WO2011039879A1 - Composition de résine de matrice pour des matières plastiques renforcées de fibres et structures plastiques renforcées de fibres - Google Patents

Composition de résine de matrice pour des matières plastiques renforcées de fibres et structures plastiques renforcées de fibres Download PDF

Info

Publication number
WO2011039879A1
WO2011039879A1 PCT/JP2009/067147 JP2009067147W WO2011039879A1 WO 2011039879 A1 WO2011039879 A1 WO 2011039879A1 JP 2009067147 W JP2009067147 W JP 2009067147W WO 2011039879 A1 WO2011039879 A1 WO 2011039879A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
fiber
epoxy resin
resin composition
Prior art date
Application number
PCT/JP2009/067147
Other languages
English (en)
Japanese (ja)
Inventor
有 重成
裕之 佐藤
敬 原田
Original Assignee
株式会社Ihiエアロスペース
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihiエアロスペース, 株式会社Ihi filed Critical 株式会社Ihiエアロスペース
Priority to PCT/JP2009/067147 priority Critical patent/WO2011039879A1/fr
Priority to JP2011513770A priority patent/JPWO2011040567A1/ja
Priority to PCT/JP2010/067145 priority patent/WO2011040567A1/fr
Publication of WO2011039879A1 publication Critical patent/WO2011039879A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/44Resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the present invention relates to a matrix resin composition for fiber reinforced plastic and a fiber reinforced plastic structure having improved impact absorption.
  • Fiber reinforced plastic As a substitute for metal parts, fiber-reinforced plastic materials are attracting attention. Fiber reinforced plastic has been developed for many years as a material for aircraft parts such as a fan case of a jet engine (for example, Patent Document 1).
  • the present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide a matrix resin composition for fiber reinforced plastic and a fiber reinforced plastic structure having excellent shock absorption. Is to provide.
  • the present inventors have suspended the above particles in a cured product in which an epoxy resin, a curing agent, and elastically deformable particles having a specific average particle diameter are mixed. It has been found that the above object can be achieved by being dispersed and held in a turbid state.
  • the present invention comprises (A) 20 to 100 parts by weight of a bisphenol-based epoxy resin, (B) 0 to 80 parts by weight of a modified epoxy resin, (C) 0 to 80 parts by weight of a polyfunctional epoxy resin, (D 1) to 50 parts by weight of the curing agent and (E) elastically deformable particles having an average particle diameter of 0.01 to 0.5 ⁇ m with respect to 100 parts by weight of the total amount of the above (A) to (C).
  • a matrix resin composition for fiber-reinforced plastic in which the particles (D) are dispersed and held in a suspended state in the cured product containing the above (A) to (E).
  • the present invention is a fiber reinforced plastic structure using the matrix resin composition for fiber reinforced plastic.
  • the present invention is an aircraft engine part using the fiber reinforced plastic structure.
  • the matrix resin composition for fiber-reinforced plastics of the present invention particles having an epoxy resin, a curing agent, and a specific average particle diameter, a sufficiently low elastic modulus as compared with the epoxy resin, and being elastically deformable even in the epoxy resin Since the particles are dispersed and held in a suspended state in the cured product in which is mixed, high impact absorbability can be expressed. Since the fiber reinforced plastic structure of the present invention can exhibit high shock absorption, it can be suitably used for aircraft parts such as fan cases, fan blades, and fan frames of jet engines.
  • % such as yield represents a mass percentage unless otherwise specified.
  • the component (A) used in the present invention is a bisphenol epoxy resin.
  • the bisphenol-based epoxy resin include a bisphenol A type epoxy resin having an epoxy equivalent of 200 or less, a bisphenol F type epoxy resin having an epoxy equivalent of 200 or less, a solid bisphenol A type epoxy resin having an epoxy equivalent of about 400 to 2500, an epoxy equivalent And a solid bisphenol F type epoxy resin having a viscosity of about 400 to 2500. These may be used alone or in combination of two or more. Among them, it is preferable to use a bisphenol A type epoxy resin having an epoxy equivalent of 200 or less, a bisphenol F type epoxy resin having an epoxy equivalent of 200 or less, and a mixture thereof.
  • the blending ratio of the component (A) bisphenol-based epoxy resin is 20 to 100 parts by weight, preferably 30 to 90 parts by weight, more preferably 40 to 40 parts by weight based on 100 parts by weight of the total of components (A) to (C). 80 parts by weight, more preferably 50 to 80 parts by weight.
  • Tg glass transition temperature
  • the blending ratio of component (A) is less than 20 parts by weight, the blending ratio of component (B) and component (C) increases, the viscosity of the mixture increases, and the flexibility of the precursor of the fiber reinforced plastic increases. Decreases, and workability at the time of stacking deteriorates, which is not preferable.
  • Component (B) used in the present invention is a modified epoxy resin.
  • the modified epoxy resin include a bifunctional epoxy resin having a naphthalene skeleton and a phenoxy resin having a hydroxyl group in the molecule.
