WO2011052160A1 - Ito焼結体の製造方法及びitoスパッタリングターゲットの製造方法 - Google Patents

Ito焼結体の製造方法及びitoスパッタリングターゲットの製造方法 Download PDF

Info

Publication number
WO2011052160A1
WO2011052160A1 PCT/JP2010/006213 JP2010006213W WO2011052160A1 WO 2011052160 A1 WO2011052160 A1 WO 2011052160A1 JP 2010006213 W JP2010006213 W JP 2010006213W WO 2011052160 A1 WO2011052160 A1 WO 2011052160A1
Authority
WO
WIPO (PCT)
Prior art keywords
ito
powder
average particle
sintered
ito powder
Prior art date
Application number
PCT/JP2010/006213
Other languages
English (en)
French (fr)
Inventor
五月 長山
馨 里之園
幸一 木浦
直人 樋高
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020117011579A priority Critical patent/KR101259713B1/ko
Priority to CN2010800037167A priority patent/CN102264666A/zh
Publication of WO2011052160A1 publication Critical patent/WO2011052160A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting

Definitions

  • the present invention relates to a method for manufacturing an ITO sintered body used as a sputtering target, for example, and a method for manufacturing an ITO sputtering target.
  • ITO films mainly composed of indium oxide and tin oxide are widely used as transparent conductive films.
  • the ITO film is formed by a vacuum deposition method, a sputtering method, or the like.
  • a sputtering target made of ITO is used in the sputtering method.
  • a sintered body of a mixed powder of indium oxide and tin oxide is widely used for the ITO target.
  • recycling of used ITO targets has been studied in order to reduce manufacturing costs (see, for example, Patent Documents 1 to 3).
  • Patent Document 1 discloses a method for manufacturing an ITO sintered body, in which an ITO target surface deposit after use in sputtering film formation is removed, and then the powder is self-pulverized to form a powder, which is then sintered. Is described.
  • Patent Document 2 after the scraped ITO sintered body is pulverized into granules of 0.5 mm or less, the ITO granules are mixed with a powder consisting essentially of indium, tin, and oxygen, and then molded, sintered, and the like.
  • a method for regenerating an ITO sintered body that performs ligation is disclosed.
  • ITO recycled powder is heat-treated and molded by a mud casting method using a powder having a specific surface area adjusted to a range of 2.5 to 7.0 m 2 / g, and the resulting molded body is dried. Thereafter, a method for producing an ITO sintered body, which is fired in an oxygen atmosphere, is described.
  • JP 7-316798 A Japanese Patent Laid-Open No. 11-100300 (paragraph [0009]) JP 11-228219 A (paragraph [0005])
  • the sputtering target In order to realize stable sputter deposition and high-quality thin film formation, the sputtering target is required to have a dense and uniform structure. For this reason, it is essential to refine the raw material powder to improve the sintered density.
  • it is expensive to refine the sintered body as a raw material, and it is possible to manufacture an ITO sintered body with high density and high homogeneity at low cost. There is a problem that it is difficult.
  • an object of the present invention is to provide an ITO sintered body manufacturing method and an ITO sputtering target manufacturing method capable of manufacturing a high-quality sintered body at low cost.
  • a method for producing an ITO sintered body includes a step of crushing a sintered piece group mainly composed of indium oxide and tin oxide while stirring in a container.
  • a second ITO powder having a second average particle size smaller than the first average particle size is produced.
  • a third ITO powder having a third average particle size smaller than the second average particle size by mixing indium oxide powder and tin oxide powder with the second ITO powder and grinding the mixed powder. Is produced.
  • the molded body is produced by casting a slurry containing the third ITO powder into a mold, the molded body is sintered.
  • the manufacturing method of the ITO sputtering target which concerns on one form of this invention is crushing, stirring the sintered-piece group which has an indium oxide and a tin oxide as a main component in a container, Producing a first ITO powder having a first average particle size.
  • a second ITO powder having a second average particle size smaller than the first average particle size is produced.
  • a third ITO powder having a third average particle size smaller than the second average particle size by mixing indium oxide powder and tin oxide powder with the second ITO powder and grinding the mixed powder. Is produced.
  • the molded body is produced by casting a slurry containing the third ITO powder into a mold, the molded body is sintered.
  • the first average particle size is obtained by crushing a sintered piece group mainly composed of indium oxide and tin oxide while stirring in a container.
  • the process of producing the 1st ITO powder which has is included.
  • the first ITO powder is crushed into a size having a first average particle diameter (for example, 2 ⁇ m) by a collision action between the sintered pieces.
  • the sintered piece group can be a small piece of a regular or irregular shaped ITO sintered material, or a divided piece obtained by dividing the sintered material into an appropriate shape. Examples of the sintered material include waste materials inevitably generated during the production of ITO sintered products, used sintered products, and the like. Typically, the sintered products are ITO sputtering targets.
  • average particle diameter means a value in which the integrated percentage of the particle size distribution measured by the laser diffraction / scattering method is 50%. Moreover, the value measured by a laser diffraction / scattering particle size analyzer (MT3000II) manufactured by Nikkiso Co., Ltd. was used as the value of the average particle size.
  • the first ITO powder is produced by crushing the sintered piece group in a resin container. Thereby, compared with the case where the said ITO powder is produced, for example in a metal container, mixing of the impurity in powder can be suppressed.
  • the resin component may be mixed in the powder, but the resin component can be lost in the degreasing step or the sintering step.
  • the first ITO powder is pulverized by a medium stirring mill or a jet mill to produce a second ITO powder having a second average particle diameter (for example, 0.6 ⁇ m).
  • a second average particle diameter for example, 0.6 ⁇ m
  • Examples of the medium agitation mill include a vibration ball mill and a rod mill.
  • the medium stirring mill or the jet mill may be wet or dry.
  • a vibration ball mill is suitably used as the medium stirring mill.
  • a wet jet mill is suitable as the medium stirring mill.
  • an indium oxide powder and a tin oxide powder are mixed with the second ITO powder, and the mixed powder is pulverized, whereby a third average particle diameter (for example, 0. 0. 0) smaller than the second average particle diameter.
  • a third ITO powder having a thickness of 20 ⁇ m to 0.30 ⁇ m is produced.
  • the indium oxide powder and the tin oxide powder mixed with the second ITO powder unused powders are used, respectively, but are not limited thereto.
  • the average particle diameter of the indium oxide powder and the tin oxide powder is not particularly limited, and an appropriate particle diameter can be adopted.
  • the third ITO powder can be produced using a medium stirring mill. Thereby, an ITO powder having a relatively fine average particle diameter can be easily produced.
  • a medium stirring mill a ball mill, a rod mill, or the like is applicable, but a vibration ball mill is preferable.
  • the average particle size (third average particle size) of the third ITO powder By setting the average particle size (third average particle size) of the third ITO powder to 0.20 ⁇ m or more and 0.30 ⁇ m or less, the relative density is 99.8% or more, and the composition uniformity is excellent. A high quality ITO sintered body can be produced.
  • the mixing ratio of the second ITO powder in the third ITO powder can be 10% by weight or more and 40% by weight or less. Thereby, the material cost of ITO sintered compact can be reduced effectively. If the mixing ratio of the second ITO powder exceeds 40% by weight, the target average particle diameter of the third ITO powder and the target relative density and composition of the ITO sintered body may not be obtained. is there. Further, when the mixing ratio of the second ITO powder is less than 10% by weight, the effect of reducing the material cost of the ITO sintered body is lowered.
  • a molded body is produced by casting the slurry containing the third ITO powder into a mold, and the objective ITO sintered body is produced by sintering the molded body.
  • a low-viscosity slurry slurry
  • a water-absorbing mold such as a plaster mold
  • a powder deposition layer is formed on the mold inner wall of the mold, dried, and then removed from the mold. This is a method for obtaining a molded body.
  • a molded body can be produced at a relatively low cost.
  • the raw material cost can be reduced because the crushed powder of the existing sintered piece is used as a part of the raw material of the sintered body.
  • the crushed powder of the above sintered pieces is refined step by step, the sintered particles can be refined without significantly increasing the number of processes or special treatment, and a high-quality sintered body can be achieved. It can be manufactured at a relatively low cost. Therefore, a high-quality ITO sputtering target can be manufactured through the above processing.
  • FIG. 1 is a process diagram illustrating a method for manufacturing an ITO sintered body according to an embodiment of the present invention.
  • 2 to 7 are schematic diagrams for explaining each process.
  • the sintered piece preparation process step 1
  • the coarse pulverization process step 2)
  • the fine pulverization process step 3
  • the mixing / fine pulverization process step 4
  • the slurry adjustment process step 4
  • Step 5 forming step (Step 6)
  • sintering step Step 7
  • a sintered piece to be a part of the raw material is prepared.
  • the target sintered piece 2 a is manufactured by dividing the used ITO sputtering target 2 into an appropriate shape and size.
  • the sputtering target 2 is used in a form separated from the backing plate 1 that supports the sputtering target 2.
  • the separated sputtering target 2 is washed with an acid in order to remove the brazing material such as In and impurities adhering to the surface, and then a sintered piece 2a is produced.
  • the sputtering target 2 to be used one having the same composition as a new ITO sintered body produced using this as a raw material is used.
  • the resin container 3a By producing the first ITO powder P1 in the resin container 3a, it is possible to suppress the mixing of impurities into the powder as compared with the case of producing the ITO powder in a metal container, for example.
