WO2011049092A1 - 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法 - Google Patents

金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法 Download PDF

Info

Publication number
WO2011049092A1
WO2011049092A1 PCT/JP2010/068397 JP2010068397W WO2011049092A1 WO 2011049092 A1 WO2011049092 A1 WO 2011049092A1 JP 2010068397 W JP2010068397 W JP 2010068397W WO 2011049092 A1 WO2011049092 A1 WO 2011049092A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment liquid
metal
group
metal microstructure
oxide
Prior art date
Application number
PCT/JP2010/068397
Other languages
English (en)
French (fr)
Inventor
大戸 秀
裕嗣 松永
山田 健二
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to DE112010003836.8T priority Critical patent/DE112010003836B4/de
Priority to US13/503,055 priority patent/US20120205345A1/en
Priority to KR1020187023186A priority patent/KR102008117B1/ko
Priority to JP2011537265A priority patent/JP5720575B2/ja
Priority to KR1020177017709A priority patent/KR20170078867A/ko
Priority to CN201080047543.9A priority patent/CN102640264B/zh
Publication of WO2011049092A1 publication Critical patent/WO2011049092A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00841Cleaning during or after manufacture
    • B81C1/00849Cleaning during or after manufacture during manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0109Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars

Definitions

  • the present invention relates to a processing solution for suppressing pattern collapse of a metal microstructure and a method for producing a metal microstructure using the same.
  • a photolithography technique is used as a method for forming and processing an element having a fine structure used in a wide field such as a semiconductor device or a circuit board.
  • a wide field such as a semiconductor device or a circuit board.
  • miniaturization, high integration, and high speed of semiconductor devices and the like have advanced remarkably, and the resist pattern used for photolithography has become finer and the aspect ratio has been increasing. I'm following.
  • the miniaturization or the like progresses, the collapse of the resist pattern becomes a big problem.
  • the collapse of the resist pattern is caused by the surface tension of the processing solution when the processing solution used in the wet processing (mainly rinsing processing for washing away the developing solution) after developing the resist pattern is dried from the resist pattern. It is known that it is generated by the action of stress. Therefore, in order to solve the collapse of the resist pattern, a method of drying by replacing the cleaning liquid with a low surface tension liquid using a nonionic surfactant, an alcohol solvent-soluble compound or the like (for example, Patent Documents 1 and 2). And a method of hydrophobizing the surface of the resist pattern (for example, see Patent Document 3).
  • metal fine structure a fine structure made of metal, metal nitride, metal oxide or the like formed by photolithography technology (hereinafter referred to as metal fine structure.
  • metal, silicon-containing metal, metal nitride, or metal oxide the strength of the metal itself forming the structure is higher than the strength of the resist pattern itself or the bonding strength between the resist pattern and the substrate. Structure pattern collapse is unlikely to occur. However, as semiconductor devices and micromachines are further reduced in size, increased in integration, and speeded up, the pattern of the structure becomes finer, and the collapse of the pattern of the structure due to an increase in aspect ratio becomes a serious problem. Come.
  • the resist pattern which is an organic material
  • the surface state of the metal microstructure are completely different, unlike the case of the collapse of the resist pattern described above, no effective countermeasures can be found, so semiconductor devices and micromachines are downsized and highly integrated.
  • the degree of freedom in pattern design is significantly hindered, such as designing a pattern that does not cause pattern collapse.
  • the present invention has been made under such circumstances, and provides a treatment liquid capable of suppressing pattern collapse of a metal microstructure such as a semiconductor device or a micromachine, and a method of manufacturing a metal microstructure using the same. Objective.
  • the present inventors have a hydrocarbyl group consisting of either an alkyl group or an alkenyl group, which may be partially or fully substituted with fluorine, and an oxy It has been found that the object can be achieved by a treatment liquid containing a pattern collapse inhibitor containing an ethylene structure.
  • the present invention has been completed based on such findings. That is, the gist of the present invention is as follows.
  • Pattern of metal microstructure having a hydrocarbyl group consisting of either an alkyl group or an alkenyl group, which may be partially or entirely substituted with fluorine, and containing a pattern collapse inhibitor containing an oxyethylene structure Treatment liquid for preventing collapse.
  • the pattern collapse inhibitor is one or more selected from the group consisting of hydrocarbyl alkanolamides, polyoxyethylene hydrocarbyl amines, and perfluoroalkyl polyoxyethylene ethanol. Treatment liquid for pattern collapse suppression.
  • Part or all of the metal microstructure is titanium nitride, titanium, ruthenium, ruthenium oxide, aluminum oxide, hafnium oxide, hafnium silicate, hafnium silicate, platinum, tantalum, tantalum oxide, tantalum nitride, nickel silicide
  • a method for producing a metal microstructure wherein the treatment liquid according to any one of [1] to [8] is used in a cleaning step after wet etching or dry etching.
  • Part or all of the metal microstructure is titanium nitride, titanium, ruthenium, ruthenium oxide, aluminum oxide, hafnium oxide, hafnium silicate, hafnium silicate, platinum, tantalum, tantalum oxide, tantalum nitride, nickel silicide
  • the method for producing a metal microstructure according to [9] wherein at least one material selected from nickel silicon germanium and nickel germanium is used.
  • a treatment liquid capable of suppressing pattern collapse of a metal microstructure such as a semiconductor device or a micromachine, and a method of manufacturing a metal microstructure using the same.
  • FIG. 3 is a schematic cross-sectional view for each production stage of metal microstructures produced in Examples 1 to 8 and Comparative Examples 1 to 20.
  • FIG. 6 is a schematic cross-sectional view for each production stage of metal microstructures produced in Examples 9 to 24 and Comparative Examples 21 to 60.
  • the processing solution for suppressing pattern collapse of a metal microstructure has a hydrocarbyl group consisting of either an alkyl group or an alkenyl group, which may be partially or wholly substituted with fluorine, and suppresses pattern collapse including an oxyethylene structure.
  • a hydrocarbyl group consisting of either an alkyl group or an alkenyl group, which may be partially or wholly substituted with fluorine, and suppresses pattern collapse including an oxyethylene structure.
  • the oxyethylene structure in the pattern collapse inhibitor is adsorbed to the metal material used for the pattern of the metal microstructure, and the hydrocarbyl group extending from the metal material is considered to be hydrophobic, thereby hydrophobizing the pattern surface. It is done. And as a result, it is considered that the generation of stress due to the surface tension of the treatment liquid can be reduced, and the pattern collapse of the metal microstructure such as a semiconductor device or a micromachine can be suppressed.
  • the pattern collapse inhibitor used in the treatment liquid of the present invention is preferably at least one selected from the group consisting of hydrocarbyl alkanolamides, polyoxyethylene hydrocarbyl amines, and perfluoroalkyl polyoxyethylene ethanol.
  • the hydrocarbyl alkanolamide is preferably represented by the following general formula (1).
  • R 1 represents an alkyl group having 2 to 24 carbon atoms or an alkenyl group.
  • an alkyl group having 6 to 18 carbon atoms is preferable, an alkyl group having 8 to 18 carbon atoms is more preferable, and an alkyl group having 8, 10, 12, 14, 16, 18 carbon atoms is further preferable.
  • the alkyl group may be linear, branched or cyclic, and may have a halogen atom or a substituent.
  • n-hexyl group 1-methylhexyl group, 2-methylhexyl group, 1-pentylhexyl group, cyclohexyl group, 1-hydroxyhexyl group, 1-chlorohexyl group, 1,3-dichlorohexyl group, 1-
  • various hexyl groups such as aminohexyl group, 1-cyanohexyl group, 1-nitrohexyl group, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, various undecyl groups, various dodecyl groups, various tridecyl groups
  • Various tetradecyl groups various pentadecyl groups, various hexadecyl groups, various heptadecyl groups, various octadecyl groups, various nonadecyl groups, various eicosyl groups, etc., more preferably various hexyl groups, various
  • the alkenyl group is preferably an alkenyl group having 2 to 24 carbon atoms, more preferably an alkenyl group having 4 to 18 carbon atoms, and further preferably an alkenyl group having 6 to 18 carbon atoms.
  • the polyoxyethylene hydrocarbylamine is preferably one represented by the following general formula (2).
  • R 2 represents an alkyl group having 2 to 24 carbon atoms and an alkenyl group having 2 to 24 carbon atoms.
  • the alkyl group is preferably an alkyl group having 6 to 18 carbon atoms, more preferably an alkyl group having 8 to 18 carbon atoms, still more preferably an alkyl group having 8, 10, 12, 14, 16, 18 carbon atoms, 18 is particularly preferred.