  • the component (B) one or more of the modified epoxy resins can be used in combination.
  • the blending ratio of the component (B) modified epoxy resin is 0 to 80 parts by weight, preferably 2 to 80 parts by weight, more preferably 2 to 50 parts per 100 parts by weight of the total of components (A) to (C). Part by weight, more preferably 2 to 30 parts by weight.
  • the blending ratio of component (B) exceeds 80 parts by weight, it is preferable because the crosslink density of the cured resin increases and the glass transition temperature (Tg), which is an index of heat resistance, increases, but the toughness of the cured resin decreases. Absent.
  • the blending ratio of the component (B) modified epoxy resin may be 0 parts by weight.
  • Component (C) used in the present invention is a polyfunctional epoxy resin.
  • the polyfunctional epoxy resin include triglycidylparaaminophenol, tetraglycidylaminomethane, and a novolac type epoxy resin.
  • the component (C) one or more polyfunctional epoxy resins can be used in combination.
  • the blending ratio of the polyfunctional epoxy resin of component (C) is 0 to 80 parts by weight, preferably 2 to 80 parts by weight, more preferably 2 parts per 100 parts by weight of the total of components (A) to (C). -50 parts by weight, more preferably 2-30 parts by weight.
  • the blending ratio of component (C) exceeds 80 parts by weight, it is preferable because the crosslink density of the cured resin increases and the glass transition temperature (Tg), which is an index of heat resistance, increases, but the toughness of the cured resin decreases. Absent.
  • the blending ratio of the polyfunctional epoxy resin of component (C) may be 0 part by weight.
  • Component (D) used in the present invention is a curing agent.
  • the curing agent generally known amine curing agents, acid anhydride curing agents, phenol curing agents and the like can be used.
  • catalyst curing agents such as imidazole and boron trichloride-based amine complexes can be used.
  • an amine-based curing agent as the curing agent.
  • the curing agent of component (D) is a toughness imparting agent, benzenediamine, diaminodimethylmethane, methanephenylenediamine and the like can be used.
  • Component (D) can be used by mixing one or more of the above curing agents.
  • Component (D) curing agent is blended so as to have a blending ratio that completely reacts with components (A) to (C). Specifically, the curing agent of component (D) is blended so as to be equivalent to the epoxy groups contained in the epoxy resins of components (A) to (C) (equal molar ratio).
  • a small amount of salicylic acid, boron trifluoride ethylamine complex or the like may be added for adjusting the reaction rate during curing.
  • Component (E) is an elastically deformable particle having an average particle size of 0.01 to 0.5 ⁇ m, preferably 0.05 to 0.2 ⁇ m.
  • the average particle diameter of the elastically deformable particles of the component (E) is larger than 0.5 ⁇ m, the particles of the component (E) are dispersed in a cured state containing the components (A) to (E). It cannot be held.
  • the elastically deformable particles of the component (E) are dispersed and held in the cured products of the components (A) to (E) to mean the elastic deformation of the component (E).
  • the possible particles are dispersed and held in the cured product, completely phase-separated from the other components without being compatible with the other components (components (A) to (D)) constituting the cured product. Means that.
  • the component (E) is not particularly limited as long as it is an elastically deformable particle having the above average particle diameter, but is selected from the group consisting of polybutadiene rubber, styrene butadiene rubber, and butyl rubber. In addition, it is preferable to contain one or a mixture of two or more.
  • particles in which elastically deformable particles containing the rubber material as described above are dispersed in an epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin may be used.
  • the elastically deformable particles of component (E) may have a core-shell structure consisting of a core portion and a shell layer surrounding it.
  • the core portion contains at least one selected from the group consisting of polybutadiene rubber, styrene butadiene rubber and butyl rubber
  • the shell layer contains vinyl chloride and / or acrylic resin. It is preferable that
  • the blending ratio of the elastically deformable particles of the component (E) is 1 to 50 parts by weight, preferably 2 to 30 parts by weight, more preferably 100 parts by weight of the total amount of the components (A) to (C). 2 to 25 parts by weight, particularly preferably 2 to 15 parts by weight.
  • a cured product cured product of matrix composition
  • the blending ratio of component (E) exceeds 50 parts by weight with respect to 100 parts by weight of the total amount of components (A) to (C), in the mixture containing components (A) to (E) Suspension and dispersibility are reduced.
  • the component (E) is used in which elastically deformable particles are dispersed in an epoxy resin or the like, the blending ratio of the elastically deformable particles is the total amount of the components (A) to (C).
  • the blending ratio of the epoxy resin in which the elastically deformable particles are dispersed may not be considered as long as it is within the above range with respect to 100 parts by weight.
