WO2011039921A1 - リチウム二次電池及びリチウム二次電池用正極 - Google Patents

リチウム二次電池及びリチウム二次電池用正極 Download PDF

Info

Publication number
WO2011039921A1
WO2011039921A1 PCT/JP2010/004787 JP2010004787W WO2011039921A1 WO 2011039921 A1 WO2011039921 A1 WO 2011039921A1 JP 2010004787 W JP2010004787 W JP 2010004787W WO 2011039921 A1 WO2011039921 A1 WO 2011039921A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
lithium ion
ion secondary
electrode material
Prior art date
Application number
PCT/JP2010/004787
Other languages
English (en)
French (fr)
Inventor
豊隆 湯浅
小林満
小川宰
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to US13/257,693 priority Critical patent/US20120183839A1/en
Publication of WO2011039921A1 publication Critical patent/WO2011039921A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium secondary battery using a non-aqueous electrolyte, and more particularly to a positive electrode for a lithium secondary battery.
  • In-vehicle lithium secondary batteries are required to have high output (reduction in battery resistance) and high safety.
  • a positive electrode active material having an olivine structure composed of Fe or Mn as a transition metal LiMPO4, M is a transition metal containing Fe or Mn, hereinafter abbreviated as olivine positive electrode material
  • the bond between oxygen and phosphorus in the crystal structure is Strong and safe because oxygen is not easily released from the crystal structure during overcharge.
  • Non-Patent Document 1 discloses that lithium ions of the olivine positive electrode material are one-dimensionally diffused in the b-axis direction of the crystal.
  • Patent Document 1 discloses a method for synthesizing LiFePO4 (hereinafter abbreviated as olivine iron), an electrode using olivine iron, and production of a coin-type lithium battery, and an evaluation of the characteristics thereof is disclosed.
  • Patent Document 2 discloses a method for producing olivine iron using a melting method.
  • Lithium secondary batteries are required to have higher output. Therefore, an object of the present invention is to provide a high-power lithium secondary battery by improving the olivine positive electrode material.
  • a positive electrode for a lithium ion secondary battery has a positive electrode mixture layer containing a positive electrode active material on a current collector.
  • the feature of the present invention is that olivine represented by the chemical formula Li a M x PO 4 (0 ⁇ a ⁇ 1.2, 0.9 ⁇ x ⁇ 1.1, where M is a transition metal containing either Fe or Mn).
  • the peak intensity ratio (I (020) / I (101) ) of (020) and (101) in the X-ray diffraction measurement of the positive electrode using the Cu—K ⁇ ray including the composite oxide having the structure is 3.5 or more. It is 4.2 or less, preferably 3.8 or more and 4.2 or less.
  • the primary particle diameter of the positive electrode material is preferably 20 nm to 200 nm, and the specific surface area is preferably 10-30 m 2 / g. Further, the aspect ratio (length in the a-axis or c-axis direction / b-axis direction thickness) of the primary particles is preferably 1.2 or more and 2.5 or less, and particularly preferably 2.1 or more and 2.5 or less.
  • the present invention for solving the above-described problems relates to a lithium secondary battery using the positive electrode.
  • a plurality of lithium secondary batteries can be used as a battery module electrically connected.
  • Lithium secondary batteries are promising as batteries for hybrid vehicles because of their high battery voltage, light weight and high energy density.
  • a secondary battery for a hybrid vehicle is required to regenerate energy when the vehicle is decelerated and store it in the battery, and discharge the energy at a high rate to assist acceleration.
  • a characteristic necessary for a battery is an excellent output characteristic of 10 seconds. For this reason, reduction of battery resistance is calculated
  • the lithium secondary battery for vehicles is a large battery, ensuring safety is important.
  • the olivine positive electrode material has low electron conductivity and a low lithium ion diffusion coefficient into the positive electrode material.
  • the olivine positive electrode material can improve the diffusibility of lithium ions by setting the material to a high specific surface area.
  • electroconductivity can be provided to a positive electrode material by carbon coating.
  • carbon coating By providing the carbon coating, it is possible to form a conductive network in the electrode and to obtain battery output characteristics suitable for a hybrid vehicle.
  • the carbon coating it is possible to contribute to the increase in the specific surface area by reducing the primary particle size by suppressing the crystal growth while providing conductivity.
  • the present inventors have improved the diffusibility of the conductive network and lithium ions in the positive electrode by examining the correlation between the primary particle size and crystal orientation of the positive electrode active material constituting the positive electrode, and the high output of the lithium secondary battery We found that we can achieve The olivine positive electrode material has low electron conductivity and a low lithium ion diffusion coefficient into the positive electrode material. In order to put the olivine positive electrode material into practical use, the diffusibility of lithium ions is improved by reducing the particle size and the material having a high specific surface area, and conductivity is imparted by carbon coating, thereby improving the output characteristics.
  • Non-Patent Document 1 in the olivine cathode material, the diffusion of lithium ions is one-dimensional diffusion from the b-axis direction of the crystal. Accordingly, the inventors focused on this feature and found that optimizing the relationship between the ion movement direction and the crystal structure is effective in improving the output characteristics. Details are shown below.
  • the active material constituting the positive electrode is an olivine positive electrode material
  • the movement direction of lithium ions is one-dimensional diffusion in the b-axis direction, so that the b-axis crystal direction of the olivine positive electrode material is oriented in the negative electrode direction in the positive electrode.
  • a particle structure in which the b-axis direction of the olivine positive electrode material is thin and the aspect ratio is large is preferable for ion diffusion into the positive electrode material. Furthermore, if the specific surface area of the olivine positive electrode material is high, the reaction area with the electrolyte increases, which is preferable for ion diffusion. As described above, by controlling the properties of the olivine positive electrode in the positive electrode for a lithium ion battery, a lithium ion secondary battery having excellent ion diffusibility and low electrode resistance can be obtained.
  • the present invention relates to a positive electrode material and a positive electrode of a lithium ion secondary battery using a non-aqueous solvent, and a method for producing the same, and more particularly to improvement of Li ion conductivity.
  • the outline is as follows.
  • the positive electrode is represented by the chemical formula Li a M x PO 4 (0 ⁇ a ⁇ 1.2, 0.9 ⁇ x ⁇ 1.1, M is a transition metal containing at least one of Fe and Mn) as a positive electrode material.
  • the positive electrode material has a specific surface area of 10 to 30 m 2 / g.
  • the primary particle diameter is 20 to 200 nm, and the aspect ratio (length in the a-axis or c-axis direction / thickness in the b-axis direction) of the primary particles is preferably 1.2 or more and 2.5 or less, particularly preferably 2. 0.1 or more and 2.5 or less.
  • the diffraction peak intensity ratio between the (020) plane and the (101) plane I (020) / I (101) ) (X of X-ray diffraction measurement)
  • the Cu—K ⁇ ray is used as the radiation source), but is preferably 3.55 or more and 4.2 or less, more preferably 3.8 or more and 4.2 or less.
  • the positive electrode generally has a structure in which a mixed material such as the positive electrode material, the binder, and the conductive material is formed in layers on a metal foil or the like (current collector plate).
  • a high-density composite positive electrode material in which a positive electrode material, a binder, and a conductive material are mixed is prepared in advance, and the composite positive electrode material is mixed with an olivine positive electrode material, a conductive material, and a binder as a positive electrode provided on a substrate. Also good.
  • Such a positive electrode is used for a lithium secondary battery, and can be applied to a device that requires high output, such as a hybrid vehicle or a tool secondary battery. Further, the lithium secondary battery can be made larger, or a battery module in which a plurality of lithium ion secondary batteries are electrically connected can be obtained.
  • the resistance of the positive electrode is reduced by taking into consideration the primary particle diameter, specific surface area, aspect ratio, crystal orientation, and positive electrode density of the positive electrode including the olivine positive electrode material.
  • the olivine positive electrode material constituting the positive electrode for a lithium secondary battery has a chemical formula Li a M x PO 4 (where 0 ⁇ a ⁇ 1.2, 0.9 ⁇ x ⁇ 1.1, where M contains either Fe or Mn. It is a complex oxide having an olivine structure represented by a transition metal.
  • the primary particle size of the olivine positive electrode material is preferably 20 nm to 200 nm.
  • the primary particle diameter is 20 nm or less, when the positive electrode is produced, it is impossible to simultaneously achieve the improvement of the positive electrode density and the formation of the conductive network in the positive electrode.
  • the primary particle diameter exceeds 200 nm, the diffusion length of lithium ions becomes long and the electrode resistance increases. Therefore, in order to obtain a high-power battery, an olivine positive electrode material having a primary particle size of 20 to 200 nm is desirable.
  • the primary particles of the olivine positive electrode material in the positive electrode can be evaluated by observation of the cross section or fracture surface of the positive electrode with an electron microscope.
  • the specific surface area of the olivine cathode material is preferably 10-30 m 2 / g.
  • the specific surface area is less than 10 m 2 / g, the electrode resistance increases because the reaction area between the positive electrode material and lithium ions is small.
  • the specific surface area exceeds 30 m 2 / g, the positive electrode density is improved and Conductive network formation cannot be achieved simultaneously.
  • an olivine positive electrode material having a specific surface area of 10-30 m 2 / g is desirable.
  • the specific surface area evaluation method of an olivine positive electrode material is shown below.
  • the sample cell is previously dried at 120 ° C., filled in a sample cell, and dried in nitrogen gas at 300 ° C. for 30 minutes.
  • the specific surface area can be calculated by the BET method after mounting the sample cell on the measurement unit and counting the signal at the time of desorption with the He / N 2 mixed gas.
  • the aspect ratio as a characteristic of the olivine positive electrode material suitable for increasing the output of the battery. Since the olivine positive electrode material diffuses lithium ions from the b-axis direction, the aspect ratio (length in the a-axis or c-axis direction / thickness in the b-axis direction) is preferably 1.2 to 2.5, more preferably 2. It is desirable that it is 1 to 2.5 or less. If the aspect ratio is less than 1.2, it is disadvantageous for the diffusion of lithium ions, and if it is 2.6 or more, it is impossible to simultaneously improve the positive electrode density and form a conductive network.
  • the inventor of the present application prepared a slurry from an olivine positive electrode material, a conductive material, and a binder, and applied this onto an aluminum current collector to prepare a positive electrode.
  • the positive electrode obtained was subjected to X-ray diffraction, and the intensity ratio (I (020) / I (101) ) between the (020) peak and the (101) peak was calculated from the X-ray diffraction pattern.
  • FIG. 1 it was found that there is a correlation between the positive electrode resistance (I (020) / I (101) ) and the positive electrode resistance.
  • a decrease in electrode resistance was observed when it was 3.55 or more and 4.2 or less. In particular, it was found that 3.8 or more and 4.2 or less are preferable.
  • the positive electrode density By setting the positive electrode density to 1.81 g / cm 3 or more, the peak intensity ratio can be set to 3.55 or more.
  • the details of the X-ray diffraction measurement method are as follows. First, a positive electrode is attached to a glass sample plate and prepared as a sample. Next, this sample was set in an automatic X-ray diffractometer (Rigaku Corporation: RINT-UltimaIII), the source CuK ⁇ , the tube voltage 40 kV, the tube current 40 mA, the scanning range 10 ° ⁇ 2 ⁇ ⁇ 130 °, the scanning speed 1.