  • the alkyl group may be linear, branched or cyclic, and may have a halogen atom or a substituent, such as an n-hexyl group, 1-methylhexyl group, 2-methyl group.
  • Hexyl group 1-pentylhexyl group, cyclohexyl group, 1-hydroxyhexyl group, 1-chlorohexyl group, 1,3-dichlorohexyl group, 1-aminohexyl group, 1-cyanohexyl group, 1-nitrohexyl group
  • various heptyl groups various octyl groups, various nonyl groups, various decyl groups, various undecyl groups, various dodecyl groups, various tridecyl groups, various tetradecyl groups, various pentadecyl groups, various hexadecyl groups, various heptadecyl groups, etc.
  • the alkenyl group is preferably an alkenyl group having 2 to 24 carbon atoms, more preferably an alkenyl group having 4 to 18 carbon atoms, and further preferably an alkenyl group having 6 to 18 carbon atoms.
  • n and m each represent an integer of 0 to 20, preferably 0 to 14, more preferably 1 to 5 (provided that m + n is 1 or more). If n and m are within the above ranges, the polyoxyethylene hydrocarbylamine used in the present invention is water or organic, depending on the balance between the functional group represented by R 2 and the hydrophilic-hydrophobic property. It is easily dissolved in a solvent such as a solvent and can be suitably used as a treatment liquid.
  • coconut oil fatty acid diethanolamide is particularly preferable, and R 1 is a mixture of 8 to 18 carbon atoms, 8, 10 or 12 carbon atoms. , 14, 16, and 18. More specifically, product name Daianol 300 (Daiichi Kogyo Seiyaku Co., Ltd.), product name Daianol CDE (Daiichi Kogyo Seiyaku Co., Ltd.), product name Amizole CDE (Kawaken Fine Chemical Co., Ltd.), product name Amizole FDE (manufactured by Kawaken Fine Chemical Co., Ltd.)
  • Preferred examples of the compound represented by the general formula (2) include the product name Amit 102, the product name Amit 105, the product name Amit 105A, the product name Amit 302, the product name Amit 320 (above manufactured by Kao Corporation), and the like.
  • Particularly preferred is polyoxyethylene stearylamine, and specific examples include the product name Amiradin D (Daiichi Kogyo Seiyaku Co., Ltd.), the product name Amylazine C-1802 (Daiichi Kogyo Seiyaku Co., Ltd.), and the like. Can be mentioned.
  • Perfluoroalkyl polyoxyethylene ethanol is a compound represented by the following general formula (3), and specific examples include the product name FLORARD FC-170C (manufactured by Sumitomo 3M Limited).
  • n and m represent an integer of 1 to 20, and n and m may be the same or different.
  • the treatment liquid of the present invention preferably further contains water and is preferably an aqueous solution.
  • the water is preferably water from which metal ions, organic impurities, particle particles, and the like have been removed by distillation, ion exchange treatment, filter treatment, various adsorption treatments, and the like, and pure water and ultrapure water are particularly preferred.
  • the treatment liquid of the present invention contains one or more selected from the group of hydrocarbyl alkanolamides, polyoxyethylene hydrocarbyl amines, and perfluoroalkyl polyoxyethylene ethanol described above, more preferably water, and other treatment liquids.
  • Various commonly used additives may be included within a range that does not impair the effect of the treatment liquid.
  • the content in the treatment liquid containing one or more selected from the group of hydrocarbyl alkanolamide, polyoxyethylene hydrocarbylamine, and perfluoroalkyl polyoxyethylene ethanol in the treatment liquid of the present invention is 10 ppm to 10%. It is preferable. If the content of the compound is within the above range, the effects of these compounds can be sufficiently obtained, but it is preferable to use at a lower concentration of 5% or less in consideration of ease of handling, economy and foaming.
  • the content is preferably 10 ppm to 1%, more preferably 10 to 2000 ppm, and particularly preferably 10 to 1000 ppm.
  • an organic solvent such as alcohol may be added, or the solubility may be supplemented by adding an acid or an alkali.
  • an organic solvent such as alcohol
  • the treatment liquid of the present invention is suitably used for suppressing pattern collapse of a metal microstructure such as a semiconductor device or a micromachine.
  • a metal microstructure such as a semiconductor device or a micromachine.
  • TiN titanium nitride
  • Ti titanium
  • Ru ruthenium
  • RuO Ruthenium oxide
  • Sr uO 3 Sr uO 3
  • Al 2 O 3 aluminum oxide
  • HfO 2 hafnium oxide
  • Pt platinum
  • Ta tantalum
  • Ta 2 O 5 tantalum oxide
  • TaN tantalum nitride
  • Gayori TiN (titanium nitride), Ta (tantalum), Ti (titanium), Al 2 O 3 (aluminum oxide), and HfO 2 (hafnium oxide) Ru (ruthenium) are more preferable.
  • the metal microstructure and if that is patterned on the insulating film species such as SiO 2 (silicon oxide film) and TEOS (tetraethoxy ortho silane oxide film), an insulating film type in a part of the metal microstructure May be included.
  • the insulating film species such as SiO 2 (silicon oxide film) and TEOS (tetraethoxy ortho silane oxide film)
  • the treatment liquid of the present invention exhibits an excellent effect of suppressing pattern collapse on not only a conventional metal microstructure but also a metal microstructure having a finer and higher aspect ratio.
  • the aspect ratio is a value calculated by (pattern height / pattern width)
  • the treatment liquid of the present invention is an excellent pattern for patterns having a high aspect ratio of 3 or more, and further 7 or more. Has the effect of suppressing collapse.
  • the treatment liquid of the present invention has a fine pattern of 1: 1 line and space, even if the pattern size (pattern width) is 300 nm or less, 150 nm or less, 100 nm or less, and even 50 nm or less.
  • the fine pattern having a cylindrical or columnar structure having an interval between patterns of 300 nm or less, 150 nm or less, 100 nm or less, or 50 nm or less has an excellent effect of suppressing pattern collapse.
  • the metal microstructure manufacturing method of the present invention is characterized by using the above-described treatment liquid of the present invention in a cleaning step after wet etching or dry etching. More specifically, in the cleaning step, preferably, after the metal microstructure pattern and the treatment liquid of the present invention are brought into contact with each other by dipping, spray discharge, spraying, etc., the treatment liquid is replaced with water. dry.
  • the immersion time is preferably 10 seconds to 30 minutes, more preferably 15 seconds to 20 minutes, and still more preferably 20 seconds to 15 minutes.
  • the temperature condition is preferably 10 to 60 ° C., more preferably 15 to 50 ° C., still more preferably 20 to 40 ° C., and particularly preferably 25 to 40 ° C.
  • the surface of the pattern is hydrophobized so that the pattern collapses so that the pattern contacts the adjacent pattern. It becomes possible to suppress.
  • the treatment liquid of the present invention includes a wet etching process or a dry etching process in the manufacturing process of the metal microstructure, and then a wet process (etching or cleaning, rinsing for washing away the cleaning liquid) and drying. It consists of processes and can be widely applied regardless of the type of metal microstructure. For example, (i) in the manufacture of a DRAM type semiconductor device, after wet etching is performed on an insulating film around a conductive film (see, for example, Japanese Patent Laid-Open Nos.
  • a strip After a cleaning process for removing contaminants generated after dry etching or wet etching at the time of processing a gate electrode in the manufacture of a semiconductor device having a transistor having a fin-like shape for example, Japanese Patent Application Laid-Open No.
  • Examples 1 to 4 As shown in FIG. 1A, after silicon nitride 103 (thickness: 100 nm) and silicon oxide 102 (thickness: 1200 nm) are formed on a silicon substrate 104, a photoresist 101 is formed, and then the photo resist is formed. By exposing and developing the resist 101, a circle-ring-shaped opening 105 ( ⁇ 125 nm, distance between circles: 70 nm) shown in FIG. 1B is formed, and dry etching is performed using the photoresist 101 as a mask. A cylindrical hole 106 shown in FIG. 1C was formed in the silicon oxide 102 by etching up to the silicon nitride 103 layer.
  • the photoresist 101 was removed by ashing to obtain a structure in which a cylindrical hole 106 reaching the silicon nitride 103 layer in the silicon oxide 102 shown in FIG. Titanium nitride is filled and deposited as a metal 107 in the cylindrical hole 106 of the obtained structure (FIG. 1 (e)), and an extra portion on the silicon oxide 102 is obtained by chemical mechanical polishing (CMP).
  • the metal (titanium nitride) 107 was removed to obtain a structure in which a cylinder 108 of metal (titanium nitride) was embedded in the silicon oxide 102 shown in FIG.
  • the silicon oxide 102 of the obtained structure is dissolved and removed with a 0.5% hydrofluoric acid aqueous solution (25 ° C., 1 minute immersion treatment), and then rinsed with pure water, treatment liquid 1 to 4 (30 ° C., 10 minute immersion treatment). , And pure water rinse in that order, followed by drying to obtain a structure shown in FIG.
  • the obtained structure has a microstructure having a cylindrical (chimney-like) pattern ( ⁇ 125 nm, height: 1200 nm (aspect ratio: 9.6), distance between cylinder: 70 nm) of metal (titanium nitride). 70% or more of the pattern did not collapse.
