WO2011061991A1 - 結晶半導体膜の製造方法 - Google Patents

結晶半導体膜の製造方法 Download PDF

Info

Publication number
WO2011061991A1
WO2011061991A1 PCT/JP2010/066174 JP2010066174W WO2011061991A1 WO 2011061991 A1 WO2011061991 A1 WO 2011061991A1 JP 2010066174 W JP2010066174 W JP 2010066174W WO 2011061991 A1 WO2011061991 A1 WO 2011061991A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor film
irradiation
pulse
pulse laser
laser
Prior art date
Application number
PCT/JP2010/066174
Other languages
English (en)
French (fr)
Inventor
純一 次田
政志 町田
澤井 美喜
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to KR1020127015735A priority Critical patent/KR101259936B1/ko
Priority to CN201080052451XA priority patent/CN102630336B/zh
Publication of WO2011061991A1 publication Critical patent/WO2011061991A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Definitions

  • the present invention relates to a method for manufacturing a crystalline semiconductor film in which a non-single crystal semiconductor film is crystallized by moving a pulse laser having a line beam shape a plurality of times (overlapping irradiation).
  • Thin film transistors generally used in TVs and PC displays are composed of amorphous (non-crystalline) silicon (hereinafter referred to as a-silicon), but silicon is crystallized (hereinafter referred to as p-silicon) by some means.
  • a-silicon amorphous (non-crystalline) silicon
  • p-silicon silicon is crystallized
  • the performance as a TFT can be remarkably improved.
  • excimer laser annealing technology has already been put into practical use as a Si crystallization process at low temperature, and is frequently used for small displays such as mobile phones. Has been made.
  • a non-single crystal semiconductor film is irradiated with an excimer laser having a high pulse energy, so that the semiconductor that has absorbed the light energy is in a molten or semi-molten state, and then rapidly cooled and solidified. It is a mechanism to make it.
  • a pulse laser shaped into a line beam shape is irradiated while scanning in a relatively short axis direction.
  • pulse laser scanning is performed by moving an installation table on which a single crystal semiconductor film is installed.
  • the pulse laser is moved in the scanning direction at a predetermined pitch so that the pulse laser is irradiated a plurality of times (overlap irradiation) at the same position of the non-single crystal semiconductor film (for example, patents). Reference 1).
  • the pulse laser is moved in the scanning direction at a predetermined pitch so that the pulse laser is irradiated a plurality of times (overlap irradiation) at the same position of the non-single crystal semiconductor film (for example, patents). Reference 1).
  • Patent Document 1 since the crystallinity non-uniformity (variation) due to the sequential operation of the laser causes variations between elements, the size S of the channel region in the scanning direction of the pulse laser and the pulse laser
  • periodic changes in the pattern of the crystalline distribution are made equal.
  • the beam width in the scanning direction of the pulse laser is fixed to about 0.35 to 0.4 mm, and the substrate feed amount per pulse is set to 3% to 8% of the beam width. It is considered that it is necessary to increase the number of laser irradiations as much as possible in order to ensure the uniformity of the performance of the plurality of thin film transistors.
  • the overlap rate is 92 to 95% (irradiation frequency 12 to 20 times, scanning pitch 32 to 20 ⁇ m), and in an OLED semiconductor film, the overlap rate is 93.8 to 97% (irradiation frequency 16). To 33 times and a scanning pitch of 25 to 12 ⁇ m).
  • the number of times of laser irradiation increases as the scanning pitch is reduced, but in practice, there are times of irradiation such as about 8 times of irradiation under a predetermined condition. It has been found that the crystal grain size does not increase and becomes saturated when the number of times is exceeded. That is, even if the number of irradiations is increased more than necessary, the laser output cannot be used effectively, leading to an increase in the crystallization processing time. Further, if the beam width is increased more than necessary, the laser pulse energy is constant. Therefore, in order to obtain a predetermined energy density, it is necessary to shorten the line beam length, and a large semiconductor film is processed. In this case, the processing efficiency decreases.
  • the present invention has been made against the background of the above circumstances, and provides a method for manufacturing a crystalline semiconductor film capable of efficiently performing laser annealing treatment by appropriately determining the number of laser pulses and the pulse width. Objective.
  • the method for producing a crystalline semiconductor film of the present invention is the method for producing a crystalline semiconductor film, wherein the non-single crystal semiconductor film is crystallized by irradiating a line beam shaped pulse laser while relatively scanning.
  • the pulse laser has a flat portion (beam width a) with uniform intensity in the beam cross-sectional shape in the scanning direction, and the channel region width in the scanning direction of a transistor formed of a semiconductor film crystallized by irradiation with the pulse laser.