  • the X-ray diffraction profile can be measured under the conditions of 5 ° / min, sampling interval 0.02 ° / step, divergence slit 0.5 °, scattering slit 0.5 °, and light receiving slit 0.15 mm.
  • FIG. 2 is a diagram showing a cross-sectional structure of the positive electrode. According to the positive electrode in which the composite positive electrode material described in FIG. 2 is mixed, this problem can be solved and it is effective for a high output battery.
  • the positive electrode mixed with the composite positive electrode material is prepared by drying, densifying and pulverizing a slurry made of the positive electrode material, the conductive material, and the binder to produce composite positive electrode material particles, and then mixing the composite positive electrode material particles.
  • a positive electrode having a high positive electrode density is achieved.
  • a slurry is prepared with an olivine positive electrode material, a conductive material and a binder, and this is applied onto a base material (metal foil or resin tape) to form a positive electrode mixture layer, followed by drying.
  • a base material metal foil or resin tape
  • it is densified by pressing or rolling.
  • the flat composite positive electrode material 1 is obtained.
  • the aspect ratio of the secondary particles is 2.2 or more and less than 3.0. If this aspect ratio is less than 2.2, the composite positive electrode material is insufficiently densified. If the aspect ratio is 3.0 or more, unnecessary voids are formed in the positive electrode when the positive electrode is formed.
  • This material is subjected to ball milling to obtain flat composite positive electrode material particles having a particle size of 5 to 10 ⁇ m.
  • a slurry is prepared with composite positive electrode material particles, an olivine positive electrode material, a conductive material, and a binder.
  • the mixture layer 2 is applied on the aluminum current collector 3 and dried, followed by rolling, and the positive electrode shown in FIG. Get.
  • the density of the positive electrode is locally high and (I (020) / I (101) ) is high.
  • the positive electrode is effective for a high-power secondary battery.
  • Finely pulverized iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate are mixed at a molar ratio of 2: 2: 1.0 and calcined in a nitrogen atmosphere at 300 ° C.
  • Lithium ion secondary batteries are known in various shapes such as a cylindrical type, a stacked type, a coin type, and a card type.
  • the lithium ion secondary battery may be used by constituting a lithium ion battery module in which a plurality of batteries are connected in series / parallel in order to increase output.
  • the positive electrode of the present invention can be applied to any shape of battery. As an example, FIG. 3 shows a cutaway sectional view of a cylindrical lithium secondary battery.
  • the positive electrode plate 7 and the negative electrode plate 8 are overlapped via a separator 9, wound, stored in a battery can 10, and sealed with a lid 12. Lead pieces are taken out from the positive electrode and the negative electrode, respectively, and connected to the lid and the battery can.
  • a method for manufacturing a cylindrical lithium ion secondary battery will be described below.
  • NMP N-methyl-2-pyrrolidinone
  • PVDF polyvinylidene fluoride
  • a conductive material such as acetylene black and carbon fiber is added to and mixed with an amorphous carbon material which is a negative electrode active material.
  • PVDF or a rubber binder (SBR or the like) dissolved in NMP is added as a binder and then kneaded to obtain a negative electrode slurry.
  • NMP a rubber binder
  • olivine cathode material (1) Iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate, which were finely pulverized in a ball mill for 3 hours, were mixed at a molar ratio of 2: 2: 1.0.
  • the precursor was obtained by calcination in an atmosphere. Thereafter, the precursor and polyvinyl alcohol were mixed and subjected to a heat treatment for 8 hours in a nitrogen atmosphere at 700 ° C. to obtain a LiFePO 4 olivine positive electrode material (1) coated with carbon.
  • the amount of coated carbon was 4 wt%.
  • the average primary particle diameter was 20 nm.
  • the aspect ratio of the primary particles was 1.2.
  • the specific surface area of the olivine positive electrode material (1) was measured.
  • the sample cell was previously dried at 120 ° C., filled in a sample cell, and dried in nitrogen gas at 300 ° C. for 30 minutes. Next, the sample cell was attached to the measurement unit, and the specific surface area was calculated by the BET method after counting signals at the time of desorption with the He / N 2 mixed gas. As a result, the specific surface area of the olivine positive electrode material (1) was 30 m 2 / g.
  • olivine cathode material (2) Iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate, which were finely pulverized in a ball mill for 3 hours, were mixed at a molar ratio of 2: 2: 1.0.
  • the precursor was obtained by calcination in an atmosphere. Thereafter, the precursor and polyvinyl alcohol were mixed and subjected to a heat treatment for 4 hours in a nitrogen atmosphere at 700 ° C. to obtain a carbon-coated LiFePO 4 olivine cathode material (2).
  • the amount of coated carbon was 4 wt%.
  • the average primary particle diameter of the olivine positive electrode material (2) was 10 nm, the aspect ratio of the primary particles was 1.2, and the specific surface area was 40 m 2 / g.
  • the precursor was obtained by calcination in an atmosphere. Thereafter, the precursor and polyvinyl alcohol were mixed and subjected to a heat treatment for 12 hours in a nitrogen atmosphere at 700 ° C. to obtain a carbon-coated LiFePO 4 olivine positive electrode material (3).
  • the amount of coated carbon was 4 wt%.
  • the average primary particle diameter of the olivine positive electrode material (3) was 200 nm, the aspect ratio of the primary particles was 1.2, and the specific surface area was 10 m 2 / g. .
  • the precursor was obtained by calcination in an atmosphere. Thereafter, the precursor and polyvinyl alcohol were mixed and heat-treated for 20 hours in a nitrogen atmosphere at 700 ° C. to obtain a carbon-coated LiFePO 4 olivine cathode material (4).
  • the amount of coated carbon was 4 wt%.
  • the average primary particle diameter of the olivine cathode material (4) was 210 nm, the aspect ratio of the primary particles was 1.2, and the specific surface area was 9 m 2 / g. .
  • the precursor and polyvinyl alcohol were mixed and subjected to heat treatment for 8 hours in a nitrogen atmosphere at 700 ° C. to obtain a carbon-coated LiFePO 4 olivine cathode material (5).
  • the amount of coated carbon was 4 wt%.
  • the average primary particle diameter of the olivine positive electrode material (5) was 20 nm, the aspect ratio of the primary particles was 2.1, and the specific surface area was 30 m 2 / g. .
  • the precursor and polyvinyl alcohol were mixed, and the olivine positive electrode material (6) of the LiFePO4 positive electrode material coated with carbon was obtained by performing a heat treatment in a nitrogen atmosphere at 700 ° C. for 8 hours.
  • the amount of coated carbon was 4 wt%.
  • the average primary particle diameter of the olivine positive electrode material (6) was 20 nm, the aspect ratio of the primary particles was 2.5, and the specific surface area was 30 m 2 / g. .
  • the precursor was obtained by calcination in an atmosphere. Thereafter, the precursor and polyvinyl alcohol were mixed and heat-treated for 8 hours in a nitrogen atmosphere at 650 ° C. to obtain an olivine positive electrode material (7) as a carbon-coated LiFePO 4 positive electrode material.
  • the amount of coated carbon was 4 wt%.
  • the average primary particle diameter of the olivine positive electrode material (7) was 18 nm.
  • the aspect ratio of the primary particles was 1.1.
  • the specific surface area of the olivine positive electrode material (7) was 35 m 2 / g.
  • an olivine positive electrode material (8) as a carbon-coated LiFePO 4 positive electrode material was 4 wt%.
  • the average primary particle size was 200 nm.
  • the aspect ratio of the primary particles was 2.6.
  • the specific surface area of the said olivine positive electrode material (8) was 10 m ⁇ 2 > / g.
  • ⁇ Preparation of olivine cathode material (9)> The iron oxalate dihydrate, manganese carbonate, ammonium dihydrogen phosphate and lithium carbonate, which were finely pulverized for 3 hours in a ball mill, had a molar ratio of 1.6: 0.4: 2: 1.0. This was mixed and calcined in a nitrogen atmosphere at 300 ° C. to obtain a precursor.
  • the precursor and polyvinyl alcohol were mixed, and the olivine positive electrode material (9) of the LiFeMnPO4 positive electrode material coated with carbon was obtained by performing a heat treatment in a nitrogen atmosphere at 700 ° C. for 8 hours.
  • the amount of coated carbon was 4 wt%.
  • the average primary particle diameter of the olivine positive electrode material (9) was 40 nm.
  • the aspect ratio of the primary particles was 1.2.
  • the specific surface area was 25 m 2 / g.
  • a positive electrode plate was prepared according to the following procedure.
  • a positive electrode mixture slurry was prepared by previously mixing a solution obtained by dissolving PVDF as a binder in NMP as a solvent, an olivine positive electrode material (1), and a carbon-based conductive material having an average particle diameter of 35 nm.
  • the olivine positive electrode material (1), the carbon-based conductive material, and the binder were mixed in a weight percentage ratio of 85: 5: 10.
  • This slurry is uniformly applied onto an aluminum sheet having a thickness of 20 ⁇ m, dried at 100 ° C., and pressed with a press at 1.5 ton / cm 2 to form a coating film having a thickness of about 100 ⁇ m. Obtained.
  • the electrode density of the positive electrode plate was 1.81 g / cm 3 .
  • the X-ray diffraction of the positive electrode plate 7 was performed, and the (020) / (101) peak intensity ratio was calculated.
  • the (020) / (101) peak intensity ratio was 3.55.
  • a test battery was prepared using the positive electrode plate.
  • the positive electrode plate 7 was punched to ⁇ 15 to form a positive electrode, and the counter electrode and reference electrode were made of metallic lithium.
  • As the electrolytic solution a mixed solvent of ethyl carbonate and dimethyl carbonate using 1.0 mol of LiPF 6 as an electrolyte was used. ⁇ Measurement of resistance value> This test battery was initialized by repeating charging and discharging at 0.3 C to an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V three times.
  • the positive electrode plate 7 using the olivine positive electrode material (1) was cut so as to have a coating width of 5.4 cm and a coating length of 60 cm, and an aluminum foil lead piece was welded to take out the current, thereby producing a positive electrode plate.
  • a negative electrode plate was produced.
  • a negative electrode mixture slurry was prepared by dissolving and mixing the graphite carbon material of the negative electrode active material in NMP of the binder. At this time, the dry weight ratio of the graphite carbon material and the binder was set to 92: 8. This slurry was uniformly applied to a 10 ⁇ m rolled copper foil. Then, it was compressed and shaped by a roll press machine, cut to a coating width of 5.6 cm and a coating length of 64 cm, and a copper foil lead piece was welded to prepare a negative electrode plate.
  • a separator 9 was placed between the positive electrode plate 7 and the negative electrode plate 8 so that they were not in direct contact with each other, and wound to prepare an electrode group.
  • the separator 9 was a microporous polypropylene film having a thickness of 25 ⁇ m and a width of 5.8 cm.
  • the lead piece 13 of the positive electrode plate and the lead piece 11 of the negative electrode plate were positioned on the opposite end surfaces of the electrode group. Further, the arrangement of the positive electrode plate 7 and the negative electrode plate 8 prevents the positive electrode mixture application portion from protruding from the negative electrode mixture application portion.
  • the electrode group was inserted into a battery can 10 made of SUS, the negative electrode lead piece 11 was welded to the bottom of the can, and the positive electrode lead piece 13 was welded to the sealing lid portion 12 also serving as a positive electrode current terminal.
  • a battery can 10 in which this electrode group is arranged 1.0 mol / liter LiPF 6 was dissolved in a mixed solvent of 1: 2 by volume ratio of nonaqueous electrolyte (ethylene carbonate (EC) and dimethyl carbonate (DMC)).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the sealing lid portion 12 has a cleavage valve that cleaves when the pressure in the battery rises to release the pressure inside the battery, and an insulating plate 14 is disposed between the sealing lid portion 12 and the electrode group.
