WO2011065075A1 - 移動体用熱サイクルシステム - Google Patents

移動体用熱サイクルシステム Download PDF

Info

Publication number
WO2011065075A1
WO2011065075A1 PCT/JP2010/064390 JP2010064390W WO2011065075A1 WO 2011065075 A1 WO2011065075 A1 WO 2011065075A1 JP 2010064390 W JP2010064390 W JP 2010064390W WO 2011065075 A1 WO2011065075 A1 WO 2011065075A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
medium
transfer system
cooling
Prior art date
Application number
PCT/JP2010/064390
Other languages
English (en)
French (fr)
Inventor
逸郎 沢田
忠史 尾坂
裕人 今西
禎夫 関谷
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to US13/388,707 priority Critical patent/US20120222441A1/en
Priority to CN2010800348236A priority patent/CN102472531A/zh
Publication of WO2011065075A1 publication Critical patent/WO2011065075A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00907Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00935Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising four way valves for controlling the fluid direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems

Definitions

  • the present invention relates to a thermal cycle system for a moving body mounted on a moving body.
  • thermo cycle system for a moving body mounted on a moving body
  • a system that integrates a cooling system that cools a heating element such as a battery and a DC / DC converter and an air conditioning system that adjusts an indoor air condition
  • This heat cycle system for moving bodies thermally connects a heat medium circulation cycle in which a heat medium supplied to an air conditioning heat exchanger and a heating element circulates to a refrigeration cycle by a heat exchanger, By exchanging heat with the heat medium in the heat medium circulation cycle, air conditioning in the passenger compartment and cooling of the heating element are performed.
  • One of the representative aspects of the present invention provides a thermal cycle system for a moving body that can simplify the system configuration.
  • the moving body thermal cycle system includes a refrigeration cycle system in which a refrigerant flows, a first heat moving system in which a heat medium for adjusting the temperature of the heating element flows, A second heat transfer system in which a heat medium that adjusts the air condition flows, and a first intermediate heat exchanger that is provided between the refrigeration cycle system and the first heat transfer medium system and exchanges heat between the refrigerant and the heat medium. And a second intermediate heat exchanger provided between the refrigeration cycle system and the second heat transfer medium system for exchanging heat between the refrigerant and the heat medium, and provided in the first heat transfer system.
  • First heat transfer system And a reservoir tank for adjusting the pressure in the flow path through which the heat medium of the second movement system flows, and the reservoir tank is provided in common to the first heat movement system and the second movement system.
  • the reservoir tank includes each of the heat medium flow path of the first heat transfer system and the heat medium flow path of the second movement system. It is preferable that it is connected to.
  • the reservoir tank is either the heat medium flow path of the first heat transfer system or the heat medium flow path of the second movement system. It is preferable that the heat medium flow path of the first heat transfer system and the heat transfer medium flow path of the second heat transfer system are provided on one side and communicate with each other through a communication path.
  • the heat medium from the heat medium flow path of the first heat transfer system and the heat medium flow path of the second movement system is provided on one side and communicate with each other through a communication path.
  • a drain mechanism for discharging the gas to the outside is provided, and the drain mechanism is provided in common for the first heat transfer system and the second transfer system.
  • an outdoor heat exchanger for exchanging heat between the heat medium and the outside air is provided in the first heat transfer system. Is preferred.
  • a thermal cycle system for a moving body includes a refrigeration cycle system in which a refrigerant circulates, a first heat transfer system in which a heat medium that adjusts the temperature of a heating element circulates, A second heat transfer system in which a heat medium that adjusts the air condition flows, and a first intermediate heat exchanger that is provided between the refrigeration cycle system and the first heat transfer medium system and exchanges heat between the refrigerant and the heat medium.
  • a second intermediate heat exchanger provided between the refrigeration cycle system and the second heat transfer medium system, for exchanging heat between the refrigerant and the heat medium, and provided in the first heat transfer system, and taken into the moving body chamber.
  • Heat medium supplied to heating element A flow path connection control unit for controlling the connection between the flow path of the first heat transfer body system and the flow path of the second heat transfer body system so as to flow in series in the first and second intermediate heat exchangers And having.
  • the heat exchange amount between the heat medium supplied to the heating element and the refrigerant is supplied to the heating element in the first intermediate heat exchange.
  • the moving body thermal cycle system includes a refrigeration cycle system in which a refrigerant flows, a first heat transfer system in which a heat medium that adjusts the temperature of at least two heating elements flows, First intermediate heat that is provided between the second heat transfer system in which the heat medium that adjusts the air state in the body chamber flows, and between the refrigeration cycle system and the first heat transfer medium system, and exchanges heat between the refrigerant and the heat medium.
  • a second intermediate heat exchanger provided between the exchanger, the refrigeration cycle system, and the second heat transfer medium system for exchanging heat between the refrigerant and the heat medium; and provided in the first heat transfer system;
  • the first indoor heat exchanger that exchanges heat between the air taken in and the heat medium
  • the second indoor heat exchanger that is provided in the second heat transfer system and exchanges heat between the air taken in the moving body room and the heat medium
  • at least One heating element is divided into two temperature control targets, the heat medium flowing through the first heat transfer system is distributed to one temperature control target, and the heat medium flowing through the second heat transfer system is distributed to the other temperature control target
  • a flow path connection switching unit for switching connection between at least two heating elements and the flow paths of the first and second heat transfer body systems.
  • the amount of heat exchange between the heat medium supplied to the at least two heating elements and the at least two heating elements is at least When the heat exchange amount between the two heating elements and the heat medium of the first heat transfer system is to be larger, the flow path connection switching unit sets the first heat transfer system as one temperature control target. It is preferable to switch so that the heat medium flowing through the second heat transfer system is distributed to the other temperature control target.
  • the pressure in the flow path through which the heat medium of the first and second moving systems flows is adjusted.
  • the reservoir tank is preferably provided in common with the first heat transfer system and the second transfer system.
  • the heat medium from the heat medium flow path of the first heat transfer system and the heat medium flow path of the second movement system. It is preferable that a drain mechanism for discharging the gas to the outside is provided, and the drain mechanism is provided in common for the first heat transfer system and the second transfer system.
  • the outdoor heat exchanger for exchanging heat between the heat medium and the outside air is provided in the first heat transfer system. Is preferred.
  • the present invention it is possible to improve the maintainability of the thermal cycle system for moving bodies, and to contribute to the downsizing and cost reduction of the thermal cycle system for moving bodies.
  • FIG. 1 is a piping system diagram showing a configuration of a thermal cycle system for an electric vehicle according to a first embodiment of the present invention, and shows a refrigerant circulation state when indoor air conditioning is cooling and heating element temperature control is cooling. It is a piping distribution diagram of the heat cycle system of Drawing 1, and shows a refrigerant circulation state when indoor air-conditioning is heating and heating element temperature control is cooling. It is a block diagram which shows the structure of the electric drive system of the electric vehicle carrying the heat cycle system of FIG. It is a piping system diagram which shows the structure of the thermal cycle system of the electric vehicle which is the 2nd Embodiment of this invention.
  • FIG. 7 is a piping system diagram of the heat cycle system in FIG. 6, in which one of the heating elements is cooled by a heat medium flowing through one of the heat medium circulation paths, and the other of the heating elements is connected to the other heat medium circulation path. The circulation path of the heat medium when it is cooled by the flowing heat medium is shown. It is a piping system diagram which shows the structure of the thermal cycle system of the electric vehicle which is the 4th Embodiment of this invention.
  • the present invention will be described by taking as an example a case where the present invention is applied to a heat cycle system of a pure electric vehicle using an electric motor as the sole drive source of the vehicle.
  • the configuration of the embodiment described below includes an electric vehicle having an engine and an electric motor as an internal combustion engine as a driving source of the vehicle, such as a hybrid vehicle (passenger vehicle), a cargo vehicle such as a hybrid truck, and a shared vehicle such as a hybrid bus. You may apply to a heat cycle system.
  • FIG. 3 shows the configuration of the EV1000 drive system and the electrical connection configuration of each component of the motor drive system that forms part of the EV1000 drive system.
  • a thick solid line indicates a strong electric system
  • a thin solid line indicates a weak electric system
  • An axle 820 is rotatably supported on the front or rear portion of the vehicle body (not shown).
  • a pair of drive wheels 800 are provided at both ends of the axle 820.
  • an axle having a pair of driven wheels at both ends is rotatably supported at the rear part or the front part of the vehicle body.
  • EV1000 shown in FIG. 3 shows a front wheel drive system in which the drive wheel 800 is a front wheel and a driven wheel is a rear wheel, but a rear wheel drive system in which the drive wheel 800 is a rear wheel and the driven wheel is a front wheel may be used. .
  • a differential gear (hereinafter referred to as “DIF”) 830 is provided at the center of the axle 820.
  • the axle 820 is mechanically connected to the output side of the DIF 830.
  • the output shaft of the transmission 810 is mechanically connected to the input side of the DIF 830.
  • the DEI 830 is a differential power distribution mechanism that distributes the rotational driving force that is shifted and transmitted by the transmission 810 to the left and right axles 820.
  • the output side of the motor generator 200 is mechanically connected to the input side of the transmission 810.
  • the motor generator 200 includes an armature (equipped with a stator in the EV 1000 shown in FIG. 3) 210 having an armature winding 211 and a permanent magnet 221 that is disposed opposite to the armature 210 via a gap. This is a rotating electrical machine having a field (a rotor is equivalent to EV1000 shown in FIG. 3) 220.
  • the motor generator 200 functions as a motor when the EV 1000 is powered, and functions as a generator during regeneration.
  • motor generator 200 When the motor generator 200 functions as a motor, the electrical energy stored in the battery 100 is supplied to the armature winding 211 via the inverter device 300. Thus, motor generator 200 generates rotational power (mechanical energy) by a magnetic action between armature 210 and field 220. The rotational power output from the motor generator 200 is transmitted to the axle 820 via the transmission 810 and the DIF 830 to drive the drive wheels 800.
  • motor generator 200 When the motor generator 200 functions as a generator, mechanical energy (rotational power) transmitted from the drive wheels 800 is transmitted to the motor generator 200 to drive the motor generator 200. As described above, when the motor generator 200 is driven, the magnetic flux of the field 220 is linked to the armature winding 211 to induce a voltage. Thereby, motor generator 200 generates electric power. The electric power output from the motor generator 200 is supplied to the battery 100 via the inverter device 300. Thereby, the battery 100 is charged.
  • the motor generator 200 is adjusted so that its temperature falls within an allowable temperature range by a heat cycle system described later. Since the armature 210 is a heat-generating component, it needs to be cooled, and when the ambient temperature is low, warm air may be required so that predetermined electrical characteristics can be obtained.
  • the motor generator 200 is driven by the electric power between the armature 210 and the battery 100 being controlled by the inverter device 300. That is, inverter device 300 is a control device for motor generator 200.
  • the inverter device 300 is a power conversion device that converts electric power from direct current to alternating current and from alternating current to direct current by switching operation of the switching semiconductor element.
  • the inverter device 300 includes a power module 310, a drive circuit 330, an electrolytic capacitor 320, and a motor control device 340.
  • the drive circuit 330 drives the switching semiconductor element mounted on the power module 310.
  • the electrolytic capacitor 320 is electrically connected in parallel to the DC side of the power module 310 and smoothes the DC voltage.
  • the motor control device 340 generates a switching command for the switching semiconductor element of the power module 310 and outputs a signal corresponding to the switching command to the drive circuit 330.
  • the power module 310 includes a three-phase series circuit (an arm for one phase) in which two switching semiconductor elements (upper arm and lower arm) are electrically connected in series.
  • two switching semiconductor elements upper arm and lower arm
  • six switching semiconductor elements are mounted on a substrate such that three-phase series circuits are electrically connected in parallel (three-phase bridge connection) to form a power conversion circuit, aluminum wires, etc. It is electrically connected by the connecting conductor.
  • MOSFET metal oxide semiconductor field effect transistor
  • IGBT insulated gate bipolar transistor
  • each upper arm in the case of IGBT, the collector electrode side
  • the side opposite to the upper arm connection side of each lower arm is led out from the DC side of the power module 310 and is electrically connected to the positive side of the battery 100.
  • the side opposite to the upper arm connection side of each lower arm is led out from the DC side of the power module 310 and is electrically connected to the negative side of the battery 100.
  • each upper and lower arm Connection between the middle point of each upper and lower arm, that is, the lower arm connection side of the upper arm (in the case of IGBT, the emitter electrode side of the upper arm) and the upper arm connection side of the lower arm (in the case of IGBT, the collector electrode side of the lower arm)
  • the point is derived from the AC side of the power module 310 to the outside, and is electrically connected to the corresponding phase winding of the armature winding 211.
  • the electrolytic capacitor 320 is provided to suppress high-speed switching operation of the switching semiconductor element and voltage fluctuation caused by the inductance parasitic to the power conversion circuit, and is a smoothing capacitor that removes the AC component contained in the DC component. Function as. As the smoothing capacitor, a film capacitor can be used instead of the electrolytic capacitor 320.
  • the motor control device 340 receives torque command signals output from the vehicle control device 840 that controls the entire vehicle, and generates switching command signals (for example, PWM (pulse width modulation) signals) for the six switching semiconductor elements.
  • This is an electronic circuit device that outputs to the drive circuit 330.
  • the drive circuit 330 receives the switching command signal output from the motor control device 340, generates drive signals for the six switching semiconductor elements, and outputs the generated drive signals to the gate electrodes of the six switching semiconductor elements. It is.
  • the inverter device 300 in particular, the power module 310 and the electrolytic capacitor 320 are adjusted so that the temperature is within the allowable temperature range by a heat cycle system described later. Since the power module 310 and the electrolytic capacitor 320 are heat-generating components, they need to be cooled, and when the ambient temperature is low, warm air may be required so that predetermined operating characteristics and electrical characteristics can be obtained.
  • Vehicle control device 840 generates a motor torque command signal for motor control device 340 based on a plurality of state parameters indicating the driving state of the vehicle, and outputs the motor torque command signal to motor control device 340.
  • the plurality of state parameters indicating the driving state of the vehicle include a torque request from the driver (depressing amount of the accelerator pedal or throttle opening), a vehicle speed, and the like.
  • the battery 100 is a high voltage having a nominal output voltage of 200 volts or more that constitutes a power supply for driving the motor generator 200.
  • the battery 100 is electrically connected to the inverter device 300 and the charger 500 via the junction box 400.
  • As the battery 100 a lithium ion battery is used.
  • the battery 100 other storage devices such as a lead battery, a nickel metal hydride battery, an electric double layer capacitor, and a hybrid capacitor can be used.
  • the battery 100 is a power storage device that is charged and discharged by the inverter device 300 and the charger 500, and includes a battery unit 110 and a control unit as main parts.
  • the battery unit 110 functions as an electrical energy storage, and is composed of a plurality of lithium ion batteries that are electrically connected in series and capable of storing and releasing electrical energy (charging and discharging DC power). Yes.
  • the battery unit 110 is electrically connected to the inverter device 300 and the charger 500.
  • the control unit is an electronic control device composed of a plurality of electronic circuit components, manages and controls the state of the battery unit 110, and provides information on the allowable charge / discharge amount to the inverter device 300 and the charger 500, Controls the entry and exit of electric energy in the battery unit 110.
  • the electronic control device is functionally divided into two layers, and corresponds to the upper (parent) battery control device 130 in the battery 100 and the lower (child) lower than the battery control device 130.
  • Cell controller 120 is functionally divided into two layers, and corresponds to the upper (parent) battery control device 130 in the battery 100 and the lower (child) lower than the battery control device 130.
  • Cell controller 120 is functionally divided into two layers, and corresponds to the upper (parent) battery control device 130 in the battery 100 and the lower (child) lower than the battery control device 130.
  • Cell controller 120 is functionally divided into two layers, and corresponds to the upper (parent) battery control device 130 in the battery 100 and the lower (child) lower than the battery control device 130.
  • Cell controller 120 is functionally divided into two layers, and corresponds to the upper (parent) battery control device 130 in the battery 100 and the lower (child) lower than the battery control device 130.
  • the cell control device 120 operates as a limb of the battery control device 130 based on the command signal output from the battery control device 130, and manages and controls the respective states of the plurality of lithium ion batteries.
  • Battery management means are provided.
  • the plurality of battery management means are each configured by an integrated circuit (IC).
  • IC integrated circuit
  • each integrated circuit is included in the corresponding group by discharging a lithium ion battery larger than a predetermined charged state when there is a variation in the charged state between the plurality of lithium ion batteries included in the corresponding group.
  • Each state of the plurality of lithium ion batteries included in the corresponding group is managed and controlled so that the state of charge between the plurality of lithium ion batteries is aligned.
  • the battery control device 130 manages and controls the state of the battery unit 110, and notifies the vehicle control device 840 or the motor control device 340 of the allowable charge / discharge amount to control the electric energy in and out of the battery unit 110. It is an apparatus and is provided with a state detection means.
  • the state detection means is an arithmetic processing unit such as a microcomputer or a digital signal processor.
  • a plurality of signals are input to the state detection means of the battery control device 130.
  • the plurality of signals include a measurement signal output from a current measurement unit for measuring the charge / discharge current of the battery unit 110, a measurement signal output from a voltage measurement unit for measuring the charge / discharge voltage of the battery unit 110, Measurement signal output from temperature measurement means for measuring the temperature of battery unit 110 and some lithium ion batteries, detection signal related to voltages across terminals of a plurality of lithium ion batteries output from cell control device 120, cell An abnormal signal output from the control device 120, an on / off signal based on the operation of the ignition key switch, and a signal output from the vehicle control device 840 or the motor control device 340, which are host control devices, are included.
  • the state detection means of the battery control device 130 executes a plurality of calculations based on a plurality of information.
  • the plurality of information includes information obtained from the above-described input signal, preset characteristic information of the lithium ion battery, and calculation information necessary for the calculation.
  • the plurality of operations are an operation for detecting a state of charge (SOC: State of charge) and a deterioration state (SOH: State of health) of the battery unit 110, an operation for balancing the state of charge of the plurality of lithium ion batteries. And a calculation for controlling the charge / discharge amount of the battery unit 110.
  • the state detection means of the battery control apparatus 130 is based on those calculation results, the command signal with respect to the cell control apparatus 120, the signal regarding the allowable charge / discharge amount for controlling the charge / discharge amount of the battery part 110, and the battery part 110.
  • a plurality of signals including a signal related to the SOC and a signal related to the SOH of the battery unit 110 are generated and output.
  • the state detection means of the battery control device 130 notifies the command signal for shutting off the first positive and negative relays 410 and 420 and the abnormal state based on the abnormal signal output from the cell control device 120.
  • a plurality of signals including the above signals are generated and output.
  • the battery control device 130 and the cell control device 120 can exchange signals with each other through a signal transmission path, but are electrically insulated. This is because the operation power supplies are different from each other and the reference potentials are different from each other. Therefore, an insulation 140 such as a photocoupler, a capacitive coupling element, and a transformer is provided on the signal transmission path connecting the battery control device 130 and the cell control device 120. Accordingly, the battery control device 130 and the cell control device 120 can perform signal transmission using signals having different reference potentials.
  • the battery 100 in particular, the battery unit 110 is adjusted so that its temperature falls within an allowable temperature range by a heat cycle system described later. Since the battery unit 110 is a heat-generating component, it needs to be cooled, and when the ambient temperature is low, warm air may be required so that predetermined input / output characteristics can be obtained.
  • the electric energy stored in the battery 100 is used as electric power for driving an electric motor drive system for running the EV 1000.
  • Electric energy is stored in the battery 100 by regenerative power generated by the regenerative operation of the motor drive system, power taken from a commercial power source for home use, or power purchased from a desk lamp.
  • the power plug 550 at the end of the power cable electrically connected to the external power supply connection terminal of the charger 500 is inserted into the outlet 700 on the commercial power supply 600 side, and the charger 500 is connected. And the commercial power source 600 are electrically connected.
  • a power cable extending from the power supply device of the desk lamp is connected to the external power connection terminal of the charger 500, and the charger 500 and the power supply device of the desk lamp are electrically connected. Connect to.
  • AC power is supplied to the charger 500 from the commercial power source 600 or the power supply device of the desk lamp.
  • the charger 500 converts the supplied AC power into DC power, adjusts the charging voltage of the battery 100, and then supplies the battery 100 to the battery 100. Thereby, the battery 100 is charged.
  • charging from the power supply device of the desk lamp is basically performed in the same manner as charging from the commercial power source 600 at home.
  • the current capacity and charging time supplied to the charger 500 are different between charging from the commercial power source 600 at home and charging from the power supply device of the desk lamp.
  • charging from the power supply device of the desk lamp has a larger current capacity and faster charging time than charging from the commercial power source 600 at home. That is, rapid charging can be performed in charging from the power supply device of the desk lamp.
  • the charger 500 converts AC power supplied from a commercial power source 600 at home or AC power supplied from a power supply device of a desk lamp into DC power, and boosts the converted DC power to a charging voltage of the battery 100.
  • the power converter is supplied to the battery 100.
  • the charger 500 includes an AC / DC conversion circuit 510, a booster circuit 520, a drive circuit 530, and a charge control device 540 as main components.
  • the AC / DC conversion circuit 510 is a power conversion circuit that converts AC power supplied from an external power source into DC power and outputs the DC power, and includes a rectifier circuit and a power factor correction circuit.
  • the rectifier circuit is configured by, for example, a bridge connection of a plurality of diode elements, and rectifies AC power supplied from an external power source into DC power.
  • the power factor correction circuit is electrically connected to the DC side of the rectifier circuit and improves the power factor of the output of the rectifier circuit.
  • a circuit for converting AC power into DC power a circuit configured by bridge-connecting a plurality of switching semiconductor elements in which diode elements are connected in antiparallel may be used.
  • the step-up circuit 520 is a power conversion circuit for stepping up the DC power output from the AC / DC conversion circuit 510 (power factor improvement circuit) to the charging voltage of the battery 100, and is constituted by, for example, an insulation type DC-DC converter.
  • the insulated DC-DC converter includes a transformer, a conversion circuit, a rectifier circuit, a smoothing reactor, and a smoothing capacitor.
  • the conversion circuit is configured by a bridge connection of a plurality of switching semiconductor elements, and is electrically connected to the primary side winding of the transformer, and also converts the DC power output from the AC / DC conversion circuit 510 into AC power to convert the transformer. Input to the primary winding.
  • the rectifier circuit consists of a bridge connection of a plurality of diode elements, and is electrically connected to the secondary winding of the transformer and rectifies the AC power generated in the secondary winding of the transformer into DC power.
  • the smoothing reactor is electrically connected in series to the positive side of the output side (DC side) of the rectifier circuit.
  • the smoothing capacitor is electrically connected in parallel between the positive and negative electrodes on the output side (DC side) of the rectifier circuit.
  • the charging control device 540 is an electronic circuit device configured by mounting a plurality of electronic components including an arithmetic processing device such as a microcomputer on a circuit board.
  • the charging control device 540 controls the power, voltage, current, and the like that are supplied to the battery 100 from the charger 500 at the time of charging all the time when the battery 100 is charged.
  • the charging control device 540 receives a signal output from the vehicle control device 840 or a signal output from the control device of the battery 100, and performs a plurality of switching semiconductor elements of the booster circuit 520.
  • a switching command signal (for example, a PWM (pulse width modulation) signal) is generated and output to the drive circuit 530.
