WO2011040576A1 - 架橋性フッ素ゴム組成物および架橋ゴム物品 - Google Patents

架橋性フッ素ゴム組成物および架橋ゴム物品 Download PDF

Info

Publication number
WO2011040576A1
WO2011040576A1 PCT/JP2010/067161 JP2010067161W WO2011040576A1 WO 2011040576 A1 WO2011040576 A1 WO 2011040576A1 JP 2010067161 W JP2010067161 W JP 2010067161W WO 2011040576 A1 WO2011040576 A1 WO 2011040576A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
integer
compound
fluororubber composition
crosslinked rubber
Prior art date
Application number
PCT/JP2010/067161
Other languages
English (en)
French (fr)
Inventor
誠 本多
智行 藤田
渡邉 邦夫
白川 大祐
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to RU2012117739/05A priority Critical patent/RU2539009C2/ru
Priority to KR1020127007991A priority patent/KR101729353B1/ko
Priority to CN201080045043.1A priority patent/CN102575079B/zh
Priority to EP10820691.3A priority patent/EP2484722B1/en
Priority to JP2011534337A priority patent/JP5614551B2/ja
Publication of WO2011040576A1 publication Critical patent/WO2011040576A1/ja
Priority to US13/427,355 priority patent/US8426527B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/46Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/46Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
    • C08G2650/48Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen containing fluorine, e.g. perfluropolyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides

Definitions

  • the present invention relates to a crosslinkable fluororubber composition capable of obtaining a crosslinked rubber article excellent in flexibility at a low temperature and a crosslinked rubber article obtained therefrom.
  • cross-linking fluoropolymer organic peroxide is mixed with fluororubber and heated to perform peroxide cross-linking, or as disclosed in Patent Document 1, radiation cross-linking is performed by irradiating fluororubber with radiation. How to do is known. At that time, in order to improve the crosslinking characteristics of the fluororubber and the characteristics of the obtained crosslinked rubber article, a polyfunctional compound has been conventionally blended as a crosslinking aid.
  • triallyl isocyanurate has been preferably used conventionally (see Non-Patent Document 1 and Patent Document 1).
  • triallyl isocyanurate as a crosslinking aid, the crosslinking rate of the fluororubber can be improved.
  • a triazine ring skeleton excellent in heat resistance is introduced between the crosslinking points of the fluororubber, there is an advantage that a crosslinked rubber article excellent in heat resistance and mechanical properties can be obtained.
  • fluororubber particularly fluororubber containing tetrafluoroethylene as a copolymer component, is inferior in flexibility at low temperatures and has a problem in sealing performance in a low temperature environment.
  • an object of the present invention is to provide a crosslinkable fluororubber composition and a crosslinked rubber article capable of obtaining a crosslinked rubber article excellent in flexibility at a low temperature.
  • the present invention provides the following.
  • a crosslinkable fluororubber composition comprising a fluororubber and a compound represented by the following formula (A).
  • X is a group represented by the following formula (X)
  • Z is a group represented by the following formula (Z)
  • Y is a perfluoro saturated hydrocarbon group or an etheric oxygen atom between the carbon-carbon atoms of the group.
  • An inserted (x + z) -valent group x is an integer of 3 or more, z is an integer of 0 or more, and x + z is an integer of 3 or more.
  • U is a monovalent group having one or more selected from the group consisting of unsaturated hydrocarbons, bromine atoms and iodine atoms
  • R F is a linear perfluoroalkyl group having 1 to 20 carbon atoms.
  • a is an integer of 0 to 20
  • b is an integer of 1 to 200
  • c is an integer of 3 to 200.
  • b1, b2 and b3 are each independently an integer of 1 to 20.
  • the ratio (Mw / Mn) of the mass average molecular weight (Mw) to the number average molecular weight (Mn) of the compound represented by the formula (A) is 1.0 to 2.0, [1] to [5 ]
  • the crosslinkable fluororubber composition in any one of.
  • the crosslinkable fluororubber composition according to any one of [1] to [6], which contains 1 to 50 parts by mass of the compound represented by the formula (A) with respect to 100 parts by mass of the fluororubber. .
  • the group in which the fluororubber comprises a tetrafluoroethylene / propylene copolymer, a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, and a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer.
  • the crosslinkable fluororubber composition of the present invention contains the compound represented by the above formula (A), it is excellent in crosslinkability such as peroxide crosslinkability and radiation crosslinkability, and has a high crosslinking speed.
  • the crosslinked rubber article of the present invention obtained by crosslinking this crosslinkable fluororubber composition is excellent in flexibility at low temperature, has good low temperature properties, and further has strength, hardness, modulus, permanent compression. Excellent basic characteristics such as distortion.
  • the compound represented by the formula (A) is also referred to as a compound (A).
  • the group represented by the formula (X) is also referred to as a group (X). The same applies to other groups.
  • the crosslinkable fluororubber composition of the present invention comprises a composition containing at least fluororubber and the following compound (A).
  • X in the compound (A) is a monovalent group represented by the following formula (X).
  • a is an integer of 0 to 20, preferably an integer of 0 to 10, particularly preferably 0 to 2.
  • B is an integer of 1 to 200, preferably an integer of 1 to 100, particularly preferably an integer of 1 to 20.
  • U is a monovalent group having one or more selected from the group consisting of unsaturated hydrocarbons, bromine atoms and iodine atoms. Specific examples of the case where U is a group having an unsaturated hydrocarbon include the following structures (U-1) to (U-13).
  • (U-8), (U-9), (U-11), or (U-12) is preferable because of the structure in which an allyl group is bonded to N, (U-11), or (U-12) is particularly preferred.
  • n represents an integer of 1 to 3.
  • n represents an integer of 1 to 3. I (CH 2 ) n ⁇ I (CH 2 ) n C (O) O—CH 2 —
  • Z in the compound (A) is a monovalent group represented by the following formula (Z).
  • R F is a linear perfluoroalkyl group having 1 to 20 carbon atoms or a group in which an etheric oxygen atom is inserted between carbon-carbon atoms of the group, and the carbon number is particularly preferably 1 to 16.
  • R F include the following groups.
  • s represents an integer of 0 to 15
  • C y F represents a perfluorocyclohexyl group
  • t represents an integer of 0 to 15
  • a d F represents a perfluorinated adamantane group
  • t represents 0 to 15 Indicates an integer.
  • Y in the compound (A) is a perfluoro saturated hydrocarbon group or a (x + z) -valent group in which an etheric oxygen atom is inserted between carbon-carbon atoms of the group.
  • X + z which is the valence of the group (Y) is an integer of 3 or more, preferably 3 to 110, and particularly preferably 3 to 9.
  • the group (Y) is a trivalent group
  • the group (Y 3 -4) represents a perfluorocyclohexane-1,3,5-triyl group.
  • Specific examples in the case where the group (Y) is a tetravalent group include groups (Y 4 -1) to groups (Y 4 -5).
  • a specific example in the case where the group (Y) is a pentavalent group includes a group (Y 5 -1).
  • the group (Y) is preferably a group (Y 3 -1) to a group (Y 3 -4).
  • Compound (A) is a compound in which x group (X) and z group (Z) are bonded to group (Y). However, x is an integer greater than or equal to 3, z is an integer greater than or equal to 0, and (x + z) is an integer greater than or equal to 3. That is, the compound (A) is a compound in which three or more groups (X) are bonded to the group (Y) and the group (Z) is optionally bonded.
  • the compound (A) has three or more groups (X) having a linear perfluoropolyether bond (the “— (CF 2 CF 2 O) b —” portion of the group (X)), Excellent flexibility. Further, this group (X) has U (hereinafter referred to as a reactive group (U)) which is a monovalent group having one or more selected from the group consisting of unsaturated hydrocarbons, bromine atoms and iodine atoms. is doing. Therefore, when the fluororubber composition containing the compound (A) is subjected to a crosslinking treatment, the compound (A) is bonded to the fluororubber and three-dimensionally cross-linked, so that it is stably taken into the fluororubber.
  • U reactive group
  • x is an integer of 3 or more, preferably 3 to 100, particularly preferably 3 to 8.
  • Z is an integer of 0 or more, preferably 0 to 10, more preferably 0 to 1, and particularly preferably 0.
  • (X + z) is an integer of 3 or more, preferably 3 to 110, more preferably 3 to 9, and particularly preferably 3 or 4.
  • the compound (A) is preferably a compound represented by the following formula (A1).
  • x1 is an integer of 3 or 4.
  • Specific examples of the compound (A) when the group (Y) is a trivalent group include compounds (A 3 -1) to (A 3 -4).
  • Specific examples of the group (Y) being a tetravalent group include compounds (A 4 -1) to (A 4 -10). Of these, (A 3 -1), (A 4 -1), or (A 4 -2) is preferable because the balance between crosslinkability and low temperature characteristics is good.
  • a preferred specific example of the compound (A) is a compound represented by the following formula (A2).
  • b1, b2 and b3 are each independently an integer of 1 to 20, preferably an integer of 1 to 10.
  • the number average molecular weight (hereinafter also referred to as Mn) of the compound (A) is preferably 500 to 100,000, more preferably 1,000 to 20,000.
  • Mn is less than 500, the low-temperature characteristics tend to be insufficient, and when it exceeds 100,000, the crosslinkability tends to decrease.
  • the ratio of the mass average molecular weight (hereinafter also referred to as Mw) to the number average molecular weight (Mn) of the compound (A) (hereinafter also referred to as Mw / Mn) is preferably 1.0 to 2.0.
  • Mn and Mw are values measured by gel permeation chromatography (hereinafter referred to as GPC), and Mw / Mn is a value obtained from Mn and Mw measured by GPC. .
  • Compound (A) can be produced, for example, by producing compound (A0) by the method described in International Publication No. 2005/068534 and converting the terminal of the compound by a known method.
  • Rd is a lower alkyl group.
  • the values of x and z may change depending on the reaction conditions of the fluorination step in the production of (A0) (see, for example, [0043] and [0044] in JP2009-197210A). Therefore, the compound (A) may include a compound having x of 2 or less.
  • the compound having x of 2 or less is not the compound (A) in the present invention, but when the compound (A) is used as a crosslinking aid for fluororubber, the compound having x of 2 or less is not separated.
  • Compound (A) may be used as it is.
  • the compound (A) may be referred to as an x-functional compound because it has x or more reactive groups (U).
  • x when x is 3, it is referred to as a trifunctional compound, and when x is 4, it is referred to as a tetrafunctional compound.
  • a by-product compound having x of 2 or less is also referred to as a monofunctional compound or a bifunctional compound.
  • the compound (A) obtained by the reaction may be used as a solution after the reaction, or may be used after removing unnecessary solvents and raw materials by concentration or the like. Moreover, you may refine
  • the content of the compound (A) is preferably 1 to 50 parts by mass, more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the fluororubber.
  • the most preferred amount is 10 to 50 parts by mass.
  • flexibility in low temperature may be unable to be improved and the improvement effect of a low temperature characteristic may be small.
  • a compound (A) may bleed out from the rubber
  • the content of the compound (A) is 1 to 50 parts by mass with respect to 100 parts by mass of the fluororubber, a crosslinked rubber article having a high crosslinking rate and excellent low temperature characteristics can be easily obtained.
  • Fluorine rubber is not particularly limited. Vinylidene fluoride / hexafluoropropylene copolymer, vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, vinylidene fluoride / chlorotrifluoroethylene copolymer, tetrafluoroethylene / propylene copolymer Tetrafluoroethylene / propylene / vinylidene fluoride copolymer, hexafluoropropylene / ethylene copolymer, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, vinylidene fluoride / tetrafluoroethylene / perfluoroalkyl vinyl ether Examples thereof include system copolymers.
  • tetrafluoroethylene / propylene copolymer vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, or tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer is excellent in chemical resistance. It is preferably used for the reason.
  • the fluorine content in the fluororubber is preferably 40% by mass or more, more preferably 50% by mass or more, and most preferably 55% by mass or more.
  • a fluororubber having a fluorine content of 40% by mass or more can provide a crosslinked rubber article excellent in heat resistance, chemical resistance, electrical insulation and steam resistance.
  • fluoro rubber on the market is “AFLAS150P” (trade name, manufactured by Asahi Glass Co., Ltd., tetrafluoroethylene / propylene copolymer).
  • the crosslinkable fluororubber composition of the present invention can further contain an organic peroxide. Any organic peroxide that can easily generate radicals under heating can be used. Of these, those having a half-life of 1 minute and a temperature of 130 to 220 ° C. can be preferably used.
  • Specific examples thereof include 1,1-di (t-hexylperoxy) -3,5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t- Butyl peroxide, t-butyl cumyl peroxide, dicumyl peroxide, ⁇ , ⁇ '-bis (t-butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl-2,5-di (t-butyl Peroxy) -hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexine-3, dibenzoyl peroxide, t-butylperoxybenzene, 2,5-dimethyl-2 , 5-di (benzoylperoxy) hexane, t-butylperoxymaleic acid, t-hexylperoxyisopropyl monocarbonate, etc
  • the content of the organic peroxide is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass, and most preferably 0.5 to 4 parts by mass with respect to 100 parts by mass of the fluororubber. 3 parts by mass. Within this range, the crosslinking efficiency of the organic peroxide is high, and the amount of ineffective decomposition can be suppressed. However, in the case where the crosslinkable fluororubber composition is subjected to a crosslinking treatment by irradiation with radiation, the organic peroxide is not particularly required to be contained.
  • the crosslinkable fluororubber composition of the present invention may further contain a polyfunctional compound as a crosslinking aid.
