shows the third uneven portion P3 when the peak portion is formed in a quadrilateral shape
  • FIG. 10B shows the peak portion bent in a triangular shape.
  • the third concavo-convex part P3 when formed according to the shape is shown as an example. It is a figure which shows operation
  • a cooling device 1A shown in FIG. 1 is mounted on a vehicle (not shown), and includes a water pump (hereinafter referred to as W / P) 11, a radiator 12, a thermostat 13, a flow control valve 14, an engine 50A, 1 to 4 partial flow control valves 61 to 64 are provided.
  • W / P11 is a cooling medium pumping means, which is a variable W / P that pumps the cooling water that is the cooling medium and makes the flow rate of the cooling water pumped variable.
  • W / P11 is a first flow changing means that can change the flow state of the cooling water in the engine 50A.
  • the cooling water pumped by the W / P 11 is supplied to the engine 50A.
  • the engine 50A includes a cylinder block 51A and a cylinder head 52A.
  • a block-side water jacket (hereinafter referred to as a block-side W / J) 511A is formed as a cooling medium passage.
  • the block side W / J 511A forms one cooling system in the cylinder block 51A.
  • a head-side water jacket (hereinafter referred to as head-side W / J) 521A is formed in the cylinder head 52A as a cooling medium passage.
  • the head side W / J 521A forms a plurality (four in this case) of different cooling systems in the cylinder head 52A.
  • the head side W / J 521A corresponds to the first cooling medium passage
  • the block side W / J 511A corresponds to the second cooling medium passage.
  • the cooling water pumped by the W / P 11 is supplied to the block side W / J 511A and the head side W / J 521A.
  • the cooling device 1A has a plurality of cooling water circulation paths.
  • the cooling water circulation path for example, there is a block side circulation path C1 which is a circulation path in which the block side W / J 511A is incorporated.
  • the cooling water flowing through the block-side circulation path C1 is discharged from the W / P 11 and then flows through the block-side W / J 511A, and further through the thermostat 13 or through the radiator 12 and the thermostat 13, the W / P 11 To come back.
  • the radiator 12 is a heat exchanger, and cools the cooling water by exchanging heat between the circulating cooling water and the air.
  • the thermostat 13 switches the distribution route communicating with the W / P 11 from the entrance side. Specifically, the thermostat 13 sets the flow path that bypasses the radiator 12 when the coolant temperature is lower than a predetermined value, and sets the flow path that flows through the radiator 12 when the temperature of the cooling water is equal to or higher than the predetermined value.
  • the cooling water circulation path for example, there is a head side circulation path C2 which is a circulation path in which the head side W / J 521A is incorporated.
  • the cooling water flowing through the head-side circulation path C2 is discharged from the W / P 11, and then the flow control valve 14, at least one of the first to fourth partial flow control valves 61 to 64, and the head side At least one of the four cooling systems formed by the W / J 521A is circulated and further returned to the W / P 11 via the thermostat 13 or via the radiator 12 and the thermostat 13.
  • the flow rate adjusting valve 14 is provided in a part of the head side circulation path C2 after the circulation paths C1 and C2 are branched and in a part upstream of the cylinder head 52A. 4 is provided at a portion upstream of the partial flow rate control valves 61 to 64.
  • the flow rate control valve 14 is a second flow changing means that can change the flow state of the cooling water in the cylinder head 52A. Specifically, the flow rate adjustment valve 14 generally adjusts the flow rate of the cooling water flowing through the head side W / J 521A to adjust the flow rate of the cooling water flowing through the head side W / J 521A as a whole. It is an adjustable distribution change means. Further, the flow rate adjusting valve 14 is a flow changing means capable of simultaneously adjusting the flow rate of the cooling water flowing through the block side W / J 511A by adjusting the flow rate of the cooling water flowing through the head side W / J 521A. ing.
  • the flow rate adjusting valve 14 is adjusted so as to improve the flow rate of the cooling water flowing through the block side W / J 511A when the flow rate adjusting valve 14 is adjusted so as to reduce the flow rate of the cooling water flowing through the head side W / J 521A. It is a distribution change means that can do.
  • the first to fourth partial flow rate control valves 61 to 64 From the first to fourth partial flow rate control valves 61 to 64, four systems of cooling formed by the head side W / J 521A in the portion between the flow rate control valve 14 and the cylinder head 52A in the head side circulation path C2. It is provided corresponding to the system.
  • These partial flow rate control valves 61 to 64 serve as third flow changing means capable of changing the flow state of the cooling water in the cylinder head 52A, and more specifically, the cooling water flowing through the head side W / J 521A.
  • the flow changing means is capable of partially adjusting the flow rate of the cooling water flowing through the head side W / J 521A.
  • the cooling water flowing through the block-side circulation path C1 is not circulated through the head-side W / J 521A until it makes a circuit after being pumped by the W / P 11. Further, in the cooling device 1A, the cooling water flowing through the head-side circulation path C2 is not circulated through the block side W / J 511A until it makes a circuit after being pumped by the W / P 11. That is, in the cooling device 1A, the block side W / J 511A and the head side W / J 521A are incorporated in different coolant circulation paths.
  • a cylinder 51a is formed in the cylinder block 51A.
  • a piston 53 is provided in the cylinder 51a.
  • a cylinder head 52A is fixed to the cylinder block 51A via a gasket 54 having high heat insulating properties.
  • the gasket 54 suppresses heat transfer from the cylinder block 51A to the cylinder head 52A due to its high heat insulating property.
  • the cylinder 51a, the cylinder head 52A, and the piston 53 form a combustion chamber 55.
  • the cylinder head 52 ⁇ / b> A is formed with an intake port 52 a that guides intake air to the combustion chamber 55 and an exhaust port 52 b that discharges combustion gas from the combustion chamber 55.
  • a spark plug 56 is provided in the cylinder head 52A so as to face the substantially upper center of the combustion chamber 55.
  • the block side W / J511A specifically includes a partial W / J511aA that is a partial cooling medium passage.
  • the portion W / J511aA is a cooling medium passage provided in the peripheral portion of the cylinder 51a.
  • the upstream portion of the portion W / J511aA can be provided, for example, corresponding to a portion of the wall surface of the cylinder 51a that the intake air flowing into the cylinder hits.
  • the engine 50A is an engine that generates a normal tumble flow in the cylinder in this embodiment, and the portion that receives the intake air that has flowed into the cylinder is the upper portion of the wall surface of the cylinder 51a and the exhaust side portion. .
  • the head side W / J 521A includes a plurality of portions W / J 521aA, portions W / J 521bA, portions W / J 521cA and portions W / J 521dA which are partial cooling medium passages.
  • the portion W / J521aA is a cooling medium passage provided in the peripheral portion of the intake port 52a
  • the portion W / J521bA is provided in the peripheral portion of the exhaust port 52b
  • the portion W / J521cA is provided in the peripheral portion of the spark plug 56.
  • the portion W / J521dA is a cooling medium passage provided for cooling the intake / exhaust ports 52a and 52b and other portions.
  • the portion W / J521aA to the portion W / J521dA are separately incorporated in four different cooling systems formed by the head side W / J521A.
  • the first partial flow rate adjustment valve 61 is in the portion W / J521aA
  • the second partial flow rate adjustment valve 62 is in the portion W / J521bA
  • the third partial flow rate adjustment valve 63 is in the portion W / J521cA
  • the fourth Partial flow rate adjustment valves 64 are provided corresponding to the respective portions W / J521 dA.
  • Each of the portions W / J 521aA to 521dA is provided with a first concavo-convex portion P1 capable of causing separation of the flow of the cooling water in accordance with a change in flow velocity.
  • the first uneven portion P1 is specifically provided on the entire inner wall surface of each of the portions W / J 521aA to 521dA.
  • the portion W / J511aA is provided with a second concavo-convex portion P2 that can cause the separation of the flow of the cooling water in accordance with the change in the flow velocity.
  • the second uneven portion P2 is specifically provided on the entire inner wall surface W located on the cylinder 51a side in the portion W / J511aA.
  • the first and second uneven portions P1 and P2 are specifically formed in a porous shape (porous shape).
  • the specific shapes of the first and second uneven portions P1 and P2 cause the separation of the flow of the cooling water according to the change in the flow rate within the range of the maximum flow rate of the cooling water that can be applied during engine operation. (I.e., within the range of the maximum flow rate of cooling water that can be applied during engine operation)
  • the specific shape of the first and second uneven portions P1 and P2 may be a non-uniform porous shape as shown in FIG. 3A, or a uniform shape as shown in FIG. It may be a porous shape.
  • the specific shape of the porous shape may be, for example, a porous shape formed by a plurality of fine columnar holes.
  • the cooling device 1A includes an ECU (Electronic Control Unit) 70A shown in FIG.
  • the ECU 70A includes a microcomputer including a CPU 71, a ROM 72, a RAM 73, and the like, and input / output circuits 75 and 76. These components are connected to each other via a bus 74.
  • the ECU 70A includes a crank angle sensor 81 for detecting the rotational speed of the engine 50A, an air flow meter 82 for measuring the intake air amount, an accelerator opening sensor 83 for detecting the accelerator opening, and cooling water.
  • Various sensors and switches such as a water temperature sensor 84 for detecting the temperature of the water are electrically connected.
  • the load of the engine 50A is detected by the ECU 70A based on the outputs of the air flow meter 82 and the accelerator opening sensor 83.
  • the ECU 70A is electrically connected to various control objects such as the W / P 11, the flow rate adjustment valve 14, and the partial flow rate adjustment valves 61 to 64.
  • the ROM 72 is configured to store a program in which various processes executed by the CPU 71 are described, map data, and the like.
  • various control means, determination means, detection means, calculation means, etc. are functional in the ECU 70A. To be realized.
  • the ECU 70A implements a control unit that performs control for adjusting the cooling capacity of the cylinder head 52A.
  • the control means specifically sets the cooling capacity of the cylinder head 52A when the engine operating state is a high load (more specifically, a low rotation high load). It implement
  • the control means is more specifically realized so as to perform control for suppressing the cooling capacity of the cylinder head 52A without suppressing the cooling capacity of the cylinder block 51A.
  • the control means when performing control for adjusting the cooling capacity of the cylinder head 52A, the control means is specifically implemented to perform control for changing the state of heat transfer from the cylinder head 52A to the cooling water.
  • the control means changes the flow rate of the cooling water flowing through the head side W / J 521A according to the engine operating state, including the case where the flow rate is partially changed from the part W / J 521aA to 521dA. It is realized to perform the control.
  • the control means changes the state of heat transfer from the cylinder head 52A to the cooling water by specifically controlling the W / P 11, the flow rate control valve 14, and the partial flow rate control valves 61 to 64 as control targets. It is realized to perform control for.
  • the W / P 11, the flow rate adjusting valve 14, and the first uneven portion P1 serve as cooling capacity adjusting means that can adjust the cooling capacity of the cylinder head 52A.
  • / J521A is a cooling capacity adjusting means that can suppress the cooling capacity of the cylinder head 52A as a whole by generating separation of the cooling water flow.
  • the W / P 11, the flow rate control valve 14, the first uneven portion P1, and the second uneven portion P2 are formed on the head side without causing separation of the cooling water flow on the block side W / J 511A.
  • control means appropriately controls the W / P 11, the flow rate adjustment valve 14, and the partial flow rate adjustment valves 61 to 64 based on, for example, the above-described control guideline, thereby performing overall control in each of the sections D 1 to D 6.
  • the operation of the engine 50A can be further preferably established in each of the sections D1 to D6.
  • the ECU 70A determines whether or not it is at the time of engine start (step S1). If the determination is affirmative, the ECU 70A starts to drive the W / P 11 (step S3). Subsequently, the ECU 70A opens the flow rate control valve 14 halfway and drives the W / P 11 with the first discharge amount (step S21A). On the other hand, if a negative determination is made in step S1, ECU 70A determines whether or not the engine is cold (step S5). Whether or not the engine is cold can be determined, for example, based on whether or not the cooling water temperature is a predetermined value (for example, 75 ° C.) or less. If it is affirmation determination by step S5, it will progress to step S21A. On the other hand, if a negative determination is made in step S5, ECU 70A detects the rotational speed and load of engine 50A (step S11).
  • the heat transfer coefficient and the surface area ratio of the combustion chamber 55 according to the crank angle of the engine 50A are as shown in FIG.
  • FIG. 7 it can be seen that the heat transfer coefficient increases near the top dead center of the compression stroke.
  • the surface area ratio it can be seen that the surface area ratios of the cylinder head 52A and the piston 53 increase near the top dead center of the compression stroke. Therefore, it can be seen that the cooling power is greatly influenced by the temperature of the cylinder head 52A.
  • knocking depends on the compression end temperature, and it can be seen that the surface area ratio of the cylinder 51a is large in the intake compression stroke that affects the compression end temperature. Therefore, it can be seen that the influence of the temperature of the cylinder 51a is large for knocking.
  • the head side W / J 521A causes the separation of the flow of the cooling water.