  • the resin component may be mixed in the powder, but the resin component can be eliminated in the degreasing step or the sintering step.
  • the first ITO powder P1 is pulverized using a vibration ball mill or a wet jet mill to produce a second ITO powder (P2) having a second average particle diameter.
  • the first ITO powder can be further miniaturized.
  • size of a 2nd average particle diameter is not specifically limited, For example, it can be 0.6 micrometer.
  • the second ITO powder is pulverized in a resin container.
  • a vibration ball mill When used, a ball having a resin coating on the surface is used as a stirring medium. Thereby, it becomes possible to suppress mixing of different metals into the second ITO powder.
  • This fine pulverization step can be performed by adding pure water or an appropriate dispersant into the container. The obtained second ITO powder is dried as necessary.
  • the second ITO powder P2 is mixed with indium oxide (In 2 O 3 ) powder P2a and tin oxide (SnO 2 ) powder P2b.
  • a third ITO powder P3 having a third average particle diameter is produced.
  • the average particle diameter of the third ITO powder P3 is 0.20 ⁇ m or more and 0.30 ⁇ m or less, a high-quality ITO sintered body having a relative density of 99.8% or more and excellent composition uniformity is obtained. Can be manufactured.
  • the indium oxide powder P2a and the tin oxide powder P2b mixed with the second ITO powder P2 unused powder is used.
  • the raw material cost can be reduced by combining raw material powder produced from a pre-made sintered piece and unused raw material powder.
  • used materials such as a sputtering target can be efficiently recycled.
  • indium oxide powder P2a having an average particle diameter of 0.9 ⁇ m and tin oxide powder P2b having an average particle diameter of 1.3 ⁇ m are used.
  • the average particle diameters of the indium oxide powder P2a and the tin oxide powder P2b are not limited to the above examples, and for example, those having a size equal to or smaller than the average particle diameter of the second ITO powder P2 can be used.
  • the addition amount of the indium oxide powder P2a and the tin oxide powder P2b can be appropriately adjusted according to the component composition of the second ITO powder P2 and the component composition of the target ITO sintered body.
  • the indium oxide powder P2a and the tin oxide powder P2b are mixed with the second ITO powder P2 so that the weight ratio is 9: 1.
  • the mixing ratio of the second ITO powder P2 in the third ITO powder P3 can be 10 wt% or more and 40 wt% or less. Thereby, the material cost of ITO sintered compact can be reduced effectively.
  • the third ITO powder P3 is pulverized in the resin container 3b.
  • a ball mill is used, a ball having a resin coating on the surface is used as a stirring medium. Thereby, it becomes possible to suppress the mixing of different metals into the third ITO powder P3.
  • This mixing step can be performed by adding pure water or an appropriate dispersant into the container 3b.
  • the slurry S containing the third ITO powder P3 is prepared (FIG. 5B).
  • the slurry S is a liquid material in which the third ITO powder P3 is suspended in pure water, and is adjusted so that the concentration of the ITO powder P3 in the slurry is, for example, 70% to 80%.
  • the adjustment process of the slurry S may be included in the mixing process. In this case, the slurry S is adjusted at the final stage of the mixing process.
  • the molded body 4 is obtained by filling the molding die 4 shown in FIGS. 6A and 6B with the slurry S.
  • the mold 4 is made of a water-absorbing material such as gypsum, and includes a main body 4a and a lid 4b.
  • the main body 4a has an internal space 4c and a casting port 4d communicating with the internal space.
  • the illustrated configuration is an example, and the shape of the internal space 4c, the position of the casting port 4d, and the like can be set as appropriate.
  • the slurry S is filled into the internal space 4c through the casting port 4d at a predetermined pressure, and the state is maintained for a predetermined time. Thereby, the water
  • the molding die 4 is formed by using gypsum slurry as a raw material, molding it, and then drying.
  • the ratio of water that is the solvent of the gypsum slurry can be 50 wt% or more and 65 wt% or less.
  • the amount of the solvent in the gypsum slurry is excessive (for example, exceeding 65% by weight), the liquid absorption amount of the mold increases, but the average pore diameter of the mold also increases, so that the water absorption due to the capillary phenomenon is increased. Get smaller.
  • the amount of the solvent in the gypsum slurry is small (for example, less than 50% by weight), the amount of liquid absorbed by the mold becomes small. As a result, it becomes difficult to produce a satisfactory molded product.
  • the produced molded body is dried through a drying process.
  • the drying process can be performed in a drying chamber maintained at a predetermined temperature. You may implement the degreasing
  • a sintering process produces the target ITO sintered compact Sc by sintering the obtained molded object. Sintering is performed, for example, in the atmosphere, and the sintering temperature can be set at, for example, 1500 ° C. to 1650 ° C.
  • the ITO sintered body Sc produced as described above has a relative density of 99.8% or more and an average crystal grain size of 5 ⁇ m or less.
  • the ITO sputtering target is produced by cutting or grinding the sintered body Sc into a predetermined shape.
  • the relative density and crystal grain size of the sintered body Sc are mainly determined by the average particle size of the ITO powder P3 in the slurry, and the average particle size of the ITO powder P3 is set to 0.2 ⁇ m to 0.3 ⁇ m as described above. It becomes possible to stably obtain a sintered body having various characteristics. Moreover, since the pulverized powder (P1) of the sintered piece 2a is refined stepwise, refinement of the sintered particles can be achieved without requiring a significant increase in the number of steps or special processing. Therefore, according to this embodiment, a high-density sintered body with fine crystal grains and a uniform structure can be produced at a low cost.
  • the sputtering target produced as described above can suppress the generation of nodules and realize stable sputtering film formation.
  • Example 1 The used ITO target was heated to 200 ° C. and peeled off from the backing plate, and immersed in 50% dilute sulfuric acid for 24 hours to remove the bonding brazing material adhering to the surface.
  • the ITO target was divided into appropriate sizes to produce target pieces as sintered pieces. Each target piece was crushed by putting 200 kg of these target pieces into a resin container having a capacity of 300 liters together with 20 liters of pure water and stirring the container at a rotation speed of 35 rpm for 24 hours. Thereafter, the crushed powder was classified, and a powder of 100 ⁇ m or less was collected. The powder was dried at 200 ° C. for 24 hours, and this was used as a first ITO powder. The average particle diameter of the obtained first ITO powder was 2 ⁇ m (maximum value 80 ⁇ m).
  • the first ITO powder was pulverized using a vibration ball mill to produce a second ITO powder. More specifically, in a resin container having a capacity of 50 liters, 9 kg of the first ITO powder and 50 kg of a 10 mm diameter ball (stirring medium) coated on the surface with resin are added, and further 10 liters of pure water and carboxylic acid are added.
  • the first ITO powder was pulverized for 5 hours under the condition of an amplitude of 8 mm.
  • the average particle diameter of the obtained second ITO powder was 0.6 ⁇ m (maximum value 5 ⁇ m).
  • the second ITO powder was dried at 200 ° C. for 24 hours and then crushed by a spin mill. Then, in a resin container having a capacity of 200 liters, this second ITO powder 30 wt% (42 kg), unused raw material powder 70 wt% (indium oxide powder 88.2 kg, tin oxide powder 9.8 kg), 272 kg of zirconia balls (stirring medium) having a diameter of 10 mm were added, and 37.4 liters of pure water and 2.31 liters of a carboxylic acid dispersant were added and mixed for 84 hours. This produced a slurry containing the third ITO powder having an average particle diameter of 0.25 ⁇ m (maximum value 2 ⁇ m).
  • the slurry concentration was 78% and the viscosity was 200 cps.
  • 1% by weight of a carboxylic acid binder was added to the prepared slurry, and the slurry was vacuum degassed for 30 minutes at a rotation speed of 20 rpm.
  • a gypsum mold having a double-sided wall structure capable of producing a molded body having a length of 415 mm, a width of 780 mm, and a thickness of 10.5 mm was prepared.
  • the slurry was poured into this gypsum mold at a molding pressure of 3 kg / cm 2 by adjusting the casting valve of the defoaming machine and molded.
  • the molding time was 80 minutes.
  • the obtained molded body was naturally dried in a drying room at 30 ° C. for 6 days to obtain a molded body having a length of 380 mm, a width of 780 mm, and a thickness of 10.5 mm. Thereafter, the molded body was degreased at 600 ° C. for 3 hours in the air. After degreasing, the compact was sintered.
  • the sintering temperature was 1600 ° C. and the sintering time was 8 hours.
  • the sintering atmosphere was an oxygen atmosphere, and the amount of oxygen introduced was 200
  • the obtained sintered body had a length of 310 mm, a width of 620 mm, and a thickness of 8.5 mm. Both sides of this sintered body were ground and the end face was cut to finish the length to 300 mm, width 610 mm, and thickness 7 mm.
  • the average crystal grain size of the sintered body was 4.2 ⁇ m, and the relative density was 99.8%.
  • This sintered body was reprocessed to a length of 127 mm, a width of 381 mm, and a thickness of 6 mm, and bonded to a copper backing plate to produce an ITO sputtering target.
  • the target When the target was incorporated into a sputtering apparatus and sputtered 100 kWh, it was confirmed that no nodules were generated on the target surface. Furthermore, when the resistance value of the ITO film (200 nm) formed using the sputtering target was measured, it was 0.2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. As a result, it was confirmed that the ITO film had a resistance value equivalent to that of an ITO film formed using an ITO target sintered only with unused raw material powder.
  • Example 2 The used ITO target was heated to 200 ° C. and peeled off from the backing plate, and immersed in 50% dilute sulfuric acid for 24 hours to remove the bonding brazing material adhering to the surface.
  • the ITO target was divided into appropriate sizes to produce target pieces as sintered pieces. Each target piece was crushed by putting 200 kg of these target pieces into a resin container having a capacity of 300 liters together with 20 liters of pure water and stirring the container at a rotation speed of 35 rpm for 24 hours. Thereafter, the crushed powder was classified, and a powder of 100 ⁇ m or less was collected, and this was used as the first ITO powder.
  • the average particle diameter of the obtained first ITO powder was 2 ⁇ m (maximum value 80 ⁇ m).
  • the first ITO powder was pulverized using a vibration ball mill to produce a second ITO powder. More specifically, in a resin container having a capacity of 50 liters, 9 kg of the first ITO powder and 50 kg of a 10 mm diameter ball (stirring medium) coated on the surface with resin are added, and further 10 liters of pure water and carboxylic acid are added.
  • the first ITO powder was pulverized for 5 hours under the condition of an amplitude of 8 mm.
  • the average particle diameter of the obtained second ITO powder was 0.6 ⁇ m (maximum value 5 ⁇ m).
  • the second ITO powder was dried at 200 ° C. for 24 hours and then crushed by a spin mill. Then, in a resin container having a capacity of 200 liters, this second ITO powder 10 wt% (14 kg), unused raw material powder 90 wt% (indium oxide powder 113.4 kg, tin oxide powder 12.6 kg), 272 kg of zirconia balls (stirring medium) having a diameter of 10 mm were added, and 37.4 liters of pure water and 2.31 liters of a carboxylic acid dispersant were added and mixed for 84 hours. This produced a slurry containing the third ITO powder having an average particle diameter of 0.25 ⁇ m (maximum value 2 ⁇ m).
  • the slurry concentration was 78% and the viscosity was 200 cps.
  • 1% by weight of a carboxylic acid binder was added to the prepared slurry, and the slurry was vacuum degassed for 30 minutes at a rotation speed of 20 rpm.
  • a gypsum mold having a double-sided wall structure capable of producing a molded body having a length of 415 mm, a width of 780 mm, and a thickness of 17 mm was prepared.
  • the slurry was poured into this gypsum mold at a molding pressure of 3 kg / cm 2 by adjusting the casting valve of the defoaming machine and molded.
  • the molding time was 80 minutes.
  • the obtained molded body was naturally dried in a drying room at 30 ° C. for 6 days to obtain a molded body having a length of 380 mm, a width of 780 mm, and a thickness of 17 mm. Thereafter, the molded body was degreased at 600 ° C. for 3 hours in the air. After degreasing, the compact was sintered.
  • the sintering temperature was 1600 ° C. and the sintering time was 8 hours.
  • the sintering atmosphere was an oxygen atmosphere, and the amount of oxygen introduced was 200 liter
  • the obtained sintered body was 310 mm long, 610 mm wide, and 15 mm thick. Both sides of this sintered body were ground and the end face was cut to finish the length to 300 mm, width 610 mm, and thickness 7 mm.
  • the average crystal grain size of the sintered body was 4.3 ⁇ m, and the relative density was 99.9%.
  • This sintered body was reprocessed to a length of 127 mm, a width of 381 mm, and a thickness of 6 mm, and bonded to a copper backing plate to produce an ITO sputtering target.
  • the target When the target was incorporated into a sputtering apparatus and sputtered 100 kWh, it was confirmed that no nodules were generated on the target surface. Furthermore, when the resistance value of the ITO film (200 nm) formed using the sputtering target was measured, it was 0.2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. As a result, it was confirmed that the ITO film had a resistance value equivalent to that of an ITO film formed using an ITO target sintered only with unused raw material powder.
  • Example 3 The used ITO target was heated to 200 ° C. and peeled off from the backing plate, and immersed in 50% dilute sulfuric acid for 24 hours to remove the bonding brazing material adhering to the surface.
  • the ITO target was divided into appropriate sizes to produce target pieces as sintered pieces. Each target piece was crushed by putting 200 kg of these target pieces into a resin container having a capacity of 300 liters together with 20 liters of pure water and stirring the container at a rotation speed of 35 rpm for 24 hours. Thereafter, the crushed powder was classified, and a powder of 100 ⁇ m or less was collected, and this was used as the first ITO powder.
  • the average particle diameter of the obtained first ITO powder was 2 ⁇ m (maximum value 80 ⁇ m).
  • the first ITO powder was pulverized using a vibration ball mill to produce a second ITO powder. More specifically, in a resin container having a capacity of 50 liters, 9 kg of the first ITO powder and 50 kg of a 10 mm diameter ball (stirring medium) coated on the surface with resin are added, and further 10 liters of pure water and carboxylic acid are added.
  • the first ITO powder was pulverized for 5 hours under the condition of an amplitude of 8 mm.
  • the average particle diameter of the obtained second ITO powder was 0.6 ⁇ m (maximum value 5 ⁇ m).
  • the second ITO powder was dried at 200 ° C. for 24 hours and then crushed by a spin mill. Then, in a resin container having a capacity of 200 liters, this second ITO powder 40 wt% (56 kg), unused raw material powder 60 wt% (indium oxide powder 75.6 kg, tin oxide powder 8.4 kg), 272 kg of zirconia balls (stirring medium) having a diameter of 10 mm were added, and 37.4 liters of pure water and 2.31 liters of a carboxylic acid dispersant were added and mixed for 84 hours. This produced a slurry containing the third ITO powder having an average particle diameter of 0.25 ⁇ m (maximum value 2 ⁇ m).
  • the slurry concentration was 78% and the viscosity was 200 cps.
  • 1% by weight of a carboxylic acid binder was added to the prepared slurry, and the slurry was vacuum degassed for 30 minutes at a rotation speed of 20 rpm.
  • a gypsum mold having a double-sided wall structure capable of producing a molded body having a length of 415 mm, a width of 780 mm and a thickness of 17 mm was prepared.
  • the slurry was poured into this gypsum mold at a molding pressure of 3 kg / cm 2 by adjusting the casting valve of the defoaming machine and molded.
  • the molding time was 80 minutes.
  • the obtained molded body was naturally dried in a drying room at 30 ° C. for 6 days to obtain a molded body having a length of 380 mm, a width of 780 mm, and a thickness of 17 mm. Thereafter, the molded body was degreased at 600 ° C. for 3 hours in the air. After degreasing, the compact was sintered.
  • the sintering temperature was 1600 ° C. and the sintering time was 8 hours.
  • the sintering atmosphere was an oxygen atmosphere, and the amount of oxygen introduced was 200 liters
  • the obtained sintered body was 310 mm long, 610 mm wide, and 15 mm thick. Both sides of this sintered body were ground and the end face was cut to finish the length to 300 mm, width 610 mm, and thickness 7 mm.
  • the average crystal grain size of the sintered body was 4.5 ⁇ m, and the relative density was 99.9%.
  • This sintered body was reprocessed to a length of 127 mm, a width of 381 mm, and a thickness of 6 mm, and bonded to a copper backing plate to produce an ITO sputtering target.
  • the target When the target was incorporated into a sputtering apparatus and sputtered 100 kWh, it was confirmed that no nodules were generated on the target surface. Furthermore, when the resistance value of the ITO film (200 nm) formed using the sputtering target was measured, it was 0.2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. As a result, it was confirmed that the ITO film had a resistance value equivalent to that of an ITO film formed using an ITO target sintered only with unused raw material powder.
  • the used ITO target was heated to 200 ° C. and peeled off from the backing plate, and immersed in 50% dilute sulfuric acid for 24 hours to remove the bonding brazing material adhering to the surface.
  • the ITO target is divided into appropriate sizes, 200 kg of these target pieces are put into a 300 liter resin container together with 20 liters of pure water, and the container is stirred for 24 hours at a rotation speed of 35 rpm. The piece was crushed. Thereafter, the crushed powder was classified and powder of 100 ⁇ m or less was recovered. The average particle diameter of the obtained ITO powder was 2 ⁇ m (maximum value 80 ⁇ m).
  • this ITO powder 30% by weight (42 kg), unused raw material powder 70% by weight (indium oxide powder 88.2 kg, tin oxide powder 9.8 kg), and a zirconia ball having a diameter of 10 mm (Stirring medium) 272 kg was added, 37.4 liters of pure water and 2.31 liters of a carboxylic acid dispersant were added and mixed for 84 hours.
  • the resulting slurry had an average particle size of 0.7 ⁇ m (maximum value 10 ⁇ m), a concentration of 78%, and a viscosity of 200 cps.
  • 1% by weight of a carboxylic acid binder was added to the prepared slurry, and the slurry was vacuum degassed for 30 minutes at a rotation speed of 20 rpm.
  • a gypsum mold having a double-sided wall structure capable of producing a molded body having a length of 415 mm, a width of 780 mm, and a thickness of 17 mm was prepared.
  • the slurry was poured into this gypsum mold at a molding pressure of 3 kg / cm 2 by adjusting the casting valve of the defoaming machine and molded.
  • the molding time was 80 minutes.
  • the obtained molded body was naturally dried in a drying room at 30 ° C. for 6 days to obtain a molded body having a length of 380 mm, a width of 780 mm, and a thickness of 17 mm. Thereafter, the molded body was degreased at 600 ° C. for 3 hours in the air. After degreasing, the compact was sintered.
  • the sintering temperature was 1600 ° C. and the sintering time was 8 hours.
  • the sintering atmosphere was an oxygen atmosphere, and the amount of oxygen introduced was 200 liter
  • the obtained sintered body was 310 mm long, 610 mm wide, and 15 mm thick. Both sides of this sintered body were ground and the end face was cut to finish the length to 300 mm, width 610 mm, and thickness 7 mm.
  • the average crystal grain size of the sintered body was 7.0 ⁇ m, and the relative density was 99.2%.
  • This sintered body was reprocessed to a length of 127 mm, a width of 381 mm, and a thickness of 6 mm, and bonded to a copper backing plate to produce an ITO sputtering target.
  • the target When the target was incorporated in a sputtering apparatus and sputtered 100 kWh, many nodules were confirmed on the target surface. Furthermore, when the resistance value of the ITO film (200 nm) formed using the sputtering target was measured, it was 0.8 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. As a result, it was confirmed that the ITO film had a higher resistance value than the ITO film formed using an ITO target sintered only with unused raw material powder.
  • the vibrating ball mill is used to produce the second ITO powder, but other pulverization methods such as a wet jet mill may be used.
  • the sintered atmosphere of the compact is an oxygen gas atmosphere, but is not limited to this, and may be an air atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

【課題】高品質な焼結体を安価に製造することができるITO焼結体の製造方法及びITOスパッタリングターゲットの製造方法を提供する。 【解決手段】本発明の一実施形態に係るITO焼結体の製造方法は、酸化インジウム及び酸化スズを主成分とする焼結片群を容器内で撹拌しながら破砕することで、第1の平均粒子径を有する第1のITO粉末を作製する工程を含む。上記第1のITO粉末を媒体撹拌ミル又はジェットミルによって破砕することで、上記第1の平均粒子径よりも小さい第2の平均粒子径を有する第2のITO粉末が作製される。上記第2のITO粉末に酸化インジウム粉末及び酸化スズ粉末を混合し、その混合粉末を粉砕することで、上記第2の平均粒子径よりも小さい第3の平均粒子径を有する第3のITO粉末が作製される。上記第3のITO粉末を含むスラリーを型に鋳込むことで成形体が作製された後、焼結される。

Description

ITO焼結体の製造方法及びITOスパッタリングターゲットの製造方法
 本発明は、例えばスパッタリングターゲットとして使用されるITO焼結体の製造方法及びITOスパッタリングターゲットの製造方法に関する。
 フラットパネルディスプレイや太陽発電モジュールの製造分野において、透明導電膜として酸化インジウム及び酸化スズを主成分とするITO膜が広く用いられている。ITO膜は、真空蒸着法、スパッタリング法等によって成膜される。スパッタリング法では、ITOで構成されたスパッタリングターゲットが使用される。ITOターゲットには、酸化インジウムと酸化スズの混合粉末の焼結体が広く用いられている。特に近年、製造コストの削減を図るために、使用済みITOターゲットのリサイクルが検討されている(例えば特許文献1~3参照)。
 特許文献1には、スパッタリング成膜に使用した後のITOターゲットの表面付着物を除去した後、これを自生粉砕することによって粉末とし、次いでこの粉末を焼結する、ITO焼結体の製造方法が記載されている。
 特許文献2には、スクラップとなったITO焼結体を0.5mm以下の顆粒に粉砕した後、該ITO顆粒と実質的にインジウム、スズおよび酸素からなる粉末とを混合した後、成形、焼結を行う、ITO焼結体の再生方法が開示されている。
 特許文献3には、ITOリサイクル粉を熱処理し、比表面積を2.5~7.0m/gの範囲に調整した粉末を用いて泥漿鋳込み成形法によって成形し、得られた成形体を乾燥後、酸素雰囲気で焼成する、ITO焼結体の製造方法が記載されている。
特開平7-316798号公報(段落[0015]) 特開平11-100253号公報(段落[0009]) 特開平11-228219号公報(段落[0005])
 安定したスパッタ成膜と高品質な薄膜形成を実現するには、スパッタリングターゲットに組織の緻密化及び均一化が要求される。このため、原料粉末を微細化して焼結密度を向上させることが必須となる。しかしながら、使用済みターゲットを原料とする焼結体の製造に際しては、原料となる焼結体の微細化にコストが嵩み、高密度かつ均質性の高いITO焼結体を安価に製造することが困難であるという問題がある。
 以上のような事情に鑑み、本発明の目的は、高品質な焼結体を安価に製造することができるITO焼結体の製造方法及びITOスパッタリングターゲットの製造方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係るITO焼結体の製造方法は、酸化インジウム及び酸化スズを主成分とする焼結片群を容器内で撹拌しながら破砕することで、第1の平均粒子径を有する第1のITO粉末を作製する工程を含む。上記第1のITO粉末を媒体撹拌ミル又はジェットミルによって破砕することで、上記第1の平均粒子径よりも小さい第2の平均粒子径を有する第2のITO粉末が作製される。上記第2のITO粉末に酸化インジウム粉末及び酸化スズ粉末を混合し、その混合粉末を粉砕することで、上記第2の平均粒子径よりも小さい第3の平均粒子径を有する第3のITO粉末が作製される。上記第3のITO粉末を含むスラリーを型に鋳込むことで成形体が作製された後、上記成形体は焼結される。
 また、上記目的を達成するため、本発明の一形態に係るITOスパッタリングターゲットの製造方法は、酸化インジウム及び酸化スズを主成分とする焼結片群を容器内で撹拌しながら破砕することで、第1の平均粒子径を有する第1のITO粉末を作製する工程を含む。上記第1のITO粉末を媒体撹拌ミル又はジェットミルによって破砕することで、上記第1の平均粒子径よりも小さい第2の平均粒子径を有する第2のITO粉末が作製される。上記第2のITO粉末に酸化インジウム粉末及び酸化スズ粉末を混合し、その混合粉末を粉砕することで、上記第2の平均粒子径よりも小さい第3の平均粒子径を有する第3のITO粉末が作製される。上記第3のITO粉末を含むスラリーを型に鋳込むことで成形体が作製された後、上記成形体は焼結される。
本発明の実施形態に係るITO焼結体の製造方法を示す工程フローである。 本発明の実施形態における使用済みターゲットの分離工程を説明する模式図である。 本発明の実施形態における焼結片の準備工程を説明する模式図である。 本発明の実施形態における第1のITO粉末の作製工程を説明する模式図である。 本発明の実施形態における第3のITO粉末及びこれを含むスラリーの作製工程を説明する模式図である。 本発明の実施形態における成形工程に用いられる成形型の模式図であり、(A)は側断面図、(B)は型本体の平面図である。 本発明の実施形態において作製された焼結体の模式図である。
 本発明の一実施形態に係るITO焼結体の製造方法は、酸化インジウム及び酸化スズを主成分とする焼結片群を容器内で撹拌しながら破砕することで、第1の平均粒子径を有する第1のITO粉末を作製する工程を含む。第1のITO粉末は、焼結片同士の衝突作用により、第1の平均粒子径(例えば2μm)を有する大きさに破砕される。上記焼結片群は、定形又は不定形の既成のITO焼結材料の小片、あるいはその焼結材料を適宜の形状に分割した分割片とすることができる。焼結材料としては、ITO焼結製品の製造時に不可避的に発生する廃材や使用済みの焼結製品などが挙げられ、焼結製品としては、典型的には、ITOスパッタリングターゲットである。
 ここで、本明細書において「平均粒子径」とは、レーザー回折・散乱法で測定した粒度分布の積算%が50%の値を意味する。また、平均粒子径の値は、日機装(株)製レーザー回折・散乱式粒度分析計(MT3000II)による測定値を用いた。
 上記第1のITO粉末は、上記焼結片群を樹脂容器内で破砕することで作製される。これにより、例えば金属製容器内で当該ITO粉末を作製する場合と比較して、粉末中への不純物の混入を抑制することができる。勿論、樹脂製容器を使用した場合、その樹脂成分が粉末中に混入するおそれはあるが、脱脂工程あるいは焼結工程において当該樹脂成分を消失させることができる。
 次に、上記第1のITO粉末を媒体撹拌ミル又はジェットミルによって粉砕することで、第2の平均粒子径(例えば0.6μm)を有する第2のITO粉末が作製される。これにより、上記焼結片からより微細なITO粉末を作製することが可能となる。
 媒体撹拌ミルとしては、振動ボールミルやロッドミル等が挙げられる。媒体撹拌ミル又はジェットミルは、湿式でもよいし乾式でもよい。また、媒体撹拌ミルを用いる場合、撹拌媒体となるボールやロッドの表面に樹脂コートが施されているものを採用することにより、粉体中への不純物の混入を効果的に抑制することができる。本実施形態では、媒体撹拌ミルとして振動ボールミルが好適に用いられる。ジェットミルとしては、湿式ジェットミルが好適である。
 続いて、上記第2のITO粉末に酸化インジウム粉末及び酸化スズ粉末を混合し、その混合粉末を粉砕することで、上記第2の平均粒子径よりも小さい第3の平均粒子径(例えば0.20μm~0.30μm)を有する第3のITO粉末が作製される。第2のITO粉末に混合される酸化インジウム粉末及び酸化スズ粉末としては、それぞれ未使用の粉末が用いられるが、これに限られない。上記酸化インジウム粉末及び酸化スズ粉末の平均粒子径は特に限定されず、適宜の粒子径を採用することができる。
 上記第3のITO粉末は、媒体撹拌ミルを用いて作製することができる。これにより、比較的微細な平均粒子径を有するITO粉体を容易に作製することができる。媒体撹拌ミルとしては、ボールミル、ロッドミル等が適用可能であるが、振動ボールミルが好適である。
 上記第3のITO粉末の平均粒子径(第3の平均粒子径)を0.20μm以上0.30μm以下とすることで、相対密度が99.8%以上であり、組成の均一性に優れた高品質のITO焼結体を製造することができる。
 上記第3のITO粉末中における上記第2のITO粉末の混合比率は、10重量%以上、40重量%以下とすることができる。これにより、ITO焼結体の材料コストを効果的に低減することができる。なお、第2のITO粉末の混合比率が40重量%を越えると、第3のITO粉末の目的とする平均粒子径や、ITO焼結体の目的とする相対密度や組成が得られないおそれがある。また、第2のITO粉末の混合比率が10重量%未満の場合、ITO焼結体の材料コストの低減効果が低くなる。
 次に、上記第3のITO粉末を含むスラリーを型に鋳込むことで成形体が作製され、この成形体を焼結することで、目的とするITO焼結体が作製される。泥漿鋳込み成形法は、低粘度のスラリー(泥漿)を石膏型等の吸水性の鋳型中に流し込み、その鋳型の成形室内壁に粉体の堆積層を形成させ、乾燥した後、鋳型から取り出して成形体を得る方法である。泥漿鋳込み成形法を採用することで、比較的安価に成形体を作製することができる。
 上記ITO焼結体の製造方法によれば、焼結体の原料の一部に、既成の焼結片の破砕粉を用いているので、原料コストの低減を図ることができる。また、上記焼結片の破砕粉を段階的に微細化しているため、工程数の大幅な増加や特殊な処理を施すことなく焼結粒子の微細化を達成でき、高品質の焼結体を比較的低コストで作製することが可能となる。したがって、以上の処理を経ることで、高品質なITOスパッタリングターゲットを製造することができる。
 以下、図面を参照しながら、本発明の実施形態を説明する。
 図1は、本発明の実施形態によるITO焼結体の製造方法を説明する工程図である。図2~図7は、各工程を説明する模式図である。本実施形態では、焼結片の準備工程(ステップ1)と、粗粉砕工程(ステップ2)と、微粉砕工程(ステップ3)と、混合・微粉砕工程(ステップ4)と、スラリー調整工程(ステップ5)と、成形工程(ステップ6)と、焼結工程(ステップ7)とを有する。
[焼結片準備工程]
 この工程では、原料の一部となる焼結片が準備される。ここでは、図2及び図3に示すように、使用済みのITOスパッタリングターゲット2を適当な形状及び大きさに分割することで、目的とする焼結片2aを作製する。スパッタリングターゲット2は、これを支持するバッキングプレート1から分離された形態で使用される。分離されたスパッタリングターゲット2は、In等のろう材および表面に付着した不純物を取り除くために酸で洗浄され、その後、焼結片2aが作製される。使用されるスパッタリングターゲット2は、これを原料として作製される新たなITO焼結体と同様な組成を有するものが用いられる。
[粗粉砕工程]
 この工程は、作製された適当量の焼結片2aを樹脂製容器3に収容し(図4(A))、当該容器3aを回転させ、これら焼結片群を衝撃によって破砕する(図4(B))。上記樹脂製容器3aとしては、ボールミルやロッドミル等に用いられる粉砕用の容器を用いることができる。この破砕工程は、上記容器3a内に純水を適宜の量添加して実施される。この工程によって、第1の平均粒子径を有する第1のITO粉末P1が作製される。第1の平均粒子径は特に限定されず、例えば2μmとすることができる。なお、図示の例ではITO粉末P1をやや誇張して示している。
 第1のITO粉末P1を樹脂製容器3a内で作製することにより、例えば金属製容器内で当該ITO粉末を作製する場合と比較して、粉末中への不純物の混入を抑制することができる。勿論、樹脂製容器を使用した場合、その樹脂成分が粉末中に混入するおそれはあるが、脱脂工程あるいは焼結工程において当該樹脂成分を消失させることが可能である。
[微粉砕工程]
 この工程は、上記第1のITO粉末P1を振動ボールミル又は湿式ジェットミルを用いて粉砕することで、第2の平均粒子径を有する第2のITO粉末(P2)を作製する。これにより、第1のITO粉末をより微細化することができる。第2の平均粒子径の大きさは特に限定されず、例えば0.6μmとすることができる。
 この微粉砕工程においても、第2のITO粉末は樹脂製容器内で粉砕される。また、振動ボールミルを用いる場合、撹拌媒体として表面に樹脂コーティングが施されたボールが用いられる。これにより、第2のITO粉末への異種金属の混入を抑制することが可能となる。この微粉砕工程は、上記容器内に純水や適宜の分散剤を添加して実施することができる。得られた第2のITO粉末は、必要に応じて乾燥される。
[混合・微粉砕工程]
 この工程は、図5(A)、(B)に示すように、第2のITO粉末P2に、酸化インジウム(In)粉末P2a及び酸化スズ(SnO)粉末P2bを混合し、その混合粉末を粉砕することで、第3の平均粒子径を有する第3のITO粉末P3を作製する。第3のITO粉末P3の平均粒子径を0.20μm以上0.30μm以下とすることで、相対密度が99.8%以上であり、組成の均一性に優れた高品質のITO焼結体を製造することができる。
 第2のITO粉末P2と混合される酸化インジウム粉末P2a及び酸化スズ粉末P2bには、いずれも未使用の粉末が用いられる。既成の焼結片から作製された原料粉末と未使用の原料粉末とを組み合わせることによって、原料コストの低減を図ることができる。また、スパッタリングターゲット等の使用済み材料を効率良くリサイクルすることが可能となる。
 本実施形態では、平均粒子径が0.9μmの酸化インジウム粉末P2aと、平均粒子径が1.3μmの酸化スズ粉末P2bとが用いられる。酸化インジウム粉末P2a及び酸化スズ粉末P2bの平均粒子径は上記の例に限定されず、例えば、第2のITO粉末P2の平均粒子径と同等又はそれ以下の大きさのものを用いることができる。
 酸化インジウム粉末P2a及び酸化スズ粉末P2bの添加量は、第2のITO粉末P2の成分組成や目的とするITO焼結体の成分組成に応じて適宜調整することができる。本実施形態では、酸化インジウム粉末P2aと酸化スズ粉末P2bとが重量比で9:1となるように第2のITO粉末P2に混合される。また、第3のITO粉末P3中における第2のITO粉末P2の混合比率は、10重量%以上、40重量%以下とすることができる。これにより、ITO焼結体の材料コストを効果的に低減することができる。
 この混合工程においても、第3のITO粉末P3は樹脂製容器3b内で粉砕される。また、ボールミルを用いる場合、撹拌媒体として表面に樹脂コーティングが施されたボールが用いられる。これにより、第3のITO粉末P3への異種金属の混入を抑制することが可能となる。この混合工程は、容器3b内に純水や適宜の分散剤を添加して実施することができる。
[スラリー調整工程]
 この工程は、第3のITO粉末P3を含むスラリーSを調整する(図5(B))。スラリーSは、第3のITO粉末P3を純水で懸濁した液状物質であり、スラリー中におけるITO粉末P3の濃度が例えば70%~80%となるように調整される。このスラリーSの調整工程は、上記混合工程に含まれていてもよく、この場合、当該混合工程の最終段階でスラリーSが調整される。
[成形工程]
 成形工程は、図6(A)、(B)に示す成形型4の中にスラリーSを充填することで成形体を得る。成形型4は、例えば石膏等の吸水性のある材料で構成され、本体4aと、蓋体4bとを備える。
 本体4aには、内部空間4cと、この内部空間に連通する鋳込み口4dとを有する。図示の構成は一例であり、内部空間4cの形状や鋳込み口4dの位置等は適宜設定することが可能である。スラリーSは、鋳込み口4dを介して内部空間4cへ所定圧力で充填され、かつその状態が所定時間保持される。これにより、スラリーS中の水分は成形型4に吸収され、ITO粉末P3は型内に着肉することで高密度に成形される。成形体の作製にこのような泥漿鋳込み成形法を採用することにより、比較的安価に成形体を作製することができる。
 成形型4は、石膏スラリーを素材とし、これを成形した後、乾燥することで形成される。石膏スラリーの溶媒である水の割合は、50重量%以上65重量%以下とすることができる。石膏スラリー中の溶媒が過剰に多いと(例えば65重量%を越える場合)、成形型の吸液量は大きくなるものの、成形型の平均気孔径も大きくなるため、毛細管現象に起因する吸水力が小さくなる。その結果、成形体を製造する際の成形時において、スラリー中の溶媒である水の排水効率が悪くなり、成形に長時間を要することになる。また、石膏スラリー中の溶媒が少ないと(例えば50重量%未満の場合)、成形型の吸液量が小さくなるため、成形体を製造する際の成形時において、スラリー中の溶媒である水の排水を十分できなくなり、満足できる成形体を作製することが困難となる。
 作製された成形体は、乾燥工程を経て、乾燥される。乾燥工程は、所定温度に維持された乾燥室の中で行うことができる。乾燥後、必要に応じて、成形体の脱脂工程を実施してもよい。これにより、成形体中に含まれる樹脂成分が除去され、成形体の純度を高めることができる。
[焼結工程]
 焼結工程は、得られた成形体を焼結することで、目的とするITO焼結体Scを作製する。焼結は例えば大気中で行われ、焼結温度は例えば1500℃~1650℃とすることができる。
 以上のようにして作製されたITO焼結体Scは、99.8%以上の相対密度と5μm以下の平均結晶粒径とを有する。焼結体Scの作製後、これを所定形状に切削あるいは研削することで、ITOスパッタリングターゲットが作製される。
 焼結体Scの相対密度及び結晶粒径は、スラリー中のITO粉末P3の平均粒子径で主に決定され、ITO粉末P3の平均粒子径を0.2μm~0.3μmとすることにより、上述した諸特性の焼結体を安定して得ることが可能となる。また、焼結片2aの破砕粉(P1)を段階的に微細化しているため、工程数の大幅な増加や特殊な処理を必要とすることなく焼結粒子の微細化を達成できる。したがって、本実施形態によれば、結晶粒が微細で組織が均一な高密度の焼結体を低コストで作製することができる。
 以上のようにして作製されたスパッタリングターゲットは、ノジュールの発生を抑え、安定したスパッタ成膜を実現することが可能となる。
(実施例1)
 使用済みITOターゲットを200℃に加熱してバッキングプレートから剥がし、これを50%希硫酸に24時間浸漬することで、表面に付着したボンディング用ろう材を除去した。そのITOターゲットを適宜の大きさに分割し、焼結片としてのターゲット片を作製した。これらターゲット片200kgを純水20リットルと共に容量300リットルの樹脂製容器に投入し、当該容器を35rpmの回転数で24時間撹拌することにより、各ターゲット片を破砕した。その後、破砕粉を分級し100μm以下の粉末を回収し、同粉末を200℃で24時間乾燥し、これを第1のITO粉末とした。得られた第1のITO粉末の平均粒子径は2μm(最大値80μm)であった。
 次に、振動ボールミルを用いて第1のITO粉末を粉砕し、第2のITO粉末を作製した。より具体的には、容量50リットルの樹脂製容器に、第1のITO粉末9kgと、表面が樹脂コーティングされた直径10mmのボール(撹拌媒体)50kgを入れ、更に、純水10リットルとカルボン酸系分散剤180ミリリットルとを添加し、5時間、振幅8mmの条件で、第1のITO粉末を粉砕した。得られた第2のITO粉末の平均粒子径は0.6μm(最大値5μm)であった。
 第2のITO粉末を200℃で24時間乾燥した後、スピンミルで解砕した。そして、容量200リットルの樹脂製容器に、この第2のITO粉末30重量%(42kg)と、未使用の原料粉末70重量%(酸化インジウム粉末88.2kg、酸化スズ粉末9.8kg)と、直径10mmのジルコニアボール(撹拌媒体)272kgとを投入し、純水37.4リットル、カルボン酸系分散剤2.31リットルを添加して、84時間混合した。これにより、平均粒子径が0.25μm(最大値2μm)の第3のITO粉末を含むスラリーを作製した。スラリーの濃度は78%、粘度は200cpsであった。作製したスラリーにカルボン酸系バインダー1重量%を加え、回転数20rpmで30分間、スラリーを真空脱泡した。
 縦415mm、横780mm、厚み10.5mmの成形体を作製可能な両面着肉構造の石膏型を準備した。この石膏型に、脱泡機の鋳込みバルブを調整することでスラリーを成形圧力3kg/cmで流し込み、成形した。成形時間は80分とした。得られた成形体は、30℃雰囲気の乾燥室で6日間自然乾燥させ、縦380mm、横780mm、厚み10.5mmの成形体を得た。その後、大気中で600℃、3時間の加熱条件で成形体を脱脂処理した。脱脂後、成形体を焼結した。焼結温度は1600℃、焼結時間は8時間とした。焼結雰囲気は、酸素雰囲気とし、酸素導入量は毎分200リットルとした。
 得られた焼結体は、縦310mm、横620mm、厚み8.5mmであった。この焼結体の両面を研削し、端面を切断することで、縦300mm、横610mm、厚み7mmに仕上げた。焼結体の平均結晶粒径は4.2μm、相対密度は99.8%であった。この焼結体を縦127mm、横381mm、厚み6mmに再加工し、銅製のバッキングプレートにボンディングすることで、ITOスパッタリングターゲットを作製した。
 当該ターゲットをスパッタリング装置に組み込み、100kWhスパッタしたところ、ターゲット表面へのノジュールの発生がほとんどないことが確認された。さらに、当該スパッタリングターゲットを用いて形成されたITO膜(200nm)の抵抗値を測定したところ、0.2×10-3Ω・cmであった。この結果、当該ITO膜は、未使用の原料粉末のみで焼結されたITOターゲットを用いて成膜されたITO膜と同等の抵抗値であることが確認された。
(実施例2)
 使用済みITOターゲットを200℃に加熱してバッキングプレートから剥がし、これを50%希硫酸に24時間浸漬することで、表面に付着したボンディング用ろう材を除去した。そのITOターゲットを適宜の大きさに分割し、焼結片としてのターゲット片を作製した。これらターゲット片200kgを純水20リットルと共に容量300リットルの樹脂製容器に投入し、当該容器を35rpmの回転数で24時間撹拌することにより、各ターゲット片を破砕した。その後、破砕粉を分級し100μm以下の粉末を回収し、これを第1のITO粉末とした。得られた第1のITO粉末の平均粒子径は2μm(最大値80μm)であった。
 次に、振動ボールミルを用いて第1のITO粉末を粉砕し、第2のITO粉末を作製した。より具体的には、容量50リットルの樹脂製容器に、第1のITO粉末9kgと、表面が樹脂コーティングされた直径10mmのボール(撹拌媒体)50kgを入れ、更に、純水10リットルとカルボン酸系分散剤180ミリリットルとを添加し、5時間、振幅8mmの条件で、第1のITO粉末を粉砕した。得られた第2のITO粉末の平均粒子径は0.6μm(最大値5μm)であった。
 第2のITO粉末を200℃で24時間乾燥した後、スピンミルで解砕した。そして、容量200リットルの樹脂製容器に、この第2のITO粉末10重量%(14kg)と、未使用の原料粉末90重量%(酸化インジウム粉末113.4kg、酸化スズ粉末12.6kg)と、直径10mmのジルコニアボール(撹拌媒体)272kgとを投入し、純水37.4リットル、カルボン酸系分散剤2.31リットルを添加して、84時間混合した。これにより、平均粒子径が0.25μm(最大値2μm)の第3のITO粉末を含むスラリーを作製した。スラリーの濃度は78%、粘度は200cpsであった。作製したスラリーにカルボン酸系バインダー1重量%を加え、回転数20rpmで30分間、スラリーを真空脱泡した。
 縦415mm、横780mm、厚み17mmの成形体を作製可能な両面着肉構造の石膏型を準備した。この石膏型に、脱泡機の鋳込みバルブを調整することでスラリーを成形圧力3kg/cmで流し込み、成形した。成形時間は80分とした。得られた成形体は、30℃雰囲気の乾燥室で6日間自然乾燥させ、縦380mm、横780mm、厚み17mmの成形体を得た。その後、大気中で600℃、3時間の加熱条件で成形体を脱脂処理した。脱脂後、成形体を焼結した。焼結温度は1600℃、焼結時間は8時間とした。焼結雰囲気は、酸素雰囲気とし、酸素導入量は毎分200リットルとした。
 得られた焼結体は、縦310mm、横610mm、厚み15mmであった。この焼結体の両面を研削し、端面を切断することで、縦300mm、横610mm、厚み7mmに仕上げた。焼結体の平均結晶粒径は4.3μm、相対密度は99.9%であった。この焼結体を縦127mm、横381mm、厚み6mmに再加工し、銅製のバッキングプレートにボンディングすることで、ITOスパッタリングターゲットを作製した。
 当該ターゲットをスパッタリング装置に組み込み、100kWhスパッタしたところ、ターゲット表面へのノジュールの発生がほとんどないことが確認された。さらに、当該スパッタリングターゲットを用いて形成されたITO膜(200nm)の抵抗値を測定したところ、0.2×10-3Ω・cmであった。この結果、当該ITO膜は、未使用の原料粉末のみで焼結されたITOターゲットを用いて成膜されたITO膜と同等の抵抗値であることが確認された。
(実施例3)
 使用済みITOターゲットを200℃に加熱してバッキングプレートから剥がし、これを50%希硫酸に24時間浸漬することで、表面に付着したボンディング用ろう材を除去した。そのITOターゲットを適宜の大きさに分割し、焼結片としてのターゲット片を作製した。これらターゲット片200kgを純水20リットルと共に容量300リットルの樹脂製容器に投入し、当該容器を35rpmの回転数で24時間撹拌することにより、各ターゲット片を破砕した。その後、破砕粉を分級し100μm以下の粉末を回収し、これを第1のITO粉末とした。得られた第1のITO粉末の平均粒子径は2μm(最大値80μm)であった。
 次に、振動ボールミルを用いて第1のITO粉末を粉砕し、第2のITO粉末を作製した。より具体的には、容量50リットルの樹脂製容器に、第1のITO粉末9kgと、表面が樹脂コーティングされた直径10mmのボール(撹拌媒体)50kgを入れ、更に、純水10リットルとカルボン酸系分散剤180ミリリットルとを添加し、5時間、振幅8mmの条件で、第1のITO粉末を粉砕した。得られた第2のITO粉末の平均粒子径は0.6μm(最大値5μm)であった。
 第2のITO粉末を200℃で24時間乾燥した後、スピンミルで解砕した。そして、容量200リットルの樹脂製容器に、この第2のITO粉末40重量%(56kg)と、未使用の原料粉末60重量%(酸化インジウム粉末75.6kg、酸化スズ粉末8.4kg)と、直径10mmのジルコニアボール(撹拌媒体)272kgとを投入し、純水37.4リットル、カルボン酸系分散剤2.31リットルを添加して、84時間混合した。これにより、平均粒子径が0.25μm(最大値2μm)の第3のITO粉末を含むスラリーを作製した。スラリーの濃度は78%、粘度は200cpsであった。作製したスラリーにカルボン酸系バインダー1重量%を加え、回転数20rpmで30分間、スラリーを真空脱泡した。
 縦415mm、横780mm、厚み17mmの成形体を作製可能な両面着肉構造の石膏型を準備した。この石膏型に、脱泡機の鋳込みバルブを調整することでスラリーを成形圧力3kg/cmで流し込み、成形した。成形時間は80分とした。得られた成形体は、30℃雰囲気の乾燥室で6日間自然乾燥させ、縦380mm、横780mm、厚み17mmの成形体を得た。その後、大気中で600℃、3時間の加熱条件で成形体を脱脂処理した。脱脂後、成形体を焼結した。焼結温度は1600℃、焼結時間は8時間とした。焼結雰囲気は、酸素雰囲気とし、酸素導入量は毎分200リットルとした。
 得られた焼結体は、縦310mm、横610mm、厚み15mmであった。この焼結体の両面を研削し、端面を切断することで、縦300mm、横610mm、厚み7mmに仕上げた。焼結体の平均結晶粒径は4.5μm、相対密度は99.9%であった。この焼結体を縦127mm、横381mm、厚み6mmに再加工し、銅製のバッキングプレートにボンディングすることで、ITOスパッタリングターゲットを作製した。
 当該ターゲットをスパッタリング装置に組み込み、100kWhスパッタしたところ、ターゲット表面へのノジュールの発生がほとんどないことが確認された。さらに、当該スパッタリングターゲットを用いて形成されたITO膜(200nm)の抵抗値を測定したところ、0.2×10-3Ω・cmであった。この結果、当該ITO膜は、未使用の原料粉末のみで焼結されたITOターゲットを用いて成膜されたITO膜と同等の抵抗値であることが確認された。
(比較例)
 使用済みITOターゲットを200℃に加熱してバッキングプレートから剥がし、これを50%希硫酸に24時間浸漬することで、表面に付着したボンディング用ろう材を除去した。そのITOターゲットを適宜の大きさに分割し、これらターゲット片200kgを純水20リットルと共に容量300リットルの樹脂製容器に投入し、当該容器を35rpmの回転数で24時間撹拌することにより、各ターゲット片を破砕した。その後、破砕粉を分級し100μm以下の粉末を回収した。得られたITO粉末の平均粒子径は2μm(最大値80μm)であった。
 容量200リットルの樹脂製容器に、このITO粉末30重量%(42kg)と、未使用の原料粉末70重量%(酸化インジウム粉末88.2kg、酸化スズ粉末9.8kg)と、直径10mmのジルコニアボール(撹拌媒体)272kgとを投入し、純水37.4リットル、カルボン酸系分散剤2.31リットルを添加して、84時間混合した。得られたスラリーの平均粒子径は0.7μm(最大値10μm)、濃度は78%、粘度は200cpsであった。作製したスラリーにカルボン酸系バインダー1重量%を加え、回転数20rpmで30分間、スラリーを真空脱泡した。
 縦415mm、横780mm、厚み17mmの成形体を作製可能な両面着肉構造の石膏型を準備した。この石膏型に、脱泡機の鋳込みバルブを調整することでスラリーを成形圧力3kg/cmで流し込み、成形した。成形時間は80分とした。得られた成形体は、30℃雰囲気の乾燥室で6日間自然乾燥させ、縦380mm、横780mm、厚み17mmの成形体を得た。その後、大気中で600℃、3時間の加熱条件で成形体を脱脂処理した。脱脂後、成形体を焼結した。焼結温度は1600℃、焼結時間は8時間とした。焼結雰囲気は、酸素雰囲気とし、酸素導入量は毎分200リットルとした。
 得られた焼結体は、縦310mm、横610mm、厚み15mmであった。この焼結体の両面を研削し、端面を切断することで、縦300mm、横610mm、厚み7mmに仕上げた。焼結体の平均結晶粒径は7.0μm、相対密度は99.2%であった。この焼結体を縦127mm、横381mm、厚み6mmに再加工し、銅製のバッキングプレートにボンディングすることで、ITOスパッタリングターゲットを作製した。
 当該ターゲットをスパッタリング装置に組み込み、100kWhスパッタしたところ、ターゲット表面において多くのノジュールが確認された。さらに、当該スパッタリングターゲットを用いて形成されたITO膜(200nm)の抵抗値を測定したところ、0.8×10-3Ω・cmであった。この結果、当該ITO膜は、未使用の原料粉末のみで焼結されたITOターゲットを用いて成膜されたITO膜よりも高抵抗値であることが確認された。
 以上、本発明の実施形態について説明したが、勿論、本発明はこれに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。
 例えば以上の実施形態では、第2のITO粉末の作製に振動ボールミルを用いたが、湿式ジェットミル等の他の粉砕方法を用いてもよい。
 また、以上の実施形態では、成形体の焼結雰囲気を酸素ガス雰囲気としたが、これに限られず、大気雰囲気としてもよい。
 2…(使用済みの)スパッタリングターゲット
 2a…焼結片
 3a、3b…樹脂製容器
 4…成形型
 P1…第1のITO粉末
 P2…第2のITO粉末
 P3…第3のITO粉末
 S…スラリー
 Sc…焼結体

Claims (11)

  1.  酸化インジウム及び酸化スズを主成分とする焼結片群を容器内で撹拌しながら破砕することで、第1の平均粒子径を有する第1のITO粉末を作製し、
     前記第1のITO粉末を媒体撹拌ミル又はジェットミルによって粉砕することで、前記第1の平均粒子径よりも小さい第2の平均粒子径を有する第2のITO粉末を作製し、
     前記第2のITO粉末に酸化インジウム粉末及び酸化スズ粉末を混合し、その混合粉末を粉砕することで、前記第2の平均粒子径よりも小さい第3の平均粒子径を有する第3のITO粉末を作製し、
     前記第3のITO粉末を含むスラリーを型に鋳込むことで成形体を作製し、
     前記成形体を焼結する
     ITO焼結体の製造方法。
  2.  請求項1に記載のITO焼結体の製造方法であって、
     前記第1のITO粉末を作製する工程は、前記焼結片群を樹脂製容器内で破砕する
     ITO焼結体の製造方法。
  3.  請求項2に記載のITO焼結体の製造方法であって、
     前記第3のITO粉末を作製する工程は、前記第3のITO粉末を媒体撹拌ミルによって作製する
     ITO焼結体の製造方法。
  4.  請求項3に記載のITO焼結体の製造方法であって、
     前記第3の平均粒子径は、0.20μm以上0.30μm以下である
     ITO焼結体の製造方法。
  5.  請求項1に記載のITO焼結体の製造方法であって、
     前記第3のITO粉末中における前記第2の混合粉末の混合比率は、10重量%以上、40重量%以下である
     ITO焼結体の製造方法。
  6.  請求項1に記載のITO焼結体の製造方法であって、
     前記焼結片群は、使用済みのITOスパッタリングターゲットの分割片群である
     ITO焼結体の製造方法。
  7.  酸化インジウム及び酸化スズを主成分とする焼結片群を容器内で撹拌しながら破砕することで、第1の平均粒子径を有する第1のITO粉末を作製し、
     前記第1のITO粉末を媒体撹拌ミル又はジェットミルによって粉砕することで、前記第1の平均粒子径よりも小さい第2の平均粒子径を有する第2のITO粉末を作製し、
     前記第2のITO粉末に酸化インジウム粉末及び酸化スズ粉末を混合し、その混合粉末を粉砕することで、前記第2の平均粒子径よりも小さい第3の平均粒子径を有する第3のITO粉末を作製し、
     前記第3のITO粉末を含むスラリーを型に鋳込むことで成形体を作製し、
     前記成形体を焼結する
     ITOスパッタリングターゲットの製造方法。
  8.  酸化インジウム及び酸化スズを主成分とする焼結片群を容器内で撹拌しながら破砕することで、第1の平均粒子径を有する第1のITO粉末を作製し、
     前記第1のITO粉末を媒体撹拌ミル又はジェットミルによって粉砕することで、前記第1の平均粒子径よりも小さい第2の平均粒子径を有する第2のITO粉末を作製し、
     前記第2のITO粉末に酸化インジウム粉末及び酸化スズ粉末を混合し、その混合粉末を粉砕することで、前記第2の平均粒子径よりも小さい第3の平均粒子径を有する第3のITO粉末を作製し、
     前記第3のITO粉末を含むスラリーを型に鋳込むことで成形体を作製し、
     前記成形体を焼結することで作製された
     ITOスパッタリングターゲット。
  9.  請求項8に記載のITOスパッタリングターゲットであって、
     前記第3の平均粒子径は、0.20μm以上0.30μm以下である
     ITOスパッタリングターゲット。
  10.  請求項8に記載のITOスパッタリングターゲットであって、
     前記第3のITO粉末中における前記第2の混合粉末の混合比率は、10重量%以上、40重量%以下である
     ITOスパッタリングターゲット。
  11.  請求項8に記載のITOスパッタリングターゲットであって、
     前記焼結片群は、使用済みのITOスパッタリングターゲットの分割片群である
     ITOスパッタリングターゲット。
PCT/JP2010/006213 2009-10-28 2010-10-20 Ito焼結体の製造方法及びitoスパッタリングターゲットの製造方法 WO2011052160A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117011579A KR101259713B1 (ko) 2009-10-28 2010-10-20 Ito 소결체의 제조 방법 및 ito 스퍼터링 타겟의 제조 방법
CN2010800037167A CN102264666A (zh) 2009-10-28 2010-10-20 Ito烧结体制造方法以及ito溅射靶制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009247773A JP2011093729A (ja) 2009-10-28 2009-10-28 Ito焼結体の製造方法及びitoスパッタリングターゲットの製造方法
JP2009-247773 2009-10-28

Publications (1)

Publication Number Publication Date
WO2011052160A1 true WO2011052160A1 (ja) 2011-05-05

Family

ID=43921597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006213 WO2011052160A1 (ja) 2009-10-28 2010-10-20 Ito焼結体の製造方法及びitoスパッタリングターゲットの製造方法

Country Status (5)

Country Link
JP (1) JP2011093729A (ja)
KR (1) KR101259713B1 (ja)
CN (1) CN102264666A (ja)
TW (1) TW201119975A (ja)
WO (1) WO2011052160A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185279A (zh) * 2021-05-06 2021-07-30 广西晶联光电材料有限责任公司 一种氧化铟锡蒸镀靶材的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715938B2 (ja) * 2011-12-19 2015-05-13 株式会社フジクラ 再生ターゲットの製造方法、超電導線材の製造方法
JP2014141375A (ja) * 2013-01-24 2014-08-07 Ulvac Japan Ltd 焼結体粉末の製造方法、焼結体粉末、スパッタリングターゲット、スパッタリングターゲットの製造方法及び焼結体粉末の製造装置
CN106205766A (zh) * 2016-08-31 2016-12-07 安徽斯迈尔电子科技有限公司 一种电阻浆料导电相的制备方法
CN107129277B (zh) * 2017-04-07 2020-08-28 中国船舶重工集团公司第七二五研究所 一种ito废靶回收粉末制备ito靶材的方法
CN111116194B (zh) * 2019-12-19 2022-03-25 广西晶联光电材料有限责任公司 一种超高密度细晶ito靶材的生产方法
CN113233873B (zh) * 2021-05-27 2023-03-17 先导薄膜材料有限公司 一种ito废料的回收加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228745A (ja) * 1993-02-02 1994-08-16 Hitachi Metals Ltd インジウム・スズ酸化物膜用スパッタリング用ターゲットおよびその製造方法
JPH10182228A (ja) * 1996-12-20 1998-07-07 Tosoh Corp Ito焼結体の製造法
JPH11100253A (ja) * 1997-09-25 1999-04-13 Tosoh Corp Ito焼結体の再生方法および用途
JPH11228219A (ja) * 1998-02-09 1999-08-24 Mitsui Mining & Smelting Co Ltd Itoリサイクル粉を利用した高密度ito焼結体の製造方法
JP2001011616A (ja) * 2000-01-01 2001-01-16 Tdk Corp 光磁気記録用合金ターゲット、その製造方法およびその再生方法
JP2002249382A (ja) * 2001-02-19 2002-09-06 Sumitomo Metal Mining Co Ltd Ito成形体の製造方法
JP2003082455A (ja) * 2001-09-13 2003-03-19 Mitsubishi Materials Corp 耐スパッタ割れ性に優れた光記録媒体保護膜形成用焼結体ターゲットおよびその製造方法
JP2007210874A (ja) * 2006-01-13 2007-08-23 Nippon Steel Corp 使用済み耐火物のリサイクル方法及びこれを用いて製造したリサイクル耐火物原料並びに不定形耐火物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228745A (ja) * 1993-02-02 1994-08-16 Hitachi Metals Ltd インジウム・スズ酸化物膜用スパッタリング用ターゲットおよびその製造方法
JPH10182228A (ja) * 1996-12-20 1998-07-07 Tosoh Corp Ito焼結体の製造法
JPH11100253A (ja) * 1997-09-25 1999-04-13 Tosoh Corp Ito焼結体の再生方法および用途
JPH11228219A (ja) * 1998-02-09 1999-08-24 Mitsui Mining & Smelting Co Ltd Itoリサイクル粉を利用した高密度ito焼結体の製造方法
JP2001011616A (ja) * 2000-01-01 2001-01-16 Tdk Corp 光磁気記録用合金ターゲット、その製造方法およびその再生方法
JP2002249382A (ja) * 2001-02-19 2002-09-06 Sumitomo Metal Mining Co Ltd Ito成形体の製造方法
JP2003082455A (ja) * 2001-09-13 2003-03-19 Mitsubishi Materials Corp 耐スパッタ割れ性に優れた光記録媒体保護膜形成用焼結体ターゲットおよびその製造方法
JP2007210874A (ja) * 2006-01-13 2007-08-23 Nippon Steel Corp 使用済み耐火物のリサイクル方法及びこれを用いて製造したリサイクル耐火物原料並びに不定形耐火物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185279A (zh) * 2021-05-06 2021-07-30 广西晶联光电材料有限责任公司 一种氧化铟锡蒸镀靶材的制备方法

Also Published As

Publication number Publication date
KR101259713B1 (ko) 2013-05-06
TW201119975A (en) 2011-06-16
JP2011093729A (ja) 2011-05-12
KR20110083681A (ko) 2011-07-20
CN102264666A (zh) 2011-11-30

Similar Documents

Publication Publication Date Title
WO2011052160A1 (ja) Ito焼結体の製造方法及びitoスパッタリングターゲットの製造方法
JP5158355B2 (ja) 酸化物焼結体からなるスパッタリングターゲット
CN110093588B (zh) 一种细晶粒铝钪合金靶材及其制备方法和应用
JP6291593B2 (ja) Itoスパッタリングターゲット及びその製造方法並びにito透明導電膜の製造方法
KR100433482B1 (ko) 고밀도 산화인듐-산화주석 소결체를 이용한 스퍼터링타깃과 그 제조방법
JP2012126937A (ja) Itoスパッタリングターゲットとその製造方法
CN112374554A (zh) 一种高纯度高活性的氧化镍基粉体、制备方法及用途
JP4813182B2 (ja) Itoスパッタリングターゲット
JP4122547B2 (ja) Ito焼結体の再生方法および用途
JP2005075648A (ja) Ito焼結体の製造方法
JP6885038B2 (ja) 酸化物焼結体、その製造方法及びスパッタリングターゲット
JP4196805B2 (ja) 酸化インジウム系ターゲットおよびその製造方法
JP6520523B2 (ja) 酸化物焼結体、その製造方法及びスパッタリングターゲット
JPH0668935B2 (ja) 酸化物焼結体及びその製造方法並びにそれを用いたターゲット
JP2007254282A (ja) Ito焼結体の製造法
JPH0729770B2 (ja) 酸化物粉末及びその製造方法
JP2007230853A (ja) Ito粉末及びその製造方法並びにitoスパッタリングターゲットの製造方法
JP2007302556A (ja) Ito焼結体の製造方法
CN111575659A (zh) 钛铝合金靶材的制备方法
JPH02297812A (ja) 酸化物焼結体及びその製造方法並びにそれを用いたターゲツト
JP4706268B2 (ja) Ito造粒粉末及びito焼結体並びにその製造方法
KR20130007676A (ko) 소결용 Sb-Te 계 합금 분말 및 그 분말의 제조 방법 그리고 소결체 타겟
CN110129625B (zh) TiC-TiB2/Al复合孕育剂的制备方法
JP2003160861A (ja) Mg含有ITOスパッタリングターゲットの製造方法
JP6028714B2 (ja) Cu−Ga合金スパッタリングターゲットの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003716.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117011579

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826297

Country of ref document: EP

Kind code of ref document: A1