  • the matrix resin composition for fiber-reinforced plastics of the present invention comprises (A) 20 to 100 parts by weight of a bisphenol-based epoxy resin, (B) 0 to 80 parts by weight of a modified epoxy resin, and (C) a polyfunctional epoxy resin. 0 to 80 parts by weight, (D) a curing agent, and (E) 1 to 50 parts by weight of elastically deformable particles having an average particle diameter of 0.01 to 0.5 ⁇ m, and the above (A) to (E) Since the above (E) particles are dispersed and held in a suspended state in the cured product containing, high impact absorbability can be expressed.
  • the fiber reinforced plastic structure of the present invention uses the above matrix resin composition for fiber reinforced plastic.
  • a reinforcing fiber can be impregnated with the matrix resin composition and cured to obtain a structure made of a cured product of a specific form.
  • reinforcing fibers examples include glass fibers, carbon fibers, aramid fibers, alumina fibers, and boron fibers.
  • carbon fiber is preferably used because it has excellent properties of high strength and high elastic modulus while being lightweight.
  • the reinforcing fiber either a short fiber or a long fiber can be used.
  • long fibers for example, a length of 10 cm or more
  • short fibers for example, a length of 10 cm or less. Is preferably used.
  • any arrangement structure such as a single direction, two directions, and a random direction can be used, and a woven fabric and a knitted fabric of reinforcing fibers can also be used. In order to further improve the shock absorption, it is preferable to use a woven fabric of reinforcing fibers.
  • the fiber reinforced plastic structure of the present invention uses a matrix resin composition capable of exhibiting high impact absorption, an impact resistant part for aircraft, for example, as shown in FIG.
  • the present invention can be suitably used for fan cases, fan blades, fan frames, etc. of aircraft jet engines as shown.
  • the elastically deformable particles composed of the following rubber components were previously contained in the epoxy resin.
  • E-1 Bisphenol A type epoxy resin (manufactured by Kaneka Corporation) containing 25 wt% of styrene butadiene rubber particles (elastically deformable particles)
  • E-2 Bisphenol F type epoxy resin (manufactured by Kaneka Corporation) containing 25 wt% of polybutadiene rubber particles (elastically deformable particles)
  • E-3 Bisphenol A type epoxy resin (manufactured by Kaneka Corporation) containing 25 wt% of polybutadiene rubber particles (elastically deformable particles)
  • Acid anhydride curing agent MHAC-P (Methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride) (manufactured by Hitachi Chemical Co., Ltd.)
  • Catalyst EHC-30 (Tertiary amine catalyst) (Adeka)
  • -Latent curing agent DY9577 (boron trichloride amine complex) (manufactured by HUNTSMAN)
  • -Latent curing agent 2E4MZ (2-ethyl-4-methylimidazole) (manufactured by Shikoku Chemicals)
  • Table 1 shows the product names and composition of the above components (A) to (E) and other components.
  • the matrix resin composition blended as shown in Table 1 was impregnated into carbon fiber trading card (registered trademark) T (800S-24K (manufactured by Toray Industries, Inc.) to a resin content of 36% by mass by a solvent method.
  • a precursor of reinforced plastic (FRP) was formed and quasi-isotropically laminated.
  • the pseudo-temporal isotropic lamination usually means a layer having a fiber orientation of 0 °, 90 °, 45 °, and ⁇ 45 ° with respect to a reference direction.
  • a pseudo-isotropic laminate of FRP precursors was cured in a 0.6 MPa autoclave at 100 ° C. for 2 hours, then at 120 ° C. for 1 hour, and finally at 180 ° C. for 6 hours to obtain a length of 200 mm ⁇ width of 150 mm X
  • An FRP flat plate having a thickness of 5 mm was obtained
  • Titanium bullets with a diameter of 10 mm x length of 12 mm are shot at a speed of 100 to 250 m / sec with a hunting gun on the surface of the FRP flat plate formed with the composition shown in Table 1, and the bullet velocity before and after penetration of the FRP flat plate was measured with a high-speed camera, and the rate of speed decrease before and after the collision was calculated by the following equation (1), and evaluated as impact absorbability.
  • the results are shown in Table 1.
  • Evaluation formula for impact resistance: Impact absorption rate (%) speed after impact penetration (m / second) / speed before impact (m / second) ⁇ 100 (1)
  • FRP flat plates using the matrix resin compositions of Examples 1 to 12 had a high impact absorption rate of 65% or more.
  • the impact absorptivity of the FRP flat plates of Comparative Examples 1 to 5 not containing the elastically deformable particles of the component (E) was 55% or less.
  • the FRP flat plates of Comparative Examples 1 and 2 using a matrix resin composition containing an amine curing agent have a relatively high impact absorption rate of 50% or more, whereas amine-based curing.
  • the impact absorption rates of Comparative Examples 3 to 5 using a curing agent other than the agent were as small as 32% or less.
  • the fiber reinforced plastic structure of the present invention is excellent in shock-absorbing property, so that safety can be ensured and the weight can be reduced.
  • an aircraft jet as shown in FIG. It can be suitably used for engine fan cases, fan blades, fan frames, and the like, and its industrial utility value is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