  • the heat transfer from the cylinder head 52A to the cooling water is suppressed by delaying the exchange of the cooling water in the fine structure of the first concavo-convex portion P1 and further causing the nucleate boiling. And thereby, a cooling loss can be reduced.
  • the occurrence of knocking is a concern in this case.
  • the cooling device 1A can improve the thermal efficiency mainly at the time of low rotation and high load, while being able to suitably establish the operation of the engine 50A even in other operation states.
  • the cooling device 1A can improve thermal efficiency not only in a specific operation state but also as a whole operation of the engine 50A that is normally performed.
  • the cooling device 1B includes an engine 50B instead of the engine 50A, further includes an inlet side switching valve 21 and an outlet side switching valve 22, and will be described later.
  • an ECU 70B is provided instead of the ECU 70A.
  • the engine 50B is substantially the same as the engine 50A except that a cylinder block 51B is provided instead of the cylinder block 51A and a cylinder head 52B is provided instead of the cylinder head 52A.
  • the cylinder head 52B is substantially the same as the cylinder head 52A except that the head side W / J521B is provided instead of the head side W / J521A.
  • the head side W / J 521B is substantially the same as the head side W / J 521A except that the head side W / J 521A is provided with the portions W / J 521aB to 521dB instead of the portions W / J 521aA to 521dA (FIG. 9). reference).
  • W / J521aB to W / J521dB are substantially the same as the portions W / J521aA to 521dA except that the first uneven portion P1 is not provided.
  • the flow rate adjusting valve 14 is a cooling capacity adjusting means capable of adjusting the cooling capacity of the cylinder head 52B.
  • the flow rate adjusting valve 14 is a cooling capacity adjusting means that can adjust the cooling capacity of the cylinder head 52B as a whole by adjusting the flow rate of the cooling water flowing through the head side W / J 521B as a whole.
  • the partial flow rate adjusting valves 61 to 64 instead of the flow rate adjusting valve 14 can function as cooling capacity adjusting means capable of adjusting the overall cooling capacity of the cylinder head 52B.
  • the flow rate adjusting valve 14 provided in this way is a cooling capacity adjusting means capable of suppressing the cooling capacity of the cylinder head 52B without suppressing the cooling capacity of the cylinder block 51B.
  • the flow rate control valve 14 has a cooling capacity of the cylinder block 51B and a cooling capacity of the cylinder head 52B at the time of high rotation and high load for circulating cooling water through the cylinder block 51B and the cylinder head 52B.
  • This is a cooling capacity adjusting means that can suppress the cooling capacity of the cylinder head 52B without suppressing the cooling capacity of the cylinder block 51B.
  • the partial flow rate adjusting valves 61 to 64 are cooling capacity adjusting means capable of adjusting the cooling capacity of the cylinder head 52B, and more specifically, cooling water flowing through the head side W / J 521B.
  • the cooling capacity adjusting means is capable of partially adjusting the cooling capacity of the cylinder head 52B.
  • the cylinder block 51B is substantially the same as the cylinder block 51A except that the block side W / J511B is provided instead of the block side W / J511A.
  • the block side W / J511B includes a portion W / J511aB, which will be described later, instead of the portion W / J511aA, and the first introduction portion 511b and the first introduction portion as the cooling water introduction portion and the outflow portion with respect to the portion W / J511aB.
  • the block side W / J 511A is substantially the same as that of the block side W / J 511A except that one outflow portion 511c, a second introduction portion 511d, and a second outflow portion 511e are provided.
  • the first introduction part 511b and the outflow part 511c are provided so as to circulate cooling water along the axial direction of the cylinder 51a with respect to the part W / J 511aB.
  • the second introduction part 511d and the outflow part 511e are provided so as to circulate cooling water along the circumferential direction of the cylinder 51a with respect to the part W / J 511aB. Therefore, the block side W / J511B has a structure in which the flow direction of the cooling water in the portion W / J511aB can be switched between the axial direction and the circumferential direction of the cylinder 51a.
  • the inlet side switching valve 21 is provided on the upstream side of the cylinder block 51B, and in the part after branching of the first and second cooling water circulation paths C1, C2, and the outlet side switching valve 22 is provided on the downstream side of the cylinder block 51B, And it is provided in the part before joining of the 1st and 2nd cooling water circulation paths C1 and C2.
  • the inlet side switching valve 21 switches the path through which the cooling water flows between the first introduction part 511b and the second introduction part 511d, and the outlet side switching valve 22 is connected to the first outflow part 511c and the second introduction part 511c.
  • Each is provided so that the path
  • the cylinder block 51B is provided with a portion W / J511aB instead of the portion W / J511aA.
  • the portion W / J511aB is configured such that the third uneven portion P3 is provided instead of the second uneven portion P2, and the flow direction of the cooling water is switched between the axial direction of the cylinder 51a and the circumferential direction. Except for this point, it is substantially the same as the portion W / J511aA.
  • grooved part P3 is formed in the shape which makes the heat conductivity from the cylinder block 51B to a cooling water variable according to the change of the distribution direction of a cooling water.
  • the third concavo-convex portion P3 is formed by a plate-like member that is bent in a wave shape along the axial direction of the cylinder 51a, and a crest portion is cut out at predetermined intervals along the circumferential direction of the cylinder 51a. Is formed.
  • the specific shape of the third concavo-convex portion P3 can be formed by, for example, a shape in which a peak portion is bent in a quadrangular shape as shown in FIG.
  • grooved part P3 can be formed by the shape where the part which becomes a mountain
  • the third uneven portion P3 has a surface when viewed along the first direction T1 bent in a wavy shape. When viewed along the second direction T2 orthogonal to the surface, the surface does not appear, and as a result, the direction viewed along the first direction T1 is along the second direction T2.
  • the projected area is larger than when viewed.
  • the third uneven portion P3 specifically has a portion W / J511aB such that the first direction T1 is in the axial direction of the cylinder 51a and the second direction T2 is in the circumferential direction of the cylinder 51a. Of these, it is provided on the entire inner wall surface W. As a result, the third uneven portion P3 is moved from the cylinder block 51B according to a change in the flow direction of the cooling water between two orthogonal flow directions (specifically, the axial direction and the circumferential direction of the cylinder 51a). It is provided as a concavo-convex part that makes the thermal conductivity to the cooling water variable.
  • the ECU 70B is substantially the same as the ECU 70A except that the switching valves 21 and 22 are further electrically connected as control targets and the control means described below is functionally realized. For this reason, the illustration of the ECU 70B is omitted. Also in the ECU 70B, a control means that performs control for adjusting the cooling capacity of the cylinder head 52B is functionally realized. When the control means performs control for suppressing the cooling capacity of the cylinder head 52B, specifically, when the engine operating state is a high load (more specifically, a low rotation high load), the cylinder head The control for suppressing the cooling capacity of 52B is realized.
  • this control means controls the flow rate adjusting valve 14 when the engine operating state is a low rotation and high load, thereby suppressing the cooling ability exhibited based on the head side W / J 521B. It is realized to perform control for. Further, in the ECU 70B, the control means is realized so as to perform control for increasing the thermal conductivity from the cylinder block 51B to the cooling water when the engine operating state is a low rotation and high load. Specifically, the control means is realized so as to control the switching valves 21 and 22 so that the flow direction of the cooling water in the portion W / J511aB is the circumferential direction of the cylinder 51a. Is done.
  • the control means is realized to perform control for establishing the operation of the engine 50B in other operating states.
  • the control means performs control, specifically, it is possible to perform control according to the above-described control guideline.
  • the engine operating state is an idle state corresponding to the section D1
  • two control guidelines are set, namely, the temperature increase of the intake port 52a and the upper part of the cylinder 51a and the temperature increase of the exhaust port 52b.
  • the flow rate control valve 14 or the partial flow rate control valve 61 can be closed.
  • the switching valves 21 and 22 can be controlled so that the flow direction of the cooling water in the portion W / J 511aB is the axial direction of the cylinder 51a.
  • the flow rate control valve 14 or the partial flow rate control valve 62 can be closed.
  • the flow rate control valve 14 or the partial flow rate control valves 61 to 64 can be closed.
  • the flow rate control valve 14 or the partial flow rate control valve 61 can be closed.
  • the switching valves 21 and 22 can be controlled so that the flow direction of the cooling water in the portion W / J511aB is the axial direction of the cylinder 51a, for example.
  • the control guidelines for cooling the intake port 52a and the upper part of the cylinder 51a and insulating the cylinder head 52B are set as described above.
  • the flow rate control valve 14 or the partial flow rate control valve 61 can be fully opened.
  • the switching valves 21 and 22 can be controlled so that the flow direction of the cooling water in the portion W / J511aB is the circumferential direction of the cylinder 51a, for example.
  • the flow rate control valve 14 or the partial flow rate control valves 61 to 64 can be closed.
  • cooling of the upper portion of the cylinder 51a can be achieved in addition to cooling of the intake port 52a.
  • the switching valves 21 and 22 can be controlled so that the flow direction of the cooling water in the portion W / J511aB is the circumferential direction of the cylinder 51a.
  • the partial flow rate adjustment valves 62 and 63 corresponding to a portion having a large heat load are opened largely.
  • the valve can be opened at a degree.
  • the flow rate control valve 14 or the partial flow rate control valve 61 can be closed.
  • the switching valves 21 and 22 can be controlled so that the flow direction of the cooling water in the portion W / J511aB is the axial direction of the cylinder 51a, for example.
  • the switching valves 21 and 22 may be controlled so that it may become the circumferential direction of the cylinder 51a.
  • the control means performs control for fully opening the flow rate control valve 14, and the flow direction of the cooling water in the portion W / J511aB is It implement
  • the control means appropriately controls W / P 11, the flow rate control valve 14, the switching valves 21, 22 and the partial flow rate control valves 61 to 64 based on the control guidelines described above, for example, in each of the sections D1 to D6. You may implement
  • the flow rate control valve 14 is closed when the engine operation state is a low rotation and high load.
  • the cooling capacity of the cylinder head 52B can be suppressed, and the cooling loss can be reduced.
  • the occurrence of knocking is a concern in this case.
  • the cooling water flowing through the head side W / J 521B is controlled by controlling the flow rate adjusting valve 14 that can suppress the cooling capacity of the cylinder head 52B without suppressing the cooling capacity of the cylinder block 51B. Limit the flow rate.
  • the cooling of the cylinder 51a can be maintained thereby, and the occurrence of knocking can also be suppressed.
  • the cooling device 1B when the flow rate adjustment valve 14 adjusts the flow rate of the cooling water flowing through the head side W / J 521B so as to suppress the cooling capability of the cylinder head 52B, the cooling capability of the cylinder block 51B is increased. The flow rate of the cooling water flowing through the block side W / J511B can be adjusted. Therefore, in the cooling device 1B, the intake air can be further cooled, and the occurrence of knocking can be suitably suppressed.
  • the cooling device 1B when the engine operating state is a low rotation and high load, the heat conduction from the cylinder block 51B to the cooling water is improved by controlling the switching valves 21 and 22 to the circumferential direction side of the cylinder 51a. be able to. Therefore, in the cooling device 1B, the intake air can be further cooled, and the occurrence of knocking can be more suitably suppressed.
  • the cooling device 1B can improve the thermal efficiency mainly at the time of low rotation and high load, but can suitably establish the operation of the engine 50B even in other operation states. For this reason, the cooling device 1B can improve the thermal efficiency not only in a specific operation state but also as a whole operation of the engine 50B that is normally performed.
  • the control means controls the cooling capacity adjusting means for partially adjusting the cooling capacity of the cylinder head, for example, so that the heat storage cooling is performed in the cooling medium passage provided corresponding to the spark plug, the exhaust port, and the intake port. Control for preferentially supplying the medium may be performed. Thereby, engine warm-up promotion, reduction of unburned HC, improvement of engine ignitability, etc. can be achieved more suitably, and as a result, engine operation can be established more suitably.
  • the present invention is not necessarily limited thereto, and the uneven portion that changes the thermal conductivity from the cylinder block to the cooling water according to the change in the flow direction of the cooling water can adjust the cooling capacity of the cylinder head.
  • the cooling capacity adjusting means for example, W / P 11, the flow rate adjusting valve 14, and the first uneven portion P1 described in the first embodiment may be used in combination.
  • Cooling device 11 W / P 12 Radiator 13 Thermostat 14 Flow control valve 21 Inlet side switching valve 22 Outlet side switching valve 50A, 50B Engine 51A Cylinder block 51a Cylinder 511 Block side W / J 52A, 52B Cylinder head 52a Intake port 52b Exhaust port 521 Head side W / J 61, 62, 63, 64 Partial flow control valve 70 ECU