  • Polyfunctional compounds include triallyl cyanurate, triallyl isocyanurate, triallyl isocyanurate prepolymer, trimethallyl isocyanurate, 1,3,5-triacryloylhexahydro-1,3,5-triazine, triallyl Trimellitate, m-phenylenediamine bismaleimide, p-quinonedioxime, p, p′-dibenzoylquinonedioxime, dipropargyl terephthalate, diallyl phthalate, N, N ′, N ′′, N ′ ′′-tetra Examples thereof include vinyl group-containing siloxane oligomers such as allyl terephthalamide, polymethylvinylsiloxane, and polymethylphenylvinylsiloxane.
  • a polyallyl compound is preferable, triallyl cyanurate, triallyl isocyanurate, or trimethallyl isocyanurate is more preferable, and triallyl isocyanurate is more preferable.
  • a polyfunctional compound can be used 1 type or in combination of 2 or more types.
  • the content thereof is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the compound (A). If the content of the polyfunctional compound is less than 0.1 parts by mass, the effect of addition is hardly obtained, and if it exceeds 20 parts by mass, the moldability may be impaired.
  • the crosslinkable fluororubber composition of the present invention can contain a filler.
  • a filler By containing the filler, the strength of the obtained crosslinked rubber article can be improved.
  • carbon black is preferably used. Any carbon black can be used as long as it is used for blending rubber. Specific examples thereof include furnace black, acetylene black, thermal black, channel black, and graphite. Of these, furnace black is more preferable, and specific examples thereof include HAF-LS, HAF, HAF-HS, FEF, GPF, APF, SRF-LM, SRF-HM, and MT grades, and MT is most preferable.
  • the content thereof is preferably 5 to 100 parts by mass, more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the fluororubber.
  • the content of the filler is less than 5 parts by mass, the effect of addition is hardly obtained, and when it exceeds 100 parts by mass, the elongation characteristics of the crosslinked rubber article may be deteriorated.
  • the content of the filler is in the above range, the balance between strength and elongation of the obtained crosslinked rubber article is good.
  • the crosslinkable fluororubber composition of the present invention can contain other additives such as reinforcing materials, processing aids, lubricants, lubricants, flame retardants, antistatic agents, and coloring agents.
  • the reinforcing material examples include fluororesins such as polytetrafluoroethylene and ethylene / tetrafluoroethylene copolymer, glass fibers, carbon fibers, and white carbon.
  • the content thereof is preferably 5 to 200 parts by mass, more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the fluororubber.
  • processing aid examples include alkali metal salts of higher fatty acids, and stearates or laurates are preferred.
  • the content thereof is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass, most preferably 100 parts by mass of the fluororubber. 1 to 5 parts by mass. If there are too many processing aids, blooming to the surface of the crosslinked rubber article may occur, the hardness of the crosslinked rubber article may be too high, and chemical resistance and steam resistance may be low. If the amount of processing aid is too small, the tensile strength of the crosslinked rubber article may be significantly reduced, and the elongation and the change in tensile strength after heat aging may be increased.
  • the method for preparing the crosslinkable fluorororubber composition of the present invention is not particularly limited and can be prepared by a conventionally known method.
  • a method of kneading the fluororubber, the compound (A) and, if necessary, an organic peroxide, carbon black, and other additives using a kneader such as a two-roll, Banbury mixer, kneader or the like is preferable.
  • distributed each said component in the solvent is also employable.
  • the order of mixing the above components is not particularly limited.
  • Etc. are preferably blended and kneaded.
  • the temperature range of 80 to 120 ° C. which is a temperature at which the crosslinking reaction does not occur, by cooling the kneader with water.
  • the crosslinked rubber article of the present invention can be obtained by molding and crosslinking the crosslinkable fluororubber composition of the present invention by a conventionally known method such as extrusion molding, injection molding, transfer molding or press molding. Molding and crosslinking may be performed simultaneously or in separate steps.
  • the crosslinked rubber articles (Primary cross-linked product) is obtained.
  • the heating temperature is preferably 130 to 220 ° C, more preferably 140 to 200 ° C, and most preferably 150 to 180 ° C.
  • the crosslinked rubber article (primary crosslinked product) is further heated in an oven or the like using electricity, hot air, steam or the like as a heat source as necessary to allow the crosslinking to proceed (also referred to as secondary crosslinking).
  • the residue of the organic peroxide contained in the crosslinked rubber article is decomposed and volatilized to be reduced.
  • the heating temperature during secondary crosslinking is preferably 150 to 280 ° C, more preferably 180 ° C to 260 ° C, and most preferably 200 to 250 ° C.
  • the secondary crosslinking time is preferably 1 to 48 hours, more preferably 4 to 24 hours.
  • the crosslinkable fluororubber composition of the present invention can be crosslinked by irradiating with ionizing radiation such as electron beam and ⁇ ray.
  • ionizing radiation such as electron beam and ⁇ ray.
  • the crosslinkable fluororubber composition of the present invention is dissolved and dispersed in an appropriate solvent to form a suspension solution, which is molded by coating or the like, and dried.
  • the dose of ionizing radiation may be appropriately selected, but is preferably 1 to 300 kGy, and more preferably 10 to 200 kGy.
  • the crosslinked rubber article of the present invention is used in various fields such as automobiles and other transport machines, general equipment, electrical equipment, etc., sealing materials such as O-rings, sheets, gaskets, oil seals, bearing seals, diaphragms, cushioning materials, vibration-proof materials. It can be suitably used in a wide range as each member such as a wire covering material, industrial belts, tubes / hoses, sheets and the like. Especially, it has excellent flexibility at low temperature, and also has excellent basic properties such as strength, hardness, modulus, compression set, etc., and sealing materials such as O-rings, sheets, gaskets, oil seals, bearing seals, etc. Can be preferably used.
  • Fluororubber Polymer 1 Tetrafluoroethylene / perfluoroalkyl vinyl ether binary copolymer (trade name “AFLAS PFE1000”, manufactured by Asahi Glass Co., Ltd., peroxide crosslinking type, fluorine content is 72 mass%)
  • Polymer 2 Tetrafluoroethylene / propylene / vinylidene fluoride terpolymer (trade name “AFLAS 200P”, manufactured by Asahi Glass Co., Ltd., peroxide crosslinking type, fluorine content 60 mass%)
  • Polymer 3 Tetrafluoroethylene / propylene binary copolymer (trade name “AFLAS 100S”, manufactured by Asahi Glass Co., Ltd., peroxide crosslinking type, fluorine content 57 mass%)
  • Crosslinking aid -Crosslinking aid 1 A composition comprising as a main component the compound (A2 ') obtained in the following synthesis example, Mn being 2900, and Mw / Mn being 1.14.
  • TAIC Triallyl isocyanurate (Nippon Kasei Co., Ltd.) (3) Organic peroxides Perbutyl P: ⁇ , ⁇ '-bis (t-butylperoxy) -p-diisopropylbenzene (trade name “Perkadox 14”, manufactured by NOF Corporation) Perhexa 25B: 3,5-dimethyl-2,5-di-t-butylperoxyhexane (trade name “Perhexa 25B”, manufactured by NOF Corporation) (4) Filler-MT carbon: carbon black (grade: MT carbon, manufactured by CANCARB) (5) Processing aid-Non-Sal SN-1: Sodium stearate (manufactured by NOF Corporation)
  • the compound (A2 ′) was subjected to NMR analysis, HPLC analysis, and GPC analysis as follows under the temperature condition of room temperature (25 ° C.) to confirm that the compound (A2 ′) was produced.
  • Tetramethylsilane was used as a reference substance for 1 H-NMR (300.4 MHz).
  • CFCl 3 was used as a reference material for 19 F-NMR (282.7 MHz).
  • CCl 2 FCClF 2 was used unless otherwise specified.
  • composition ratio of the compounds contained in the composition was measured under the following conditions using an HPLC apparatus (Prominence, manufactured by Shimadzu Corporation). Specifically, in one cycle of analysis, the concentration of HFIP in the mobile phase was gradually increased from 0% to 100%, the compounds contained in the composition were separated, and the mass ratio was analyzed.
  • Analytical column Normal phase silica gel column (manufactured by YMC, SIL-gel) Mobile phase: dichloropentafluoropropane (Asahi Glass AK-225G) and HFIP Mobile phase flow rate: 1.0 mL / min Column temperature: 37 ° C Detector: Evaporative light scattering detector ⁇ GPC analysis> According to the method described in JP-A-2001-208736, the number average molecular weight (Mn) and the mass average molecular weight (Mw) were measured by GPC under the following conditions to obtain Mw / Mn.
  • Mn number average molecular weight
  • Mw mass average molecular weight
  • Analytical column Two PLgel MIXED-E columns (manufactured by Polymer Laboratories) connected in series Standard sample for molecular weight measurement: 4 perfluoropolyether having a Mw / Mn of less than 1.1 and a molecular weight of 2000 to 10,000
  • Mobile phase flow rate 1.0 mL / min Column temperature: 37 ° C.
  • Detector Evaporative light scattering detector
  • the obtained crosslinking aid 1 was 7.0% by mass of the monofunctional compound, 30.8% by mass of the bifunctional compound, and 42.9% by mass of the trifunctional compound (A2 ′). It was found that the composition contained 18.1% by mass of a tetrafunctional compound and 1.2% by mass of a compound having a functional group number higher than that. Therefore, the proportion of the trifunctional or higher functional compound (A) effective for three-dimensional crosslinking was 62.2% by mass.
  • the monofunctional and bifunctional compounds are compounds with a small number of functional groups, which are by-produced in the fluorination step, and are not compound (A), but were not separated, and the crosslinking aid 1 was used as it was.
  • the number average molecular weight (Mn) of the crosslinking aid 1 was 2900, and Mw / Mn was 1.14. It was also confirmed that the crosslinking aid 1 did not have a —OCF 2 O— structure.
  • Low temperature elastic recovery test In accordance with JIS K6261, a low temperature elastic recovery test was performed with a low temperature elastic recovery tester (TR tester, manufactured by Ueshima Seisakusho), and a TR-10 value was measured.
  • Hardness Hardness (HS) was measured by durometer type A hardness test at 23 ° C. according to JIS K6253. A hardness of 60 to 90 indicates that it is suitable as a sealing material.
  • Tensile strength Tensile strength (T B ) was measured at 23 ° C. in accordance with JIS K6251. If the tensile strength (T B ) is 10 MPa or more, it indicates that it is suitable as a sealing material.
  • Elongation Elongation (E B ) was measured at 23 ° C.
  • Example 1 100 parts by weight of polymer 1, 1 part by weight of perhexa 25B, 5 parts by weight of crosslinking aid 1, 20 parts by weight of MT-carbon, and 1 part by weight of non-sar SN-1 are kneaded with a biaxial roll, and peroxide crosslinkable.
  • a fluororubber composition was obtained. The composition was molded into a sheet of 100 mm ⁇ 100 mm ⁇ 2 mm with a hot press at 170 ° C. (primary crosslinking). The sheet was further placed in a gear oven at 250 ° C. for 4 hours for secondary crosslinking. Four samples were punched from the obtained crosslinked rubber sheet with a No. 3 dumbbell, and the properties of the crosslinked rubber were measured.
  • This crosslinked rubber article has a hardness (HS) of 61, a tensile strength (T B ) of 19.8 MPa, an elongation (E B ) of 232%, and a 100% tensile stress (M 100 ) of 9.0 MPa. Yes, the compression set was 30%, and the TR-10 value was -7.6 ° C.
  • Examples 2 to 6, Comparative Examples 1 to 3 A crosslinked rubber sheet was prepared in the same manner as in Example 1 except that each compounding component was changed as shown in Table 1, and the characteristics of the crosslinked rubber article were measured in the same manner as described above.
  • the crosslinked rubber articles of Examples 1 to 6 have normal physical properties equivalent to the crosslinked rubber articles of Comparative Examples 1 to 3, while having a low TR-10 value and flexibility at low temperatures. It was excellent. In addition, the TR-10 value decreased as the amount of the crosslinking aid 1 increased, resulting in improved flexibility at low temperatures.
  • the crosslinked rubber articles of Comparative Examples 1 to 3 obtained by crosslinking a fluororubber composition not containing the crosslinking aid 1 (compound (A2)) are identical to those of Examples 1 to 6.
  • the crosslinked rubber article obtained using fluororubber had a high TR-10 value and was inferior in flexibility at low temperatures.
  • the crosslinked rubber article of the present invention is used in various fields such as automobiles and other transport machines, general equipment, electrical equipment, etc., sealing materials such as O-rings, sheets, gaskets, oil seals, bearing seals, diaphragms, cushioning materials, vibration-proof materials. It can be suitably used in a wide range as each member such as a wire covering material, industrial belts, tubes / hoses, sheets and the like.
  • sealing materials such as O-rings, sheets, gaskets, oil seals, bearing seals, diaphragms, cushioning materials, vibration-proof materials. It can be suitably used in a wide range as each member such as a wire covering material, industrial belts, tubes / hoses, sheets and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