  • Example 1 the silicon oxide 102 of the structure shown in FIG. 1 (f) was dissolved and removed with hydrofluoric acid, and then treated with pure water only. The structure shown was obtained. 50% or more of the pattern of the obtained structure caused the collapse as shown in FIG. 1 (h) (the collapse suppression rate is less than 50%).
  • Table 3 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in Comparative Example 1.
  • Example 1 the silicon oxide 102 having the structure shown in FIG. 1 (f) was dissolved and removed with hydrofluoric acid and treated with pure water, and then treated with Comparative Solutions 1 to 9 shown in Table 2 instead of Treatment Solution 1.
  • a structure shown in FIG. 1G was obtained in the same manner as in Example 1 except that. More than 50% of the pattern of the obtained structure collapsed as shown in FIG. Table 3 shows the results of the treatment liquid, treatment method, and collapse suppression rate used in Examples 2 to 10.
  • Collapse inhibition rate (number of cylinders not collapsed / total number of cylinders) x 100 [%]
  • Examples 5-8 In Examples 1 to 4, except that tantalum was used as the metal 107 instead of titanium nitride, the structure shown in FIG. 1G was obtained. The resulting structure has a microstructure with a cylindrical pattern of metal (tantalum) cylinder 108 ( ⁇ 125 nm, height: 1200 nm (aspect ratio: 9.6), distance between cylinder: 70 nm). And 70% or more of the pattern did not collapse. Table 4 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in each example.
  • Comparative Examples 11-20 In Comparative Examples 1 to 10, except that tantalum was used instead of titanium nitride as the metal 107, the structures shown in FIG. 1 (g) of Comparative Examples 11 to 20 were obtained in the same manner as Comparative Examples 1 to 10, respectively. . More than 50% of the pattern of the obtained structure collapsed as shown in FIG. Table 4 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in each example.
  • Collapse inhibition rate (number of cylinders not collapsed / total number of cylinders) x 100 [%]
  • a polysilicon 202 (thickness: 100 nm) is formed on a silicon oxide layer 201 formed on a silicon substrate, and a photoresist 203 is formed thereon.
  • the resist 203 is exposed and developed to form a prismatic opening 204 (1000 nm ⁇ 8000 nm) shown in FIG. 2B, and dry etching is performed on the polysilicon 202 by using the photoresist 203 as a mask.
  • the photoresist 203 was removed by ashing to obtain a structure in which prismatic holes 205 reaching the silicon oxide layer 201 were opened in the polysilicon 202 shown in FIG.
  • the prismatic hole 205 of the obtained structure is filled and deposited with titanium as a metal to form a metal (titanium) prism 206 and a metal (titanium) layer 207 (FIG. 2 (e)), and the metal (titanium).
  • a photoresist 208 was formed on the layer 207 (FIG. 2F).
  • the photoresist 208 is exposed and developed to form a rectangular photomask 209 that covers the area including the two metal (titanium) prisms 206 shown in FIG. 2G, and the rectangular photomask 209 is masked.
  • the metal (titanium) layer 207 was dry-etched to form a metal (titanium) plate 210 having metal (titanium) prisms 206 at both ends of the lower portion shown in FIG. Further, the rectangular photomask 209 was removed by ashing to obtain a structure made of a metal (titanium) plate 210 having polysilicon 202 and metal (titanium) prisms 206 shown in FIG.
  • Example 9 Polysilicon 202 having a structure thus obtained was dissolved and removed with an aqueous tetramethylammonium hydroxide solution, and then contacted with pure water, treatment solutions 1 to 5 and pure water in that order, followed by drying.
  • the obtained bridge structure 211 has a metal (titanium) plate 210 (length ⁇ width: 15000 nm ⁇ 10000 nm, thickness: 300 nm, aspect ratio: 50) and metal (titanium) prisms (length ⁇ width: 1000 nm ⁇ ) at both ends thereof.
  • the metal (titanium) plate 210 of 70% or more did not collapse and the silicon oxide layer 201 was not touched.
  • the collapse of the pattern was observed using “FE-SEM S-5500 (model number)” manufactured by Hitachi High-Technologies Corporation. Table 5 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in each example.
  • Example 9 the polysilicon 202 having the structure shown in FIG. 2 (i) was dissolved and removed with an aqueous solution of tetramethylammonium hydroxide and then treated with pure water only.
  • the bridge structure 211 shown in 2 (j) was obtained. More than 50% of the obtained bridge structure 211 has collapsed as shown in FIG. Table 5 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in Comparative Example 21.
  • Example 9 the polysilicon 202 having the structure shown in FIG. 2 (i) was dissolved and removed with a tetramethylammonium hydroxide aqueous solution and treated with pure water, and then the comparative solution shown in Table 2 instead of the treatment solution 1.
  • a bridge structure 211 shown in FIG. 2 (j) of Comparative Examples 22 to 30 was obtained in the same manner as in Example 9 except that the treatments in 1 to 9 were performed. 50% or more of the obtained bridge structures 211 were collapsed as shown in FIG. 2 (k) (the collapse inhibition rate was less than 50%).
  • Table 5 shows the treatment liquid, the treatment method, and the collapse inhibition rate used in Comparative Example 22.
  • Examples 13 to 16 In Examples 9 to 12, a bridge structure 211 shown in FIG. 2 (j) of Examples 13 to 16 was obtained in the same manner as Examples 9 to 12, except that aluminum oxide was used instead of titanium. .
  • the obtained bridge structure 211 is composed of a metal (aluminum oxide) plate 210 (length ⁇ width: 15000 nm ⁇ 10000 nm, thickness: 300 nm, aspect ratio: 50) and metal (aluminum oxide) prisms (length ⁇ width: Although the microstructure has a thickness of 1000 nm ⁇ 8000 nm and height: 100 nm, the metal (aluminum oxide) plate 210 of 70% or more did not collapse and the silicon oxide layer 201 was not touched.
  • Table 6 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in each example.
  • Comparative Examples 31-40 In Comparative Examples 21 to 30, a bridge structure 211 shown in FIG. 2 (j) of Comparative Examples 31 to 40 was obtained in the same manner as Comparative Examples 21 to 30, except that aluminum oxide was used instead of titanium. . More than 50% of the obtained bridge structure collapsed as shown in FIG. 2 (k). Table 6 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in each example.
  • Examples 17-20 a bridge structure 211 shown in FIG. 2 (j) of Examples 17 to 20 was obtained in the same manner as Examples 9 to 12 except that hafnium oxide was used instead of titanium as a metal.
  • the obtained bridge structure 211 includes a metal (hafnium oxide) plate 210 (vertical ⁇ horizontal: 15000 nm ⁇ 10000 nm, thickness: 300 nm, aspect ratio: 50) and metal (hafnium oxide) prisms (vertical ⁇ horizontal: both ends).
  • the microstructure has a thickness of 1000 nm ⁇ 8000 nm and height: 100 nm, 70% or more of the metal (hafnium oxide) plate 210 is not collapsed and the silicon oxide layer 201 is not touched.
  • Table 7 shows the results of the treatment liquid, treatment method, and collapse inhibition rate used in each example.
  • Comparative Examples 41-50 In Comparative Examples 21 to 30, the bridge structure 211 shown in FIG. 2 (j) of Comparative Examples 41 to 50 was obtained in the same manner as Comparative Examples 21 to 30 except that hafnium oxide was used instead of titanium as the metal. . More than 50% of the obtained bridge structure collapsed as shown in FIG. 2 (k). Table 7 shows the results of the treatment liquid, treatment method, and collapse inhibition rate used in each example.
  • Examples 21-24 a bridge structure 211 shown in FIG. 2 (j) of Examples 21 to 24 was obtained in the same manner as Examples 9 to 12 except that ruthenium was used instead of titanium as a metal.
  • the obtained bridge structure 211 includes a metal (ruthenium) plate 210 (length ⁇ width: 15000 nm ⁇ 10000 nm, thickness: 300 nm, aspect ratio: 50) and metal (ruthenium) prisms (length ⁇ width: 1000 nm ⁇ ) at both ends thereof.
  • the metal (ruthenium) plate 210 of 70% or more did not collapse, and the silicon oxide layer 201 was not touched.
  • the collapse of the pattern was observed using “FE-SEM S-5500 (model number)” manufactured by Hitachi High-Technologies Corporation. Table 8 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in each example.
  • Comparative Examples 51-60 In Comparative Examples 21 to 30, a bridge structure 211 shown in FIG. 2 (j) of Comparative Examples 51 to 60 was obtained in the same manner as Comparative Examples 21 to 30, except that ruthenium was used instead of titanium as a metal. More than 50% of the obtained bridge structure collapsed as shown in FIG. 2 (k). Table 8 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in each example.
  • the treatment liquid of the present invention can be suitably used for suppressing pattern collapse in the production of metal microstructures such as semiconductor devices and micromachines (MEMS).
  • MEMS micromachines
  • Photoresist 102 Silicon oxide 103. Silicon nitride 104. Silicon substrate 105. Circular opening 106. Cylindrical hole 107. Metal (titanium nitride or tantalum) 108. 201. Cylinder of metal (titanium nitride or tantalum) Silicon oxide layer 202. Polysilicon 203. Photoresist 204. Prismatic opening 205. Prismatic hole 205 206. Metal (titanium, aluminum oxide, hafnium oxide or ruthenium) prism 207. Metal (titanium, aluminum oxide, hafnium oxide or ruthenium) layer 208. Photoresist 209. Rectangular photomask 210. Metal (titanium, aluminum oxide, hafnium oxide or ruthenium) plate 211. Bridge structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Weting (AREA)
  • Micromachines (AREA)