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

 冷却装置1Aは、4つの異なる冷却系統に別個に組み込まれた部分W/J521aAから521dAまでを備えるヘッド側W/J521Aを形成するとともに、冷却水の最大流速の範囲内において、流速の変化に応じて冷却水の流れの剥離を発生させることが可能な第1の凹凸部P1をヘッド側W/J521Aに設けたシリンダヘッド52Aを備えるエンジン50Aと、機関運転状態に応じて、ヘッド側W/J521Aに流通させる冷却水の流速を変更するための制御を行う制御手段とを備える。

Description

エンジンの冷却装置
 本発明はエンジンの冷却装置に関する。
 従来、エンジンでは一般に冷却水による冷却が行われている。この点、冷却水を流通させるウォータジャケットに関する技術として、本発明と関連性があると考えられる技術が例えば特許文献1または2で開示されている。特許文献1では、エンジン内部に形成されたウォータジャケットについて、その表面性状を部位毎に異ならせるようにしたエンジンのウォータジャケット構造が開示されている。特許文献2では、ウォータジャケットを形成するシリンダライナの外周面に環状のフィンが設けられたシリンダライナの冷却構造が開示されている。
特開2002-221080号公報 特開2005-337035号公報
 ところで、図12に示すように、エンジン、とりわけ火花点火式内燃機関では排気損失や冷却損失など正味仕事に使われない熱が多く発生する。そしてエネルギ損失全体の大きな割合を占める冷却損失の低減は、熱効率(燃費)の向上にとって非常に重要な要素である。ところが、冷却損失を低減し、熱を有効に利用することは必ずしも容易ではなく、このことが熱効率向上の妨げとなっている。
 冷却損失の低減が困難である理由としては、例えば一般的なエンジンは、局部的に熱伝達の状態を可変にする構成にはなっていないことが挙げられる。すなわち、一般的なエンジンでは構成上、冷却が必要な部位を必要な度合いだけ冷却することや、冷却損失が多く発生する部位への熱伝達を抑制することが困難なことが挙げられる。具体的にはエンジンの熱伝達の状態を可変にするにあたっては、一般にはエンジンの出力で駆動する機械式ウォータポンプにより、エンジン回転数に応じて冷却水の流量を変更することが行われている。ところが、冷却水の流量を全体的に調節するウォータポンプでは、仮に流量を可変にする可変ウォータポンプを用いた場合であっても、機関運転状態に応じて局部的に熱の伝達状態を可変にすることはできない。
 この点、特許文献1の開示技術では、ウォータジャケットの表面性状を部位毎に異ならせることで、各部位をその冷却要求に合わせて冷却している。一方、熱効率の向上を図る観点からは、仮に冷却要求の高い部位であっても機関運転状態によってはその冷却度合いを抑制することが好ましいと考えられる。ところが、特許文献1の開示技術では、熱効率の向上を図る観点からは必ずしも各部位毎に適切な冷却を行うことができないと考えられる点で問題があった。
 また冷却損失を低減するにあたっては、例えばエンジンの断熱性を高めることも考えられる。そしてこの場合には、図13に示すように大幅な冷却損失の低減を期待できる。ところがこの場合には、エンジンの断熱性を高めることで、同時に燃焼室の内壁温度の上昇する。そしてこの場合には、これに伴い混合気の温度が上昇することで、ノッキングが誘発されるという問題があった。
 そこで本発明は上記課題に鑑みてなされたものであり、エンジンの熱伝達の状態を合理的な態様で局部的に可変することで冷却損失を低減でき、さらには冷却損失の低減とノック性能とを両立できるエンジンの冷却装置を提供することを目的とする。
 上記課題を解決するための本発明は、複数の異なる冷却系統に別個に組み込まれた複数の部分冷却媒体通路を備える第1の冷却媒体通路を形成するとともに、冷却媒体の最大流速の範囲内において、流速の変化に応じて冷却媒体の流れの剥離を発生させることが可能な第1の凹凸部を前記第1の冷却媒体通路に設けたシリンダヘッドを備えるエンジンと、機関運転状態に応じて、前記第1の冷却媒体通路に流通させる冷却媒体の流速を、前記複数の部分冷却媒体通路それぞれにおいて部分的に変更する場合を含めて変更するための制御を行う制御手段と、を備えるエンジンの冷却装置である。
 また本発明は前記制御手段が、機関運転状態が低回転高負荷である場合に、前記第1の冷却媒体通路に流通させる冷却媒体の流速を前記第1の凹凸部で冷却媒体の流れの剥離が発生する流速に変更するための制御を行う構成であることが好ましい。
 また本発明は前記エンジンが、シリンダの周辺部に第2の冷却媒体通路を形成するとともに、冷却媒体の最大流速の範囲内において、流速の変化に応じて冷却媒体の流れの剥離を発生させることが可能な第2の凹凸部を前記第2の冷却媒体通路のうち、前記シリンダ側に位置する壁面に設けたシリンダブロックをさらに備え、前記制御手段が、機関運転状態が低回転高負荷である場合に、前記第2の冷却媒体通路に流通させる冷却媒体の流速を、前記第2の凹凸部で冷却媒体の流れの剥離が発生しない流速に変更するための制御をさらに行う構成であることが好ましい。
 また本発明はシリンダの周辺部に冷却媒体通路を形成するとともに、冷却水の流通方向の変化に応じて、冷却水への熱伝導性を可変にする凹凸部を前記冷却媒体通路に設けたシリンダブロックを備えるエンジンと、前記シリンダヘッドの冷却能力を調整可能な冷却能力調整手段と、前記冷却媒体通路における冷却水の流通方向を第1の方向と、該第1の方向よりも前記凹凸部によって熱伝導性が高くなる第2の方向との間で変更可能な流通方向変更手段と、機関運転状態が低回転高負荷である場合に、前記冷却能力調整手段を制御することで、前記シリンダヘッドの冷却能力を抑制するための制御を行うとともに、前記流通方向変更手段を制御することで、前記冷却媒体通路における冷却水の流通方向を前記第2の方向に変更するための制御を行う制御手段と、を備えるエンジンの冷却装置である。
 本発明によればエンジンの熱伝達の状態を合理的な態様で局部的に可変することで冷却損失を低減でき、さらには冷却損失の低減とノック性能とを両立できる。
エンジンの冷却装置(以下、単に冷却装置と称す)1Aを模式的に示す図である。 エンジン50Aを1気筒につき断面で模式的に示す図である。 第1および第2の凹凸部P1、P2の具体的な形状の一例を示す図である。具体的には図3(a)は不均一なポーラス形状を、図3(b)は均一なポーラス形状を一例としてそれぞれ示している。 ECU70Aを模式的に示す図である。 機関運転状態の分類を模式的に示す図である。 ECU70Aの動作をフローチャートで示す図である。 クランク角度に応じた燃焼室55の熱伝達率および表面積割合を示す図である。 冷却装置1Bを模式的に示す図である。 エンジン50Bを1気筒につき断面で模式的に示す図である。 第3の凹凸部P3の具体的な形状の一例を示す図である。具体的には図10(a)は山となる部分を四角形状に屈曲した形状によって形成した場合の第3の凹凸部P3を、図10(b)は山となる部分を三角形状に屈曲した形状によって形成した場合の第3の凹凸部P3をそれぞれ一例として示している。 ECU70Bの動作をフローチャートで示す図である。 火花点火式内燃機関の一般的なヒートバランスの内訳を全負荷の場合と部分負荷の場合とについてそれぞれ示す図である。 シリンダの内壁温度および熱透過率を通常の構成の場合と断熱性を高めた場合とについてそれぞれ示す図である。なお、図13では断熱性を高めた場合として、シリンダの壁厚増加とともに材質変更を行った場合と、より断熱性の高い空気断熱を行った場合とについてそれぞれ示している。また、通常の構成としては、シリンダブロック下部からシリンダヘッドへ向かって重力に逆らうようにして冷却水を流通させる1系統の冷却水循環経路が設けられた一般的なエンジンの場合を示している。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。以下に説明するように、本発明の一側面によれば、冷却損失の低減にはヘッドの断熱が有効であり、ノックの改善にはブロックの冷却が有効であるという知見に基づき、従来にはないヘッド断熱、ブロック冷却という新しい概念を実現する手段を含むものである。
 図1に示す冷却装置1Aは図示しない車両に搭載されており、ウォータポンプ(以下、W/Pと称す)11と、ラジエータ12と、サーモスタット13と、流量調節弁14と、エンジン50Aと、第1から第4の部分流量調節弁61から64までを備えている。W/P11は冷却媒体圧送手段であり、冷却媒体である冷却水を圧送するとともに、圧送する冷却水の流量を可変にする可変W/Pとなっている。またW/P11はエンジン50Aにおける冷却水の流通状態を変更可能な第1の流通変更手段となっており、具体的にはエンジン50Aを流通する冷却水の流量を全体的に調整することで、エンジン50Aを流通する冷却水の流速を全体的に調整可能な流通変更手段となっている。W/P11が圧送する冷却水はエンジン50Aに供給される。
 エンジン50Aはシリンダブロック51Aおよびシリンダヘッド52Aを備えている。シリンダブロック51Aには、冷却媒体通路としてブロック側ウォータジャケット(以下、ブロック側W/Jと称す)511Aが形成されている。ブロック側W/J511Aはシリンダブロック51Aに1系統の冷却系統を形成している。一方、シリンダヘッド52Aには、冷却媒体通路としてヘッド側ウォータジャケット(以下、ヘッド側W/Jと称す)521Aが形成されている。ヘッド側W/J521Aはシリンダヘッド52Aに複数(ここでは4つ)の異なる冷却系統を形成している。ヘッド側W/J521Aは第1の冷却媒体通路に、ブロック側W/J511Aは第2の冷却媒体通路にそれぞれ相当している。W/P11が圧送する冷却水は具体的にはブロック側W/J511Aおよびヘッド側W/J521Aに供給される。
 この点、冷却装置1Aでは複数の冷却水循環経路が形成されている。
 冷却水循環経路としては、例えばブロック側W/J511Aが組み込まれた循環経路であるブロック側循環経路C1がある。このブロック側循環経路C1を流通する冷却水は、W/P11から吐出された後、ブロック側W/J511Aを流通し、さらにサーモスタット13を介するか、或いはラジエータ12およびサーモスタット13を介してW/P11に戻るようになっている。ラジエータ12は熱交換器であり、流通する冷却水と空気との間で熱交換を行うことで冷却水を冷却する。サーモスタット13はW/P11に入口側から連通する流通経路を切り替える。具体的にはサーモスタット13は、冷却水温が所定値未満の場合にラジエータ12をバイパスする流通経路を連通状態にし、所定値以上の場合にラジエータ12を流通する流通する流通経路を連通状態にする。
 また冷却水循環経路としては、例えばヘッド側W/J521Aが組み込まれた循環経路であるヘッド側循環経路C2がある。このヘッド側循環経路C2を流通する冷却水は、W/P11から吐出された後、流量調節弁14、第1から第4の部分流量調節弁61から64までのうち少なくともいずれか、およびヘッド側W/J521Aが形成する4系統の冷却系統のうち少なくともいずれかを流通し、さらにサーモスタット13を介するか、或いはラジエータ12およびサーモスタット13を介してW/P11に戻るようになっている。流量調節弁14はヘッド側循環経路C2のうち、循環経路C1、C2が分岐した後の部分、且つシリンダヘッド52Aよりも上流側の部分に設けられており、さらに具体的には第1から第4の部分流量調節弁61から64までよりも上流側の部分に設けられている。
 流量調節弁14は、シリンダヘッド52Aにおける冷却水の流通状態を変更可能な第2の流通変更手段となっている。この点、流量調節弁14は具体的には、ヘッド側W/J521Aを流通する冷却水の流量を全体的に調節することで、ヘッド側W/J521Aを流通する冷却水の流速を全体的に調節可能な流通変更手段となっている。
 また流量調節弁14は、ヘッド側W/J521Aを流通する冷却水の流速を調整することで、ブロック側W/J511Aを流通する冷却水の流速を同時に調整することが可能な流通変更手段となっている。具体的には流量調節弁14は、ヘッド側W/J521Aを流通する冷却水の流速を低下させるように調整した場合に、ブロック側W/J511Aを流通する冷却水の流速を向上させるように調整することが可能な流通変更手段となっている。
 第1から第4の部分流量調節弁61から64までは、ヘッド側循環経路C2のうち、流量調節弁14およびシリンダヘッド52Aの間の部分に、ヘッド側W/J521Aが形成する4系統の冷却系統に対応させて設けられている。これら部分流量調節弁61から64までは、シリンダヘッド52Aにおける冷却水の流通状態を変更可能な第3の流通変更手段となっており、さらに具体的にはヘッド側W/J521Aを流通する冷却水の流量を部分的に調節することで、ヘッド側W/J521Aを流通する冷却水の流速を部分的に調節可能な流通変更手段となっている。
 冷却装置1Aでは、ブロック側循環経路C1を流通する冷却水が、W/P11によって圧送された後、一巡するまでの間にヘッド側W/J521Aを流通することがないようになっている。また、冷却装置1Aではヘッド側循環経路C2を流通する冷却水が、W/P11によって圧送された後、一巡するまでの間にブロック側W/J511Aを流通することがないようになっている。すなわち冷却装置1Aでは、ブロック側W/J511Aとヘッド側W/J521Aとが互いに異なる冷却媒体循環経路に組み込まれている。
 次にエンジン50Aについてさらに具体的に説明する。図2に示すように、シリンダブロック51Aにはシリンダ51aが形成されている。シリンダ51aにはピストン53が設けられている。シリンダブロック51Aには断熱性の高いガスケット54を介してシリンダヘッド52Aが固定されている。ガスケット54はその高い断熱性でシリンダブロック51Aからシリンダヘッド52Aへの熱伝達を抑制する。シリンダ51a、シリンダヘッド52Aおよびピストン53は、燃焼室55を形成している。シリンダヘッド52Aには燃焼室55に吸気を導く吸気ポート52aと、燃焼室55から燃焼ガスを排出する排気ポート52bが形成されている。シリンダヘッド52Aには、燃焼室55の上部略中央に臨むようにして点火プラグ56が設けられている。
 ブロック側W/J511Aは、具体的には部分冷却媒体通路である部分W/J511aAを備えている。部分W/J511aAは具体的にはシリンダ51aの周辺部に設けられた冷却媒体通路となっている。部分W/J511aAの上流部は吸気を好適に冷却する観点から、例えばシリンダ51aの壁面のうち、筒内に流入した吸気が当たる部分に対応させて設けることができる。この点、エンジン50Aは本実施例では筒内に正タンブル流を生成するエンジンとなっており、筒内に流入した吸気が当たる部分はシリンダ51aの壁面上部、且つ排気側の部分となっている。