  • the vehicle control device 840 monitors the voltage on the input side of the charger 500, for example, and the charger 500 and the external power source are electrically connected to each other, and the voltage is applied to the input side of the charger 500 to enter a charging start state. If it is determined that the charging is performed, a command signal for starting charging is output to the charging control device 540. On the other hand, when it is determined that the battery 100 is fully charged based on the battery state signal output from the control device of the battery 100, a command signal for ending charging is output to the charge control device 540. Such an operation may be performed by the motor control device 340 or the control device of the battery 100, or may be performed by the charge control device 540 in cooperation with the control device of the battery 100.
  • the control device of the battery 100 detects the state of the battery 100 so as to control charging of the battery 100 from the charger 500, calculates an allowable charge amount of the battery 100, and sends a signal related to the calculation result to the charger 500. Output.
  • the drive circuit 530 is an electronic circuit device configured by mounting a plurality of electronic components such as switching semiconductor elements and amplifiers on a circuit board.
  • the drive circuit 530 receives the command signal output from the charge control device 540, generates drive signals for the plurality of switching semiconductor elements of the booster circuit 520, and outputs the drive signals to the gate electrodes of the plurality of switching semiconductor elements.
  • the charging control device 540 When the AC / DC conversion circuit 510 is configured by a switching semiconductor element, the charging control device 540 outputs a switching command signal for the switching semiconductor element of the AC / DC conversion circuit 510 to the drive circuit 530.
  • the drive circuit 530 outputs a drive signal for the switching semiconductor element of the AC / DC converter circuit 510 to the gate electrode of the switching semiconductor element of the AC / DC converter circuit 510, whereby the switching of the switching semiconductor element of the AC / DC converter circuit 510 is controlled.
  • first and second positive side relays 410 and 430 and first and second negative side relays 420 and 440 are housed.
  • the first positive side relay 410 is a switch for controlling the electrical connection between the DC positive side of the inverter device 300 (power module 310) and the positive side of the battery 100.
  • First negative side relay 420 is a switch for controlling electrical connection between the DC negative side of inverter device 300 (power module 310) and the negative side of battery 100.
  • Second positive relay 430 is a switch for controlling the electrical connection between the DC positive side of charger 500 (boost circuit 520) and the positive side of battery 100.
  • Second negative side relay 440 is a switch for controlling an electrical connection between the DC negative side of charger 500 (boost circuit 500) and the negative side of battery 100.
  • the first positive side relay 410 and the first negative side relay 420 are turned on when the motor generator 200 is in an operation mode that requires rotational power and when the motor generator 200 is in an operation mode that requires power generation, and the vehicle stops.
  • the mode when the ignition key switch is opened
  • the second positive electrode side relay 430 and the second negative electrode side relay 440 are turned on when the battery 100 is charged by the charger 500, and when the charging of the battery 100 by the charger 500 is completed, and when the charger 500 or the battery 100 is charged. Opened when an error occurs.
  • Opening / closing of the first positive electrode side relay 410 and the first negative electrode side relay 420 is controlled by an open / close command signal output from the vehicle control device 840.
  • the opening and closing of the first positive electrode side relay 410 and the first negative electrode side relay 420 may be controlled by an open / close command signal output from another control device, for example, the motor control device 340 or the control device of the battery 100.
  • Opening / closing of the second positive side relay 430 and the second negative side relay 440 is controlled by an open / close command signal output from the charge control device 540.
  • the opening / closing of the second positive side relay 430 and the second negative side relay 440 may be controlled by an opening / closing command signal output from another control device, for example, the vehicle control device 840 or the control device of the battery 100.
  • the first positive electrode side relay 410, the first negative electrode side relay 420, the second positive electrode side relay 430, and the second negative electrode side relay 440 are provided between the battery 100, the inverter device 300, and the charger 500. It is provided to control the electrical connection between them. Therefore, high safety can be ensured for the electric drive device having a high voltage.
  • the EV 1000 includes an air conditioning system that adjusts indoor air conditions and a temperature control system that adjusts the temperature of heating elements such as the battery 100, the motor generator 200, and the inverter device 300 as a heat cycle system.
  • the EV 1000 uses the battery 100 that is a driving power source of the motor generator 200 as an energy source thereof.
  • the electrical energy consumed by the air conditioning system and the temperature control system from the battery 100 is relatively higher than other electrical loads.
  • EV1000 has attracted attention because it has a smaller impact on the global environment than a hybrid vehicle (hereinafter referred to as “HEV”) (because it is zero).
  • HEV hybrid vehicle
  • the EV 1000 has a lower penetration rate than the HEV because the travel distance per charge of the battery 100 is short and the infrastructure facilities such as the charging station are also delayed. Moreover, since EV1000 requires more electric energy than HEV for traveling over the required cruising distance, the capacity of battery 100 is larger than HEV. For this reason, since the cost of the battery 100 is higher than the HEV and the vehicle price is higher than the HEV, the EV 1000 has a lower penetration rate than the HEV.
  • the temperature of the heating elements such as the battery 100, the motor generator 200, and the inverter device 300 is adjusted to an allowable temperature range by the temperature control system. Further, the output of the heating element instantaneously changes due to the load variation of the EV 1000, and the amount of heat generation changes accordingly. In order to operate the heating element with high efficiency, it is preferable to change the temperature control capability of the heating element according to the change in the amount of heat generation (temperature) of the heating element so that the temperature of the heating element is always set to an appropriate temperature.
  • an integrated heat cycle of the temperature control system and the air conditioning system so that the heat energy can be effectively used to control the temperature of the indoor air conditioner and the heating element in the EV1000 heat cycle system.
  • a system is being built.
  • the thermal cycle is divided into a primary side thermal cycle for exchanging heat with the outdoor side and a secondary side thermal cycle for exchanging heat with the indoor side and the heating element side.
  • the primary side heat cycle was comprised by the refrigerating cycle system
  • the secondary side heat cycle circuit was comprised by two heat transfer systems with which a thermal medium distribute
  • An intermediate heat exchanger is provided between the refrigeration cycle system and each of the two heat transfer systems so that heat can be exchanged between the refrigerant of the refrigeration cycle system and each heat medium of the two heat transfer systems.
  • an indoor heat exchanger is provided in the heat transfer system that exchanges heat with the heating element side so that the heat medium of the heat transfer system that exchanges heat with the heating element side can exchange heat with the air taken into the room. .
  • the thermal energy obtained by adjusting the temperature of the heating element can be used for indoor air conditioning, so that the energy required for indoor air conditioning can be minimized. Can be planned. Moreover, according to the embodiment described below, the heat energy obtained by adjusting the temperature of the heating element is directly used for indoor air conditioning, so that the energy saving effect of indoor air conditioning can be enhanced. Therefore, according to the embodiment described below, the energy that the air conditioning system takes out from the energy source of the heating element can be suppressed.
  • the heat cycle system as described above is suitable for extending the travel distance of the EV 1000 per charge of the battery 100.
  • the thermal cycle system as described above is suitable for reducing the capacity of the battery 100 when the travel distance per charge of the battery 100 is the same as before. If the capacity of the battery 100 can be reduced, it is possible to reduce the cost of the EV 1000, promote the spread of the EV 1000, and reduce the weight of the EV 1000.
  • the temperature of the heat medium for adjusting the temperature of the heating element can be widely adjusted by using the thermal energy used for indoor air conditioning for temperature adjustment of the heating element.
  • the temperature of the heating element can be varied without being affected by the environmental conditions. Therefore, according to the embodiment described below, the temperature of the heating element can be adjusted to an appropriate temperature at which the heating element can operate with high efficiency, and the heating element can be operated with high efficiency.
  • the above heat cycle system is suitable for reducing the cost of the EV1000. If the cost of the EV 1000 can be reduced, the spread of the EV 1000 can be increased.
  • the piping and components constituting the flow path are complicated in a narrow installation space. Can be considered. Therefore, considering the maintenance of the thermal cycle system and the need for downsizing and cost reduction, when mounting the thermal cycle system on the EV1000, the system configuration can be simplified by downsizing, reducing, and sharing components. Is preferable.
  • a first heat medium that is thermally connected to the refrigeration cycle system in which the refrigerant circulates via the first intermediate heat exchanger, and circulates the heat medium for adjusting the temperature of the heating element.
  • a heat transfer system and a second heat transfer system thermally connected to the refrigeration cycle system in which the refrigerant circulates via a second intermediate heat exchanger and in which a heat medium for adjusting the indoor air condition circulates
  • the circulation path is connected, and a reservoir tank for adjusting the pressure in the circulation path of the first and second heat transfer systems is provided in common with the first and second heat transfer systems.
  • the heat cycle system can be simplified.
  • the simplification of the configuration of the thermal cycle system can improve the maintainability of the thermal cycle system mounted on the EV 1000, and can contribute to downsizing and cost reduction of the thermal cycle system.
  • circulates the circulation path of a 1st heat transfer system and a 2nd heat transfer system to the exterior is set to a 1st and 2nd heat transfer system. It is provided in common.
  • a circulation path connection control unit is provided so that the circulation path can be connected in series.
  • the heat medium supplied to the heating element is the first intermediate
  • the circulation path connection control unit controls the connection of the circulation paths of the first and second heat transfer systems so that the heat exchanger and the second intermediate heat exchanger are circulated in series.
  • the refrigerating cycle system which a refrigerant
  • the heat medium for adjusting the temperature of at least 2 heat generating body circulates.
  • a first heat transfer system, a second heat transfer system that is thermally connected to the refrigeration cycle system via a second intermediate heat exchanger, and in which a heat medium for adjusting an indoor air condition circulates, and a first heat
  • a circulation path connection switching unit that connects the circulation path of the movement system to one of the heating elements and connects the circulation path of the second heat movement system to another of the heating elements is provided.
  • the amount of heat exchange between the heating element and the heat medium can be increased, so that the temperature control performance of the heating element can be improved.
  • the temperature control performance of the heating element can be improved, it is possible to meet the demand when further miniaturization and higher output of the heating element are required. And it can respond, without enlarging a thermal cycle system.
  • the case where the motor generator 200 and the inverter device 300 are separated from each other has been described as an example.
  • the motor generator 200 and the inverter device 300 are integrated, for example, a housing of the motor generator 200.
  • the casing of the inverter device 300 may be fixed on the body and integrated.
  • the heat cycle system 1 includes a heat pump refrigeration cycle system 10, a cooling heat transfer system 20, and an air conditioning heat transfer system 30.
  • the refrigeration cycle system 10 is formed with a refrigerant circulation path (primary circulation path) 11 configured to circulate a refrigerant, for example, HFC-134a, and compress, condense, expand, and evaporate the refrigerant.
  • the cooling heat transfer system 20 is thermally connected to the refrigeration cycle system 10 via a cooling intermediate heat exchanger path 40, and circulates a cooling heat medium, for example, water or antifreeze, to the heating element 22 of the EV 1000.
  • a cooling heat medium circuit (secondary circuit) 21 is formed so as to exchange heat.
  • the air-conditioning heat transfer system 30 is thermally connected to the refrigeration cycle system 10 via an air-conditioning intermediate heat exchanger path 50 and circulates an air-conditioning heat medium such as water or antifreeze and is introduced into the vehicle interior.
  • a heat medium circulation path (secondary circulation path) 31 for air conditioning is formed so as to exchange heat.
  • the refrigeration cycle system 10 includes a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, expansion valves 15, 16, 17, an intermediate heat exchanger 40 for cooling, and an intermediate heat exchanger 50 for air conditioning through a refrigerant circulation path 11. It is configured by being mechanically connected.
  • the suction side of the compressor 12 is connected to the first connection port of the four-way valve 13.
  • the projecting side of the compressor 12 is connected to the second connection port of the four-way valve 13.
  • the compressor 12 side of the outdoor heat exchanger 14 is connected to the third connection port of the four-way valve 13.
  • An expansion valve 15 is connected to the side opposite to the four-way valve 13 side of the outdoor heat exchanger 14.
  • the refrigerant circulation path 11 on the side opposite to the outdoor heat exchanger 14 side of the expansion valve 15 is branched into a cooling path 11a and an air conditioning path 11b. For this reason, the expansion valve 16 for the cooling path 11a and the expansion valve 17 for the air conditioning path 11b are respectively connected to the side of the expansion valve 15 opposite to the outdoor heat exchanger 14 side.
  • a side opposite to the compressor 12 side of the cooling intermediate heat exchanger 40 is connected to the side of the expansion valve 16 opposite to the expansion valve 15 side.
  • the opposite side of the expansion valve 17 from the expansion valve 15 side is connected to the side opposite to the four-way valve 13 side of the air conditioning intermediate heat exchanger 50.
  • the side opposite to the expansion valve 16 side of the cooling intermediate heat exchanger 40 is connected to the suction side of the compressor 12.
  • the side opposite to the expansion valve 17 side of the air conditioning intermediate heat exchanger 50 is connected to the fourth connection port of the four-way valve 13.
  • the outdoor heat exchanger 14 is provided with an outdoor fan 14 a that is an electric blower for taking outside air into the outdoor heat exchanger 14.
  • the compressor 12, the four-way valve 13, the outdoor heat exchanger 14, the expansion valve 15, the expansion valve 16, the cooling intermediate heat exchanger 40, and the compressor 12 are annularly connected in this order.
  • the compressor 12, the four-way valve 13, the outdoor heat exchanger 14, the expansion valve 15, the expansion valve 17, the air conditioning intermediate heat exchanger 50, the four-way valve 13, and the compressor 12 are connected in an annular fashion.
  • a second closed circuit is formed.
  • the compressor 12 is an electric fluid device that uses a refrigerant as a high-temperature and high-pressure gaseous medium by compression.
  • the four-way valve 13 is a switch for switching the flow direction of the refrigerant sucked and discharged by the compressor 12.
  • the four-way valve 13 has a direction in which the flow of the refrigerant is sucked into the compressor 12 from the cooling intermediate heat exchanger 40 and the air conditioning intermediate heat exchanger 50 side and discharged to the outdoor heat exchanger 14 side, and the compressor The refrigerant is switched to the direction in which the refrigerant is drawn into the compressor 12 from the outdoor heat exchanger 14 and the cooling intermediate heat exchanger 40 side and discharged to the air conditioning intermediate heat exchanger 50 side.
  • the outdoor heat exchanger 14 is a heat transfer device for transferring heat from the high temperature medium to the low temperature medium between the air (outside air) blown by the outdoor fan 14a and the refrigerant.
  • the expansion valves 15, 16, and 17 are adjusting valves that adjust the pressure of the refrigerant and adjust the flow rate of the refrigerant by depressurizing and expanding the refrigerant by adjusting the opening of the valve body.
  • the cooling intermediate heat exchanger 40 is a heat transfer device for transferring heat from the high temperature medium to the low temperature medium between the refrigerant of the refrigeration cycle system 10 and the cooling heat medium of the cooling heat transfer system 20.
  • the air conditioning intermediate heat exchanger 50 is a heat transfer device for transferring heat from the high temperature side medium to the low temperature side medium between the refrigerant of the refrigeration cycle system 10 and the air conditioning heat transfer medium of the air conditioning heat transfer system 30. .
  • the cooling heat transfer system 20 includes a cooling indoor heat exchanger 23, a heating element 22, a reservoir tank 24, a circulation pump 25, a cooling intermediate heat exchanger 40, and a three-way valve 26 by a cooling heat medium circulation path 21. It is constituted by being connected.
  • the first connection port of the three-way valve 26 is connected to one side of the cooling intermediate heat exchanger 40 (outflow side of the cooling heat medium).
  • the second connection port of the three-way valve 26 is connected to the side opposite to the heating element 22 side of the cooling indoor heat exchanger 23 (inflow side of the cooling heat medium).
  • a heating element 22 is connected to the side opposite to the three-way valve 26 side of the cooling indoor heat exchanger 23 (outflow side of the cooling heat medium).
  • the suction side of the circulation pump 25 is connected to the side opposite to the cooling indoor heat exchanger 23 side of the heating element 22.
  • the other side (inflow side of the cooling heat medium) of the cooling intermediate heat exchanger 40 is connected to the opposite side (discharge side) of the circulation pump 25 to the heating element 22 side.
  • the path 21a is connected.
  • An indoor fan 23 a is attached to the cooling indoor heat exchanger 23.
  • the indoor fan 23a is an electric blower for taking in air introduced into the vehicle interior, that is, indoor air (inside air) or air taken from outside (outside air).
  • a reservoir tank 24 is connected between the heating element 22 and the circulation pump 25.
  • the circulation pump 25, the cooling intermediate heat exchanger 40, the three-way valve 26, the cooling indoor heat exchanger 23, the heating element 22, and the circulation pump 25 are connected in a ring shape in this order.
  • a closed circuit and a second closed circuit are formed in which the circulation pump 25, the cooling intermediate heat exchanger 40, the three-way valve 26, the bypass passage 21a, the heating element 22, and the circulation pump 25 are connected in an annular shape in this order.
  • the cooling indoor heat exchanger 23 performs heat transfer from the high temperature side medium to the low temperature side medium between the cooling heat medium circulating in the cooling heat medium circulation path 21 and the inside air or the outside air taken in by the indoor fan 23a.
  • the circulation pump 25 is an electric fluid device for circulating the cooling heat medium in the cooling heat medium circulation path 21.
  • the three-way valve 26 is a switch that switches the flow path of the cooling heat medium by switching the valve body, and the flow of the cooling heat medium flowing out from the cooling intermediate heat exchanger 40 to the cooling indoor heat exchanger 23 side. And distribution to the bypass path 21a side.
  • the reservoir tank 24 is for adjusting the pressure in the cooling heat medium circulation path 21 accompanying the temperature change of the cooling heat medium.
  • the reservoir tank 24 stores excess cooling heat medium when the temperature of the cooling heat medium increases and the pressure in the cooling heat medium circulation path 21 increases.
  • the cooling heat medium stored in the reservoir tank 24 is pulled back to the cooling heat medium circulation path 21. It is. By such an action, the pressure in the cooling heat medium circulation path 21 is always kept at a specified value.
  • the heating element 22 represents a component of the EV1000 electric motor drive system, and corresponds to, for example, the battery 100, the motor generator 200, and the inverter device 300, and these are the objects of temperature control by the cooling heat medium.
  • a power conversion device other than the inverter device 300 for example, a DC / DC converter mounted in the charger 500 or the like, a gear box of a transmission mechanism, or the like can be applied.
  • the heating element 22 is arranged between the cooling indoor heat exchanger 23 and the circulation pump 25, starting from the upstream side (low temperature state) of the cooling heat medium (in a low temperature state) in the order of low allowable heat temperature or having a small thermal time constant. It is preferable to arrange them in series.
  • the battery 100, the inverter device 300, and the motor generator 200 are arranged in this order.
  • the arrangement of the heating element 22, the battery 100, the inverter device 300, and the motor generator 200 may be arranged in parallel between the cooling indoor heat exchanger 23 and the circulation pump 25.
  • heating element 22 is disposed between the cooling indoor heat exchanger 23 and the circulation pump 25, it may be disposed between the cooling intermediate heat exchanger 50 and the three-way valve 26.
  • the air-conditioning heat transfer system 30 is configured by mechanically connecting an air-conditioning indoor heat exchanger 32, a circulation pump 33, and an air-conditioning intermediate heat exchanger 50 through an air-conditioning heat medium circulation path 31.
  • One side of the air conditioning intermediate heat exchanger 50 (outflow side of the air conditioning heat medium) is connected to the side opposite to the circulation pump 33 side of the air conditioning indoor heat exchanger 32 (inflow side of the air conditioning heat medium). ing.
  • the suction side of the circulation pump 33 is connected to the side opposite to the air conditioning intermediate heat exchanger 50 side of the air conditioning indoor heat exchanger 32 (outflow side of the air conditioning heat medium).
  • the other side (inflow side of the air conditioning heat medium) of the air conditioning intermediate heat exchanger 50 is connected to the side (discharge side) of the circulation pump 33 opposite to the air conditioning indoor heat exchanger 32 side.
  • one closed circuit is formed in which the circulation pump 33, the air conditioning intermediate heat exchanger 50, the air conditioning indoor heat exchanger 32, and the circulation pump 25 are connected in an annular shape in this order.
  • the air conditioning indoor heat exchanger 32 performs heat transfer from the high temperature side medium to the low temperature side medium between the air conditioning heat medium circulating in the air conditioning heat medium circulation path 31 and the inside air or the outside air taken in by the indoor fan 23a.
  • the circulation pump 33 is an electric fluid device for circulating the air-conditioning heat medium in the air-conditioning heat medium circulation path 31.
  • the indoor heat exchanger 23 for cooling and the indoor heat exchanger 32 for air conditioning are arranged in the order of the indoor heat exchanger 32 for air conditioning and the indoor heat exchanger 23 for cooling from the upstream side to the downstream side in the flow direction of the inside air or the outside air.
  • the indoor fan 23a is provided in common to the cooling indoor heat exchanger 23 and the air conditioning indoor heat exchanger 32, and the cooling indoor heat exchanger 23 and the air conditioning indoor heat in the flow direction of the inside air or the outside air. It is arranged downstream of the arrangement of the exchangers 32.
  • a communication path 60 is provided between the cooling heat medium circulation path 21 and the air conditioning heat medium circulation path 31.
  • the communication path 60 is provided to adjust the pressure in the air-conditioning heat medium circulation path 31 accompanying the temperature change of the air-conditioning heat medium using the reservoir tank 24 connected to the cooling heat medium circulation path 21. Is. That is, the reservoir tank 24 is shared by the cooling heat transfer system 20 and the air conditioning heat transfer system 30.
  • the excess air-conditioning heat medium passes through the communication path 60 from the air-conditioning heat medium circulation path 31 to cool the heat. It is discharged to the medium circulation path 21 and stored in the reservoir tank 24.
  • the heat medium for air conditioning and the heat medium for cooling are the same, and water or antifreeze is used.
  • the stored air-conditioning heat medium passes from the reservoir tank 24 to the cooling heat medium circulation path 21 and the communication path 60. Is pulled back to the heat medium circulation path 31 for air conditioning.
  • the pressure in the air-conditioning heat medium circulation path 31 is always maintained at a specified value.
  • the reservoir tank 24 is shared by the cooling heat transfer system 20 and the air conditioning heat transfer system 30, the number of parts of the heat cycle system 1 can be reduced,
  • the configuration of the cycle system 1 can be simplified.
  • the simplification of the configuration of the thermal cycle system 1 can improve the maintainability of the thermal cycle system 1 in which piping and components constituting the flow path are considered to be complicated in a narrow installation space, This can contribute to downsizing and cost reduction of the thermal cycle system 1.
  • the reservoir tank 24 may be provided in the heat medium circulation path 31 for air conditioning.
  • the reservoir tank 24 is provided between the heating element 22 and the circulation pump 25, but it may be arranged in another region on the cooling heat medium circulation path 21.
  • a drain discharge mechanism for discharging the cooling heat medium circulating in the cooling heat medium circulation path 21 and the air conditioning heat medium circulating in the air conditioning heat medium circulation path 31 to the outside,
  • the cooling heat medium circuit 21 is provided at the lowest height.
  • the drain discharge mechanism is provided on the circulation path between the reservoir tank 24 and the circulation pump 25 of the cooling heat medium circulation path 21.
  • the drain discharge mechanism includes a drain discharge path 70 connected to a circulation path between the reservoir tank 24 of the cooling heat medium circulation path 21 and the circulation pump 25, and a drain discharge opening / closing valve 71 provided on the drain discharge path 70.
  • the drain discharge on / off valve 71 is opened and normally closed when the cooling heat medium circulating in the cooling heat medium circulation path 21 and the air conditioning heat medium circulating in the air conditioning heat medium circulation path 31 are exchanged. .
  • the air-conditioning heat medium circulating in the air-conditioning heat medium circulation path 31 is discharged to the cooling heat medium circulation path 21 via the communication path 60 and then discharged to the outside by the drain discharge mechanism. For this reason, the communication path 60 communicates the cooling heat medium circulation path 21 and the air conditioning heat medium circulation path 31 at a portion where the cooling heat medium circulation path 21 and the air conditioning heat medium circulation path 31 are the lowest. Yes.
  • the number of parts of the thermal cycle system 1 can be further reduced, the configuration of the thermal cycle system 1 can be further simplified, and the maintainability of the thermal cycle system 1 can be further improved.
  • the thermal cycle system 1 can be further contributed to downsizing and cost reduction.
  • the outdoor heat exchanger 14 is used as a condenser, the air conditioning intermediate heat exchanger 50 and the cooling intermediate heat exchanger 40 are used as an evaporator, and the vehicle interior is cooled by the air conditioning heat transfer system 30.
  • This is an operation mode in which the heating element 22 is cooled by the cooling heat transfer system 20.
  • the discharge side of the compressor 12 is connected to the outdoor heat exchanger 14 by a four-way valve 13 provided in the refrigeration cycle system 10, and the suction side of the compressor 12 is an intermediate heat exchange for air conditioning. Connected to the device 50.