Abstract

 一部または全部がフッ素で置換されていてもよいアルキル基およびアルケニル基のいずれかからなるヒドロカルビル基を有し、オキシエチレン構造を含むパターン倒壊抑制剤を含有する金属微細構造体のパターン倒壊抑制用処理液及び当該処理液を用いた金属微細構造体の製造方法である。

Description

金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法
 本発明は、金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法に関する。
 従来、半導体デバイスや回路基板といった広い分野で用いられる微細構造を有する素子の形成・加工方法として、フォトリソグラフィー技術が用いられている。当該分野においては、要求性能の高度化に伴い、半導体デバイスなどの小型化、高集積化、あるいは高速度化が著しく進み、フォトリソグラフィーに用いられるレジストパターンは微細化、そしてアスペクト比の増加の一途をたどっている。しかし、このように微細化などが進むと、レジストパターンの倒壊が大きな問題となる。
 レジストパターンの倒壊は、レジストパターンを現像した後のウエット処理(主に現像液を洗い流すためのリンス処理)で用いる処理液を該レジストパターンから乾燥させる際に、該処理液の表面張力に起因する応力が作用することで発生することが知られている。そこで、レジストパターンの倒壊を解決するために、非イオン性界面活性剤やアルコール系溶剤可溶性化合物などを用いた低表面張力の液体により洗浄液を置換して乾燥する方法(例えば、特許文献1及び2参照)、レジストパターンの表面を疎水化する方法(例えば、特許文献3参照)などが提案されている。
 ところで、フォトリソグラフィー技術を用いて形成される金属、金属窒化物あるいは金属酸化物などからなる微細構造体(以下、金属微細構造体という。また、金属、珪素含有金属、金属窒化物あるいは金属酸化物を含めて単に金属という。)においては、構造体を形成している金属自体の強度が、レジストパターン自体の強度もしくはレジストパターンと基材との接合強度より高いことから、レジストパターンに比べ、該構造体パターンの倒壊は発生しにくい。しかし、半導体装置やマイクロマシンの小型化、高集積化、あるいは高速度化がさらに進むに従い、該構造体のパターンは微細化、そしてアスペクト比の増加による該構造体のパターンの倒壊が大きな問題となってくる。有機物であるレジストパターンと金属微細構造体の表面状態は全く違うことから、上記のレジストパターンの倒壊の場合と異なり、有効な対応策が見当たらないため、半導体装置やマイクロマシンの小型化、高集積化、あるいは高速度化にあたっては、パターンの倒壊が生じないようなパターンの設計を行うなど、パターン設計の自由度が著しく阻害される状況にある。
特開2004-184648号公報 特開2005-309260号公報 特開2006-163314号公報
 このように、半導体装置やマイクロマシンといった金属微細構造体の分野においては、パターンの倒壊を抑制する有効な技術は、知られていないのが実状である。
 本発明は、このような状況下になされたもので、半導体装置やマイクロマシンといった金属微細構造体のパターン倒壊を抑制しうる処理液及びこれを用いた金属微細構造体の製造方法を提供することを目的とする。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、一部または全部がフッ素で置換されていてもよいアルキル基およびアルケニル基のいずれかからなるヒドロカルビル基を有し、オキシエチレン構造を含むパターン倒壊抑制剤を含有する処理液により、その目的を達成し得ることを見出した。
 本発明は、かかる知見に基づいて完成したものである。すなわち、本発明の要旨は下記のとおりである。
[1] 一部または全部がフッ素で置換されていてもよいアルキル基およびアルケニル基のいずれかからなるヒドロカルビル基を有し、オキシエチレン構造を含むパターン倒壊抑制剤を含有する金属微細構造体のパターン倒壊抑制用処理液。
[2] 前記パターン倒壊抑制剤が、ヒドロカルビルアルカノールアミド、ポリオキシエチレンヒドロカルビルアミン、およびパーフルオロアルキルポリオキシエチレンエタノールからなる群から選ばれる1種以上である[1]に記載の金属微細構造体のパターン倒壊抑制用処理液。
[3] 前記ヒドロカルビルアルカノールアミドが、下記一般式(1)で表される[2]に記載の処理液。
Figure JPOXMLDOC01-appb-C000004
〔式中、R1は炭素数2~24のアルキル基、またはアルケニル基を示す。〕
[4] 前記ポリオキシエチレンヒドロカルビルアミンが下記一般式(2)で表される[2]に記載の処理液。
Figure JPOXMLDOC01-appb-C000005
〔式中、R2は炭素数2~24のアルキル基、またはアルケニル基を示す。また、n、mは0~20の整数を示し、n、mは同じでも異なっていてもよい。但し、m+nは1以上である。〕
[5] 前記パーフルオロアルキルポリオキシエチレンエタノールが、下記一般式(3)で表される[2]に記載の処理液。
Figure JPOXMLDOC01-appb-C000006
〔式中、n、mは1~20の整数を示し、n、mは同じでも異なっていてもよい。〕
[6] さらに水を含む[1]~[5]のいずれかに記載の処理液。
[7] 前記ヒドロカルビルアルカノールアミド、ポリオキシエチレンヒドロカルビルアミン、およびパーフルオロアルキルポリオキシエチレンエタノールからなる群から選ばれる1種以上の含有量が10ppm~10%である[2]~[6]のいずれかに記載の処理液。
[8] 前記金属微細構造体の一部もしくは全部が、窒化チタン、チタン、ルテニウム、酸化ルテニウム、酸化アルミニウム、酸化ハフニウム、ハフニウムシリケート、窒化ハフニウムシリケート、白金、タンタル、酸化タンタル、窒化タンタル、ニッケルシリサイド、ニッケルシリコンゲルマニウム、およびニッケルゲルマニウムから選ばれる少なくとも一種の材料を用いてなるものである[1]~[7]のいずれかに記載の処理液。
[9] ウェットエッチング又はドライエッチングの後の洗浄工程において、[1]~[8]のいずれかに記載の処理液を用いることを特徴とする金属微細構造体の製造方法。
[10] 前記金属微細構造体の一部もしくは全部が、窒化チタン、チタン、ルテニウム、酸化ルテニウム、酸化アルミニウム、酸化ハフニウム、ハフニウムシリケート、窒化ハフニウムシリケート、白金、タンタル、酸化タンタル、窒化タンタル、ニッケルシリサイド、ニッケルシリコンゲルマニウム、およびニッケルゲルマニウムから選ばれる少なくとも一種の材料を用いてなるものである[9]に記載の金属微細構造体の製造方法。
[11] 前記金属微細構造体が、半導体装置またはマイクロマシンである[9]又は[10]に記載の金属微細構造体の製造方法。
 本発明によれば、半導体装置やマイクロマシンといった金属微細構造体のパターン倒壊を抑制しうる処理液及びこれを用いた金属微細構造体の製造方法を提供することができる。
実施例1~8及び比較例1~20で作製する金属微細構造体の作製段階毎の断面模式図である。 実施例9~24及び比較例21~60で作製する金属微細構造体の作製段階毎の断面模式図である。
 金属微細構造体のパターン倒壊抑制用処理液は、一部または全部がフッ素で置換されていてもよいアルキル基およびアルケニル基のいずれかからなるヒドロカルビル基を有し、オキシエチレン構造を含むパターン倒壊抑制剤を含有する。このパターン倒壊抑制剤中のオキシエチレン構造部が金属微細構造体のパターンに用いられる金属材料に吸着し、そこから伸びるヒドロカルビル基が疎水性を示すことで、該パターン表面を疎水化するものと考えられる。そしてその結果、処理液の表面張力に起因する応力の発生を低減させ、半導体装置やマイクロマシンといった金属微細構造体のパターン倒壊を抑制することができると考えられる
 なお、本発明において疎水化とは、本発明の処理液にて処理された金属の表面と水との接触角が70°以上となることをいう。また、本発明において、「オキシエチレン構造」とは、「-CH2CH2O-」の構造をいう。
 本発明の処理液に用いられるパターン倒壊抑制剤としては、ヒドロカルビルアルカノールアミド、ポリオキシエチレンヒドロカルビルアミン、およびパーフルオロアルキルポリオキシエチレンエタノールからなる群から選ばれる1種以上であることが好ましい。
 ヒドロカルビルアルカノールアミドとしては、好ましくは下記一般式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000007
 式中、R1は炭素数2~24のアルキル基、またはアルケニル基を示す。アルキル基としては、炭素数6~18のアルキル基が好ましく、炭素数8~18のアルキル基がより好ましく、炭素数8、10、12、14、16、18のアルキル基がさらに好ましい。このアルキル基は、直鎖状、枝分かれ状、環状のいずれであってもよく、またハロゲン原子、置換基を有していてもよい。
 例えばn-ヘキシル基、1-メチルヘキシル基、2-メチルヘキシル基、1-ペンチルへキシル基、シクロヘキシル基、1-ヒドロキシヘキシル基、1-クロロヘキシル基、1,3-ジクロロヘキシル基、1-アミノヘキシル基、1-シアノヘキシル基、1-ニトロヘキシル基などの各種ヘキシル基のほか、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種ウンデシル基、各種ドデシル基、各種トリデシル基、各種テトラデシル基、各種ペンタデシル基、各種ヘキサデシル基、各種ヘプタデシル基、各種オクタデシル基、各種ノナデシル基、各種エイコシル基などが挙げられ、より好ましくは各種ヘキシル基のほか、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種ウンデシル基、各種ドデシル基、各種トリデシル基、各種テトラデシル基、各種オクタデシル基であり、更に好ましくは各種オクチル基、各種デシル基、各種ドデシル基、各種テトラデシル基、各種セチル基、各種オクタデシル基である。
 アルケニル基としては、炭素数2~24のアルケニル基が好ましく、炭素数4~18のアルケニル基がより好ましく、炭素数6~18のアルケニル基がさらに好ましい。
 ポリオキシエチレンヒドロカルビルアミンとしては、下記一般式(2)で表されるものであることが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000008
 式(2)中、R2は炭素数2~24のアルキル基、炭素数2~24のアルケニル基を示す。アルキル基としては、炭素数6~18のアルキル基が好ましく、炭素数8~18のアルキル基がより好ましく、炭素数8、10、12、14、16、18のアルキル基がさらに好ましく、炭素数18が特に好ましい。このアルキル基は、直鎖状、枝分かれ状、環状のいずれであってもよく、またハロゲン原子、置換基を有していてもよく、例えばn-ヘキシル基、1-メチルヘキシル基、2-メチルヘキシル基、1-ペンチルへキシル基、シクロヘキシル基、1-ヒドロキシヘキシル基、1-クロロヘキシル基、1,3-ジクロロヘキシル基、1-アミノヘキシル基、1-シアノヘキシル基、1-ニトロヘキシル基などの各種ヘキシル基のほか、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種ウンデシル基、各種ドデシル基、各種トリデシル基、各種テトラデシル基、各種ペンタデシル基、各種ヘキサデシル基、各種ヘプタデシル基、各種オクタデシル基、各種ノナデシル基、各種エイコシル基などが挙げられ、より好ましくは各種ヘキシル基のほか、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種ウンデシル基、各種ドデシル基、各種トリデシル基、各種テトラデシル基、各種オクタデシル基であり、更に好ましくは各種オクチル基、各種デシル基、各種ドデシル基、各種テトラデシル基、各種セチル基、各種オクタデシル基であり、各種オクタデシル基が特に好ましい。