 ヘッド側W/J521Aは、具体的には部分冷却媒体通路である複数の部分W/J521aA、部分W/J521bA、部分W/J521cAおよび部分W/J521dAを備えている。部分W/J521aAは吸気ポート52aの周辺部に、部分W/J521bAは排気ポート52bの周辺部に、部分W/J521cAは点火プラグ56の周辺部にそれぞれ設けられた冷却媒体通路となっている。また、部分W/J521dAは吸排気ポート52a、52b間や、その他の部分を冷却するために設けられた冷却媒体通路となっている。部分W/J521aAから部分W/J521dAまではヘッド側W/J521Aが形成する4系統の異なる冷却系統に別個に組み込まれている。そして、第1の部分流量調節弁61が部分W/J521aAに、第2の部分流量調節弁62が部分W/J521bAに、第3の部分流量調節弁63が部分W/J521cAに、第4の部分流量調節弁64が、部分W/J521dAにそれぞれ対応させて設けられている。
 部分W/J521aAから521dAまでそれぞれには、流速の変化に応じて冷却水の流れの剥離を発生させることが可能な第1の凹凸部P1が設けられている。この点、第1の凹凸部P1は具体的には部分W/J521aAから521dAまでそれぞれの内壁面全般に設けられている。また部分W/J511aAには、流速の変化に応じて冷却水の流れの剥離を発生させることが可能な第2の凹凸部P2が設けられている。この点、第2の凹凸部P2は具体的には部分W/J511aAのうち、シリンダ51a側に位置する内側壁面W全般に設けられている。
 これら第1および第2の凹凸部P1、P2は具体的には多孔質状の形状(ポーラス形状)によって形成されている。この点、第1および第2の凹凸部P1、P2の具体的な形状は機関運転時に適用可能な冷却水の最大流速の範囲内において、流速の変化に応じて冷却水の流れの剥離を発生させることが可能な(すなわち、機関運転時に適用可能な冷却水の最大流速の範囲内において、所定の流速以下では冷却水の流れの剥離を発生させない一方で、所定の流速よりも流速が高い場合には冷却水の流れの剥離を発生させることが可能な)凹凸、或いは表面粗さを備えた形状であれば特に限定されない。例えば第1および第2の凹凸部P1、P2の具体的な形状は、図3(a)に示すような不均一なポーラス形状であってもよく、図3(b)に示すような均一なポーラス形状であってもよい。またポーラス形状の具体的な形状は、例えば複数の微細な柱状穴によって形成されたポーラス形状などであってもよい。
 さらに冷却装置1Aは図4に示すECU(Electronic Control Unit:電子制御装置)70Aを備えている。ECU70AはCPU71、ROM72、RAM73等からなるマイクロコンピュータと入出力回路75、76とを備えている。これらの構成は互いにバス74を介して接続されている。ECU70Aには、エンジン50Aの回転数を検出するためのクランク角センサ81や、吸入空気量を計測するためのエアフロメータ82や、アクセル開度を検出するためのアクセル開度センサ83や、冷却水の温度を検知する水温センサ84などの各種のセンサ・スイッチ類が電気的に接続されている。この点、エンジン50Aの負荷はエアフロメータ82やアクセル開度センサ83の出力に基づきECU70Aで検出される。またECU70AにはW/P11や流量調節弁14や部分流量調節弁61から64までなどの各種の制御対象が電気的に接続されている。
 ROM72はCPU71が実行する種々の処理が記述されたプログラムやマップデータなどを格納するための構成である。CPU71がROM72に格納されたプログラムに基づき、必要に応じてRAM73の一時記憶領域を利用しつつ処理を実行することで、ECU70Aでは各種の制御手段や判定手段や検出手段や算出手段などが機能的に実現される。
 例えばECU70Aでは、シリンダヘッド52Aの冷却能力を調整するための制御を行う制御手段が実現される。
 シリンダヘッド52Aの冷却能力を調整するための制御として、制御手段は具体的には機関運転状態が高負荷(さらに具体的には低回転高負荷)である場合に、シリンダヘッド52Aの冷却能力を抑制するための制御を行うように実現される。
 またこのとき制御手段は、さらに具体的にはシリンダブロック51Aの冷却能力を抑制することなく、シリンダヘッド52Aの冷却能力を抑制するための制御を行うように実現される。
 この点、シリンダヘッド52Aの冷却能力を調整するための制御を行うにあたり、制御手段は具体的にはシリンダヘッド52Aから冷却水への熱伝達の状態を変更するための制御を行うように実現される。さらに具体的には制御手段は、機関運転状態に応じてヘッド側W/J521Aに流通させる冷却水の流速を、部分W/J521aAから521dAまでそれぞれにおいて部分的に変更する場合を含めて変更するための制御を行うように実現される。また制御手段は、制御対象として具体的にはW/P11や流量調節弁14や部分流量調節弁61から64までを制御することで、シリンダヘッド52Aから冷却水への熱伝達の状態を変更するための制御を行うように実現される。
 さらにシリンダヘッド52Aの冷却能力を抑制するための制御を行うにあたり、制御手段は、シリンダヘッド52Aから冷却水への熱伝達の状態を変更するための制御を行うように実現される。具体的には、制御手段は機関運転状態が高負荷(さらに具体的には低回転高負荷)である場合に、シリンダヘッド52Aから冷却水への熱伝達を抑制するための制御を行うように実現される。さらに具体的には制御手段は、ヘッド側W/J521Aに流通させる冷却水の流速を、第1の凹凸部P1で冷却水の流れの剥離が発生する流速に変更するための制御を行うように実現される。
 またこのときシリンダブロック51Aの冷却能力を抑制することなく、シリンダヘッド52Aの冷却能力を抑制するための制御を行うにあたり、制御手段は、シリンダブロック51Aから冷却水への熱伝達を抑制することなく、シリンダヘッド52Aから冷却水への熱伝達を抑制するための制御を行うように実現される。具体的には、制御手段はヘッド側W/J521Aに流通させる冷却水の流速を第1の凹凸部P1で冷却水の流れの剥離が発生する流速に変更するとともに、ブロック側W/J511Aに流通させる冷却水の流速を第2の凹凸部P2で冷却水の流れの剥離が発生しない流速に変更するための制御を行うように実現される。
 一方、制御手段は、機関運転状態が高負荷である場合のほか、他の運転状態においてもエンジン50Aの運転を成立させるための制御を行うように実現される。
 この点、機関運転状態は具体的にはエンジン50Aの回転数および負荷のほか、冷間運転時であるか否か、または機関始動時であるか否かに応じて図5に示す6つの区分D1からD6までに分類されている。そして制御手段が制御を行うにあたっては、具体的には以下に示すように区分D1からD6まで毎に満たすべき要求を設定するとともに、設定した要求を満たすための制御指針を定めている。
 まず、機関運転状態が区分D1に対応するアイドル状態である場合には、吸気昇温による燃焼速度向上、および触媒活性のための排気昇温という2つの要求を設定している。またこれに応じた吸気ポート52aとシリンダ51a上部との昇温、および排気ポート52bの昇温という2つの制御指針を定めている。
 この点、吸気ポート52aの昇温を図るにあたっては、例えばヘッド側W/J521A全般で、または部分W/J521aAにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14や部分流量調節弁61を制御することができる。
 また、シリンダ51a上部の昇温を図るにあたっては、例えばブロック側W/J511Aにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14を制御することができる。
 また、排気ポート52bの昇温を図るにあたっては、例えばヘッド側W/J521A全般で、または部分W/J521bAにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14や部分流量調節弁62を制御することができる。
 また機関運転状態が、区分D2に対応する軽負荷である場合には、熱効率向上(冷却損失低減)、および吸気昇温による燃焼速度向上という2つの要求を設定している。またこれに応じたシリンダヘッド52Aの断熱、および吸気ポート52aとシリンダ51a上部との昇温という2つの制御指針を定めている。
 この点、シリンダヘッド52Aの断熱を図るにあたっては、例えばヘッド側W/J521Aにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14を制御することができる。
 また吸気ポート52aの昇温を図るにあたっては、例えばヘッド側W/J521A全般で、または521aAにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14や部分流量調節弁61を制御することができる。
 またシリンダ51a上部の昇温を図るにあたっては、例えばブロック側W/J511Aにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14を制御することができる。
 また機関運転状態が、区分D3に対応する低回転高負荷である場合には、ノッキングの低減、および熱効率向上(冷却損失低減)という要求を設定している。またこれに応じた吸気ポート52aとシリンダ51a上部との冷却、およびシリンダヘッド52Aの断熱という制御指針を定めている。
 この点、吸気ポート52aの冷却を図るにあたっては、例えばヘッド側W/J521A全般で、または部分W/J521aAにおいて、冷却水の流速が流れの剥離が発生しない流速になるようにW/P11や流量調節弁14や部分流量調節弁61を制御することができる。
 またシリンダ51a上部の冷却を図るにあたっては、例えばブロック側W/J511Aにおいて、冷却水の流速が流れの剥離が発生しない流速になるようにW/P11や流量調節弁14を制御することができる。
 シリンダヘッド52Aの断熱を図るにあたっては、例えばヘッド側W/J521Aにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14を制御することができる。
 また機関運転状態が、区分D4に対応する高回転高負荷である場合には、信頼性確保、およびノッキングの低減という2つの要求を設定している。またこれに応じた点火プラグ56周りと吸排気ポート52a、52b間と排気ポート52bとの冷却、および吸気ポート52aの冷却という2つの制御指針を定めている。
 この点、点火プラグ56周りと吸排気ポート52a、52b間と排気ポート52bとの冷却を図るにあたっては、例えばヘッド側W/J521A全般で、または部分W/J521bA、521cAおよび521dAにおいて、冷却水の流速が流れの剥離が発生しない流速になるようにW/P11や流量調節弁14や部分流量調節弁62、63および64を制御することができる。
 また吸気ポート52aの冷却を図るにあたっては、例えばヘッド側W/J521A全般で、または部分W/J521aAにおいて、冷却水の流速が流れの剥離が発生しない流速になるようにW/P11や流量調節弁14や部分流量調節弁61を制御することができる。
 一方、ノッキングの低減という要求に対しては、吸気ポート52aの冷却のほか、例えばシリンダ51a上部の冷却を図ることもできる。これに対してシリンダ51a上部の冷却を図るにあたっては、例えばブロック側W/J511Aにおいて、冷却水の流速が流れの剥離が発生しない流速になるようにW/P11や流量調節弁14を制御することができる。
 また区分D5に対応する機関冷間時には、機関暖機促進、および吸気昇温による燃焼速度向上という2つの要求を設定している。またこれに応じたシリンダヘッド52Aの熱伝達促進、および吸気ポート52aとシリンダ51a上部との昇温という2つの制御指針を定めている。
 この点、シリンダヘッド52Aの熱伝達促進を図るにあたっては、シリンダヘッド52Aでの冷却水の受熱の寄与が大きいことを考慮して、例えばヘッド側W/J521A全般で、または熱負荷の大きい部分W/J521bA、521cAにおいて、冷却水の流速が流れの剥離が発生しない流速になるようにW/P11や流量調節弁14や部分流量調節弁62、63を制御することができる。
 また吸気ポート52aの昇温を図るにあたっては、例えばヘッド側W/J521A全般で、または部分W/J521aAにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14や部分流量調節弁61を制御することができる。
 またシリンダ51a上部の昇温を図るにあたっては、例えばブロック側W/J511Aにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14を制御することができる。
 また区分D6に対応する機関始動時には、着火性向上、および燃料気化促進という2つの要求を設定している。またこれに応じた吸気ポート52aの昇温、および点火プラグ56周りとシリンダ51a上部との昇温という2つの制御指針を定めている。
 この点、吸気ポート52aの昇温を図るにあたっては、例えばヘッド側W/J521A全般で、または部分W/J521aAにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14や部分流量調節弁61を制御することができる。
 また点火プラグ56周りの昇温を図るにあたっては、例えばヘッド側W/J521A全般で、または部分W/J521cAにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14や部分W/J521cAを制御することができる。
 またシリンダ51a上部の昇温を図るにあたっては、例えばブロック側W/J511Aにおいて、冷却水の流速が流れの剥離が発生する流速になるようにW/P11や流量調節弁14を制御することができる。
 これに対して冷却装置1Aでは、全体的な制御の整合性や簡素化などを考慮し、制御手段が各部分流量調節弁61から64までについては、基本的に全開にするための制御を行うように実現されるとともに、W/P11、流量調節弁14についてはさらに具体的には以下に示す制御を行うよう実現される。
 すなわち制御手段は、機関運転状態が区分D1に対応するアイドル状態である場合と、機関運転状態が区分D2に対応する軽負荷である場合と、区分D5に対応する機関冷間時と、区分D6に対応する機関始動時においては、流量調節弁14を半開にするとともに、この状態でブロック側W/J511Aおよびヘッド側W/J521Aにおいて冷却水の流れの剥離を発生させることが可能な吐出量である第1の吐出量でW/P11を駆動するための制御を行うように実現される。