 低温下での柔軟性に優れた架橋ゴム物品を得ることが可能な架橋性フッ素ゴム組成物および架橋ゴム物品を提供する。 フッ素ゴムと、「(X-)(Z-)Y」で表わされる化合物を含む架橋性フッ素ゴム組成物を架橋して架橋ゴム物品とする。式中、Xは「U-(CFO(CFCFO)-」、Zは「RO(CFCFO)-」、Yはペルフルオロ飽和炭化水素基または該基の炭素-炭素原子間にエーテル性酸素原子が挿入された(x+z)価の基、xは3以上の整数、zは0以上の整数、x+zは3以上の整数、Uは不飽和炭化水素、臭素原子及びヨウ素原子からなる群から選ばれる1種以上を持つ1価の基、Rは、炭素数が1~20の直鎖のペルフルオロアルキル基または該基の炭素-炭素原子間にエーテル性酸素原子が挿入された基、aは0~20の整数、bは1~200の整数、cは3~200の整数である。

Description

架橋性フッ素ゴム組成物および架橋ゴム物品
 本発明は、低温下での柔軟性に優れた架橋ゴム物品を得ることが可能な架橋性フッ素ゴム組成物およびそれから得られる架橋ゴム物品に関する。
 フッ素ゴムを架橋処理するにあたり、フッ素ゴムに有機過酸化物を混合し、加熱してパーオキシド架橋する方法や、下記特許文献1に開示されているように、フッ素ゴムに放射線を照射して放射線架橋する方法が知られている。その際、フッ素ゴムの架橋特性や、得られる架橋ゴム物品の特性の向上を図るため、従来より、多官能性化合物を架橋助剤として配合することが行われている。
 このような多官能性化合物としては、従来より、トリアリルイソシアヌレートが好ましく用いられている(非特許文献1、特許文献1参照)。トリアリルイソシアヌレートを架橋助剤として用いることで、フッ素ゴムの架橋速度を向上できる。更には、フッ素ゴムの架橋点間に耐熱性に優れるトリアジン環骨格が導入されることから、耐熱性や機械的特性に優れた架橋ゴム物品が得られるという利点がある。
里川編、ふっ素樹脂ハンドブック、616~622頁、577~578頁(日刊工業新聞、1990年発行)
特開平7-179705号公報
 しかしながら、フッ素ゴム、特に、テトラフルオロエチレンを共重合成分とするフッ素ゴムは低温下での柔軟性に劣り、低温環境でのシール性に課題があった。
 したがって、本発明の目的は、低温下での柔軟性に優れた架橋ゴム物品を得ることが可能な架橋性フッ素ゴム組成物および架橋ゴム物品を提供することである。
 本発明は、以下を提供する。
 [1] フッ素ゴムと、下式(A)で表わされる化合物を含むことを特徴とする架橋性フッ素ゴム組成物。
 (X-)(Z-)Y  ・・・(A)
 Xは下式(X)で表わされる基であり、Zは下式(Z)で表わされる基であり、Yはペルフルオロ飽和炭化水素基または該基の炭素-炭素原子間にエーテル性酸素原子が挿入された(x+z)価の基であり、xは3以上の整数であり、zは0以上の整数であり、x+zは3以上の整数である。
 U-(CFO(CFCFO)-  ・・・(X)
 RO(CFCFO)-  ・・・(Z)
 ただし、Uは、不飽和炭化水素、臭素原子及びヨウ素原子からなる群から選ばれる1種以上を持つ1価の基であり、Rは、炭素数が1~20の直鎖のペルフルオロアルキル基または該基の炭素-炭素原子間にエーテル性酸素原子が挿入された基であり、aは0~20の整数であり、bは1~200の整数であり、cは3~200の整数である。
 [2] 前記式(A)で表わされる化合物が、下式(A1)で表わされる化合物である、[1]に記載の架橋性フッ素ゴム組成物。
 (X-)x1Y  ・・・(A1)
 ただし、x1は、3又は4の整数である。
 [3] 式(A1)におけるx1が3であり、Yが下式で表される基(Y-1)~(Y-4)のいずれかである[2]に記載の架橋性フッ素ゴム組成物。
Figure JPOXMLDOC01-appb-C000003
 [4] 前記式(A)で表わされる化合物が、下式(A2)で表わされる化合物である、[1]に記載の架橋性フッ素ゴム組成物。
Figure JPOXMLDOC01-appb-C000004
 ただし、b1,b2,b3は、それぞれ独立に1~20の整数である。
 [5] 前記式(A)で表わされる化合物の数平均分子量(Mn)が500~100,000である、[1]~[4]のいずれかに記載の架橋性フッ素ゴム組成物。
 [6] 前記式(A)で表わされる化合物の数平均分子量(Mn)に対する質量平均分子量(Mw)の割合(Mw/Mn)が1.0~2.0である、[1]~[5]のいずれかに記載の架橋性フッ素ゴム組成物。
 [7] 前記式(A)で表わされる化合物を、前記フッ素ゴム100質量部に対して1~50質量部含有する、[1]~[6]のいずれかに記載の架橋性フッ素ゴム組成物。
 [8] 前記フッ素ゴムが、テトラフルオロエチレン/プロピレン系共重合体、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、及びテトラフルオロエチレン/パーフルオロアルキルビニルエーテル系共重合体からなる群から選ばれる1種以上である、[1]~[7]のいずれかに記載の架橋性フッ素ゴム組成物。
 [9] さらに、有機過酸化物を含有する、[1]~[8]のいずれかに記載の架橋性フッ素ゴム組成物。
 [10] [1]~[9]のいずれかに記載の架橋性フッ素ゴム組成物を架橋してなることを特徴とする架橋ゴム物品。
 [11] 前記架橋ゴム物品がシール材である[10]に記載の架橋ゴム物品。
 本発明の架橋性フッ素ゴム組成物は、上記式(A)で表わされる化合物を含むので、パーオキシド架橋性、放射線架橋性などの架橋性に優れ、架橋速度が速い。そして、この架橋性フッ素ゴム組成物を架橋して得られる本発明の架橋ゴム物品は、低温での柔軟性に優れ、良好な低温特性を有し、更には、強度、硬度、モジュラス、圧縮永久歪み性など基本特性にも優れている。
 以下、本明細書においては、式(A)で表される化合物を化合物(A)とも記す。他の化合物についても同様に記す。また、式(X)で表わされる基を、基(X)とも記す。他の基についても同様に記す。
 (架橋性フッ素ゴム組成物)
 本発明の架橋性フッ素ゴム組成物は、フッ素ゴムと、下記化合物(A)とを少なくとも含む組成からなるものである。
 (X-)(Z-)Y  ・・・(A)
 [化合物(A)]
 まず、本発明の架橋性フッ素ゴム組成物に用いる化合物(A)について説明する。この化合物(A)は、本発明の架橋性フッ素ゴム組成物において架橋助剤として機能するものである。
 化合物(A)中のXは、下式(X)で表される1価の基である。
 U-(CFO(CFCFO)-  ・・・(X)
 基(X)において、aは、0~20の整数であり、0~10の整数が好ましく、0~2が特に好ましい。また、bは、1~200の整数であり、1~100の整数が好ましく、1~20の整数が特に好ましい。また、Uは、不飽和炭化水素、臭素原子及びヨウ素原子からなる群から選ばれる1種以上を持つ1価の基である。Uが不飽和炭化水素を有する基である場合の具体例としては、以下の(U-1)~(U-13)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 なかでも、Nにアリル基が結合した構造であることから、(U-8)、(U-9)、(U-11)、又は(U-12)が好ましく、(U-11)、又は(U-12)が特に好ましい。
 また、Uが臭素原子を持つ1価の基の具体例としては、下記の構造が挙げられる。式中nは1~3の整数を示す。
 Br(CH
 Br(CHC(O)O-CH
 また、Uがヨウ素原子を持つ1価の基の具体例としては、下記の構造が挙げられる。式中nは1~3の整数を示す。
 I(CH
 I(CHC(O)O-CH
 基(X)としては、下記式(X1)で示す構造が好ましい。
 U-CFO(CFCFO)-  ・・・(X1)
 化合物(A)中のZは、下式(Z)で表される1価の基である。
 RO(CFCFO)-  ・・・(Z)
 基(Z)において、cは、3~200の整数であり、3~100の整数が好ましく、5~50の整数が特に好ましい。また、Rは、炭素数が1~20の直鎖のペルフルオロアルキル基または該基の炭素-炭素原子間にエーテル性酸素原子が挿入された基であり、その炭素数は1~16が特に好ましい。Rの具体例としては、以下の基が挙げられる。式中、sは0~15の整数を示し、C はペルフルオロシクロヘキシル基を示し、tは0~15の整数を示し、A はペルフルオロ化アダマンタンチル基を示し、tは0~15の整数を示す。
 CF(CF
 C -(CF
 A -(CF
 化合物(A)中のYは、ペルフルオロ飽和炭化水素基または該基の炭素-炭素原子間にエーテル性酸素原子が挿入された(x+z)価の基である。基(Y)の価数であるx+zは、3以上の整数であり、3~110が好ましく、3~9が特に好ましい。
 基(Y)が3価の基である場合の具体例としては、基(Y-1)~基(Y-4)が挙げられる。ただし、基(Y-4)は、ペルフルオロシクロヘキサン-1,3,5-トリイル基を示す。また、基(Y)が4価の基である場合の具体例としては、基(Y-1)~基(Y-5)が挙げられる。また、基(Y)が5価の基である場合の具体例としては、基(Y-1)が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 基(Y)としては、基(Y-1)~基(Y-4)が好ましい。
 化合物(A)は、基(Y)に、x個の基(X)と、z個の基(Z)とが結合した化合物である。ただし、xは3以上の整数であり、zは0以上の整数であり、(x+z)は3以上の整数である。すなわち、化合物(A)は、基(Y)に、3個以上の基(X)が結合し、基(Z)が任意で結合した化合物である。