  • the pulse laser has an irradiation pulse energy density E lower than an irradiation pulse energy density at which microcrystallization occurs in the non-single-crystal semiconductor film by irradiation of the pulse laser;
  • the number of irradiations of the pulse laser n is (n0-1) or more, where n0 is the number of irradiations when the crystal grain size growth is saturated by the irradiation of the pulse laser having the irradiation pulse energy density E,
  • the movement amount c of each pulse in the scanning direction of the pulse laser is set to b / 2 or less. It is characterized by that.
  • the pulse laser has a flat portion (beam width a) with uniform intensity in the beam cross-sectional shape in the scanning direction. This flat portion can be shown in an area of 90% or more with respect to the maximum energy intensity.
  • the number of irradiations at which the crystal grain size growth is saturated by the irradiation of the pulse laser with the irradiation energy density E of the pulse laser is n0. Note that the irradiation pulse energy density E is lower than the irradiation pulse energy density at which microcrystallization occurs in the non-single-crystal semiconductor film by irradiation with a pulse laser. Whether or not microcrystallization occurs can be determined by an electron micrograph or the like.
  • the irradiation pulse energy density is set to a value larger than the value at which microcrystallization occurs, the crystal grain size becomes extremely small, and the electron mobility as a semiconductor becomes about 1/10. Further, the fact that the crystal grain size growth is saturated by irradiation with a pulse laser having an irradiation pulse energy density E means a state in which individual grain sizes are uniform and the grain size does not increase even when the number of irradiations is increased. Further, if the number of times of laser irradiation does not reach (n0-1), the crystal grain size does not grow sufficiently, and crystals with different grain sizes are mixed, resulting in variations in electron mobility. For the same reason, it is preferably n0 or more. The number of times of laser irradiation n is desirably 3 ⁇ n0 or less. If it exceeds 3 ⁇ n0, the productivity is significantly reduced. Furthermore, 2 ⁇ n0 or less is more desirable for the same reason.
  • the scanning pitch of the pulse laser that is, the movement amount c per pulse is set to b / 2 or less.
  • the number of laser pulse seams appearing in each channel region is two or three or more, and variations in transistor performance can be reduced.
  • the movement amount c is larger than b / 2 and less than or equal to b, the number of seams in the channel region is one or two.
  • the movement amount c is larger than b, the number of seams in the channel region is zero. Or it becomes one, and the performance variation of the transistor in a channel area becomes large.
  • the channel area width in the pulse laser scanning direction is desirably 1 mm or less. If the region width of the transistor, that is, the transistor is reduced, the time for electrons to flow through the transistor can be shortened, the signal processing speed can be improved, and a thin film semiconductor with excellent performance can be obtained.
  • the semiconductor to be processed in the present invention is not limited to a specific material, but Si can be cited as a suitable material.
  • An excimer laser can be cited as a suitable pulse laser.
  • the non-single crystalline semiconductor film is crystallized by irradiating the line laser beam while relatively scanning the pulse laser.
  • the pulse laser has a flat portion (beam width a) of uniform intensity in the beam cross-sectional shape in the scanning direction, and a channel region in the scanning direction of a transistor formed of a semiconductor film crystallized by irradiation with the pulse laser.
  • the pulse laser has an irradiation pulse energy density E lower than an irradiation pulse energy density at which microcrystallization occurs in the non-single-crystal semiconductor film by irradiation of the pulse laser;
  • the number of irradiations of the pulse laser n is (n0-1) or more, where n0 is the number of irradiations when the crystal grain size growth is saturated by the irradiation of the pulse laser having the irradiation pulse energy density E, Since the movement amount c of each pulse in the scanning direction of the pulse laser is set to b / 2 or less, the laser annealing process can be efficiently performed with an appropriate number of pulse laser irradiations and the movement amount of each pulse.
  • the beam width of the pulse laser can be set to an appropriate value, a sufficient line beam length can be obtained, and further efficient processing can be achieved.
  • FIG. 1 shows a state in which a substrate placed on a moving table 1 is irradiated with a pulse laser 3 made of a line beam excimer laser.
  • a non-single crystal semiconductor film 2 such as Si amorphous is formed on the substrate.
  • the pulse laser 3 has a line beam length L and a beam width a.
  • the pulse laser 3 is scanned with the non-single crystal at a predetermined pitch and the number of irradiation times.