La présente invention concerne : une composition de résine de matrice pour des matières plastiques renforcées de fibres qui peut produire des matières plastiques renforcées de fibres ayant d'excellentes propriétés d'absorption des chocs ; et des structures plastiques renforcées de fibres. Une composition de résine de matrice pour des matières plastiques renforcées de fibres, qui comprend de 20 à 100 parties en poids de (A) une résine époxy à base de bisphénol, de 0 à 80 parties en poids de (B) une résine époxy modifiée, de 0 à 80 parties en poids de (C) une résine époxy polyfonctionnelle, et (D) un agent durcisseur, et contient en outre (E) des particules déformables de façon élastique ayant un diamètre de particule moyen de 0,01 à 0,5 μm en une quantité de 1 à 50 parties en poids pour 100 parties en poids de la quantité totale des composants (A) à (C), à condition que les particules déformables de façon élastique (E) soient des particules telles qu'elles peuvent être dispersées et maintenues dans un état en suspension dans un produit durci préparé à partir des composants (A) à (E).
PCT/JP2009/067147 2009-10-01 2009-10-01 Composition de résine de matrice pour des matières plastiques renforcées de fibres et structures plastiques renforcées de fibres WO2011039879A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/067147 WO2011039879A1 (fr) 2009-10-01 2009-10-01 Composition de résine de matrice pour des matières plastiques renforcées de fibres et structures plastiques renforcées de fibres
JP2011513770A JPWO2011040567A1 (ja) 2009-10-01 2010-09-30 繊維強化プラスチック用のマトリックス樹脂組成物及び繊維強化プラスチック構造体
PCT/JP2010/067145 WO2011040567A1 (fr) 2009-10-01 2010-09-30 Composition de résine de matrice pour plastique renforcé par des fibres et structure plastique renforcée par des fibres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/067147 WO2011039879A1 (fr) 2009-10-01 2009-10-01 Composition de résine de matrice pour des matières plastiques renforcées de fibres et structures plastiques renforcées de fibres