 化合物(A)は、直鎖のペルフルオロポリエーテル結合(基(X)の「-(CFCFO)-」の部分)を有する基(X)を3個以上有するので、低温での柔軟性に優れる。また、この基(X)は、不飽和炭化水素、臭素原子及びヨウ素原子からなる群から選ばれる1種以上を持つ1価の基であるU(以下、反応基(U)と記す)を有している。それ故、化合物(A)を含むフッ素ゴム組成物を架橋処理する際に、化合物(A)は、フッ素ゴムに結合し、かつ三次元架橋するので、フッ素ゴムに安定して取り込まれる。このため、最終製品である架橋フッ素ゴム表面に、化合物(A)がブリードアウトすることを抑制でき、長期にわたって、優れた低温特性を維持できる。また、化合物(A)のブリードアウトを抑制できるので、成形時における金型汚染や、表面のベタつき等を抑制できる。また、化合物(A)がフッ素ゴムに結合し、かつ三次元架橋することにより、得られる架橋ゴム物品の強度、硬度、モジュラス、圧縮永久歪み性など基本特性を向上できる。
 化合物(A)において、xは、3以上の整数であり、3~100が好ましく、3~8が特に好ましい。また、zは、0以上の整数であり、0~10が好ましく、0~1がより好ましく、0が特に好ましい。また、(x+z)は、3以上の整数であり、3~110が好ましく、3~9がより好ましく、3又は4が特に好ましい。xが3以上であれば、化合物(A)はフッ素ゴム中で三次元架橋できる。
 すなわち、化合物(A)は、下式(A1)で表わされる化合物であることが好ましい。
 (X-)x1Y  ・・・(A1)
 ただし、x1は、3又は4の整数である。
 化合物(A)において、基(Y)が3価の基である場合の具体例としては、化合物(A-1)~化合物(A-4)が挙げられる。また、基(Y)が4価の基である場合の具体例としては、化合物(A-1)~化合物(A-10)が挙げられる。これらのうち、架橋性と低温特性とのバランスが良いという理由から、(A-1)、(A-1)、又は(A-2)が好ましい。
Figure JPOXMLDOC01-appb-C000007
 化合物(A)の好ましい具体例としては、下式(A2)で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 ただし、b1,b2,b3は、それぞれ独立に1~20の整数であり、1~10の整数が好ましい。
 化合物(A)の数平均分子量(以下、Mnとも記す。)は、500~100,000が好ましく、1,000~20,000がより好ましい。Mnが500未満であると低温特性が不十分となる傾向にあり、100,000を超えると架橋性が低下する傾向にある。
 化合物(A)の数平均分子量(Mn)に対する質量平均分子量(以下、Mwとも記す)の割合(以下、Mw/Mnとも記す)は、1.0~2.0が好ましい。
 なお、本発明において、Mn、Mwは、ゲルパーミエーションクロマトグラフィ(以下、GPCと記す。)により測定された値であり、Mw/Mnは、GPCにより測定されたMnおよびMwから求めた値である。
 化合物(A)は、例えば、国際公開第2005/068534号に記載の方法により化合物(A0)を製造し、該化合物の末端を、公知の手法により変換することにより製造することができる。ただし、Rは、低級アルキル基である。
 (ROC(O)-CFO(CFCFO)-)(Z-)Y・・・(A0)
 また、(A0)の製造のフッ素化工程の反応条件に応じて、xとzの値が変化することがある(特開2009-197210号公報の[0043]、[0044]等を参照)。そのため、化合物(A)には、xが2以下の化合物が含まれる場合がある。その場合、xが2以下の化合物は、本発明における化合物(A)ではないが、化合物(A)をフッ素ゴムの架橋助剤として使用する際に、xが2以下の化合物を分離せずに化合物(A)をそのまま使用しても良い。
 なお、本明細書において、化合物(A)は、反応基(U)をx個以上有することから、x官能の化合物という場合がある。化合物(A)において、xが3の場合には3官能の化合物、xが4の場合には4官能の化合物等という。また、副生物であるxが2以下の化合物は、1官能の化合物及び2官能の化合物ともいう。
 反応によって得られた化合物(A)は、反応後、溶液のまま使用しても良く、濃縮等により不要な溶媒および原料を取り除いてから使用しても良い。また、必要に応じて、精製してもよい。精製方法としては、水もしくは化合物(A)と層分離する有機溶媒による洗浄する方法、イオン吸着ポリマー等を用いて金属不純物、陰イオン不純物等を除去する方法、超臨界抽出法、カラムクロマトグラフィ法が挙げられる。これらの方法は組み合わせても良い。
 本発明の架橋性フッ素ゴム組成物において、化合物(A)の含有量は、フッ素ゴムの100質量部に対して、好ましくは1~50質量部であり、より好ましくは5~50質量部であり、最も好ましくは10~50質量部である。化合物(A)の含有量が少なすぎると、低温での柔軟性を向上できないことがあり、低温特性の改善効果が小さい場合がある。化合物(A)の含有量が多すぎると、架橋後のゴム物品から化合物(A)がブリードアウトすることがある。化合物(A)の含有量が、フッ素ゴムの100質量部に対して1~50質量部であれば、架橋速度が速く、低温特性に優れた架橋ゴム物品が得られ易くなる。
 [フッ素ゴム]
 次に、本発明の架橋性フッ素ゴム組成物に用いるフッ素ゴムについて説明する。
 フッ素ゴムとしては、特に限定はない。フッ化ビニリデン/ヘキサフルオロプロピレン系共重合体、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、フッ化ビニリデン/クロロトリフルオロエチレン系共重合体、テトラフルオロエチレン/プロピレン系共重合体、テトラフルオロエチレン/プロピレン/フッ化ビニリデン系共重合体、ヘキサフルオロプロピレン/エチレン系共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル系共重合体、フッ化ビニリデン/テトラフルオロエチレン/パーフルオロアルキルビニルエーテル系共重合体等が挙げられる。これらを1種又は2種以上を組み合わせて用いることができる。なかでも、テトラフルオロエチレン/プロピレン系共重合体、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、又はテトラフルオロエチレン/パーフルオロアルキルビニルエーテル系共重合体が、耐薬品性に優れるという理由から好ましく用いられる。
 フッ素ゴム中のフッ素含有量は、40質量%以上が好ましく、50質量%以上がより好ましく、55質量%以上が最も好ましい。フッ素含有量が40質量%以上であるフッ素ゴムは、耐熱性、耐薬品性、電気絶縁性、耐スチーム性に優れた架橋ゴム物品を得ることができる。
 フッ素ゴムの上市されている好ましい例としては、「AFLAS150P」(商品名、旭硝子社製、テトラフルオロエチレン/プロピレン共重合体)等が挙げられる。
 [有機過酸化物]
 本発明の架橋性フッ素ゴム組成物は、更に有機過酸化物を含有させることができる。有機過酸化物としては、加熱下、容易にラジカルを発生するものであればいずれも使用できる。なかでも、半減期が、1分となる温度が130~220℃であるものが好ましく使用できる。その具体例としては、1,1-ジ(t-ヘキシルパーオキシ)-3,5,5-トリメチルシクロへキサン、2,5-ジメチルへキサン-2,5-ジヒドロパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキシン-3、ジベンゾイルパーオキシド、t-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)へキサン、t-ブチルパーオキシマレイン酸、t-ヘキシルパーオキシイソプロピルモノカーボネート等が挙げられ、好ましくはα,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼンである。有機過酸化物は、1種又は2種以上を組み合わせて用いることができる。
 有機過酸化物の含有量は、フッ素ゴム100質量部に対して、好ましくは0.1~5質量部であり、より好ましくは0.2~4質量部であり、最も好ましくは0.5~3質量部である。この範囲にあると、有機過酸化物の架橋効率が高く、無効分解の生成量も抑制できる。ただし、架橋性フッ素ゴム組成物を放射線照射により架橋処理する場合は、有機過酸化物は、特に含有させる必要はない。
 [その他成分]
 本発明の架橋性フッ素ゴム組成物は、架橋助剤として多官能性化合物を更に含有させてもよい。多官能性化合物としては、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルイソシアヌレートプレポリマー、トリメタリルイソシアヌレート、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン、トリアリルトリメリテート、m-フェニレンジアミンビスマレイミド、p-キノンジオキシム、p,p'-ジベンゾイルキノンジオキシム、ジプロパルギルテレフタレート、ジアリルフタレート、N,N',N’',N’’’-テトラアリルテレフタールアミド、ポリメチルビニルシロキサン、ポリメチルフェニルビニルシロキサン等のビニル基含有シロキサンオリゴマー等が挙げられる。なかでも、多アリル化合物が好ましく、トリアリルシアヌレート、トリアリルイソシアヌレート、又はトリメタリルイソシアヌレートがより好ましく、トリアリルイソシアヌレートがさらに好ましい。化合物(A)とトリアリルイソシアヌレートとを併用することにより、架橋ゴム物品からのブリードアウトをより効果的に抑えることができる。多官能性化合物は、1種又は2種以上を組み合わせて用いることができる。多官能性化合物を含有する場合、その含有量は、化合物(A)100質量部に対し、好ましくは0.1~20質量部であり、より好ましくは0.2~10質量部である。多官能性化合物の含有量が0.1質量部未満であると添加効果がほとんど得られず、20質量部を超えると成形性が損なわれることがある。