 アルケニル基としては、炭素数2~24のアルケニル基が好ましく、炭素数4~18のアルケニル基がより好ましく、炭素数6~18のアルケニル基がさらに好ましい。
 また、式中のn、mは0~20の整数を示し、好ましくは0~14であり、より好ましくは1~5である(但し、m+nは1以上である)。n、mが上記範囲内であれば、式中R2で示される官能基と親水性-疎水性とのバランスの影響にもよるが、本発明に用いられるポリオキシエチレンヒドロカルビルアミンは水や有機溶剤などの溶媒に容易に溶解し処理液として好適に用いることができる。
 一般式(1)で示される化合物のうち、特に好ましいものとしては、ヤシ油脂肪酸ジエタノールアミドであり、R1の炭素数が8~18の混合となっているもの、炭素数8、10、12、14、16、18であるものが挙げられる。より具体的には製品名ダイヤノール300(第一工業製薬株式会社製)、製品名ダイヤノールCDE(第一工業製薬株式会社製)、製品名アミゾールCDE(川研ファインケミカル株式会社製)、製品名アミゾールFDE(川研ファインケミカル株式会社製)などが挙げられる。
 一般式(2)で示される化合物のうち好ましいものとしては、製品名アミート102、製品名アミート105、製品名アミート105A、製品名アミート302、製品名アミート320(以上 花王株式会社製)等が挙げられ、特に好ましいものとしてはポリオキシエチレンステアリルアミンであり、具体的には製品名アミラヂンD(第一工業製薬株式会社製)、製品名アミラジンC-1802(第一工業製薬株式会社製)等が挙げられる。
 パーフルオロアルキルポリオキシエチレンエタノールとしては、下記一般式(3)で表される化合物であり、具体的には製品名フロラードFC-170C(住友スリーエム株式会社製)等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
〔式中、n、mは1~20の整数を示し、n、mは同じでも異なっていてもよい。〕
 本発明の処理液は、さらに水を好ましく含み、水溶液であることが好ましい。水としては、蒸留、イオン交換処理、フィルター処理、各種吸着処理などによって、金属イオンや有機不純物、パーティクル粒子などが除去されたものが好ましく、特に純水、超純水が好ましい。
 本発明の処理液は、上記したヒドロカルビルアルカノールアミド、ポリオキシエチレンヒドロカルビルアミン、およびパーフルオロアルキルポリオキシエチレンエタノールの群から選ばれる1種以上を含み、さらに好ましくは水を含み、その他、処理液に通常用いられる各種添加剤を処理液の効果を害しない範囲で含んでいてもよい。
 本発明の処理液中のヒドロカルビルアルカノールアミド、ポリオキシエチレンヒドロカルビルアミン、およびパーフルオロアルキルポリオキシエチレンエタノールの群から選ばれる1種以上を含有する処理液中の含有量は、10ppm~10%であることが好ましい。上記化合物の含有量が上記範囲内であれば、これらの化合物の効果が十分得られるが、取り扱いやすさや経済性や泡立ちを考慮して、より低濃度の5%以下で用いることが好ましく、より好ましくは10ppm~1%、更に好ましくは10~2000ppmであり、特に好ましくは10~1000ppmである。また、これらの化合物の水に対する溶解性が十分ではなく相分離するような場合、アルコールなどの有機溶剤を加えてもよいし、酸、アルカリを加えて溶解性を補ってもよい。
 また相分離せず単に白濁した場合でも、その処理液の効果を害しない範囲で用いてもよいし、その処理液が均一となるように撹拌を伴って使用してもよい。また、処理液の白濁を避けるために、上記と同様にアルコールなどの有機溶剤や酸、アルカリを加えてから用いてもよい。
 本発明の処理液は、半導体装置やマイクロマシンといった金属微細構造体のパターン倒壊を抑制に好適に用いられる。ここで、金属微細構造体のパターンとしては、TiN(窒化チタン)、Ti(チタン)、Ru(ルテニウム)、RuO(酸化ルテニウム)、SrRuO3(酸化ルテニウムストロンチウム)、Al23(酸化アルミニウム)、HfO2(酸化ハフニウム)、HfSiOx(ハフニウムシリケート)、HfSiON(窒化ハフニウムシリケート)、Pt(白金)、Ta(タンタル)、Ta25(酸化タンタル)、TaN(窒化タンタル)、NiSi(ニッケルシリサイド)、NiSiGe(ニッケルシリコンゲルマニウム)、NiGe(ニッケルゲルマニウム)などから選ばれる少なくとも一種の材料を用いてなるものが好ましく挙げられ、TiN(窒化チタン)、Ti(チタン)、Ru(ルテニウム)、RuO(酸化ルテニウム)、SrRuO3(酸化ルテニウムストロンチウム)、Al23(酸化アルミニウム)、HfO2(酸化ハフニウム)、Pt(白金)、Ta(タンタル)、Ta25(酸化タンタル)、TaN(窒化タンタル)がより好ましく、TiN(窒化チタン)、Ta(タンタル)、Ti(チタン)、Al23(酸化アルミニウム)、HfO2(酸化ハフニウム)Ru(ルテニウム)がさらに好ましい。なお、金属微細構造体は、SiO2(シリコン酸化膜)やTEOS(テトラエトキシオルソシラン酸化膜)などの絶縁膜種の上にパターニングされる場合や、金属微細構造の一部に絶縁膜種が含まれる場合もある。
 本発明の処理液は、従来の金属微細構造体はもちろんのこと、より微細化、高アスペクト比となる金属微細構造体に対して、優れたパターン倒壊抑制の効果を発揮する。ここで、アスペクト比は(パターンの高さ/パターン幅)により算出される値であり、3以上、さらには7以上という高アスペクト比を有するパターンに対して、本発明の処理液は優れたパターン倒壊抑制の効果を有する。また、本発明の処理液は、パターンサイズ(パターン幅)が300nm以下、150nm以下、100nm以下、さらには50nm以下であっても1:1のライン・アンド・スペースという微細なパターンや、同様にパターン間の間隔が300nm以下、150nm以下、100nm以下さらには50nm以下である円筒あるいは円柱状構造を持つ微細なパターンに対して、優れたパターン倒壊抑制の効果を有する。
[金属微細構造体の製造方法]
 本発明の金属微細構造体の製造方法は、ウェットエッチング又はドライエッチングの後の洗浄工程において、上記した本発明の処理液を用いることを特徴とするものである。より具体的には、該洗浄工程において、好ましくは金属微細構造体のパターンと本発明の処理液とを浸漬、スプレー吐出、噴霧などにより接触させた後、水で該処理液を置換してから乾燥させる。ここで、金属微細構造体のパターンと本発明の処理液とを浸漬により接触させる場合、浸漬時間は10秒~30分が好ましく、より好ましくは15秒~20分、さらに好ましくは20秒~15分、特に好ましくは30秒~10分であり、温度条件は10~60℃が好ましく、より好ましくは15~50℃、さらに好ましくは20~40℃、特に好ましくは25~40℃である。また、金属微細構造体のパターンと本発明の処理液との接触の前に、あらかじめ水で洗浄を行ってもよい。このように、金属微細構造体のパターンと本発明の処理液とを接触させることにより、該パターンの表面上を疎水化することにより、パターンがその隣のパターンに接触するようなパターンの倒壊を抑制することが可能となる。
 本発明の処理液は、金属微細構造体の製造工程において、ウェットエッチング又はドライエッチングの工程を有し、その後にウエット処理(エッチングまたは洗浄、それらの洗浄液を洗い流すためのリンス)する行程、乾燥する工程からなり、金属微細構造体の種類を問わずに、広く適用することができる。例えば、(i)DRAM型の半導体装置の製造における、導電膜周辺の絶縁膜などをウェットエッチングした後(例えば特開2000-196038号公報及び特開2004-288710号公報参照)、(ii)短冊状のフィンを有するトランジスタを備えた半導体装置の製造における、ゲート電極の加工時のドライエッチングもしくはウェットエッチングの後に生成した汚染物を除去するための洗浄工程の後(例えば特開2007-335892号公報参照)、(iii)マイクロマシン(微小電気機械装置)のキャビティ形成において、導電性膜の貫通孔を介して絶縁膜からなる犠牲層を除去してキャビティを形成する際の、エッチング時に生成した汚染物を除去するための洗浄工程の後(例えば特開2009-122031号公報参照)などといった、半導体装置やマイクロマシンの製造工程におけるエッチング工程後に、本発明の処理液は好適に用いることができる。
 次に、本発明を実施例により、さらに詳しく説明するが、本発明は、これらの例によってなんら限定されるものではない。
《処理液の調製》
 表1に示される配合組成(質量%)に従い、実施例に係る金属微細構造体のパターン倒壊抑制用処理液1~4を調合した。なお、残部は水である。
Figure JPOXMLDOC01-appb-T000010
*1:「ダイヤノール300(商品名)」:第一工業製薬株式会社製、比重:1.01(20℃)、粘度:約1100Pas(25℃)、非イオン性、一般式(1)の範囲
*2:「ダイヤノールCDE(商品名)」:第一工業製薬株式会社製、比重:1.01(20℃)、粘度:約220Pas(50℃)、非イオン性、一般式(1)の範囲
*3:「アミラヂンC1802(商品名)」:第一工業製薬株式会社製、比重:0.916(20℃)、非イオン性、一般式(2)の範囲
*4:「フロラードFC-170C(商品名)」:住友スリーエム株式会社製、比重:1.32(25℃)、非イオン性、一般式(3)の範囲
*5: 各化合物が有するアルキル基の炭素数
実施例1~4
 図1(a)に示すように、シリコン基板104上に窒化珪素103(厚さ:100nm)及び酸化珪素102(厚さ:1200nm)を成膜した後、フォトレジスト101を形成した後、該フォトレジスト101を露光、現像することにより、図1(b)に示す円-リング状開口部105(φ125nm、円と円との距離:70nm)を形成し、該フォトレジスト101をマスクとしてドライエッチングにより酸化珪素102に図1(c)に示す円筒状の孔106を、窒化珪素103の層までエッチングして形成した。次いで、フォトレジスト101をアッシングにより除去し、図1(d)に示す酸化珪素102に窒化珪素103の層に達する円筒状孔106が開孔された構造体を得た。得られた構造体の円筒状孔106に、金属107として窒化チタンを充填・堆積し(図1(e))、化学的機械研磨(ケミカルメカニカルポリッシング;CMP)により、酸化珪素102上の余分な金属(窒化チタン)107を除去し、図1(f)に示す酸化珪素102中に金属(窒化チタン)の円筒108が埋め込まれた構造体を得た。得られた構造体の酸化珪素102を0.5%フッ酸水溶液により溶解除去(25℃、1分浸漬処理)した後、純水リンス、処理液1~4(30℃、10分浸漬処理)、及び純水リンスの順で接液処理し、乾燥を行い、図1(g)に示す構造体を得た。
 得られた構造体は、金属(窒化チタン)の円筒-煙突状のパターン(φ125nm,高さ:1200nm(アスペクト比:9.6),円筒と円筒との間の距離:70nm)を有する微細構造であり、70%以上の該パターンは倒壊することがなかった。
 ここで、パターンの倒壊は、「FE-SEM S-5500(型番)」:日立ハイテクノロジーズ社製を用いて観察し、倒壊抑制率は、パターン全本数中の倒壊しなかったパターンの割合を算出して求めた数値であり、該倒壊抑制率が50%以上であれば合格と判断した。各例において使用した処理液、処理方法及び倒壊抑制率の結果を表3に示す。
比較例1
 実施例1において、図1(f)に示される構造体の酸化珪素102をフッ酸により溶解除去した後、純水のみで処理した以外は、実施例1と同様にして図1(g)に示す構造体を得た。得られた構造体のパターンの50%以上は、図1(h)に示されるような倒壊をおこしていた(倒壊抑制率は50%未満となる。)。比較例1において使用した処理液、処理方法及び倒壊抑制率の結果を表3に示す。
比較例2~10
 実施例1において、図1(f)に示される構造体の酸化珪素102をフッ酸により溶解除去し純水で処理した後、処理液1の代わりに表2に示す比較液1~9で処理する以外は、実施例1と同様にして図1(g)に示す構造体を得た。得られた構造体のパターンの50%以上は、図1(h)に示されるような倒壊をおこしていた。各例2~10において使用した処理液、処理方法及び倒壊抑制率の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000011
*1:「DKSディスコートN-14(商品名)」:第一工業製薬株式会社製,0.01%水
*2:「カチオーゲンTML(商品名)」:第一工業製薬株式会社製,0.01%水
*3:「サーフィノール104(商品名)」:日信化学工業株式会社製,0.01%水
*4:「エパン420(商品名)」:第一工業製薬株式会社製,0.01%水
*5:「フロラードFC-93(商品名)」:3M社製,0.01%水
*6:「サーフロンS-111(商品名)」:AGCセイミケミカル(株)製,0.01%水
Figure JPOXMLDOC01-appb-T000012
*1:倒壊抑制率=(倒壊しなかった円筒数/全円筒数)×100[%]
実施例5~8
 実施例1~4において、金属107として窒化チタンの代わりにタンタルを用いた以外は実施例1~4と同様にして図1(g)に示す構造体を得た。得られた構造体は、金属(タンタル)の円筒108の円筒状のパターン(φ125nm,高さ:1200nm(アスペクト比:9.6)、円筒と円筒との間の距離:70nm)を有する微細構造であり、70%以上の該パターンは倒壊することがなかった。各例において使用した処理液、処理方法及び倒壊抑制率の結果を表4に示す。
比較例11~20
 比較例1~10において、金属107として窒化チタンの代わりにタンタルを用いた以外は比較例1~10と同様にして、各々比較例11~20の図1(g)に示す構造体を得た。得られた構造体のパターンの50%以上は、図1(h)に示されるような倒壊をおこしていた。各例において使用した処理液、処理方法及び倒壊抑制率の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000013
*1:倒壊抑制率=(倒壊しなかった円筒数/全円筒数)×100[%]
実施例9~12
 図2(a)に示すように、シリコン基板上に形成された酸化珪素層201上にポリシリコン202(厚さ:100nm)を成膜し、その上にフォトレジスト203を形成した後、該フォトレジスト203を露光、現像することにより、図2(b)に示す角柱状開口部204(1000nm×8000nm)を形成し、該フォトレジスト203をマスクとしてドライエッチングによりポリシリコン202に図2(c)に示す角柱状孔205を、酸化珪素層201までエッチングして形成した。次いで、フォトレジスト203をアッシングにより除去し図2(d)に示すポリシリコン202に酸化珪素層201に達する角柱状孔205が開孔された構造体を得た。得られた構造体の角柱状孔205に金属としてチタンを充填・堆積して、金属(チタン)角柱206及び金属(チタン)層207を形成し(図2(e))、該金属(チタン)層207上にフォトレジスト208を形成した(図2(f))。次いで、フォトレジスト208を露光、現像することにより、図2(g)に示す2つの金属(チタン)角柱206を含む範囲を覆う長方形型フォトマスク209を形成し、該長方形型フォトマスク209をマスクとして、金属(チタン)層207をドライエッチングすることにより、図2(h)に示す下部の両端に金属(チタン)角柱206を有する金属(チタン)板210を形成した。さらに、長方形フォトマスク209をアッシングにより除去し、図2(i)に示すポリシリコン202と金属(チタン)角柱206とを有する金属(チタン)板210からなる構造体を得た。得られた構造体のポリシリコン202を水酸化テトラメチルアンミニウム水溶液により溶解除去した後、純水、処理液1~5、及び純水の順で接液処理し、乾燥を行い、実施例9~12の図2(j)に示す橋梁構造体211を得た。
 得られた橋梁構造体211は、金属(チタン)板210(縦×横:15000nm×10000nm,厚さ:300nm,アスペクト比:50)及びその両端に金属(チタン)角柱(縦×横:1000nm×8000nm,高さ:100nm)を有する微細構造であるが、70%以上の金属(チタン)板210が倒壊することがなく、酸化珪素層201に触れることはなかった。ここで、パターンの倒壊は、「FE-SEM S-5500(型番)」:日立ハイテクノロジーズ社製を用いて観察した。各例において使用した処理液、処理方法及び倒壊抑制率の結果を表5に示す。
比較例21
 実施例9において、図2(i)に示される構造体のポリシリコン202を水酸化テトラメチルアンミニウム水溶液により溶解除去した後、純水のみで処理した以外は、実施例9と同様にして図2(j)に示す橋梁構造体211を得た。得られた橋梁構造体211の50%以上は、図2(k)に示されるような倒壊をおこしていた。比較例21において使用した処理液、処理方法及び倒壊抑制率の結果を表5に示す。
比較例22~30
 実施例9において、図2(i)に示される構造体のポリシリコン202を水酸化テトラメチルアンミニウム水溶液により溶解除去し純水で処理した後、処理液1の代わりに表2に示す比較液1~9で処理する以外は、実施例9と同様にして、比較例22~30の図2(j)に示す橋梁構造体211を得た。得られた橋梁構造体211の50%以上は、図2(k)に示されるような倒壊をおこしていた(倒壊抑制率は50%未満となった。)。比較例22において使用した処理液、処理方法及び倒壊抑制率を表5に示す。
Figure JPOXMLDOC01-appb-T000014
*1:倒壊抑制率=(倒壊しなかった橋梁構造数/全橋梁構造数)×100[%]
実施例13~16
 実施例9~12において、金属としてチタンの代わりに酸化アルミニウムを用いた以外は実施例9~12と同様にして、実施例13~16の図2(j)に示す橋梁構造体211を得た。
 得られた橋梁構造体211は、金属(酸化アルミニウム)板210(縦×横:15000nm×10000nm,厚さ:300nm,アスペクト比:50)及びその両端に金属(酸化アルミニウム)角柱(縦×横:1000nm×8000nm,高さ:100nm)を有する微細構造であるが、70%以上の金属(酸化アルミニウム)板210が倒壊することなく、酸化珪素層201に触れることはなかった。各例において使用した処理液、処理方法及び倒壊抑制率の結果を表6に示す。
比較例31~40
 比較例21~30において、金属としてチタンの代わりに酸化アルミニウムを用いた以外は比較例21~30と同様にして、比較例31~40の図2(j)に示す橋梁構造体211を得た。得られた橋梁構造体の50%以上は、図2(k)に示されるような倒壊をおこしていた。各例において使用した処理液、処理方法及び倒壊抑制率の結果を表6に示す。
Figure JPOXMLDOC01-appb-T000015
*1:倒壊抑制率=(倒壊しなかった橋梁構造数/全橋梁構造数)×100[%]
実施例17~20
 実施例9~12において、金属としてチタンの代わりに酸化ハフニウムを用いた以外は実施例9~12と同様にして、実施例17~20の図2(j)に示す橋梁構造体211を得た。
 得られた橋梁構造体211は、金属(酸化ハフニウム)板210(縦×横:15000nm×10000nm,厚さ:300nm,アスペクト比:50)及びその両端に金属(酸化ハフニウム)角柱(縦×横:1000nm×8000nm,高さ:100nm)を有する微細構造であるが、70%以上の金属(酸化ハフニウム)板210が倒壊することがなく、酸化珪素層201に触れることはなかった。各例において使用した処理液、処理方法及び倒壊抑制率の結果を表7に示す。
比較例41~50
 比較例21~30において、金属としてチタンの代わりに酸化ハフニウムを用いた以外は比較例21~30と同様にして、比較例41~50の図2(j)に示す橋梁構造体211を得た。得られた橋梁構造体の50%以上は、図2(k)に示されるような倒壊をおこしていた。各例において使用した処理液、処理方法及び倒壊抑制率の結果を表7に示す。
Figure JPOXMLDOC01-appb-T000016
*1:倒壊抑制率=(倒壊しなかった橋梁構造数/全橋梁構造数)×100[%]
実施例21~24
 実施例9~12において、金属としてチタンの代わりにルテニウムを用いた以外は実施例9~12と同様にして、実施例21~24の図2(j)に示す橋梁構造体211を得た。
 得られた橋梁構造体211は、金属(ルテニウム)板210(縦×横:15000nm×10000nm,厚さ:300nm,アスペクト比:50)及びその両端に金属(ルテニウム)角柱(縦×横:1000nm×8000nm,高さ:100nm)を有する微細構造であるが、70%以上の金属(ルテニウム)板210が倒壊することはなく、酸化珪素層201に触れることはなかった。ここで、パターンの倒壊は、「FE-SEM S-5500(型番)」:日立ハイテクノロジーズ社製を用いて観察した。各例において使用した処理液、処理方法及び倒壊抑制率の結果を表8に示す。
比較例51~60
 比較例21~30において、金属としてチタンの代わりにルテニウムを用いた以外は比較例21~30と同様にして、比較例51~60の図2(j)に示す橋梁構造体211を得た。得られた橋梁構造体の50%以上は、図2(k)に示されるような倒壊をおこしていた。各例において使用した処理液、処理方法及び倒壊抑制率の結果を表8に示す。
Figure JPOXMLDOC01-appb-T000017
*1:倒壊抑制率=(倒壊しなかった橋梁構造数/全橋梁構造数)×100[%]
 本発明の処理液は、半導体装置やマイクロマシン(MEMS)といった金属微細構造体の製造におけるパターン倒壊の抑制に好適に用いることができる。
 101.フォトレジスト
 102.酸化珪素
 103.窒化珪素
 104.シリコン基板
 105.円状開口部
 106.円筒状孔
 107.金属(窒化チタンまたはタンタル)
 108.金属(窒化チタンまたはタンタル)の円筒
 201.酸化珪素層
 202.ポリシリコン
 203.フォトレジスト
 204.角柱状開口部
 205.角柱状孔205
 206.金属(チタン、酸化アルミニウム、酸化ハフニウムまたはルテニウム)角柱
 207.金属(チタン、酸化アルミニウム、酸化ハフニウムまたはルテニウム)層
 208.フォトレジスト
 209.長方形型フォトマスク
 210.金属(チタン、酸化アルミニウム、酸化ハフニウムまたはルテニウム)板
 211.橋梁構造体