  • This small cylindrical battery was initialized by repeating charging and discharging at 0.3 C up to an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V three times. Further, charge and discharge were performed up to an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V at 0.3 C, and the battery discharge capacity was measured.
  • the resistance of the cylindrical battery of Example 1 was 56 m ⁇ .
  • the high output battery of 35W was obtained.
  • a battery module in which 10 batteries were connected in series was produced.
  • Example 2 In the same manner as in Example 1, a positive electrode plate was produced using the olivine positive electrode material (1). However, the density of the electrode was 1.85 g / cm 3 . The X-ray diffraction was performed in the same manner as in Example 1, and the (020) / (101) peak intensity ratio was calculated to be 3.8.
  • Example 1 As a result of evaluating the electrode resistance in the same manner as in Example 1, the resistance was as low as 25 ⁇ . Even if the positive electrode material of Example 2 is applied, a high-power secondary battery can be provided.
  • a positive electrode plate was produced using the olivine positive electrode material (1). However, the density of the electrode was 1.6 g / cm 3 . The X-ray diffraction was performed in the same manner as in Example 1, and the (020) / (101) peak intensity ratio was calculated to be 3.1.
  • Example 2 As a result of evaluating the electrode resistance in the same manner as in Example 1, it was a high resistance of 35 ⁇ .
  • a positive electrode plate was produced using the olivine positive electrode material (1). However, the density of the electrode was 2.0 g / cm 3 . The density was changed by changing the pressure of the consolidation process. In Example 1, 1.5 ton / cm 2, in the comparative example was set to 1.2 ton / cm 2. The X-ray diffraction was performed in the same manner as in Example 1, and the (020) / (101) peak intensity ratio was calculated to be 4.1. As a result of evaluating the electrode resistance in the same manner as in Example 1, it was a high resistance of 44 ⁇ .
  • Example 3 A positive electrode plate was produced in the same manner as in Example 1 using the olivine positive electrode material (2). The density of the electrode of the positive electrode plate 7 was 1.7 g / cm 3 . It was 3.2 as a result of performing X-ray diffraction of the positive electrode plate 7, and computing (020) / (101) peak intensity ratio. A test battery similar to that of Example 1 was prepared, and the electrode resistance with an open circuit voltage of 3.42 V was calculated. As a result, the resistance was high at 34 ⁇ .
  • a positive electrode plate was produced in the same manner as in Example 1.
  • the density of the positive electrode plate was set to 1.81 g / cm 3 .
  • the positive electrode plate 7 was subjected to X-ray diffraction and the (020) / (101) peak intensity ratio was calculated to be 3.55.
  • Example 4 A test battery similar to that in Example 1 was prepared, and the electrode resistance with an open circuit voltage of 3.42 V was calculated. As a result, the resistance was 27 ⁇ and the resistance was low. Even when the positive electrode material of Example 3 is applied, a high-output secondary battery can be provided.
  • a positive electrode plate was prepared in the same manner as in Example 1 using the olivine positive electrode material (4). The density of the positive electrode plate was set to 1.81 g / cm 3 . It was 3.2 as a result of performing X-ray diffraction of the positive electrode plate 7, and computing (020) / (101) peak intensity ratio.
  • Example 2 A test battery similar to that in Example 1 was prepared, and the electrode resistance with an open circuit voltage of 3.42 V was calculated. As a result, the resistance was high at 34 ⁇ .
  • a positive electrode plate was produced in the same manner as in Example 1.
  • the density of the positive electrode plate was set to 1.81 g / cm 3 .
  • Example 4 A test battery similar to that in Example 1 was prepared, and the electrode resistance with an open circuit voltage of 3.42 V was calculated. As a result, the resistance was 22 ⁇ and the resistance was low. Even when the positive electrode material of Example 4 is applied, a high-power secondary battery can be provided.
  • This example is an example in which the density of the electrode of Example 4 was changed.
  • a positive electrode plate was produced in the same manner as in Example 1.
  • the density of the electrode of the positive electrode plate was 1.85 g / cm 3 .
  • Example 5 A test battery similar to that of Example 1 was prepared, and the electrode resistance with an open circuit voltage of 3.42 V was calculated. The result was a low resistance of 21 ⁇ . Even when the positive electrode material of Example 5 is applied, a high-output secondary battery can be provided.
  • a positive electrode plate was produced in the same manner as in Example 1 using the olivine positive electrode material (6).
  • the density of the positive electrode plate was set to 1.81 g / cm 3 .
  • the positive electrode plate 7 was subjected to X-ray diffraction and the (020) / (101) peak intensity ratio was calculated to be 4.1.
  • Example 5 A test battery similar to that of Example 1 was prepared, and the electrode resistance with an open circuit voltage of 3.42 V was calculated. As a result, the resistance was 21 ⁇ and the resistance was low. Even when the positive electrode material of Example 6 is applied, a high-power secondary battery can be provided.
  • a positive electrode plate was produced in the same manner as in Example 1. The density of the positive electrode plate was 1.7 g / cm 3 . The positive electrode plate 7 was subjected to X-ray diffraction and the (020) / (101) peak intensity ratio was calculated to be 3.1.
  • Example 6 A test battery similar to that of Example 1 was prepared, and the electrode resistance with an open circuit voltage of 3.42 V was calculated. As a result, the resistance was high at 44 ⁇ .
  • a positive electrode plate was produced in the same manner as in Example 1. The density of the positive electrode plate was 1.6 g / cm 3 .
  • the positive electrode plate 7 was subjected to X-ray diffraction and the (020) / (101) peak intensity ratio was calculated to be 3.1.
  • Example 2 A test battery similar to that in Example 1 was prepared, and the electrode resistance at an open circuit voltage of 3.42 V was calculated. As a result, the resistance was high at 44 ⁇ .
  • This example is an example in which composite particles made of a positive electrode mixture are mixed with a part of the positive electrode.
  • composite particles were produced. After preparing the slurry which made olivine positive electrode material (1), the electrically conductive material, and the binder 85: 5: 10 by weight percentage, and apply
  • a slurry is prepared by mixing the conductive material and the binder, and this is applied onto an aluminum current collector and dried. After that, rolling was performed to obtain a positive electrode material mixed with a flat composite positive electrode material.
  • the composition in the obtained positive electrode was adjusted so that the mixing ratio of the positive electrode material, the conductive material, and the binder was 85: 5: 10.
  • the density of the electrode was measured, it was 1.9 g / cm 3 .
  • the resistance was as low as 22 ⁇ . Even when the positive electrode material of Example 7 is applied, a high-output secondary battery can be provided.
  • This example is an example in which composite particles made of a positive electrode mixture were mixed with a part of the positive electrode in the same manner as in Example 7.
  • the electrically conductive material, and the binder 85 5: 10 by weight percentage, and apply
  • the composite particles of this example were densified by pressing at a pressure of 1.7 ton / cm 2 .
  • processing was performed until the positive electrode mixture layer was peeled off from the base material to obtain a composite positive electrode material.
  • the composite cathode material was ball milled to obtain flat composite cathode material particles having a particle size of 5 to 10 ⁇ m.
  • the flat composite positive electrode material of this example had an aspect ratio of secondary particles of 3.0.
  • Example 7 Processing was performed in the same manner as in Example 7 to obtain a positive electrode in which the flat composite positive electrode material was mixed.
  • a positive electrode in which the flat composite positive electrode material was mixed As a result of performing X-ray diffraction in the same manner as in Example 1 and calculating the (020) / (101) peak intensity ratio, it was 4.1.
  • This comparative example is an example in which composite particles made of a positive electrode mixture are mixed into a part of the positive electrode in the same manner as in Example 7. After preparing the slurry which made olivine positive electrode material (1), the electrically conductive material, and the binder 85: 5: 10 by weight percentage, and apply
  • Processing was performed until the positive electrode mixture layer was peeled off from the base material to obtain a composite positive electrode material.
  • the composite cathode material was ball milled to obtain flat composite cathode material particles having a particle size of 5 to 10 ⁇ m.
  • This flat composite positive electrode material had an aspect ratio of secondary particles of 2.1.
  • Example 7 a slurry was prepared with this material, the olivine positive electrode material (1), a conductive material and a binder, and this mixture layer was applied onto an aluminum current collector and dried, then 1.5 ton / Press work was performed at a pressure of cm 2 to obtain a flat composite positive electrode having an electrode density of 1.85 g / cm 3 .
  • a slurry was prepared with this material, the olivine positive electrode material (1), a conductive material and a binder, and this mixture layer was applied onto an aluminum current collector and dried, then 1.5 ton / Press work was performed at a pressure of cm 2 to obtain a flat composite positive electrode having an electrode density of 1.85 g / cm 3 .
  • Example 8 This comparative example is an example in which composite particles made of a positive electrode mixture are mixed into a part of the positive electrode in the same manner as in Example 7.
  • the electrically conductive material, and the binder 85 5: 10 by weight percentage, and apply
  • it was densified by pressing at a pressure of 1.9 ton / cm 2 .
  • Processing is performed until the positive electrode mixture layer is peeled from the base material to obtain a flat composite positive electrode material.
  • This material was ball milled to obtain flat composite positive electrode material particles having a particle size of 5 to 10 ⁇ m.
  • This flat composite positive electrode material had an aspect ratio of secondary particles of 3.1.
  • Example 7 In the same manner as in Example 7, a slurry was prepared with the composite positive electrode material particles, the olivine positive electrode material (1), a conductive material and a binder, and a mixture layer was applied onto an aluminum current collector and dried. Press work was performed at a pressure of 5 ton / cm 2 to obtain a flat composite positive electrode having an electrode density of 1.6 g / cm 3 . Although there are locally high density portions, the aspect ratio is too high, so that the electrode density of the entire positive electrode could not be increased. As a result of performing X-ray diffraction in the same manner as in Example 1 and calculating the (020) / (101) peak intensity ratio, it was 4.1.
  • the test battery evaluation of the obtained positive electrode was performed in the same manner as in Example 1. As a result, the electrode resistance was 44 ⁇ and the resistance was high because the electrode density was low.
  • a positive electrode plate was produced in the same manner as in Example 1 using the olivine positive electrode material (9).
  • the density of the electrode of the positive electrode plate 7 was set to 1.81 g / cm 3 .
  • the positive electrode plate 7 was subjected to X-ray diffraction and the (020) / (101) peak intensity ratio was calculated to be 3.6.
  • Example 9 A test battery similar to that of Example 1 was prepared, and the electrode resistance with an open circuit voltage of 3.42 V was calculated. As a result, the resistance was 29 ⁇ and the resistance was low. Even when the positive electrode material of Example 9 is applied, a high-output secondary battery can be provided.
  • the positive electrode material for the lithium secondary battery of this example has a low electrode resistance and contributes to high output of the secondary battery. Therefore, it is suitable for products that require high output, such as in-vehicle secondary batteries for hybrid vehicles and secondary batteries for tools.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、高出力のリチウム二次電池を提供することを目的とする。本発明によるリチウムイオン二次電池用の正極は、非水電解液を用いたリチウム二次電池に用いる正極であって、化学式LixPO4(0<a≦1.2,0.9≦x≦1.1,MはFe,Mnのいずれかを含む遷移金属)で表されるオリビン構造を有する複合酸化物を含み、正極のCu-Kα線を用いたX線回折測定における(020)と(101)のピーク強度比(I(020)/I(101))が3.5以上4.2以下、好ましくは3.8以上4.2以下である。また、正極材の一次粒子径が20nmから200nm、比表面積が10-30m2/gであることが好ましい。

