WO2011043474A1 - 硬化性樹脂組成物、及びその硬化物 - Google Patents

硬化性樹脂組成物、及びその硬化物 Download PDF

Info

Publication number
WO2011043474A1
WO2011043474A1 PCT/JP2010/067794 JP2010067794W WO2011043474A1 WO 2011043474 A1 WO2011043474 A1 WO 2011043474A1 JP 2010067794 W JP2010067794 W JP 2010067794W WO 2011043474 A1 WO2011043474 A1 WO 2011043474A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
acid
epoxy resin
formula
Prior art date
Application number
PCT/JP2010/067794
Other languages
English (en)
French (fr)
Inventor
政隆 中西
智江 佐々木
直房 宮川
窪木 健一
義浩 川田
静 青木
瑞観 鈴木
正人 鎗田
小柳 敬夫
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2011535479A priority Critical patent/JP5519685B2/ja
Priority to CN201080045447.0A priority patent/CN102574983B/zh
Publication of WO2011043474A1 publication Critical patent/WO2011043474A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a curable resin composition suitable for electrical and electronic materials, particularly for optical semiconductors, and a cured product.
  • epoxy resin anhydrides are often used in fields requiring optical properties, such as LED products.
  • an epoxy resin used as a sealing material for an optical semiconductor element such as an LED product a glycidyl ether type typified by a bisphenol A type epoxy resin excellent in balance of heat resistance, transparency and mechanical properties.
  • the epoxy resin composition has been widely used.
  • the sealing material is colored on the LED chip under the influence of short wavelength light, and finally as an LED product It has been pointed out that the illuminance will decrease.
  • alicyclic epoxy resins represented by 3,4 epoxy cyclohexyl methyl-3 ′, 4 ′ epoxy cyclohexyl carboxylate are superior in transparency compared to glycidyl ether type epoxy resin compositions having aromatic rings. Therefore, it has been actively studied as an LED sealing material (Patent Documents 1 and 2).
  • the alicyclic epoxy resin has a low viscosity and is likely to volatilize when it is thermoset.
  • an acid anhydride used as a curing agent
  • the volatilization amount becomes violent and often causes the curing furnace to become dirty.
  • a curable resin composition is cast in an extremely small amount (for example, about 10 mg).
  • volatilization occurs during heat curing. As a result, a recess may occur in the sealing portion of the surface mount LED product, which may cause a problem.
  • the wire portion that supplies current to the LED chip may be exposed, and at that time, it can no longer function as a sealing material.
  • the subject still remains about the volatilization at the time of heat-hardening.
  • a resin having a siloxane skeleton (specifically, a skeleton having a Si—O bond) introduced as a silicone resin or silicone-modified epoxy resin is used as a sealing material. Considerations are being made.
  • Patent Document 3 In general, it is known that a resin having a siloxane skeleton introduced therein is more stable to heat and light than an epoxy resin. Therefore, when applied to the sealing material of LED products, it was said that it was superior to epoxy resin in terms of coloring on the LED chip. However, resins incorporating the siloxane skeleton are inferior in gas permeability resistance compared to epoxy resins.
  • the color on the LED chip does not matter, but the silver plated on the metal lead frame, which is a component in the LED package.
  • the component which is silver-plated to increase the reflectance
  • the performance as an LED product is lowered.
  • it is an epoxy resin composition having no problem with the gas permeation resistance, and suppresses dents due to volatilization during heating, and has higher durability as an LED product than the conventional alicyclic epoxy resin.
  • a curable resin composition comprising an epoxy resin obtained by oxidizing an olefin compound represented by the following formula (1), a curing agent and / or a curing accelerator;
  • R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the epoxy resin is an olefin compound in which all of R 1 and R 2 are hydrogen atoms
  • the curing agent is one or more compounds represented by the following formula (2):
  • R 3 represents a hydrogen atom, a methyl group or a carboxyl group.
  • the curable resin composition of the present invention is excellent in heat resistance, dent prevention after heat curing, corrosion gas resistance, and color resistance, it is excellent in adhesion for optical materials, particularly for optical semiconductors (LED products, etc.). It is extremely useful as a material and a sealing material.
  • the curable resin composition of the present invention has the following formula (4) obtained by epoxidizing the olefin compound of the formula (1).
  • R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. It is essential to contain an epoxy resin whose main component is an epoxy compound represented by the formula (hereinafter referred to as the epoxy resin of the present invention).
  • the olefin compound of the above formula (1) can be produced by a known method, for example, obtained by reacting cyclohexene dimethanol with cyclohexene carboxylic acid.
  • the cyclohexene carboxylic acid derivative the following formula (5)
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X represents a hydroxyl group, a halogen atom or an alkoxyl group having 1 to 10 carbon atoms.
  • cyclohexene carboxylic acid cyclohexene carboxylate methyl, cyclohexene carboxylate ethyl, cyclohexene carboxylate propyl, cyclohexene carboxylate butyl, cyclohexene carboxylate hexyl, (cyclohexenylmethyl) cyclohexene carboxylate, cyclohexene Octyl carboxylate, cyclohexene carboxylic acid chloride, cyclohexene carboxylic acid bromide, methyl cyclohexene carboxylic acid, methyl methyl cyclohexene carboxylate, ethyl methyl cyclohexene
  • Cyclohexene dimethanol can be produced by a cross cannizzaro reaction followed by an aldol reaction of cycloalkenecarbaldehyde and formaldehyde (or a synthetic isotope thereof; paraformaldehyde, etc.).
  • a general esterification method can be applied to the reaction of the cyclohexene carboxylic acid derivative and cyclohexene dimethanol.
  • general esterification reactions can be applied, such as Fischer esterification using acid catalysts, acid halides under basic conditions, alcohol reactions, condensation reactions using various condensing agents (ADVANCED ORGANIC CHEMISTRY) PartB: Reaction and Synthesis p135, 145-147, 151 etc.).
  • Specific examples include esterification reactions between alcohols and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980)), and transesterification reactions of carboxylic acid esters (special It can also be produced by using Kai 2006-052187).
  • a compound in which R 1 is a hydrogen atom, a methyl group, an ethyl group or a butyl group in the formula (1) is preferable, and in particular, the substituent R 1 When is bonded to a carbon atom constituting an olefin bond, either a hydrogen atom or a methyl group is preferable, and a hydrogen atom is particularly preferable in order to improve the reactivity.
  • the epoxy resin of the present invention can be obtained by epoxidizing the compound of the formula (1) by oxidation.
  • the oxidation method include, but are not limited to, a method of oxidizing with a peracid such as peracetic acid, a method of oxidizing with a hydrogen peroxide solution, and a method of oxidizing with air (oxygen).
  • Specific examples of the epoxidation method with peracid include the methods described in Japanese Patent Publication No. 2007-510772 and Japanese Patent Application Laid-Open No. 2006-52187.
  • Various methods can be applied to the epoxidation method using hydrogen peroxide solution. Specifically, Japanese Patent Application Laid-Open No. 59-108793, Japanese Patent Application Laid-Open No.
  • the olefin compound of the formula (1), polyacid or a salt thereof and a quaternary ammonium salt are reacted in an organic solvent and hydrogen peroxide emulsion.
  • a buffer solution can also be used for the reaction.
  • the polyacid or salt thereof used in the present invention is not particularly limited as long as it is a compound having a polyacid structure, but a polyacid containing tungsten or molybdenum is preferred, a polyacid containing tungsten or a salt thereof is more preferred, and tungsten Acid salts are particularly preferred.
  • polyacetic acid or a salt thereof is simply referred to as “polyacid”.
  • the polyacid examples include tungsten acids such as tungstic acid, 12-tungstophosphoric acid, 12-tungstoboric acid, 18-tungstophosphoric acid, and 12-tungstosilicic acid, and molybdenum-based acids such as molybdic acid and phosphomolybdic acid. And the like.
  • tungsten acids such as tungstic acid, 12-tungstophosphoric acid, 12-tungstoboric acid, 18-tungstophosphoric acid, and 12-tungstosilicic acid
  • molybdenum-based acids such as molybdic acid and phosphomolybdic acid.
  • counter cations of these salts include ammonium ions, alkaline earth metal ions, and alkali metal ions.
  • alkaline earth metal ions such as calcium ions and magnesium ions
  • alkali metal ions such as sodium ions, potassium ions and cesium ions.
  • Particularly preferred counter cations are sodium ion, potassium ion, calcium ion and ammonium ion.
  • the polyacid is used in an amount of 0.5 to 20 mmol in terms of metal element (tungsten acid for tungsten atom, molybdic acid for molybdenum atom) per mol of olefin compound of formula (1), preferably 1. It is 0 to 20 mmol, more preferably 2.5 to 15 mmol.
  • quaternary ammonium salt having a total carbon number of 10 or more, preferably 25 to 100, more preferably 25 to 55 can be preferably used, and in particular, the alkyl chain is preferably an aliphatic chain. .
  • tridecanylmethylammonium salt dilauryldimethylammonium salt, trioctylmethylammonium salt, trialkylmethyl (a mixed type of a compound in which the alkyl group is an octyl group and a compound in which the decanyl group is a compound) ammonium salt
  • trihexa examples include decylmethylammonium salt, trimethylstearylammonium salt, tetrapentylammonium salt, cetyltrimethylammonium salt, benzyltributylammonium salt, dicetyldimethylammonium salt, tricetylmethylammonium salt, and di-cured tallow alkyldimethylammonium salt. It is not limited to.
  • anionic species of these salts include halide ions, nitrate ions, sulfate ions, hydrogen sulfate ions, acetate ions, carbonate ions, and the like, but are not limited thereto.
  • the number of carbon atoms exceeds 100, the hydrophobicity becomes too strong, and the solubility of the quaternary ammonium salt in the organic layer may deteriorate.
  • the number of carbon atoms is less than 10, the hydrophilicity is increased, and the compatibility of the quaternary ammonium salt with the organic layer is similarly deteriorated.
  • the amount of the quaternary ammonium salt used is preferably 0.01 to 0.8 times equivalent, or 1.1 to 10 times equivalent to the valence of the polyacid used. More preferably 0.05 to 0.7 times equivalent, or 1.2 to 6.0 times equivalent, still more preferably 0.05 to 0.5 times equivalent, or 1.3 to 4.5 times equivalent. is there.
  • tungstic acid is divalent with H 2 WO 4
  • the quaternary ammonium carboxylate is 0.02 to 1.6 mol, or 2.2 to 20 mol per mol of tungstic acid. A range is preferred.
  • tungstophosphoric acid is trivalent, it is similarly 0.03 to 2.4 mol, or 3.3 to 30 mol, and in the case of silicotungstic acid, it is tetravalent, so 0.04 to 3.2. Mole or 4.4 to 40 mol is preferred.
  • the amount of the quaternary ammonium carboxylate is lower than 1.1 times equivalent of the valence of the polyacid, the epoxidation reaction is difficult to proceed (in some cases, the reaction proceeds faster), and a by-product is produced.
  • the problem is that things are easy to make.
  • the amount is more than 10 times equivalent, not only is the post-treatment difficult, but there is a function of suppressing the reaction, which is not preferable.
  • any known buffer solution can be used as the buffer solution, but an aqueous phosphate solution is preferably used in this reaction.
  • the pH is preferably adjusted between pH 4 and 10, more preferably pH 5-9. When the pH is less than 4, the hydrolysis reaction and polymerization reaction of the epoxy group easily proceed. Moreover, when pH10 is exceeded, reaction will become extremely slow and the problem that reaction time is too long will arise.
  • the pH is preferably adjusted to be between 5 and 9.
  • a phosphoric acid-phosphate aqueous solution which is a preferable buffer
  • 0.1 to 10 mol% equivalent of phosphoric acid or a phosphate such as sodium dihydrogen phosphate
  • a method of adjusting pH with a basic compound for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, etc.
  • a basic compound for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, etc.
  • the pH is added so that the above-mentioned pH is obtained when hydrogen peroxide is added.
  • the preferred phosphate concentration is 0.1 to 60% by weight, preferably 1 to 45% by weight.
  • the amount of phosphate used in this case is usually 0.1 to 5 mol% equivalent, preferably 0.2 to 4 mol% equivalent, more preferably 0.3 to 3 mol% equivalent to hydrogen peroxide. is there. In this case, if the amount exceeds 5 mol% equivalent to hydrogen peroxide, pH adjustment is required. If the amount is less than 0.1 mol% equivalent, the resulting hydrolyzate of the epoxy compound tends to proceed or the reaction is slow. The harmful effect of becoming.
  • This reaction is epoxidized using hydrogen peroxide.
  • hydrogen peroxide used in this reaction, an aqueous solution having a hydrogen peroxide concentration of 10 to 40% by weight is preferable because of easy handling. When the concentration exceeds 40% by weight, handling becomes difficult and the decomposition reaction of the produced epoxy resin also tends to proceed.
  • This reaction uses an organic solvent.
  • the amount of the organic solvent to be used is 0.3 to 10, preferably 0.3 to 5, more preferably 0.5 to 2.5 by weight with respect to the olefin compound 1 as the reaction substrate. . When the weight ratio exceeds 10, the progress of the reaction is extremely slow, which is not preferable.
  • organic solvents that can be used include alkanes such as hexane, cyclohexane, and heptane, aromatic hydrocarbon compounds such as toluene and xylene, and alcohols such as methanol, ethanol, isopropanol, butanol, hexanol, and cyclohexanol. It is done.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • ester compounds such as ethyl acetate, butyl acetate and methyl formate
  • nitriles such as acetonitrile Compounds and the like
  • Particularly preferred solvents are alkanes such as hexane, cyclohexane and heptane, and aromatic hydrocarbon compounds such as toluene and xylene.
  • reaction operation method for example, when the reaction is performed in a batch-type reaction kettle, an olefin compound, hydrogen peroxide (aqueous solution), polyacid (catalyst), buffer solution, quaternary ammonium salt and an organic solvent are added. Stir in two layers. There is no specific designation for the stirring speed. Since heat is often generated when hydrogen peroxide is added, a method of gradually adding hydrogen peroxide after each component may be added.
  • the reaction temperature is not particularly limited, but is preferably 0 to 90 ° C, more preferably 0 to 75 ° C, particularly preferably 15 ° C to 60 ° C.
  • the reaction temperature is too high, the hydrolysis reaction tends to proceed, and when the reaction temperature is low, the reaction rate becomes extremely slow.
  • reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy.
  • a preferred range is 1 to 48 hours, preferably 3 to 36 hours, and more preferably 4 to 24 hours.
  • the quenching treatment is preferably performed using a basic compound. It is also preferable to use a reducing agent and a basic compound in combination.
  • a preferred treatment method there is a method of quenching the remaining hydrogen peroxide using a reducing agent after neutralization adjustment to pH 6 to 10 with a basic compound.
  • the reducing agent examples include sodium sulfite, sodium thiosulfate, hydrazine, oxalic acid, vitamin C and the like.
  • the reducing agent is used usually in an amount of 0.01 to 20 times mol, more preferably 0.05 to 10 times mol, and still more preferably 0.05 to 3 times mol with respect to the number of moles of excess hydrogen peroxide. is there. These are preferably added as an aqueous solution, and the concentration thereof is 0.5 to 30% by weight.
  • Basic compounds include metal hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide and calcium hydroxide, metal carbonates such as sodium carbonate and potassium carbonate, phosphorus such as sodium phosphate and sodium hydrogen phosphate. Examples thereof include basic solids such as acid salts, ion exchange resins, and alumina.
  • the amount used is water or organic solvents (for example, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl isobutyl ketone and methyl ethyl ketone, hydrocarbons such as cyclohexane, heptane and octane, methanol, ethanol, isopropyl alcohol, etc.
  • the amount used is usually 0.01 to 20 times mol, more preferably 0.05 to 10 times the number of moles of excess hydrogen peroxide. Mole, more preferably 0.05 to 3 times mole. These may be added as water or a solution of the above-mentioned organic solvent, or may be added alone.
  • a solid base that does not dissolve in water or an organic solvent it is preferable to use an amount of 1 to 1000 times by weight with respect to the amount of hydrogen peroxide remaining in the system. More preferably, it is 10 to 500 times, and further preferably 10 to 300 times.
  • the treatment may be carried out after separation of an aqueous layer and an organic layer described later.
  • the organic layer and the aqueous layer do not separate, or if the organic solvent is not used, perform the operation by adding the above-mentioned organic solvent and react from the aqueous layer. Extract the product.
  • the organic solvent used at this time is 0.5 to 10 times, preferably 0.5 to 5 times by weight with respect to the raw material olefin compound. This operation is repeated several times as necessary, and the separated organic layer is purified by washing with water as necessary.