Publications (1)

Publication Number Publication Date
WO2011039879A1 true WO2011039879A1 (fr) 2011-04-07

Family

ID=43825733

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/067147 WO2011039879A1 (fr) 2009-10-01 2009-10-01 Composition de résine de matrice pour des matières plastiques renforcées de fibres et structures plastiques renforcées de fibres
PCT/JP2010/067145 WO2011040567A1 (fr) 2009-10-01 2010-09-30 Composition de résine de matrice pour plastique renforcé par des fibres et structure plastique renforcée par des fibres

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067145 WO2011040567A1 (fr) 2009-10-01 2010-09-30 Composition de résine de matrice pour plastique renforcé par des fibres et structure plastique renforcée par des fibres

Country Status (2)

Country Link
JP (1) JPWO2011040567A1 (fr)
WO (2) WO2011039879A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183667A1 (fr) * 2012-06-05 2013-12-12 三菱レイヨン株式会社 Composition de résine époxy
JP2015529273A (ja) * 2012-09-26 2015-10-05 ヘクセル コンポジッツ、リミテッド 樹脂組成物及び樹脂を含有する複合構造体
WO2018125692A1 (fr) * 2016-12-29 2018-07-05 3M Innovative Properties Company Compositions durcissables
WO2019004457A1 (fr) * 2017-06-29 2019-01-03 日立化成株式会社 Composition de résine pour scellement, boîtier semi-conducteur, et procédé pour la fabrication de boîtier semi-conducteur
WO2022138343A1 (fr) * 2020-12-22 2022-06-30 旭化成株式会社 Composition de résine époxy, film adhésif, carte de circuit imprimé, boîtier de puce semiconductrice, dispositif semi-conducteur et procédé d'utilisation de film adhésif

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948784B2 (ja) * 2011-10-13 2016-07-06 三菱レイヨン株式会社 エポキシ樹脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925393A (ja) * 1995-05-09 1997-01-28 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JPH09137044A (ja) * 1995-11-17 1997-05-27 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物
WO1997028210A1 (fr) * 1996-02-02 1997-08-07 Toray Industries, Inc. Compositions de resines pour materiaux composites a renfort de fibres et leurs procedes de fabrication, pre-impregnes, composites a renfort de fibres, et structures en nids d'abeilles
WO2003040206A1 (fr) * 2001-11-07 2003-05-15 Toray Industries, Inc. Compositions de resine epoxy pour materiaux composites a fibres, procede de production de ces materiaux, et materiaux composites a fibres
JP2003277471A (ja) * 2002-03-27 2003-10-02 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2009280669A (ja) * 2008-05-21 2009-12-03 Toray Ind Inc Rtm成形繊維強化複合材料、およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567950B2 (ja) * 1995-09-29 2004-09-22 日本ゼオン株式会社 エポキシ樹脂組成物及びそれを用いてなるプリプレグ及び成形品
JPH09157498A (ja) * 1995-12-12 1997-06-17 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料
JP2004315572A (ja) * 2003-04-11 2004-11-11 Kanegafuchi Chem Ind Co Ltd エポキシ樹脂組成物の製造方法
CA2538698A1 (fr) * 2003-09-18 2005-03-31 Kaneka Corporation Procede de production d'une particule de polymere caoutchouc et procede de production d'une composition de resine contenant ladite particule
JP2005255822A (ja) * 2004-03-11 2005-09-22 Kaneka Corp ゴム強化エポキシ樹脂製品
JP5544162B2 (ja) * 2007-02-28 2014-07-09 株式会社カネカ ゴム状重合体粒子分散熱硬化性樹脂組成物、及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925393A (ja) * 1995-05-09 1997-01-28 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JPH09137044A (ja) * 1995-11-17 1997-05-27 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物
WO1997028210A1 (fr) * 1996-02-02 1997-08-07 Toray Industries, Inc. Compositions de resines pour materiaux composites a renfort de fibres et leurs procedes de fabrication, pre-impregnes, composites a renfort de fibres, et structures en nids d'abeilles
WO2003040206A1 (fr) * 2001-11-07 2003-05-15 Toray Industries, Inc. Compositions de resine epoxy pour materiaux composites a fibres, procede de production de ces materiaux, et materiaux composites a fibres
JP2003277471A (ja) * 2002-03-27 2003-10-02 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2009280669A (ja) * 2008-05-21 2009-12-03 Toray Ind Inc Rtm成形繊維強化複合材料、およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183667A1 (fr) * 2012-06-05 2013-12-12 三菱レイヨン株式会社 Composition de résine époxy
JP5737408B2 (ja) * 2012-06-05 2015-06-17 三菱レイヨン株式会社 トウプリプレグ、及び複合材料補強圧力容器
US10233324B2 (en) 2012-06-05 2019-03-19 Mitsubishi Chemical Corporation Epoxy resin composition
JP2015529273A (ja) * 2012-09-26 2015-10-05 ヘクセル コンポジッツ、リミテッド 樹脂組成物及び樹脂を含有する複合構造体
WO2018125692A1 (fr) * 2016-12-29 2018-07-05 3M Innovative Properties Company Compositions durcissables
WO2019004457A1 (fr) * 2017-06-29 2019-01-03 日立化成株式会社 Composition de résine pour scellement, boîtier semi-conducteur, et procédé pour la fabrication de boîtier semi-conducteur
JPWO2019004457A1 (ja) * 2017-06-29 2020-05-21 日立化成株式会社 封止用樹脂組成物、半導体パッケージ及び半導体パッケージの製造方法
JP7231833B2 (ja) 2017-06-29 2023-03-02 株式会社レゾナック 封止用樹脂組成物、半導体パッケージ及び半導体パッケージの製造方法
WO2022138343A1 (fr) * 2020-12-22 2022-06-30 旭化成株式会社 Composition de résine époxy, film adhésif, carte de circuit imprimé, boîtier de puce semiconductrice, dispositif semi-conducteur et procédé d'utilisation de film adhésif