Description

リチウム二次電池及びリチウム二次電池用正極
 本発明は、非水電解液を用いたリチウム二次電池、特にリチウム二次電池用の正極に関する。
 車載用リチウム二次電池では、高出力(電池抵抗の低減)、高安全性が要求されている。遷移金属としてFe或いはMnで構成されるオリビン構造の正極活物質(LiMPO4、MはFe或いはMnを含む遷移金属で、以下、オリビン正極材と略す)では、結晶構造中の酸素と燐の結合が強く、過充電時に結晶構造から酸素が放出されにくいため安全性が高い。
 非特許文献1には、オリビン正極材のリチウムイオンが結晶のb軸方向に一次元拡散することが開示されている。特許文献1には、LiFePO4(以下オリビン鉄と略す)の合成方法と、オリビン鉄を用いた電極、コイン型リチウム電池の作製について開示し、その特性の評価が開示されている。また、特許文献2では、溶融法を用いたオリビン鉄の製法について開示されている。
特開平9-134725号公報 特開2005-155941号公報
Nature Materials 7, 707-711 (2008)
 リチウム二次電池では更なる高出力化が求められている。そこで本発明の目的は、オリビン正極材の改善により、高出力のリチウム二次電池を提供することにある。
 上記の課題を解決する本発明は、非水電解液を用いたリチウム二次電池に用いる正極に関する。リチウムイオン二次電池用の正極は、集電体上に、正極活物質を含む正極合材層を有する。本発明の特徴は、化学式LixPO4(0<a≦1.2,0.9≦x≦1.1,MはFe,Mnのいずれかを含む遷移金属)で表されるオリビン構造を有する複合酸化物を含み、Cu-Kα線を用いた正極のX線回折測定における(020)と(101)のピーク強度比(I(020)/I(101))が3.5以上4.2以下、好ましくは3.8以上4.2以下である。
 また、正極材の一次粒子径が20nmから200nm、比表面積が10-30m2/gであることが好ましい。さらに、一次粒子のアスペクト比(a軸或いはc軸方向の長さ/b軸方向厚み)が、1.2以上2.5以下、特に2.1以上2.5以下であることが好ましい。
 また、上記の課題を解決する本発明は、上記の正極を用いたリチウム二次電池に関する。リチウム二次電池は複数個を電気的に接続された電池モジュールとして使用することができる。
 本発明によれば、正極の抵抗を低くし、高出力の二次電池を提供することが可能となる。
正極における正極活物質の結晶配向性と電極抵抗の関係を示す図である。 正極における高密度扁平状活物質の配向性を示す正極の断面図である。 円筒型リチウム二次電池の切り欠き断面図である。
 エネルギーを効率的に利用できるハイブリッド自動車用電源として、高出力・高エネルギー密度の電池が求められている。リチウム二次電池は、電池電圧が高く、軽量で高エネルギー密度であるため、ハイブリッド自動車用電池として有望である。ハイブリッド自動車用二次電池は、自動車の減速時にエネルギーを回生して電池に蓄え、このエネルギーを高率放電して加速アシストすることが求められている。ここで、ハイブリッド自動車応用では、10秒間以内の加速で所望の速度に到達するため、電池として必要な特性は、10秒間の優れた出力特性である。このため、電池抵抗の低減が求められる。また、車載用リチウム二次電池は大型電池となるため安全性の確保が重要となる。
 オリビン正極材は電子伝導性が低く、また、正極材中へのリチウムイオン拡散係数が低いことが報告されている。オリビン正極材は、材料を高比表面積とすることでリチウムイオンの拡散性を改善できる。また、炭素被覆により、正極材に導電性を付与できる。炭素被覆を設けることで、電極中の導電ネットワークを構成でき、ハイブリッド自動車に適した電池の出力特性を得ることが可能となる。さらに、炭素被覆によれば、導電性の付与とともに結晶成長を抑制し、一次粒子の小粒径化による高比表面積化に寄与できる。
 本発明者らは、正極を構成する正極活物質の一次粒子径と結晶方位の相関関係の検討により、正極内での導電ネットワークとリチウムイオンの拡散性が改善され、リチウム二次電池の高出力化を達成できることを見出した。オリビン正極材は電子伝導性が低く、また、正極材中へのリチウムイオン拡散係数が低い。オリビン正極材を実用化するため、小粒径化で材料を高比表面積とすることでリチウムイオンの拡散性を改善するとともに炭素被覆により導電性が付与され、出力特性が改善される。
 さらに、非特許文献1に記載されているように、オリビン正極材ではリチウムイオンの拡散が結晶のb軸方向からの一次元拡散である。そこで、発明者らはこの特徴に着目し、イオンの移動方向と結晶構造の関係を最適化することが出力特性の改善に有効であることを見出した。以下に詳細を示す。リチウムイオン二次電池の放電過程では、正極と対向する負極からリチウムイオンが正極中に拡散する。正極を構成する活物質がオリビン正極材の場合、リチウムイオンの移動方向はb軸方向の一次元拡散であるから、正極中でオリビン正極材のb軸結晶方向が負極方向に配向していることが望ましい。また、オリビン正極材のb軸方向が薄く、アスペクトレシオの大きい粒子構造であれば正極材へのイオン拡散に対して好ましい。またさらに、オリビン正極材の比表面積が高ければ電解液との反応面積が多くなり、イオン拡散に対して好ましい。以上のようにリチウムイオン電池用正極中のオリビン正極の性状を制御することでイオンの拡散性に優れ、電極抵抗の低いリチウムイオン二次電池を得ることができる。
 本発明は、非水溶媒を使用するリチウムイオン二次電池の正極材料及び正極電極、及びその製造方法に関し、より詳細には、Liイオン伝導性の改善に関する。概要は以下の通りである。
 正極に、正極材として化学式LixPO4(0<a≦1.2,0.9≦x≦1.1,MはFe,Mnの少なくともいずれか一方を含む遷移金属)で表されるオリビン構造を有する複合酸化物を含む。好ましくは、正極材の比表面積が10~30m2/gである。また、一次粒子径が20~200nmであり、一次粒子のアスペクト比(a軸或いはc軸方向の長さ/b軸方向厚み)が、好ましくは1.2以上2.5以下、特に好ましくは2.1以上2.5以下である。
 また、二次電池用正極のX線回折ピークを測定した場合に、(020)面と(101)面の回折ピーク強度比(I(020)/I(101))(X線回折測定のX線源としてCu-Kα線を用いる)が、好ましくは3.55以上4.2以下、より好ましくは3.8以上4.2以下である。
 正極は、上記正極材、バインダ、導電材などの混合材料が金属箔など(集電板)上に層状に形成されている構造が一般的である。このとき、正極材、バインダ、導電材を混合した高密度の複合正極材を事前に作成し、この複合正極材をオリビン正極材、導電材、バインダと混合して基材上に設けた正極としてもよい。
 このような正極は、リチウム二次電池に用いられ、高出力が必要とされる機器、例えばハイブリッド車や工具用二次電池などに適用できる。また、リチウム二次電池の大型化や、リチウムイオン二次電池が電気的に複数接続された電池モジュールとすることができる。
〔リチウム二次電池用正極材料〕
 本発明者らは、オリビン正極材を含み構成される正極の一次粒子径、比表面積、アスペクトレシオ、結晶配向性、及び正極密度を考慮することにより正極の抵抗を低減することを見出した。リチウム二次電池用正極を構成するオリビン正極材は、化学式LixPO4(0<a≦1.2,0.9≦x≦1.1,MはFe,Mnのいずれかを含む遷移金属)で表されるオリビン構造を有する複合酸化物である。
 オリビン正極材の一次粒子の粒径は20nmから200nmが好ましい。一次粒子径が20nm以下では正極を作製した場合には、正極密度の向上と正極内の導電ネットワーク形成を同時に達成することができない。一方、一次粒子径が200nmを超える場合には、リチウムイオンの拡散長が長くなり電極抵抗が上昇する。このため、高出力電池を得るためには、一次粒子径が20-200nmであるオリビン正極材が望ましい。正極内のオリビン正極材の一次粒子は、正極の断面あるいは破面の電子顕微鏡観察で評価することができる。
 オリビン正極材の比表面積は10-30m2/gが好ましい。比表面積が10m2/g未満では、正極材とリチウムイオンとの反応面積が少ないために電極抵抗が上昇し、比表面積が30m2/gを超える場合には、正極密度の向上と正極内の導電ネットワーク形成を同時に達成することができない。特に、オリビン正極材の場合、電子伝導性が低いため、導電ネットワークが形成できなければ高抵抗となる。したがって、高出力電池を得るためには、比表面積が10-30m2/gであるオリビン正極材が望ましい。
 なお、オリビン正極材の比表面積評価法を以下に示す。予め120℃で乾燥させ、試料セルに充填し、これを窒素ガス中、300℃で30分間乾燥させる。次いで、試料セルを測定部に装着し、He/N2混合ガスによる脱着時の信号をカウント後、BET法により比表面積を算出することができる。
 また、電池の高出力化に適したオリビン正極材の特徴として、アスペクトレシオを規定することが好ましい。オリビン正極材はb軸方向からリチウムイオンが拡散するため、アスペクトレシオ(a軸或いはc軸方向の長さ/b軸方向厚み)が好ましくは1.2から2.5以下、より好ましくは2.1から2.5以下であることが望ましい。アスペクトレシオが1.2未満であればリチウムイオンの拡散に不利であり、また、2.6以上であれば正極密度の向上と導電ネットワークの形成を同時に達成することができない。
 本願発明者は、オリビン正極材と導電材及びバインダからスラリーを作製し、これをアルミ集電体上に塗布して正極を作製した。得られた正極にX線回折を行い、X線回折パターンから(020)ピークと(101)ピークの強度比(I(020)/I(101))を算出した。その結果、図1に示すように正極の(I(020)/I(101))と、正極の電極抵抗との間には相関があることを見出した。3.55以上4.2以下であるときに電極抵抗の低下が認められた。特に、3.8以上4.2以下が好ましいことがわかった。また、その後の検討で、正極密度とピークの強度比(I(020)/I(101))との間にも相関があることがわかった。正極密度1.81g/cm3以上とすることで、ピーク強度比を3.55以上とすることができる。
 なお、X線回折測定の方法の詳細は下記の通りである。まず、正極をガラス試料板に貼付しサンプルとして用意する。次に、このサンプルを自動X線回折装置(リガク社製:RINT-UltimaIII)にセットし、線源CuKα、管電圧40kV、管電流40mA、走査範囲10°≦2θ≦130°、走査速度1.5°/min、サンプリング間隔0.02°/step、発散スリット0.5°、散乱スリット0.5°、受光スリット0.15mmの条件でX線回折プロファイルを測定できる。
 また、正極の作製工程で単純に加工時の圧力を上げた場合には、アルミ集電体から電極が剥離してしまう場合がある。図2は正極の断面構造を示す図である。図2に記載される複合正極材を混合した正極によれば、この問題を解消でき高出力電池に有効である。
 複合正極材を混合した正極は、正極材、導電材、バインダよりなるスラリーを乾燥、緻密化させて粉砕し、複合正極材粒子を作製した後、この複合正極材粒子を混合することにより、局所的に正極密度の高い正極を達成するものである。
 まず、オリビン正極材、導電材及びバインダでスラリーを作製し、これを基材(金属箔或いは樹脂テープなど)上に塗布して正極合剤層を形成した後、乾燥を行う。次に、プレス或いは圧延加工を行い緻密化する。ここで、正極合剤層が基材から剥離するまで加工を行い、扁平複合正極材1を得る。ここで、この扁平複合正極材1は、二次粒子のアスペクトレシオが2.2以上3.0未満である。このアスペクトレシオが2.2未満であれば複合正極材の緻密化が不十分となる。また、アスペクトレシオが3.0以上では、正極を構成したときに正極の中に不要な空隙を形成してしまう。この材料にボールミル粉砕を行い、粒径5-10μmの扁平複合正極材粒子とする。
 複合正極材粒子と、オリビン正極材、導電材及びバインダでスラリーを作製し、これをアルミ集電体3上に合剤層2を塗布して乾燥した後に圧延加工を行い、図2に示す正極を得る。この正極では、局所的に正極密度が高く、また、(I(020)/I(101))が高い。その結果、高出力の二次電池に有効な正極となる。
〔オリビン正極材料の製造方法〕
 微細に粉砕したシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムをモル比で、2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことでオリビン正極材を得ることができる。
〔リチウムイオン二次電池〕
 リチウムイオン二次電池は、円筒型、積層型、コイン型、カード型等、種々の形状のものが知られている。リチウムイオン二次電池は、高出力化などのため複数個の電池を直列/並列に接続したリチウムイオン電池モジュールを構成して使用してもよい。本発明の正極はいずれの形状の電池にも適用が可能である。例として、円筒型リチウム二次電池の切り欠き断面図を図3に示す。正極板7と負極板8がセパレータ9を介して重ねられ、捲回されており、電池缶10内に収められ、蓋部12で封止されている。正極、負極からはそれぞれリード片が出されており、蓋部、電池缶と接続されている。以下に円筒型リチウムイオン二次電池の製造方法を説明する。
 1)正極の作製方法
 オリビン正極材に、アセチレンブラック等の導電材を添加して混合する。なお、本発明で用いるオリビン正極材のように高比表面積の正極材では電極作製時に用いる有機溶媒の吸液性が高い。このため、予め有機溶媒であるN-メチル-2-ピロリジノン(以下、NMPと略す)を正極活物質と混合して正極活物質にNMPを吸液させた後、正極活物質に導電材を分散させることが好ましい。この後、この混合物にNMPなどの溶媒に溶解させたポリフッ化ビニリデン(以下、PVDFと略す)などの結着剤を加えて混練し、正極スラリーを得る。次に、このスラリーをアルミニウム金属箔上に塗布した後、乾燥して正極板を作製する。
 2)負極の作製方法
 負極活物質である非晶質炭素材に、アセチレンブラック、炭素繊維などの導電材を加え、混合する。これに結着剤としてNMPに溶解したPVDF或いはゴム系バインダー(SBR等)を加えた後に混練し、負極スラリーを得る。次に、このスラリーを銅箔上に塗布した後、乾燥して負極板を作製する。
 3)電池の形成方法
 正極及び負極板を、圧延加工により緻密化し、所望の形状に裁断して電極を作製する。次に、これらの電極に電流を流すためのリード片を設ける。正極及び負極の間に多孔質絶縁材のセパレータを挟みこみ、これを捲回した後、ステンレスやアルミニウムで成型された電池缶に挿入する。リード片と電池缶を接続した後、非水系電解液を注入し、最後に、電池缶を封缶してリチウムイオン二次電池を得る。
〔実施例〕
 以下、本発明を実施例により具体的に説明するが、これらの実施例は本発明の範囲を限定するものではない。まず、実施例で使用する各種のオリビン正極材を作製した。
<オリビン正極材(1)の作製>
 ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムをモル比で、2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことで炭素で被覆されたLiFePO4のオリビン正極材(1)を得た。ここで、被覆した炭素量は4wt%であった。
 上記オリビン正極材(1)を透過型電子顕微鏡により50000倍の視野でこの粒子を観察した結果、平均の一次粒子径は20nmであった。また、一次粒子のアスペクトレシオは1.2であった。
 上記オリビン正極材(1)の比表面積測定を行った。予め120℃で乾燥させ、試料セルに充填し、これを窒素ガス中、300℃で30分間乾燥させた。次いで、試料セルを測定部に装着し、He/N2混合ガスによる脱着時の信号をカウント後、BET法により比表面積を算出した。その結果、オリビン正極材(1)の比表面積は30m2/gであった。
<オリビン正極材(2)の作製>
 ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムをモル比で、2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で4時間の熱処理を行うことで炭素被覆されたLiFePO4のオリビン正極材(2)を得た。ここで、被覆した炭素量は4wt%であった。
 オリビン正極材(1)と同様の方法により観察した結果、オリビン正極材(2)の平均一次粒子径は10nm、一次粒子のアスペクトレシオは1.2、比表面積は40m2/gであった。
<オリビン正極材(3)の作製>
 ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムをモル比で、2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で12時間の熱処理を行うことで炭素被覆されたLiFePO4のオリビン正極材(3)を得た。ここで、被覆した炭素量は4wt%であった。
 オリビン正極材(1)と同様の方法により観察した結果、上記オリビン正極材(3)の平均一次粒子径は200nm、一次粒子のアスペクトレシオは1.2、比表面積は10m2/gであった。
<オリビン正極材(4)の作製>
 ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムをモル比で、2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で20時間の熱処理を行うことで炭素被覆されたLiFePO4のオリビン正極材(4)を得た。ここで、被覆した炭素量は4wt%であった。
 オリビン正極材(1)と同様の方法により観察した結果、上記オリビン正極材(4)の平均一次粒子径は210nm、一次粒子のアスペクトレシオは1.2、比表面積は9m2/gであった。
<オリビン正極材(5)の作製>
 ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムをモル比で、2:2:1.05となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことで炭素被覆されたLiFePO4のオリビン正極材(5)を得た。ここで、被覆した炭素量は4wt%であった。
 オリビン正極材(1)と同様の方法により観察した結果、上記オリビン正極材(5)の平均一次粒子径は20nm、一次粒子のアスペクトレシオは2.1、比表面積は30m2/gであった。
<オリビン正極材(6)の作製>
 ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムをモル比で、2:2:1.1となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことで炭素被覆されたLiFePO4正極材のオリビン正極材(6)を得た。ここで、被覆した炭素量は4wt%であった。
 オリビン正極材(1)と同様の方法により観察した結果、上記オリビン正極材(6)の平均一次粒子径は20nm、一次粒子のアスペクトレシオは2.5、比表面積は30m2/gであった。
<オリビン正極材(7)の作製>
 ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムをモル比で、2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、650℃の窒素雰囲気下で8時間の熱処理を行うことで炭素被覆LiFePO4正極材のオリビン正極材(7)を得た。ここで、被覆した炭素量は4wt%であった。
 オリビン正極材(1)と同様の方法により観察した結果、上記オリビン正極材(7)の平均一次粒子径は18nmであった。また、一次粒子のアスペクトレシオは1.1であった。また、オリビン正極材(7)の比表面積は35m2/gであった。
<オリビン正極材(8)の作製>
 ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムをモル比で、2:2:1.15となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、650℃の窒素雰囲気下で8時間の熱処理を行うことで炭素被覆LiFePO4正極材のオリビン正極材(8)を得た。ここで、被覆した炭素量は4wt%であった。
 オリビン正極材(1)と同様の方法により観察した結果、平均一次粒子径は200nmであった。また、一次粒子のアスペクトレシオは2.6であった。また、上記オリビン正極材(8)の比表面積は10m2/gであった。
<オリビン正極材(9)の作製>
 ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、炭酸マンガン、リン酸二水素アンモニウム及び炭酸リチウムをモル比で、1.6:0.4:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことで炭素被覆されたLiFeMnPO4正極材のオリビン正極材(9)を得た。ここで、被覆した炭素量は4wt%であった。
 オリビン正極材(1)と同様の方法により観察した結果、上記オリビン正極材(9)の平均一次粒子径は40nmであった。また、一次粒子のアスペクトレシオは1.2であった。また、比表面積は25m2/gであった。
Figure JPOXMLDOC01-appb-T000001
 上記のオリビン正極材(1)ないし(9)を使用し、リチウムイオン二次電池の正極の実施例、比較例を作製した。
 オリビン正極材(1)を用い、正極板を以下の手順で作製した。
 あらかじめ結着剤のPVDFを溶媒のNMPに溶解した溶液と、オリビン正極材(1)と平均粒子径35nmの炭素系導電材を混合して正極合剤スラリーを作製した。このとき、オリビン正極材(1)、炭素系導電材及び結着剤を重量百分率比で表してそれぞれ、85:5:10の割合となるように混合した。このスラリーを、厚み20μmのアルミシート上に均一に塗布した後、100℃で乾燥し、プレスにて1.5ton/cm2で加圧し、約100μm厚の塗膜を形成し、正極板7を得た。正極板の電極密度は1.81g/cm3であった。また、正極板7のX線回折を行い、(020)/(101)ピーク強度比を算出した。(020)/(101)ピーク強度比は3.55であった。
 次に、上記の正極板を用いて試験用電池を作製した。正極板7をφ15に打ち抜き、正極とし、対極及び参照極を金属リチウムとした。電解液には1.0モルのLiPF6を電解質としたエチルカーボネートとジメチルカーボネートの混合溶媒を用いた。
<抵抗値の測定>
 この試験用電池を0.3Cで上限電圧3.6V、下限電圧2.0Vまでの充放電を3回繰り返して初期化した。さらに、0.3C相当で上限電圧3.6V、5時間の定電流定電圧充電を行った後、1C相当で下限電圧2.0Vまでの定電流放電を実施し、放電前の開回路電圧と放電10秒後の電圧とを測定し、両者の差である電圧降下(ΔV)を求めた。さらに、放電電流を3C、6C相当と変え、同様の充放電を行い各放電電流(I)の電圧降下を測定した。これらの放電電流(I)と電圧降下(ΔV)をプロットし、傾きから開回路電圧3.42Vの電極抵抗を算出した。その結果、電極抵抗は26Ωであり、低抵抗のリチウムイオン二次電池が得られる。
<円筒型電池の作製>
 正極板と負極板を組み合わせ、図4に模式的に示す円筒型電池を以下の手順で作製した。
 オリビン正極材(1)を用いた正極板7を塗布幅5.4cm、塗布長さ60cmとなるよう切断し、電流を取り出すためにアルミニウム箔製のリード片を溶接し正極板を作製した。
 次に、負極板を作製した。負極活物質の黒鉛炭素材を結着剤のNMPに溶解して混合した負極合材スラリーを作製した。このとき、黒鉛炭素材と結着剤の乾燥重量比が92:8となるようにした。このスラリーを10μmの圧延銅箔に均一に塗布した。その後、ロールプレス機により圧縮整形し、塗布幅5.6cm、塗布長さ64cmとなるよう切断し、銅箔製のリード片を溶接して負極板を作製した。
 正極板7と負極板8が直接接触しないように間にセパレータ9を配置して捲回して電極群を作製した。セパレータ9は厚さ25μm、幅5.8cmの微多孔性ポリプロピレンフィルムとした。このとき、正極板のリード片13と負極板のリード片11とが電極群の互いに反対側の両端面に位置するようにした。さらに、正極板7と負極板8の配置で、正極の合材塗布部が負極の合材塗布部からはみ出すことがないようにした。
 次に、電極群をSUS製の電池缶10に挿入し、負極リード片11を缶底部に溶接し、正極電流端子を兼ねる密閉蓋部12に正極リード片13を溶接した。この電極群を配置した電池缶10に非水電解液(エチレンカーボネート(EC)、ジメチルカーボネート(DMC)の体積比で1:2の混合溶媒に1.0モル/リットルのLiPF6を溶解させたもの)を注入した後、パッキン15を取り付けた密閉蓋部12を電池缶10にかしめて密閉し、直径18mm、長さ65mmの円筒型電池とした。ここで、密閉蓋部12には電池内の圧力が上昇すると開裂して電池内部の圧力を逃がす開裂弁があり、密閉蓋部12と電極群の間に絶縁板14を配した。
<円筒型電池の評価>
 この小型円筒型電池を0.3Cで上限電圧3.6V、下限電圧2.0Vまでの充放電を3回繰り返して初期化した。さらに、0.3Cで上限電圧3.6V、下限電圧2.0Vまでの充放電を行い、電池放電容量を測定した。次に、0.3C相当で上限電圧3.6V、5時間の定電流定電圧充電を行った後、1C相当で下限電圧2.0Vまでの定電流放電を実施し、放電前の開回路電圧と放電10秒後の電圧とを測定し、両者の差である電圧降下(ΔV)を求めた。さらに、放電電流を3C、6C相当と変え、同様の充放電を行い各放電電流(I)の電圧降下を測定した。これらの放電電流(I)と電圧降下(ΔV)をプロットし、傾きから開回路電圧3.42Vの電池抵抗を算出した。
 その結果、実施例1の円筒型電池の抵抗は56mΩであった。また、電池充電状態が50%の開回路電圧と電池抵抗から電池出力を求めた結果、35Wの高出力の電池が得られた。またこの電池を直列に10本接続した電池モジュールを作製した。本実施例の円筒型電池を電池モジュールとすることで、少ない本数で要求される仕様に合致する出力が得られた。また、本実施例のリチウムイオン二次電池を用いた電池モジュールは、高出力化することができる。
 実施例1と同様の方法で、オリビン正極材(1)を用い、正極板を作製した。ただし、電極の密度を1.85g/cm3とした。実施例1と同様にX線回折を行い(020)/(101)ピーク強度比を算出した結果、3.8であった。
 実施例1と同様に電極抵抗を評価した結果、25Ωと低抵抗であった。実施例2の正極材を適用しても、高出力の二次電池を提供することが可能である。
〔比較例1〕
 実施例1と同様の方法で、オリビン正極材(1)を用い、正極板を作製した。ただし、電極の密度を1.6g/cm3とした。実施例1と同様の方法でX線回折を行い(020)/(101)ピーク強度比を算出した結果、3.1であった。
 実施例1と同様に電極抵抗を評価した結果、35Ωと高抵抗であった。
〔比較例2〕
 実施例1と同様の方法で、オリビン正極材(1)を用い、正極板を作製した。ただし、電極の密度を2.0g/cm3とした。密度の変更は圧密化加工の圧力を変化させて実施した。実施例1では、1.5ton/cm2、比較例では、1.2ton/cm2とした。実施例1と同様の方法でX線回折を行い(020)/(101)ピーク強度比を算出した結果、4.1であった。実施例1と同様に電極抵抗を評価した結果、44Ωと高抵抗であった。電極密度を2.0g/cm3としたため、電極に微小なクラックが発生し、所望の低抵抗化を達成することができなかった。
〔比較例3〕
 オリビン正極材(2)を用い、実施例1と同様の方法で正極板を作製した。正極板7の電極の密度は、1.7g/cm3とした。正極板7のX線回折を行い、(020)/(101)ピーク強度比を算出した結果、3.2であった。実施例1と同様の試験用電池を作製し、開回路電圧3.42Vの電極抵抗を算出した結果、34Ωで高抵抗であった。
 オリビン正極材(3)を用い、実施例1と同様の方法で正極板を作製した。正極板の電極の密度は1.81g/cm3とした。正極板7のX線回折を行い、(020)/(101)ピーク強度比を算出した結果、3.55であった。
 実施例1と同様の試験用電池を作製し、開回路電圧3.42Vの電極抵抗を算出した結果、27Ωで低抵抗であった。実施例3の正極材を適用しても、高出力の二次電池を提供することが可能である。
〔比較例4〕
 オリビン正極材(4)を用い、実施例1と同様の方法で正極板を作製した。正極板の電極の密度は1.81g/cm3とした。正極板7のX線回折を行い、(020)/(101)ピーク強度比を算出した結果、3.2であった。
 実施例1と同様の試験用電池を作製し、開回路電圧3.42Vの電極抵抗を算出した結果、34Ωで高抵抗であった。
 オリビン正極材(5)を用い、実施例1と同様の方法で正極板を作製した。正極板の電極の密度は1.81g/cm3とした。正極板7のX線回折を行い、(020)/(101)ピーク強度比を算出した結果、4であった。
 実施例1と同様の試験用電池を作製し、開回路電圧3.42Vの電極抵抗を算出した結果、22Ωで低抵抗であった。実施例4の正極材を適用しても、高出力の二次電池を提供することが可能である。
 本実施例は、実施例4の電極の密度を変化させた例である。
 オリビン正極材(5)を用い、実施例1と同様の方法で正極板を作製した。正極板の電極の密度は1.85g/cm3とした。X線回折を行い(020)/(101)ピーク強度比を算出した結果、4.1であった。
 実施例1と同様の試験用電池を作製し、開回路電圧3.42Vの電極抵抗を算出した結果、21Ωと低抵抗であった。実施例5の正極材を適用しても、高出力の二次電池を提供することが可能である。
 オリビン正極材(6)を用い、実施例1と同様の方法で正極板を作製した。正極板の電極の密度は1.81g/cm3とした。正極板7のX線回折を行い、(020)/(101)ピーク強度比を算出した結果、4.1であった。
 実施例1と同様の試験用電池を作製し、開回路電圧3.42Vの電極抵抗を算出した結果、21Ωで低抵抗であった。実施例6の正極材を適用しても、高出力の二次電池を提供することが可能である。
〔比較例5〕
 オリビン正極材(7)を用い、実施例1と同様の方法で正極板を作製した。正極板の電極の密度は1.7g/cm3とした。正極板7のX線回折を行い、(020)/(101)ピーク強度比を算出した結果、3.1であった。
 実施例1と同様の試験用電池を作製し、開回路電圧3.42Vの電極抵抗を算出した結果、44Ωで高抵抗であった。
〔比較例6〕
 オリビン正極材(8)を用い、実施例1と同様の方法で正極板を作製した。正極板の電極の密度は1.6g/cm3とした。正極板7のX線回折を行い、(020)/(101)ピーク強度比を算出した結果、3.1であった。
 実施例1と同様の試験用電池を作製し、開回路電圧3.42Vの電極抵抗を算出した結果、44Ωで高抵抗であった。
 本実施例は、正極の一部に正極合材よりなる複合粒子を混合した例である。
 まず、複合粒子を作製した。オリビン正極材(1)、導電材及びバインダを重量百分率で85:5:10としたスラリーを作製し、これをアルミ基材上に塗布して厚さ50μmの正極合剤層を形成した後、120度で乾燥を行う。次に、1.5ton/cm2の圧力でプレス加工を行い緻密化した。ここで、正極合剤層が基材から剥離するまで加工を行い、複合正極材を得た。複合正極材にボールミル粉砕を行い、粒径5-10μmの扁平複合正極材粒子とした。扁平複合正極材は、二次粒子のアスペクトレシオが2.2であった。
 扁平複合正極材粒子と、オリビン正極材(1)をFe元素換算で等モル比として混合した後、導電材及びバインダを混合したスラリーを作製し、これをアルミ集電体上に塗布して乾燥した後に圧延加工を行い、扁平複合正極材が混合された正極材を得た。ここで、得られた正極中の組成は、正極材、導電材及びバインダの混合比率が85:5:10となるように調整された。電極の密度を測定したところ、1.9g/cm3であった。実施例1と同様にX線回折を行い、(020)/(101)ピーク強度比を算出した結果、4であった。
 実施例1と同様に電極抵抗を評価した結果、22Ωと低抵抗であった。実施例7の正極材を適用しても、高出力の二次電池を提供することが可能である。
 本実施例は、実施例7と同様に正極の一部に正極合材よりなる複合粒子を混合した例である。
 オリビン正極材(1)、導電材及びバインダを重量百分率で85:5:10としたスラリーを作製し、これをアルミ基材上に塗布して厚さ50μmの正極合剤層を形成した後、120度で乾燥を行う。次に本実施例の複合粒子は、1.7ton/cm2の圧力でプレス加工を行い緻密化した。実施例7と同様に、正極合剤層が基材から剥離するまで加工を行い、複合正極材を得た。複合正極材にボールミル粉砕を行い、粒径5-10μmの扁平複合正極材粒子とした。本実施例の扁平複合正極材は、二次粒子のアスペクトレシオが3.0であった。
 実施例7と同様に加工し、上記扁平複合正極材が混合された正極を得た。実施例1と同様にX線回折を行い、(020)/(101)ピーク強度比を算出した結果、4.1であった。
 実施例1と同様に電極抵抗を評価した結果、21Ωと低抵抗であった。実施例7の正極材を適用しても、高出力の二次電池を提供することが可能である。
〔比較例7〕
 本比較例は、実施例7と同様に正極の一部に正極合材よりなる複合粒子を混合した例である。オリビン正極材(1)、導電材及びバインダを重量百分率で85:5:10としたスラリーを作製し、これをアルミ基材上に塗布して厚さ50μmの正極合剤層を形成した後、120度で乾燥を行う。次に、1.2ton/cm2の圧力でプレス加工を行い緻密化した。正極合剤層が基材から剥離するまで加工を行い、複合正極材を得た。複合正極材にボールミル粉砕を行い、粒径5-10μmの扁平複合正極材粒子とした。この扁平複合正極材は、二次粒子のアスペクトレシオが2.1であった。
 さらに、実施例7と同様に、この材料とオリビン正極材(1)、導電材及びバインダでスラリーを作製し、この合剤層をアルミ集電体上に塗布して乾燥した後に1.5ton/cm2の圧力でプレス加工を行い、電極密度が1.85g/cm3の扁平複合材正極を得た。実施例1と同様にX線回折を行い、(020)/(101)ピーク強度比を算出した結果、3.8であった。
 得られた正極の試験電池評価を実施例1と同様に行った結果、電極抵抗は30Ωで高抵抗であった。本電極では、局所的に複合材の密度が高密度となり、所望の電極低抵抗化が達成できなかった。
〔比較例8〕
 本比較例は、実施例7と同様に正極の一部に正極合材よりなる複合粒子を混合した例である。
 オリビン正極材(1)、導電材及びバインダを重量百分率で85:5:10としたスラリーを作製し、これをアルミ基材上に塗布して厚さ50μmの正極合剤層を形成した後、120度で乾燥を行う。次に、1.9ton/cm2の圧力でプレス加工を行い緻密化した。正極合剤層が基材から剥離するまで加工を行い、扁平複合正極材を得る。この材料にボールミル粉砕を行い、粒径5-10μmの扁平複合正極材粒子とした。この扁平複合正極材は、二次粒子のアスペクトレシオが3.1であった。
 実施例7と同様に、上記複合正極材粒子とオリビン正極材(1)、導電材及びバインダでスラリーを作製し、これをアルミ集電体上に合剤層を塗布して乾燥した後に1.5ton/cm2の圧力でプレス加工を行い、電極密度が1.6g/cm3の扁平複合材正極を得た。局所的に密度が高い箇所が存在するが、アスペクトレシオが高すぎるため正極全体の電極密度を高くすることができなかった。実施例1と同様にX線回折を行い、(020)/(101)ピーク強度比を算出した結果、4.1であった。
 得られた正極の試験電池評価を実施例1と同様に行った結果、電極密度が低いため電極抵抗は44Ωで高抵抗であった。
 オリビン正極材(9)を用い、実施例1と同様の方法で正極板を作製した。正極板7の電極の密度は、1.81g/cm3とした。正極板7のX線回折を行い、(020)/(101)ピーク強度比を算出した結果、3.6であった。
 実施例1と同様の試験用電池を作製し、開回路電圧3.42Vの電極抵抗を算出した結果、29Ωで低抵抗であった。実施例9の正極材を適用しても、高出力の二次電池を提供することが可能である。
Figure JPOXMLDOC01-appb-T000002
 本実施例のリチウム二次電池用の正極材は電極抵抗が低く、二次電池の高出力化に寄与する。したがって、ハイブリッド車の車載用二次電池や、工具用二次電池などの、高出力が必要とされる製品に好適である。
1 高密度扁平状活物質
2 合剤層
3 アルミ集電体
7 正極板
8 負極板
9 セパレータ
10 電池缶
11 負極板リード片
12 密閉蓋部
13 正極板リード片
14 絶縁板
15 パッキン

Claims (11)

  1.  正極合材層を有するリチウムイオン二次電池用の正極であって、
     前記正極合材層は、化学式LixPO4(0<a≦1.2,0.9≦x≦1.1,MはFe,Mnのいずれかを含む遷移金属)で表されるオリビン構造を有する複合酸化物に炭素が被覆された正極材と、導電材と、バインダとを含み、
     前記正極のX線回折測定における(020)面と(101)面の回折ピーク強度比(I(020)/I(101))が、3.55以上4.2以下であることを特徴とするリチウムイオン二次電池用正極。
  2.  請求項1に記載されたリチウムイオン二次電池用正極であって、
     前記回折ピーク強度比I(020)/I(101)が3.8以上4.2以下であることを特徴とするリチウムイオン二次電池用正極。
  3.  請求項1に記載されたリチウムイオン二次電池用正極であって、
     前記正極材の比表面積が10-30m2/gであることを特徴とするリチウムイオン二次電池用正極。
  4.  請求項1に記載されたリチウムイオン二次電池用正極であって、
     前記正極材の一次粒子径が20~200nmであることを特徴とするリチウムイオン二次電池用正極。
  5.  請求項1に記載されたリチウムイオン二次電池用正極であって、
     前記正極材の一次粒子のb軸方向厚みに対するa軸或いはc軸方向の長さの比が1.2以上2.5以下であることを特徴とするリチウムイオン二次電池用正極。
  6.  請求項1に記載されたリチウムイオン二次電池用正極であって、
     前記正極材の一次粒子のb軸方向厚みに対するa軸或いはc軸方向の長さの比が2.1以上2.5以下であることを特徴とするリチウムイオン二次電池用正極。
  7.  請求項1に記載されたリチウムイオン二次電池用正極であって、
     前記正極の密度が1.81g/cm3以上であることを特徴とするリチウムイオン二次電池用正極
  8.  請求項1に記載されたリチウムイオン二次電池用正極であって、
     前記正極材は、炭素材で被覆されていることを特徴とするリチウムイオン二次電池用正極。
  9.  リチウムイオンを吸蔵、放出する正極及び負極と、非水溶媒を用いた電解液を備えた二次電池であって、
     前記正極は、請求項1ないし8のいずれか1項に記載の正極であることを特徴とする二次電池。
  10.  請求項9に記載された二次電池を、複数個用い、相互に電気的に接続して構成されていることを特徴とする電池モジュール。
  11.  化学式LixPO4(0<a≦1.2,0.9≦x≦1.1,MはFe,Mnのいずれかを含む遷移金属)で表されるオリビン構造を有する複合酸化物を用いたリチウムイオン二次電池用正極の製造方法であって、
     前記複合酸化物と、導電材と、バインダとを混合して、複合正極材を構成し、
     前記複合正極材と、追加の正極材、導電材及びバインダとを混合して正極合材スラリーを構成し、
     前記正極合材スラリーを集電体上に塗布することを特徴とするリチウムイオン二次電池用正極の製造方法。
PCT/JP2010/004787 2009-09-30 2010-07-28 リチウム二次電池及びリチウム二次電池用正極 WO2011039921A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/257,693 US20120183839A1 (en) 2009-09-30 2010-07-28 Lithium secondary battery and cathode for a lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-225946 2009-09-30
JP2009225946A JP2011076820A (ja) 2009-09-30 2009-09-30 リチウム二次電池及びリチウム二次電池用正極

Publications (1)

Publication Number Publication Date
WO2011039921A1 true WO2011039921A1 (ja) 2011-04-07

Family

ID=43825775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004787 WO2011039921A1 (ja) 2009-09-30 2010-07-28 リチウム二次電池及びリチウム二次電池用正極

Country Status (3)

Country Link
US (1) US20120183839A1 (ja)
JP (1) JP2011076820A (ja)
WO (1) WO2011039921A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120734A (ja) * 2011-12-08 2013-06-17 Toyota Motor Corp 非水系二次電池
JP2013527829A (ja) * 2010-04-21 2013-07-04 エルジー・ケム・リミテッド オリビン型結晶構造のリン酸鉄リチウムおよびそれを使用したリチウム2次電池
JP2013541142A (ja) * 2010-09-09 2013-11-07 エスケー イノベーション カンパニー リミテッド リチウム2次電池用の陽極活物質とその製造方法およびそれを含むリチウム2次電池
WO2013176067A1 (ja) * 2012-05-24 2013-11-28 株式会社 日立製作所 非水系二次電池用正極活物質
US9318741B2 (en) 2010-04-28 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010006083B4 (de) * 2010-01-28 2014-12-11 Süd-Chemie Ip Gmbh & Co. Kg Substituiertes Lithium-Mangan-Metallphosphat
WO2011114918A1 (en) * 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
WO2011118350A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP5765798B2 (ja) * 2010-03-28 2015-08-19 国立大学法人 新潟大学 Liイオン電池用正極活物質およびその製造方法
KR101392816B1 (ko) 2010-04-21 2014-05-08 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2011158948A1 (en) 2010-06-18 2011-12-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing power storage device
JP5917027B2 (ja) 2010-06-30 2016-05-11 株式会社半導体エネルギー研究所 電極用材料の作製方法
US8932481B2 (en) * 2010-08-31 2015-01-13 Samsung Sdi Co., Ltd. Cathode active material, method of preparing the same, and cathode and lithium battery including the cathode active material
WO2012081383A1 (ja) 2010-12-17 2012-06-21 住友大阪セメント株式会社 電極材料及びその製造方法
US8945498B2 (en) 2011-03-18 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
US9577261B2 (en) 2011-03-18 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Lithium ion secondary battery and method for manufacturing the same
CN105742570B (zh) * 2011-03-25 2021-05-07 株式会社半导体能源研究所 锂离子二次电池
JP6029898B2 (ja) 2011-09-09 2016-11-24 株式会社半導体エネルギー研究所 リチウム二次電池用正極の作製方法
JP5535160B2 (ja) 2011-09-20 2014-07-02 株式会社東芝 非水電解質電池及び電池パック
JP5621740B2 (ja) * 2011-09-22 2014-11-12 住友大阪セメント株式会社 電極材料及び電極並びに電極材料の製造方法
KR101372145B1 (ko) * 2012-03-23 2014-03-12 삼성정밀화학 주식회사 탄소나노튜브-올리빈형 리튬망간계인산화물 복합체의 제조 방법 및 이를 이용한 리튬이차전지
KR101775541B1 (ko) * 2012-05-23 2017-09-06 삼성에스디아이 주식회사 양극 활물질 및 이를 포함하는 리튬 이차 전지
US20150188139A1 (en) * 2012-07-25 2015-07-02 Hitachi Metals, Ltd. Positive Electrode Active Material for Lithium Secondary Batteries, Positive Electrode for Lithium Secondary Batteries Using Same, Lithium Secondary Battery, and Method for Producing Positive Electrode Active Material for Lithium Secondary Batteries
KR101895902B1 (ko) * 2012-08-03 2018-09-07 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP6207923B2 (ja) 2012-08-27 2017-10-04 株式会社半導体エネルギー研究所 二次電池用正極の製造方法
EP2919303A4 (en) * 2012-11-12 2016-06-15 Mitsui Shipbuilding Eng ELECTRODE MATERIAL AND METHOD FOR PRODUCING AN ELECTRODE MATERIAL
KR101570975B1 (ko) 2012-11-21 2015-11-23 주식회사 엘지화학 리튬 이차전지
CN104662727B (zh) 2012-11-21 2018-03-13 株式会社Lg 化学 锂二次电池
KR101584251B1 (ko) * 2012-11-22 2016-01-11 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
JP2014179291A (ja) 2013-03-15 2014-09-25 Sumitomo Osaka Cement Co Ltd 電極材料及び電極並びにリチウムイオン電池
KR101864904B1 (ko) * 2013-05-09 2018-06-05 주식회사 엘지화학 전극 밀도 및 전극 공극률의 측정 방법
US9719905B2 (en) 2013-05-09 2017-08-01 Lg Chem, Ltd. Methods of measuring electrode density and electrode porosity
JP6100385B2 (ja) 2013-09-20 2017-03-22 株式会社東芝 非水電解質電池用正極、非水電解質電池、電池パック及び車
US9203090B2 (en) * 2014-01-13 2015-12-01 The Gillette Company Method of making a cathode slurry and a cathode
JP6132164B2 (ja) * 2014-04-25 2017-05-24 株式会社豊田自動織機 非水系二次電池用正極及び非水系二次電池
JP6654355B2 (ja) * 2015-03-28 2020-02-26 国立大学法人秋田大学 金ナノ粒子の製造方法、金ナノ粒子、Liイオン電池用正極活物質の製造方法、およびLiイオン電池用正極活物質
US20180013151A1 (en) 2016-07-08 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, power storage device, electronic device, and method for manufacturing positive electrode active material
US20230050890A1 (en) * 2020-01-27 2023-02-16 Toray Industries, Inc. Active material for secondary battery electrodes and secondary battery using same
JP6885487B1 (ja) * 2020-03-30 2021-06-16 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292309A (ja) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2006286208A (ja) * 2005-03-31 2006-10-19 Hitachi Ltd リチウムイオン二次電池及び正極活物質
JP2006302671A (ja) * 2005-04-20 2006-11-02 Mitsui Mining Co Ltd リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池
WO2007034821A1 (ja) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. 正極活物質及びその製造方法並びに正極活物質を含む正極を有する非水電解質電池
WO2008105490A1 (ja) * 2007-02-28 2008-09-04 Santoku Corporation オリビン型構造を有する化合物、非水電解質二次電池用正極、非水電解質二次電池
JP2009152188A (ja) * 2007-11-30 2009-07-09 Sony Corp 正極活物質、正極および非水電解質二次電池
JP2009295465A (ja) * 2008-06-06 2009-12-17 Iwate Univ リチウム二次電池用正極活物質及びその製造方法
JP2010040272A (ja) * 2008-08-04 2010-02-18 Hitachi Ltd 非水電解質二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491949B2 (ja) * 2000-10-06 2010-06-30 ソニー株式会社 正極活物質の製造方法及び非水電解質電池の製造方法
JP4794833B2 (ja) * 2004-07-21 2011-10-19 日本コークス工業株式会社 リチウムイオン二次電池用正極材料、その製造方法、及びリチウムイオン二次電池
JP5213213B2 (ja) * 2006-11-27 2013-06-19 日立マクセル株式会社 電気化学素子用活物質、その製造方法、および電気化学素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292309A (ja) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2006286208A (ja) * 2005-03-31 2006-10-19 Hitachi Ltd リチウムイオン二次電池及び正極活物質
JP2006302671A (ja) * 2005-04-20 2006-11-02 Mitsui Mining Co Ltd リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池
WO2007034821A1 (ja) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. 正極活物質及びその製造方法並びに正極活物質を含む正極を有する非水電解質電池
WO2008105490A1 (ja) * 2007-02-28 2008-09-04 Santoku Corporation オリビン型構造を有する化合物、非水電解質二次電池用正極、非水電解質二次電池
JP2009152188A (ja) * 2007-11-30 2009-07-09 Sony Corp 正極活物質、正極および非水電解質二次電池
JP2009295465A (ja) * 2008-06-06 2009-12-17 Iwate Univ リチウム二次電池用正極活物質及びその製造方法
JP2010040272A (ja) * 2008-08-04 2010-02-18 Hitachi Ltd 非水電解質二次電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527829A (ja) * 2010-04-21 2013-07-04 エルジー・ケム・リミテッド オリビン型結晶構造のリン酸鉄リチウムおよびそれを使用したリチウム2次電池
US9318741B2 (en) 2010-04-28 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device
US9899678B2 (en) 2010-04-28 2018-02-20 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device
US10224548B2 (en) 2010-04-28 2019-03-05 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage
US10916774B2 (en) 2010-04-28 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage
JP2013541142A (ja) * 2010-09-09 2013-11-07 エスケー イノベーション カンパニー リミテッド リチウム2次電池用の陽極活物質とその製造方法およびそれを含むリチウム2次電池
JP2013120734A (ja) * 2011-12-08 2013-06-17 Toyota Motor Corp 非水系二次電池
WO2013176067A1 (ja) * 2012-05-24 2013-11-28 株式会社 日立製作所 非水系二次電池用正極活物質

Also Published As

Publication number Publication date
JP2011076820A (ja) 2011-04-14
US20120183839A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
WO2011039921A1 (ja) リチウム二次電池及びリチウム二次電池用正極
US20180366729A1 (en) Electric storage device and positive electrode
JP5625007B2 (ja) リチウムイオン二次電池用正極、リチウムイオン二次電池及び電池モジュール
WO2011033707A1 (ja) 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池
JP5627250B2 (ja) リチウムイオン電池
WO2013176067A1 (ja) 非水系二次電池用正極活物質
KR101043010B1 (ko) 리튬 2차 전지용 음극 재료 및 리튬 2차 전지
CN115377419A (zh) 骨架形成剂及使用该骨架形成剂的负极
JP5165515B2 (ja) リチウムイオン二次電池
JP5520906B2 (ja) リチウムイオン二次電池用正極、リチウムイオン二次電池及び電池モジュール
KR20130035911A (ko) 양극 재료, 이것을 이용한 리튬 이온 2차 전지, 및 양극 재료의 제조 방법
JP2010218838A (ja) 活物質の製造方法、活物質、当該活物質を用いた電極、及び当該電極を備えたリチウムイオン二次電池
KR20150047477A (ko) 리튬 이차전지용 양극 활물질, 그것을 사용한 리튬 이차전지용 양극 및 리튬 이차전지, 및 리튬 이차전지용 양극 활물질의 제조 방법
JPWO2012147837A1 (ja) リチウム二次電池用正極活物質の製造方法
KR102342216B1 (ko) 부극층 및 전고체 전지
WO2012114502A1 (ja) リチウムイオン二次電池用正極、リチウムイオン二次電池、及び電池モジュール
KR20170063409A (ko) 리튬 전이금속 산화물 입자를 포함하는 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP2012033438A (ja) リチウムイオン二次電池用正極及びこれを用いたリチウムイオン二次電池
JP2015002091A (ja) リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極、リチウムイオン二次電池、リチウムイオン二次電池モジュール、及びリチウムイオン二次電池用正極活物質の製造方法
Pan et al. Controllable fabrication of LiMnPO 4 microspheres assembled by radially arranged nanoplates with highly exposed (010) facets for an enhanced electrochemical performance
Wang et al. Enhanced electrochemical performance of Li3V2 (PO4) 3 structurally converted from LiVOPO4 by graphite nanofiber addition
JP2015002092A (ja) リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池用正極活物質の製造方法
US10505179B2 (en) Method for producing polyanionic positive electrode active material composite particles, and polyanionic positive electrode active material precursor-graphite oxide composite granulated bodies
JP2016157684A (ja) 炭素被覆ポリアニオン系正極活物質粒子の製造方法および炭素被覆ポリアニオン系正極活物質粒子の製造のための中間体粒子
KR20210094080A (ko) 리튬 이온 이차 전지용 음극재, 리튬 이온 이차 전지용 음극재의 제조 방법, 리튬 이온 이차 전지용 음극 및 리튬 이온 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13257693

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820047

Country of ref document: EP

Kind code of ref document: A1