 また制御手段は機関運転状態が区分D3に対応する低回転高負荷である場合には、流量調節弁14を半開よりも大きな開度で開弁するとともに、この状態でブロック側W/J511Aにおいて冷却水の流れの剥離を発生させず、且つヘッド側W/J521Aにおいて冷却水の流れの剥離を発生させることが可能な吐出量である第2の吐出量でW/P11を駆動するための制御を行うように実現される。
 また制御手段は、機関運転状態が区分D4に対応する高回転高負荷である場合には、流量調節弁14を半開にするとともに、この状態でブロック側W/J511Aおよびヘッド側W/J521Aにおいて冷却水の流れの剥離を発生させないことが可能な吐出量である第3の吐出量でW/P11を駆動するための制御を行うよう実現される。
 そして冷却装置1Aでは、制御手段の制御のもと、区分D3においてW/P11および流量調節弁14がこのようにシリンダヘッド52Aを流通する冷却水の流れの剥離を発生させることで、シリンダヘッド52Aから冷却水への熱伝達を抑制するとともに、シリンダヘッド52Aの冷却能力を抑制していることになる。また同時にこのとき、制御手段の制御のもと、W/P11および流量調節弁14がこのようにシリンダブロック51Aを流通する冷却水の流れの剥離を発生させないことで、シリンダブロック51Aから冷却水への熱伝達を抑制することなく、シリンダヘッド52Aから冷却水への熱伝達を抑制していることになる。すなわち、シリンダブロック51Aの冷却能力を抑制することなく、シリンダヘッド52Aの冷却能力を抑制していることになる。
 この点、冷却装置1Aでは、W/P11、流量調節弁14および第1の凹凸部P1がシリンダヘッド52Aの冷却能力を調整可能な冷却能力調整手段となっており、具体的にはヘッド側W/J521A全般で冷却水の流れの剥離を発生させることで、シリンダヘッド52Aの冷却能力を全体的に抑制可能な冷却能力調整手段となっている。
 また冷却装置1Aでは、W/P11、流量調節弁14、第1の凹凸部P1および第2の凹凸部P2が、ブロック側W/J511Aで冷却水の流れの剥離を発生させることなく、ヘッド側W/J521A全般で冷却水の流れの剥離を発生させることで、シリンダブロック51Aの冷却能力を抑制することなくシリンダヘッド52Aの冷却能力を全体的に抑制可能な冷却能力調整手段となっている。
 なお、流量調節弁14に代えて部分流量調節弁61から64までを適用することで、W/P11、部分流量調節弁61から64までおよび第1の凹凸部P1をシリンダヘッド52Aの冷却能力を全体的に調整可能な冷却能力調整手段として機能させることも可能である。
 また冷却装置1Aでは、W/P11と、流量調節弁14または部分流量調節弁61から64までのうち少なくとも部分流量調節弁61から64までと、第1の凹凸部P1とが、シリンダヘッド52Aの冷却能力を部分的に調整可能な冷却能力調整手段となっており、具体的には部分W/J521aAから521dAまでにおいて冷却水の流れの剥離を部分的に発生させることで、シリンダヘッド52Aの冷却能力を部分的に抑制可能な冷却能力調整手段となっている。
 なお、制御手段は例えば上述した制御指針に基づいてW/P11や流量調節弁14や部分流量調節弁61から64までを適宜制御することで、各区分D1からD6までにおいて、全体的な制御の整合性や簡素化などを考慮した上述の制御と異なる制御を行うように実現されてもよい。これにより各区分D1からD6までにおいて、さらにエンジン50Aの運転を好適に成立させることもできる。
 次にECU70Aで行われる処理を図6に示すフローチャートを用いて説明する。ECU70Aは機関始動時であるか否かを判定する(ステップS1)。肯定判定であれば、ECU70AはW/P11の駆動を開始する(ステップS3)。続いてECU70Aは、流量調節弁14を半開にするとともに、第1の吐出量でW/P11を駆動する(ステップS21A)。一方、ステップS1で否定判定であれば、ECU70Aは機関冷間時であるか否かを判定する(ステップS5)。機関冷間時であるか否かは、例えば冷却水温が所定値(例えば75℃)以下であるか否かで判定できる。ステップS5で肯定判定であれば、ステップS21Aに進む。一方、ステップS5で否定判定であれば、ECU70Aはエンジン50Aの回転数および負荷を検出する(ステップS11)。
 続いてECU70Aは検出した回転数および負荷に対応する区分を判定する(ステップS12からS14まで)。具体的には対応する区分が区分D1であれば、ステップS12の肯定判定からステップS21Aに進み、対応する区分が区分D2であれば、ステップS13の肯定判定からステップS21Aに進む。一方、対応する区分が区分D3であれば、ステップS14の肯定判定からステップS31Aに進む。このときECU70Aは流量調節弁14を半開よりも大きな開度で開弁するとともに、第2の吐出量でW/P11を駆動する(ステップS31A)。また対応する区分が区分D4であれば、ステップS14の否定判定からステップS41Aに進む。このときECU70Aは流量調節弁14を半開にするとともに、第3の吐出量でW/P11を駆動する(ステップS41A)。
 次に冷却装置1Aの作用効果について説明する。ここで、エンジン50Aのクランク角度に応じた燃焼室55の熱伝達率および表面積割合は図7に示すようになっている。図7に示すように熱伝達率は、圧縮行程上死点付近で高まることがわかる。そして表面積割合については、圧縮行程上死点付近でシリンダヘッド52Aとピストン53の表面積割合が大きくなることがわかる。したがって冷却損失については、シリンダヘッド52Aの温度の影響力が大きいことがわかる。一方、ノッキングについては圧縮端温度に依存するところ、圧縮端温度に影響する吸気圧縮行程ではシリンダ51aの表面積割合が大きいことがわかる。したがってノッキングについてはシリンダ51aの温度の影響力が大きいことがわかる。
 これに対して、冷却装置1Aではかかる知見に基づき、機関運転状態が低回転高負荷である場合に、ヘッド側W/J521Aにおいて冷却水の流れの剥離を発生させる。そしてこの場合には、第1の凹凸部P1の微細構造内にある冷却水の交換が滞ること、さらには核沸騰を起こすことで、シリンダヘッド52Aから冷却水への熱伝達が抑制される。そしてこれにより冷却損失を低減できる。
 一方、この場合にはノッキングの発生が懸念される。これに対して冷却装置1Aでは、ブロック側W/J511Aで冷却水の流れの剥離を発生させることなく、ヘッド側W/J521Aにおいて冷却水の流れの剥離を発生させる。そしてこの場合には、ブロック側W/J511Aにおいて第2の凹凸部P2の微細構造が冷却水と接触する表面積の増大に寄与することから、シリンダブロック51Aから冷却水への熱伝達が促進される。このため冷却装置1Aではこれによりシリンダ51aの冷却を維持でき、以ってノッキングの発生も抑制できる。
 すなわち冷却装置1Aでは、上述した知見に基づく合理的な態様で熱伝達の状態を局部的に可変することでシリンダヘッド52Aの断熱(冷却損失の低減)を図ることができ、同時にシリンダブロック51Aの冷却を図ることで、ノッキングの発生も抑制できる。そして、このようにして冷却損失の低減とノック性能とを両立させることで、熱効率を向上させることができる。
 また冷却装置1Aは、主に低回転高負荷時に熱効率の向上を図ることができる一方で、他の運転状態においてもエンジン50Aの運転を好適に成立させることができる。この点、高回転高負荷時には信頼性確保やノッキングの低減のほか、例えば排気温度の低下による触媒の熱負荷低減を図ることもできる。このため冷却装置1Aは特定の運転状態だけでなく、通常行われるエンジン50Aの運転全体として見ても熱効率の向上を図ることができる。
 図8に示すように本実施例にかかる冷却装置1Bは、エンジン50Aの代わりにエンジン50Bを備えている点と、入口側切替弁21および出口側切替弁22をさらに備えている点と、後述するようにECU70Aの代わりにECU70Bを備えている点以外、冷却装置1Aと実質的に同一のものとなっている。
 エンジン50Bは、シリンダブロック51Aの代わりにシリンダブロック51Bを備えている点と、シリンダヘッド52Aの代わりにシリンダヘッド52Bを備えている点以外、エンジン50Aと実質的に同一のものとなっている。
 シリンダヘッド52Bは、ヘッド側W/J521Aの代わりにヘッド側W/J521Bが設けられている点以外、シリンダヘッド52Aと実質的に同一のものとなっている。ヘッド側W/J521Bは、部分W/J521aAから521dAまでの代わりに部分W/J521aBから521dBまでを備えている点以外、ヘッド側W/J521Aと実質的に同一のものとなっている(図9参照)。この点、W/J521aBからW/J521dBまでは、第1の凹凸部P1が設けられていない点以外、部分W/J521aAから521dAまでと実質的に同一のものとなっている。
 一方、これに関連し、本実施例では流量調節弁14がシリンダヘッド52Bの冷却能力を調整可能な冷却能力調整手段となっている。具体的には流量調節弁14は、ヘッド側W/J521Bを流通する冷却水の流量を全体的に調節することで、シリンダヘッド52Bの冷却能力を全体的に調整可能な冷却能力調整手段となっている。なお、流量調節弁14に代えて部分流量調節弁61から64までを、シリンダヘッド52Bの冷却能力を全体的に調整可能な冷却能力調整手段として機能させることも可能である。
 またこのように設けられた流量調節弁14は、シリンダブロック51Bの冷却能力を抑制することなく、シリンダヘッド52Bの冷却能力を抑制可能な冷却能力調整手段となっている。具体的には例えば流量調節弁14は、シリンダブロック51Bおよびシリンダヘッド52Bにともに冷却水を流通させる高回転高負荷時のシリンダブロック51Bの冷却能力およびシリンダヘッド52Bの冷却能力がある場合に、これらの冷却能力に対してシリンダブロック51Bの冷却能力を抑制することなく、シリンダヘッド52Bの冷却能力を抑制可能な冷却能力調整手段となっている。
 また本実施例では、部分流量調節弁61から64までがシリンダヘッド52Bの冷却能力を調整可能な冷却能力調整手段となっており、さらに具体的にはヘッド側W/J521Bを流通する冷却水の流量を部分的に調節することで、シリンダヘッド52Bの冷却能力を部分的に調整可能な冷却能力調整手段となっている。
 シリンダブロック51Bは、ブロック側W/J511Aの代わりにブロック側W/J511Bが設けられている点以外、シリンダブロック51Aと実質的に同一のものとなっている。ブロック側W/J511Bは、部分W/J511aAの代わりに後述する部分W/J511aBを備えている点と、部分W/J511aBに対する冷却水の導入部および流出部として、第1の導入部511bおよび第1の流出部511cと、第2の導入部511dおよび第2の流出部511eとを備えている点以外、ブロック側W/J511Aと実質的に同一のものとなっている。第1の導入部511bおよび流出部511cは、部分W/J511aBに対して、シリンダ51aの軸線方向に沿って冷却水を流通させるように設けられている。第2の導入部511dおよび流出部511eは、部分W/J511aBに対して、シリンダ51aの周方向に沿って冷却水を流通させるように設けられている。したがって、ブロック側W/J511Bは、部分W/J511aBにおける冷却水の流通方向をシリンダ51aの軸線方向と周方向との間で切替可能な構造となっている。
 入口側切替弁21はシリンダブロック51Bの上流側、且つ第1および第2の冷却水循環経路C1、C2の分岐後の部分に設けられており、出口側切替弁22はシリンダブロック51Bの下流側、且つ第1および第2の冷却水循環経路C1、C2の合流前の部分に設けられている。入口側切替弁21は第1の導入部511bと第2の導入部511dとの間で冷却水を流通させる経路を切り替えることが、出口側切替弁22は第1の流出部511cと第2の流出部511eとの間で冷却水を流通させる経路を切り替えることが可能なようにそれぞれ設けられている。
 次にエンジン50Bについてさらに具体的に説明する。図9に示すように、シリンダブロック51Bには部分W/J511aAの代わりに部分W/J511aBが設けられている。部分W/J511aBは、第2の凹凸部P2の代わりに第3の凹凸部P3が設けられている点と、冷却水の流通方向がシリンダ51aの軸線方向と周方向との間で切り替わるようになっている点以外、部分W/J511aAと実質的に同一のものとなっている。第3の凹凸部P3は、冷却水の流通方向の変化に応じて、シリンダブロック51Bから冷却水への熱伝導性を可変にする形状に形成されている。具体的には第3の凹凸部P3は、シリンダ51aの軸線方向に沿って波状に屈曲するとともに、山となる部分がシリンダ51aの周方向に沿って所定間隔毎に切除された板状部材により形成されている。
 この点、かかる第3の凹凸部P3の具体的な形状は、例えば図10(a)に示すように、山となる部分が四角形状に屈曲した形状によって形成することができる。また第3の凹凸部P3は、例えば図10(b)に示すように、山となる部分が三角形状に屈曲した形状によって形成することができる。そしてかかる第3の凹凸部P3は、これら図10(a)、図10(b)に示すように、波状に屈曲した第1の方向T1に沿って見た場合に面が現れる一方で、これに直交する第2の方向T2に沿って見た場合には面が現れない形状となっており、この結果、第1の方向T1に沿って見た場合のほうが第2の方向T2に沿って見た場合よりも投影面積が大きくなる。
 このため、冷却水が第1の方向T1に沿って流通する場合には、屈曲した部分で流れの剥離が発生したり、屈曲した部分が抵抗となって流量の低下が発生したりする。一方、冷却水が第2の方向T2に沿って流通する場合には、第1の方向T1に沿って流通する場合よりも、相対的に冷却水の流量を増大させることができる。また、冷却水が第2の方向T2に沿って流通する場合には、第1の方向T1に沿って流通する場合よりも、接触する表面積を相対的に大きくすることもできる。このため、冷却水を第2の方向T2に沿って流通させた場合には、第1の方向T1に沿って流通させた場合よりもシリンダブロック51Bから冷却水への熱伝導性を相対的に高めることができる。
 これに対して、第3の凹凸部P3は具体的には第1の方向T1がシリンダ51aの軸線方向に、第2の方向T2がシリンダ51aの周方向になるようにして、部分W/J511aBのうち、内側壁面W全般に設けられている。そしてこれにより第3の凹凸部P3は、直交する2つの流通方向(具体的にはシリンダ51aの軸線方向および周方向)の間での冷却水の流通方向の変化に応じて、シリンダブロック51Bから冷却水への熱伝導性を可変にする凹凸部として設けられている。またこれにより第3の凹凸部P3は、冷却水の流通方向がシリンダ51aの周方向である場合に、シリンダ51aの軸線方向である場合よりも熱伝導性を相対的に高めることが可能な凹凸部として設けられている。またこのように第3の凹凸部P3が設けられることで、切替弁21、22は部分W/J511aBにおける冷却水の流通方向を第1の方向T1と、第1の方向T1よりも第3の凹凸部P3によって熱伝導性が高くなる第2の方向T2との間で変更可能な流通方向変更手段となっている。
 ECU70Bは、切替弁21、22が制御対象としてさらに電気的に接続される点と、以下に示す制御手段が機能的に実現される点以外、ECU70Aと実質的に同一のものとなっている。このためECU70Bについては図示省略する。
 ECU70Bでも、シリンダヘッド52Bの冷却能力を調整するための制御を行う制御手段が機能的に実現される。そしてこの制御手段は、シリンダヘッド52Bの冷却能力を抑制するための制御を行うにあたり、具体的には機関運転状態が高負荷(さらに具体的には低回転高負荷)である場合に、シリンダヘッド52Bの冷却能力を抑制するための制御を行うように実現される。この点、この制御手段はさらに具体的には機関運転状態が低回転高負荷である場合に、流量調節弁14を制御することで、ヘッド側W/J521Bに基づき発揮される冷却能力を抑制するための制御を行うように実現される。
 さらにECU70Bでは、制御手段が、機関運転状態が低回転高負荷である場合に、シリンダブロック51Bから冷却水への熱伝導性を高めるための制御を行うように実現される。熱伝導性を高めるための制御を行うにあたり、制御手段は具体的には部分W/J511aBにおける冷却水の流通方向がシリンダ51aの周方向になるように切替弁21、22を制御するように実現される。
 また制御手段は、機関運転状態が高負荷である場合のほか、他の運転状態においてもエンジン50Bの運転を成立させるための制御を行うように実現される。
 この点、制御手段が制御を行うにあたっては、具体的には前述した制御指針に沿った制御を行うことができる。
 まず、機関運転状態が区分D1に対応するアイドル状態である場合には、前述の通り吸気ポート52aとシリンダ51a上部との昇温、および排気ポート52bの昇温という2つの制御指針を定めている。
 この点、吸気ポート52aの昇温を図るにあたっては、例えば流量調節弁14または部分流量調節弁61を閉弁することができる。
 また、シリンダ51a上部の昇温を図るにあたっては、例えば部分W/J511aBにおける冷却水の流通方向がシリンダ51aの軸線方向になるように切替弁21、22を制御することができる。
 また、排気ポート52bの昇温を図るにあたっては、例えば流量調節弁14または部分流量調節弁62を閉弁することができる。
 また機関運転状態が、区分D2に対応する軽負荷である場合には、前述の通りシリンダヘッド52Bの断熱、および吸気ポート52aとシリンダ51a上部との昇温という2つの制御指針を定めている。
 この点、シリンダヘッド52Bの断熱を図るにあたっては、例えば流量調節弁14または各部分流量調節弁61から64までを閉弁することができる。また吸気ポート52aの昇温を図るにあたっては、例えば流量調節弁14または部分流量調節弁61を閉弁することができる。またシリンダ51a上部の昇温を図るにあたっては、例えば部分W/J511aBにおける冷却水の流通方向がシリンダ51aの軸線方向になるように切替弁21、22を制御することができる。
 また機関運転状態が、区分D3に対応する低回転高負荷である場合には、前述の通り吸気ポート52aとシリンダ51a上部との冷却、およびシリンダヘッド52Bの断熱という制御指針を定めている。
 この点、吸気ポート52aの冷却を図るにあたっては、例えば流量調節弁14または部分流量調節弁61を全開にすることができる。またシリンダ51a上部の冷却を図るにあたっては、例えば部分W/J511aBにおける冷却水の流通方向がシリンダ51aの周方向になるように切替弁21、22を制御することができる。またシリンダヘッド52Bの断熱を図るにあたっては、例えば流量調節弁14または各部分流量調節弁61から64までを閉弁することができる。
 また機関運転状態が、区分D4に対応する高回転高負荷である場合には、前述の通り点火プラグ56周りと吸排気ポート52a、52b間と排気ポート52bとの冷却、および吸気ポート52aの冷却という2つの制御指針を定めている。
 この点、点火プラグ56周りと吸排気ポート52a、52b間と排気ポート52bとの冷却を図るにあたっては、例えば流量調節弁14、または部分流量調節弁63、部分流量調節弁64および部分流量調節弁62を全開にすることができる。
 また吸気ポート52aの冷却を図るにあたっては、例えば流量調節弁14、または部分流量調節弁61を全開にすることができる。
 一方、ノッキングの低減という要求に対しては、吸気ポート52aの冷却のほか、例えばシリンダ51a上部の冷却を図ることもできる。これに対してシリンダ51a上部の冷却を図るにあたっては、例えば部分W/J511aBにおける冷却水の流通方向がシリンダ51aの周方向になるように切替弁21、22を制御することができる。
 また区分D5に対応する機関冷間時には、前述の通りシリンダヘッド52Bの熱伝達促進、および吸気ポート52aとシリンダ51a上部との昇温という2つの制御指針を定めている。
 そしてシリンダヘッド52Bの熱伝達促進を図るにあたっては、シリンダヘッド52Bでの冷却水の受熱の寄与が大きいことを考慮し、例えば熱負荷の大きい部分に対応する部分流量調節弁62、63を大きな開度で開弁することができる。
 また吸気ポート52aの昇温を図るにあたっては、例えば流量調節弁14、または部分流量調節弁61を閉弁することができる。
 またシリンダ51a上部の昇温を図るにあたっては、例えば部分W/J511aBにおける冷却水の流通方向がシリンダ51aの軸線方向になるように切替弁21、22を制御することができる。
 また区分D6に対応する機関始動時には、前述の通り吸気ポート52aの昇温、および点火プラグ56周りとシリンダ51a上部との昇温という2つの制御指針を定めている。
 この点、吸気ポート52aの昇温を図るにあたっては、例えば流量調節弁14、または部分流量調節弁61を閉弁することができる。
 また点火プラグ56周りの昇温を図るにあたっては、例えば流量調節弁14、または部分流量調節弁63を閉弁することができる。
 またシリンダ51a上部の昇温を図るにあたっては、例えば部分W/J511aBにおける冷却水の流通方向がシリンダ51aの軸線方向になるように切替弁21、22を制御することや、W/P11を停止、或いは低吐出量で駆動することができる。
 これに対して冷却装置1Bでは、全体的な制御の整合性や簡素化などを考慮し、制御手段がW/P11については、基本的にエンジン50Bの回転数に応じて、回転数が高くなるほど吐出量が多くなるようにW/P11を駆動するための制御を行うとともに、各部分流量調節弁61から64までについては、基本的に全開にするための制御を行うように実現される。一方、流量調節弁14および切替弁21、22については、さらに具体的には以下に示す制御を行うよう実現される。
 すなわち制御手段は機関運転状態が区分D1に対応するアイドル状態である場合と、機関運転状態が区分D2に対応する軽負荷である場合と、区分D5に対応する機関冷間時と、区分D6に対応する機関始動時においては、流量調節弁14を閉弁するための制御を行うとともに、部分W/J511aBにおける冷却水の流通方向がシリンダ51aの軸線方向になるように切替弁21、22を制御するよう実現される。
 また制御手段は、機関運転状態が区分D3に対応する低回転高負荷である場合には、流量調節弁14を閉弁するための制御を行うとともに、部分W/J511aBにおける冷却水の流通方向がシリンダ51aの周方向になるように切替弁21、22を制御するように実現される。
 また制御手段は、機関運転状態が区分D4に対応する高回転高負荷である場合には、流量調節弁14を全開にするための制御を行うとともに、部分W/J511aBにおける冷却水の流通方向がシリンダ51aの周方向になるように切替弁21、22を制御するように実現される。
 そして冷却装置1Bでは、制御手段の制御のもと、区分D3において流量調節弁14がこのようにシリンダヘッド52Bを流通する冷却水の流量を低下させることで、エンジン50Bを流通する冷却水の流量を局部的に低下させる。
 そして冷却装置1Bでは、流量調節弁14が全開でない場合にシリンダヘッド52Bへの冷却水の流通を抑制することで、シリンダヘッド52Bの冷却能力を抑制していることになる。この点、冷却装置1Bではさらに具体的には、流量調節弁14を閉弁している場合にシリンダヘッド52Bの冷却能力を抑制していることになる。
 なお、制御手段は例えば上述した制御指針に基づいてW/P11、流量調節弁14、切替弁21、22および部分流量調節弁61から64までを適宜制御することで、各区分D1からD6までにおいて全体的な制御の整合性や簡素化などを考慮した上述の制御と異なる制御を行うように実現されてもよい。これにより各区分D1からD6までにおいて、さらにエンジン50Bの運転を好適に成立させることもできる。
 次にECU70Bで行われる処理を図11に示すフローチャートを用いて説明する。なお、本フローチャートは、ステップS21Aの代わりにステップS21Bが、ステップS31Aの代わりにステップS31Bが、ステップS41Aの代わりにステップS41Bが設けられている点以外、図6に示すフローチャートと同一のものとなっている。このためここで特にこれらのステップについて説明する。ステップS3に続き、或いはステップS5、S12、S13で肯定判定であった場合には、ECU70Bは流量調節弁14を閉弁するとともに、切替弁21、22をシリンダ51aの軸線方向側に制御する(ステップS21B)。またステップS14で肯定判定であった場合には、ECU70Bは流量調節弁14を閉弁するとともに、切替弁21、22をシリンダ51aの周方向側に制御する(ステップS31B)。またステップS14で否定判定であった場合には、ECU70Bは流量調節弁14を全開にするとともに、切替弁21、22をシリンダ51aの周方向側に制御する(ステップS41B)。
 次に冷却装置1Bの作用効果について説明する。冷却装置1Bでは、機関運転状態が低回転高負荷である場合に、流量調節弁14を閉弁する。そしてこれにより、ヘッド側W/J521Bを流通する冷却水の流量を制限することで、シリンダヘッド52Bの冷却能力を抑制でき、以って冷却損失を低減できる。
 一方、この場合にはノッキングの発生が懸念される。これに対して冷却装置1Bではシリンダブロック51Bの冷却能力を抑制することなく、シリンダヘッド52Bの冷却能力を抑制可能な流量調節弁14を制御することで、ヘッド側W/J521Bを流通する冷却水の流量を制限する。このため冷却装置1Bではこれによりシリンダ51aの冷却を維持でき、以ってノッキングの発生も抑制できる。
 また冷却装置1Bでは、流量調節弁14がシリンダヘッド52Bの冷却能力を抑制するようにヘッド側W/J521Bを流通する冷却水の流量を調節した場合に、シリンダブロック51Bの冷却能力を高めるようにブロック側W/J511Bを流通する冷却水の流量を調節可能になっている。このため冷却装置1Bではこれによって吸気をより冷却でき、ノッキングの発生を好適に抑制できる。
 さらに冷却装置1Bでは、機関運転状態が低回転高負荷である場合に、切替弁21、22をシリンダ51aの周方向側に制御することで、シリンダブロック51Bから冷却水への熱伝導性を高めることができる。このため冷却装置1Bではこれにより吸気をさらに冷却でき、ノッキングの発生をさらに好適に抑制できる。
 また冷却装置1Bは、主に低回転高負荷時に熱効率の向上を図ることができる一方で、他の運転状態においてもエンジン50Bの運転を好適に成立させることができる。このため冷却装置1Bは特定の運転状態だけでなく、通常行われるエンジン50Bの運転全体として見ても熱効率の向上を図ることができる。
 上述した実施例は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
 例えば上述した実施例では、各エンジン50A、50Bの運転を成立させるにあたって好適であることなどから、W/P11が冷却媒体圧送手段である場合について説明した。しかしながら本発明においては必ずしもこれに限られず、冷却媒体圧送手段は例えばエンジンの出力で駆動する機械式W/Pであってもよい。
 また機関運転状態がアイドル状態である場合や機関冷間時や機関始動時に制御手段が行う制御は、本発明においては必ずしも上述した実施例に限られず、冷却装置が例えば第1および第2の冷却媒体通路に蓄熱冷却媒体を供給可能な蓄熱冷却媒体供給手段をさらに備えるとともに、機関運転状態がアイドル状態であるか或いは機関冷間時、または機関始動時であり、且つ蓄熱冷却媒体の温度が冷却媒体の温度よりも高い場合に、制御手段が当該蓄熱冷却媒体供給手段から蓄熱冷却媒体を供給するための制御を行ってもよい。かかる蓄熱冷却媒体供給手段に相当する構成としては、具体的には例えば特開2009-208569号公報に記載の熱交換部がある。
 さらにこの場合、制御手段は例えばシリンダヘッドの冷却能力を部分的に調整する冷却能力調整手段を制御することで、点火プラグや排気ポートや吸気ポートに対応させて設けられた冷却媒体通路に蓄熱冷却媒体を優先的に供給するための制御を行ってもよい。
 これにより、機関暖機促進や未燃HCの低減やエンジン着火性の向上をさらに好適に図ることなどができ、この結果、エンジンの運転をさらに好適に成立させることができる。
 また上述した実施例2では、第3の凹凸部P3が冷却能力調整手段としての流量調節弁14と組み合わされて適用される場合について説明した。しかしながら本発明においては必ずしもこれに限られず、冷却水の流通方向の変化に応じて、シリンダブロックから冷却水への熱伝導性を可変にする凹凸部は、シリンダヘッドの冷却能力を調整可能なその他の冷却能力調整手段(例えば実施例1で説明したW/P11、流量調節弁14および第1の凹凸部P1)と組み合わされて適用されてもよい。
 また、制御手段は主に各エンジン50A、50Bを制御する各ECU70で実現することが合理的であるが、例えばその他の電子制御装置や専用の電子回路などのハードウェアやこれらの組み合わせによって実現されてもよい。また制御手段は、例えば複数の電子制御装置や複数の電子回路等のハードウェアや電子制御装置と電子回路等のハードウェアとの組み合わせによって分散制御的に実現されてもよい。
  1   冷却装置
  11  W/P
  12  ラジエータ
  13  サーモスタット
  14  流量調節弁
  21  入口側切替弁
  22  出口側切替弁
  50A、50B  エンジン
  51A  シリンダブロック
  51a  シリンダ
  511 ブロック側W/J
  52A、52B  シリンダヘッド
  52a  吸気ポート
  52b  排気ポート
  521 ヘッド側W/J
  61、62、63、64  部分流量調節弁
  70  ECU