  • the obtained organic layer may be an ion exchange resin, a metal oxide (especially, silica gel, alumina, etc. are preferred), activated carbon (especially, preferably a chemical activated carbon), a composite metal salt (especially a basic composite metal salt).
  • a mineral with a viscosity especially a layered viscosity mineral such as montmorillonite is preferred
  • the solvent is distilled off to obtain the desired epoxy compound. In some cases, it may be further purified by column chromatography or distillation.
  • the epoxy resin thus obtained is represented by the following formula (4)
  • R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the main component is a molecule represented by formula (a)
  • the epoxy resin of the present invention can be used alone or in combination with other epoxy resins.
  • the proportion of the epoxy resin in the total epoxy resin is preferably 30% by weight or more, particularly preferably 40% by weight or more.
  • the epoxy resin of the present invention is used as a modifier of the curable resin composition, it is added in a proportion of 1 to 30% by weight.
  • bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetofu Non, o-hydroxy
  • an alicyclic epoxy resin or an epoxy resin of a silsesquioxane structure is preferable.
  • an alicyclic epoxy resin a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
  • epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), etc.) Described), or Tyschenko reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No.
  • the alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane.
  • Examples of carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
  • the compound having an epoxycyclohexane structure in the skeleton is an acetal compound obtained by an acetal reaction between a cyclohexene aldehyde derivative and an alcohol.
  • a reaction method it can be produced by applying a general acetalization reaction.
  • a method of carrying out a reaction while azeotropically dehydrating using a solvent such as toluene or xylene as a reaction medium US Pat. No. 2,945,008
  • concentrated hydrochloric acid A method in which polyhydric alcohol is dissolved in the mixture and then the reaction is carried out while gradually adding aldehydes (Japanese Patent Laid-Open No.
  • epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited thereto (Reference: Review Epoxy Resin Basic Edition I p76-85). These may be used alone or in combination of two or more.
  • the proportion of these in the total epoxy resin is preferably 60% by weight or less, and particularly preferably 40% by weight or less. If it exceeds 60% by weight, there is a risk of inconvenience such as volatilization.
  • silsesquioxane-based epoxy resins chain, cyclic, ladder, or a mixture of at least two types of siloxane structures having a glycidyl group and / or an epoxycyclohexane structure
  • the liquid epoxy resin is preferably used as long as it does not affect the corrosion gas resistance.
  • the proportion in the total epoxy resin is preferably 70% by weight or less, and particularly preferably 40% by weight or less.
  • the curable resin composition of the present invention contains a curing agent and / or a curing accelerator having reactivity with the epoxy resin.
  • the curing agent that can be used in the present invention will be described.
  • the curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds.
  • the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and nitrogen-containing compounds such as polyamide resins synthesized from ethylenediamine and amine compounds (amines, Amide compound); phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methyl hexahydro Phthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxy
  • polyphenols such as halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols; imidazole, trifluoroborane-amine complexes, guanidine derivative compounds, etc. Limited to is not. These may be used alone or in combination of two or more.
  • a compound having an acid anhydride structure typified by the aforementioned acid anhydride and / or a compound having a carboxylic acid structure typified by the aforementioned carboxylic acid resin as a curing agent.
  • Examples of the compound having an acid anhydride structure include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2 , 1] Heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride A thing etc. are preferable. Above all, the following formula (2)
  • R 3 represents a hydrogen atom, a methyl group or a carboxyl group.
  • R 3 represents a hydrogen atom, a methyl group or a carboxyl group.
  • hexahydrophthalic anhydride methylhexahydrophthalic anhydride
  • cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride represented by the formula:
  • the compound having a carboxylic acid structure (hereinafter referred to as polycarboxylic acid) is particularly preferably a bi- to tetra-functional polycarboxylic acid, and more preferably an addition reaction of a bi- to tetra-functional polyhydric alcohol with an acid anhydride.
  • the polycarboxylic acid obtained by this is preferable.
  • the bi- to tetrafunctional polyhydric alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol.
  • Particularly preferred alcohols include branched chains such as cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentylglycol, norbornenediol, and dicyclopentadienedimethanol. And cyclic aliphatic alcohols.
  • Examples of acid anhydrides for producing polycarboxylic acids include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [ 2,2,1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,2,4-tricarboxylic acid-1, 2-Anhydrides are preferred.
  • reaction condition is that the acid anhydride and polyhydric alcohol are reacted at 40 to 150 ° C. under non-catalytic and solvent-free conditions and heated. After completion, take it out as it is. It is a technique. However, it is not limited to this reaction condition.
  • the polycarboxylic acid thus obtained is particularly represented by the following formula (3)
  • R 3 s independently represent a hydrogen atom, a methyl group or a carboxyl group.
  • P represents a chain or cyclic aliphatic group having 2 to 20 carbon atoms derived from a polyhydric alcohol.
  • the compound represented by these is preferable.
  • the range of W2 / (W2 + W3) is more preferably 0.40 to 0.95, still more preferably 0.45 to 0.90, and particularly preferably 0.6 to 0.85. If it exceeds 0.95, the tendency to increase the volatile component is strong, and if it is less than 0.30, the viscosity becomes high and handling becomes difficult.
  • the amount of the curing agent used is preferably 0.5 to 1.5 equivalents relative to 1 equivalent of the epoxy group of the epoxy resin. Preferably, it is 0.7 to 1.2 equivalents, particularly preferably 0.8 to 1.1 equivalents. When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
  • a curing accelerator (curing catalyst) can be used in combination with a curing agent, or a curing accelerator can be used alone without using a curing agent.
  • Specific examples of the curing accelerator that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2-phenylimidazole.
  • Diaza compounds such as undecene-7 and their Salts such as traphenylborate and phenol novolak, salts with the above polyvalent carboxylic acids or phosphinic acids, tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide, ammonium salts such as hexadecyltrimethylammonium hydroxide, Phosphines such as triphenylphosphine, tri (toluyl) phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, phosphonium compounds, phenols such as 2,4,6-trisaminomethylphenol, amine adducts, tin octylate And the like, and a microcapsule type curing accelerator obtained by making these curing accelerators into microcapsules.
  • a microcapsule type curing accelerator
  • the zinc salt and / or zinc complex contributes as a curing accelerator between the epoxy resin and the curing agent in the present invention.
  • the zinc salt and / or zinc complex is a salt and / or complex having a zinc ion as a central element, preferably a carboxylic acid having an alkyl group having 1 to 30 carbon atoms as a counter ion and / or a ligand, It has at least 1 sort (s) chosen from phosphoric acid ester and phosphoric acid.
  • a zinc carboxylate and a zinc phosphate ester are particularly preferable.
  • the alkyl group include methyl, isopropyl, butyl, 2-ethylhexyl, octyl, isodecyl, isostearyl, decanyl, and cetyl groups.
  • a particularly preferred carboxylic acid form is preferably an alkyl substituent having a chain-branched structure or an alkyl group having a functional group such as an olefin, and further preferably having 3 to 30 carbon atoms.
  • a carbon number of 5 to 20 is particularly preferable.
  • These are preferable in terms of compatibility, and when the number of carbon atoms is too large (30 or more carbon atoms), or when there is no structure such as a branched structure or a functional group, the compatibility with the resin is poor, which is not preferable.
  • Specific examples include zinc 2-ethylhexylate, zinc isostearate and zinc undecylenate.
  • Preferred phosphoric acid esters obtained in the present invention are preferably zinc salts and / or zinc complexes of phosphoric acid and phosphoric acid esters (monoalkyl ester compounds, dialkyl ester compounds, trialkyl ester compounds, or mixtures thereof).
  • the molar ratio of monoalkyl ester, dialkyl ester, and trialkyl ester in the phosphoric acid ester contained (substitute with the purity of gas chromatography.
  • the amount of the monoalkyl ester compound is 50 area% or more at the stage of the trimethylsilylation treatment.
  • Such a zinc salt and / or zinc complex of zinc phosphate ester can be obtained, for example, by reacting a phosphate ester with, for example, zinc carbonate, zinc hydroxide, etc., to obtain the zinc salt and / or zinc complex used in the present invention.
  • Patent Document EP 699708 Patent Document EP 699708
  • the ratio of phosphorus atom to zinc atom is preferably 1.2 to 2.3, more preferably 1.3 to 2.0. . Particularly preferred is 1.4 to 1.9. That is, in a particularly preferred form, the amount of phosphate ester (or phosphate derived from phosphate ester) is 2.0 mol or less per mol of zinc ion, and not a simple ionic structure, some molecules are ion-bonded (or arranged). Those having a structure related by coordinate bond) are preferred.
  • Such zinc salts and / or zinc complexes can also be obtained, for example, by the technique described in JP-T-2003-51495.
  • Examples of the phosphate ester and / or zinc phosphate include LBT-2000B (manufactured by SC Organic Chemical) and XC-9206 (manufactured by King Industry).
  • the curing accelerator is usually used in an amount of 0.001 to 15 parts by weight, more preferably 0.01 to 5 parts by weight, and particularly preferably 0.01 to 3 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • a catalyst is preferable from the viewpoint of preventing coloring during curing.
  • the curable resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component.
  • the phosphorus-containing compound may be a reactive type or an additive type.
  • Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-pho
  • Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
  • a binder resin can be blended with the curable resin composition of the present invention as required.
  • the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins.
  • the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 0.05 to 20 parts per 100 parts by weight of the resin component. Part by weight is used as needed.
  • An inorganic filler can be added to the curable resin composition of the present invention as necessary.
  • inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these.
  • These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is used in an amount of 0 to 95% by weight in the curable resin composition of the present invention.
  • a silane coupling agent a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, various compounding agents such as pigments, and various thermosetting resins are added to the curable resin composition of the present invention. can do.
  • the particle size of the inorganic filler used is transparent by using a nano-order level filler. It is possible to supplement the mechanical strength and the like without hindering.
  • a fluorescent substance can be added as needed.
  • the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed.
  • fluorescent substance A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated.
  • phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified.
  • the particle size of the phosphor those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 ⁇ m, particularly preferably 2 to 50 ⁇ m. When these phosphors are used, the addition amount thereof is 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
  • silica fine powder also called Aerosil or Aerosol
  • a thixotropic agent can be added.
  • silica fine powders examples include Aerosil® 50, Aerosil® 90, Aerosil® 130, Aerosil® 200, Aerosil® 300, Aerosil® 380, Aerosil® OX50, Aerosil® TT600, Aerosil® R972, Aerosil® R202, Aerosil® R202, Aerosil® R202, Aerosil® R202, Aerosil® R202, Aerosil® R805, RY200, RX200 (manufactured by Nippon Aerosil Co., Ltd.) and the like can be mentioned.
  • the curable resin composition of the present invention is an optical material, particularly an optical semiconductor encapsulant, containing an amine compound as a light stabilizer or a phosphorus compound and a phenol compound as an antioxidant for the purpose of preventing coloring. be able to.
  • the following commercially available products can be used as the amine compound that is the light stabilizer.
  • the commercially available amine compound is not particularly limited.
  • the phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-
  • the commercially available phosphorus compounds are not particularly limited. For example, as Adeka, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260 Adeka tab 522A, Adekas tab 1178, Adekas tab 1500, Adekas tab C, Adekas tab 135A, Adekas tab 3010, and Adekas tab TPP.
  • the phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate.
  • phenolic compound Commercially available products can also be used as the phenolic compound.
  • the commercially available phenolic compounds are not particularly limited. AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, SUMITOMO CHEMICAL CO., LTD. MDP-S, Sumili zer BBM-S, Sumilizer GM, Sumilizer GS (F), Sumilizer GP, and the like.
  • TINUVIN 328, TINUVIN 234, TINUVIN 326, TINUVIN 120, TINUVIN 477, TINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL, and the like are manufactured by Ciba Specialty Chemicals.
  • the amount of the compound is not particularly limited, but is 0.005 to 5 with respect to the curable resin composition.
  • the range is 0.0% by weight.
  • the curable resin composition of the present invention can be obtained by uniformly mixing each component.
  • the curable resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method.
  • an epoxy resin, at least one selected from a curing agent and a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent are used as necessary using an extruder, kneader, roll, planetary mixer, etc. Mix well until uniform to obtain a curable resin composition.
  • the curable resin composition is in liquid form, potting, casting, impregnation into the substrate, pouring the curable resin composition into the mold
  • it may be molded by heating and cured by heating, or in the case of a solid, it may be cast after melting or molded using a transfer molding machine, and further cured by heating.
  • the curing temperature and time are 80 to 200 ° C. and 2 to 10 hours.
  • a curing method it can be hardened at a high temperature at a stretch, but it is preferable to raise the temperature stepwise to advance the curing reaction. Specifically, initial curing is performed at 80 to 150 ° C., and post-curing is performed at 100 to 200 ° C.
  • the temperature is preferably increased in 2 to 8 stages, more preferably 2 to 4 stages.
  • the curable resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to obtain a curable resin composition varnish, glass fiber,
  • a prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and heat-dried is subjected to hot press molding to obtain a cured product of the curable resin composition of the present invention. can do.
  • the solvent is used in an amount usually accounting for 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent.
  • cured material containing a carbon fiber can also be obtained with a RTM (Resin * Transfer * Molding) system with a liquid composition.
  • the curable resin composition of this invention can also be used as a film type sealing composition.
  • a film-type resin composition first, the curable resin composition of the present invention is used as the curable resin composition varnish as described above, and this is applied onto a release film, and the solvent is removed under heating. After that, a method of performing B-stage is mentioned, and thereby a film-type sealing composition is obtained as a sheet-like adhesive.
  • This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like, and a batch film sealing of an optical semiconductor.
  • the curable resin composition of the present invention is used as an optical semiconductor sealing material or die bond material will be described in detail.
  • the curable resin composition of the present invention When used as a sealing material for an optical semiconductor such as a high-intensity white LED or a die bond material, it contains a curing agent (for example, a polyvalent carboxylic acid) in addition to the epoxy resin of the present invention.
  • a curable resin composition is prepared by sufficiently mixing additives such as a curing agent composition containing a curing agent), a curing accelerator, a coupling material, an antioxidant, and a light stabilizer.
  • a mixing method a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill, or the like may be used at room temperature or with heating.
  • the obtained curable resin composition can be used for a sealing material, or both a die-bonding material and a sealing material.
  • Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like.
  • Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material).
  • a wire such as a gold wire is connected to pass an electric current.
  • the periphery of such a semiconductor chip is sealed with a sealing material such as an epoxy resin.
  • the sealing material is used to protect the semiconductor chip from heat and moisture and to play a role of a lens function.
  • the curable resin composition of the present invention can be used as this sealing material or die bond material. From the viewpoint of the process, it is advantageous to use the curable resin composition of the present invention for both the die bond material and the sealing material.
  • the curable resin composition of the present invention is applied on a substrate by dispenser, potting or screen printing, and then the curable resin composition is used.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating condition is preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • an injection method in which the sealing material is injected into the mold frame in which the substrate on which the semiconductor chip is fixed is inserted and then heat-cured and then molded, and the sealing material on the mold A compression molding method is used in which a semiconductor chip fixed on a substrate is immersed therein and heat-cured and then released from the mold.
  • the injection method include dispenser, transfer molding, injection molding and the like.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • the application of the curable resin composition of the present invention is not limited to the above, and can be applied to general applications in which a curable resin such as an epoxy resin is used.
  • a curable resin such as an epoxy resin
  • cyanate resin composition for a substrate and additives for other resins such as an acrylic ester resin as a resist curing agent.
  • adhesives examples include civil engineering, architectural, automotive, general office, and medical adhesives, as well as electronic material adhesives.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
  • sealing agents As sealing agents, potting, dipping and transfer mold sealing used for capacitors, transistors, diodes, light emitting diodes, ICs, LSIs, potting sealings used for COB, COF, TAB, etc. of ICs and LSIs, flip Examples include underfill used for chips and the like, and sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
  • the cured product obtained in the present invention can be used for various applications including optical component materials.
  • the optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to LED sealing materials such as lamp type and SMD type, the following may be mentioned. It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a deflection plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field.
  • color PDP plasma display
  • antireflection films antireflection films
  • optical correction films housing materials
  • front glass protective films front glass replacement materials
  • adhesives and LED displays that are expected as next-generation flat panel displays
  • LED molding materials LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate
  • PLC plasma addressed liquid crystal
  • VD video disc
  • CD / CD-ROM CD-R / RW
  • DVD-R / DVD-RAM MO / MD
  • PD phase change disc
  • disc substrate materials for optical cards Pickup lenses, protective films, sealing materials, adhesives and the like.
  • optical equipment field they are still camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor parts. It is also a photographic lens and viewfinder for video cameras.
  • optical components they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems.
  • optical passive components and optical circuit components there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like.
  • OEIC optoelectronic integrated circuit
  • automotive lamp reflectors In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, and automotive defenses Rusted steel plate, interior panel, interior material, wire harness for protection / bundling, fuel hose, automobile lamp, glass substitute.
  • it is a multilayer glass for railway vehicles.
  • they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wire harnesses, and corrosion-resistant coatings.
  • it In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film.
  • optical / electronic functional organic materials include organic EL element peripheral materials, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical arithmetic elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
  • the epoxy equivalent was measured using an E-type viscometer at JIS K-7236 and the viscosity at 25 ° C.
  • the analytical conditions for gas chromatography (hereinafter referred to as GC) were HP5-MS (0.25 mm IDx 15 m, film thickness 0.25 ⁇ m) for the separation column, and the column oven temperature was set to an initial temperature of 100 ° C. The temperature was raised at a rate of 15 ° C. per minute and held at 300 ° C. for 25 minutes. Helium was used as a carrier gas.
  • GPC gel permeation chromatography
  • Synthesis example 1 Synthesis of Cyclohexenediol Synthesis Example 1 (Reference Patent Document EP 0 487 035 B1)
  • a flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 112 parts of cyclohexenecarboxaldehyde, 600 parts of ethanol, 300 parts of 35% formalin, and 284 parts of a 30% by weight aqueous potassium carbonate solution while stirring with nitrogen. Then, the temperature was raised to the reflux temperature, and the reaction was carried out for 9 hours. After completion of the reaction, a Dean-Stark cooling kettle was attached, and ethanol was distilled off for 4 hours with the bath temperature set at 100 ° C.
  • Synthesis example 2 In a flask equipped with a stirrer, reflux condenser, stirrer, and Dean-Stark tube, while purging with nitrogen, 150 parts of toluene, 70 parts of the compound of formula (6), 126 parts of 3-cyclohexenecarboxylic acid, paratoluenesulfonic acid Two parts were added, and the reaction was carried out while removing water for 10 hours under reflux with heating. After completion of the reaction, the olefinic compound of the present invention is washed twice with 50 parts of a 10% by weight aqueous sodium hydrogen carbonate solution and the organic layer obtained is washed twice with 50 parts of water and then concentrated with a rotary evaporator.
  • Synthesis example 3 Synthesis of epoxy resin A flask equipped with a stirrer, a reflux condenser, and a stirrer was subjected to nitrogen purging with 15 parts of water, 1.9 parts of 12-tungstophosphoric acid, 1.6 sodium disodium hydrogen phosphate, di-tallow alkyldimethyl After adding 5.4 parts of ammonium acetate (50% by weight hexane solution manufactured by Lion Akzo, Acquard 2HT acetate) to produce a tungstic acid catalyst, 120 parts of toluene and 119 parts of the olefin compound obtained above were further added. By stirring again, a liquid in an emulsion state was obtained.
  • the solution was heated to 50 ° C., 118 parts of 35 wt% aqueous hydrogen peroxide was added over 1 hour while stirring vigorously, and the mixture was stirred at 50 ° C. for 13 hours. When the progress of the reaction was confirmed by GC, the raw material peak disappeared. Next, after neutralizing with a 1% by weight aqueous sodium hydroxide solution, 25 parts of a 20% by weight aqueous sodium thiosulfate solution was added, stirred for 30 minutes, and allowed to stand.
  • the organic layer separated into two layers was taken out, 10 parts of silica gel (Wakogel C-300), 20 parts of activated carbon (CAP SUPER made by NORIT) and 20 parts of bentonite (Bengel SH made by Hojun) were added and stirred at room temperature for 1 hour. And filtered. The obtained filtrate was washed three times with 100 parts of water, and toluene was distilled off from the obtained organic layer, whereby 118 parts of epoxy resin (EP-1) of the following formula (8) that was liquid at room temperature was obtained. Obtained. The epoxy equivalent of the obtained epoxy resin was 148 g / eq. Met.
  • Synthesis example 5 It is esterified using cyclohexene methanol and tetrahydrophthalic acid in the same manner as in Synthesis Example 2 to produce an olefin compound and then epoxidized in the same manner as in Synthesis Example 3 to obtain the following formula (9)
  • the epoxy resin which has as a main component the structure represented by was obtained.
  • the obtained epoxy resin was further purified in the same manner as in Synthesis Example 4 to obtain an epoxy resin (EP-3).
  • the purity of the obtained epoxy resin was confirmed by GPC measurement results to contain 98% by area or more of the skeleton compound of the formula (9). Furthermore, in the GC measurement, the purity was about 98 area%.
  • the epoxy equivalent was 137 g / eq. Met.
  • the obtained colorless liquid resin had a GPC purity of 22 area% for the structure of polycarboxylic acid and 78 area% for methylhexahydrophthalic anhydride.
  • Synthesis example 7 A silicone-modified epoxy resin was obtained according to the method described in Patent Document 3. That is, 26.6 parts of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (alkoxy group equivalent 82.1), 73.4 parts of dimethyldimethoxysilane (alkoxy equivalent 60.1), 10.0 parts of triethylamine, methyl 500 parts of isobutyl ketone was charged into a reaction vessel, 100 parts of distilled water was added dropwise over 30 minutes with stirring at room temperature, and the mixture was reacted at 80 ° C. for 6 hours.
  • Example 1 As an example, for the epoxy resin (EP-2) obtained in Synthesis Example 4, as a curing agent, a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Spaincid) MH700, hereinafter referred to as H1), hexadecyltrimethylammonium hydroxide (25% by weight methanol solution, referred to as C1 manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a curing accelerator, and the mixing ratios shown in Table 1 below ( The curable resin composition of the present invention was obtained by defoaming for 20 minutes. In addition, the usage-amount of the hardening
  • Comparative Example 1 For (EP-3) synthesized in Synthesis Example 4 as a comparative example, H1 was used as the curing agent, C1 was used as the curing accelerator, and the blending ratio (parts by weight) shown in Table 1 below was used.
  • the comparative curable resin composition of the present invention was obtained.
  • curing agent was calculated by 1 equivalent with respect to 1 equivalent of epoxy groups of an epoxy resin. The evaluation was performed by the following method.
  • the curable resin compositions obtained in the examples and comparative examples were vacuum degassed for 20 minutes, and then gently poured into a test piece mold having a width of 7 mm, a length of 5 cm, and a thickness of about 800 ⁇ m, and then a polyimide film from above. Covered with.
  • the casting was precured at 120 ° C. for 1 hour and then cured at 150 ° C. for 3 hours to obtain a dynamic viscoelastic test piece. Using these test pieces, a dynamic viscoelasticity test was performed under the conditions shown below.
  • Dynamic viscoelasticity measuring instrument TA-2 instruments, DMA-2980 Measurement temperature range: -30 ° C to 280 ° C Temperature rate: 2 ° C./min Test piece size: A material cut into 5 mm ⁇ 50 mm was used (thickness was about 800 ⁇ m). Analysis conditions Tg: The peak point of Tan- ⁇ in DMA measurement was defined as Tg.
  • the obtained curable resin composition was vacuum-defoamed for 20 minutes, and then gently cast on a glass substrate on which a dam was created with a heat-resistant tape so as to be 30 mm ⁇ 20 mm ⁇ height 1 mm.
  • the casting was cured at 120 ° C. for 1 hour and then cured at 150 ° C. for 3 hours to obtain a transmittance test piece having a thickness of 1 mm, measured with a spectrophotometer, and the transmittance was measured. .
  • the epoxy resin composition of the present invention is a cured product having excellent transparency and heat resistance.
  • Examples 2 and 3 and Comparative Example 2 An epoxy resin (EP-1) obtained in Synthesis Example 3 was used as an epoxy resin, and a general 3,4 epoxycyclohexylmethyl-3 ′, 4 ′ epoxycyclohexyl carboxylate (EP-5) was used as a comparative example.
  • curing agent was calculated by 1 equivalent with respect to 1 equivalent of epoxy groups of an epoxy resin.
  • Example 2 and Comparative Example 3 The curable resin composition obtained in Example 2 and Comparative Example 3 was filled into a syringe, and using a precision discharge device, an outer diameter 5 mm square surface-mount LED package (inner diameter 4) on which a chip having a central emission wave of 465 nm was mounted. 4 mm, outer wall height 1.25 mm).
  • the cast product was put into a heating furnace and cured at 120 ° C. for 1 hour, further at 150 ° C. for 3 hours, and an LED package was prepared. The LED package was left in a corrosive gas under the following conditions, and the color change of the silver-plated lead frame part inside the seal was observed.
  • Table 3 The results of Example 2 and Comparative Example 3 are shown in Table 3.
  • Corrosion gas 20% aqueous solution of ammonium sulfide (discolors black when sulfur component reacts with silver)
  • Contact method A container of an ammonium sulfide aqueous solution and the LED package were mixed in a wide-mouth glass bottle, and the wide-mouth glass bottle was covered to bring the volatilized ammonium sulfide gas into contact with the LED package in a sealed state.
  • Judgment of corrosion The time when the lead frame inside the LED package was discolored black (referred to as blackening) was observed, and it was determined that the longer the discoloration time, the better the corrosion gas resistance.
  • the curable resin composition of the present invention does not discolor the silver plating of the lead frame compared to the curable resin composition using the silicone-modified epoxy resin of Comparative Example 3 (discolored in 1 hour). It became clear that it was excellent in corrosion-resistant gas resistance.
  • the curable resin composition of the present invention is superior in corrosion gas resistance compared to silicone resin, and is a conventional alicyclic typified by 3,4 epoxycyclohexylmethyl-3 ′, 4′epoxycyclohexylcarboxylate. It was found that the LED encapsulant is more durable than the epoxy resin.
  • Example 4 and Comparative Example 4 An epoxy resin (EP-1) obtained in Synthesis Example 3 was used as an epoxy resin, and a general 3,4 epoxycyclohexylmethyl-3 ′, 4 ′ epoxycyclohexyl carboxylate (EP-5) was used as a comparative example.
  • a curing agent H1,1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride (H-TMA manufactured by Mitsubishi Gas Chemical Co., Ltd., hereinafter referred to as H2) is shown in Table 4 below (in parts by weight).
  • H2 H1,1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride
  • Table 4 below (in parts by weight).
  • curing agent was calculated by 1 equivalent with respect to 1 equivalent of epoxy groups of an epoxy resin.
  • Example 4 (Transmissivity test) The curable resin compositions obtained in Example 4 and Comparative Example 4 were vacuum degassed for 20 minutes, and then gently poured onto a glass substrate on which a dam was created with heat-resistant tape so as to be 30 mm ⁇ 20 mm ⁇ height 1 mm. Typed. The casting was cured at 120 ° C. for 3 hours after pre-curing at 120 ° C. for 1 hour to obtain a test piece for transmittance having a thickness of 1 mm. Using these test pieces, the transmittance (measurement wavelength: 400 nm) before and after being left for 96 hours in a 150 ° C. oven was measured with a spectrophotometer, and the transmittance retention was calculated.
  • the transmittance (measurement wavelength: 400 nm) before and after being left for 96 hours in a 150 ° C. oven was measured with a spectrophotometer, and the transmittance retention was calculated.
  • Example 4 and Comparative Example 4 The curable resin composition obtained in Example 4 and Comparative Example 4 was filled in a syringe, and using a precision discharge device, an outer diameter 5 mm square surface mount LED package (inner diameter 4) on which a chip having a central emission wave of 465 nm was mounted. 4 mm, outer wall height 1.25 mm).
  • the cast product was put into a heating furnace and cured at 120 ° C. for 1 hour, further at 150 ° C. for 3 hours, and an LED package was prepared. The illuminance was measured by turning on the LED under the following conditions.
  • the results of Example 4 and Comparative Example 4 are shown in Table 4.
  • the curable resin composition of the present invention was excellent in heat-resistant transmittance and illuminance during lighting.
  • Examples 5 and 6 and Comparative Example 5 An epoxy resin (EP-1) obtained in Synthesis Example 3 was used as an epoxy resin, and a general 3,4 epoxycyclohexylmethyl-3 ′, 4 ′ epoxycyclohexyl carboxylate (EP-5) was used as a comparative example.
  • the curing agent composition (B1) which is a mixture of the acid anhydride and the polycarboxylic acid obtained in Synthesis Example 6, was used as a curing agent, and an organic phosphonium salt (manufactured by Nippon Chemical Industry Co., Ltd.).
  • PX-4MP hereinafter referred to as C2
  • C2 PX-4MP, hereinafter referred to as C2
  • C2 PX-4MP, hereinafter referred to as C2
  • curing agent was calculated by 1 equivalent with respect to 1 equivalent of epoxy groups of an epoxy resin.
  • an LED test was conducted in the manner described below.
  • the curing condition is 140 ° C. ⁇ 2 hours after pre-curing at 120 ° C. ⁇ 2 hours.
  • LED reflow test After carrying out the vacuum defoaming for 20 minutes with the curable resin compositions obtained in Examples and Comparative Examples, the syringe was filled into a syringe, and a precision discharge device was used to mount a light-emitting element having an emission wavelength of 465 nm on a surface-mounted LED. Cast. Thereafter, a test LED was obtained by curing under predetermined curing conditions. After the obtained test LED absorbs moisture at 30 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 本発明の目的は、加熱硬化後の凹み防止、耐腐食ガス性に優れ、且つ耐着色性等の光学特性に優れる硬化性樹脂組成物及びその硬化物を提供することである。 本発明にかかる硬化性樹脂組成物は、下記式(1)で表されるオレフィン化合物を酸化して得られるエポキシ樹脂、エポキシ樹脂と反応することが可能な硬化剤および/又は硬化促進剤を含有することを特徴とする。(式中、複数存在するR、Rはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。)