  • An intermediate heat exchanger 50 for cooling is connected to the suction side of the compressor 12.
  • the three-way valve 26 causes the cooling heat medium to flow through the bypass passage 21a.
  • the refrigerant that has been compressed by the compressor 12 and turned into a high-temperature and high-pressure gas is liquefied by heat exchange (radiation) with the outside air in the outdoor heat exchanger 14. Thereafter, the refrigerant passes through the fully opened expansion valve 15 and is branched into a refrigerant flowing to the air conditioning intermediate heat exchanger 50 and a refrigerant flowing to the cooling intermediate heat exchanger 40.
  • the refrigerant flowing through the air conditioning intermediate heat exchanger 50 is decompressed by the expansion valve 17 to become a low temperature / low pressure refrigerant.
  • the low-temperature and low-pressure refrigerant evaporates by absorbing heat from the air-conditioning heat medium in the air-conditioning heat medium circulation path 31 in the air-conditioning intermediate heat exchanger 50, and returns to the compressor 12 through the four-way valve 13.
  • the refrigerant flowing to the cooling intermediate heat exchanger 40 is decompressed by the expansion valve 16 to become a low-temperature and low-pressure refrigerant.
  • the low-temperature and low-pressure refrigerant evaporates by absorbing heat from the cooling heat medium in the cooling heat medium circuit 21 in the cooling intermediate heat exchanger 40 and returns to the compressor 12.
  • the air-conditioning heat medium cooled and cooled in the air-conditioning intermediate heat exchanger 50 is supplied to the air-conditioning indoor heat exchanger 32.
  • the air-conditioning heat medium exchanges heat (air heat is radiated to the air-conditioning heat medium) in the air-conditioning indoor heat exchanger 32 with the air introduced into the room by driving the indoor fan 23a. As a result, cooled air is introduced into the passenger compartment and is cooled.
  • the cooling heat medium cooled by heat exchange in the cooling intermediate heat exchanger 40 passes through the three-way valve 26 and the bypass path 21a. And supplied to the heating element 22.
  • the cooling heat medium exchanges heat with the heating element 22 (the heat of the heating element 22 is radiated to the cooling heat medium). Thereby, the heating element 22 is cooled.
  • both the air conditioning intermediate heat exchanger 50 and the cooling intermediate heat exchanger 40 can be used as an evaporator, the cooling of the vehicle interior and the cooling of the heating element 22 are realized simultaneously. be able to. Further, the air conditioning intermediate heat exchanger 50 and the cooling intermediate heat exchanger 40 are connected in parallel to the suction side of the compressor 12, and the expansion valves 16, 17 are connected to the cooling path 11a and the air conditioning path 11b, respectively. Therefore, the refrigerant flow rates flowing to the air conditioning intermediate heat exchanger 50 and the cooling intermediate heat exchanger 40 can be arbitrarily changed. As a result, the temperature of the cooling heat medium and the temperature of the air conditioning heat medium can be controlled to any desired temperatures.
  • the cooling heat to which the heating element 22 is connected is suppressed by suppressing the flow rate of the refrigerant flowing to the cooling intermediate heat exchanger 40.
  • the temperature of the medium can be kept high.
  • the opening degree of the expansion valve 16 In order to control the temperature of the cooling heat medium, it is only necessary to control the opening degree of the expansion valve 16. For simplicity, the opening degree is opened when the temperature of the cooling heat medium is high, and the temperature is low. It is sufficient to control to reduce the opening.
  • the rotation speed of the compressor 12 may be controlled, and the temperature of the air-conditioning heat medium is controlled to be a desired temperature.
  • the control target temperature of the air conditioning heat medium is lowered, and when it is determined that the cooling load is small, the control target temperature of the air conditioning heat medium is increased.
  • the air conditioning capacity can be controlled accordingly.
  • the circulation pump 33 and the indoor fan 23a are stopped, the expansion valve 17 is closed, and the opening degree of the expansion valve 16 is adjusted.
  • Only the cooling intermediate heat exchanger 40 may be used as an evaporator. Thereby, since the cooling heat medium can be cooled, the heating element 22 can be cooled.
  • the rotation speed of the compressor 12 is controlled so that the temperature of the cooling heat medium becomes the target temperature.
  • the target temperature at this time is set to a temperature higher than the outside air temperature. Further, the amount of heat exchange may be changed by controlling the rotational speed of the circulation pump 25.
  • the cooling heat medium having a high temperature is caused to flow to the cooling indoor heat exchanger 23 side by the three-way valve 26 from the state of FIG.
  • reheat dehumidification operation is possible. Since the relative humidity of the air supplied into the passenger compartment is low, the comfort of the indoor space can be improved.
  • the heat source of the cooling indoor heat exchanger 23 used as a reheater is so-called exhaust heat generated from the heating element 22. Therefore, unlike the case where a heater or the like is used for reheating, it is not necessary to input new energy, so that it is possible to improve the comfort in the vehicle interior without increasing the power consumption.
  • the amount of reheat varies depending on the temperature and flow rate of the cooling heat medium flowing to the cooling indoor heat exchanger 23 side
  • the amount of exchange heat of the cooling intermediate heat exchanger 40 and the cooling flowing to the cooling indoor heat exchanger 23 side are as follows.
  • the amount of reheat can be controlled by changing the flow rate of the heating medium.
  • the open / close state of the three-way valve 26 may be controlled.
  • the first operation mode of the heating operation is a heat radiation operation mode when the heating load is small, and the refrigeration cycle system 10 is not used for heating by using the exhaust heat from the heating element 22 for heating.
  • the circulation pump 25 and the indoor fan 23a are started, and the cooling heat medium is caused to flow to the cooling indoor heat exchanger 23 side by the three-way valve 26. Since the cooling heat medium is heated by the heating element 22, the cooling heat medium is cooled by releasing heat to the indoor blowing air in the cooling indoor heat exchanger 23, and the indoor blowing air is heated.
  • energy consumption can be suppressed and air conditioning can be performed.
  • the second operation mode of the heating operation is an operation mode when the exhaust heat of the heating element 22 alone does not satisfy the heating load, and the heating heat radiation using the refrigeration cycle system 10 in addition to the exhaust heat of the heating element 22. It is an operation mode.
  • switching the four-way valve 13 provided in the refrigeration cycle system 10 connects the discharge side of the compressor 12 to the air conditioning intermediate heat exchanger 50 and connects the suction side to the outdoor heat exchanger 14. That is, a cycle is formed in which the air conditioning intermediate heat exchanger 50 is a condenser and the outdoor heat exchanger 14 is an evaporator.
  • the refrigerant compressed by the compressor 12 is condensed and liquefied by exchanging heat with the heat medium for air conditioning in the intermediate heat exchanger 50 for air conditioning to dissipate heat. Thereafter, after being decompressed by the expansion valve 15, the outdoor heat exchanger 14 evaporates and gasifies by heat exchange with outdoor air and returns to the compressor 12. At this time, the expansion valve 17 is fully open and the expansion valve 16 is fully closed, and the intermediate heat exchanger 40 for cooling is not used.
  • the air-conditioning heat medium heated by the refrigerant heat of condensation in the air-conditioning intermediate heat exchanger 50 flows into the air-conditioning indoor heat exchanger 32, and the air-conditioning indoor heat exchanger 32.
  • the heat is radiated to the indoor blowing air.
  • the air heated in the air conditioning indoor heat exchanger 32 receives heat from the cooling heat medium heated by the heating element 22 in the cooling indoor heat exchanger 23 disposed on the downstream side of the air flow. After the temperature is raised, it is blown into the indoor space.
  • the temperature of the air blown from the indoor heat exchanger 32 for air conditioning can be kept lower than the temperature of the air blown from the indoor heat exchanger 23 for cooling. That is, by using the exhaust heat from the heating element 22 for heating, an air conditioner with less energy consumption can be configured.
  • the temperature of the cooling heat medium can be controlled in accordance with the heat generated by the heating element 22.
  • the amount of heat generated from the heating element 22 increases, the temperature of the cooling heat medium increases, so that the heating capacity of the refrigeration cycle system 10 is suppressed.
  • the amount of heat released from the indoor heat exchanger 32 for air conditioning is suppressed, and the temperature of the air flowing into the indoor heat exchanger 23 for cooling is lowered, so that the amount of heat released from the cooling heat medium is increased and the heat for cooling is increased.
  • the temperature rise of the medium is suppressed.
  • control of keeping the temperature of the cooling heat medium in a predetermined temperature range is effective in avoiding problems such as the temperature of the heating element 22 being out of the usable temperature range.
  • Heating / cooling operation When the heating load is large, the target temperature of the cooling heat medium may be set high as described above. However, when it is difficult to increase the temperature due to the specifications of the heating element 22, the heating capacity is increased. I can't do that. In such a case, the heating / cooling operation described below is performed to simultaneously cool the cooling heat medium and heat the air conditioning heat medium.
  • the air-conditioning intermediate heat exchanger 50 is a condenser and the outdoor heat exchanger 14 is an evaporator is formed, and the expansion valve 16 is opened, and the cooling intermediate The heat exchanger 40 is used as an evaporator.
  • the refrigerant condensed and liquefied in the air conditioning intermediate heat exchanger 50 branches after passing through the expansion valve 17.
  • One of the branched refrigerants is decompressed by the expansion valve 23, evaporated by the outdoor heat exchanger 14, and returns to the compressor 1.
  • the other of the branched refrigerant is decompressed by the expansion valve 16, evaporated and gasified by cooling the cooling heat medium by the cooling intermediate heat exchanger 40, and returned to the compressor 1 via the three-way valve 21.
  • the exhaust heat from the heating element 22 is recovered as a heat source of the refrigeration cycle system 10 in the cooling intermediate heat exchanger 40 and from the air conditioning indoor heat exchanger 32 via the air conditioning intermediate heat exchanger 50. Heat is released into the passenger compartment. In this way, it is possible to recover the exhaust heat of the heating element 22 and use it for heating while suppressing the temperature of the heating element 22. Furthermore, since it is possible to absorb heat from the outside air using the outdoor heat exchanger 14, the heating capacity can be increased.
  • the temperature of the cooling heat medium can be controlled by making the heat exchange amount of the cooling intermediate heat exchanger 40 variable, the opening degree of the expansion valve 16 may be controlled.
  • the temperature of the equipment cooling medium is kept high, and when it is detected that the temperature of the air conditioning heat medium is lower than the temperature of the cooling heat medium, it may be determined that the heating load has decreased. Therefore, it is possible to shift from the heating / cooling operation to the heating / radiation combined operation.
  • Heating operation At the time of start-up in winter when the outside air temperature is low, the temperature of the cooling heat medium is low and cannot be used for heating immediately after the start of operation, and it is necessary to wait for a temperature rise due to exhaust heat from the heating element 22. In such a case, the expansion valve 16 is closed and the heating operation by the air conditioning indoor heat exchanger 32 is performed. Further, the three-way valve 26 is operated to configure a cycle so that the cooling indoor heat exchanger 23 does not exchange heat between the cooling heat medium having a low temperature and the air blown into the room.
  • the cooling heat medium is warmed in the cooling intermediate heat exchanger 40, and the warmed cooling heat medium is used as the three-way valve 26 and the bypass passage 21a.
  • the start time is set in advance in the start time setting system, and the heat cycle system 1 is operated and the heating operation is performed before a predetermined time before the set time. In this way, the heating element 22 can be efficiently operated from the start of the EV 1000, and the EV 1000 can be run by supplying torque corresponding to the required torque from the motor generator 200.
  • the second embodiment is an improved example of the first embodiment, and is connected to a circulation path so that a part of the air-conditioning heat medium circulation path 31 can be connected in series to a part of the cooling heat medium circulation path 21.
  • a control unit is provided so that the heat medium flowing through the cooling heat medium circulation path 21 can flow through the air conditioning intermediate heat exchanger 50 and the cooling intermediate heat exchanger 40 in series.
  • the circulation path connection control unit includes a three-way valve 84, a three-way valve 83, a three-way valve 81, a connection path 82, and a connection path 80.
  • the three-way valve 84 is provided on the circulation path between the circulation pump 25 and the cooling intermediate heat exchanger 40.
  • the three-way valve 83 is provided on the circulation path between the circulation pump 33 and the air conditioning intermediate heat exchanger 50.
  • the three-way valve 81 is provided on a circulation path between the air conditioning intermediate heat exchanger 50 and the air conditioning indoor heat exchanger 32.
  • the connection path 82 connects between the three-way valve 84 and the three-way valve 83.
  • the connection path 80 connects between the circulation path between the three-way valve 84 and the cooling intermediate heat exchanger 40 and the three-way valve 83.
  • the first connection port of the three-way valve 81 is connected to one side of the air conditioning intermediate heat exchanger 50 (outflow side of the air conditioning heat medium).
  • the second connection port of the three-way valve 81 is connected to the air conditioning intermediate heat exchanger 50 side (air conditioning heat medium inflow side) of the air conditioning indoor heat exchanger 32.
  • a connection path 80 is connected to the third connection port of the three-way valve 81.
  • the discharge side of the circulation pump 33 is connected to the first connection port of the three-way valve 83.
  • the other side of the air conditioning intermediate heat exchanger 50 (the inflow side of the air conditioning heat medium) is connected to the second connection port of the three-way valve 83.
  • a connection path 82 is connected to the third connection port of the three-way valve 83.
  • the discharge side of the circulation pump 25 is connected to the first connection port of the three-way valve 84.
  • One side of the cooling intermediate heat exchanger 40 (inflow side of the cooling heat medium) is connected to the second connection port of the three-way valve 84.
  • a connection path 82 is connected to the third connection port of the three-way valve 84.
  • the amount of heat exchange with the refrigerant of the cooling heat medium supplied to the heating element 22 is made larger than when heat is exchanged with the refrigerant only in the cooling intermediate heat exchanger 40, and the temperature of the heating element 22 (cooling) is adjusted.
  • the three-way valves 81, 83, and 84 for switching the fluid flow direction are driven to switch the flow direction of the cooling heat medium.
  • the case where it is desired to increase the temperature control (cooling) capability of the heating element 22 is, for example, the case where the motor load continues on a hill with a large motor load, and the heat generation of the motor generator and the inverter device constituting the heating element 22. Increases and their temperature rises. Therefore, when the temperature of the heat medium or the heating element is detected and the temperature rise due to the increase in heat generation exceeds a predetermined allowable value, the three-way valves 81, 83, 84 are driven as described above to heat the cooling. The medium distribution direction may be switched. Such control is performed by the vehicle control device 840, for example.
  • the three-way valves 81, 83, 84 have a cooling heat medium flowing through the connection paths 80, 82.
  • the cooling heat medium is circulated in the direction from the first connection port to the second connection port.
  • the amount of heat exchange with the refrigerant of the cooling heat medium supplied to the heating element 22 is larger than when heat is exchanged with the refrigerant only in the cooling intermediate heat exchanger 40, and the temperature adjustment (cooling) capability of the heating element 22 is increased.
  • the cooling heat medium flows in the direction from the first connection port of the three-way valve 81 to the third connection port, as shown in FIG.
  • the switching mechanism of the three-way valves 81, 83, 84 is driven so that the cooling heat medium flows in the direction of the two connection ports and the cooling heat medium flows in the direction of the third connection port from the first connection port of the three-way valve 84. To do.
  • the cooling heat medium fed by the circulation pump 25 is supplied to the air conditioning intermediate heat exchanger 50 via the three-way valve 84, the connection path 82, and the three-way valve 83, and the refrigerant and heat of the refrigeration cycle system 10 are supplied. Exchanged. Thereafter, the cooling heat medium flowing out from the air conditioning intermediate heat exchanger 50 is supplied to the cooling intermediate heat exchanger 40 via the three-way valve 81 and the connection path 80, and is again heat-exchanged with the refrigerant.
  • the amount of heat exchange between the cooling heat medium and the refrigerant (by passing the cooling heat medium in series in the order of the air conditioning intermediate heat exchanger 50 and the cooling intermediate heat exchanger 40) (
  • the cooling amount of the cooling heat medium) can be made larger than in the first embodiment, and the cooling capacity of the heating element 22 can be made larger than in the first embodiment. Therefore, when further miniaturization and higher output of the heating element are required, the request can be met. And it can respond, without enlarging the thermal cycle system for moving bodies.
  • a flow rate adjusting valve may be provided on each circulation path reaching the heat exchanger 23 side, and the flow rates of the cooling heat medium flowing to the cooling indoor heat exchanger 23 side and the cooling heat medium flowing through the bypass path 21a may be adjusted.
  • the third embodiment is an improved example of the first embodiment, wherein the cooling heat medium circuit 21 is connected to the heat generator 22, and the air-conditioning heat medium circuit 31 is replaced with a heat generator different from the heat generator 22.
  • 27 is provided with a circulation path connection switching unit.
  • the battery 100 and the inverter device 300 are the heating elements 22, and the motor generator 200 is the heating element 27.
  • the cooling heat medium circulating in the cooling heat medium circulation path 21 is circulated through the heating element 22, and separately, the air conditioning heat medium circulating in the air conditioning heat medium circulation path 31 is circulated through the heating element 27. be able to.
  • the circulation path connection switching unit includes a three-way valve 94, a three-way valve 91, a three-way valve 92, a four-way valve 95, a connection path 90, a connection path 93, and a connection path 96.
  • the three-way valve 94 is provided on a circulation path between the air conditioning intermediate heat exchanger 50 and the air conditioning indoor heat exchanger 32.
  • the three-way valve 91 is provided on the circulation path between the air conditioning indoor heat exchanger 32 and the circulation pump 33.
  • the three-way valve 92 is provided on the circulation path between the heating element 27 and the circulation pump 25.
  • the four-way valve 95 is provided on the circulation path between the reservoir tank 24 and the heating element 27.
  • connection path 90 connects between the three-way valve 91 and the three-way valve 92.
  • connection path 93 connects between the three-way valve 94 and the four-way valve 95.
  • connection path 96 connects the circulation path between the three-way valve 92 and the circulation pump 25 and the four-way valve 95.
  • One side of the air conditioning intermediate heat exchanger 50 (outflow side of the air conditioning heat medium) is connected to the first connection port of the three-way valve 94.
  • the second connection port of the three-way valve 94 is connected to the air conditioning intermediate heat exchanger 50 side (air conditioning heat medium inflow side) of the air conditioning indoor heat exchanger 32.
  • a connection path 93 is connected to the third connection port of the three-way valve 94.
  • One side of the air conditioning indoor heat exchanger 32 (outflow side of the air conditioning heat medium) is connected to the first connection port of the three-way valve 91.
  • the suction side of the circulation pump 33 is connected to the second connection port of the three-way valve 91.
  • a connection path 90 is connected to the third connection port of the three-way valve 91.
  • the first connection port of the three-way valve 92 is connected to the circulation pump 25 side of the heating element 27.
  • the suction side of the circulation pump 25 is connected to the second connection port of the three-way valve 92.
  • a connection path 90 is connected to the third connection port of the three-way valve 92.
  • the first connection port of the four-way valve 95 is connected to the side of the reservoir tank 24 opposite to the heating element 22 side.
  • the second connection port of the four-way valve 95 is connected to the side opposite to the three-way valve 92 side of the heating element 27.
  • a connection path 93 is connected to the third connection port of the four-way valve 95.
  • a connection path 96 is connected to the fourth connection port of the four-way valve 95.
  • the amount of heat exchange between the heating elements 22 and 27 and the heat medium (cooling heat medium and heat medium for air conditioning) is made larger than the amount of heat exchange between the heat generating elements 22 and 27 and the cooling heat medium.
  • the three-way valves 91, 92, 94 and the four-way valve 95 for switching the fluid flow direction are driven, and the cooling heat medium and the air conditioner are driven. Change the distribution direction of the heating medium.
  • the case where it is desired to increase the temperature control (cooling) capability of the heating elements 22, 27 is a case where, for example, traveling on a hill with a large motor load continues, as in the case of the second embodiment.
  • This is a case where the temperature of the heating elements 22 and 27 rises greatly. Therefore, when the temperature of the heat medium or the heating element is detected and the temperature rise due to the increase in heat generation exceeds a predetermined allowable value, the three-way valves 91, 92, 94 and the four-way valve 95 are driven as described above.
  • the flow direction of the cooling heat medium and the air conditioning heat medium may be switched. Such control is performed by the vehicle control device 840, for example.
  • the heat medium when in each operation mode in the first embodiment (in the case of FIG. 6), the heat medium does not flow through the connection paths 90, 93, 96 in the three-way valves 91, 92, 94 and the four-way valve 95.
  • the cooling heat medium is circulated in the direction from the first connection port to the second connection port.
  • the amount of heat exchange between the heat generating elements 22 and 27 and the heat medium is made larger than the amount of heat exchange between the heat generating elements 22 and 27 and the heat medium for cooling, and the temperature control (cooling) capability of the heat generating elements 22 and 27 is achieved.
  • the air-conditioning heat medium flows in the direction from the first connection port of the three-way valve 94 to the third connection port, and from the first connection port of the three-way valve 92 to the third connection port.
  • the air-conditioning heat medium flows in the direction of, the air-conditioning heat medium flows in the direction from the third connection port of the three-way valve 91 to the second connection port, and cools in the direction of the first connection port of the four-way valve 95.
  • the switching mechanism of the three-way valves 91, 92, 94 and the four-way valve 95 is driven so that the heat medium for air flow and the heat medium for air conditioning flow from the third connection port to the second connection port.
  • the cooling heat medium fed by the circulation pump 25 is supplied to the cooling intermediate heat exchanger 40 to exchange heat with the refrigerant of the refrigeration cycle system 10.
  • the cooling heat medium flowing out from the cooling intermediate heat exchanger 40 is supplied to the heating element 22 through the three-way valve 26 and the bypass path 21a and exchanged heat with the heating element 22, and then the reservoir tank 24, four-way It is circulated to the circulation pump 25 through the valve 95 and the connection path 96.
  • the air-conditioning heat medium sent by the circulation pump 33 is supplied to the air-conditioning intermediate heat exchanger 50 to exchange heat with the refrigerant. Thereafter, the air-conditioning heat medium flowing out from the air-conditioning intermediate heat exchanger 50 is supplied to the heating element 27 through the three-way valve 94, the connection path 93, and the four-way valve 95, and is heat-exchanged with the heating element 27. It is circulated to the circulation pump 33 through the three-way valve 92, the connection path 90 and the three-way valve 91.
  • the amount of heat exchange between the heat medium and the heat generator is made by circulating the heat medium for cooling to the heat generator 22 and the heat medium for air conditioning to the heat generator 27, respectively.
  • Amount can be made larger than in the case of the first embodiment, and the cooling capacity of the heating elements 22, 27 can be made larger than in the case of the first embodiment.
  • two flow control valves are installed in place of the three-way valve 94 and the flow control is performed in place of the three-way valve 91.
  • a flow rate adjusting valve may be installed to adjust the flow rates of the air conditioning heat medium flowing to the air conditioning indoor heat exchanger 23 side and the air conditioning heat medium flowing to the connection path 93 side.
  • two flow rate control valves may be installed in place of the three-way valve 26. That is, a flow rate adjusting valve is installed on the bypass path 21a and on the circulation path to the cooling indoor heat exchanger 23 side, respectively, and the cooling heat medium flowing on the cooling indoor heat exchanger 23 side and the cooling flow flowing on the bypass path 21a Adjust the flow rate of the heat medium.
  • the reservoir tank 24 is provided on the circulation path between the heating element 22 and the four-way valve 95, but may be provided on a different circulation path.
  • the fourth embodiment is a modification of the first embodiment, and has a system configuration in which only a cooling operation and a cooling and dehumidifying operation are possible. That is, in the first embodiment, the refrigerant flow direction is switched between cooling and heating in the four-way valve 13, but in this embodiment, the discharge side of the compressor 12 is connected to the outdoor heat exchanger 14 side, and the compressor The 12 suction sides are connected to the cooling intermediate heat exchanger 40 and the air conditioning intermediate heat exchanger 50 side, so that they cannot be switched and have a fixed connection configuration.
  • Such a configuration is suitable for simplification of the heat cycle system 1 as the EV 1000 for an area that does not require heating.
  • the fifth embodiment is an improved example of the fourth embodiment, and is provided with an outdoor heat exchanger 28 and an outdoor fan 28a between the reservoir tank 24 and the circulation pump 25 of the cooling heat medium circuit 21.
  • a replacement unit is installed. In this way, when there is a malfunction in the refrigeration cycle system 10, the heat exchange unit can cool the cooling heat medium, and the cooling of the heat generating element 22 with the cooling heat medium can be continued. The operation of the EV1000 by operation can be continued.
  • the sixth embodiment is a modified example of the first embodiment, and the reservoir tank 24 is installed at a position higher than the highest part of the cooling heat medium circulation path 21 and the air conditioning heat medium circulation path 31.
  • the reservoir tank 24 and the cooling heat medium circulation path 21 are connected by a connection path 61
  • the reservoir tank 24 and the air conditioning heat medium circulation path 31 are connected by a connection path 62. According to such a configuration, the same function as that of the first embodiment can be achieved. Accordingly, the sixth embodiment can achieve the same effects as those of the first embodiment.