Claims (4)

  1. 複数の異なる冷却系統に別個に組み込まれた複数の部分冷却媒体通路を備える第1の冷却媒体通路を形成するとともに、冷却媒体の最大流速の範囲内において、流速の変化に応じて冷却媒体の流れの剥離を発生させることが可能な第1の凹凸部を前記第1の冷却媒体通路に設けたシリンダヘッドを備えるエンジンと、
     機関運転状態に応じて、前記第1の冷却媒体通路に流通させる冷却媒体の流速を、前記複数の部分冷却媒体通路それぞれにおいて部分的に変更する場合を含めて変更するための制御を行う制御手段と、を備えるエンジンの冷却装置。
  2. 請求項1記載のエンジンの冷却装置であって、
     前記制御手段が、機関運転状態が低回転高負荷である場合に、前記第1の冷却媒体通路に流通させる冷却媒体の流速を前記第1の凹凸部で冷却媒体の流れの剥離が発生する流速に変更するための制御を行うエンジンの冷却装置。
  3. 請求項2記載のエンジンの冷却装置であって、
     前記エンジンが、シリンダの周辺部に第2の冷却媒体通路を形成するとともに、冷却媒体の最大流速の範囲内において、流速の変化に応じて冷却媒体の流れの剥離を発生させることが可能な第2の凹凸部を前記第2の冷却媒体通路のうち、前記シリンダ側に位置する壁面に設けたシリンダブロックをさらに備え、
     前記制御手段が、機関運転状態が低回転高負荷である場合に、前記第2の冷却媒体通路に流通させる冷却媒体の流速を、前記第2の凹凸部で冷却媒体の流れの剥離が発生しない流速に変更するための制御をさらに行うエンジンの冷却装置。
  4. シリンダの周辺部に冷却媒体通路を形成するとともに、冷却水の流通方向の変化に応じて、冷却水への熱伝導性を可変にする凹凸部を前記冷却媒体通路に設けたシリンダブロックを備えるエンジンと、
     前記シリンダヘッドの冷却能力を調整可能な冷却能力調整手段と、
     前記冷却媒体通路における冷却水の流通方向を第1の方向と、該第1の方向よりも前記凹凸部によって熱伝導性が高くなる第2の方向との間で変更可能な流通方向変更手段と、
     機関運転状態が低回転高負荷である場合に、前記冷却能力調整手段を制御することで、前記シリンダヘッドの冷却能力を抑制するための制御を行うとともに、前記流通方向変更手段を制御することで、前記冷却媒体通路における冷却水の流通方向を前記第2の方向に変更するための制御を行う制御手段と、を備えるエンジンの冷却装置。
PCT/JP2009/070189 2009-12-01 2009-12-01 エンジンの冷却装置 WO2011067829A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980162682.3A CN102667092B (zh) 2009-12-01 2009-12-01 发动机的冷却装置
EP09851837.6A EP2508727B1 (en) 2009-12-01 2009-12-01 Engine cooling device
JP2011544137A JP5494672B2 (ja) 2009-12-01 2009-12-01 エンジンの冷却装置
US13/513,064 US8746187B2 (en) 2009-12-01 2009-12-01 Engine cooling device
PCT/JP2009/070189 WO2011067829A1 (ja) 2009-12-01 2009-12-01 エンジンの冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/070189 WO2011067829A1 (ja) 2009-12-01 2009-12-01 エンジンの冷却装置