Claims (11)

  1.  一部または全部がフッ素で置換されていてもよいアルキル基およびアルケニル基のいずれかからなるヒドロカルビル基を有し、オキシエチレン構造を含むパターン倒壊抑制剤を含有する金属微細構造体のパターン倒壊抑制用処理液。
  2.  前記パターン倒壊抑制剤が、ヒドロカルビルアルカノールアミド、ポリオキシエチレンヒドロカルビルアミン、およびパーフルオロアルキルポリオキシエチレンエタノールからなる群から選ばれる1種以上である請求項1に記載の金属微細構造体のパターン倒壊抑制用処理液。
  3.  前記ヒドロカルビルアルカノールアミドが、下記一般式(1)で表される請求項2に記載の処理液。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R1は炭素数2~24のアルキル基、またはアルケニル基を示す。〕
  4.  前記ポリオキシエチレンヒドロカルビルアミンが下記一般式(2)で表される請求項2に記載の処理液。
    Figure JPOXMLDOC01-appb-C000002
    〔式中、R2は炭素数2~24のアルキル基、またはアルケニル基を示す。また、n、mは0~20の整数を示し、n、mは同じでも異なっていてもよい。但し、m+nは1以上である。〕
  5.  前記パーフルオロアルキルポリオキシエチレンエタノールが、下記一般式(3)で表される請求項2に記載の処理液。
    Figure JPOXMLDOC01-appb-C000003
    〔式中、n、mは1~20の整数を示し、n、mは同じでも異なっていてもよい。〕
  6.  さらに水を含む請求項1~5のいずれかに記載の処理液。
  7.  前記ヒドロカルビルアルカノールアミド、ポリオキシエチレンヒドロカルビルアミン、およびパーフルオロアルキルポリオキシエチレンエタノールからなる群から選ばれる1種以上の含有量が10ppm~10%である請求項2~6のいずれかに記載の処理液。
  8.  前記金属微細構造体の一部もしくは全部が、窒化チタン、チタン、ルテニウム、酸化ルテニウム、酸化アルミニウム、酸化ハフニウム、ハフニウムシリケート、窒化ハフニウムシリケート、白金、タンタル、酸化タンタル、窒化タンタル、ニッケルシリサイド、ニッケルシリコンゲルマニウム、およびニッケルゲルマニウムから選ばれる少なくとも一種の材料を用いてなるものである請求項1~7のいずれかに記載の処理液。
  9.  ウェットエッチング又はドライエッチングの後の洗浄工程において、請求項1~8のいずれかに記載の処理液を用いることを特徴とする金属微細構造体の製造方法。
  10.  前記金属微細構造体の一部もしくは全部が、窒化チタン、チタン、ルテニウム、酸化ルテニウム、酸化アルミニウム、酸化ハフニウム、ハフニウムシリケート、窒化ハフニウムシリケート、白金、タンタル、酸化タンタル、窒化タンタル、ニッケルシリサイド、ニッケルシリコンゲルマニウム、およびニッケルゲルマニウムから選ばれる少なくとも一種の材料を用いてなるものである請求項9に記載の金属微細構造体の製造方法。
  11.  前記金属微細構造体が、半導体装置またはマイクロマシンである請求項9又は10に記載の金属微細構造体の製造方法。
PCT/JP2010/068397 2009-10-23 2010-10-19 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法 WO2011049092A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112010003836.8T DE112010003836B4 (de) 2009-10-23 2010-10-19 Behandlungslösung zur Verhinderung eines Musterzusammenbruchs in einem feinen Strukturkörper und Verfahren zur Herstellung eines feinen Strukturkörpers, bei dem diese eingesetzt wird
US13/503,055 US20120205345A1 (en) 2009-10-23 2010-10-19 Treatment solution for preventing pattern collapse in metal fine structure body, and process for production of metal fine structure body using same
KR1020187023186A KR102008117B1 (ko) 2009-10-23 2010-10-19 금속 미세 구조체의 패턴 도괴 억제용 처리액 및 이것을 이용한 금속 미세 구조체의 제조 방법
JP2011537265A JP5720575B2 (ja) 2009-10-23 2010-10-19 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法
KR1020177017709A KR20170078867A (ko) 2009-10-23 2010-10-19 금속 미세 구조체의 패턴 도괴 억제용 처리액 및 이것을 이용한 금속 미세 구조체의 제조 방법
CN201080047543.9A CN102640264B (zh) 2009-10-23 2010-10-19 用于抑制金属微细结构体的图案倒塌的处理液和使用其的金属微细结构体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009244542 2009-10-23
JP2009-244542 2009-10-23