Abstract

 移動体用熱サイクルシステム1は、冷媒が流通する冷凍サイクルシステム10と、発熱体2の温度を調整する熱媒体が流通する第1熱移動システム20と、移動体室内の空気状態を調整する熱媒体が流通する第2熱移動システム30と、冷凍サイクルシステム10と第1熱移動媒体システム20との間に設けられ、冷媒と熱媒体とが熱交換する第1中間熱交換器40と、冷凍サイクルシステム10と第2熱移動媒体システム30との間に設けられ、冷媒と熱媒体とが熱交換する第2中間熱交換器50と、第1熱移動システム20に設けられ、移動体室内に取り込まれる空気と前記熱媒体とが熱交換する第1室内熱交換器23と、第2熱移動システム30に設けられ、移動体室内に取り込まれる空気と熱媒体とが熱交換する第2室内熱交換器32と、第1熱移動システム20及び第2移動システム30の熱媒体が流れる流路内の圧力を調整するためのリザーバタンク24と、有し、リザーバタンク24は、第1熱移動システム20及び第2移動システム30に対して共通に設けられている。

Description

移動体用熱サイクルシステム
 本発明は、移動体に搭載された移動体用熱サイクルシステムに関する。
 移動体に搭載された移動体用熱サイクルシステムとして、電池及びDC/DCコンバータなどの発熱体を冷却する冷却システムと、室内の空気状態を調整する空調システムとを統合したものが知られている(特許文献1参照)。この移動体用熱サイクルシステムは、空調用熱交換器及び発熱体に供給される熱媒体が循環する熱媒体循環サイクルと冷凍サイクルとを熱交換器によって熱的に接続し、冷凍サイクルの冷媒と熱媒体循環サイクルの熱媒体とを熱交換することにより、車室内の空調及び発熱体の冷却が行われるように構成されている。
日本国特開2005-273998公報
 冷却システムと空調システムとの統合を図った熱サイクルシステムを移動体に搭載するにあたっては、流路を構成する配管や構成部品が狭い設置スペース内において複雑に入り組むことが考えられる。熱サイクルシステムのメインテナンス性や小型化及び低コスト化の必要性などを考慮すると、熱サイクルシステムを移動体に搭載するにあたっては、構成部品の小型化や削減,共用化などによるシステム構成の簡素化が好ましい。
 また、熱サイクルシステムを搭載した移動体において、発熱体の更なる小型及び高出力化が要求された場合、その要求に応えるためには、発熱体に対する冷却性能を更に向上させる必要がある。この場合、熱交換器の増設或いは大容量化によって発熱体の冷却性能を更に向上させることが考えられるが、熱サイクルシステムの小型化及び低コスト化の必要性などを考慮すると、熱交換器の増設或いは大容量化を伴うことなく冷却性能の向上に対応できることが好ましい。
 代表的な本発明の一つは、システム構成の簡素化を図ることができる移動体用熱サイクルシステムを提供する。
 本発明の第1の態様によると、移動体用熱サイクルシステムは、冷媒が流通する冷凍サイクルシステムと、発熱体の温度を調整する熱媒体が流通する第1熱移動システムと、移動体室内の空気状態を調整する熱媒体が流通する第2熱移動システムと、冷凍サイクルシステムと第1熱移動媒体システムとの間に設けられ、冷媒と前記熱媒体とが熱交換する第1中間熱交換器と、冷凍サイクルシステムと第2熱移動媒体システムとの間に設けられ、冷媒と前記熱媒体とが熱交換する第2中間熱交換器と、第1熱移動システムに設けられ、移動体室内に取り込まれる空気と熱媒体とが熱交換する第1室内熱交換器と、第2熱移動システムに設けられ、移動体室内に取り込まれる空気と熱媒体とが熱交換する第2室内熱交換器と、第1熱移動システム及び第2移動システムの熱媒体が流れる流路内の圧力を調整するためのリザーバタンクと、有し、リザーバタンクは、第1熱移動システム及び第2移動システムに対して共通に設けられている。
 本発明の第2の態様によると、第1の態様の移動体用熱サイクルシステムにおいて、リザーバタンクは、第1熱移動システムの熱媒体流路及び前記第2移動システムの熱媒体流路のそれぞれに接続されているのが好ましい。
 本発明の第3の態様によると、第1の態様の移動体用熱サイクルシステムにおいて、リザーバタンクは、第1熱移動システムの熱媒体流路或いは第2移動システムの熱媒体流路のいずれか一方に設けられており、第1熱移動システムの熱媒体流路及び第2移動システムの熱媒体流路は連通路によって連通されているのが好ましい。
 本発明の第4の態様によると、第1乃至3のいずれか一つの移動体用熱サイクルシステムにおいて、第1熱移動システムの熱媒体流路及び第2移動システムの熱媒体流路から熱媒体を外部に排出するためのドレイン機構を有し、ドレイン機構は、第1熱移動システム及び第2移動システムに対して共通に設けられているのが好ましい。
 本発明の第5の態様によると、第1乃至4のいずれか一つの移動体用熱サイクルシステムにおいて、熱媒体と外気とを熱交換するための室外熱交換器を第1熱移動システムに設けるのが好ましい。
 本発明の第6の態様によると、移動体用熱サイクルシステムは、冷媒が流通する冷凍サイクルシステムと、発熱体の温度を調整する熱媒体が流通する第1熱移動システムと、移動体室内の空気状態を調整する熱媒体が流通する第2熱移動システムと、冷凍サイクルシステムと第1熱移動媒体システムとの間に設けられ、冷媒と熱媒体とが熱交換する第1中間熱交換器と、冷凍サイクルシステムと第2熱移動媒体システムとの間に設けられ、冷媒と前記熱媒体とが熱交換する第2中間熱交換器と、第1熱移動システムに設けられ、移動体室内に取り込まれる空気と熱媒体とが熱交換する第1室内熱交換器と、第2熱移動システムに設けられ、移動体室内に取り込まれる空気と熱媒体とが熱交換する第2室内熱交換器と、発熱体に供給される熱媒体を第1及び第2中間熱交換器に直列に流通させるように、第1熱移動体システムの流路と第2熱移動体システムの流路との接続を制御するための流路接続制御部と、を有する。
 本発明の第7の態様によると、第6の態様の移動体用熱サイクルシステムにおいて、発熱体に供給される熱媒体と冷媒との熱交換量を、第1中間熱交換において発熱体に供給される熱媒体と冷媒とを熱交換させる場合の熱交換量よりも大きくすべき状態となったときに、流路接続制御部は、発熱体に供給される熱媒体を第1及び第2中間熱交換器に直列に流通させるように制御するのが好ましい。
 本発明の第8の態様によると、移動体用熱サイクルシステムは、冷媒が流通する冷凍サイクルシステムと、少なくとも二つの発熱体の温度を調整する熱媒体が流通する第1熱移動システムと、移動体室内の空気状態を調整する熱媒体が流通する第2熱移動システムと、冷凍サイクルシステムと第1熱移動媒体システムとの間に設けられ、冷媒と熱媒体とが熱交換する第1中間熱交換器と、冷凍サイクルシステムと第2熱移動媒体システムとの間に設けられ、冷媒と熱媒体とが熱交換する第2中間熱交換器と、第1熱移動システムに設けられ、移動体室内に取り込まれる空気と熱媒体とが熱交換する第1室内熱交換器と、第2熱移動システムに設けられ、移動体室内に取り込まれる空気と熱媒体とが熱交換する第2室内熱交換器と、少なくとも二つの発熱体を二つの温調対象に分け、一方の温調対象に第1熱移動システムを流れる熱媒体を流通させ、他方の温調対象に第2熱移動システムを流れる熱媒体を流通させるように、少なくとも二つの発熱体と第1及び第2熱移動体システムの流路との接続を切り替えるための流路接続切替部と、を有する。
 本発明の第9の態様によると、第8の態様の移動体用熱サイクルシステムにおいて、少なくとも二つの発熱体に供給される熱媒体と少なくとも二つの発熱体との間の熱交換量を、少なくとも二つの発熱体と第1熱移動システムの熱媒体との間の熱交換量よりも大きくすべき状態となったときに、流路接続切替部は、一方の温調対象に第1熱移動システムを流れる熱媒体を流通させ、他方の温調対象に第2熱移動システムを流れる熱媒体を流通させるように切り替えるのが好ましい。
 本発明の第10の態様によると、第6乃至9のいずれか一つの移動体用熱サイクルシステムにおいて、第1熱移動システム及び第2移動システムの熱媒体が流れる流路内の圧力を調整するためのリザーバタンクと、有し、リザーバタンクは、第1熱移動システム及び第2移動システムに対して共通に設けられているのが好ましい。
 本発明の第11の態様によると、第6乃至10のいずれか一つの移動体用熱サイクルシステムにおいて、第1熱移動システムの熱媒体流路及び第2移動システムの熱媒体流路から熱媒体を外部に排出するためのドレイン機構を有し、ドレイン機構は、第1熱移動システム及び第2移動システムに対して共通に設けられているのが好ましい。
 本発明の第12の態様によると、第6乃至11のいずれか一つの移動体用熱サイクルシステムにおいて、熱媒体と外気とを熱交換するための室外熱交換器を第1熱移動システムに設けるのが好ましい。
 本発明によれば、移動体用熱サイクルシステムのメインテナンス性を向上させることができると共に、移動体用熱サイクルシステムの小型化及び低コスト化に貢献することができる。
本発明の第1の実施形態である電気自動車の熱サイクルシステムの構成を示す配管系統図であり、室内空調が冷房時、かつ発熱体温調が冷却時の冷媒循環状態を示す。 図1の熱サイクルシステムの配管系統図であり、室内空調が暖房時、発熱体温調が冷却時の冷媒循環状態を示す。 図1の熱サイクルシステムを搭載した電気自動車の電動駆動システムの構成を示す構成図である。 本発明の第2の実施形態である電気自動車の熱サイクルシステムの構成を示す配管系統図である。 図4の熱サイクルシステムの配管系統図であり、二つの熱媒体循環路を直列に接続した時の熱媒体の循環経路を示す。 本発明の第3の実施形態である電気自動車の熱サイクルシステムの構成を示す配管系統図である。 図6の熱サイクルシステムの配管系統図であり、発熱体の一つを熱媒体循環路の一つを流れる熱媒体により冷却し、発熱体のもう一つを熱媒体循環路のもう一つを流れる熱媒体により冷却する時の熱媒体の循環経路を示す。 本発明の第4の実施形態である電気自動車の熱サイクルシステムの構成を示す配管系統図である。 本発明の第5の実施形態である電気自動車の熱サイクルシステムの構成を示す配管系統図である。 本発明の第6の実施形態である電気自動車の熱サイクルシステムの構成を示す配管系統図である。
 以下に説明する実施形態では、本発明を、電動機を車両の唯一の駆動源とする純粋な電気自動車の熱サイクルシステムに適用した場合を例に挙げて説明する。
 以下に説明する実施形態の構成は、内燃機関であるエンジンと電動機とを車両の駆動源とする電動車両、例えばハイブリッド自動車(乗用車),ハイブリッドトラックなどの貨物自動車,ハイブリッドバスなどの乗合自動車などの熱サイクルシステムに適用しても構わない。
 まず、図3を用いて、本発明の熱サイクルシステムが適用される純粋な電気自動車(以下、単に「EV」と記述する)の電動機駆動システムについて説明する。
 図3は、EV1000の駆動系の構成及びその一部を構成する電動機駆動システムの各コンポーネントの電気的な接続構成を示す。
 尚、図3において、太い実線は強電系を示し、細い実線は弱電系を示す。
 図示省略した車体のフロント部或いはリア部には、車軸820が回転可能に軸支されている。車軸820の両端には一対の駆動輪800が設けられている。図示省略したが、車体のリア部或いはフロント部には、両端に一対の従動輪が設けられた車軸が回転可能に軸支されている。図3に示すEV1000では、駆動輪800を前輪とし、従動輪を後輪とした前輪駆動方式を示しているが、駆動輪800を後輪とし、従動輪を前輪とした後輪駆動方式でも良い。
 車軸820の中央部にはデファレンシャルギア(以下、「DIF」と記述する)830が設けられている。車軸820はDIF830の出力側に機械的に接続されている。DIF830の入力側には変速機810の出力軸が機械的に接続されている。DEI830は、変速機810によって変速されて伝達された回転駆動力を左右の車軸820に分配する差動式動力分配機構である。変速機810の入力側には、モータジェネレータ200の出力側が機械的に接続されている。
 モータジェネレータ200は、電機子巻線211を備えた電機子(図3に示すEV1000では固定子が相当)210と、電機子210に空隙を介して対向配置されると共に、永久磁石221を備えた界磁(図3に示すEV1000では回転子が相当)220とを有する回転電機である。モータジェネレータ200は、EV1000の力行時にはモータとして機能し、回生時にはジェネレータとして機能する。
 モータジェネレータ200がモータとして機能する場合には、バッテリ100に蓄積された電気エネルギーがインバータ装置300を介して電機子巻線211に供給される。これにより、モータジェネレータ200は、電機子210と界磁220との間の磁気的作用により回転動力(機械エネルギー)を発生する。モータジェネレータ200から出力された回転動力は、変速機810及びDIF830を介して車軸820に伝達され、駆動輪800を駆動する。
 モータジェネレータ200がジェネレータとして機能する場合には、駆動輪800から伝達された機械エネルギー(回転動力)がモータジェネレータ200に伝達され、モータジェネレータ200を駆動する。このように、モータジェネレータ200が駆動されると、電機子巻線211には界磁220の磁束が鎖交して電圧が誘起される。これにより、モータジェネレータ200は電力を発生する。モータジェネレータ200から出力された電力は、インバータ装置300を介してバッテリ100に供給される。これにより、バッテリ100は充電される。
 モータジェネレータ200、特に電機子210は、後述する熱サイクルシステムによってその温度が許容温度範囲内になるように調節されている。電機子210は発熱部品であるので冷却が必要であると共に、周囲温度が低温の時には所定の電気特性が得られるように、暖気が必要になる場合もある。
 モータジェネレータ200は、電機子210とバッテリ100との間の電力がインバータ装置300によって制御されることにより駆動する。すなわち、インバータ装置300はモータジェネレータ200の制御装置である。インバータ装置300は、スイッチング半導体素子のスイッチング動作によって電力を直流から交流に、交流から直流に変換する電力変換装置である。インバータ装置300は、パワーモジュール310、駆動回路330、電解コンデンサ320、及びモータ制御装置340を備えている。駆動回路330は、パワーモジュール310に実装されたスイッチング半導体素子を駆動する。電解コンデンサ320は、パワーモジュール310の直流側に電気的に並列に接続され、直流電圧を平滑する。モータ制御装置340は、パワーモジュール310のスイッチング半導体素子のスイッチング指令を生成し、このスイッチング指令に対応する信号を駆動回路330に出力する。
 パワーモジュール310は、二つの(上アーム及び下アームの)スイッチング半導体素子を電気的に直列に接続した直列回路(一相分のアーム)を三相分備えている。
パワーモジュール310は、三相分の直列回路が電気的に並列に接続(三相ブリッジ接続)されて電力変換回路を構成するように、六つのスイッチング半導体素子を基板上に実装し、アルミワイヤなどの接続導体によって電気的に接続したものである。
 スイッチング半導体素子としては、金属酸化膜半導体型電界効果トランジスタ(MOSFET)或いは絶縁ゲート型バイポーラトランジスタ(IGBT)が用いられる。ここで、電力変換回路をMOSFETによって構成する場合、ドレイン電極とソース電極との間には寄生ダイオードが存在するので、別途、それらの間にダイオード素子を実装する必要がない。一方、電力変換回路をIGBTによって構成する場合、コレクタ電極とエミッタ電極との間にはダイオード素子が存在していないので、別途、それらの間にダイオード素子を電気的に逆並列に接続する必要がある。
 各上アームの下アーム接続側とは反対側(IGBTの場合、コレクタ電極側)は、パワーモジュール310の直流側から外部に導出され、バッテリ100の正極側に電気的に接続されている。各下アームの上アーム接続側とは反対側(IGBTの場合、エミッタ電極側)は、パワーモジュール310の直流側から外部に導出され、バッテリ100の負極側に電気的に接続されている。各上下アームの中点、すなわち上アームの下アーム接続側(IGBTの場合、上アームのエミッタ電極側)と下アームの上アーム接続側(IGBTの場合、下アームのコレクタ電極側)との接続点は、パワーモジュール310の交流側から外部に導出され、電機子巻線211の対応する相の巻線に電気的に接続されている。
 電解コンデンサ320は、スイッチング半導体素子の高速スイッチング動作及び電力変換回路に寄生するインダクタンスに起因して生じる電圧変動を抑制するために設けられたもので、直流成分に含まれる交流成分を除去する平滑コンデンサとして機能する。平滑コンデンサとしては電解コンデンサ320の代わりにフィルムコンデンサを用いることもできる。
 モータ制御装置340は、車両全体の制御を司る車両制御装置840から出力されたトルク指令信号を受けて、六つのスイッチング半導体素子に対するスイッチング指令信号(例えばPWM(パルス幅変調)信号)を生成し、駆動回路330に出力する電子回路装置である。
 駆動回路330は、モータ制御装置340から出力されたスイッチング指令信号を受けて六つのスイッチング半導体素子に対する駆動信号を生成し、生成した駆動信号を六つのスイッチング半導体素子のゲート電極に出力する電子回路装置である。
 インバータ装置300、特にパワーモジュール310及び電解コンデンサ320は、後述する熱サイクルシステムによってその温度が許容温度範囲内になるように調節されている。パワーモジュール310及び電解コンデンサ320は発熱部品であるので冷却が必要であると共に、周囲温度が低温の時には所定の動作特性や電気特性が得られるように、暖気が必要になる場合もある。
 車両制御装置840は、車両の運転状態を示す複数の状態パラメータに基づいて、モータ制御装置340に対するモータトルク指令信号を生成し、そのモータトルク指令信号をモータ制御装置340に出力する。車両の運転状態を示す複数の状態パラメータとしては、運転者からのトルク要求(アクセルペダルの踏み込み量或いはスロットルの開度)、車両の速度などがある。
 バッテリ100は、モータジェネレータ200の駆動用電源を構成する公称出力電圧200ボルト以上の高電圧である。バッテリ100は、ジャンクションボックス400を介してインバータ装置300及び充電器500に電気的に接続されている。バッテリ100としてはリチウムイオンバッテリが用いられる。
 尚、バッテリ100として、鉛電池,ニッケル水素電池,電気二重層キャパシタ,ハイブリッドキャパシタなど、他の蓄電器を用いることもできる。
 バッテリ100は、インバータ装置300及び充電器500によって充放電される蓄電装置であり、主要部として電池部110及び制御部を備えている。
 電池部110は電気エネルギーの貯蔵庫として機能するものであり、電気エネルギーの蓄積及び放出(直流電力の充放電)が可能な複数のリチウムイオン電池が電気的に直列に接続されたものから構成されている。電池部110は、インバータ装置300及び充電器500に電気的に接続されている。
 制御部は、複数の電子回路部品から構成された電子制御装置であり、電池部110の状態を管理及び制御すると共に、インバータ装置300及び充電器500に許容充放電量に関する情報を提供して、電池部110における電気エネルギーの出入りを制御する。
 電子制御装置は、機能上、2つの階層に分かれて構成されており、バッテリ100内において上位(親)に相当するバッテリ制御装置130と、バッテリ制御装置130に対して下位(子)に相当するセル制御装置120とを備えている。
 セル制御装置120は、バッテリ制御装置130から出力された指令信号に基づいてバッテリ制御装置130の手足となって動作するものであり、複数のリチウムイオン電池のそれぞれの状態を管理及び制御する複数の電池管理手段を備えている。複数の電池管理手段は、それぞれ集積回路(IC)によって構成されている。電池部110が、電気的に直列に接続された複数のリチウムイオン電池が複数のグループに分けられた構造である場合、複数の集積回路は、複数のグループのそれぞれに対応して設けられる。各集積回路は、対応するグループに含まれる複数のリチウムイオン電池のそれぞれの電圧及び過充放電異常を検出する。また、各集積回路は、対応するグループに含まれる複数のリチウムイオン電池間に充電状態のバラツキがある場合に、所定の充電状態よりも大きなリチウムイオン電池を放電して、対応するグループに含まれる複数のリチウムイオン電池間の充電状態が揃うように、対応するグループに含まれる複数のリチウムイオン電池のそれぞれの状態を管理及び制御する。
 バッテリ制御装置130は、電池部110の状態を管理及び制御すると共に、車両制御装置840又はモータ制御装置340に許容充放電量を通知して、電池部110における電気エネルギーの出入りを制御する電子制御装置であり、状態検知手段を備えている。状態検知手段は、マイクロコンピュータやディジタルシグナルプロセッサなどの演算処理装置である。