 本発明の架橋性フッ素ゴム組成物は、充填剤を含有することができる。充填剤を含有することで、得られる架橋ゴム物品の強度を向上できる。充填剤としては、カーボンブラックが好ましく用いられる。カーボンブラックはゴムの配合用に用いられているものであればいずれも使用できる。その具体例としては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト等が挙げられる。中でも、ファーネスブラックがより好ましく、その具体例としては、HAF-LS、HAF、HAF-HS、FEF、GPF、APF、SRF-LM、SRF-HM、MT等のグレードが好ましく、MTが最も好ましい。
 充填剤を含有する場合、その含有量は、フッ素ゴム100質量部に対して、好ましくは5~100質量部、より好ましくは10~50質量部である。充填剤の含有量が5質量部未満であると添加効果がほとんど得られず、100質量部を超えると架橋ゴム物品の伸び特性が低下する場合がある。充填剤の含有量が上記範囲にあると、得られる架橋ゴム物品の強度と伸びとのバランスが良好である。
 本発明の架橋性フッ素ゴム組成物は、補強材、加工助剤、滑剤、潤滑剤、難燃剤、帯電防止剤、着色剤等のその他添加剤を含有することができる。
 上記補強材としては、ポリテトラフルオロエチレン、エチレン/テトラフルオロエチレン共重合体等のフッ素樹脂、ガラス繊維、炭素繊維、ホワイトカーボン等が挙げられる。補強材を含有する場合、その含有量は、フッ素ゴム100質量部に対して、好ましくは5~200質量部、より好ましくは10~100質量部である。
 上記加工助剤としては、高級脂肪酸のアルカリ金属塩等が挙げられ、ステアリン酸塩、又はラウリン酸塩が好ましい。加工助剤を含有する場合、その含有量は、フッ素ゴム100質量部に対して、好ましくは0.1~20質量部であり、より好ましくは0.2~10質量部であり、最も好ましくは1~5質量部である。加工助剤が多すぎると、架橋ゴム物品表面へのブルームが生じたり、架橋ゴム物品の硬度が高くなりすぎたり、耐薬品性や耐スチーム性が低い場合がある。加工助剤が少なすぎると、架橋ゴム物品の引張強度が著しく低下したり、耐熱老化後の伸びや引張強度の変化が大きくなる場合がある。
 (架橋性フッ素ゴム組成物の調製方法)
 本発明の架橋性フッ素ゴム組成物の調製方法としては、特に限定はなく、従来公知の方法により調製できる。好ましくは、フッ素ゴム、上記化合物(A)及び、必要に応じて有機過酸化物、カーボンブラック、その他添加剤を、2本ロール、バンバリーミキサー、ニーダー等の混練機を用いて混練する方法が好ましい。また、上記各成分を溶剤に溶解、分散した状態で混練して調製する方法も採用できる。
 上記各成分の混合の順序は特に制限されないが、まず、発熱によって、反応や分解し難い成分をフッ素ゴムと十分に混錬した後、反応しやすい成分あるいは分解しやすい成分である有機過酸化物等を、配合し混練することが好ましい。混練時には、混練機を水冷して、架橋反応が生起しない温度である80~120℃の範囲を維持することが好ましい。
 (架橋ゴム物品)
 本発明の架橋ゴム物品は、上記本発明の架橋性フッ素ゴム組成物を、押出成形、射出成形、トランスファー成形、プレス成形等の従来公知の方法で成形し、架橋することで得られる。成形と架橋は同時に行ってもよく、それぞれ別工程で行ってもよい。
 例えば、架橋ゴム物品1個分のまたは数個分の形状を有する金型のキャビティに、有機過酸化物を含有する架橋性フッ素ゴム組成物を充填し、金型を加熱することで架橋ゴム物品(一次架橋物)が得られる。加熱温度は、好ましくは130~220℃、より好ましくは140~200℃、最も好ましくは150~180℃である。また、この架橋ゴム物品(一次架橋物)を必要に応じて、電気、熱風、蒸気などを熱源とするオーブンなどでさらに加熱して、架橋を進行させる(二次架橋ともいう。)ことも好ましい。二次架橋を行うことにより、架橋ゴム物品に含有される有機過酸化物の残渣が分解、揮散して、低減される。二次架橋時の加熱温度としては、好ましくは150~280℃、より好ましくは180℃~260℃、最も好ましくは200~250℃である。二次架橋時間は、好ましくは1~48時間、より好ましくは、4~24時間である。
 また、本発明の架橋性フッ素ゴム組成物は、電子線、γ線などの電離性放射線を照射して架橋することもできる。電離性放射線の照射により架橋ゴム物品を製造するには、例えば、本発明の架橋性フッ素ゴム組成物を適当な溶媒中に溶解分散して懸濁溶液とし、これを塗布などにより成形し、乾燥させた後に、電離性放射線を照射して架橋ゴム物品を得る方法や、本発明の架橋性フッ素ゴム組成物を所定の形状に成形した後、電離性放射線を照射して架橋ゴム物品を得る方法等が挙げられる。電離性放射線の照射量は、適宜選定すればよいが、1~300kGyが好ましく、10~200kGyが好ましい。
 本発明の架橋ゴム物品は、自動車等の輸送機械、一般機器、電気機器等の幅広い分野において、Oリング、シート、ガスケット、オイルシール、ベアリングシール等のシール材、ダイヤフラム、緩衝材、防振材、電線被覆材、工業ベルト類、チューブ・ホース類、シート類などの各部材として広い範囲で好適に使用できる。なかでも、低温での柔軟性に優れ、更には、強度、硬度、モジュラス、圧縮永久歪み性など基本特性にも優れているので、Oリング、シート、ガスケット、オイルシール、ベアリングシール等のシール材として好ましく用いることができる。
 次に、実施例により本発明を具体的に説明するが、本発明はこれらの例により限定されない。
 [使用原料]
 以下の実施例、比較例で使用した配合成分は、以下の通りである。
 (1)フッ素ゴム
 ・ポリマー1:テトラフルオロエチレン/パーフルオロアルキルビニルエーテル系2元共重合体(商品名「AFLAS PFE1000」、旭硝子社製、過酸化物架橋タイプ、フッ素含有量は72質量%)
 ・ポリマー2:テトラフルオロエチレン/プロピレン/フッ化ビニリデン3元共重合体(商品名「AFLAS 200P」、旭硝子社製、過酸化物架橋タイプ、フッ素含有量60質量%)
 ・ポリマー3:テトラフルオロエチレン/プロピレン2元共重合体(商品名「AFLAS 100S」、旭硝子社製、過酸化物架橋タイプ、フッ素含有量57質量%)
 (2)架橋助剤
 ・架橋助剤1:以下の合成例で得られた化合物(A2’)を主成分とし、Mnは2900であり、Mw/Mnは1.14である組成物 ・TAIC:トリアリルイソシアヌレート(日本化成社製)
 (3)有機過酸化物
 ・パーブチルP:α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン(商品名「パーカドックス14」、日油社製)
 ・パーヘキサ25B:3,5-ジメチル-2,5-ジ-t-ブチルパーオキシへキサン(商品名「パーヘキサ25B」、日油社製)
 (4)充填剤
 ・MTカーボン:カーボンブラック(グレード:MTカーボン,CANCARB社製) (5)加工助剤
 ・ノンサール SN-1:ステアリン酸ナトリウム(日油社製)
 (架橋助剤1の合成)
 スターラーチップを投入した100mLの丸底フラスコを充分に窒素置換した。以下の化合物(A0-1)を主成分とする組成物の20.0gと、ジクロロペンタフルオロプロパンの20gとを丸底フラスコに入れ、激しく撹拌した。1時間後、丸底フラスコの上部に設置した滴下漏斗より、CH=CHCHNHの1.5gとジクロロペンタフルオロプロパンの20gの混合物を0.5時間かけてゆっくりと滴下した。滴下終了後、50℃に昇温して6時間撹拌を継続して室温まで冷却した。
Figure JPOXMLDOC01-appb-C000009
 得られた粗液をエバポレーターで濃縮し、残渣をn-ヘキサンの0.1Lで2回洗浄して室温で無色液体である組成物の18.8gを得た。この組成物は、上記化合物(A0-1)の「-C(O)OCHCH」の99.9モル%以上が、「-C(O)NHCHCH=CH」に誘導されていて、下記の化合物(A2’)が主成分であった。なお、式(A2’)を主成分とする組成物におけるb1+b2+b3の平均値は、NMR測定の結果、21.1であった。この組成物を架橋助剤1とした。
Figure JPOXMLDOC01-appb-C000010
 化合物(A2’)について、室温(25℃)の温度条件下で、以下のようにして、NMR分析、HPLC分析、GPC分析を行い、化合物(A2’)が生成されたことを確認した。
 〈NMR分析〉
 H-NMR(300.4MHz)の基準物質としては、テトラメチルシランを用いた。また、19F-NMR(282.7MHz)の基準物質としては、CFClを用いた。また、溶媒としては、特に記載しない限り、CClFCClFを用いた。
 〈HPLC分析〉
 組成物に含まれる化合物の組成比を、HPLC装置(島津製作所社製、Prominence)を用い、下記の条件にて測定した。具体的には、分析1サイクルにて、移動相中のHFIPの濃度を0%から100%に徐々に増加させ、組成物に含まれる化合物を分離し、質量比を分析した。
 分析カラム:順相系シリカゲルカラム(ワイエムシー社製、SIL-gel)
 移動相:ジクロロペンタフルオロプロパン(旭硝子社製、アサヒクリンAK-225G)およびHFIP
 移動相流速:1.0mL/分
 カラム温度:37℃
 検出器:蒸発光散乱検出器
 〈GPC分析〉
 特開2001-208736号公報に記載の方法にしたがって、下記の条件にてGPCにより数平均分子量(Mn)および質量平均分子量(Mw)を測定し、Mw/Mnを求めた。
 移動相:ジクロロペンタフルオロプロパン(旭硝子社製、アサヒクリンAK-225SECグレード1)とヘキサフルオロイソプロピルアルコールとの混合溶媒(ジクロロペンタフルオロプロパン/ヘキサフルオロイソプロピルアルコール=99/1体積比)、
 分析カラム:PLgel MIXED-Eカラム(ポリマーラボラトリーズ社製)を2本直列に連結したもの
 分子量測定用標準試料:Mw/Mnが1.1未満であり、分子量が2000~10000のペルフルオロポリエーテルの4種およびMw/Mnが1.1以上であり、分子量が1300のペルフルオロポリエーテルの1種
 移動相流速:1.0mL/分
 カラム温度:37℃
 検出器:蒸発光散乱検出器