Publications (1)

Publication Number Publication Date
WO2011067829A1 true WO2011067829A1 (ja) 2011-06-09

Family

ID=44114695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070189 WO2011067829A1 (ja) 2009-12-01 2009-12-01 エンジンの冷却装置

Country Status (5)

Country Link
US (1) US8746187B2 (ja)
EP (1) EP2508727B1 (ja)
JP (1) JP5494672B2 (ja)
CN (1) CN102667092B (ja)
WO (1) WO2011067829A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760847A1 (en) * 2019-07-02 2021-01-06 Hyundai Motor Company Water jacket of engine

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644860A4 (en) * 2010-11-26 2014-05-07 Toyota Motor Co Ltd COOLING DEVICE FOR MOTOR
JP5541371B2 (ja) * 2010-12-13 2014-07-09 トヨタ自動車株式会社 エンジンの冷却装置
JP5979030B2 (ja) * 2013-02-05 2016-08-24 マツダ株式会社 可変気筒エンジン
US9500115B2 (en) * 2013-03-01 2016-11-22 Ford Global Technologies, Llc Method and system for an internal combustion engine with liquid-cooled cylinder head and liquid-cooled cylinder block
GB2525863B (en) * 2014-05-06 2020-08-05 Ford Global Tech Llc An engine block
KR101619278B1 (ko) * 2014-10-29 2016-05-10 현대자동차 주식회사 냉각수 제어밸브를 갖는 엔진시스템
JP6303991B2 (ja) * 2014-11-13 2018-04-04 トヨタ自動車株式会社 シリンダヘッド
JP6225931B2 (ja) * 2015-02-20 2017-11-08 トヨタ自動車株式会社 内燃機関の冷却装置
JP6222157B2 (ja) * 2015-04-09 2017-11-01 トヨタ自動車株式会社 内燃機関の冷却装置
JP6187538B2 (ja) * 2015-05-15 2017-08-30 トヨタ自動車株式会社 シリンダヘッド
JP2017002781A (ja) * 2015-06-09 2017-01-05 トヨタ自動車株式会社 内燃機関の制御装置
GB2548835B (en) * 2016-03-29 2018-04-18 Ford Global Tech Llc A cooling system
JP6581548B2 (ja) * 2016-08-01 2019-09-25 株式会社Soken 冷却システム
JP6581129B2 (ja) * 2017-02-14 2019-09-25 トヨタ自動車株式会社 内燃機関の冷却装置
JP6544376B2 (ja) * 2017-03-28 2019-07-17 トヨタ自動車株式会社 内燃機関の冷却装置
JP6544375B2 (ja) * 2017-03-28 2019-07-17 トヨタ自動車株式会社 内燃機関の冷却装置
CN107620630B (zh) * 2017-11-03 2019-12-03 奇瑞汽车股份有限公司 发动机冷却液温度控制方法和系统
DE102018214152B3 (de) * 2018-08-22 2019-11-07 Ford Global Technologies, Llc Kühlsystem für einen Verbrennungsmotor, insbesondere Zylinderkopfkühlung mit Ladeluftkühler

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242419A (ja) * 1990-02-16 1991-10-29 Nippondenso Co Ltd 内燃機関の冷却方法及びその装置
JPH0530443U (ja) * 1991-09-25 1993-04-23 帝国ピストンリング株式会社 シリンダライナの冷却構造
JP2002221080A (ja) 2001-01-26 2002-08-09 Toyota Motor Corp エンジンのウォータジャケット構造及びその製造方法
JP2002364456A (ja) * 2001-06-07 2002-12-18 Mitsubishi Heavy Ind Ltd 舶用ディーゼルのシリンダライナ冷却構造
JP2005224042A (ja) * 2004-02-06 2005-08-18 Toyota Motor Corp 温度調節装置
JP2005337035A (ja) 2004-05-24 2005-12-08 Honda Motor Co Ltd シリンダライナの冷却構造
JP2009208569A (ja) 2008-03-03 2009-09-17 Toyota Motor Corp 空調装置およびエンジン暖機促進システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148610A (en) * 1980-04-18 1981-11-18 Toyota Motor Corp Cooling device for engine
JPH07103828B2 (ja) * 1987-11-17 1995-11-08 本田技研工業株式会社 水冷式多気筒エンジンのシリンダヘッド
JPH0295717A (ja) * 1988-09-30 1990-04-06 Fuji Heavy Ind Ltd 水冷式エンジンのシリンダ冷却装置
JPH0674090A (ja) * 1992-06-26 1994-03-15 Mazda Motor Corp エンジンの冷却装置
JPH0680821U (ja) * 1993-04-26 1994-11-15 三菱重工業株式会社 内燃機関のシリンダカバー、シリンダライナ冷却装置
JPH10122034A (ja) * 1996-10-16 1998-05-12 Toyota Motor Corp 内燃機関のシリンダブロック及びその製造方法
JP3891660B2 (ja) * 1997-09-12 2007-03-14 本田技研工業株式会社 水冷式エンジンの冷却装置
DE10032184A1 (de) 2000-07-01 2002-01-10 Bosch Gmbh Robert Vorrichtung zum Kühlen einer Brennkraftmaschine
EP1239129B1 (en) * 2001-03-06 2007-10-31 Calsonic Kansei Corporation Cooling system for water-cooled internal combustion engine and control method applicable to cooling system therefor
FR2841596B1 (fr) * 2002-06-27 2005-12-16 Renault Sa Dispositif de refroidissement pour moteur a combustion interne
DE10244829A1 (de) * 2002-09-25 2004-04-01 Bayerische Motoren Werke Ag Flüssigkeitsgekühlte Brennkraftmaschine sowie Verfahren zur Durchführung eines Abwärmetransfers
US6810838B1 (en) * 2003-06-12 2004-11-02 Karl Harry Hellman Individual cylinder coolant control system and method
FR2860833B1 (fr) * 2003-10-08 2007-06-01 Peugeot Citroen Automobiles Sa Circuit de refroidissement d'un moteur a combustion interne constitue d'au moins trois passages de refroidissement
EP1600621B1 (en) 2004-05-24 2014-09-03 Honda Motor Co., Ltd. Cylinder liner cooling structure
JP2007247523A (ja) 2006-03-15 2007-09-27 Toyota Motor Corp 内燃機関
JP2007297923A (ja) 2006-04-27 2007-11-15 Toyota Motor Corp シリンダライナの構造
FR2905423B1 (fr) * 2006-09-06 2008-10-10 Peugeot Citroen Automobiles Sa Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242419A (ja) * 1990-02-16 1991-10-29 Nippondenso Co Ltd 内燃機関の冷却方法及びその装置
JPH0530443U (ja) * 1991-09-25 1993-04-23 帝国ピストンリング株式会社 シリンダライナの冷却構造
JP2002221080A (ja) 2001-01-26 2002-08-09 Toyota Motor Corp エンジンのウォータジャケット構造及びその製造方法
JP2002364456A (ja) * 2001-06-07 2002-12-18 Mitsubishi Heavy Ind Ltd 舶用ディーゼルのシリンダライナ冷却構造
JP2005224042A (ja) * 2004-02-06 2005-08-18 Toyota Motor Corp 温度調節装置
JP2005337035A (ja) 2004-05-24 2005-12-08 Honda Motor Co Ltd シリンダライナの冷却構造
JP2009208569A (ja) 2008-03-03 2009-09-17 Toyota Motor Corp 空調装置およびエンジン暖機促進システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2508727A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760847A1 (en) * 2019-07-02 2021-01-06 Hyundai Motor Company Water jacket of engine
US10934925B2 (en) 2019-07-02 2021-03-02 Hyundai Motor Company Water jacket of engine

Also Published As

Publication number Publication date
JP5494672B2 (ja) 2014-05-21
CN102667092B (zh) 2014-06-11
EP2508727B1 (en) 2016-03-09
US8746187B2 (en) 2014-06-10
JPWO2011067829A1 (ja) 2013-04-18
CN102667092A (zh) 2012-09-12
US20120266827A1 (en) 2012-10-25
EP2508727A4 (en) 2013-12-25
EP2508727A1 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5494672B2 (ja) エンジンの冷却装置
JP5282827B2 (ja) エンジンの冷却装置
JP5338916B2 (ja) エンジンの冷却装置
JP5527427B2 (ja) エンジンの冷却装置
JP5541371B2 (ja) エンジンの冷却装置
JP5196030B2 (ja) エンジンの制御装置
JP2006328962A (ja) 内燃機関の冷却装置
JP5051306B2 (ja) エンジンの冷却装置
JP5565283B2 (ja) 内燃機関の冷却装置
US9551270B2 (en) Control device for coolant flow in an internal combustion engine
JP5577788B2 (ja) エンジンの冷却装置
JP5299517B2 (ja) エンジンの冷却装置
JP2011094537A (ja) エンジンの冷却装置
JP6911634B2 (ja) 内燃機関冷却制御装置
JP5338703B2 (ja) エンジンの冷却装置
JP2011069341A (ja) エンジンの暖機促進システム
JPH0681645A (ja) 内燃機関の冷却装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162682.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011544137

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009851837

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13513064

Country of ref document: US