 バッテリ制御装置130の状態検知手段には、複数の信号が入力されている。複数の信号には、電池部110の充放電電流を計測するための電流計測手段から出力された計測信号、電池部110の充放電電圧を計測するための電圧計測手段から出力された計測信号、電池部110及びいくつかのリチウムイオン電池の温度を計測するための温度計測手段から出力された計測信号、セル制御装置120から出力された、複数のリチウムイオン電池の端子間電圧に関する検出信号、セル制御装置120から出力された異常信号、イグニションキースイッチの動作に基づくオンオフ信号、及び上位制御装置である車両制御装置840又はモータ制御装置340から出力された信号が含まれる。
 バッテリ制御装置130の状態検知手段は、複数の情報に基づいて複数の演算を実行する。複数の情報は、上述した入力信号から得られた情報、予め設定された、リチウムイオン電池の特性情報及び演算に必要な演算情報を含む。複数の演算は、電池部110の充電状態(SOC:State of charge)及び劣化状態(SOH:State of health)などを検知するための演算、複数のリチウムイオン電池の充電状態をバランスさせるための演算、及び電池部110の充放電量を制御するための演算、を含む。そして、バッテリ制御装置130の状態検知手段は、それらの演算結果に基づいて、セル制御装置120に対する指令信号、電池部110の充放電量を制御するための許容充放電量に関する信号、電池部110のSOCに関する信号、及び電池部110のSOHに関する信号を含む複数の信号を生成して出力する。
 また、バッテリ制御装置130の状態検知手段は、セル制御装置120から出力された異常信号に基づいて、第1正極及び負極リレー410,420を遮断するための指令信号、及び異常状態を通知するための信号を含む複数の信号を生成して出力する。
 バッテリ制御装置130及びセル制御装置120は、信号伝送路によってお互いに信号の授受ができるようになっているが、電気的には絶縁されている。これは、お互いの動作電源が異なり、お互いに基準電位が異なるためである。このため、バッテリ制御装置130及びセル制御装置120の間を結ぶ信号伝送路上には、フォトカプラ、容量性結合素子、変圧器などの絶縁140が設けられている。これにより、バッテリ制御装置130及びセル制御装置120は、お互いに基準電位の異なる信号を用いて信号伝送ができる。
 バッテリ100は、特に電池部110は、後述する熱サイクルシステムによってその温度が許容温度範囲内になるように調節されている。電池部110は発熱部品であるので冷却が必要であると共に、周囲温度が低温の時には所定の入出力特性が得られるように、暖気が必要になる場合もある。
 バッテリ100に蓄積された電気エネルギーは、EV1000を走行させる電動機駆動システムの駆動用電力として使用される。バッテリ100への電気エネルギーの蓄積は、電動機駆動システムの回生動作により生成された回生電力、或いは家庭向け商用電源から取り込んだ電力、若しくは電気スタンドから購入した電力により行われる。
 家庭の商用電源600からバッテリ100を充電する場合、充電器500の外部電源接続端子に電気的に接続された電源ケーブルの先端の電源プラグ550を商用電源600側のコンセント700に差し込み、充電器500と商用電源600とを電気的に接続する。或いは、電気スタンドの給電装置からバッテリ100を充電する場合、電気スタンドの給電装置から延びる電源ケーブルを充電器500の外部電源接続端子に接続し、充電器500と電気スタンドの給電装置とを電気的に接続する。これにより、交流電力が商用電源600或いは電気スタンドの給電装置から充電器500に供給される。充電器500は、供給された交流電力を直流電力に変換し、かつバッテリ100の充電電圧に調整した後、バッテリ100に供給する。これにより、バッテリ100は充電される。
 尚、電気スタンドの給電装置からの充電も、基本的には家庭の商用電源600からの充電と同じように行われる。但し、家庭の商用電源600からの充電と電気スタンドの給電装置からの充電とでは、充電器500に供給される電流容量及び充電時間が異なる。そのため、電気スタンドの給電装置からの充電の方が、家庭の商用電源600からの充電よりも電流容量が大きく、かつ充電時間が速い。すなわち、電気スタンドの給電装置からの充電においては、急速充電ができる。
 充電器500は、家庭の商用電源600から供給された交流電力或いは電気スタンドの給電装置から供給された交流電力を直流電力に変換すると共に、この変換された直流電力をバッテリ100の充電電圧に昇圧してバッテリ100に供給する電力変換装置である。充電器500は、交直変換回路510,昇圧回路520,駆動回路530及び充電制御装置540を主な構成機器として備えている。
 交直変換回路510は、外部電源から供給された交流電力を直流電力に変換して出力する電力変換回路であり、整流回路及び力率改善回路を備えている。整流回路は、例えば複数のダイオード素子のブリッジ接続により構成され、外部電源から供給された交流電力を直流電力に整流する。力率改善回路は整流回路の直流側に電気的に接続され、整流回路の出力の力率を改善する。交流電力を直流電力に変換する回路としては、ダイオード素子が逆並列に接続された複数のスイッチング半導体素子をブリッジ接続して構成された回路を用いても構わない。
 昇圧回路520は、交直変換回路510(力率改善回路)から出力された直流電力をバッテリ100の充電電圧まで昇圧するための電力変換回路であり、例えば絶縁型のDC-DCコンバータにより構成されている。絶縁型のDC-DCコンバータは、変圧器、変換回路、整流回路、平滑リアクトルおよび平滑コンデンサから構成されている。変換回路は複数のスイッチング半導体素子のブリッジ接続により構成され、変圧器の一次側巻線に電気的に接続されると共に、交直変換回路510から出力された直流電力を交流電力に変換して変圧器の一次側巻線に入力する。整流回路は、複数のダイオード素子のブリッジ接続により構成され、変圧器の二次側巻線に電気的に接続されると共に、変圧器の二次側巻線に発生した交流電力を直流電力に整流する。平滑リアクトルは、整流回路の出力側(直流側)の正極側に電気的に直列に接続される。平滑コンデンサは、整流回路の出力側(直流側)の正負極間に電気的に並列に接続される。
 充電制御装置540は、マイクロコンピュータなどの演算処理装置を含む複数の電子部品を回路基板に実装して構成される電子回路装置である。充電制御装置540は、充電器500によるバッテリ100の充電終始や、充電時に充電器500からバッテリ100に供給される電力,電圧,電流などの制御を行う。そのような制御を行うために、充電制御装置540は、車両制御装置840から出力された信号や、バッテリ100の制御装置から出力された信号を受けて、昇圧回路520の複数のスイッチング半導体素子に対するスイッチング指令信号(例えばPWM(パルス幅変調)信号)を生成し、駆動回路530に出力する。
 車両制御装置840は、例えば充電器500の入力側の電圧を監視し、充電器500と外部電源とが電気的に接続されて充電器500の入力側に電圧が印加され、充電開始状態になったと判断した場合には、充電を開始するための指令信号を、充電制御装置540に出力する。一方、バッテリ100の制御装置から出力されたバッテリ状態信号に基づいてバッテリ100が満充電状態になったと判断した場合には、充電を終了するための指令信号を、充電制御装置540に出力する。このような動作は、モータ制御装置340或いはバッテリ100の制御装置が行ってもよいし、バッテリ100の制御装置と協調して充電制御装置540が自ら行ってもよい。
 バッテリ100の制御装置は、充電器500からバッテリ100に対する充電が制御されるように、バッテリ100の状態を検知してバッテリ100の許容充電量を演算し、この演算結果に関する信号を充電器500に出力する。
 駆動回路530は、スイッチング半導体素子や増幅器などの複数の電子部品が回路基板に実装されて構成される電子回路装置である。駆動回路530は、充電制御装置540から出力された指令信号を受けて、昇圧回路520の複数のスイッチング半導体素子に対する駆動信号を発生し、複数のスイッチング半導体素子のゲート電極に出力する。
 尚、交直変換回路510がスイッチング半導体素子によって構成されている場合には、充電制御装置540から、交直変換回路510のスイッチング半導体素子に対するスイッチング指令信号が駆動回路530に出力される。駆動回路530からは、交直変換回路510のスイッチング半導体素子に対する駆動信号が交直変換回路510のスイッチング半導体素子のゲート電極に出力され、それにより交直変換回路510のスイッチング半導体素子のスイッチングが制御される。
 ジャンクションボックス410の内部には、第1及び第2正極側リレー410,430及び第1及び第2負極側リレー420,440が収納されている。
 第1正極側リレー410は、インバータ装置300(パワーモジュール310)の直流正極側とバッテリ100の正極側との間の電気的な接続を制御するためのスイッチである。第1負極側リレー420は、インバータ装置300(パワーモジュール310)の直流負極側とバッテリ100の負極側との間の電気的な接続を制御するためのスイッチである。第2正極側リレー430は、充電器500(昇圧回路520)の直流正極側とバッテリ100の正極側との間の電気的な接続を制御するためのスイッチである。第2負極側リレー440は、充電器500(昇圧回路500)の直流負極側とバッテリ100の負極側との間の電気的な接続を制御するためのスイッチである。
 第1正極側リレー410及び第1負極側リレー420は、モータジェネレータ200の回転動力が必要な運転モードにある場合及びモータジェネレータ200の発電が必要な運転モードにある場合に投入され、車両が停止モードにある場合(イグニションキースイッチが開放された場合)、電動駆動装置或いは車両に異常が発生した場合及び充電器500によってバッテリ100を充電する場合に開放される。一方、第2正極側リレー430及び第2負極側リレー440は、充電器500によってバッテリ100を充電する場合に投入され、充電器500によるバッテリ100の充電が終了した場合及び充電器500或いはバッテリ100に異常が発生した場合に開放される。
 第1正極側リレー410及び第1負極側リレー420の開閉は、車両制御装置840から出力される開閉指令信号によって制御される。第1正極側リレー410及び第1負極側リレー420の開閉は、他の制御装置、例えばモータ制御装置340或いはバッテリ100の制御装置から出力される開閉指令信号によって制御しても構わない。第2正極側リレー430及び第2負極側リレー440の開閉は、充電制御装置540から出力される開閉指令信号によって制御される。第2正極側リレー430及び第2負極側リレー440の開閉は、他の制御装置、例えば車両制御装置840或いはバッテリ100の制御装置から出力される開閉指令信号によって制御しても構わない。
 以上のように、EV1000では、バッテリ100とインバータ装置300と充電器500との間に第1正極側リレー410,第1負極側リレー420,第2正極側リレー430及び第2負極側リレー440を設けて、それらの間の電気的な接続を制御するようにしている。そのため、高電圧である電動駆動装置に対して、高い安全性を確保することができる。
 次に、EV1000に搭載される熱サイクルシステムについて説明する。
 EV1000は、熱サイクルシステムとして、室内の空気状態を調整する空調システムと、バッテリ100,モータジェネレータ200及びインバータ装置300などの発熱体の温度を調整する温調システムとを備えている。
 空調システム及び温調システムを作動させるためにはエネルギー源が必要になる。このため、EV1000では、モータジェネレータ200の駆動電源であるバッテリ100をそれらのエネルギー源として用いている。ここで、空調システム及び温調システムがバッテリ100から消費する電気的エネルギーは、他の電気負荷よりも比較的高い。
 EV1000は、地球環境に与える影響がハイブリッド自動車(以下、「HEV」と記述する)よりも小さいことから(ゼロであることから)注目を集めている。
 しかし、EV1000は、バッテリ100の一充電あたりの走行距離が短く、さらには充電ステーションなどのインフラ設備の整備も遅れていることから、その普及率がHEVよりも低い。また、EV1000は、要求される航続距離の走行にHEVよりも多くの電気エネルギーが必要であることから、バッテリ100の容量がHEVよりも大きくなる。このため、EV1000は、バッテリ100のコストがHEVよりも高く、車両価格がHEVよりも高くなることから、その普及率がHEVより低い。
 EV1000の普及率を高くするためには、バッテリ100の一充電あたりのEVの走行距離を延ばすことが必要である。バッテリ100の一充電あたりのEVの走行距離を延ばすためには、バッテリ100に蓄積された電気エネルギーのモータジェネレータ200駆動以外での消費を抑える必要がある。
 バッテリ100、モータジェネレータ200及びインバータ装置300などの発熱体は、温調システムによりその温度が許容温度範囲に調整される。また、発熱体は、EV1000の負荷変動によって瞬時的に出力が変化し、これに伴って発熱量が変化する。発熱体を高効率に作動させるためには、発熱体の発熱量(温度)の変化に応じて発熱体に対する温調能力を変化させ、発熱体の温度を常に適温にすることが好ましい。
 一方、EV1000の普及率を高くするためには、バッテリ100、モータジェネレータ200及びインバータ装置300などの発熱体の低コスト化を図り、EV1000の車両価格をHEVと同等の車両価格まで低下させる必要がある。発熱体の低コスト化を図るためには、発熱体の小型高出力化を図る必要がある。ところが、発熱体を小型高出力化すると、発熱体の発熱量(温度)が大きくなるので、発熱体に対する温調能力を大きくする必要がある。
 そこで、以下に説明する実施形態では、EV1000の熱サイクルシステム内において、熱エネルギーを有効利用して室内空調及び発熱体の温調が行えるように、温調システムと空調システムとの統合した熱サイクルシステムを構築している。
 具体的には、熱サイクルを、室外側と熱交換を行う1次側熱サイクルと、室内側及び発熱体側と熱交換を行う2次側熱サイクルとに分ける。そして、1次側熱サイクルを冷凍サイクルシステムにより構成し、2次側熱サイクル回路を熱媒体が独立して流通する2つの熱移動システムにより構成した。冷凍サイクルシステムの冷媒と2つの熱移動システムのそれぞれの熱媒体とが熱交換できるように、冷凍サイクルシステムと2つの熱移動システムのそれぞれとの間に中間熱交換器を設けた。さらに、発熱体側と熱交換を行う熱移動システムの熱媒体と、室内に取り込まれる空気とが熱交換できるように、発熱体側と熱交換を行う熱移動システムに室内熱交換器を設けるようにした。
 以下に説明する実施形態によれば、発熱体の温度調整によって得られる熱エネルギーを室内空調に利用して、室内空調に必要なエネルギーの最小化を図ることができるので、室内空調の省エネ化を図ることができる。しかも、以下に説明する実施形態によれば、発熱体の温度調整によって得られる熱エネルギーを直接、室内空調に利用するので、室内空調の省エネ効果を高めることができる。従って、以下に説明する実施形態によれば、空調システムが発熱体のエネルギー源から持ち出すエネルギーを抑えることができる。
 以上のような熱サイクルシステムは、バッテリ100の一充電あたりのEV1000の走行距離を延ばす場合に好適である。また、以上のような熱サイクルシステムは、バッテリ100の一充電あたりの走行距離がこれまでと同様であるときには、バッテリ100の容量を小さくする場合に好適である。バッテリ100の容量を小さくできると、EV1000の低コスト化,EV1000の普及促進,EV1000の軽量化に繋げることができる。
 また、以下に説明する実施形態によれば、室内空調に用いられる熱エネルギーを発熱体の温度調整に利用して、発熱体の温度を調整するための熱媒体の温度を幅広く調整できるので、周囲の環境状態に影響されずに、発熱体の温度を可変できる。従って、以下に説明する実施形態によれば、発熱体の温度を、発熱体が高効率に作動できる適温に調整でき、発熱体を高効率に作動させることができる。
 以上のような熱サイクルシステムは、EV1000の低コスト化を図る上で好適である。EV1000を低コスト化できれば、EV1000の普及の拡大を図ることができる。
 ところで、上述のように、温調システムと空調システムとの統合を図った熱サイクルシステムをEV1000に搭載するにあたっては、流路を構成する配管や構成部品が狭い設置スペース内において複雑に入り組むことが考えられる。そのため、熱サイクルシステムのメインテナンス性や小型化及び低コスト化の必要性などを考慮すると、熱サイクルシステムをEV1000に搭載するにあたっては、構成部品の小型化や削減,共用化などによるシステム構成の簡素化が好ましい。
 そこで、以下に説明する実施形態では、冷媒が循環する冷凍サイクルシステムに第1中間熱交換器を介して熱的に接続されて、発熱体の温度を調整するための熱媒体が循環する第1熱移動システムと、冷媒が循環する冷凍サイクルシステムに第2中間熱交換器を介して熱的に接続されて、室内の空気状態を調整するための熱媒体が循環する第2熱移動システムとの循環路を連通させていると共に、第1及び第2熱移動システムの循環路内の圧力を調整するためのリザーバタンクを第1及び第2熱移動システムに対して共通に設けている。
 以下に説明する実施形態によれば、第1及び第2熱移動システムにおいて構成部品の共用化を図ることができるので、熱サイクルシステムの簡素化を図ることができる。熱サイクルシステムの構成の簡素化は、EV1000に搭載された熱サイクルシステムのメインテナンス性を向上させることができると共に、熱サイクルシステムの小型化及び低コスト化に貢献することができる。
 また、以下に説明する実施形態では、第1熱移動システム及び第2熱移動システムの循環路を流通する熱媒体を外部に排出するためのドレイン排出機構を、第1及び第2熱移動システムに対して共通に設けている。
 以下に説明する実施形態によれば、第1及び第2熱移動システムにおいて構成部品の更なる共用化を図り、熱サイクルシステムの更なる簡素化を図ることができる。その結果、EV1000に搭載された熱サイクルシステムのメインテナンス性を更に向上させることができると共に、熱サイクルシステムの小型化及び低コスト化に更に貢献することができる。
 また、熱サイクルシステムを搭載したEV1000において、発熱体の更なる小型及び高出力化が要求された場合、その要求に応えるためには、発熱体の冷却性能を更に向上させる必要がある。この場合、熱交換器の増設或いは大容量化によって発熱体の冷却性能を更に向上させることが考えられるが、熱サイクルシステムの小型化及び低コスト化の必要性などを考慮すると、熱交換器の増設或いは大容量化を伴うことなく対応できることが好ましい。 
 そこで、以下に説明する実施形態では、冷媒が循環する冷凍サイクルシステムに第1中間熱交換器を介して熱的に接続され、発熱体の温度を調整するための熱媒体が循環する第1熱移動システムの循環路と、冷媒が循環する冷凍サイクルシステムに第2中間熱交換器を介して熱的に接続され、室内の空気状態を調整するための熱媒体が循環する第2熱移動システムの循環路とを、直列に接続できるように循環路接続制御部を設けた。そして、発熱体に供給される熱媒体の冷媒との熱交換量を、一つの中間熱交換器において冷媒と熱交換させるときよりも大きくしたいときには、発熱体に供給される熱媒体が第1中間熱交換器及び第2中間熱交換器を直列に流通するように、第1及び第2熱移動システムの循環路の接続を、循環路接続制御部によって制御するようにした。
 また、以下に説明する実施形態では、冷媒が循環する冷凍サイクルシステムに第1中間熱交換器を介して熱的に接続され、少なくとも二つの発熱体の温度を調整するための熱媒体が循環する第1熱移動システムと、冷凍サイクルシステムに第2中間熱交換器を介して熱的に接続され、室内の空気状態を調整するための熱媒体が循環する第2熱移動システムと、第1熱移動システムの循環路を発熱体の一つに接続すると共に、第2熱移動システムの循環路を発熱体のもう一つに接続する循環路接続切替部と、を設けている。そして、少なくとも二つの発熱体と熱媒体との間の熱交換量を、少なくとも二つの発熱体と第1熱移動システムの熱媒体との間の熱交換量よりも大きくしたい場合には、第1熱移動システムの熱媒体が発熱体の一つに供給されるとともに、第2熱移動システムの熱媒体が発熱体のもう一つに供給されるように、第1及び第2熱移動システムの循環路の接続を循環路接続切替部によって切り替えるようにしている。
 以下に説明する実施形態によれば、発熱体と熱媒体との熱交換量を大きくできるので、発熱体の温調性能を向上させることができる。このように、発熱体の温調性能を向上させることができると、発熱体の更なる小型及び高出力化が要求された場合、その要求に応えることができる。しかも、熱サイクルシステムの大型化を伴うことなく対応することができる。
 尚、図3に示したEV1000では、モータジェネレータ200とインバータ装置300とを別体にした場合を例に挙げて説明したが、モータジェネレータ200とインバータ装置300とを一体、例えばモータジェネレータ200の筐体上にインバータ装置300の筐体を固定して一体にしても構わない。モータジェネレータ200とインバータ装置300とを一体にした場合、温度調整用の熱媒体を循環させるための配管の這い回しなどが容易になり、熱サイクルシステムをより簡単に構成することができる。
 この他にも解決すべき課題及びそれを解決するための構成或いは方法があるが、それらについてはこれ以降の実施形態の中で説明する。
 以下、図面を用いて、EV1000に搭載される熱サイクルシステムの第1の実施形態乃至第5の実施形態を詳述する。
(第1の実施形態)
 EV1000に搭載される熱サイクルシステム1の第1の実施形態を、図1及び図2に基づいて説明する。
 熱サイクルシステム1は、ヒートポンプ方式の冷凍サイクルシステム10と、冷却用熱移動システム20と、空調用熱移動システム30とを備えている。冷凍サイクルシステム10には、冷媒、例えばHFC-134aを循環し、その冷媒を圧縮,凝縮,膨張及び蒸発させるように構成した冷媒循環路(一次循環路)11が形成されている。冷却用熱移動システム20には、冷凍サイクルシステム10に冷却用中間熱交換器路40を介して熱的に接続され、冷却用熱媒体、例えば水又は不凍液を循環してEV1000の発熱体22と熱交換するように冷却用熱媒体循環路(二次循環路)21が形成されている。空調用熱移動システム30は、冷凍サイクルシステム10に空調用中間熱交換器路50を介して熱的に接続され、空調用熱媒体、例えば水又は不凍液を循環して車室内に導入される空気と熱交換するように空調用熱媒体循環路(二次循環路)31が形成されている。
 冷凍サイクルシステム10は、圧縮機12,四方弁13,室外熱交換器14,膨張弁15,16,17,冷却用中間熱交換器40及び空調用中間熱交換器50が、冷媒循環路11によって機械的に接続されることにより構成されている。
 四方弁13の第1接続口には圧縮機12の吸入側が接続されている。四方弁13の第2接続口には圧縮機12の突出側が接続されている。四方弁13の第3接続口には室外熱交換器14の圧縮機12側が接続されている。室外熱交換器14の四方弁13側とは反対側には、膨張弁15が接続されている。膨張弁15の室外熱交換器14側とは反対側の冷媒循環路11は、その先において冷却用経路11aと空調用経路11bとに分岐されている。このため、膨張弁15の室外熱交換器14側とは反対側には、冷却用経路11a用の膨張弁16及び空調用経路11b用の膨張弁17がそれぞれ接続されている。膨張弁16の膨張弁15側とは反対側には、冷却用中間熱交換器40の圧縮機12側とは反対側が接続されている。膨張弁17の膨張弁15側とは反対側には、空調用中間熱交換器50の四方弁13側とは反対側が接続されている。冷却用中間熱交換器40の膨張弁16側と反対側は、圧縮機12の吸入側に接続されている。空調用中間熱交換器50の膨張弁17側とは反対側は、四方弁13の第4接続口に接続されている。室外熱交換器14には、室外熱交換器14に外気を取り込むための電動式送風機である室外ファン14aが取り付けられている。
 このような接続構成によれば、圧縮機12,四方弁13,室外熱交換器14,膨張弁15,膨張弁16,冷却用中間熱交換器40,圧縮機12の順に環状に接続された第1の閉回路と、圧縮機12,四方弁13,室外熱交換器14,膨張弁15,膨張弁17,空調用中間熱交換器50,四方弁13,圧縮機12の順に環状に接続された第2の閉回路とが形成される。
 圧縮機12は、圧縮によって冷媒を高温及び高圧のガス状媒体とする電動式流体機器である。四方弁13は、圧縮機12に吸入されて吐出される冷媒の流れ方向を切り替えるための切替器である。四方弁13は、冷媒の流れを、冷媒を冷却用中間熱交換器40及び空調用中間熱交換器50側から圧縮機12に吸入させて室外熱交換器14側に吐出させる方向と、圧縮機12に冷媒を室外熱交換器14及び冷却用中間熱交換器40側から圧縮機12に吸入させて空調用中間熱交換器50側に吐出させる方向とに切り替える。室外熱交換器14は、室外ファン14aによって送風される空気(外気)と冷媒との間において、高温側媒体から低温側媒体に熱移動させるための熱移動機器である。膨張弁15,16,17は、弁体の開度調整によって冷媒を減圧させて膨張させることにより冷媒の圧力を調整すると共に、冷媒の流量を調整する調整弁である。冷却用中間熱交換器40は、冷凍サイクルシステム10の冷媒と冷却用熱移動システム20の冷却用熱媒体との間において、高温側媒体から低温側媒体に熱移動させるための熱移動機器である。空調用中間熱交換器50は、冷凍サイクルシステム10の冷媒と空調用熱移動システム30の空調用熱媒体との間において、高温側媒体から低温側媒体に熱移動させるための熱移動機器である。
 冷却用熱移動システム20は、冷却用室内熱交換器23,発熱体22,リザーバタンク24,循環ポンプ25,冷却用中間熱交換器40及び三方弁26が、冷却用熱媒体循環路21によって機械的に接続されることにより、構成されている。
 冷却用中間熱交換器40の一方側(冷却用熱媒体の流出側)には、三方弁26の第1接続口が接続されている。三方弁26の第2接続口には、冷却用室内熱交換器23の発熱体22側とは反対側(冷却用熱媒体の流入側)が接続されている。冷却用室内熱交換器23の三方弁26側とは反対側(冷却用熱媒体の流出側)には、発熱体22が接続されている。発熱体22の冷却用室内熱交換器23側とは反対側には、循環ポンプ25の吸込側が接続されている。循環ポンプ25の発熱体22側とは反対側(吐出側)には、冷却用中間熱交換器40の他方側(冷却用熱媒体の流入側)が接続されている。冷却用室内熱交換器23と発熱体22との間と三方弁26の第3接続口との間には、冷却用室内熱交換器23をバイパスして冷却用熱媒体を流通させるためのバイパス路21aが接続されている。冷却用室内熱交換器23には、室内ファン23aが取り付けられている。室内ファン23aは、車室内に導入される空気、すなわち室内の空気(内気)或いは外から取り込んだ空気(外気)を取り込むための電動式送風機である。発熱体22と循環ポンプ25との間には、リザーバタンク24が接続されている。
 このような接続構成によれば、循環ポンプ25,冷却用中間熱交換器40,三方弁26,冷却用室内熱交換器23,発熱体22,循環ポンプ25の順に環状に接続された第1の閉回路と、循環ポンプ25,冷却用中間熱交換器40,三方弁26,バイパス路21a,発熱体22,循環ポンプ25の順に環状に接続された第2の閉回路とが形成される。
 冷却用室内熱交換器23は、冷却用熱媒体循環路21を循環する冷却用熱媒体と、室内ファン23aによって取り込んだ内気或いは外気との間において、高温側媒体から低温側媒体に熱移動させるための熱移動機器である。循環ポンプ25は、冷却用熱媒体循環路21の冷却用熱媒体を循環させるための電動式流体機器である。三方弁26は、弁体の切り替えによって冷却用熱媒体の流通経路を切り替える切替器であり、冷却用中間熱交換器40から流出した冷却用熱媒体の冷却用室内熱交換器23側への流通と、バイパス路21a側への流通とを切り替える。
 リザーバタンク24は、冷却用熱媒体の温度変化に伴う冷却用熱媒体循環路21内の圧力を調整するためのものである。リザーバタンク24は、冷却用熱媒体の温度が高くなり冷却用熱媒体循環路21内の圧力が上昇した場合には、余分な冷却用熱媒体を貯める。一方、冷却用熱媒体の温度が低くなり冷却用熱媒体循環路21内の圧力が降下した場合には、リザーバタンク24に貯めてあった冷却用熱媒体は冷却用熱媒体循環路21に引き戻される。このような作用により、冷却用熱媒体循環路21内の圧力は常に規定値に保たれる。
 発熱体22は、EV1000の電動機駆動システムのコンポーネントを示し、例えばバッテリ100,モータジェネレータ200及びインバータ装置300が対応し、それらが冷却用熱媒体による温調対象になる。温調対象である発熱体22としては、インバータ装置300以外の電力変換装置、例えば充電器500などに搭載されるDC/DCコンバータや、変速機構のギヤボックスなども適用できる。
 ここで、発熱体22は、冷却用室内熱交換器23と循環ポンプ25との間において、冷却用熱媒体の上流(温度が低い状態)側から熱許容温度の低い順或いは熱時定数の小さい順に直列に配置することが好ましい。例えば、バッテリ100,インバータ装置300及びモータジェネレータ200の順番に配置する。発熱体22の配置としては、冷却用室内熱交換器23と循環ポンプ25との間に、バッテリ100,インバータ装置300及びモータジェネレータ200を並列に配置しても構わない。
 また、発熱体22は、冷却用室内熱交換器23と循環ポンプ25との間に配置したが、冷却用中間熱交換器50と三方弁26との間に配置しても構わない。
 空調用熱移動システム30は、空調用室内熱交換器32,循環ポンプ33及び空調用中間熱交換器50が空調用熱媒体循環路31によって機械的に接続されることにより構成されている。
 空調用中間熱交換器50の一方側(空調用熱媒体の流出側)には、空調用室内熱交換器32の循環ポンプ33側とは反対側(空調用熱媒体の流入側)が接続されている。空調用室内熱交換器32の空調用中間熱交換器50側とは反対側(空調用熱媒体の流出側)には、循環ポンプ33の吸込側が接続されている。循環ポンプ33の空調用室内熱交換器32側とは反対側(吐出側)には、空調用中間熱交換器50の他方側(空調用熱媒体の流入側)が接続されている。
 このような接続構成によれば、循環ポンプ33,空調用中間熱交換器50,空調用室内熱交換器32,循環ポンプ25の順に環状に接続された一つの閉回路が形成される。
 空調用室内熱交換器32は、空調用熱媒体循環路31を循環する空調用熱媒体と、室内ファン23aによって取り込んだ内気或いは外気との間において、高温側媒体から低温側媒体に熱移動させるための熱移動機器である。循環ポンプ33は、空調用熱媒体循環路31の空調用熱媒体を循環させるための電動式流体機器である。
 冷却用室内熱交換器23及び空調用室内熱交換器32は、内気或いは外気の流れ方向の上流側から下流側に向かって空調用室内熱交換器32,冷却用室内熱交換器23の順に配置されている。室内ファン23aは冷却用室内熱交換器23及び空調用室内熱交換器32に対して共通に設けられており、内気或いは外気の流れ方向に対して冷却用室内熱交換器23及び空調用室内熱交換器32の配列よりも下流側に配置されている。
 冷却用熱媒体循環路21と空調用熱媒体循環路31との間には連通路60が設けられている。連通路60は、空調用熱媒体の温度変化に伴う空調用熱媒体循環路31内の圧力調整を、冷却用熱媒体循環路21に接続されたリザーバタンク24を用いて行うために設けられたものである。すなわち、冷却用熱移動システム20と空調用熱移動システム30とにおいてリザーバタンク24を共用化している。空調用熱媒体の温度が高くなり空調用熱媒体循環路31内の圧力が上昇した場合には、空調用熱媒体循環路31から連通路60を介して余分な空調用熱媒体が冷却用熱媒体循環路21に排出され、リザーバタンク24に貯められる。ここで、空調用熱媒体と冷却用熱媒体は同じものであり、水又は不凍液が用いられている。空調用熱媒体の温度が低くなり空調用熱媒体循環路31内の圧力が降下した場合には、貯めてあった空調用熱媒体がリザーバタンク24から冷却用熱媒体循環路21及び連通路60を介して空調用熱媒体循環路31に引き戻される。このような作用により、空調用熱媒体循環路31内の圧力は常に規定値に保たれる。
 このように、本実施の形態では、冷却用熱移動システム20と空調用熱移動システム30とにおいてリザーバタンク24を共用化しているので、熱サイクルシステム1の部品点数を削減することができ、熱サイクルシステム1の構成を簡素化することができる。熱サイクルシステム1の構成の簡素化は、流路を構成する配管や構成部品が狭い設置スペース内において複雑に入り組むことが考えられる熱サイクルシステム1の、メインテナンス性を向上させることができると共に、熱サイクルシステム1の小型化及び低コスト化に寄与することができる。
 尚、リザーバタンク24は、空調用熱媒体循環路31に設けられていてもよい。また、図1に示す例ではリザーバタンク24を発熱体22と循環ポンプ25との間に設けたが、冷却用熱媒体循環路21上の他の領域に配置しても構わない。
 また、本実施の形態では、冷却用熱媒体循環路21を循環する冷却用熱媒体と空調用熱媒体循環路31を循環する空調用熱媒体とを外部に排出するためのドレイン排出機構を、冷却用熱媒体循環路21の高さが最も低い部位に設けている。本実施の形態では、ドレイン排出機構を、冷却用熱媒体循環路21のリザーバタンク24と循環ポンプ25との間の循環路上に設けている。ドレイン排出機構は、冷却用熱媒体循環路21のリザーバタンク24と循環ポンプ25との間の循環路に接続されたドレイン排出路70、及びドレイン排出路70上に設けられたドレイン排出開閉弁71から構成されている。ドレイン排出開閉弁71は、冷却用熱媒体循環路21を循環する冷却用熱媒体と空調用熱媒体循環路31を循環する空調用熱媒体を交換するときに開かれ、通常は閉じられている。空調用熱媒体循環路31を循環する空調用熱媒体は、連通路60を介して冷却用熱媒体循環路21に排出された後、ドレイン排出機構によって外部に排出される。このため、連通路60は、冷却用熱媒体循環路21及び空調用熱媒体循環路31の高さが最も低い部位において冷却用熱媒体循環路21及び空調用熱媒体循環路31を連通している。
 以上のような構成によれば、熱サイクルシステム1の部品点数をさらに削減して、熱サイクルシステム1の構成をさらに簡素化することができ、熱サイクルシステム1のメインテナンス性をさらに向上させることができると共に、熱サイクルシステム1の小型化及び低コスト化にさらに寄与することができる。
 次に、熱サイクルシステム1の運転動作について、各運転モード毎に説明する。
(冷房運転)
 冷房運転とは、室外熱交換器14を凝縮器、空調用中間熱交換器50及び冷却用中間熱交換器40を蒸発器として用いて、空調用熱移動システム30により車室内の冷房を行うと共に、冷却用熱移動システム20により発熱体22の冷却を行う運転モードである。冷房運転の場合、図1に示すように、冷凍サイクルシステム10に設けられた四方弁13によって圧縮機12の吐出側が室外熱交換器14に接続され、圧縮機12の吸込側が空調用中間熱交換器50に接続される。また、圧縮機12の吸込側には冷却用中間熱交換器50が接続される。また、三方弁26によって冷却用熱媒体はバイパス路21aを流通する。
 圧縮機12で圧縮され、高温及び高圧のガス状になった冷媒は、室外熱交換器14における外気との熱交換(放熱)によって液化される。その後、冷媒は全開状態の膨張弁15を通過し、空調用中間熱交換器50へ流れる冷媒と冷却用中間熱交換器40へ流れる冷媒とに分岐される。空調用中間熱交換器50に流れる冷媒は、膨張弁17によって減圧されることにより低温・低圧の冷媒となる。その低温・低圧の冷媒は、空調用中間熱交換器50において空調用熱媒体循環路31の空調用熱媒体から吸熱することによって蒸発し、四方弁13を通って圧縮機12へ戻る。一方、冷却用中間熱交換器40へ流れる冷媒は、膨張弁16によって減圧されることにより低温・低圧の冷媒となる。その低温・低圧の冷媒は、冷却用中間熱交換器40において冷却用熱媒体循環路21の冷却用熱媒体から吸熱することによって蒸発し、圧縮機12へと戻る。
 空調用熱媒体循環路31に設けられた循環ポンプ33を駆動すると、空調用中間熱交換器50において熱交換されて冷却された空調用熱媒体が空調用室内熱交換器32に供給される。そして、空調用熱媒体は、室内ファン23aの駆動によって室内に導入される空気と空調用室内熱交換器32において熱交換(空気の熱が空調用熱媒体に放熱)される。これにより、車室内には、冷却された空気が導入され、冷房される。
 また、冷却用熱媒体循環路21に設けられた循環ポンプ25を駆動すると、冷却用中間熱交換器40において熱交換されて冷却された冷却用熱媒体が、三方弁26,バイパス路21aを介して発熱体22に供給される。そして、冷却用熱媒体は、発熱体22と熱交換(発熱体22の熱が冷却用熱媒体に放熱)される。これにより、発熱体22は冷却される。
 このように、本実施の形態では、空調用中間熱交換器50及び冷却用中間熱交換器40の両方を蒸発器として利用できるので、車室内の冷房と発熱体22の冷却とを同時に実現することができる。さらに、空調用中間熱交換器50と冷却用中間熱交換器40とを圧縮機12の吸込側に対して並列に接続し、冷却用経路11a及び空調用経路11bのそれぞれに膨張弁16,17を設けているので、空調用中間熱交換器50及び冷却用中間熱交換器40へ流れる冷媒流量を、それぞれ任意に変えることができる。その結果、冷却用熱媒体の温度と空調用熱媒体の温度とを、それぞれ任意の所望の温度に制御することができる。従って、冷房を行うために空調用熱媒体の温度を十分下げた場合であっても、冷却用中間熱交換器40へ流れる冷媒流量を抑制することで、発熱体22が接続された冷却用熱媒体の温度を高く保つことができる。
 ところで、発熱体22の表面温度が外気温度よりも低くなると、外気から発熱体22へ熱が入ってくることになる。従って、この入熱量分だけ冷凍サイクルシステム10に要求される冷却能力が増加することになり、消費電力が増加すると考えられる。これは、バッテリ100の使用量が増加することになるので、航続距離の低下に繋がると考えられる。また、外気の露点温度よりも低い場合には、結露を生じる恐れがあるので、結露に起因する不具合への対策が必要になる。このような課題は、配管経路においても同様であるため、冷却用熱媒体の温度を外気温度よりも高く保つことが望ましい。
 尚、冷却用熱媒体の温度を制御するためには、膨張弁16の開度を制御すれば良く、簡易的には冷却用熱媒体の温度が高い場合に開度を開き、温度が低い場合には開度を絞るように制御すれば良い。
 また、冷凍サイクルシステム10の能力を調整するためには、圧縮機12の回転数を制御すればよく、空調用熱媒体の温度が所望の温度となるように制御する。冷房負荷が大きいと判断した場合には、空調用熱媒体の制御目標温度を低くし、冷房負荷が小さいと判断した場合には、空調用熱媒体の制御目標温度を高くすることによって、負荷に応じた空調能力の制御が可能となっている。
 尚、冷房負荷がなく、発熱体22の冷却のみが必要な場合には、循環ポンプ33及び室内ファン23aを停止するとともに、膨張弁17を閉じ、膨張弁16の開度を調整することによって、冷却用中間熱交換器40のみを蒸発器として利用すれば良い。これにより、冷却用熱媒体の冷却が可能となるので、発熱体22の冷却ができる。この場合、圧縮機12の回転数を冷却用熱媒体の温度が目標温度となるように制御する。このときの目標温度は、外気温度よりも高い温度に設定される。また、循環ポンプ25の回転数を制御することで、熱交換量を変化させても良い。
(冷房除湿運転)
 冷房除湿運転では、図1の状態から三方弁26によって、温度の高い冷却用熱媒体を冷却用室内熱交換器23側に流すようにする。このように、温度の高い冷却用熱媒体を冷却用室内熱交換器23に導入すると、空調用室内熱交換器32において冷却・除湿された空気が、冷却用室内熱交換器23によって加熱されてから車室内へ吹き出される、いわゆる再熱除湿運転が可能となる。車室内へ供給される空気は相対湿度が低くなるため、室内空間の快適性を向上できる。
 尚、再熱器として利用される冷却用室内熱交換器23の熱源は、発熱体22から発生するいわゆる排熱である。そのため、再熱用にヒータなどを用いる場合とは異なり、新たにエネルギーを投入する必要がないので、消費電力を増大させることなく車室内の快適性を向上させることが可能になる。
 再熱量は、冷却用室内熱交換器23側に流れる冷却用熱媒体の温度と流量によって変化するので、冷却用中間熱交換器40の交換熱量や、冷却用室内熱交換器23側に流れる冷却用熱媒体の流量を変えることによって、再熱量を制御することができる。冷却用中間熱交換器40の交換熱量を可変とするためには、膨張弁16の開度を制御して、冷却用中間熱交換器40へ流れる冷媒流量を制御すれば良く、冷却が不要な場合には膨張弁16の開度を全閉とすれば良い。
 また、冷却用室内熱交換器23側への冷却用熱媒体の流量を可変とするためには、三方弁26の開閉状態を制御すれば良い。
(暖房運転)
 次に、図2を用いて、暖房運転時の動作を説明する。
 暖房運転時には、暖房負荷に応じた2つの運転モードがある。
 暖房運転の一つ目の運転モードは、暖房負荷が小さい時の放熱運転モードであり、発熱体22からの排熱を暖房に利用することで、冷凍サイクルシステム10は暖房に利用しない。放熱運転モードでは、循環ポンプ25と室内ファン23aを起動し、かつ三方弁26によって冷却用室内熱交換器23側に冷却用熱媒体を流す。冷却用熱媒体は発熱体22によって加熱されているので、冷却用室内熱交換器23において室内吹出し空気へ放熱することによって、冷却用熱媒体は冷却され、室内吹出し空気が加熱される。このように発熱体22からの排熱を暖房に利用することで、エネルギー消費を抑えて空調を行うことができる。
 暖房運転の二つ目の運転モードは、発熱体22の排熱だけでは暖房負荷に満たない場合の運転モードであって、発熱体22の排熱に加えて冷凍サイクルシステム10を併用する暖房放熱運転モードである。この場合、冷凍サイクルシステム10に設けられた四方弁13の切り替えによって、圧縮機12の吐出側を空調用中間熱交換器50に接続するとともに、吸込側を室外熱交換器14に接続する。すなわち空調用中間熱交換器50を凝縮器、室外熱交換器14を蒸発器とするサイクルが形成される。
 圧縮機12で圧縮された冷媒は、空調用中間熱交換器50において空調用熱媒体と熱交換して放熱することにより凝縮液化する。その後、膨張弁15により減圧された後、室外熱交換器14において室外空気との熱交換によって蒸発・ガス化して圧縮機12へと戻る。この時、膨張弁17は全開、膨張弁16は全閉となっており、冷却用中間熱交換器40は利用しない。
 循環ポンプ33を起動することにより、空調用中間熱交換器50において冷媒の凝縮熱をもらって昇温された空調用熱媒体は空調用室内熱交換器32へ流入し、空調用室内熱交換器32において室内吹出し空気へ放熱する。空調用室内熱交換器32において加熱された空気は、空気の流れの下流側に配置された冷却用室内熱交換器23において、発熱体22によって加熱された冷却用熱媒体から熱をもらい、さらに昇温されてから室内空間へ吹き出される。
 このように、室内吹出し空気は、冷凍サイクルシステム10によって加熱された後に、発熱体22の排熱でさらに加熱される構成となっている。このため、空調用室内熱交換器32からの吹出し空気温度を、冷却用室内熱交換器23からの室内吹出し空気温度に対して低く保つことができる。すなわち発熱体22からの排熱を暖房に利用することによって、エネルギー消費の少ない空調装置を構成することができる。
 また、冷凍サイクルシステム10の暖房能力を制御することにより、発熱体22の発熱に応じて冷却用熱媒体の温度を制御することができる。発熱体22からの発熱量が増大した場合には、冷却用熱媒体の温度が上昇するので、冷凍サイクルシステム10の暖房能力を抑制する。これにより空調用室内熱交換器32からの放熱量が抑制され、冷却用室内熱交換器23へ流入する空気の温度が低くなるので、冷却用熱媒体からの放熱量が増大し、冷却用熱媒体の温度上昇が抑制される。
 逆に、発熱体22からの発熱量が減少した場合には、冷却用熱媒体の温度が低下するので、冷凍サイクルシステム10の暖房能力を増大させ、冷却用室内熱交換器23に流入する空気の温度を上げることで、冷却用熱媒体の温度低下を抑制する。
 尚、冷凍サイクルシステム10の能力を制御するための具体例としては、圧縮機12の回転数を制御すれば良い。
 また、冷却用熱媒体の温度を所定の温度域に保つ制御は、発熱体22の温度が使用可能な温度域から外れるなどの不具合を回避するうえでも有効である。
(暖房冷却運転)
 暖房負荷が大きな場合には、上述したように冷却用熱媒体の目標温度を高く設定すれば良いが、発熱体22の仕様等により温度を上げることが困難な場合には、暖房能力を増大させることができなくなる。このような場合には、以下に説明する暖房冷却運転を行い、冷却用熱媒体の冷却と空調用熱媒体の加熱を同時に実現する。
 暖房冷却運転では、暖房放熱併用運転と同様に、空調用中間熱交換器50を凝縮器、室外熱交換器14を蒸発器とするサイクルを構成し、さらに膨張弁16を開けて、冷却用中間熱交換器40を蒸発器として利用する。空調用中間熱交換器50において凝縮・液化した冷媒は、膨張弁17を通過した後、分岐する。分岐した冷媒の一方は、膨張弁23で減圧された後、室外熱交換器14で蒸発して圧縮機1へ戻る。分岐した冷媒の他方は膨張弁16で減圧され、冷却用中間熱交換器40で冷却用熱媒体を冷却することによって蒸発・ガス化し、三方弁21を介して圧縮機1へと戻る。
 暖房冷却運転では、発熱体22からの排熱は、冷却用中間熱交換器40において冷凍サイクルシステム10の熱源として回収され、空調用中間熱交換器50を介して空調用室内熱交換器32から車室内へ放熱される。このように、発熱体22の温度を抑制しながら発熱体22の排熱を回収して暖房に利用することが可能となっている。さらに、室外熱交換器14を用いて外気から吸熱することが可能となっているので、暖房能力を増大させることができる。
 また、膨張弁16と膨張弁23の開度をそれぞれ制御することによって、冷却用熱媒体からの吸熱量と外気からの吸熱量を個別に制御することが可能である。
 尚、冷却用熱媒体の温度が、空調用熱媒体の温度よりも低くなると、空調用室内熱交換器32において加熱した空気を、冷却用室内熱交換器23において冷却してしまう。そのため、このような場合には、冷却用熱媒体循環路21において三方弁26を操作して、冷却用中間熱交換器40で冷却された冷却用熱媒体をバイパス路21aに迂回させることによって、冷却用熱媒体により室内吹出し空気が冷却されるのを防止できる。
 暖房冷却運転から暖房負荷が下がり暖房放熱併用運転に移行する場合、冷却用熱媒体の温度が低いと吹出し温度が低いなどの不具合が生じる可能性があるので、そのような場合には移行する前に冷却用熱媒体の温度を上げておくことが望ましい。冷却用熱媒体の温度は冷却用中間熱交換器40の熱交換量を可変とすることで制御することができるので、膨張弁16の開度を制御すれば良い。
 尚、暖房冷却運転中も機器冷却媒体の温度を高く保ち、空調用熱媒体の温度が冷却用熱媒体の温度よりも下がったことを検知した場合には、暖房負荷が下がったと判断することができるので、暖房冷却運転から暖房放熱併用運転へ移行することができる。
(加熱運転)
 外気温度の低い冬季の始動時などでは、冷却用熱媒体の温度が低く運転開始直後は暖房に供することができず、発熱体22からの排熱による温度上昇を待つ必要がある。このような場合には、膨張弁16を閉とし、空調用室内熱交換器32による暖房運転を行う。また、三方弁26を操作し、冷却用室内熱交換器23において温度の低い冷却用熱媒体と室内へ吹き出す風とが熱交換することのないようにサイクルを構成する。
 また、発熱体22の温度が低温側の許容温度よりも低い場合には、冷却用中間熱交換機40において冷却用熱媒体を暖め、この暖められた冷却用熱媒体を三方弁26及びバイパス路21aを介して発熱体22に供給し、発熱体22をEV1000の始動開始直前に予め暖気しておく。この場合、始動時間設定システムに始動開始時間を予め設定しておき、その設定時間の所定時間前に、熱サイクルシステム1を作動させ、上記加熱運転を行う。このようにすれば、発熱体22をEV1000の始動時から効率良く作動させることができ、要求トルクに対応したトルクをモータジェネレータ200から供給して、EV1000を走行させることができる。
(第2の実施の形態)
 EV1000に搭載される熱サイクルシステム1の第2の実施形態を、図4及び図5に基づいて説明する。
 第2の実施形態は第1の実施形態の改良例であり、冷却用熱媒体循環路21の一部に対して空調用熱媒体循環路31の一部を直列に接続できるように循環路接続制御部を設け、冷却用熱媒体循環路21を流通する熱媒体が、空調用中間熱交換器50と冷却用中間熱交換器40とを直列に流通できるようにしている。
 尚、第1の実施形態と同様の構成には第1の実施形態と同様の符号を付し、その説明を省略する。
 循環路接続制御部は、三方弁84、三方弁83、三方弁81、接続路82および接続路80から構成されている。三方弁84は、循環ポンプ25と冷却用中間熱交換器40との間の循環路上に設けられている。三方弁83は、循環ポンプ33と空調用中間熱交換器50との間の循環路上に設けられている。三方弁81は、空調用中間熱交換器50と空調用室内熱交換器32との間の循環路上に設けられている。接続路82は、三方弁84と三方弁83との間を接続している。接続路80は、三方弁84と冷却用中間熱交換器40との間の循環路と三方弁83との間を接続している。
 三方弁81の第1接続口には空調用中間熱交換器50の一方側(空調用熱媒体の流出側)が接続されている。三方弁81の第2接続口には空調用室内熱交換器32の空調用中間熱交換器50側(空調用熱媒体の流入側)が接続されている。三方弁81の第3接続口には接続路80が接続されている。三方弁83の第1接続口には循環ポンプ33の吐出側が接続されている。三方弁83の第2接続口には空調用中間熱交換器50の他方側(空調用熱媒体の流入側)が接続されている。三方弁83の第3接続口には接続路82が接続されている。三方弁84の第1接続口には循環ポンプ25の吐出側が接続されている。三方弁84の第2接続口には冷却用中間熱交換器40の一方側(冷却用熱媒体の流入側)が接続されている。三方弁84の第3接続口には接続路82が接続されている。
 発熱体22に供給される冷却用熱媒体の冷媒との熱交換量を、冷却用中間熱交換器40のみにおいて冷媒と熱交換するときよりも大きくして、発熱体22の温調(冷却)能力を大きくしたい場合には、流体の流れ方向を切り替えるための三方弁81,83,84を駆動して、冷却用熱媒体の流通方向を切り替える。
 ここで、発熱体22の温調(冷却)能力を大きくしたい場合とは、例えば、モータ負荷が大きな坂道走行が続くような場合であって、発熱体22を構成するモータジェネレータやインバータ装置の発熱が増大し、それらの温度が上昇する。そこで、熱媒体や発熱体の温度を検出し、発熱増大による温度上昇が所定の許容値を超えるような場合には、上述のように三方弁81,83,84を駆動して、冷却用熱媒体の流通方向を切り替えるようにすれば良い。このような制御は、例えば、車両制御装置840によって行われる。
 ここで、熱サイクルシステム1が第1の実施形態における各運転モードにある場合(図4の場合)には、三方弁81,83,84は、接続路80,82に冷却用熱媒体が流通しないような状態、すなわちそれぞれ第1接続口から第2接続口の方向に冷却用熱媒体を流通させる状態になっている。
 発熱体22に供給される冷却用熱媒体の冷媒との熱交換量が、冷却用中間熱交換器40のみにおいて冷媒と熱交換する場合よりも大きくなり、発熱体22の温調(冷却)能力が大きくなるようにしたい場合には、図5に示すように、三方弁81の第1接続口から第3接続口の方向に冷却用熱媒体が流れ、三方弁83の第3接続口から第2接続口の方向に冷却用熱媒体が流れ、三方弁84の第1接続口から第3接続口の方向に冷却用熱媒体が流れるように、三方弁81,83,84の切替機構を駆動する。そうすると、循環ポンプ25によって送圧された冷却用熱媒体は、三方弁84,接続路82,三方弁83を介して空調用中間熱交換器50に供給されて、冷凍サイクルシステム10の冷媒と熱交換される。その後、空調用中間熱交換器50から流出した冷却用熱媒体は、三方弁81、接続路80を介して冷却用中間熱交換器40に供給されて、再び冷媒と熱交換される。
 尚、図5では、冷却用熱媒体が流れる流路は実線にて、熱媒体が流れない流路は破線にてそれぞれ示している。
 第2の実施形態によれば、空調用中間熱交換器50,冷却用中間熱交換器40の順に直列に冷却用熱媒体を流通させることにより、冷却用熱媒体と冷媒との熱交換量(冷却用熱媒体の冷却量)を第1の実施形態の場合よりも大きくでき、発熱体22の冷却能力を第1の実施形態よりも大きくできる。従って、発熱体の更なる小型及び高出力化が要求された場合、その要求に応えることができる。しかも、移動体用熱サイクルシステムの大型化を伴うことなく、対応することができる。
 この場合、車室内の冷房は不可能となるが、車室内の冷房と両立させたい場合には、三方弁26に代えて流量調節弁を2個設置し、すなわちバイパス路21a上と冷却用室内熱交換器23側に至る循環路上にそれぞれ流量調整弁を設置し、冷却用室内熱交換器23側に流れる冷却用熱媒体及びバイパス路21aを流れる冷却用熱媒体の流量を調節すればよい。
(第3の実施の形態)
 EV1000に搭載される移動態用熱サイクルシステム1の第3の実施形態を、図6及び図7に基づいて説明する。
 第3の実施形態は第1の実施形態の改良例であり、冷却用熱媒体循環路21を発熱体22に接続し、空調用熱媒体循環路31を、発熱体22とは別の発熱体27に接続できるように循環路接続切替部を設けた。例えば、バッテリ100及びインバータ装置300を発熱体22とし、モータジェネレータ200を発熱体27とする。その結果、冷却用熱媒体循環路21を循環する冷却用熱媒体を発熱体22に流通させ、それとは別に、空調用熱媒体循環路31を循環する空調用熱媒体を発熱体27に流通させることができる。
 尚、第1の実施形態と同様の構成には第1の実施形態と同様の符号を付し、その説明を省略する。
 循環路接続切替部は、三方弁94、三方弁91、三方弁92、四方弁95、接続路90、接続路93および接続路96から構成されている。三方弁94は、空調用中間熱交換器50と空調用室内熱交換器32との間の循環路上に設けられている。三方弁91は、空調用室内熱交換器32と循環ポンプ33との間の循環路上に設けられている。三方弁92は、発熱体27と循環ポンプ25との間の循環路上に設けられている。四方弁95は、リザーバタンク24と発熱体27との循環路上に設けられている。接続路90は、三方弁91と三方弁92との間を接続する。接続路93は、三方弁94と四方弁95との間を接続する。接続路96は、三方弁92と循環ポンプ25との間の循環路と四方弁95との間を接続する。
 三方弁94の第1接続口には空調用中間熱交換器50の一方側(空調用熱媒体の流出側)が接続されている。三方弁94の第2接続口には空調用室内熱交換器32の空調用中間熱交換器50側(空調用熱媒体の流入側)が接続されている。三方弁94の第3接続口には接続路93が接続されている。三方弁91の第1接続口には空調用室内熱交換器32の一方側(空調用熱媒体の流出側)が接続されている。三方弁91の第2接続口には循環ポンプ33の吸込側が接続されている。三方弁91の第3接続口には接続路90が接続されている。三方弁92の第1接続口には発熱体27の循環ポンプ25側が接続されている。三方弁92の第2接続口には循環ポンプ25の吸込側が接続されている。三方弁92の第3接続口には接続路90が接続されている。四方弁95の第1接続口はリザーバタンク24の発熱体22側とは反対側が接続されている。四方弁95の第2接続口には発熱体27の三方弁92側とは反対側が接続されている。四方弁95の第3接続口には接続路93が接続されている。四方弁95の第4接続口には接続路96が接続されている。
 発熱体22,27と熱媒体(冷却用熱媒体および空調用熱媒体)との間の熱交換量を、発熱体22,27と冷却用熱媒体との間の熱交換量よりも大きくして、発熱体22,27の温調(冷却)能力を大きくしたい場合には、流体の流れ方向を切り替えるための三方弁91,92,94及び四方弁95を駆動して、冷却用熱媒体および空調用熱媒体の流通方向を切り替える。
 ここで、発熱体22,27の温調(冷却)能力を大きくしたい場合とは、第2の実施の形態の場合と同様に、例えば、モータ負荷が大きな坂道走行が続くような場合であって発熱体22,27の温度が大きく上昇する場合である。そこで、熱媒体や発熱体の温度を検出し、発熱増大による温度上昇が所定の許容値を超えるような場合には、上述のように三方弁91,92,94及び四方弁95を駆動して、冷却用熱媒体および空調用熱媒体の流通方向を切り替えるようにすれば良い。このような制御は、例えば、車両制御装置840によって行われる。
 ここで、第1の実施形態における各運転モードにある場合(図6の場合)には、三方弁91,92,94及び四方弁95は、接続路90,93,96に熱媒体が流通しないような状態、すなわちそれぞれ第1接続口から第2接続口の方向に冷却用熱媒体を流通させる状態になっている。
 発熱体22,27と熱媒体との熱交換量を、発熱体22,27と冷却用熱媒体との間の熱交換量よりも大きくして、発熱体22,27の温調(冷却)能力を大きくしたい場合には、図7に示すように、三方弁94の第1接続口から第3接続口の方向に空調用熱媒体が流れ、三方弁92の第1接続口から第3接続口の方向に空調用熱媒体が流れ、三方弁91の第3接続口から第2接続口の方向に空調用熱媒体が流れ、四方弁95の第1接続口から第4接続口の方向に冷却用熱媒体が流れるとともに第3接続口から第2接続口の方法に空調用熱媒体が流れるように、三方弁91,92,94及び四方弁95の切替機構を駆動する。そうすると、循環ポンプ25によって送圧された冷却用熱媒体は、冷却用中間熱交換器40に供給されて冷凍サイクルシステム10の冷媒と熱交換される。その後、冷却用中間熱交換器40から流出した冷却用熱媒体は、三方弁26,バイパス路21aを介して発熱体22に供給されて発熱体22と熱交換された後に、リザーバタンク24,四方弁95,接続路96を介して循環ポンプ25に循環される。一方、循環ポンプ33によって送圧された空調用熱媒体は、空調用中間熱交換器50に供給されて冷媒と熱交換される。その後、空調用中間熱交換器50から流出した空調用熱媒体は、三方弁94,接続路93,四方弁95を解して発熱体27に供給されて発熱体27と熱交換された後に、三方弁92,接続路90,三方弁91を介して循環ポンプ33に循環される。
 尚、図7では、熱媒体が流れる流路は実線にて、熱媒体が流れない流路は破線にてそれぞれ示している。
 第3の実施形態によれば、冷却用熱媒体を発熱体22に、空調用熱媒体を発熱体27に、それぞれ流通させることにより、熱媒体と発熱体との熱交換量(熱媒体の冷却量)を第1の実施形態の場合よりも大きくでき、発熱体22,27の冷却能力を第1の実施形態の場合よりも大きくできる。
 この場合、車室内の冷房は不可能となるが、車室内の冷房と両立させたい場合には、三方弁94に代えて流量調整弁を2個設置すると共に、三方弁91に代えて流量調整弁を2個設置する。すなわち、空調用室内熱交換器32側に至る循環路上と、接続路93と、接続路90と、空調用室内熱交換32から循環ポンプ33に至る循環路上の接続路90よりも上流側にそれぞれ流量調整弁を設置し、空調用室内熱交換器23側に流れる空調用熱媒体及び接続路93側に流れる空調用熱媒体の流量を調節すればよい。また、冷房能力が不足することを考慮して、三方弁26に代えて流量調節弁を2個設置しても良い。すなわち、バイパス路21a上と冷却用室内熱交換器23側に至る循環路上にそれぞれ流量調整弁を設置し、冷却用室内熱交換器23側に流れる冷却用熱媒体及びバイパス路21aを流れる冷却用熱媒体の流量を調節する。
 尚、第3の実施形態ではリザーバタンク24を発熱体22と四方弁95との間の循環路上に設けたが、それとは異なる循環路上に設けてもよい。
(第4の実施の形態)
 EV1000に搭載される熱サイクルシステム1の第4の実施形態を、図8に基づいて説明する。
 第4の実施形態は第1の実施形態の変形例であり、冷房運転と冷房除湿運転のみ可能としたシステム構成になっている。すなわち第1の実施形態では、四方弁13にて冷媒の流れ方向を冷房と暖房で切り換えていたが、本実施形態では、圧縮機12の吐出側が室外熱交換器14側に接続され、圧縮機12の吸入側が冷却用中間熱交換器40及び空調用中間熱交換器50側に接続されており、切り換え不可能な、固定された接続構成になっている。このような構成は、暖房を必要としない地域向けのEV1000として、熱サイクルシステム1の簡素化に適している。
 尚、第1の実施形態と同様の構成には第1の実施形態と同様の符号を付し、その説明を省略する。
(第5の実施の形態)
 EV1000に搭載される熱サイクルシステム1の第5の実施形態を、図9に基づいて説明する。
 第5の実施形態は第4の実施形態の改良例であり、冷却用熱媒体循環路21のリザーバタンク24と循環ポンプ25との間に、室外熱交換器28及び室外ファン28aを備えた熱交換ユニットを設置している。このようにすれば、冷凍サイクルシステム10に不具合があった場合、その熱交換ユニットによって冷却用熱媒体を冷却し、その冷却用熱媒体による発熱体22の冷却を継続できるので、発熱体22の作動によるEV1000の運転を継続できる。
 尚、第4の実施形態と同様の構成には第4の実施形態と同様の符号を付し、その説明を省略する。
 また、第5の実施形態の構成は、他の実施形態にも適用できる。
(第6の実施の形態)
 EV1000に搭載される熱サイクルシステム1の第6の実施形態を、図10に基づいて説明する。
 第6の実施形態は第1の実施形態の変形例であり、リザーバタンク24を冷却用熱媒体循環路21及び空調用熱媒体循環路31の高さが最も高い部位よりも高い位置に設置すると共に、リザーバタンク24と冷却用熱媒体循環路21とを接続路61により接続し、リザーバタンク24と空調用熱媒体循環路31とを接続路62により接続している。このような構成によれば第1の実施形態と同様の機能を達成することができる。従って、第6の実施形態においても第1の実施形態と同様の効果を奏することができる。
 尚、第1の実施形態と同様の構成には第1の実施形態と同様の符号を付し、その説明を省略する。
 また、第6の実施形態の構成は、他の実施形態にも適用できる。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2009年第270979号(2009年11月30日出願)

Claims (12)

  1.  冷媒が流通する冷凍サイクルシステムと、
     発熱体の温度を調整する熱媒体が流通する第1熱移動システムと、
     移動体室内の空気状態を調整する熱媒体が流通する第2熱移動システムと、
     前記冷凍サイクルシステムと前記第1熱移動媒体システムとの間に設けられ、前記冷媒と前記熱媒体とが熱交換する第1中間熱交換器と、
     前記冷凍サイクルシステムと前記第2熱移動媒体システムとの間に設けられ、前記冷媒と前記熱媒体とが熱交換する第2中間熱交換器と、
     前記第1熱移動システムに設けられ、前記移動体室内に取り込まれる空気と前記熱媒体とが熱交換する第1室内熱交換器と、
     前記第2熱移動システムに設けられ、前記移動体室内に取り込まれる空気と前記熱媒体とが熱交換する第2室内熱交換器と、
     前記第1熱移動システム及び前記第2移動システムの熱媒体が流れる流路内の圧力を調整するためのリザーバタンクと、有し、
     前記リザーバタンクは、前記第1熱移動システム及び前記第2移動システムに対して共通に設けられている、移動体用熱サイクルシステム。
  2.  請求項1に記載の移動体用熱サイクルシステムにおいて、
     前記リザーバタンクは、前記第1熱移動システムの熱媒体流路及び前記第2移動システムの熱媒体流路のそれぞれに接続されている、移動体用熱サイクルシステム。
  3.  請求項1に記載の移動体用熱サイクルシステムにおいて、
     前記リザーバタンクは、前記第1熱移動システムの熱媒体流路或いは前記第2移動システムの熱媒体流路のいずれか一方に設けられており、
     前記第1熱移動システムの熱媒体流路及び前記第2移動システムの熱媒体流路は連通路によって連通されている、移動体用熱サイクルシステム。
  4.  請求項1乃至3のいずれか一項に記載の移動体用熱サイクルシステムにおいて、
     前記第1熱移動システムの熱媒体流路及び前記第2移動システムの熱媒体流路から熱媒体を外部に排出するためのドレイン機構を有し、
     前記ドレイン機構は、前記第1熱移動システム及び前記第2移動システムに対して共通に設けられている、移動体用熱サイクルシステム。
  5.  請求項1乃至4のいずれか一項に記載の移動体用熱サイクルシステムにおいて、
     前記熱媒体と外気とを熱交換するための室外熱交換器を前記第1熱移動システムに設けた、移動体用熱サイクルシステム。
  6.  冷媒が流通する冷凍サイクルシステムと、
     発熱体の温度を調整する熱媒体が流通する第1熱移動システムと、
     移動体室内の空気状態を調整する熱媒体が流通する第2熱移動システムと、
     前記冷凍サイクルシステムと前記第1熱移動媒体システムとの間に設けられ、前記冷媒と前記熱媒体とが熱交換する第1中間熱交換器と、
     前記冷凍サイクルシステムと前記第2熱移動媒体システムとの間に設けられ、前記冷媒と前記熱媒体とが熱交換する第2中間熱交換器と、
     前記第1熱移動システムに設けられ、前記移動体室内に取り込まれる空気と前記熱媒体とが熱交換する第1室内熱交換器と、
     前記第2熱移動システムに設けられ、前記移動体室内に取り込まれる空気と前記熱媒体とが熱交換する第2室内熱交換器と、
     前記発熱体に供給される熱媒体を前記第1及び前記第2中間熱交換器に直列に流通させるように、前記第1熱移動体システムの流路と前記第2熱移動体システムの流路との接続を制御するための流路接続制御部と、を有する、移動体用熱サイクルシステム。
  7.  請求項6に記載の移動体用熱サイクルシステムにおいて、
     前記発熱体に供給される熱媒体と前記冷媒との熱交換量を、前記第1中間熱交換において前記発熱体に供給される熱媒体と前記冷媒とを熱交換させる場合の熱交換量よりも大きくすべき状態となったときに、
     前記流路接続制御部は、前記発熱体に供給される熱媒体を前記第1及び前記第2中間熱交換器に直列に流通させるように制御する、移動体用熱サイクルシステム。
  8.  冷媒が流通する冷凍サイクルシステムと、
     少なくとも二つの発熱体の温度を調整する熱媒体が流通する第1熱移動システムと、
     移動体室内の空気状態を調整する熱媒体が流通する第2熱移動システムと、
     前記冷凍サイクルシステムと前記第1熱移動媒体システムとの間に設けられ、前記冷媒と前記熱媒体とが熱交換する第1中間熱交換器と、
     前記冷凍サイクルシステムと前記第2熱移動媒体システムとの間に設けられ、前記冷媒と前記熱媒体とが熱交換する第2中間熱交換器と、
     前記第1熱移動システムに設けられ、前記移動体室内に取り込まれる空気と前記熱媒体とが熱交換する第1室内熱交換器と、
     前記第2熱移動システムに設けられ、前記移動体室内に取り込まれる空気と前記熱媒体とが熱交換する第2室内熱交換器と、
     前記少なくとも二つの発熱体を二つの温調対象に分け、一方の温調対象に前記第1熱移動システムを流れる熱媒体を流通させ、他方の温調対象に前記第2熱移動システムを流れる熱媒体を流通させるように、前記少なくとも二つの発熱体と前記第1及び第2熱移動体システムの流路との接続を切り替えるための流路接続切替部と、を有する、移動体用熱サイクルシステム。
  9.  請求項8に記載の移動体用熱サイクルシステムにおいて、
     前記少なくとも二つの発熱体に供給される熱媒体と前記少なくとも二つの発熱体との間の熱交換量を、前記少なくとも二つの発熱体と前記第1熱移動システムの熱媒体との間の熱交換量よりも大きくすべき状態となったときに、
     前記流路接続切替部は、一方の温調対象に前記第1熱移動システムを流れる熱媒体を流通させ、他方の温調対象に前記第2熱移動システムを流れる熱媒体を流通させるように切り替える、移動体熱サイクルシステム。
  10.  請求項6乃至9のいずれか一項に記載の移動体用熱サイクルシステムにおいて、
     前記第1熱移動システム及び前記第2移動システムの熱媒体が流れる流路内の圧力を調整するためのリザーバタンクと、有し、
     前記リザーバタンクは、前記第1熱移動システム及び前記第2移動システムに対して共通に設けられている、移動体用熱サイクルシステム。
  11.  請求項6乃至10のいずれか一項に記載の移動体用熱サイクルシステムにおいて、
     前記第1熱移動システムの熱媒体流路及び前記第2移動システムの熱媒体流路から熱媒体を外部に排出するためのドレイン機構を有し、
     前記ドレイン機構は、前記第1熱移動システム及び前記第2移動システムに対して共通に設けられている、移動体用熱サイクルシステム。
  12.  請求項6乃至11のいずれか一項に記載の移動体用熱サイクルシステムにおいて、
     前記熱媒体と外気とを熱交換するための室外熱交換器を前記第1熱移動システムに設けた、移動体用熱サイクルシステム。
PCT/JP2010/064390 2009-11-30 2010-08-25 移動体用熱サイクルシステム WO2011065075A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/388,707 US20120222441A1 (en) 2009-11-30 2010-08-25 Heat Cycle System for Mobile Object
CN2010800348236A CN102472531A (zh) 2009-11-30 2010-08-25 移动体用热循环系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-270979 2009-11-30
JP2009270979A JP2011112312A (ja) 2009-11-30 2009-11-30 移動体の熱サイクルシステム

Publications (1)

Publication Number Publication Date
WO2011065075A1 true WO2011065075A1 (ja) 2011-06-03

Family

ID=44066178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064390 WO2011065075A1 (ja) 2009-11-30 2010-08-25 移動体用熱サイクルシステム

Country Status (4)

Country Link
US (1) US20120222441A1 (ja)
JP (1) JP2011112312A (ja)
CN (1) CN102472531A (ja)
WO (1) WO2011065075A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500903A (ja) * 2009-08-07 2013-01-10 ルノー・エス・アー・エス 電動自動車の熱の全体制御のためのシステム
CN105922842A (zh) * 2016-05-18 2016-09-07 东南(福建)汽车工业有限公司 一种电动汽车暖气系统节能设备及其节能方法
JP2020026892A (ja) * 2018-08-09 2020-02-20 伸和コントロールズ株式会社 チラー装置
CN112976999A (zh) * 2021-04-12 2021-06-18 吉林大学 针对多热源直流储能装置的集成式热管理系统及控制方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581886B2 (ja) 2010-08-11 2014-09-03 株式会社日立製作所 車両用空調システム
JP5676738B2 (ja) 2011-02-21 2015-02-25 株式会社日立製作所 車両用空調システム
WO2013024535A1 (ja) 2011-08-17 2013-02-21 株式会社日立製作所 車両用機器温調システム
JP5788774B2 (ja) * 2011-11-21 2015-10-07 日立オートモティブシステムズ株式会社 冷却装置
JP6020064B2 (ja) * 2011-12-05 2016-11-02 株式会社デンソー 熱交換システム
JP5668704B2 (ja) * 2012-01-31 2015-02-12 株式会社デンソー 車両空調システム
JP5248692B1 (ja) * 2012-03-26 2013-07-31 パナソニック株式会社 車両用空調装置
US9010133B2 (en) * 2012-06-20 2015-04-21 Whirlpool Corporation On-line energy consumption optimization adaptive to environmental condition
DE102013105747B4 (de) * 2012-07-18 2022-06-09 Hanon Systems Vorrichtungen zur Wärmeverteilung in einem Kraftfahrzeug
WO2014016865A1 (ja) * 2012-07-24 2014-01-30 三菱電機株式会社 空気調和装置
JP6155907B2 (ja) 2012-08-28 2017-07-05 株式会社デンソー 車両用熱管理システム
JP2014098106A (ja) * 2012-11-15 2014-05-29 Asahi Glass Co Ltd 二次循環冷却システム用二次冷媒および二次循環冷却システム
US9562708B2 (en) * 2012-12-03 2017-02-07 Waterfurnace International, Inc. Conduit module coupled with heating or cooling module
WO2014151375A1 (en) 2013-03-15 2014-09-25 Trane International Inc. Apparatuses, systems, and methods of variable frequency drive operation and control
JP6167892B2 (ja) * 2013-06-06 2017-07-26 株式会社デンソー 車両用空調装置
US10131205B2 (en) * 2013-08-26 2018-11-20 Ford Global Technologies, Llc Climate control system
TWI543888B (zh) * 2013-11-06 2016-08-01 Automotive Res & Testing Ct Electric car thermal management system
JP6233009B2 (ja) * 2013-12-26 2017-11-22 株式会社デンソー 車両用空調装置
JPWO2015111175A1 (ja) * 2014-01-23 2017-03-23 三菱電機株式会社 ヒートポンプ装置
WO2016024576A1 (ja) * 2014-08-12 2016-02-18 旭硝子株式会社 熱サイクルシステム
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
JP2017116122A (ja) * 2015-12-18 2017-06-29 三星電子株式会社Samsung Electronics Co.,Ltd. 熱交換装置
US10634394B2 (en) * 2015-12-18 2020-04-28 Samsung Electronics Co., Ltd. Air conditioner outdoor unit including heat exchange apparatus
US9932817B1 (en) * 2017-02-10 2018-04-03 Vierko Enterprises, LLC Tool and method for actively cooling downhole electronics
US10295238B2 (en) * 2017-02-14 2019-05-21 Heatcraft Refrigeration Products Llc Cooling system
CN108571834B (zh) * 2017-03-08 2021-09-28 杭州三花研究院有限公司 一种热管理系统
DE102017109309A1 (de) * 2017-05-02 2018-11-08 Hanon Systems Klimatisierungssystem eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems
US11358438B2 (en) 2017-08-08 2022-06-14 Hangzhou Sanhua Research Institute Co., Ltd. Automotive air conditioning system
CN107525762B (zh) * 2017-10-17 2023-06-13 华能国际电力股份有限公司 一种测试金属表面热生长氧化膜的粘附性的试验装置及方法
US10710741B2 (en) 2018-07-02 2020-07-14 Joby Aero, Inc. System and method for airspeed determination
WO2020061085A1 (en) 2018-09-17 2020-03-26 Joby Aero, Inc. Aircraft control system
US10983534B2 (en) 2018-12-07 2021-04-20 Joby Aero, Inc. Aircraft control system and method
JP6886960B2 (ja) * 2018-12-21 2021-06-16 本田技研工業株式会社 温度調整回路及びその制御方法
CN111354998B (zh) * 2018-12-21 2022-03-18 比亚迪股份有限公司 车辆及其温度控制装置
JP7176405B2 (ja) * 2018-12-26 2022-11-22 株式会社デンソー 温度調整装置
JP7059966B2 (ja) * 2019-02-28 2022-04-26 株式会社デンソー 冷凍サイクル装置
US11230384B2 (en) * 2019-04-23 2022-01-25 Joby Aero, Inc. Vehicle cabin thermal management system and method
WO2020219747A2 (en) 2019-04-23 2020-10-29 Joby Aero, Inc. Battery thermal management system and method
KR20210021728A (ko) * 2019-08-19 2021-03-02 현대자동차주식회사 차량용 히트펌프 시스템
CN112406494B (zh) * 2019-08-23 2022-08-09 华为技术有限公司 用于汽车的热管理系统以及基于该系统的热管理方法
JP7132897B2 (ja) * 2019-09-04 2022-09-07 本田技研工業株式会社 車両
JP7111082B2 (ja) * 2019-09-30 2022-08-02 トヨタ自動車株式会社 冷却システム
JP6789587B1 (ja) * 2020-06-05 2020-11-25 株式会社シンカ・アウトフィットNq 空調装置および空調管理方法
JP2022180136A (ja) * 2021-05-24 2022-12-06 サンデン株式会社 車両熱管理システム
CN114151850A (zh) * 2021-11-19 2022-03-08 北京航天石化技术装备工程有限公司 一种可分程调试的热媒系统和调试方法
JP2023160568A (ja) * 2022-04-22 2023-11-02 サンデン株式会社 熱媒体回路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266856A (ja) * 1997-03-21 1998-10-06 Toyota Motor Corp ハイブリッド車用動力冷却装置
JPH10267494A (ja) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp 冷却装置
JPH10297262A (ja) * 1997-04-30 1998-11-10 Honda Motor Co Ltd 車両用暖房装置
JPH10297261A (ja) * 1997-04-30 1998-11-10 Honda Motor Co Ltd 電気自動車用熱交換装置
JPH11286211A (ja) * 1998-04-02 1999-10-19 Matsushita Electric Ind Co Ltd 車両用空調装置
JP2004053069A (ja) * 2002-07-17 2004-02-19 Fuji Electric Retail Systems Co Ltd 冷媒回路、およびそれを用いた自動販売機
JP2009525914A (ja) * 2006-02-09 2009-07-16 ソシエテ ドゥ ヴェイキュル エレキトリック(エスアーエス) 低レベル資源を向上させる熱調節システムを備えた電気あるいはハイブリッド自動車

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971290A (en) * 1997-04-30 1999-10-26 Honda Giken Kogyo Kabushiki Kaisha Heat exchange system for electric vehicle
JP4078766B2 (ja) * 1999-08-20 2008-04-23 株式会社デンソー 熱交換器
JP4270074B2 (ja) * 2003-10-20 2009-05-27 日産自動車株式会社 リザーバタンク
JP2007009752A (ja) * 2005-06-29 2007-01-18 Toyota Motor Corp リザーブタンク
JP2007120361A (ja) * 2005-10-26 2007-05-17 Toyota Motor Corp 液体循環装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266856A (ja) * 1997-03-21 1998-10-06 Toyota Motor Corp ハイブリッド車用動力冷却装置
JPH10267494A (ja) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp 冷却装置
JPH10297262A (ja) * 1997-04-30 1998-11-10 Honda Motor Co Ltd 車両用暖房装置
JPH10297261A (ja) * 1997-04-30 1998-11-10 Honda Motor Co Ltd 電気自動車用熱交換装置
JPH11286211A (ja) * 1998-04-02 1999-10-19 Matsushita Electric Ind Co Ltd 車両用空調装置
JP2004053069A (ja) * 2002-07-17 2004-02-19 Fuji Electric Retail Systems Co Ltd 冷媒回路、およびそれを用いた自動販売機
JP2009525914A (ja) * 2006-02-09 2009-07-16 ソシエテ ドゥ ヴェイキュル エレキトリック(エスアーエス) 低レベル資源を向上させる熱調節システムを備えた電気あるいはハイブリッド自動車

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500903A (ja) * 2009-08-07 2013-01-10 ルノー・エス・アー・エス 電動自動車の熱の全体制御のためのシステム
CN105922842A (zh) * 2016-05-18 2016-09-07 东南(福建)汽车工业有限公司 一种电动汽车暖气系统节能设备及其节能方法
JP2020026892A (ja) * 2018-08-09 2020-02-20 伸和コントロールズ株式会社 チラー装置
JP7144839B2 (ja) 2018-08-09 2022-09-30 伸和コントロールズ株式会社 チラー装置
CN112976999A (zh) * 2021-04-12 2021-06-18 吉林大学 针对多热源直流储能装置的集成式热管理系统及控制方法

Also Published As

Publication number Publication date
JP2011112312A (ja) 2011-06-09
US20120222441A1 (en) 2012-09-06
CN102472531A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2011065075A1 (ja) 移動体用熱サイクルシステム
JP5433387B2 (ja) 車両用機器冷却暖房システム
JP2011073536A (ja) 移動体熱サイクルシステム
JP5331666B2 (ja) 電動車両の冷却システム
KR101195077B1 (ko) 이중 방식의 냉각제 배관을 가진 열관리 시스템
US9511645B2 (en) EV multi-mode thermal management system
JP5497716B2 (ja) 車両用充電装置
WO2013132756A1 (ja) 温調装置
US20160023532A1 (en) EV Integrated Temperature Control System
WO2022237069A1 (zh) 集成式热管理系统和车辆及热管理控制方法
CN105284001A (zh) 冷却用于具有电驱动器的交通工具的能量存储器和充电控制器的冷却设备
WO2022107429A1 (ja) 温調装置
CN113942366B (zh) 一种前后双电机电动汽车的冷热循环系统及控制方法
CN114312484A (zh) 一种热管理装置、热管理系统及新能源汽车

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034823.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832922

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13388707

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832922

Country of ref document: EP

Kind code of ref document: A1