 HPLC分析の結果、得られた架橋助剤1は、1官能の化合物が7.0質量%、2官能の化合物が30.8質量%、3官能の化合物(A2’)が42.9質量%、4官能の化合物が18.1質量%、それ以上の官能基数を持つ化合物が1.2質量%含まれる組成物であることがわかった。従って、三次元架橋に有効な3官能以上の化合物(A)の割合は62.2質量%であった。1官能及び2官能の化合物はフッ素化工程において副生した、官能基数が少ない化合物であり、化合物(A)ではないが、分離せず、架橋助剤1をそのまま使用した。
 GPC分析の結果、架橋助剤1の数平均分子量(Mn)は2900であり、Mw/Mnは1.14であった。また、架橋助剤1は-OCFO-構造を有さないことが確認できた。
 NMR分析の結果、H-NMRスペクトル、19F-NMRスペクトルは以下のような結果が得られた。
 H-NMRスペクトル δ(ppm):7.09,5.92,5.38~5.20,3.72
 19F-NMRスペクトル δ(ppm):-54.0,-77.6,-88.2~-92.0,-135.0~-139.0
 [架橋ゴム物品の測定方法]
 以下の実施例、比較例の架橋ゴム物品の、TR-10値、硬度(HS)、引張り強度(T)、伸び(E)、圧縮永久歪み、100%引張応力(M100)の測定は、以下に示す方法により行った。
 ・低温弾性回復試験:JIS K6261に準拠し、低温弾性回復試験機(TR試験機、上島製作所製)にて低温弾性回復試験を行い、TR-10値を測定した。
 ・硬度:JIS K6253に準拠し、23℃でデュロメータータイプA硬度試験にて硬度(HS)を測定した。硬度が60~90であると、シール材として適することを示す。
 ・引張り強度:JIS K6251に準拠して23℃にて引張り強度(T)を測定した。引張り強度(T)が10MPa以上であると、シール材として適することを示す。
 ・伸び:JIS K6251に準拠して23℃にて伸び(E)を測定した。伸び(E)は160%以上であると、シール材として適することを示す。
 ・圧縮永久歪み:JIS K6262に従い,200℃で70時間の圧縮永久歪みを測定した。
 ・100%引張応力(モジュラス):JIS K6251に準拠して23℃にて100%引張応力(M100)を測定した。100%引張応力(M100)は2~17MPaであると、シール材として適することを示す。
 (実施例1)
 ポリマー1の100質量部、パーヘキサ25Bの1質量部、架橋助剤1の5質量部、MT-カーボンの20質量部、ノンサール SN-1の1質量部を二軸ロールによって混練し、パーオキシド架橋性フッ素ゴム組成物を得た。該組成物を170℃の熱プレスで100mm×100mm×2mmのシート状に成形した(一次架橋)。このシートを更に、250℃のギアオーブンに4時間入れ、二次架橋した。
 得られた架橋ゴムシートより、第3号ダンベルで試料を4枚打ち抜き、架橋ゴムの特性を測定した。またJIS K6250に準拠し、低温弾性回復試験用試料を4個作製して、低温弾性回復試験を行った。結果を表1に示す。この架橋ゴム物品の硬度(HS)は61であり、引張り強度(T)は19.8MPaであり、伸び(E)232%であり、100%引張応力(M100)は9.0MPaであり、圧縮永久歪みは、30%であり、TR-10値は-7.6℃であった。
 (実施例2~6、比較例1~3)
 各配合成分を表1に示すように変えた以外は、実施例1と同様にして架橋ゴムシートを作成し、上記と同様に架橋ゴム物品の特性を測定した。
Figure JPOXMLDOC01-appb-T000011
 表1に示すように、実施例1~6の架橋ゴム物品は、比較例1~3の架橋ゴム物品と同等の常態物性を有しつつ、TR-10値が低く、低温での柔軟性に優れていた。また、架橋助剤1の添加量が増加するほどTR-10値は低くなり、低温での柔軟性が向上するという結果となった。
 これに対し、架橋助剤1(化合物(A2))を含まないフッ素ゴム組成物を架橋して得られた比較例1~3の架橋ゴム物品は、実施例1~6に比べて、同一のフッ素ゴムを用いて得られた架橋ゴム物品のTR-10値が高く、低温下での柔軟性に劣るものであった。
 本発明の架橋ゴム物品は、自動車等の輸送機械、一般機器、電気機器等の幅広い分野において、Oリング、シート、ガスケット、オイルシール、ベアリングシール等のシール材、ダイヤフラム、緩衝材、防振材、電線被覆材、工業ベルト類、チューブ・ホース類、シート類などの各部材として広い範囲で好適に使用できる。
 なお、2009年10月1日に出願された日本特許出願2009-229424号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  フッ素ゴムと、下式(A)で表わされる化合物を含むことを特徴とする架橋性フッ素ゴム組成物。
     (X-)(Z-)Y  ・・・(A)
     Xは下式(X)で表わされる基であり、Zは下式(Z)で表わされる基であり、Yはペルフルオロ飽和炭化水素基または該基の炭素-炭素原子間にエーテル性酸素原子が挿入された(x+z)価の基であり、xは3以上の整数であり、zは0以上の整数であり、x+zは3以上の整数である。
     U-(CFO(CFCFO)-  ・・・(X)
     RO(CFCFO)-  ・・・(Z)
     ただし、Uは、不飽和炭化水素、臭素原子及びヨウ素原子からなる群から選ばれる1種以上を持つ1価の基であり、Rは、炭素数が1~20の直鎖のペルフルオロアルキル基または該基の炭素-炭素原子間にエーテル性酸素原子が挿入された基であり、aは0~20の整数であり、bは1~200の整数であり、cは3~200の整数である。
  2.  前記式(A)で表わされる化合物が、下式(A1)で表わされる化合物である、請求項1に記載の架橋性フッ素ゴム組成物。
     (X-)x1Y  ・・・(A1)
     ただし、x1は、3又は4の整数である。
  3.  式(A1)におけるx1が3であり、Yが下式で表される基(Y-1)~(Y-4)のいずれかである請求項2に記載の架橋性フッ素ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
  4.  前記式(A)で表わされる化合物が、下式(A2)で表わされる化合物である、請求項1に記載の架橋性フッ素ゴム組成物。
    Figure JPOXMLDOC01-appb-C000002
     ただし、b1,b2,b3は、それぞれ独立に1~20の整数である。
  5.  前記式(A)で表わされる化合物の数平均分子量(Mn)が500~100,000である、請求項1~4のいずれか1項に記載の架橋性フッ素ゴム組成物。
  6.  前記式(A)で表わされる化合物の数平均分子量(Mn)に対する質量平均分子量(Mw)の割合(Mw/Mn)が1.0~2.0である、請求項1~5のいずれか1項に記載の架橋性フッ素ゴム組成物。
  7.  前記式(A)で表わされる化合物を、前記フッ素ゴム100質量部に対して1~50質量部含有する、請求項1~6のいずれか1項に記載の架橋性フッ素ゴム組成物。
  8.  前記フッ素ゴムが、テトラフルオロエチレン/プロピレン系共重合体、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、及びテトラフルオロエチレン/パーフルオロアルキルビニルエーテル系共重合体からなる群から選ばれる1種以上である、請求項1~6のいずれか1項に記載の架橋性フッ素ゴム組成物。
  9.  さらに、有機過酸化物を含有する、請求項1~8のいずれか1項に記載の架橋性フッ素ゴム組成物。
  10.  請求項1~9のいずれかに記載の架橋性フッ素ゴム組成物を架橋してなることを特徴とする架橋ゴム物品。
  11.  前記架橋ゴム物品がシール材である請求項10に記載の架橋ゴム物品。
PCT/JP2010/067161 2009-10-01 2010-09-30 架橋性フッ素ゴム組成物および架橋ゴム物品 WO2011040576A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2012117739/05A RU2539009C2 (ru) 2009-10-01 2010-09-30 Сшиваемая фторкаучуковая композиция и сшитое каучуковое изделие
KR1020127007991A KR101729353B1 (ko) 2009-10-01 2010-09-30 가교성 불소 고무 조성물 및 가교 고무 물품
CN201080045043.1A CN102575079B (zh) 2009-10-01 2010-09-30 交联性氟橡胶组合物及交联橡胶物品
EP10820691.3A EP2484722B1 (en) 2009-10-01 2010-09-30 Crosslinkable fluororubber composition and crosslinked rubber article
JP2011534337A JP5614551B2 (ja) 2009-10-01 2010-09-30 架橋性フッ素ゴム組成物および架橋ゴム物品
US13/427,355 US8426527B2 (en) 2009-10-01 2012-03-22 Crosslinkable fluororubber composition and crosslinked rubber article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-229424 2009-10-01
JP2009229424 2009-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/427,355 Continuation US8426527B2 (en) 2009-10-01 2012-03-22 Crosslinkable fluororubber composition and crosslinked rubber article