Description

硬化性樹脂組成物、及びその硬化物
 本発明は電気電子材料用途、特に光半導体用途に好適な硬化性樹脂組成物、及び硬化物に関する。
 エポキシ樹脂を酸無水物で硬化させる手法については従来まで様々な絶縁材料、注形材料に使用されてきている。特に光学特性の必要な分野、例えばLED製品等の分野においてはエポキシ樹脂の酸無水物硬化物が多々用いられている。
 従来からこのようなLED製品などの光半導体素子の封止材料に使用されるエポキシ樹脂としては、耐熱性、透明性、機械特性のバランスに優れたビスフェノールA型エポキシ樹脂に代表されるグリシジルエーテルタイプのエポキシ樹脂組成物が広く使用されてきた。
 ところが、LED製品の発光波長の短波長化(主に480nm以下の青色発光)が進んだ結果、短波長の光の影響で前記封止材料がLEDチップ上で着色し最終的にはLED製品として、照度が低下してしまうという指摘がされている。
 そこで、3,4エポキシシクロヘキシルメチル-3’,4’エポキシシクロヘキシルカルボキシレートに代表される脂環式エポキシ樹脂は、芳香環を有するグリシジルエーテルタイプのエポキシ樹脂組成物と比較し透明性の点で優れていることから、LED封止材として積極的に検討がなされてきた(特許文献1、2)。
 一方で該脂環式エポキシ樹脂は、粘度が低く、熱硬化反応させる際に揮発しやすいという問題が指摘されている。特に硬化剤に酸無水物を使用する場合、その揮発量は激しくなり、硬化炉を汚す原因となることも多い。
 そのような硬化性樹脂組成物を例えば、LED製品の中でも表面実装式のパッケージの場合には、注型する樹脂量が極少量(例えば10mg程度)なため、該脂環式エポキシ樹脂や酸無水物を含有する硬化性樹脂組成物を使用すると、加熱硬化時に揮発が起こる。その結果、表面実装式LED製品の封止部に凹みが生じ、不具合が起きる場合がある。さらにその凹みの程度によっては、LEDチップに電流を供給しているワイヤー部が露出する場合があり、その際にはもはや封止材としての機能を果たすことができなくなる。このように該脂環式エポキシ樹脂においては、加熱硬化時の揮発についてまだ課題を残している。
 また、近年のLED製品は、照明やTVのバックライト等向けに一層高輝度化が進み、LED点灯時は多くの発熱を伴うようになってきたため、該脂環式エポキシ樹脂を使用した樹脂組成物でもLEDチップ上で着色を起こし、最終的にLED製品として照度が低下してしまい、耐久性の面でも課題を残している。(特許文献3)
日本国特開平9-213997号公報 日本国特許3618238号明細書 日本国特再2005-100445号公報
 前記エポキシ樹脂の耐久性の問題から、シリコーン樹脂やシリコーン変性エポキシ樹脂などに代表されるようなシロキサン骨格(具体的にはSi-O結合を有した骨格)を導入した樹脂を封止材として使用する検討が行われている。(特許文献3)
 一般に該シロキサン骨格を導入した樹脂はエポキシ樹脂よりも熱と光に対して安定であることが知られている。そのため、LED製品の封止材に適用した場合、LEDチップ上の着色という観点では、エポキシ樹脂よりも耐久性に優れると言われていた。しかし、該シロキサン骨格を導入した樹脂類はエポキシ樹脂に比べ、耐ガス透過性に劣る。そのため、LED封止材としてシリコーン樹脂やシリコーン変性エポキシ樹脂を使用した場合には、LEDチップ上での着色は問題にならないものの、LEDパッケージ内の構成部材である金属リードフレーム上にメッキされた銀成分(反射率を高めるために銀メッキが施されている)を変色または黒化させてしまい、最終的にLED製品としての性能を低下させるという課題を抱えている。
 市場では、前記耐ガス透過性で問題のないエポキシ樹脂組成物であって、且つ、該従来脂環式エポキシ樹脂よりも、加熱時の揮発による凹みを抑制し、さらにLED製品として耐久性の高い封止材が求められている。
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
すなわち本発明は、
(1)
下記式(1)で表されるオレフィン化合物を酸化して得られるエポキシ樹脂、硬化剤および/又は硬化促進剤を含有することを特徴とする硬化性樹脂組成物、
Figure JPOXMLDOC01-appb-C000006
 
(式中、複数存在するR、Rはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。)
(2)
エポキシ樹脂が、全てのR、Rが水素原子であるオレフィン化合物が原料である前項(1)に記載の硬化性樹脂組成物、
(3)
硬化剤が、下記式(2)で表される1種以上の化合物である前項(1)又は(2)に記載の硬化性樹脂組成物、
Figure JPOXMLDOC01-appb-C000007
 
(式中、Rは、水素原子、メチル基又はカルボキシル基を表す。)
(4)
硬化剤が、下記式(3)で表される1種以上の化合物である前項(1)~(3)のいずれか一項に記載の硬化性樹脂組成物、
Figure JPOXMLDOC01-appb-C000008
 
(式中、複数存在するRは、独立して水素原子、メチル基又はカルボキシル基を表す。Pは炭素数2~20の鎖状又は環状の脂肪族基である。)
(5)
式(3)中のPが分岐鎖状又は環状構造である前項(4)に記載の硬化性樹脂組成物、
(6)
硬化剤が下記式(2)で表される1種以上の化合物
Figure JPOXMLDOC01-appb-C000009
 
(式中、Rは、水素原子、メチル基又はカルボキシル基を表す。)
及び下記式(3)で表される1種以上の化合物
Figure JPOXMLDOC01-appb-C000010
 
(式中、複数存在するRは、独立して水素原子、メチル基又はカルボキシル基を表す。Pは炭素数2~20の鎖状又は環状の脂肪族基である。)
の両者を含み、その使用比率が下記範囲である前項(1)に記載の硬化性樹脂組成物、
     W2/(W2+W3)=0.30~0.95
(ただし、W2は式(2)の化合物の配合重量部、W3は式(3)の化合物の配合重量部を示す。)
(7)
前項(1)~(6)のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物、
(8)
前項(1)~(6)のいずれか一項に記載の硬化性樹脂組成物により封止して得られる光半導体装置、
に関する。
 本発明の硬化性樹脂組成物は耐熱性、加熱硬化後の凹み防止、耐腐食ガス性に優れ、且つ耐着色性にも優れることから、光学材料、特に光半導体用(LED製品など)の接着材、封止材としてきわめて有用である。
 以下、本発明の硬化性樹脂組成物について記載する。
 本発明の硬化性樹脂組成物は、前記式(1)のオレフィン化合物をエポキシ化することにより得られる下記式(4)
Figure JPOXMLDOC01-appb-C000011
 
(式中、複数存在するR、Rはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。)
で表されるエポキシ化合物を主成分とするエポキシ樹脂(以下、本発明のエポキシ樹脂と称す。)を含有することを必須とする。
 前記式(1)のオレフィン化合物は、公知の方法で製造でき、たとえばシクロへキセンジメタノールに、シクロヘキセンカルボン酸類を反応させることにより得られる。
 シクロヘキセンカルボン酸誘導体としては、下記式(5)
Figure JPOXMLDOC01-appb-C000012
 