  • the semiconductor film 2 is irradiated.
  • FIG. 2 shows a beam cross-sectional shape of the pulse laser 3 in the scanning direction. It has a flat portion having an energy intensity of 90% or more with respect to the maximum energy intensity, and the width of the flat portion is indicated as a beam width a.
  • the pulse laser 3 is set to an irradiation pulse energy density E that does not cause the non-single crystal semiconductor film 2 to be microcrystallized when the non-single crystal semiconductor film 2 is irradiated.
  • FIG. 3 is a diagram showing the relationship between the irradiation pulse energy density and the crystal grain size due to laser pulse irradiation. In the region where the irradiation pulse energy density is low, the crystal grain size increases as the irradiation pulse energy density increases. For example, when the irradiation pulse energy density becomes larger than the irradiation pulse energy density E1 in the middle of the process, the crystal grain size rapidly increases.
  • the irradiation pulse energy density E when the irradiation pulse energy density is increased to a certain extent, the crystal grain size hardly increases even if the irradiation pulse energy density is further increased.
  • the irradiation pulse energy density E2 is exceeded, the crystal grain size rapidly increases. It becomes small and microcrystallization occurs. Therefore, the irradiation pulse energy density E can be expressed by E ⁇ E2.
  • FIG. 4 is a diagram showing the relationship of the crystal grain size with respect to the number of irradiations when the irradiation pulse energy density E is set to the irradiation pulse energy density E1 or the irradiation pulse energy density E2.
  • the crystal grain size increases as the number of irradiations increases, but at a certain number of irradiations, the crystal grain size growth does not progress any further and is saturated. To do.
  • This number of times of irradiation is shown as the number of times of irradiation n0 in the present invention.
  • the actual number of irradiations n is set to (n0-1) or more and 3.n0 or less with respect to the number of irradiations n0. Thereby, the non-single-crystal semiconductor film 2 can be crystallized effectively and efficiently.
  • FIG. 5 shows a planned arrangement state of the thin film semiconductors 10 on the non-single crystal semiconductor film 2.
  • Each thin film semiconductor 10 has a source 11, a drain 12, and a channel portion 13 located between the source and drain, and the width of the channel portion 13 in the scanning direction of the pulse laser is a channel region width b.
  • FIG. 5A shows the state of occurrence of the beam joint 3a when the movement amount c for each pulse is larger than the channel region width b.
  • the beam joint 3 a is not located in the channel portion 13 or appears one, and the performance variation of the thin film semiconductor 10 is increased.
  • FIG. 5B shows the state of occurrence of the beam joint 3a when the movement amount c for each pulse is larger than 1 ⁇ 2 of the channel region width b.
  • one or two beam joints 3a appear in the channel portion 13, and although the performance variation of the thin film semiconductor 10 is reduced, it is not sufficiently reduced.
  • FIG. 5A shows the state of occurrence of the beam joint 3a when the movement amount c for each pulse is larger than the channel region width b.
  • the beam joint 3 a is not located in the channel portion 13 or appears one, and the performance variation of the thin film semiconductor 10 is increased.
  • FIG. 5B shows the state of occurrence of the beam joint 3a when the movement amount c for each pulse is larger than 1 ⁇ 2 of the channel region width b
  • 5 (c) is defined in the present invention, and shows the state of occurrence of the beam joint 3a when the movement amount c for each pulse is 1 ⁇ 2 or less of the channel region width b.
  • two or three beam joints 3a appear in the channel portion 13, and the performance variation of the thin film semiconductor 10 is effectively reduced.
  • a 50 nm-thick Si amorphous film was used as a non-single-crystal semiconductor film, and irradiation with a pulsed laser was performed under the following conditions while changing the number of irradiations.
  • Excimer laser LSX315C / wavelength 308nm, frequency 300Hz
  • Beam size beam length 500 mm x beam width 0.13 mm
  • the beam width is a flat part having a maximum energy intensity of 90% or more.
  • Scan pitch 32.5 ⁇ m to 6.5 ⁇ m
  • Irradiation pulse energy density 320 mJ / cm 2 Channel area width: 40 ⁇ m
  • the irradiation pulse energy density is lower than the irradiation pulse energy density at which microcrystals are generated, and it is recognized that the crystal grain size gradually grows from the number of irradiation times 4 to 8 times.
  • the crystal grain size growth is saturated after the number of irradiation times of 8 or more.
  • FIG. 6 shows the change in crystal grain size according to the number of irradiations, and the crystal grain size increases as the number of irradiations increases until the number of irradiations reaches eight. No increase in crystal grain size was observed after 8 irradiations.

Abstract

非単結晶半導体膜をレーザアニールする際に、適切な走査ピッチと照射回数によって前記半導体膜を結晶化することを可能にする。 非単結晶半導体膜上にラインビーム形状のパルスレーザを照射して結晶化を行う結晶半導体膜の製造方法において、パルスレーザは、走査方向のビーム断面形状に強度の均一な平坦部(ビーム幅a)を有し、パルスレーザ照射によって結晶化した半導体膜により形成されるトランジスタのチャンネル領域幅をbとして、パルスレーザは、非単結晶半導体膜に微結晶化が生じる照射パルスエネルギ密度よりも低い照射パルスエネルギ密度Eを有し、パルスレーザの照射回数nは、照射パルスエネルギ密度Eのパルスレーザの照射によって結晶粒径成長が飽和する照射回数n0として(n0-1)以上とし、パルスレーザの走査方向における移動量cをb/2以下とする。

Description

結晶半導体膜の製造方法
 この発明は、非単結晶半導体膜上に、ラインビーム形状のパルスレーザを複数回照射(オーバラップ照射)しつつ移動させて結晶化を行う結晶半導体膜の製造方法に関するものである。
 一般的にTVやPCディスプレイで用いられている薄膜トランジスタは、アモルファス(非結晶)シリコン(以降a-シリコンという)により構成されているが、何らかの手段でシリコンを結晶化(以降p-シリコンという)して利用することでTFTとしての性能を格段に向上させることができる。現在は、低温度でのSi結晶化プロセスとしてエキシマレーザアニール技術がすでに実用化されており、携帯電話等の小型ディスプレイ向け用途で頻繁に利用されており、さらに大画面ディスプレイなどへの実用化がなされている。
 このレーザアニール法では、高いパルスエネルギを持つエキシマレーザを非単結晶半導体膜に照射することで、光エネルギを吸収した半導体が溶融または半溶融状態になり、その後急速に冷却され凝固する際に結晶化する仕組みである。この際には、広い領域を処理するために、ラインビーム形状に整形したパルスレーザを相対的に短軸方向に走査しながら照射する。通常は、単結晶半導体膜を設置した設置台を移動させることでパルスレーザの走査が行われる。
 上記パルスレーザの走査においては、非単結晶半導体膜の同一位置にパルスレーザが複数回照射(オーバーラップ照射)されるように、所定のピッチでパルスレーザを走査方向に移動させている(例えば特許文献1参照)。これにより、サイズの大きい半導体膜のレーザアニール処理を可能にしている。なお、特許文献1では、レーザの順次操作に伴う結晶性の不均一性(ばらつき)が素子間のばらつきを生じさせる原因となるため、パルスレーザの走査方向におけるチャンネル領域のサイズSと、パルスレーザの走査ピッチPとが概略S=nP(nは0を除く整数)となるようにして、結晶性Si膜の結晶分布がパルスレーザ光の走査方向に周期的に変化するパターンとし、各薄膜トランジスタのチャンネル領域における結晶性Si膜は、結晶性分布のパターンの周期的な変化が等しくなるようにしている。
 そして、従来のラインビームを用いたレーザアニール処理では、パルスレーザの走査方向のビーム幅を0.35~0.4mm程度に固定し、パルス毎の基板送り量をビーム幅の3%から8%程度に設定しており、複数の薄膜トランジスタの性能の均一性を確保するには、レーザの照射回数をできるだけ増やすことが必要であると考えられている。
 例えば、LCD用の半導体膜では、オーバーラップ率を92~95%(照射回数12~20回、走査ピッチ32~20μm)、OLED半導体膜では、オーバーラップ率93.8~97%(照射回数16~33回、走査ピッチ25~12μm)に設定している。
特開平10-163495号公報
 しかしながら、本発明者らが検討したところ、走査ピッチを小さな値にする程、レーザの照射回数は増加するが、実際には、所定の条件では照射回数8回程度のように、照射回数がある回数以上になると結晶粒径は増大せず飽和することを見出した。すなわち、必要以上に照射回数を増加させても、レーザ出力を有効利用できず、結晶化処理時間の増大に繋がる。
 また、ビーム幅を必要以上に大きくすると、レーザパルスエネルギは一定であることから所定のエネルギ密度を得るためには必然的にラインビーム長を短くする必要があり、サイズの大きな半導体膜を処理する場合には、処理効率が低下する。
 本願発明は、上記事情を背景としてなされたものであり、レーザパルスの照射回数およびパルス幅を適正に定めて効率的にレーザアニール処理を行うことができる結晶半導体膜の製造方法を提供することを目的とする。
 すなわち、本発明の結晶半導体膜の製造方法は、非単結晶半導体膜上に、ラインビーム形状のパルスレーザを相対的に走査しつつ照射して結晶化を行う結晶半導体膜の製造方法において、前記パルスレーザは、走査方向のビーム断面形状に強度の均一な平坦部(ビーム幅a)を有し、該パルスレーザの照射によって結晶化した半導体膜により形成されるトランジスタの前記走査方向のチャンネル領域幅をbとして、
前記パルスレーザは、該パルスレーザの照射によって前記非単結晶半導体膜に微結晶化が生じる照射パルスエネルギ密度よりも低い照射パルスエネルギ密度Eを有し、
 パルスレーザの照射回数nは、前記照射パルスエネルギ密度Eのパルスレーザの照射によって結晶粒径成長が飽和する際の照射回数をn0として、(n0-1)以上とし、
 前記パルスレーザの前記走査方向におけるパルス毎の移動量cをb/2以下とする、
 ことを特徴とする。
 上記パルスレーザは、上記したように、走査方向のビーム断面形状に強度の均一な平坦部(ビーム幅a)を有している。この平坦部は、最大エネルギ強度に対し、90%以上の領域で示すことができる。
 上記パルスレーザの照射パルスエネルギ密度Eのパルスレーザの照射によって結晶粒径成長が飽和する照射回数をn0とする。なお、照射パルスエネルギ密度Eは、パルスレーザの照射によって前記非単結晶半導体膜に微結晶化が生じる照射パルスエネルギ密度よりも低い値とする。微結晶化が生じるか否かは、電子顕微鏡写真等により判定することができる。
 照射パルスエネルギ密度を微結晶化が生じる値よりも大きな値とすると、結晶粒径が極端に小さくなり、半導体としての電子移動度が1/10程度になってしまう。
 また、照射パルスエネルギ密度Eのパルスレーザの照射によって結晶粒径成長が飽和するとは、個々の粒径が揃い、照射回数を増しても粒径が大きくならない状態をいう。
 さらに、レーザ照射回数が、(n0-1)に達しないと、結晶粒径の成長が十分になされず、異なる粒径の結晶が混在し、電子移動度のバラツキが生じる。同様の理由で望ましくはn0以上である。
 また、レーザ照射回数nは、3・n0以下とするのが望ましい。3・n0を越えると、著しく生産性が低下する。さらには、同様の理由で、2・n0以下が一層望ましい。
 上記パルスレーザの照射によって結晶化した半導体膜に形成されるトランジスタの走査方向のチャンネル領域幅をbとすると、パルスレーザの走査ピッチ、すなわちパルス毎の移動量cは、b/2以下とする。これにより、各チャンネル領域で現れるレーザパルスの継ぎ目は2または3本以上となり、トランジスタの性能ばらつきを低減することができる。一方、移動量cがb/2よりも大きく、b以下であると、チャンネル領域における前記継ぎ目は1本もしくは2本になり、移動量cがbよりも大きくなるとチャンネル領域における前記継ぎ目は0本もしくは1本になり、チャンネル領域でのトランジスタの性能ばらつきが大きくなる。
 上記レーザ照射回数nおよびパルス毎の移動量cによって、パルスレーザのビーム幅aは、a=n・cで示される。このビーム幅は、500μm以下とするのが望ましい。ビーム幅を大きくしすぎると、エネルギ密度を一定にする場合、パルスレーザの長軸方向におけるビーム長が小さくなるので、一走査で処理できる面積が小さくなり、処理効率が低下する。
 また、パルスレーザ走査方向のチャンネル領域幅は1mm以下であるのが望ましい。トランジスタの領域幅、すなわちトランジスタを縮小化すれば、トランジスタ中を電子が流れる時間を短くでき、信号処理速度を向上させることができ、性能の優れた薄膜半導体を得ることができる。
 本発明の処理対象となる半導体は、特定の材質に限定されないが、Siを好適なものとして挙げることができる。また、パルスレーザとしては、エキシマレーザを好適なものとして挙げることができる。
 以上説明したように、本発明の結晶半導体膜の製造方法によれば、非単結晶半導体膜上に、ラインビーム形状のパルスレーザを相対的に走査しつつ照射して結晶化を行う結晶半導体膜の製造方法において、
 前記パルスレーザは、走査方向のビーム断面形状に強度の均一な平坦部(ビーム幅a)を有し、該パルスレーザの照射によって結晶化した半導体膜により形成されるトランジスタの前記走査方向のチャンネル領域幅をbとして、
 前記パルスレーザは、該パルスレーザの照射によって前記非単結晶半導体膜に微結晶化が生じる照射パルスエネルギ密度よりも低い照射パルスエネルギ密度Eを有し、
 パルスレーザの照射回数nは、前記照射パルスエネルギ密度Eのパルスレーザの照射によって結晶粒径成長が飽和する際の照射回数をn0として、(n0-1)以上とし、
 前記パルスレーザの前記走査方向におけるパルス毎の移動量cをb/2以下とするので、適正なパルスレーザ照射回数およびパルス毎の移動量により効率的にレーザアニール処理を行うことができる。また、パルスレーザのビーム幅を適正な値にして、十分なラインビーム長を得ることができ、さらに効率的な処理が可能になる効果がある。
本発明の一実施形態における、非単結晶半導体膜に対するパルスレーザ照射状態を示す図である。 同じく、パルスレーザの走査方向のビーム断面形状を示す図である。 同じく、パルスレーザの照射パルスエネルギ密度とパルスレーザの照射による結晶粒径の大きさの関係を示す図である 同じく、パルスレーザが所定の照射パルスエネルギ密度の場合に、照射回数と結晶粒径との関係を示す図である。 同じく、パルス毎の移動量とチャンネル領域幅との関係におけるビーム継ぎ目の発生状況を示す図である。 本発明の一実施例における結晶化半導体を示す図面代用写真である。 同じく、照射回数に対する粒径変化の関係を示すグラフである。
 以下に、本発明の一実施形態を説明する。
図1は、移動台1上に載置された基板にラインビーム状のエキシマレーザからなるパルスレーザ3が照射されている状態を示している。基板には、Siアモルファスなどの非単結晶半導体膜2が形成されている。パルスレーザ3は、ラインビーム長Lおよびビーム幅aを有しており、移動台1を所定のピッチで移動させることで、パルスレーザ3が走査されつつ、所定のピッチおよび照射回数で非単結晶半導体膜2上に照射される。
 図2は、パルスレーザ3の走査方向のビーム断面形状を示すものである。最大エネルギ強度に対し、90%以上のエネルギ強度を有する平坦部を有しており、該平坦部の幅がビーム幅aとして示される。
 また、パルスレーザ3は、非単結晶半導体膜2に照射される際に、該非単結晶半導体膜2が微結晶化しない照射パルスエネルギ密度Eに設定されている。
 図3は、照射パルスエネルギ密度とレーザパルスの照射による結晶粒径の大きさの関係を示す図である。照射パルスエネルギ密度が低い領域では、照射パルスエネルギ密度が増すに連れて結晶粒径が大きくなっている。例えば、その途中の照射パルスエネルギ密度E1よりも照射パルスエネルギ密度が大きくなると結晶粒径が急激に大きくなる。一方、照射パルスエネルギ密度がある程度に迄大きくなると、それ以上に照射パルスエネルギ密度が大きくなっても結晶粒径の増大は殆どなく、ある照射パルスエネルギ密度E2を越えると、結晶粒径が急激に小さくなって微結晶化が生じる。したがって上記照射パルスエネルギ密度Eは、E≦E2で示すことができる。
 照射パルスエネルギ密度を上記Eの値に設定して、非単結晶半導体膜2に照射する際には、ある回数以上に照射回数を設定しても、結晶粒径成長が飽和する。結晶粒径成長の飽和は、SEM写真により判定する。
 図4は、照射パルスエネルギ密度Eを、上記照射パルスエネルギ密度E1または照射パルスエネルギ密度E2に設定した場合に、照射回数に対する結晶粒径の関係を示す図である。いずれの照射パルスエネルギ密度の場合も、ある照射回数までは、照射回数が増加するに連れて結晶粒径が大きくなるが、ある照射回数になると結晶粒径成長はそれ以上には進行せず飽和する。この照射回数が本発明における照射回数n0として示される。
 実際の照射回数nは、前記照射回数n0に対し、(n0-1)以上、3・n0以下に設定する。これにより、非単結晶半導体膜2を効果的かつ効率的に結晶化することができる。
 上記パルスレーザの照射によって結晶化された結晶化半導体膜では、所定の間隔で薄膜半導体が形成される。薄膜半導体では、それぞれ所定のチャンネル領域幅bを有しており、該間隔は、好適には1mm以下に設定される。
 非単結晶半導体膜2上における薄膜半導体10の配列予定状態を図5に示す。各薄膜半導体10では、ソース11、ドレイン12、ソース、ドレイン間に位置するチャンネル部13を有しており、該チャンネル部13のパルスレーザの走査方向幅が、チャンネル領域幅bとなっている。上記非単結晶半導体膜2に対し走査ピッチ(パルス毎の移動量)cによってパルスレーザ3を照射、移動させると、パルス毎の移動に応じて結晶化半導体膜上にビームの継ぎ目3aが現れる。
 図5(a)は、パルス毎の移動量cを前記チャンネル領域幅bよりも大きくした場合のビーム継ぎ目3aの発生状況を示している。この例では、ビーム継ぎ目3aは、チャンネル部13に位置しないか1本現れることになり、薄膜半導体10の性能ばらつきを大きくする。
 図5(b)は、パルス毎の移動量cを前記チャンネル領域幅bの1/2よりも大きくした場合のビーム継ぎ目3aの発生状況を示している。この例では、ビーム継ぎ目3aは、チャンネル部13に1本または2本現れることになり、薄膜半導体10の性能ばらつきは低減されるものの、十分に低減されるものではない。
 図5(c)は、本発明で規定されているものであり、パルス毎の移動量cを前記チャンネル領域幅bの1/2以下にした場合のビーム継ぎ目3aの発生状況を示している。この例では、ビーム継ぎ目3aは、チャンネル部13に2本または3本現れることになり、薄膜半導体10の性能ばらつきは効果的に低減される。
 上記パルス毎の移動量cにおいて、照射回数をn回に設定する場合、ビーム幅aは、a=n・cで示される。上記設定によりパルス毎の移動量cは小さく設定でき、また、照射回数も結晶化を良好に行える回数であって必要以上には多くならない。この結果、ビーム幅を例えば500μm以下に小さくすることができ、その結果、ビーム長を大きくして大サイズの非単結晶半導体膜を効率よく処理することが可能になる。
 以下に、本発明の一実施例を説明する。
 50nm厚のSiアモルファスを非単結晶半導体膜として、以下の条件で照射回数を変えてパルスレーザの照射を行った。
 エキシマレーザ :LSX315C/波長308nm、周波数300Hz
 ビームサイズ  :ビーム長500mm×ビーム幅0.13mm
          ビーム幅は、最大エネルギ強度90%以上の平坦部
 スキャンピッチ :32.5μm~6.5μm
 照射パルスエネルギ密度
         :320mJ/cm
 チャンネル領域幅:40μm
 上記パルスレーザでは、照射パルスエネルギ密度は、微結晶が生じる照射パルスエネルギ密度以下になっており、照射回数4回から照射回数8回までは結晶粒径が次第に成長していることが認められるが、照射回数8回以降では結晶粒径成長が飽和する。
 所定の照射回数でパルスレーザを照射した部位について、SEM写真により観察し、該写真を図6で示した。図6に示すように、照射回数8回で、良好に結晶化がなされており、照射回数を12、16、20回に増やした場合でも、結晶粒径の増加は殆ど見られなかった。
 図7は、照射回数に応じた結晶粒径の変化を示すものであり、照射回数8回に至るまでは、照射回数の増加に応じて結晶粒径が増大している。照射回数8回以降では結晶粒径の増大は見られなかった。
 1  移動台
 2  非単結晶半導体膜
 3  パルスレーザ
 3a ビーム継ぎ目
10  薄膜半導体
11  ソース
12  ドレイン
13  チャンネル部

Claims (6)

  1.  非単結晶半導体膜上に、ラインビーム形状のパルスレーザを相対的に走査しつつ照射して結晶化を行う結晶半導体膜の製造方法において、
     前記パルスレーザは、走査方向のビーム断面形状に強度の均一な平坦部を有し、該パルスレーザの照射によって結晶化した半導体膜により形成されるトランジスタの前記走査方向のチャンネル領域幅をbとして、
     前記パルスレーザは、該パルスレーザの照射によって前記非単結晶半導体膜に微結晶化が生じる照射パルスエネルギ密度よりも低い照射パルスエネルギ密度Eを有し、
     パルスレーザの照射回数nは、前記照射パルスエネルギ密度Eのパルスレーザの照射によって結晶粒径成長が飽和する際の照射回数をn0として(n0-1)以上とし、
     前記パルスレーザの前記走査方向におけるパルス毎の移動量cをb/2以下とする、
     ことを特徴とする結晶半導体膜の製造方法。
  2.  前記パルスレーザ照射回数nは、(n0-1)以上、3・n0以下であることを特徴とする請求項1記載の結晶半導体膜の製造方法。
  3.  前記ビーム幅が500μm以下であることを特徴とする請求項1または2に記載の結晶半導体膜の製造方法。
  4.  前記チャンネル領域幅が1mm以下であることを特徴とする請求項1~3のいずれかに記載の結晶半導体膜の製造方法。
  5.  前記非単結晶半導体がSiであることを特徴とする請求項1~4のいずれかに記載の結晶半導体膜の製造方法。
  6.  前記パルスレーザがエキシマレーザであることを特徴とする請求項1~5のいずれかに記載の結晶半導体膜の製造方法。
PCT/JP2010/066174 2009-11-20 2010-09-17 結晶半導体膜の製造方法 WO2011061991A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127015735A KR101259936B1 (ko) 2009-11-20 2010-09-17 결정 반도체막의 제조 방법
CN201080052451XA CN102630336B (zh) 2009-11-20 2010-09-17 结晶半导体膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009264812A JP4947667B2 (ja) 2009-11-20 2009-11-20 結晶半導体膜の製造方法
JP2009-264812 2009-11-20

Publications (1)

Publication Number Publication Date
WO2011061991A1 true WO2011061991A1 (ja) 2011-05-26

Family

ID=44059476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066174 WO2011061991A1 (ja) 2009-11-20 2010-09-17 結晶半導体膜の製造方法

Country Status (5)

Country Link
JP (1) JP4947667B2 (ja)
KR (1) KR101259936B1 (ja)
CN (1) CN102630336B (ja)
TW (1) TWI457989B (ja)
WO (1) WO2011061991A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462261B (zh) * 2011-10-28 2014-11-21 Alpha & Omega Semiconductor Cayman Ltd 結合封裝高端及低端晶片之半導體元件及其製造方法
JP5918118B2 (ja) * 2012-12-18 2016-05-18 株式会社日本製鋼所 結晶半導体膜の製造方法
KR102480839B1 (ko) * 2016-07-05 2022-12-26 삼성디스플레이 주식회사 레이저 결정화 장치 및 이의 구동 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074697A (ja) * 1996-08-29 1998-03-17 Toshiba Corp 多結晶シリコン膜、多結晶シリコンの製造方法、薄膜トランジスタの製造方法、液晶表示装置の製造方法、及びレーザアニール装置
JP2001053020A (ja) * 1999-08-06 2001-02-23 Sony Corp 半導体薄膜の結晶化方法及び薄膜半導体装置の製造方法
JP2002176180A (ja) * 2000-12-06 2002-06-21 Hitachi Ltd 薄膜半導体素子及びその製造方法
JP2007035812A (ja) * 2005-07-26 2007-02-08 Mitsubishi Electric Corp 多結晶シリコン膜の製造方法および薄膜トランジスタ
JP2008091811A (ja) * 2006-10-05 2008-04-17 Ihi Corp レーザアニール方法及びレーザアニール装置
JP2009004629A (ja) * 2007-06-22 2009-01-08 Semiconductor Energy Lab Co Ltd 多結晶半導体膜形成方法及び多結晶半導体膜形成装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183358A (ja) * 1998-07-17 2000-06-30 Sony Corp 薄膜半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074697A (ja) * 1996-08-29 1998-03-17 Toshiba Corp 多結晶シリコン膜、多結晶シリコンの製造方法、薄膜トランジスタの製造方法、液晶表示装置の製造方法、及びレーザアニール装置
JP2001053020A (ja) * 1999-08-06 2001-02-23 Sony Corp 半導体薄膜の結晶化方法及び薄膜半導体装置の製造方法
JP2002176180A (ja) * 2000-12-06 2002-06-21 Hitachi Ltd 薄膜半導体素子及びその製造方法
JP2007035812A (ja) * 2005-07-26 2007-02-08 Mitsubishi Electric Corp 多結晶シリコン膜の製造方法および薄膜トランジスタ
JP2008091811A (ja) * 2006-10-05 2008-04-17 Ihi Corp レーザアニール方法及びレーザアニール装置
JP2009004629A (ja) * 2007-06-22 2009-01-08 Semiconductor Energy Lab Co Ltd 多結晶半導体膜形成方法及び多結晶半導体膜形成装置

Also Published As

Publication number Publication date
TW201133572A (en) 2011-10-01
KR101259936B1 (ko) 2013-05-02
JP2011108987A (ja) 2011-06-02
TWI457989B (zh) 2014-10-21
KR20120073371A (ko) 2012-07-04
CN102630336B (zh) 2013-05-08
CN102630336A (zh) 2012-08-08
JP4947667B2 (ja) 2012-06-06

Similar Documents

Publication Publication Date Title
US7645337B2 (en) Systems and methods for creating crystallographic-orientation controlled poly-silicon films
KR101212378B1 (ko) 결정 방위 제어형 폴리실리콘막을 생성하기 위한 장치 및 방법
JP2004311935A (ja) 単結晶シリコン膜の製造方法
JP5918118B2 (ja) 結晶半導体膜の製造方法
JP4947667B2 (ja) 結晶半導体膜の製造方法
JP2007281421A (ja) 半導体薄膜の結晶化方法
JP2007281420A (ja) 半導体薄膜の結晶化方法
JP2005197658A (ja) 多結晶シリコン膜の形成方法
CN1716071A (zh) 结晶方法、薄膜晶体管制造方法、薄膜晶体管及显示装置
JP2007208180A (ja) レーザアニール技術、半導体膜、半導体装置、及び電気光学装置
JP4389514B2 (ja) 薄膜半導体の形成方法
JP2014072496A (ja) 結晶半導体膜の製造方法および製造装置
JP2007281465A (ja) 多結晶膜の形成方法
JP4365757B2 (ja) 多結晶シリコン薄膜トランジスタの多結晶シリコン膜の形成方法
JP2007208174A (ja) レーザアニール技術、半導体膜、半導体装置、及び電気光学装置
WO2010101066A1 (ja) 結晶質膜の製造方法および結晶質膜製造装置
JP5339322B2 (ja) レーザによるシリコン結晶成長方法
JP6687497B2 (ja) 結晶半導体膜製造方法、結晶半導体膜製造装置および結晶半導体膜製造装置の制御方法
CN114068307A (zh) 低温多晶硅薄膜及其制备方法、阵列基板、显示装置
TW201104755A (en) Method of fabrication crystalline film and fabricating apparatus
JP2007220948A5 (ja)
JP2007251179A (ja) 結晶化パターンおよびこれを用いた非晶質シリコンの結晶化方法
JP2007134637A (ja) 半導体薄膜の製造装置及び半導体薄膜の製造方法
JP2005252287A (ja) レーザ熱処理方法、レーザ熱処理装置および半導体デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052451.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127015735

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10831390

Country of ref document: EP

Kind code of ref document: A1