Publications (1)

Publication Number Publication Date
WO2011040576A1 true WO2011040576A1 (ja) 2011-04-07

Family

ID=43826382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067161 WO2011040576A1 (ja) 2009-10-01 2010-09-30 架橋性フッ素ゴム組成物および架橋ゴム物品

Country Status (8)

Country Link
US (1) US8426527B2 (ja)
EP (1) EP2484722B1 (ja)
JP (1) JP5614551B2 (ja)
KR (1) KR101729353B1 (ja)
CN (1) CN102575079B (ja)
RU (1) RU2539009C2 (ja)
TW (1) TWI491648B (ja)
WO (1) WO2011040576A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014004594A2 (en) * 2012-06-26 2014-01-03 E. I. Du Pont De Nemours And Company Compositions for repairing electrical signal-carrying cables
EP2805988A4 (en) * 2012-01-18 2015-09-23 Asahi Glass Co Ltd METHOD FOR PRODUCING FLUORINATED ACRYLIC RUBBER COMPOSITION / RUBBER, RETICULATED COMPOSITION, LAMINATED BODY, AND HEAT-RESISTANT AIR RUBBER PIPE
WO2015146851A1 (ja) * 2014-03-25 2015-10-01 旭硝子株式会社 フッ素ゴム成形品
KR20160004743A (ko) 2014-07-04 2016-01-13 박현우 조사가교 불소고무 컴파운드와 이를 이용한 절연전선 및 그 제조방법
WO2019009250A1 (ja) 2017-07-05 2019-01-10 Agc株式会社 含フッ素弾性共重合体組成物および架橋ゴム物品
WO2019054293A1 (ja) * 2017-09-14 2019-03-21 三菱電線工業株式会社 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法
JP2019214743A (ja) * 2019-09-19 2019-12-19 三菱電線工業株式会社 ゴム製品及びその製造方法
JP2020070326A (ja) * 2018-10-30 2020-05-07 三菱電線工業株式会社 未架橋フッ素ゴム組成物及びそれを用いて製造されるゴム製品
JP2021105179A (ja) * 2018-03-29 2021-07-26 三菱電線工業株式会社 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法
WO2024038866A1 (ja) * 2022-08-18 2024-02-22 Agc株式会社 化合物、組成物、表面処理剤、コーティング液、物品、及び物品の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20030372A1 (it) * 2003-03-03 2004-09-04 Solvay Solexis Spa Perfluoropolieteri lineari aventi migliorata stabilita' termoossidativa.
EP3023441B1 (en) * 2013-07-18 2019-03-06 AGC Inc. Method for producing aqueous dispersion of fluorine-containing polymer, aqueous dispersion of fluorine-containing polymer, and fluorine-containing polymer
US20200362136A1 (en) * 2017-12-08 2020-11-19 3M Innovative Properties Company Curable fluorinated polymer compositions
CN115605540A (zh) * 2020-05-14 2023-01-13 霓佳斯株式会社(Jp) 橡胶组合物、含氟弹性体和密封材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508532A (ja) * 1993-03-31 1996-09-10 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 低温用パーフルオロエラストマー類
JPH09124870A (ja) * 1995-10-20 1997-05-13 Ausimont Spa フルオロエラストマー用硬化系、フルオロエラストマー及びその使用
JP2001208736A (ja) 2000-01-28 2001-08-03 Asahi Glass Co Ltd フッ素系有機化合物の分子量測定方法
WO2005068534A1 (ja) 2004-01-13 2005-07-28 Asahi Glass Company, Limited 含フッ素ポリエーテル化合物
JP2008106036A (ja) * 2006-09-29 2008-05-08 Fujifilm Corp 重合性含フッ素化合物、それを用いた反射防止膜、反射防止フィルム、画像表示装置、ポリウレタン用含フッ素アルコールおよびそれを含む組成物
JP2009197210A (ja) 2008-01-24 2009-09-03 Asahi Glass Co Ltd エーテル化合物および潤滑剤
JP2009229424A (ja) 2008-03-25 2009-10-08 Mitsubishi Electric Corp 津波監視装置
JP2010084000A (ja) * 2008-09-30 2010-04-15 Asahi Glass Co Ltd 新規架橋助剤、架橋性フッ素ゴム組成物および架橋ゴム物品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1707031A1 (ru) * 1988-12-01 1992-01-23 Всесоюзный научно-исследовательский и конструкторско-технологический институт резиновой промышленности Резинова смесь на основе фторкаучука
IT1231174B (it) * 1989-07-24 1991-11-22 Ausimont Srl Mescole vulcanizzabili di fluoroelastomeri contenenti bromo o iodio e di perossidi organici
KR930703389A (ko) * 1991-01-11 1993-11-29 게리 리 그리스월드 경화 플루오로카본 엘라스토머
IT1255853B (it) * 1992-10-12 1995-11-17 Ausimont Spa Composizioni di polimeri elastomerici vulcanizzabili per via ionica
JPH07179705A (ja) 1993-12-22 1995-07-18 Asahi Glass Co Ltd フッ素ゴム組成物の架橋方法およびその架橋成形体
EP2009054A4 (en) * 2006-04-19 2010-09-29 Asahi Glass Co Ltd FLUORO-ELASTOMERIC COMPOSITION AND MOLDED FLUORO-RUBBER ARTICLE
JP5309622B2 (ja) 2007-11-28 2013-10-09 旭硝子株式会社 表面処理剤

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508532A (ja) * 1993-03-31 1996-09-10 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 低温用パーフルオロエラストマー類
JPH09124870A (ja) * 1995-10-20 1997-05-13 Ausimont Spa フルオロエラストマー用硬化系、フルオロエラストマー及びその使用
JP2001208736A (ja) 2000-01-28 2001-08-03 Asahi Glass Co Ltd フッ素系有機化合物の分子量測定方法
WO2005068534A1 (ja) 2004-01-13 2005-07-28 Asahi Glass Company, Limited 含フッ素ポリエーテル化合物
JP2008106036A (ja) * 2006-09-29 2008-05-08 Fujifilm Corp 重合性含フッ素化合物、それを用いた反射防止膜、反射防止フィルム、画像表示装置、ポリウレタン用含フッ素アルコールおよびそれを含む組成物
JP2009197210A (ja) 2008-01-24 2009-09-03 Asahi Glass Co Ltd エーテル化合物および潤滑剤
JP2009229424A (ja) 2008-03-25 2009-10-08 Mitsubishi Electric Corp 津波監視装置
JP2010084000A (ja) * 2008-09-30 2010-04-15 Asahi Glass Co Ltd 新規架橋助剤、架橋性フッ素ゴム組成物および架橋ゴム物品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2484722A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2805988A4 (en) * 2012-01-18 2015-09-23 Asahi Glass Co Ltd METHOD FOR PRODUCING FLUORINATED ACRYLIC RUBBER COMPOSITION / RUBBER, RETICULATED COMPOSITION, LAMINATED BODY, AND HEAT-RESISTANT AIR RUBBER PIPE
WO2014004594A2 (en) * 2012-06-26 2014-01-03 E. I. Du Pont De Nemours And Company Compositions for repairing electrical signal-carrying cables
WO2014004594A3 (en) * 2012-06-26 2014-07-17 E. I. Du Pont De Nemours And Company Compositions for repairing electrical signal-carrying cables
CN104641425A (zh) * 2012-06-26 2015-05-20 纳幕尔杜邦公司 用于修复电信号承载缆线的组合物
WO2015146851A1 (ja) * 2014-03-25 2015-10-01 旭硝子株式会社 フッ素ゴム成形品
JPWO2015146851A1 (ja) * 2014-03-25 2017-04-13 旭硝子株式会社 フッ素ゴム成形品
US10005888B2 (en) 2014-03-25 2018-06-26 Asahi Glass Company, Limited Fluororubber molded article
KR20160004743A (ko) 2014-07-04 2016-01-13 박현우 조사가교 불소고무 컴파운드와 이를 이용한 절연전선 및 그 제조방법
WO2019009250A1 (ja) 2017-07-05 2019-01-10 Agc株式会社 含フッ素弾性共重合体組成物および架橋ゴム物品
KR20200026795A (ko) 2017-07-05 2020-03-11 에이지씨 가부시키가이샤 함불소 탄성 공중합체 조성물 및 가교 고무 물품
WO2019054293A1 (ja) * 2017-09-14 2019-03-21 三菱電線工業株式会社 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法
JP2019052226A (ja) * 2017-09-14 2019-04-04 三菱電線工業株式会社 ゴム製品及びその製造方法
JP2021105179A (ja) * 2018-03-29 2021-07-26 三菱電線工業株式会社 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法
JP2020070326A (ja) * 2018-10-30 2020-05-07 三菱電線工業株式会社 未架橋フッ素ゴム組成物及びそれを用いて製造されるゴム製品
JP2019214743A (ja) * 2019-09-19 2019-12-19 三菱電線工業株式会社 ゴム製品及びその製造方法
WO2024038866A1 (ja) * 2022-08-18 2024-02-22 Agc株式会社 化合物、組成物、表面処理剤、コーティング液、物品、及び物品の製造方法

Also Published As

Publication number Publication date
KR101729353B1 (ko) 2017-04-21
TWI491648B (zh) 2015-07-11
CN102575079B (zh) 2014-07-30
TW201127886A (en) 2011-08-16
JPWO2011040576A1 (ja) 2013-02-28
JP5614551B2 (ja) 2014-10-29
US8426527B2 (en) 2013-04-23
US20120202950A1 (en) 2012-08-09
CN102575079A (zh) 2012-07-11
EP2484722A4 (en) 2013-04-24
RU2012117739A (ru) 2013-11-10
EP2484722A1 (en) 2012-08-08
EP2484722B1 (en) 2013-12-11
KR20120078706A (ko) 2012-07-10
RU2539009C2 (ru) 2015-01-10

Similar Documents

Publication Publication Date Title
JP5614551B2 (ja) 架橋性フッ素ゴム組成物および架橋ゴム物品
US11732073B2 (en) Fluorinated elastic copolymer, its composition and crosslinked rubber article
JP2005506391A (ja) フルオロポリマー組成物
WO2012073977A1 (ja) 架橋性フッ素ゴム組成物および架橋ゴム物品
JPH029054B2 (ja)
JP5407180B2 (ja) 含フッ素弾性共重合体
JP2010084000A (ja) 新規架橋助剤、架橋性フッ素ゴム組成物および架橋ゴム物品
JP2015067659A (ja) 架橋性含フッ素エラストマー組成物及び架橋ゴム物品
EP3650498A1 (en) Fluorine-containing elastic copolymer composition and crosslinked rubber article
WO2022065057A1 (ja) エラストマー組成物、シール材およびシール材の製造方法
JP5969257B2 (ja) フルオロポリマー組成物およびその硬化物
KR20230078694A (ko) 시일재 및 시일재의 제조 방법
WO2022065056A1 (ja) エラストマー組成物、シール材およびシール材の製造方法
WO2022065053A1 (ja) エラストマー組成物、シール材およびシール材の製造方法
KR20230079086A (ko) 엘라스토머 조성물, 시일재 및 시일재의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045043.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534337

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010820691

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127007991

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012117739

Country of ref document: RU