(式中、Rは水素原子もしくは炭素数1~6のアルキル基を表し、Xは水酸基、ハロゲン原子または炭素数1~10のアルコキシル基を表す。)
で表される化合物で、具体的にはシクロヘキセンカルボン酸、シクロヘキセンカルボン酸メチル、シクロヘキセンカルボン酸エチル、シクロヘキセンカルボン酸プロピル、シクロヘキセンカルボン酸ブチル、シクロヘキセンカルボン酸ヘキシル、(シクロヘキセニルメチル)シクロヘキセンカルボキシレート、シクロヘキセンカルボン酸オクチル、シクロヘキセンカルボン酸クロライド、シクロヘキセンカルボン酸ブロマイド、メチルシクロヘキセンカルボン酸、メチルシクロヘキセンカルボン酸メチル、メチルシクロヘキセンカルボン酸エチル、メチルシクロヘキセンカルボン酸プロピル、(メチルシクロヘキセニルメチル)メチルシクロヘキセンカルボキシレート、メチルシクロヘキセンカルボン酸クロライド、などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
 またシクロへキセンジメタノールはシクロアルケンカルボアルデヒドとホルムアルデヒド(もしくはその合成同位体;パラホルムアルデヒド等)をアルドール反応につづく交差カニッツァロ反応により生成させることができる。
 シクロヘキセンカルボン酸誘導体とシクロへキセンジメタノールとの反応としては一般のエステル化方法が適応できる。具体的には一般のエステル化反応が適応でき、酸触媒を使用したFischer esterification、塩基性条件下での酸ハライド、アルコールの反応、各種縮合剤を利用した縮合反応などが挙げられる(ADVANCED ORGANIC CHEMISTRY PartB:Reaction and Synthesis  p135、145-147、151など)。また、具体的な事例としては、アルコールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)、さらにはカルボン酸エステルのエステル交換反応(特開2006-052187)を利用することによっても製造できる。
 このようにして合成される前記式(1)のオレフィン化合物としては、前記式(1)においてRが水素原子、メチル基、エチル基、ブチル基である化合物が好ましく、特に、置換基Rがオレフィン結合を構成する炭素原子に結合する場合、その反応性を向上させるために、水素原子、メチル基のいずれかが好ましく、特に好ましくは水素原子である。
 前記式(1)の化合物を酸化によりエポキシ化することで本発明のエポキシ樹脂が得られる。酸化の手法としては過酢酸等の過酸で酸化する方法、過酸化水素水で酸化する方法、空気(酸素)で酸化する方法などが挙げられるが、これらに限らない。
 過酸によるエポキシ化の手法としては具体的には日本国特表2007-510772号公報、日本国特開2006-52187号公報に記載の手法などが挙げられる。
 過酸化水素水によるエポキシ化の手法においては種々の手法が適応できるが、具体的には、日本国特開昭59-108793号公報、日本国特開昭62-234550号公報、日本国特開平5-213919号公報、日本国特開平11-349579号公報、日本国特公平1―33471号公報、日本国特開2001-17864号公報、日本国特公平3-57102号公報等に挙げられるような手法が適応できる。
 本発明においてはその生成物の低粘度性から過酸化水素の使用がより好ましい。
 以下に過酸化水素を用いるエポキシ化の手法の一例を記載するが、本発明において使用する式(1)に示されるエポキシ樹脂はいかなる手法を用いて製造しても構わず、以下の手法に限定されるものではない。
 まず、前記式(1)のオレフィン化合物、ポリ酸またはその塩及び4級アンモニウム塩を有機溶剤、過酸化水素水のエマルジョン状態で反応を行う。なお、反応に際して緩衝液を使用することもできる。
 本発明で使用するポリ酸またはその塩は、ポリ酸構造を有する化合物であれば特に制限はないが、タングステンまたはモリブデンを含むポリ酸が好ましく、タングステンを含むポリ酸またはその塩が更に好ましく、タングステン酸塩が特に好ましい。
 以下、特に断らない限り、ポリ酢酸またはその塩を簡便に「ポリ酸」という。
 具体的なポリ酸としては、タングステン酸、12-タングスト燐酸、12-タングストホウ酸、18-タングスト燐酸、12-タングストケイ酸、などのタングステン系の酸、モリブデン酸、リンモリブデン酸等のモリブデン系の酸の塩等が挙げられる。
 これらの塩のカウンターカチオンとしてはアンモニウムイオン、アルカリ土類金属イオン、アルカリ金属イオンなどが挙げられる。
 具体的にはカルシウムイオン、マグネシウムイオン等のアルカリ土類金属イオン、ナトリウムイオン、カリウムイオン、セシウムイオン等のアルカリ金属イオンなどが挙げられるがこれらに限定されない。特に好ましいカウンターカチオンとしてはナトリウムイオン、カリウムイオン、カルシウムイオン、アンモニウムイオンである。
 ポリ酸の使用量としては式(1)のオレフィン化合物1モルに対し、金属元素換算(タングテン酸ならタングステン原子、モリブデン酸ならモリブデン原子のモル数)で0.5~20ミリモル、好ましくは1.0~20ミリモル、さらに好ましくは2.5~15ミリモルである。
 4級アンモニウム塩としては、総炭素数が10以上、好ましくは25~100、より好ましくは25~55の4級アンモニウム塩が好ましく使用でき、特にそのアルキル鎖が全て脂肪族鎖であるものが好ましい。
 具体的にはトリデカニルメチルアンモニウム塩、ジラウリルジメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、トリアルキルメチル(アルキル基がオクチル基である化合物とデカニル基である化合物の混合タイプ)アンモニウム塩、トリヘキサデシルメチルアンモニウム塩、トリメチルステアリルアンモニウム塩、テトラペンチルアンモニウム塩、セチルトリメチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、ジセチルジメチルアンモニウム塩、トリセチルメチルアンモニウム塩、ジ硬化牛脂アルキルジメチルアンモニウム塩などが挙げられるがこれらに限定されない。
 またこれら塩のアニオン種に特に限定はなく、具体的にはハロゲン化物イオン、硝酸イオン、硫酸イオン、硫酸水素イオン、アセテートイオン、炭酸イオン、等が挙げられるが、これらに限定されない。
 炭素数が100を上回ると疎水性が強くなりすぎて、4級アンモニウム塩の有機層への溶解性が悪くなる場合がある。炭素数が10未満であると親水性が強くなり、同様に4級アンモニウム塩の有機層への相溶性が悪くなり、好ましくない。
 4級アンモニウム塩の使用量は使用するポリ酸の価数倍の0.01~0.8倍当量、あるいは1.1~10倍当量が好ましい。より好ましくは0.05~0.7倍当量、あるいは1.2~6.0倍当量であり、さらに好ましくは0.05~0.5倍当量、あるいは1.3~4.5倍当量である。
 例えば、タングステン酸であればHWOで2価であるので、タングステン酸1モルに対し、4級アンモニウムのカルボン酸塩は0.02~1.6モル、もしくは2.2~20モルの範囲が好ましい。またタングストリン酸であれば3価であるので、同様に0.03~2.4モル、もしくは3.3~30モル、ケイタングステン酸であれば4価であるので0.04~3.2モル、もしくは4.4~40モルが好ましい。
 4級アンモニウムのカルボン酸塩の量が、ポリ酸の価数倍の1.1倍当量よりも低い場合、エポキシ化反応が進行しづらい(場合によっては反応の進行が早くなる)、また副生成物ができやすいという問題が生じる。10倍当量よりも多い場合、後処理が大変であるばかりか、反応を抑制する働きがあり、好ましくない。
 緩衝液としては公知の緩衝液のいずれも用いることができるが、本反応においては燐酸塩水溶液を用いるのが好ましい。そのpHとしてはpH4~10の間に調整されたものが好ましく、より好ましくはpH5~9である。pH4未満の場合、エポキシ基の加水分解反応、重合反応が進行しやすくなる。またpH10を超える場合、反応が極度に遅くなり、反応時間が長すぎるという問題が生じる。
 特に本発明においては触媒であるポリ酸を溶解した際に、pH5~9の間になるように調整されることが好ましい。
 緩衝液の使用方法は、例えば好ましい緩衝液である燐酸-燐酸塩水溶液の場合は過酸化水素に対し、0.1~10モル%当量の燐酸(あるいは燐酸二水素ナトリウム等の燐酸塩)を使用し、塩基性化合物(たとえば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等)でpH調整を行うという方法が挙げられる。ここでpHは過酸化水素を添加した際に前述のpHになるように添加することが好ましい。また、リン酸二水素ナトリウム、リン酸水素二ナトリウムなどを用いて調整することも可能である。好ましい燐酸塩の濃度は0.1~60重量%、好ましくは1~45重量%である。
 また、本反応においては緩衝液を使用せず、燐酸水素2ナトリウム、燐酸2水素ナトリウム、燐酸ナトリウム、トリポリ燐酸ナトリウム、など(またはその水和物)を、pH調整無しに燐酸塩を直接添加しても構わない。工程の簡略化、という意味合いではpH調整のわずらわしさが無く、直接の添加が特に好ましい。この場合の燐酸塩の使用量は、過酸化水素に対し、通常0.1~5モル%当量、好ましくは0.2~4モル%当量、より好ましくは、0.3~3モル%当量である。この際、過酸化水素に対し、5モル%当量を超えるとpH調整が必要となり、0.1モル%当量未満の場合、できたエポキシ化合物の加水分解物が進行しやすくなる、あるいは反応が遅くなるなどの弊害が生じる。
 本反応は過酸化水素を用いてエポキシ化を行う。本反応に使用する過酸化水素としては、その取扱いの簡便さから過酸化水素濃度が10~40重量%である水溶液が好ましい。濃度が40重量%を超える場合、取扱いが難しくなる他、生成したエポキシ樹脂の分解反応も進行しやすくなることから好ましくない。
 本反応は有機溶剤を使用する。使用する有機溶剤の量としては、反応基質であるオレフィン化合物1に対し、重量比で0.3~10であり、好ましくは0.3~5、より好ましくは0.5~2.5である。重量比で10を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール、シクロヘキサノール等のアルコール類が挙げられる。また、場合によっては、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物、アセトニトリル等のニトリル化合物なども使用可能である。特に好ましい溶剤としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物である。
 具体的な反応操作方法としては、例えばバッチ式の反応釜で反応を行う際は、オレフィン化合物、過酸化水素(水溶液)、ポリ酸(触媒)、緩衝液、4級アンモニウム塩及び有機溶剤を加え、二層で撹拌する。撹拌速度に特に指定は無い。過酸化水素の添加時に発熱する場合が多いことから、各成分を添加した後に過酸化水素を徐々に添加する方法でも構わない。
 この際、緩衝液(もしくは水とリン酸塩)、ポリ酸を加えpH調整を行った後、4級アンモニウム塩、有機溶剤及びオレフィン化合物を加え、二層で撹拌したところに、過酸化水素を滴下するという手法を用いる。
 あるいは水、有機溶剤、オレフィン化合物を撹拌している中に、ポリ酸、燐酸(あるいはリン酸塩)を加え、pH調整を行った後、4級アンモニウム塩を添加し、二層で撹拌したところに、過酸化水素を滴下するという手法を用いるという方法でも構わない。
 反応温度は特に限定されないが0~90℃が好ましく、さらに好ましくは0~75℃、特に15℃~60℃が好ましい。反応温度が高すぎる場合、加水分解反応が進行しやすく、反応温度が低いと反応速度が極端に遅くなる。
 また反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。好ましい範囲としては1~48時間、好ましくは3~36時間、さらに好ましくは4~24時間である。
 反応終了後、過剰な過酸化水素のクエンチ処理を行う。クエンチ処理は、塩基性化合物を使用して行なうことが好ましい。また、還元剤と塩基性化合物を併用することも好ましい。好ましい処理方法としては塩基性化合物でpH6~10に中和調整後、還元剤を用い、残存する過酸化水素をクエンチする方法が挙げられる。pHが6未満の場合、過剰の過酸化水素を還元する際の発熱が大きく、分解物を生じる可能性がある。
 還元剤としては亜硫酸ナトリウム、チオ硫酸ナトリウム、ヒドラジン、シュウ酸、ビタミンCなどが挙げられる。還元剤の使用量としては過剰分の過酸化水素のモル数に対し、通常0.01~20倍モル、より好ましくは0.05~10倍モル、さらに好ましくは0.05~3倍モルである。
 これらは水溶液として加えることが好ましく、その濃度は0.5~30重量%である。
 塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム等の金属炭酸塩、リン酸ナトリウム、リン酸水素ナトリウムなどのリン酸塩、イオン交換樹脂、アルミナ等の塩基性固体が挙げられる。
 その使用量としては水、あるいは有機溶剤(例えば、トルエン、キシレン等の芳香族炭化水素、メチルイソブチルケトン、メチルエチルケトン等のケトン類、シクロヘキサン、ヘプタン、オクタン等の炭化水素、メタノール、エタノール、イソプロピルアルコール等のアルコール類など、各種溶剤)に溶解するものであれば、その使用量は過剰分の過酸化水素のモル数に対し、通常0.01~20倍モル、より好ましくは0.05~10倍モル、さらに好ましくは0.05~3倍モルである。これらは水、あるいは前述の有機溶剤の溶液として添加しても単体で添加しても構わない。
 水や有機溶剤に溶解しない固体塩基を使用する場合、系中に残存する過酸化水素の量に対し、重量比で1~1000倍の量を使用することが好ましい。より好ましくは10~500倍、さらに好ましくは10~300倍である。水や有機溶剤に溶解しない固体塩基を使用する場合は、後に記載する水層と有機層の分離の後、処理を行っても構わない。
 過酸化水素のクエンチ後(もしくはクエンチを行う前に)、有機層と水層が分離しない、もしくは有機溶剤を使用していない場合は前述の有機溶剤を添加して操作を行い、水層より反応生成物の抽出を行う。この際使用する有機溶剤は原料オレフィン化合物に対し、重量比で0.5~10倍、好ましくは0.5~5倍である。この操作を必要により数回繰り返した後分離した有機層を、必要に応じて水洗して精製する。
 得られた有機層は必要に応じてイオン交換樹脂や金属酸化物(特に、シリカゲル、アルミナなどが好ましい)、活性炭(中でも特に薬品賦活活性炭が好ましい)、複合金属塩(中でも特に塩基性複合金属塩が好ましい)、粘度鉱物(中でも特にモンモリロナイトなど層状粘度鉱物が好ましい)等により、不純物を除去し、さらに水洗、ろ過等を行った後、溶剤を留去し、目的とするエポキシ化合物を得る。
 場合によってはさらにカラムクロマトグラフィーや蒸留により精製しても構わない。
 このようにして得られるエポキシ樹脂は下記式(4)
Figure JPOXMLDOC01-appb-C000013
 
(式中、複数存在するR、Rはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。)
で表される分子を主成分とするが、式(a)
Figure JPOXMLDOC01-appb-C000014
 
(式中、A~Dの組み合わせはどのような組み合わせでも構わない。)
に示すような各種の構造の化合物が混在する混合物である。
 本発明の硬化性樹脂組成物においては、本発明のエポキシ樹脂を単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、前記エポキシ樹脂の全エポキシ樹脂中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。ただし、本発明のエポキシ樹脂を硬化性樹脂組成物の改質剤として使用する場合は、1~30重量%の割合で添加する。
 本発明の硬化性樹脂組成物において使用できる他のエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。
 特に本発明の硬化性樹脂組成物を光学用途に用いる場合、脂環式エポキシ樹脂やシルセスキオキサン構造のエポキシ樹脂との併用が好ましい。特に脂環式エポキシ樹脂の場合、骨格にエポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキセン構造を有する化合物の酸化反応により得られるエポキシ樹脂が特に好ましい。
 これらエポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(日本国特開2003-170059号公報、日本国特開2004-262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006-052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる。
 アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
 さらに、骨格にエポキシシクロヘキサン構造を有する化合物の他の例としては、シクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。反応手法としては一般のアセタール化反応を応用すれば製造でき、例えば、反応媒体にトルエン、キシレンなどの溶媒を用いて共沸脱水しながら反応を行う方法(米国特許第2945008号公報)、濃塩酸に多価アルコールを溶解した後アルデヒド類を徐々に添加しながら反応を行う方法(日本国特開昭48-96590号公報)、反応媒体に水を用いる方法(米国特許第3092640号公報)、反応媒体に有機溶媒を用いる方法(日本国特開平7-215979号公報)、固体酸触媒を用いる方法(日本国特開2007-230992号公報)等が開示されている。構造の安定性から環状アセタール構造が好ましい。
 これらエポキシ樹脂の具体例としては、ERL-4221、UVR-6105、ERL-4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)及びジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76-85)。
 これらは単独で用いてもよく、2種以上併用してもよく、これらの全エポキシ樹脂中に占める割合は60重量%以下が好ましく、特に40重量%以下が好ましい。60重量%を超えて併用すると揮発などの不具合が発生するおそれがある。
 また、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂は、耐腐食ガス性に影響を与えない範囲で使用するのが好ましい。該シルセスキオキサン系のエポキシ樹脂を併用する場合、全エポキシ樹脂中に占める割合は70重量%以下が好ましく、特に40重量%以下が好ましい。該シルセスキオキサン系のエポキシ樹脂を多く併用すると、耐腐食ガス性を低下させることになる。
 本発明の硬化性樹脂組成物は、前記エポキシ樹脂と反応性を有する硬化剤及び/又は硬化促進剤を含有する。
 以下、本発明で使用し得る硬化剤について説明する。
 該硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂などの含窒素化合物(アミン、アミド化合物);無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、などの酸無水物;各種アルコール、カルビノール変性シリコーン、と前述の酸無水物との付加反応により得られるカルボン酸樹脂;ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物などのポリフェノール類;イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体の化合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 本発明においては特に前述の酸無水物に代表される酸無水物構造を有する化合物、及び/又は、前述のカルボン酸樹脂に代表されるカルボン酸構造を有する化合物を硬化剤として用いることが好ましい。
 酸無水物構造を有する化合物としては、特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物などが好ましい。
 中でも下記式(2)
Figure JPOXMLDOC01-appb-C000015
 
(式中、Rは、水素原子、メチル基又はカルボキシル基を表す。)
で表されるヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物が特に好ましい。
 カルボン酸構造を有する化合物(以下、ポリカルボン酸と称す)としては、特に2~4官能のポリカルボン酸が好ましく、さらに好ましくは2~4官能の多価アルコールと、酸無水物を付加反応させることで得られるポリカルボン酸が好ましい。
 2~4官能の多価アルコールとしては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、ノルボルネンジオール、ジシクロペンタジエンジメタノールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。
 特に好ましいアルコール類としてはシクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、ノルボルネンジオール、ジシクロペンタジエンジメタノールなどの分岐鎖状や環状の脂肪族アルコール類である。
 ポリカルボン酸を製造する際の酸無水物としては、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物などが好ましい。
 付加反応の条件としては特に指定はないが、具体的な反応条件の1つとしては酸無水物、多価アルコールを無触媒、無溶剤の条件下、40~150℃で反応させ加熱し、反応終了後、そのまま取り出す。という手法である。ただし、本反応条件に限定されない。
 このようにして得られるポリカルボン酸として特に下記式(3)
Figure JPOXMLDOC01-appb-C000016
 
(式中、複数存在するRは、独立して水素原子、メチル基又はカルボキシル基を表す。Pは多価アルコールから由来する炭素数2~20の鎖状又は環状の脂肪族基である。)
で表される化合物が好ましい。
 前記式(2)の酸無水物、前記式(3)のポリカルボン酸は、それぞれ単独でまたは2種以上を使用することもできるが、式(2)の化合物1種以上と式(3)の化合物1種以上を併用することが好ましい。併用する場合、その使用比率が下記範囲であることが好ましい。
   W2/(W2+W3)=0.30~0.95
(ただし、W2は式(2)の化合物の配合重量部、W3は式(3)の化合物の配合重量部を示す。)
 W2/(W2+W3)の範囲として、より好ましくは、0.40~0.95、さらに好ましくは0.45~0.90、特に好ましくは0.6~0.85である。0.95を超えると、揮発成分が多くなる傾向が強く、0.30を下回ると高い粘度となり、取り扱いが難しくなる。
 本発明の硬化性樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.5~1.5当量が好ましい。好ましくは、0.7~1.2当量、特に好ましくは0.8~1.1当量である。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
 本発明の硬化性樹脂組成物においては、硬化剤とともに硬化促進剤(硬化触媒)を併用、又は硬化剤を使用せず硬化促進剤単独で使用することができる。用い得る硬化促進剤の具体例としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、及び、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニュウムブロマイド、セチルトリメチルアンモニュウムブロマイド、トリオクチルメチルアンモニュウムブロマイド、ヘキサデシルトリメチルアンモニウムヒドロキシド等のアンモニュウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ等の金属化合物等、及びこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。
 本発明においては亜鉛塩および/または亜鉛錯体含有することが好ましい。亜鉛塩および/または亜鉛錯体は本発明においてはエポキシ樹脂と硬化剤との硬化促進剤として寄与する。
 亜鉛塩および/または亜鉛錯体としては亜鉛イオンを中心元素とした塩および/または錯体であって、好ましくは、カウンターイオンおよび/または配位子として炭素数1~30のアルキル基を有するカルボン酸、燐酸エステル、燐酸から選ばれる少なくとも1種を有する。本発明においては特にカルボン酸亜鉛体、燐酸エステル亜鉛体が好ましい。
 前記においてアルキル基としてはメチル基、イソプロピル基、ブチル基、2-エチルヘキシル基、オクチル基、イソデシル基、イソステアリル基、デカニル基、セチル基などが挙げられる。
 本発明において特に好ましいカルボン酸体としては、鎖状分岐構造を有するアルキル置換基、あるいはオレフィン等の官能基を有するアルキル基が好ましく、さらには炭素数3~30の炭素数が好ましい。中でも特に5~20の炭素数が好ましい。これらは相溶性の面で好ましく、炭素数が大きすぎる(炭素数30以上)、あるいは分岐構造、官能基等の構造を持たない場合、樹脂との相溶性が悪く、好ましくない。
 具体的には2-エチルヘキシル酸亜鉛、イソステアリン酸亜鉛、ウンデシレン酸亜鉛などが挙げられる。
 本発明において得に好ましい燐酸エステル体としては、燐酸、燐酸エステル(モノアルキルエステル体、ジアルキルエステル体、トリアルキルエステル体、もしくはそれらの混合物)の亜鉛塩および/または亜鉛錯体が好ましく、複数のリン酸エステル体を含有しても構わない。具体的には含有される燐酸エステル中、モノアルキルエステル体、ジアルキルエステル体、トリアルキルエステル体のモル比(ガスクロマトグラフィーの純度で代替。ただし、トリメチルシリル化を行う必要があるため、感度に差が出てしまう。)において、トリメチルシリル化処理をした段階で、モノアルキルエステル体の存在量が50面積%以上であることが好ましい。
 このようなリン酸エステル亜鉛の亜鉛塩および/または亜鉛錯体は、例えば燐酸エステルを例えば炭酸亜鉛、水酸化亜鉛などと反応させることで、本発明に使用する亜鉛塩および/または亜鉛錯体が得られる(特許文献 EP699708号公報)。
 このような燐酸エステルの亜鉛塩および/または亜鉛錯体の詳細としては燐原子と亜鉛原子の比率(P/Zn)が1.2~2.3が好ましく、1.3~2.0がより好ましい。特に好ましくは1.4~1.9である。すなわち、特に好ましい形態では、亜鉛イオン1モルに対し、燐酸エステル(もしくはリン酸エステル由来の燐酸)が2.0モル以下となり、単純なイオン構造ではなく、いくつかの分子がイオン結合(あるいは配位結合)により関わった構造を有しているものが好ましい。このような亜鉛塩および/または亜鉛錯体としては例えば特表2003-51495号公報に記載の手法で得ることもできる。
 このような化合物として、市販品としてはカルボン酸亜鉛として、Zn-St、Zn-St 602、Zn-St NZ、ZS-3、ZS-6、ZS-8、ZS-8、ZS-7、ZS-10、ZS-5、ZS-14、ZS-16(日東化成工業製)、XK-614(キングインダストリー製)、18%オクトープZn、12%オクトープZn、8%オクトープZn(ホープ製薬製)、燐酸エステルおよび/またはリン酸亜鉛として、LBT-2000B(SC有機化学製)、XC-9206(キングインダストリー製)が挙げられる。
 これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。硬化促進剤は、エポキシ樹脂100重量部に対し通常0.001~15重量部、より好ましくは0.01~5重量部、特に好ましくは0.01~3重量部の範囲で使用される。本反応においては無触媒での硬化も可能であるが、硬化時の着色を防止するという観点から、触媒の添加が好ましい。特に着色を防止し、耐腐蝕ガス特性を向上させる観点から亜鉛塩および/または亜鉛錯体の使用が好ましい。
 本発明の硬化性樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/エポキシ樹脂=0.1~0.6(重量比)が好ましい。0.1未満では難燃性が不十分であり、0.6を超えると硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
 さらに本発明の硬化性樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100重量部に対して通常0.05~50重量部、好ましくは0.05~20重量部が必要に応じて用いられる。
 本発明の硬化性樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら充填材は、単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中において0~95重量%を占める量が用いられる。更に本発明の硬化性樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合には、前記使用する無機充填材の粒径として、ナノオーダーレベルの充填材を使用することで、透明性を阻害せずに機械強度などを補完することが可能である。ナノオーダーレベルとしての目安は、平均粒径が500nm以下、特に平均粒径が200nm以下の充填材を使用することが透明性の観点では好ましい。
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1~250μm、特に2~50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分に対して100重量部に対して、1~80重量部、好ましくは、5~60重量部が好ましい。
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、各種蛍光体の硬化時沈降を防止する目的で、シリカ微粉末(アエロジルまたはアエロゾルとも呼ばれる)をはじめとするチクソトロピック性付与剤を添加することができる。このようなシリカ微粉末としては、例えば、Aerosil  50、Aerosil  90、Aerosil  130、Aerosil  200、Aerosil  300、Aerosil  380、Aerosil  OX50、Aerosil  TT600、Aerosil  R972、Aerosil  R974、Aerosil  R202、Aerosil  R812、Aerosil  R812S、Aerosil  R805、RY200、RX200(日本アエロジル社製)等が挙げられる。
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤は、着色防止目的のため、光安定剤としてのアミン化合物又は、酸化防止材としてのリン系化合物及びフェノール系化合物を含有することができる。
 前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)=1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-トトラメチル-4-ピペリジル)=1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノール及び3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N″,N″’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5・1・11・2〕ヘネイコサン-21-オン、β-アラニン,N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系化合物、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
 前記光安定材であるアミン化合物として、次に示す市販品を使用することができる。
 市販されているアミン系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製として、TINUVIN765、TINUVIN770DF、TINUVIN144、TINUVIN123、TINUVIN622LD、TINUVIN152、CHIMASSORB944、アデカ製として、LA-52、LA-57、LA-62、LA-63P、LA-77Y、LA-81、LA-82、LA-87などが挙げられる。
 前記リン系化合物としては特に限定されず、例えば、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-tert-ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-イソプロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられる。
 上記リン系化合物は、市販品を用いることもできる。市販されているリン系化合物としては特に限定されず、例えば、アデカ製として、アデカスタブPEP-4C、アデカスタブPEP-8、アデカスタブPEP-24G、アデカスタブPEP-36、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブ522A、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135A、アデカスタブ3010、アデカスタブTPPが挙げられる。
 フェノール化合物としては特に限定はされず、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,4-ジ-tert-ブチル-6-メチルフェノール、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス-〔2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニルオキシ]-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、2,2’-ブチリデンビス(4,6-ジ-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2-tert-ブチル-4-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、ビス-[3,3-ビス-(4’-ヒドロキシ-3’-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、ビス-[3,3-ビス-(4’-ヒドロキシ-3’-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル等が挙げられる。
 上記フェノール系化合物は、市販品を用いることもできる。市販されているフェノール系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製としてIRGANOX1010、IRGANOX1035、IRGANOX1076、IRGANOX1135、IRGANOX245、IRGANOX259、IRGANOX295、IRGANOX3114IRGANOX1098、IRGANOX1520L、アデカ製としては、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-90、アデカスタブAO-330、住友化学工業製として、SumilizerGA-80、Sumilizer  MDP-S、Sumilizer  BBM-S、Sumilizer  GM、Sumilizer  GS(F)、Sumilizer  GPなどが挙げられる。
 このほか、樹脂の着色防止剤として市販されている添加材を使用することができる。例えば、チバスペシャリティケミカルズ製として、TINUVIN328、TINUVIN234、TINUVIN326、TINUVIN120、TINUVIN477、TINUVIN479、CHIMASSORB2020FDL、CHIMASSORB119FLなどが挙げられる。
 上記リン系化合物、アミン化合物、フェノール系化合物の中から少なくとも1種以上を含有することが好ましく、その配合量としては特に限定されないが、該硬化性樹脂組成物に対して、0.005~5.0重量%の範囲である。
 本発明の硬化性樹脂組成物は、各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えばエポキシ樹脂と、硬化剤および硬化促進剤から選ばれる少なくとも1種、リン含有化合物、バインダー樹脂、無機充填材並びに配合剤とを必要に応じて押出機、ニーダー、ロール、プラネタリーミキサー等を用いて均一になるまで充分に混合して硬化性樹脂組成物を得、その硬化性樹脂組成物を液状である場合はポッティングやキャスティング、基材に含浸、金型に硬化性樹脂組成物を流し込み注型し、加熱により硬化、また固形の場合、溶融後注型、あるいはトランスファー成型機などを用いて成型し、さらに加熱により硬化するという手法が挙げられる。硬化温度、時間としては80~200℃で2~10時間である。硬化方法としては高温で一気に固めることもできるが、ステップワイズに昇温し硬化反応を進めることが好ましい。具体的には80~150℃の間で初期硬化を行い、100℃~200℃の間で後硬化を行う。硬化の段階としては2~8段階に分けて昇温するのが好ましく、より好ましくは2~4段階である。
 また本発明の硬化性樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物のままRTM(Resin Transfer Molding)方式でカーボン繊維を含有する硬化性樹脂硬化物を得ることもできる。
 また本発明の硬化性樹脂組成物をフィルム型封止用組成物として使用することもできる。このようなフィルム型樹脂組成物を得る場合は、まず本発明の硬化性樹脂組成物を前記のような硬化性樹脂組成物ワニスとし、これを剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行う方法が挙げられ、これによりフィルム型封止用組成物をシート状の接着剤として得る。このシート状接着剤は、多層基板などにおける層間絶縁層、光半導体の一括フィルム封止として使用することが出来る。
 次に本発明の硬化性樹脂組成物を光半導体の封止材又はダイボンド材として用いる場合について詳細に説明する。
 本発明の硬化性樹脂組成物が高輝度白色LED等の光半導体の封止材、またはダイボンド材として用いる場合には、本発明のエポキシ樹脂の他、硬化剤(例えば多価カルボン酸を含有してなる硬化剤を含む硬化剤組成物)、硬化促進剤、カップリング材、酸化防止剤、光安定剤等の添加物を充分に混合することにより硬化性樹脂組成物を調製する。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合すればよい。得られる硬化性樹脂組成物は、封止材、またはダイボンド材と封止材の両方に使用することができる。
 高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。かかる半導体チップは、その周囲をエポキシ樹脂等の封止材で封止されている。封止材は半導体チップを熱や湿気から守り、かつレンズ機能の役割を果たすために用いられるものである。本発明の硬化性樹脂組成物はこの封止材やダイボンド材として用いる事ができる。工程上からは本発明の硬化性樹脂組成物をダイボンド材と封止材の両方に使用するのが好都合である。
 本発明の硬化性樹脂組成物を用いて半導体チップを基板に接着する方法としては、本発明の硬化性樹脂組成物をディスペンサー、ポッティングあるいはスクリーン印刷により基板上に塗布した後、前記硬化性樹脂組成物上に半導体チップをのせて加熱硬化を行う方法が挙げられる。かかる方法により、半導体チップを基板に接着させることができる。加熱には、熱風循環式、赤外線、高周波等の方法が使用できる。
 加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
 封止材の成形方式としては、上記のように半導体チップが固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された半導体チップを浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
 注入方法としては、ディスペンサー、トランスファー成形、射出成形等が挙げられる。
 加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。
 加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
 更に、本発明の硬化性樹脂組成物の用途は上記に限定されることはなく、エポキシ樹脂等の硬化性樹脂が使用される一般の用途に適用可能である。具体的には、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、封止材、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。
 接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
 封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなどに用いられるポッティング、ディッピング及びトランスファーモールド封止、ICやLSI類のCOB、COF、TABなどに用いられるポッティング封止、フリップチップなどに用いられるアンダーフィル、QFP、BGA及びCSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。
 本発明で得られる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD-ROM、CD-R/RW、DVD-R/DVD-RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。
 光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーハーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーハーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光-光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。
 次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。また実施例において、エポキシ当量はJIS K-7236、粘度は25℃においてE型粘度計を使用して測定を行った。またガスクロマトグラフィー(以下、GC)における分析条件は分離カラムにHP5-MS(0.25mm I.D.x 15m, 膜厚0.25μm)を用いて、カラムオーブン温度を初期温度100℃に設定し、毎分 15℃の速度で昇温させ300℃で25分間保持した。またヘリウムをキャリヤーガスとした。さらにゲルパーミエーションクロマトグラフィー(以下、GPC)の測定においては以下の通りである。カラムは、Shodex SYSTEM-21カラム(KF-803L、KF-802.5(×2本)、KF-802)、連結溶離液はテトラヒドロフラン、流速は1ml/min.カラム温度は40℃、また検出はUV(254nm)で行い、検量線はShodex製標準ポリスチレンを使用した。
合成例1
シクロヘキセンジオールの合成
 合成例1(参考特許文献 EP 0487035 B1) 
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら、シクロヘキセンカルボキシアルデヒド112部、エタノール600部、35%ホルマリン300部、30重量%炭酸カリウム水溶液284部を仕込み、撹拌しながら還流温度まで昇温し、そのまま9時間反応を行った。反応終了後、ディーンスターク冷却菅を装着し、バス温度を100℃に設定した状態で4時間、エタノールを留去した。室温まで冷却後、そのまま24時間静置した。白色結晶として析出したシクロヘキサンジメタノールを減圧濾過により溶液よりろ別し、乾燥する事で目的とするシクロヘキサンジオール(下記式(6))を103部得た。ガスクロマトグラフィーによる純度は98面積%で得られた。
Figure JPOXMLDOC01-appb-C000017
 
合成例2
 撹拌機、還流冷却管、撹拌装置、ディーンスターク管を備えたフラスコに、窒素パージを施しながらトルエン150部、前記式(6)の化合物70部、3-シクロヘキセンカルボン酸126部、パラトルエンスルホン酸2部を加え、加熱還流下で10時間、水を除きながら反応を行った。反応終了後、10重量%炭酸水素ナトリウム水溶液50部で2回水洗、さらに得られた有機層を水50部で2回水洗した後、ロータリーエバポレータで有機溶剤を濃縮することで本発明のオレフィン化合物(D-1 下記式(7))が173部得られた。得られたオレフィン化合物は液状であり、ガスクロマトグラフィーによる純度は92面積%、ゲルパーミエーションクロマトグラフィーによる分析の結果、>98面積%の純度である事を確認した。
Figure JPOXMLDOC01-appb-C000018
 
合成例3
エポキシ樹脂の合成
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水15部、12-タングストリン酸1.9部、燐酸水素2ナトリウム1.6、ジ牛脂アルキルジメチルアンモニウムアセテート5.4部(ライオンアクゾ製 50重量%ヘキサン溶液、アカード2HTアセテート)を加え、タングステン酸系触媒を生成させた後、トルエン120部、前記で得られたオレフィン化合物を119部加え、さらに再度攪拌することでエマルジョン状態の液とした。この溶液を50℃に昇温し、激しく攪拌しながら、35重量%過酸化水素水118部を1時間で加え、そのまま50℃で13時間攪拌した。GCにて反応の進行を確認したところ、原料ピークは消失していた。
 ついで1重量%水酸化ナトリウム水溶液で中和した後、20重量%チオ硫酸ナトリウム水溶液25部を加え30分攪拌を行い、静置した。2層に分離した有機層を取り出し、ここにシリカゲル(ワコーゲル C-300)10部、活性炭(NORIT製 CAP SUPER)20部、ベントナイト(ホージュン製 ベンゲルSH)20部を加え、室温で1時間攪拌後、ろ過した。得られたろ液を水100部で3回水洗を行い、得られた有機層より、トルエンを留去することで、常温で液状の下記式(8)のエポキシ樹脂(EP-1)118部を得た。得られたエポキシ樹脂のエポキシ当量は148g/eq.であった。
Figure JPOXMLDOC01-appb-C000019
 
合成例4
 得られたエポキシ樹脂(EP-1)25部に対し、シリカゲル(ワコーゲル C-300 和光純薬製)105部を使用し、酢酸エチル:ヘキサン=1:4~2:3の展開溶媒を用い、カラムクロマトグラフィーにより精製を行った。 
 得られたエポキシ樹脂(EP-2)は18部であり、得られたエポキシ樹脂の純度はGPCの測定結果より、前記式(8)の骨格の化合物を98面積%以上含有していることを確認した。さらに、GC測定においては純度約99面積%であった。また、エポキシ当量は137g/eq.であった。
合成例5
 合成例2と同様にしてシクロヘキセンメタノールとテトラヒドロフタル酸を用いてエステル化し、オレフィン化合物を製造後、合成例3と同様にしてエポキシ化することで下記式(9)
Figure JPOXMLDOC01-appb-C000020
 
で表される構造を主成分とするエポキシ樹脂を得た。
 得られたエポキシ樹脂をさらに合成例4と同様にして精製することでエポキシ樹脂(EP-3)が得られた。得られたエポキシ樹脂の純度はGPCの測定結果より、前記式(9)の骨格の化合物を98面積%以上含有していることを確認した。さらに、GC測定においては純度約98面積%であった。また、エポキシ当量は137g/eq.であった。
合成例6
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらジシクロペンタジエンジメタノール10部、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH 以下、酸無水物H3と称す)100部を加え、60℃で4時間加熱撹拌を行うことで(GPCによりジシクロペンタジエンジメタノールの消失を確認した。)、多価カルボン酸を含有する硬化剤組成物(B1)が110部得られた。得られた無色の液状樹脂であり、GPCによる純度は多価カルボン酸の構造を22面積%、メチルヘキサヒドロフタル酸無水物が78面積%であった。また、官能基当量は188g/eq.であった。すなわち、W2/(W2+W3)=0.78である。
合成例7
 特許文献3に記載されている方法に準じてシリコーン変性エポキシ樹脂を得た。すなわち、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン26.6部(アルコキシ基当量82.1)、ジメチルジメトキシシラン73.4部(アルコキシ当量60.1)、トリエチルアミン10.0部、メチルイソブチルケトン500部を反応容器に仕込み、室温で撹拌下、蒸留水100部を30分かけて滴下し、80度に昇温後6時間反応させた。反応終了後、20%リン酸2水素ナトリウム水溶液で中和後、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することにより反応性官能基を有するシリコーン変性エポキシ樹脂(EP-4)60部を得た。得られた化合物のエポキシ当量は561g/eq、外観は無色透明であった。
実施例1
 実施例として、合成例4で得られたエポキシ樹脂(EP-2)について、硬化剤として、メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物(新日本理化(株)製、リカシッドMH700、以下、H1と称す。)、硬化促進剤としてヘキサデシルトリメチルアンモニウムヒドロキシド(東京化成工業(株)製 25重量%メタノール溶液、C1と称す)を使用し、下記表1に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。
比較例1
 比較例として合成例4で合成した(EP-3)について、硬化剤としてH1、硬化促進剤としてC1を使用し、下記表1に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の比較用の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。また評価は以下の方法で行った。
(耐熱特性試験)
 実施例及び比較例で得られた硬化性樹脂組成物を真空脱泡20分間実施後、横7mm、縦5cm、厚み約800μmの試験片用金型に静かに注型し、その後上からポリイミドフィルムでフタをした。その注型物を120℃×1時間の予備硬化の後150℃×3時間で硬化させ動的粘弾性用試験片を得た。これらの試験片を用い、下記に示した条件で、動的粘弾性試験を実施した。
 測定条件
  動的粘弾性測定器:TA-instruments製、DMA-2980
  測定温度範囲:-30℃~280℃
  温速度:2℃/分
  試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)。
 解析条件
  Tg:DMA測定に於けるTan-δのピーク点をTgとした。
(透過率試験)
 得られた硬化性樹脂組成物を真空脱泡20分間実施後、30mm×20mm×高さ1mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×1時間の予備硬化の後150℃×3時間で硬化させ、厚さ1mmの透過率用試験片を得、分光光度計により測定し、その透過率を測定した。
Figure JPOXMLDOC01-appb-T000021
 
 本結果より、本発明のエポキシ樹脂組成物は透明性に優れ、かつ耐熱特性に優れる硬化物であることがわかった。
実施例2、3、比較例2
 エポキシ樹脂として、合成例3で得られたエポキシ樹脂(EP-1)、比較例として一般的な3,4エポキシシクロヘキシルメチル-3’,4’エポキシシクロヘキシルカルボキシレート(EP-5)を使用し、硬化剤としてH1、合成例6で得られた酸無水物と多価カルボン酸の混合物である硬化剤組成物(B1)を用い、さらに硬化促進剤としてC1を使用し、下記表2に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物、および比較用の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。
(LEDパッケージによる硬化後凹み性試験)
 実施例及び比較例で得られた硬化性樹脂組成物シリンジに充填し精密吐出装置を用いて、外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、120℃、1時間さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。凹みについては、深さゲージを用いて、外壁高さを基準として、硬化後の樹脂の凹み深さを測定した。実施例2、3と比較例2の結果については、表2に示した。
 測定条件
  深さゲージ:NIKON製、DIGIMICRO STAND MS-11C
  凹み深さとしては、3ヶ分のパッケージにおける平均値を採用した。
Figure JPOXMLDOC01-appb-T000022
 
 上記結果より、合成例3で得られたエポキシ樹脂を使用した硬化性樹脂組成物は、比較例1に比べ硬化後の凹みを改善することができることが判明した。また、その効果はポリカルボン酸(W2/(W2+W3)=0.78)を含有することでさらに改善することがわかった。
比較例3
 合成例7で得られたシリコーン変性エポキシ樹脂(EP-4)、について、硬化剤として、H1を使用し、下記表3に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。
(腐食ガス透過性試験)
 実施例2及び比較例3で得られた硬化性樹脂組成物を、シリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、120℃、1時間さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。下記条件でLEDパッケージを腐食性ガス中に放置し、封止内部の銀メッキされたリードフレーム部の色の変化を観察した。実施例2,比較例3の結果については、表3に示した。
 測定条件
  腐食ガス:硫化アンモニウム20%水溶液(硫黄成分が銀と反応した場合に黒く変色する)
  接触方法:広口ガラス瓶の中に、硫化アンモニウム水溶液の容器と前記LEDパッケージを混在させ、広口ガラス瓶の蓋をして密閉状況下、揮発した硫化アンモニウムガスとLEDパッケージを接触させた。
  腐食の判定:LEDパッケージ内部のリードフレームが黒く変色(黒化という)した時間を観察し、その変色時間が長い物ほど、耐腐食ガス性にすぐれていると判断した。
Figure JPOXMLDOC01-appb-T000023
 
 上記結果より、本発明の硬化性樹脂組成物は、比較例3(1時間で変色)のシリコーン変性エポキシ樹脂を使用した硬化性樹脂組成物にくらべ、リードフレームの銀メッキが変色しないことが明らかになり、耐腐食ガス性に優れていることが判明した。
 前記結果より、本発明の硬化性樹脂組成物は、シリコーン樹脂に比べ耐腐食ガス性に優れ、且つ、3,4エポキシシクロヘキシルメチル-3’,4’エポキシシクロヘキシルカルボキシレートで代表される従来脂環式エポキシ樹脂よりもLED封止材として耐久性に優れていることが判明した。
実施例4、比較例4
 エポキシ樹脂として、合成例3で得られたエポキシ樹脂(EP-1)、比較例として一般的な3,4エポキシシクロヘキシルメチル-3’,4’エポキシシクロヘキシルカルボキシレート(EP-5)を使用し、硬化剤としてH1、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物(三菱ガス化学株式会社製 H-TMA 以下、H2と称す。)を下記表4に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物、および比較用の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。
(透過率試験)
 実施例4及び比較例4で得られた硬化性樹脂組成物を真空脱泡20分間実施後、30mm×20mm×高さ1mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×1時間の予備硬化の後150℃×3時間で硬化させ、厚さ1mmの透過率用試験片を得た。
 これらの試験片を用い、150℃オーブン中96hr放置前後における透過率(測定波長:400nm)を分光光度計により測定し、その透過率の保持率を算出した。
(LED点灯試験)
 実施例4及び比較例4で得られた硬化性樹脂組成物を、シリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、120℃、1時間さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。下記条件でLEDを点灯させて照度を測定した。実施例4、比較例4の結果については、表4に示した。
Figure JPOXMLDOC01-appb-T000024
 
 前記結果より、本発明の硬化性樹脂組成物は、耐熱透過率、および点灯時の照度にも優れることがわかった。
実施例5、6、比較例5
 エポキシ樹脂として、合成例3で得られたエポキシ樹脂(EP-1)、比較例として一般的な3,4エポキシシクロヘキシルメチル-3’,4’エポキシシクロヘキシルカルボキシレート(EP-5)を使用し、硬化剤としてH1、H2、合成例6で得られた酸無水物と多価カルボン酸の混合物である硬化剤組成物(B1)を用い、さらに硬化促進剤として有機ホスホニウム塩(日本化学工業社製 PX-4MP 以下 C2と称す。)を下記表5に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物、および比較用の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。
 得られた硬化性樹脂組成物を用い、以下に示す要領で、LED試験をおこなった。硬化条件は120℃×2時間の予備硬化の後140℃×2時間である。
(LEDリフロー試験)
 実施例及び比較例で得られた硬化性樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を使用して、発光波長465nmを持つ発光素子を搭載した表面実装型LEDに注型した。その後、所定の硬化条件で硬化させることで、試験用LEDを得た。
 得られた試験用LEDを30℃70%×24Hr吸湿後、高温観察装置(SMT Scope SK-5000 山陽精工株式会社製)を用い、以下のリフロー条件下での、試験用LEDへのクラックの発生の有無を目視で観察した。
 n=3でテストを行い、(NG数)/(テスト数)で評価する。
 条件は25℃より2℃/秒で150℃まで昇温、その後、2分150℃で保持し、さらに2℃/秒で260℃まで昇温し、10秒の温度保持後、1.3℃/秒で室温まで冷却する、というものである。
Figure JPOXMLDOC01-appb-T000025
 
 前記結果より、本発明の硬化性樹脂組成物は、耐衝撃性に優れることがわかった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2009年10月9日付で出願された日本特許出願(特願2009-234846)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (8)

  1.  下記式(1)で表されるオレフィン化合物を酸化して得られるエポキシ樹脂、硬化剤および/又は硬化促進剤を含有することを特徴とする硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    (式中、複数存在するR、Rはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。)
  2.  エポキシ樹脂が、全てのR、Rが水素原子であるオレフィン化合物が原料である請求項1に記載の硬化性樹脂組成物。
  3.  硬化剤が、下記式(2)で表される1種以上の化合物である請求項1又は2に記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
     
    (式中、Rは、水素原子、メチル基又はカルボキシル基を表す。)
  4.  硬化剤が、下記式(3)で表される1種以上の化合物である請求項1~3のいずれか一項に記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
     
     (式中、複数存在するRは、水素原子、メチル基又はカルボキシル基を表す。Pは炭素数2~20の鎖状又は環状の脂肪族基である。)
  5.  式(3)中のPが分岐鎖状又は環状構造である請求項4に記載の硬化性樹脂組成物。
  6.  硬化剤が下記式(2)で表される1種以上の化合物
    Figure JPOXMLDOC01-appb-C000004
     
    (式中、Rは、水素原子、メチル基又はカルボキシル基を表す。)
     及び下記式(3)で表される1種以上の化合物
    Figure JPOXMLDOC01-appb-C000005
     
    (式中、複数存在するRは、独立して水素原子、メチル基又はカルボキシル基を表す。Pは炭素数2~20の鎖状又は環状の脂肪族基である。)
    の両者を含み、その使用比率が下記範囲である請求項1に記載の硬化性樹脂組成物。
         W2/(W2+W3)=0.30~0.95
    (ただし、W2は式(2)の化合物の配合重量部、W3は式(3)の化合物の配合重量部を示す。)
  7.  請求項1~6のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。
  8.  請求項1~6のいずれか一項に記載の硬化性樹脂組成物により封止して得られることを特徴とする光半導体装置。
PCT/JP2010/067794 2009-10-09 2010-10-08 硬化性樹脂組成物、及びその硬化物 WO2011043474A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011535479A JP5519685B2 (ja) 2009-10-09 2010-10-08 硬化性樹脂組成物、及びその硬化物
CN201080045447.0A CN102574983B (zh) 2009-10-09 2010-10-08 可固化树脂组合物及其固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009234846 2009-10-09
JP2009-234846 2009-10-09

Publications (1)

Publication Number Publication Date
WO2011043474A1 true WO2011043474A1 (ja) 2011-04-14

Family

ID=43856923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067794 WO2011043474A1 (ja) 2009-10-09 2010-10-08 硬化性樹脂組成物、及びその硬化物

Country Status (5)

Country Link
JP (1) JP5519685B2 (ja)
KR (1) KR20120093866A (ja)
CN (1) CN102574983B (ja)
TW (1) TWI488880B (ja)
WO (1) WO2011043474A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018231804A1 (en) * 2017-06-13 2018-12-20 Arkema Inc. Methods for making cyclohexene oxide-containing esters
US10913731B2 (en) * 2017-10-23 2021-02-09 Shikoku Chemicals Corporation Epoxy-oxetane compound, method for synthesizing same, and use of said compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452981B1 (ko) * 2013-11-04 2014-10-22 주식회사 네패스신소재 광 반도체 소자 탑재용 기판, 이의 제조방법 및 이로부터 제조된 광반도체 장치

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147018A (ja) * 1983-02-07 1984-08-23 ユニオン,カーバイド,コーポレーション 置換された環式脂肪族モノエポキシドを含有する混合組成物及び光共重合し得る組成物
JPH04136079A (ja) * 1990-09-27 1992-05-11 Kansai Paint Co Ltd 有機容剤形熱硬化性塗料組成物
JPH0717917A (ja) * 1991-10-17 1995-01-20 Union Carbide Chem & Plast Co Inc 三官能性不飽和化合物及びその誘導体
JP2005029632A (ja) * 2003-07-09 2005-02-03 Konica Minolta Medical & Graphic Inc インクジェット用インク組成物、画像形成方法及びエポキシ化合物
JP2005060462A (ja) * 2003-08-08 2005-03-10 Konica Minolta Medical & Graphic Inc 活性光線硬化型組成物、活性光線硬化型インク、それを用いた画像形成方法及びインクジェット記録装置
JP2006199790A (ja) * 2005-01-19 2006-08-03 Daicel Chem Ind Ltd 硬化性樹脂組成物および層間絶縁膜
JP2007039521A (ja) * 2005-08-02 2007-02-15 Stanley Electric Co Ltd 熱硬化性樹脂組成物、該組成物を熱硬化してなる透光性硬化物、該硬化物で封止された発光ダイオード
JP2008063333A (ja) * 2006-08-09 2008-03-21 Mitsubishi Gas Chem Co Inc 酸無水物エステルとその組成物、熱硬化性樹脂組成物及びその硬化物
JP2008101171A (ja) * 2006-10-20 2008-05-01 Daicel Chem Ind Ltd エポキシ樹脂組成物及びエポキシ樹脂硬化物
JP2008285643A (ja) * 2007-04-18 2008-11-27 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び透明複合シート
JP2009185274A (ja) * 2007-12-28 2009-08-20 Nippon Kayaku Co Ltd エポキシ組成物、エポキシ組成物の製造方法、硬化性樹脂組成物、および硬化物
JP2009242389A (ja) * 2008-03-14 2009-10-22 Nippon Kayaku Co Ltd ジオレフィン化合物、エポキシ樹脂、及び硬化性樹脂組成物
JP2010006970A (ja) * 2008-06-27 2010-01-14 Showa Denko Kk エポキシ基含有エステル化合物を含む硬化性組成物、該組成物の製造方法およびエポキシ基含有エステル化合物
WO2010107085A1 (ja) * 2009-03-19 2010-09-23 日本化薬株式会社 ジオレフィン化合物、エポキシ樹脂及び該組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900801A (en) * 1987-05-29 1990-02-13 Mitsui Petrochemical Industries, Ltd. Epoxy compounds and epoxy resin compositions containing the same
WO2008002416A1 (en) * 2006-06-23 2008-01-03 Dow Global Technologies Inc. Process for producing epoxides from olefinic compounds
US9387608B2 (en) * 2006-11-15 2016-07-12 Hitachi Chemical Company, Ltd. Thermosetting resin composition for light reflection, method for manufacturing the resin composition and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147018A (ja) * 1983-02-07 1984-08-23 ユニオン,カーバイド,コーポレーション 置換された環式脂肪族モノエポキシドを含有する混合組成物及び光共重合し得る組成物
JPH04136079A (ja) * 1990-09-27 1992-05-11 Kansai Paint Co Ltd 有機容剤形熱硬化性塗料組成物
JPH0717917A (ja) * 1991-10-17 1995-01-20 Union Carbide Chem & Plast Co Inc 三官能性不飽和化合物及びその誘導体
JP2005029632A (ja) * 2003-07-09 2005-02-03 Konica Minolta Medical & Graphic Inc インクジェット用インク組成物、画像形成方法及びエポキシ化合物
JP2005060462A (ja) * 2003-08-08 2005-03-10 Konica Minolta Medical & Graphic Inc 活性光線硬化型組成物、活性光線硬化型インク、それを用いた画像形成方法及びインクジェット記録装置
JP2006199790A (ja) * 2005-01-19 2006-08-03 Daicel Chem Ind Ltd 硬化性樹脂組成物および層間絶縁膜
JP2007039521A (ja) * 2005-08-02 2007-02-15 Stanley Electric Co Ltd 熱硬化性樹脂組成物、該組成物を熱硬化してなる透光性硬化物、該硬化物で封止された発光ダイオード
JP2008063333A (ja) * 2006-08-09 2008-03-21 Mitsubishi Gas Chem Co Inc 酸無水物エステルとその組成物、熱硬化性樹脂組成物及びその硬化物
JP2008101171A (ja) * 2006-10-20 2008-05-01 Daicel Chem Ind Ltd エポキシ樹脂組成物及びエポキシ樹脂硬化物
JP2008285643A (ja) * 2007-04-18 2008-11-27 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び透明複合シート
JP2009185274A (ja) * 2007-12-28 2009-08-20 Nippon Kayaku Co Ltd エポキシ組成物、エポキシ組成物の製造方法、硬化性樹脂組成物、および硬化物
JP2009242389A (ja) * 2008-03-14 2009-10-22 Nippon Kayaku Co Ltd ジオレフィン化合物、エポキシ樹脂、及び硬化性樹脂組成物
JP2010006970A (ja) * 2008-06-27 2010-01-14 Showa Denko Kk エポキシ基含有エステル化合物を含む硬化性組成物、該組成物の製造方法およびエポキシ基含有エステル化合物
WO2010107085A1 (ja) * 2009-03-19 2010-09-23 日本化薬株式会社 ジオレフィン化合物、エポキシ樹脂及び該組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018231804A1 (en) * 2017-06-13 2018-12-20 Arkema Inc. Methods for making cyclohexene oxide-containing esters
US10913731B2 (en) * 2017-10-23 2021-02-09 Shikoku Chemicals Corporation Epoxy-oxetane compound, method for synthesizing same, and use of said compound

Also Published As

Publication number Publication date
CN102574983A (zh) 2012-07-11
TWI488880B (zh) 2015-06-21
CN102574983B (zh) 2015-07-08
KR20120093866A (ko) 2012-08-23
TW201120084A (en) 2011-06-16
JPWO2011043474A1 (ja) 2013-03-04
JP5519685B2 (ja) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5878862B2 (ja) 硬化性樹脂組成物、及びその硬化物
JP5348764B2 (ja) 光半導体封止用硬化性樹脂組成物、及びその硬化物
JP5574447B2 (ja) 多価カルボン酸組成物およびその製造方法、ならびに該多価カルボン酸組成物を含有してなる硬化性樹脂組成物
JP5730852B2 (ja) オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物
JP5433705B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5626856B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5698453B2 (ja) エポキシ樹脂組成物
KR101763192B1 (ko) 경화성 수지 조성물 및 그 경화물
JP2011225711A (ja) エポキシ樹脂の製造法、エポキシ樹脂、および硬化性樹脂組成物
JP5615847B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物、およびその硬化物
JP5492081B2 (ja) ジオレフィン化合物、エポキシ樹脂及び該組成物
JP5519685B2 (ja) 硬化性樹脂組成物、及びその硬化物
JP5995238B2 (ja) エポキシ樹脂、およびエポキシ樹脂組成物
JP5559207B2 (ja) ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物及びその硬化物、並びに光半導体装置
JP5832601B2 (ja) 硬化性樹脂組成物およびその硬化物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045447.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011535479

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127009077

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10822144

Country of ref document: EP

Kind code of ref document: A1