Publications (1)

Publication Number Publication Date
WO2011049092A1 true WO2011049092A1 (ja) 2011-04-28

Family

ID=43900315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068397 WO2011049092A1 (ja) 2009-10-23 2010-10-19 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法

Country Status (7)

Country Link
US (1) US20120205345A1 (ja)
JP (1) JP5720575B2 (ja)
KR (3) KR102008117B1 (ja)
CN (1) CN102640264B (ja)
DE (1) DE112010003836B4 (ja)
TW (1) TW201122736A (ja)
WO (1) WO2011049092A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117656A1 (ja) * 2015-01-23 2016-07-28 富士フイルム株式会社 パターン処理方法、半導体基板製品の製造方法およびパターン構造の前処理液

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102056139B1 (ko) 2015-07-13 2019-12-16 후지필름 가부시키가이샤 패턴 구조의 처리 방법, 전자 디바이스의 제조 방법 및 패턴 구조의 붕괴 억제용 처리액
JP6875811B2 (ja) * 2016-09-16 2021-05-26 株式会社Screenホールディングス パターン倒壊回復方法、基板処理方法および基板処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323394A (ja) * 1998-05-14 1999-11-26 Texas Instr Japan Ltd 半導体素子製造用洗浄剤及びそれを用いた半導体素子の製造方法
JP2003109949A (ja) * 2001-09-28 2003-04-11 Mitsubishi Chemicals Corp エッチング液及びエッチング方法
JP2004079966A (ja) * 2002-08-22 2004-03-11 Kobe Steel Ltd 微細構造体の乾燥方法
JP2005174961A (ja) * 2003-12-05 2005-06-30 Ebara Corp 基板処理方法及び装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119720A (ja) * 1984-11-15 1986-06-06 Toho Rayon Co Ltd アクリル系繊維の製造方法
JPS63283028A (ja) * 1986-09-29 1988-11-18 Hashimoto Kasei Kogyo Kk 微細加工表面処理剤
JP4180716B2 (ja) 1998-12-28 2008-11-12 富士通株式会社 半導体装置の製造方法
JP2003177556A (ja) * 2001-12-12 2003-06-27 Sharp Corp フォトレジスト剥離剤組成物および剥離方法
JP4045180B2 (ja) 2002-12-03 2008-02-13 Azエレクトロニックマテリアルズ株式会社 リソグラフィー用リンス液およびそれを用いたレジストパターン形成方法
JP2004204052A (ja) * 2002-12-25 2004-07-22 Bridgestone Corp 吸音性ポリウレタンフォーム及び車両用シートパッド
JP4470144B2 (ja) 2003-03-19 2010-06-02 エルピーダメモリ株式会社 半導体集積回路装置の製造方法
JP2005181814A (ja) 2003-12-22 2005-07-07 Matsushita Electric Ind Co Ltd パターン形成方法
US20050158672A1 (en) 2003-12-22 2005-07-21 Matsushita Electric Industrial Co., Ltd. Pattern formation method
JP4493393B2 (ja) 2004-04-23 2010-06-30 東京応化工業株式会社 リソグラフィー用リンス液
JP4524752B2 (ja) * 2004-12-02 2010-08-18 山栄化学株式会社 パーマネントウェーブ剤
JP4353090B2 (ja) 2004-12-10 2009-10-28 三菱電機株式会社 レジスト用現像液
JP2007335892A (ja) 2007-08-17 2007-12-27 Toshiba Corp 半導体装置
JP2009088253A (ja) * 2007-09-28 2009-04-23 Toshiba Corp 微細構造体の製造方法および微細構造体の製造システム
JP4655083B2 (ja) 2007-11-16 2011-03-23 セイコーエプソン株式会社 微小電気機械装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323394A (ja) * 1998-05-14 1999-11-26 Texas Instr Japan Ltd 半導体素子製造用洗浄剤及びそれを用いた半導体素子の製造方法
JP2003109949A (ja) * 2001-09-28 2003-04-11 Mitsubishi Chemicals Corp エッチング液及びエッチング方法
JP2004079966A (ja) * 2002-08-22 2004-03-11 Kobe Steel Ltd 微細構造体の乾燥方法
JP2005174961A (ja) * 2003-12-05 2005-06-30 Ebara Corp 基板処理方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117656A1 (ja) * 2015-01-23 2016-07-28 富士フイルム株式会社 パターン処理方法、半導体基板製品の製造方法およびパターン構造の前処理液
JPWO2016117656A1 (ja) * 2015-01-23 2017-10-12 富士フイルム株式会社 パターン処理方法、半導体基板製品の製造方法およびパターン構造の前処理液

Also Published As

Publication number Publication date
KR20170078867A (ko) 2017-07-07
CN102640264B (zh) 2015-04-01
KR102008117B1 (ko) 2019-08-06
DE112010003836B4 (de) 2020-01-30
TW201122736A (en) 2011-07-01
KR20120116390A (ko) 2012-10-22
KR20180093133A (ko) 2018-08-20
US20120205345A1 (en) 2012-08-16
CN102640264A (zh) 2012-08-15
JP5720575B2 (ja) 2015-05-20
DE112010003836T5 (de) 2012-11-22
JPWO2011049092A1 (ja) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5206622B2 (ja) 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法
JP5664653B2 (ja) 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法
WO2011049091A1 (ja) 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法
JP5720575B2 (ja) 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法
JP5741589B2 (ja) 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法
JP5720572B2 (ja) 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法
JP5741590B2 (ja) 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法
JP6405610B2 (ja) 高アスペクト比を有する微細構造体のパターン倒壊抑制用処理液およびこれを用いた微細構造体の製造方法
KR102002327B1 (ko) 미세 구조체의 패턴 붕괴 억제용 처리액 및 이것을 이용한 미세 구조체의 제조방법
JP2015035458A (ja) 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047543.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127010126

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13503055

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010003836

Country of ref document: DE

Ref document number: 1120100038368

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2011537265

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10824941

Country of ref document: EP

Kind code of ref document: A1