Also Published As

Publication number Publication date
JPWO2011040567A1 (ja) 2013-02-28
WO2011040567A1 (fr) 2011-04-07

Similar Documents

Publication Publication Date Title
WO2011039879A1 (fr) Composition de résine de matrice pour des matières plastiques renforcées de fibres et structures plastiques renforcées de fibres
JP5800031B2 (ja) エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP5672006B2 (ja) バインダー組成物、強化繊維基材、プリフォームおよび繊維強化複合材料とその製造方法
EP3712192B1 (fr) Composition de résine thermodurcissable, préimprégné, et matériau composite renforcé par des fibres et procédé de production associé
JP2010059225A (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
KR101819842B1 (ko) 에폭시 수지 조성물, 및 이것을 이용한 필름, 프리프레그 및 섬유강화 플라스틱
CA2650563C (fr) Composition de resine epoxy destinee a un materiau composite renforce par fibres
KR20160127023A (ko) 에폭시 수지 조성물, 수지 경화물, 섬유 강화 복합 재료 및 프리프레그
JP6771884B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US10253142B2 (en) Epoxy resin composition and fiber reinforced composite material
JP6673474B2 (ja) プリプレグおよび繊維強化複合材料
US12091479B2 (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material, and production method thereof
JP2012196921A (ja) 繊維強化複合材料、およびその製造方法
JP2005298815A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2016104314A1 (fr) Composition de résine époxy, et film, préimprégné et matière plastique renforcée de fibres l'utilisant
JP2012149237A (ja) 熱硬化性樹脂組成物、プリプレグ、および繊維強化複合材料
JP2013181112A (ja) バインダー組成物、強化繊維基材、プリフォームおよび繊維強化複合材料とその製造方法
JP5252869B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物及びプリプレグ
JP2006219513A (ja) エポキシ樹脂組成物・プリプレグ・繊維強化複合材料
JP6907468B2 (ja) 繊維強化複合材料の製造方法
EP1526152B1 (fr) Matériau composite, procédé de sa fabrication et son utilisation
JPH0643508B2 (ja) プリプレグ及びその製造方法
JP2010100696A (ja) エポキシ樹脂組成物
JP2003041093A (ja) 複合材料用樹脂組成物、複合材料用中間材および複合材料
JP2676390B2 (ja) エポキシ樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP