WO2011037238A1 - 二酸化炭素排出量削減樹脂組成物およびその製造方法並びにその用途 - Google Patents

二酸化炭素排出量削減樹脂組成物およびその製造方法並びにその用途 Download PDF

Info

Publication number
WO2011037238A1
WO2011037238A1 PCT/JP2010/066730 JP2010066730W WO2011037238A1 WO 2011037238 A1 WO2011037238 A1 WO 2011037238A1 JP 2010066730 W JP2010066730 W JP 2010066730W WO 2011037238 A1 WO2011037238 A1 WO 2011037238A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
resin
resin composition
dioxide emission
dispersion
Prior art date
Application number
PCT/JP2010/066730
Other languages
English (en)
French (fr)
Inventor
正光 長濱
木戸 茂
佐藤 彰
Original Assignee
アクテイブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクテイブ株式会社 filed Critical アクテイブ株式会社
Priority to EP10818910.1A priority Critical patent/EP2481778A4/en
Priority to US13/498,426 priority patent/US20120184656A1/en
Priority to KR1020127010501A priority patent/KR101926766B1/ko
Priority to JP2011533070A priority patent/JP6170652B2/ja
Publication of WO2011037238A1 publication Critical patent/WO2011037238A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a carbon dioxide emission-reducing resin composition, a production method thereof, and an application thereof.
  • Resin materials are processed into various molded products such as films, sheets, and bottles, taking advantage of the features such as light weight, corrosion resistance, and easy molding. Supporting our lives. However, it has spread widely and in large quantities, causing various problems such as generation of harmful substances during incineration at the time of disposal.
  • the emission problem of dioxin which is a typical toxic substance, has been solved by controlling the combustion temperature, but carbon dioxide, which is strongly desired to reduce emissions due to the effects of global warming, is the final combustion. Since it is one of the products, it is difficult to reduce it.
  • recycling is being used as a method to reduce the amount of waste, but recycling is still a part, and physical properties such as strength drop each time it is reused, and it is finally incinerated. Therefore, it is not a fundamental solution for carbon dioxide emissions.
  • Patent Document 1 In order to solve the above carbon dioxide emission problem, a method for blending a compound that suppresses the generation of carbon dioxide into a resin (see, for example, Patent Documents 1, 2 and 3) has been filed.
  • Patent Document 1 calcium carbonate, aluminosilicate, and calcium hydroxide are used as compounds that suppress the generation of carbon dioxide.
  • Patent Document 2 zeolite, calcium carbonate, and a specific flame retardant are used.
  • Patent Document 3 coconut mesocarp fibers are used. JP 2008-106171 A JP-A-7-188487 JP 2006-77048 A
  • Patent Document 1 and Patent Document 2 an inorganic compound that is not compatible with a resin that is an organic compound is kneaded and blended by an extruder in a normal manner as a compound that suppresses the generation of carbon dioxide.
  • the dispersibility of the resin is poor and agglomeration occurs, leading to a reduction in the impact strength of the resin.
  • the surface area of the inorganic compound is reduced by agglomeration, the effect of adsorbing carbon dioxide in the pores of aluminosilicate and zeolite and the chemical reaction between calcium hydroxide and carbon dioxide cannot be fully utilized.
  • the blending amount of the inorganic compound is increased, the impact resistance is lowered, the material becomes brittle, and the feature that the resin material is light is lost.
  • the heat resistance is low, and discoloration and odor occur at high temperatures during resin molding. Therefore, the molding temperature and method are limited, and the characteristics that the chemical stability of the resin material and molding are easy are lost.
  • the present invention improves the dispersibility of inorganic compounds or organic compounds having a carbon dioxide absorption effect, has a high effect of reducing carbon dioxide emissions during incineration, is lightweight and has mechanical properties.
  • An object of the present invention is to provide an excellent resin material, a method for producing the same, and an application.
  • the first carbon dioxide emission-reducing resin composition of the present invention for solving the above problems is characterized in that a mixture of a carbon dioxide absorbent and a dispersion aid is added to the resin after the dispersion treatment.
  • the second carbon dioxide emission reducing resin composition is characterized in that the dispersion treatment is selected from at least one of supercritical fluid treatment, ultrasonic irradiation treatment, and stirring treatment.
  • the third carbon dioxide emission reducing resin composition is characterized in that the carbon dioxide absorbent is selected from at least one of a metal hydroxide, a metal oxide, an aluminosilicate, a titanate compound, and a lithium compound.
  • the fourth carbon dioxide emission reducing resin composition is characterized in that the dispersion aid is selected from at least one of a fatty acid metal salt, a polymer surfactant and an amphiphilic lipid.
  • the fifth carbon dioxide emission reducing resin composition is characterized in that the resin is selected from at least one of a polyolefin resin, a polyester resin, a polyamide resin, a vinyl chloride resin, and a polystyrene resin.
  • the first method for producing a carbon dioxide emission-reducing resin composition of the present invention comprises adding a mixture of a carbon dioxide absorbent and a dispersion aid to a resin after dispersion treatment. It is characterized by.
  • the second carbon dioxide emission reduction resin composition production method is characterized in that the dispersion treatment is selected from at least one of supercritical fluid treatment, ultrasonic irradiation treatment, and stirring treatment.
  • the carbon dioxide absorbent is selected from at least one of a metal hydroxide, a metal oxide, an aluminosilicate, a titanate compound, and a lithium compound. It is characterized by that.
  • the fourth method for producing a carbon dioxide emission reducing resin composition is characterized in that the dispersion aid is selected from at least one of a fatty acid metal salt, a polymer surfactant and an amphiphilic lipid.
  • the resin is selected from at least one of a polyolefin resin, a polyester resin, a polyamide resin, a vinyl chloride resin, and a polystyrene resin.
  • the carbon dioxide emission reduction resin composition added to polyethylene resin is used for packaging, containers, building materials, agricultural materials, fishery materials, It is an electrical part, a machine part, a miscellaneous goods / daily necessities, and a foamed product.
  • the carbon dioxide emission reduction resin composition added to polypropylene is used for packaging, containers, agricultural materials, fishery materials, automobile components, It is characterized by being home appliances, miscellaneous goods / daily necessities, textile products and medical products.
  • the carbon dioxide emission reduction resin composition added to polyethylene terephthalate resin is used for packaging, containers, sheets, automobile components, miscellaneous goods It is a daily necessities and textile products.
  • the carbon dioxide emission reduction resin composition that is added to the liquid crystal resin after dispersion treatment of a mixture of carbon dioxide absorbent and dispersion aid is used for containers, fishery materials, electrical parts, mechanical parts, optical parts. It is characterized by being an automobile component part, miscellaneous goods / daily necessities and textile products.
  • the carbon dioxide emission-reducing resin composition that is added to the polyamide resin after dispersing the mixture of carbon dioxide absorbent and dispersion aid is used for packaging, agricultural materials, fishery materials, electrical parts, mechanical parts. , Optical parts, automobile components, sundries / daily necessities, textile products and medical products.
  • the carbon dioxide emission reduction resin composition that is added to the vinyl chloride resin is used for packaging, containers, agricultural materials, building materials, and automobile construction. It is a part, miscellaneous goods / daily necessities, foamed goods, textile products, and printing / advertisement.
  • the carbon dioxide emission-reducing resin composition which is added to polystyrene resin, is used in containers, building materials, home appliances, automobile components, miscellaneous goods, It is a daily necessities and a foamed product.
  • a dispersion of a carbon dioxide absorbent and a dispersion aid is added to the resin after the dispersion treatment, thereby dispersing the carbon dioxide absorbent having poor compatibility with the resin without agglomerating the resin. It is possible to obtain a carbon dioxide emission-reducing resin composition having a high carbon dioxide absorption effect.
  • a carbon dioxide emission-reducing resin composition having a high carbon dioxide absorption effect.
  • a high carbon dioxide absorption effect can be obtained with a small amount, so the amount of carbon dioxide absorbent added to the resin can be reduced.
  • the properties such as the original light weight of the resin and ease of molding are not impaired, and the application development can be greatly expanded.
  • the carbon dioxide absorbent to be added according to the application it becomes possible to produce a lightweight and high impact resistance carbon dioxide emission reducing resin composition.
  • the present inventor performs a treatment for improving the dispersibility of the carbon dioxide absorbent and adds it to the resin, so that the carbon dioxide emission reduction effect during combustion is high. It discovered that a resin composition was obtained and completed this invention.
  • the present invention relates to a carbon dioxide emission-reducing resin composition that is added to a resin after mixing a carbon dioxide absorbent and a dispersion aid, followed by a dispersion treatment, a method for producing the same, and a use thereof.
  • a carbon dioxide emission-reducing resin composition that is added to a resin after mixing a carbon dioxide absorbent and a dispersion aid, followed by a dispersion treatment, a method for producing the same, and a use thereof. The details will be described below.
  • the carbon dioxide absorbent in the present invention may be any substance that can adsorb carbon dioxide chemically or physically.
  • metal hydroxides, metal oxides, aluminosilicates, titanate compounds, lithium silicates, silica gel, alumina and activated carbon are preferred, and for organic compounds, coconut mesocarp fibers are preferred.
  • Examples of the metal hydroxide include lithium hydroxide, sodium hydroxide, magnesium hydroxide, calcium hydroxide, and barium hydroxide.
  • Examples of the metal oxide include magnesium oxide, calcium oxide, and zinc oxide.
  • Examples of the aluminosilicate include amorphous aluminosilicate, natural zeolite, and synthetic zeolite.
  • Examples of the titanate compound include barium titanate and barium orthotitanate.
  • the dispersion aid in the present invention may be any material as long as it can efficiently disperse the carbon dioxide absorbent, which is an inorganic compound or an organic compound, in the resin.
  • the carbon dioxide absorbent which is an inorganic compound or an organic compound, in the resin.
  • fatty acid metal salts, polymeric surfactants and amphiphilic lipids are preferred.
  • Examples of the fatty acid metal salt include calcium stearate, zinc stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, sodium stearate, potassium stearate, calcium 12-hydroxystearate, zinc 12-hydroxystearate. , 12-hydroxy magnesium stearate, 12-hydroxy aluminum stearate, 12-hydroxy barium stearate, 12-hydroxy lithium stearate, sodium 12-hydroxy stearate, potassium 12-hydroxy stearate and the like.
  • polymeric surfactant examples include sodium polyacrylate, sodium polycarboxylate, olefin / maleic acid copolymer sodium salt, polyoxyethylene type gemini type surfactant (POE30-10-ODEs, POE20-10ODEs, POE10). -10-ODEs), phosphate type gemini surfactants (POH-10-ODEs), dicarboxylic acid type gemini surfactants (DC-10-ODEs), and the like.
  • amphipathic lipid examples include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, cardiopine, egg yolk lecithin, hydrogenated egg yolk lecithin, glycerophospholipid such as soybean lecithin, hydrogenated soybean lecithin, sphingomyelin And sphingophospholipids such as ceramide phosphorylethanolamine and ceramide phosphorylglycerol.
  • the dispersion treatment in the present invention may be any method as long as the surface of the carbon dioxide absorbent is efficiently covered with a dispersion aid and a dispersion in which the carbon dioxide absorbent is uniformly dispersed can be prepared.
  • a dispersion aid for example, supercritical fluid treatment, ultrasonic irradiation treatment, and stirring treatment are preferable.
  • the solvent of the dispersion is preferably water or an organic solvent.
  • the organic solvent include ethanol, dichloromethane, hexane and the like.
  • the dispersibility of the carbon dioxide absorbent is improved by exposing the mixture of the carbon dioxide absorbent and the dispersion aid to the supercritical fluid.
  • carbon dioxide in a supercritical state is preferable.
  • the supercritical carbon dioxide in the present invention means carbon dioxide in a supercritical state having a critical temperature of 30.98 ° C. and a critical pressure of 7.3773 MPa or more. Note that carbon dioxide in which critical temperature alone or critical pressure alone is a critical condition is not a supercritical state.
  • FIG. 8 shows a transmission electron micrograph of the supercritical fluid treatment performed at a treatment pressure of 20 MPa, a treatment temperature of 25 ° C., 40 ° C., 60 ° C., 120 ° C. and 130 ° C. for 15 minutes.
  • the black portion in the photograph is the carbon dioxide absorbent coated with the dispersion aid, and the white portion is the aqueous solution of the dispersion aid.
  • the dispersion treated at a treatment temperature of 25 ° C. not satisfying the supercritical treatment conditions has a particle diameter of 1 ⁇ m or more for the carbon dioxide absorbent.
  • the carbon dioxide absorbent is aggregated without being dispersed in the aqueous solution of the auxiliary agent (see FIG. 8A).
  • the particle diameter of the carbon dioxide absorbent is about 100 nm, and the carbon dioxide absorbent in the mixture is uniformly dispersed. (See FIG. 8B).
  • the supercritical fluid treatment requires treatment in a state where both the pressure and temperature at which carbon dioxide becomes a supercritical state are satisfied.
  • the particle diameter of a carbon dioxide absorber is about 10 nm, and high dispersibility is acquired (FIG.8 (c)).
  • the particle diameter of the carbon dioxide absorbent is about 0.8 ⁇ m, and it can be seen that the carbon dioxide absorbent is agglomerated. (See FIG. 8 (e)) That is, the processing temperature may be too high, and if the processing temperature is excessive, the dispersion effect is suppressed.
  • the dispersibility of the carbon dioxide absorbent is obtained by irradiating the mixture of the carbon dioxide absorbent and the dispersion aid with ultrasonic waves having a frequency of 15 KHz to 60 KHz and an intensity of about 75 W to 600 W.
  • the dispersibility of the carbon dioxide absorbent is obtained by irradiating the mixture of the carbon dioxide absorbent and the dispersion aid with ultrasonic waves having a frequency of 15 KHz to 60 KHz and an intensity of about 75 W to 600 W.
  • FIG. 9 shows a transmission electron micrograph of the ultrasonic irradiation treatment for 30 minutes in the ultrasonic waves having the frequency of 40 KHz, the intensity of 50 W, 75 W, 300 W, 600 W and 700 W under the condition of 60 ° C. Comparing the mixture after the ultrasonic irradiation treatment at each intensity, the one subjected to the dispersion treatment by the ultrasonic irradiation with the intensity of 50 W has a particle diameter of the carbon dioxide absorbent of about 1 ⁇ m, and the carbon dioxide in the mixture after the treatment The carbon absorbent is aggregated without being dispersed (see FIG. 9A).
  • the particle diameter of the carbon dioxide absorbent was about 150 nm, and the carbon dioxide absorbent in the mixture was uniformly dispersed (FIG. 9).
  • the particle diameter of a carbon dioxide absorber is about 80 nm, and the high dispersibility is acquired (refer FIG.9 (c) and (d)).
  • the particle diameter of the carbon dioxide absorbent is about 1 ⁇ m, indicating that the carbon dioxide absorbent is agglomerated (see FIG.
  • the dispersibility of the carbon dioxide absorbent is improved by stirring the mixture of the carbon dioxide absorbent and the dispersion aid at a rotational speed of 1,000 rpm to 20,000 rpm.
  • FIG. 10 shows a transmission electron micrograph of the sample that was stirred for 30 minutes at a rotational speed of 500 rpm, 1,000 rpm, 15,000 rpm, 20,000 rpm, and 25,000 rpm under the condition of 60 ° C.
  • the particle diameter of the carbon dioxide absorbent was both about 60 nm, and high dispersibility was obtained (FIG. 10 (c) and ( d)).
  • the particle diameter of the carbon dioxide absorbent is about 0.8 ⁇ m, and the carbon dioxide absorbent is agglomerated (see FIG. 10 (e)).
  • the rotational speed is faster than this, the absorbent is not preferable because the dispersion aid is prevented from covering the surface of the carbon dioxide absorbent and the carbon dioxide absorbent is aggregated.
  • the resin in the present invention may be any resin that is generally used.
  • polyolefin resin polyolefin resin, polyester resin, polyamide resin, vinyl chloride resin, and polystyrene resin are preferable.
  • a carbon dioxide absorbent and a dispersion aid are mixed with water or an organic solvent, and a carbon dioxide absorbent dispersion is produced by any one of supercritical fluid treatment, ultrasonic irradiation treatment, and stirring treatment. At this time, when the carbon dioxide absorbent is uniformly dispersed, the mixture becomes transparent.
  • the mixing ratio is preferably 0.1 to 10 parts by weight of the dispersion aid with respect to 100 parts by weight of the carbon dioxide absorbent. Further, the dispersion aid is most preferably 0.1 to 5 parts by weight. If the amount of the dispersion aid added to the carbon dioxide absorbent is less than this, the carbon dioxide absorbent in the carbon dioxide absorbent dispersion, which is a mixture to be produced, will not be sufficiently dispersed and finally mixed.
  • the above mixture is preferably heated to a temperature of 30.98 ° C. or higher under carbon dioxide, and is preferably performed at a temperature of 7.37 MPa or higher for 1 minute to 12 hours. Most preferably, it is carried out at a temperature of 120 ° C. for 10 minutes to 1 hour.
  • the particle size distribution measurement at the exposure time of the supercritical fluid treatment at the treatment temperature of 60 ° C. and the treatment pressure of 20 MPa is performed, and the average particle diameter of each exposure time is calculated from the result, and the exposure time obtained from the result and The relationship with the average particle diameter is shown in FIG.
  • the exposure time is shorter than 10 minutes, that is, 0.1 minute, 0.5 minute, and 1 minute, the dispersibility of the carbon dioxide absorbent with respect to the dispersion aid is insufficient and aggregation occurs, and the average of the carbon dioxide absorbent It can be seen that the particle size is as large as about 400 nm to 700 nm. In addition, when the exposure time was longer than 1 hour, that is, from 2 hours to 24 hours, there was almost no difference in the average particle size from that when the exposure time was 1 hour.
  • the mixture When performing ultrasonic irradiation treatment, the mixture is irradiated with ultrasonic waves having a frequency of 15 KHz to 60 KHz and an intensity of about 75 W to 600 W for 5 to 60 minutes under conditions of 40 ° C to 80 ° C. It is preferable to irradiate ultrasonic waves having a frequency of 40 KHz and an intensity of 300 W for 30 minutes.
  • the particle size distribution measurement at the irradiation time of the ultrasonic irradiation treatment with the ultrasonic wave having the frequency of 40 KHz and the intensity of 300 W under the condition of 60 ° C. is performed, and the average particle diameter of each irradiation time is calculated from the result.
  • the relationship between the irradiation time and average particle diameter obtained from the results is shown in FIG.
  • the irradiation time is shorter than 5 minutes, that is, 0.1 minute, 0.5 minute, and 1 minute, the dispersibility of the carbon dioxide absorbent with respect to the dispersant is insufficient and aggregation occurs, and the average particle diameter of the carbon dioxide absorbent It can be seen that the diameter is as large as about 400 nm to about 800 nm.
  • the irradiation time was longer than 60 minutes, that is, 90 minutes, 120 minutes, and 180 minutes, there was almost no difference in the average particle diameter from that when the irradiation time was 60 minutes.
  • the mixture mixture is preferably stirred at a rotational speed of about 1,000 rpm to about 20,000 rpm for 5 to 60 minutes under a temperature condition of about 40 ° C. to 80 ° C., It is most preferable to stir at a temperature of 60 ° C. for 30 minutes at a rotational speed of 15,000 rpm.
  • the particle size distribution was measured during the stirring time of the stirring process at 60 ° C. and a rotational speed of 15000 rpm, and the average particle size of each stirring time was calculated from the results, and the stirring time and average particle size obtained from the results
  • FIG. 13 shows the relationship.
  • the stirring time is shorter than 5 minutes, that is, when 0.1 minute, 0.5 minute, and 1 minute, the dispersibility of the carbon dioxide absorbent with respect to the dispersant is insufficient and aggregation occurs, and the average particle diameter of the carbon dioxide absorbent It can be seen that the diameter is as large as about 400 nm to about 900 nm.
  • the stirring time was longer than 60 minutes, that is, 90 minutes, 120 minutes, and 180 minutes, there was almost no difference in average particle diameter from that when the stirring time was 30 minutes.
  • the dispersion aid When the dispersion aid is 20 parts by weight or less, the average particle diameter of the carbon dioxide absorbent gradually decreases and becomes the smallest at 1 part by weight. Thereafter, the average particle size again increases, and at 0.01 part by weight, the carbon dioxide absorbent is aggregated to about 500 nm. From this, it can be said that 0.1 to 5 parts by weight of the dispersion aid is preferably added to 100 parts by weight of the carbon dioxide absorbent.
  • FIG. 15 shows the relationship between the blending amount of carbon dioxide and carbon dioxide emission.
  • the strength does not break in the tensile impact strength test. I confirmed that there was.
  • Impact strength strength decreases as the amount of carbon dioxide absorber dispersion increases, the 40 parts by weight, in the 20 kJ / m 2, 50 parts by weight, in the 12 kJ / m 2, 60 parts by weight, 6 kJ the / m 2, 70 parts by weight, and disrupted by 2 kJ / m 2.
  • the carbon dioxide emission amount shows a good value because the amount of carbon dioxide absorbent dispersion increases and the carbon dioxide emission amount decreases.
  • the carbon dioxide absorbent dispersion is 0% with respect to 100 parts by weight of the resin. It can be said that it is preferable to add 1 to 40 parts by weight.
  • the various carbon dioxide absorbent dispersions obtained by the above operation are added to the resin while spraying at about 100 ml per minute and stirred for about 15 minutes with a mixer to obtain a mixture. Thereafter, the mixture is kneaded by a usual method using a twin-screw extruder, a single-screw extruder, a heating type three roll, a heating and pressure kneader, a Banbury mixer, etc., thereby reducing carbon dioxide emissions of the present invention.
  • a pellet of the resin composition can be obtained.
  • the carbon dioxide emission reducing resin composition of the present invention in the case of a carbon dioxide emission reducing resin composition formed by adding a mixture of a carbon dioxide absorbent and a dispersion aid to a polyethylene resin after dispersion treatment,
  • Packaging films, plastic bags, garbage bags, packaging tapes, ropes, etc.
  • containers cosmetic containers, chemical containers, food containers, cups, etc.
  • building materials water pipes, insulation panels, pallets, hoses, curing sheets, etc.)
  • Agricultural materials greenhouse covering materials, multi-films, rice bags, fertilizer bags, feed bags, sandbag bags, seedling pots, planters, flowerpots, etc.), fishing materials (fishing nets, fishing lines, etc.), electrical components (condensers, wire covering materials, etc.) ), Machine parts (rollers, screws, bearings, etc.), miscellaneous goods / daily necessities (shopping bags, stationery, buckets, artificial flowers, etc.), foam products (foam cushioning materials, cushion materials,
  • a carbon dioxide emission-reducing resin composition that is added to polypropylene after a dispersion treatment of a mixture of carbon dioxide absorbent and dispersion aid
  • packaging tape, band, string, film, plastic cardboard, etc.
  • Containers cosmetic bottles, chemical containers, trays, etc.
  • agricultural materials planters, etc.
  • fishing materials ropes, fishing nets, etc.
  • automotive components instrument panels, interiors, airbag covers, bumpers, etc.
  • home appliances Refrigerator interior, washing machine exterior, TV / radio exterior, etc.
  • miscellaneous goods / daily necessities various cases (ice cooler, suitcase, etc.), stationery, leisure tableware, toys, sports equipment, artificial grass, outdoor furniture, etc.
  • Textile products clothing (underwear, undershirt, etc.)), medical products (medical clothing, syringe syringes, etc.), etc.
  • a carbon dioxide emission-reducing resin composition formed by adding a mixture of a carbon dioxide absorbent and a dispersion aid to a polyethylene terephthalate resin after dispersion treatment
  • packaging tape, blister pack, food packaging film, etc.
  • Containers beverage bottles, cosmetic bottles, other general-purpose bottles, etc.
  • seats cards, labels, magnetic tape base materials, etc.
  • automotive components tire cords, seat belts, etc.
  • miscellaneous goods / daily necessities umbrellas, raincoats, etc.
  • Tents textile products (cushion padding, bedding padding, clothing, sewing threads, etc.).
  • a container a solvent container, a solvent transport part, a precision instrument case, etc.
  • Fishing materials fishing nets, etc.
  • electrical components printed circuit boards, connectors, bobbins, optical pickup parts cases, micromotor parts, film-like electronic circuit boards, etc.
  • mechanical parts compressor parts, shock absorber components, personal computers / Internal components for copiers and printers, bearings for rotating equipment, seal packings for hydraulic mechanisms, compounds, fuel cell components), optical components (optical films, optical fiber components, etc.), automotive components (electrical components, paint, etc.) , Miscellaneous goods / daily necessities (string coating, etc.), textile products (nonwoven fabric, etc.).
  • a carbon dioxide emission-reducing resin composition obtained by dispersing a mixture of carbon dioxide absorbent and dispersing aid and then adding it to polyamide resin, packaging (food film, etc.), agricultural materials (net, , Hoses, ropes, etc.), fishing materials (fishing nets, fishing lines, etc.), electrical components (clamps, lighting members, etc.), mechanical parts (pipes, transport rollers, nylon rivets, nylon plugs, cooling fans, etc.), optical components ( Lenses, lights, works of art, decorations, etc.), automotive components (airbags, engine covers, door mirror stays, door handle covers, interiors (seats, covers, etc.), tire cords, etc.), miscellaneous goods and daily necessities (door handles, combs) , Knives, forks, chair casters, toothbrush hair, etc.), textile products (curtains, carpets, sportswear (water) , Such as ski wear), socks, underwear, etc.), medical supplies (hand washing brush, baby bottles, is a tube, etc.),
  • a carbon dioxide emission-reducing resin composition formed by dispersing a mixture of a carbon dioxide absorbent and a dispersion aid and then adding it to a vinyl chloride resin
  • packaging such as a blister package
  • container such as a blister package
  • container such as a blister package
  • container such as a blister package
  • container such as a blister package
  • container such as a blister package
  • detergent containers such as a detergent container
  • agricultural materials house covering materials, heat insulation sheets, etc.
  • building materials pipes (hard and soft water pipes, rain gutters, etc.), wallpaper, electric wire covering materials, etc.
  • automotive components undercoat) Etc.
  • miscellaneous goods / daily necessities artificial leather (bags, shoes, etc.), stationery (eraser, etc.), toys (figuria, etc.)
  • foamed products cushion materials, core materials for wind power blades, railway vehicles, special vehicles, etc. Ship wall core, etc.
  • textile products clothing, etc.
  • printing / advertisements printing laminate film, labels, etc
  • a carbon dioxide emission-reducing resin composition obtained by dispersing a mixture of a carbon dioxide absorbent and a dispersion aid and then adding it to a polystyrene resin
  • the container food packaging container, tray, leisure cup, leisure Spoons and forks
  • building materials wall insulation, etc.
  • home appliances TV casings, air conditioner exteriors, CD cases, etc.
  • automotive components lamp lenses, etc.
  • miscellaneous goods and daily necessities tilt handles, toys
  • stationery such as pens and rulers
  • foamed products such as cushioning materials.
  • Example 1 100 parts by weight of calcium hydroxide as a carbon dioxide absorbent, 1 part by weight of calcium 12-hydroxystearate as a dispersion aid, and 20 parts by weight of ion-exchanged water are sealed in a high-pressure stainless steel container maintained at 60 ° C., and the pressure is 20 MPa. Carbon dioxide is injected so as to be in a supercritical state, and after stirring and mixing for 15 minutes while maintaining the temperature and pressure, a supercritical treatment is performed to discharge carbon dioxide and return it to atmospheric pressure. Obtained.
  • Comparative Example 1 a resin composition obtained by performing the entire process except the supercritical processing process in Example 1 is referred to as Comparative Example 1.
  • Example 2 In Example 1, supercritical treatment was performed by changing calcium hydroxide as a carbon dioxide absorbent to calcium oxide, and the obtained carbon dioxide absorbent dispersion was added to a low density polyethylene resin to discharge pellet-like carbon dioxide. An amount-reducing resin composition was obtained. Further, a resin composition obtained by performing the entire process except the supercritical processing process in Example 2 is referred to as Comparative Example 2.
  • Example 3 In Example 1, the calcium hydroxide as the carbon dioxide absorbent is changed to amorphous aluminosilicate for supercritical treatment, and the obtained carbon dioxide absorbent dispersion is added to the low density polyethylene resin to form a pellet. A carbon dioxide emission-reducing resin composition was obtained. Further, a resin composition obtained by performing the entire process except the supercritical process process in Example 3 is referred to as Comparative Example 3.
  • Example 4 In Example 1, supercritical processing was performed by changing calcium hydroxide as a carbon dioxide absorbent to barium titanate, and the obtained carbon dioxide absorbent dispersion was added to a low-density polyethylene resin to form pellet-like carbon dioxide. An emission reduction resin composition was obtained. Comparative Example 4 is a resin composition obtained by performing the entire process except the supercritical process in Example 4.
  • Example 5 In Example 1, calcium hydroxide as a carbon dioxide absorbent is changed to lithium silicate for supercritical treatment, and the obtained carbon dioxide absorbent dispersion is added to a low density polyethylene resin to discharge pellet-like carbon dioxide. An amount-reducing resin composition was obtained. In addition, a resin composition obtained by performing the entire process except the supercritical processing process in Example 5 is referred to as Comparative Example 5.
  • Example 6 In Example 1, 12-hydroxystearate (fatty acid metal salt) as a dispersion aid was changed to phosphatidylcholine (amphiphilic lipid) for supercritical treatment, and the resulting carbon dioxide absorbent dispersion was treated with low-density polyethylene. A pellet-like carbon dioxide emission reduction resin composition was obtained by adding to the resin. In addition, a resin composition obtained by performing the entire process except the supercritical processing process in Example 6 is referred to as Comparative Example 6.
  • Example 7 In Example 1, supercritical treatment was carried out by changing the calcium 12-hydroxystearate (fatty acid metal salt) as a dispersion aid to an olefin / maleic acid copolymer sodium salt (polymer surfactant), and then obtaining the resulting dioxide dioxide. A carbon absorbent dispersion was added to the low density polyethylene resin to obtain a pellet-like carbon dioxide emission reduction resin composition. Further, a resin composition obtained by performing the entire process except the supercritical process process in Example 7 is referred to as Comparative Example 7.
  • Example 8 In Example 3, supercritical treatment was performed by replacing calcium 12-hydroxystearate (fatty acid metal salt) as a dispersion aid with phosphatidylcholine (amphiphilic lipid), and the resulting carbon dioxide absorbent dispersion was treated with low-density polyethylene. A pellet-like carbon dioxide emission reduction resin composition was obtained by adding to the resin. In addition, a resin composition obtained by performing the entire process except the supercritical processing process in Example 8 is referred to as Comparative Example 8.
  • Example 9 In Example 3, supercritical treatment was carried out by changing the calcium 12-hydroxystearate (fatty acid metal salt) as a dispersion aid to sodium polyacrylate (polymer surfactant), and the resulting carbon dioxide absorbent dispersion obtained was added to a low-density polyethylene resin to obtain a pellet-like carbon dioxide emission-reducing resin composition.
  • a resin composition obtained by performing the entire process except the supercritical processing process in Example 9 is referred to as Comparative Example 9.
  • Example 10 In Example 1, supercritical treatment was performed by replacing calcium hydroxy 12-hydroxystearate (fatty acid metal salt) as a dispersion aid with POE30-10-ODES (polymeric surfactant), which is a polyoxyethylene-type gemini surfactant.
  • the carbon dioxide absorbent dispersion obtained was added to a low density polyethylene resin to obtain a pellet-like carbon dioxide emission reduction resin composition. Further, a resin composition obtained by performing the entire process except the supercritical process process in Example 10 is referred to as Comparative Example 10.
  • Example 11 In Example 1, the carbon dioxide absorbent dispersion obtained after supercritical processing was added to PET resin (A-PET FR, manufactured by Teijin Chemicals Ltd.) to obtain a pellet-like carbon dioxide emission reduction resin composition. It was. In addition, a resin composition obtained by performing the entire process except the supercritical processing process in Example 11 is referred to as Comparative Example 11.
  • Example 12 In Example 1, the carbon dioxide absorbent dispersion obtained after supercritical processing was added to nylon 6 resin (Amilan CM1017, manufactured by Toray Industries, Inc.) to obtain a pellet-like carbon dioxide emission reduction resin composition. Further, a resin composition obtained by performing the entire process except the supercritical process process in Example 12 is referred to as Comparative Example 12.
  • Example 13 In Example 1, the carbon dioxide absorbent dispersion obtained after the supercritical treatment was added to a PVC resin (SE-1100, manufactured by Sun Arrow Kasei Co., Ltd.) to obtain a pellet-like carbon dioxide emission reduction resin composition. Obtained. In addition, a resin composition obtained by performing the entire process except the supercritical processing process in Example 13 is referred to as Comparative Example 13.
  • a resin composition obtained by performing the entire process except the supercritical processing process in Example 13 is referred to as Comparative Example 13.
  • Example 14 In Example 1, the carbon dioxide absorbent dispersion obtained after supercritical processing was added to PS resin (manufactured by PS Japan Co., Ltd., HIPS 475D) to obtain a pellet-like carbon dioxide emission reduction resin composition. Further, a resin composition obtained by performing the entire process except the supercritical process process in Example 14 is referred to as Comparative Example 14.
  • Example 15 In a glass container, 100 parts by weight of calcium hydroxide as a carbon dioxide absorbent, 1 part by weight of calcium 12-hydroxystearate as a dispersion aid, and 20 parts by weight of ion-exchanged water are placed in an ultrasonic homogenizer at 60 ° C. Was subjected to an ultrasonic irradiation process of irradiating an ultrasonic wave with a frequency of 40 KHz and an output of 300 W for 15 minutes to obtain a carbon dioxide absorbent dispersion. Next, the mixture was stirred for 15 minutes with a mixer while spraying 30 parts by weight of the carbon dioxide absorbent dispersion at 100 ml per minute with respect to 100 parts by weight of the low density polyethylene resin.
  • Comparative Example 15 is the same as Comparative Example 1.
  • Example 16 In Example 15, the mixture obtained by mixing amorphous aluminosilicate as a carbon dioxide absorbent and phosphatidylcholine (amphiphilic lipid) as a dispersion aid was subjected to ultrasonic irradiation treatment, and the resulting carbon dioxide absorbent dispersion obtained was used to obtain a pellet-like carbon dioxide emission-reducing resin by the same production method as in Example 15. Further, a resin composition obtained by performing the entire process except the ultrasonic irradiation process in Example 16 is referred to as Comparative Example 16. Comparative Example 16 is the same as Comparative Example 8.
  • Example 17 100 parts by weight of calcium hydroxide as a carbon dioxide absorbent, 1 part by weight of calcium 12-hydroxystearate as a dispersion aid, and 20 parts by weight of ion-exchanged water are placed in a stainless steel container, and a stirrer (M The mixture was set to CLEARMIX CLM-0.8S, manufactured by Technic Co., Ltd., and stirred for 30 minutes at 10,000 rpm to obtain a carbon dioxide absorbent dispersion. Next, the mixture was stirred for 15 minutes with a mixer while spraying 30 parts by weight of the carbon dioxide absorbent dispersion at 100 ml per minute with respect to 100 parts by weight of the low density polyethylene resin.
  • Comparative Example 17 is the same as Comparative Example 1.
  • Example 18 In Example 17, the mixture obtained by mixing amorphous aluminosilicate as a carbon dioxide absorbent and phosphatidylcholine (amphiphilic lipid) as a dispersion aid was subjected to stirring treatment, and the resulting carbon dioxide absorbent dispersion was used. Thus, a pellet-like carbon dioxide emission reducing resin was obtained by the same production method as in Example 17. The resin composition obtained by carrying out the entire process except the stirring treatment step in Example 18 is referred to as Comparative Example 18. The comparative example 18 is the same as the comparative example 8.
  • Example 19 100 parts by weight of coconut mesocarp fiber as a carbon dioxide absorbent for organic compounds, 1 part by weight of calcium 12-hydroxystearate as a dispersion aid, and 20 parts by weight of ion-exchanged water are placed in a stainless steel container under the condition of 60 ° C. The mixture was set in a stirrer (CLEARMIX CLM-0.8S, manufactured by M Technique Co., Ltd.) and stirred for 30 minutes at a rotation speed of 10,000 rpm to obtain a carbon dioxide absorbent dispersion.
  • a stirrer CLEARMIX CLM-0.8S, manufactured by M Technique Co., Ltd.
  • Evaluation method impact strength measurement
  • the measurement was performed using a digital impact tester DR-IB tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.).
  • the test piece was pellet-shaped Example 1 thru
  • a test piece having the above-mentioned dimensions is produced by cutting directly after molding a plate material into a plate with a notch of 10 mm and a thickness of 4 mm, or once by compression molding or injection molding.
  • one end of the test piece is fixed to a gripper and the other end is fixed to a movable crosshead support, and a striker of any weight is supported by the crosshead at an impact velocity of 3.46 m / s. Do this by colliding with the table. The measurement was performed 10 times each.
  • test piece is a pellet-shaped resin composition of reduced carbon dioxide emission of Example 1 to Example 19 and the resin composition of Comparative Example 1 to Comparative Example 19 of 20 mm ⁇ 5 mm by injection molding.
  • the measurement is performed by fixing both ends of the test piece, applying a constant tensile load in the length direction of the test piece, measuring the stress at each moment and the strain corresponding to the stress, and from the stress-strain curve diagram at the yield point. Obtain the yield stress. The measurement was performed 5 times each.
  • test piece is 80 mm in length by injection molding the pellet-shaped resin composition of carbon dioxide emission reduction of Example 1 to Example 19 and the resin composition of Comparative Example 1 to Comparative Example 19.
  • a plate material having a width of 10 mm and a thickness of 4 mm is directly molded, or once a plate material is formed by compression molding or injection molding, a test piece having the above dimensions is prepared by cutting.
  • both ends of the test piece are freely supported at a fulcrum interval of 64 mm, a bending load (test stress) is applied to the center between the fulcrum by a pressure wedge, and the fracture stress and the deflection are measured. The measurement was performed 5 times each.
  • the measurement was performed using a plastic combustion tester (manufactured by Sugia Magen). As the samples, the carbon dioxide emission reduction resin compositions of Examples 1 to 19 and the resin compositions of Comparative Examples 1 to 19 of test pieces having a weight of 0.1 g were used. In the measurement, a 0.1 g sample is burned for 10 minutes under the conditions of a gas supply rate of 0.5 L / min and a set temperature of 750 ° C., and the total emission amount of carbon dioxide generated at that time is measured. The measurement was performed three times each.
  • FIG. 1 shows the evaluation results of carbon dioxide emission, tensile yield stress, flexural modulus and tensile impact strength of the example.
  • FIG. 2 shows carbon dioxide emissions, tensile yield stress, flexural modulus and tensile strength of the comparative example. The evaluation results of tensile impact strength are shown respectively. In addition, each evaluation result describes the average value with respect to the number of measurements.
  • Carbon dioxide absorbents were calcium hydroxide (Example 1 and Comparative Example 1), calcium oxide (Example 2 and Comparative Example 2), amorphous aluminosilicate (Example 3 and Comparative Example 3), and barium titanate (implemented).
  • the reduction amount of carbon dioxide emission in the case of Example 4 and Comparative Example 4) and lithium silicate (Example 5 and Comparative Example 5) is compared.
  • calcium 12-hydroxystearate was used as the dispersion aid, and low-density polyethylene resin (LLDPE) was used as the resin.
  • LLDPE low-density polyethylene resin
  • the carbon dioxide absorbent is calcium hydroxide
  • the dispersion aid is calcium 12-hydroxystearate (Example 1 and Comparative Example 1)
  • phosphatidylcholine Example 6 and Comparative Example 6
  • sodium olefin / maleic acid copolymer The reduction amount of carbon dioxide emission when using salt (Example 7 and Comparative Example 7) and POE30-10-ODES (Example 10 and Comparative Example 10) is compared. As shown in FIG.
  • the overall value is better than when the carbon dioxide absorbent is calcium hydroxide, 56.4% for 12-hydroxycalcium stearate, and 51.5% for phosphatidylcholine.
  • sodium polyacrylate 55.0% emission reduction is realized.
  • the best results were obtained with 56.4% for calcium 12-hydroxystearate, which is a fatty acid metal salt.
  • LLCPE low density polyethylene resin
  • PET resin Example 11 and Comparative Example 1
  • nylon 6 resin Example 12 and Comparative Example 12
  • PVC polyvinylidene chloride resin
  • PS polystyrene resin
  • Example 8 a mixture in which the carbon dioxide absorbent was amorphous aluminosilicate and the dispersion aid was phosphatidylcholine, a dispersion treatment was not performed (Comparative Example 8), a supercritical fluid treatment (Example 8), A reduction amount of carbon dioxide emission is compared between the sample subjected to the ultrasonic irradiation treatment (Example 16) and the sample subjected to the stirring treatment (Example 18). As shown in FIG. 6 (b), in any of the dispersion treatment methods, as compared with the case where the carbon dioxide absorbent is calcium hydroxide and the dispersant is calcium 12-hydroxystearate, the comparison is made with no dispersion treatment. Carbon dioxide emissions have been reduced to about half, 51.5% for supercritical fluid processing, 53.5% for ultrasonic irradiation processing, and 51.5% for stirring processing. Is realized.
  • the resin since the resin has original characteristics, it is easy to convert an existing resin product to a carbon dioxide emission reducing resin composition. Yes, it can realize an early effect on global warming suppression.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】樹脂材料の廃棄時の二酸化炭素排出量削減が求められているが、従来の方法で二酸化炭素吸収剤を樹脂に分散させても分散性が悪く効果が低いため、分散性を改善することにより、焼却時の二酸化炭素排出量削減効果が高く、軽量で機械的物性の優れた樹脂材料とその製造方法を提供する。 【解決手段】二酸化炭素吸収剤と分散助剤を混合して超音波照射処理、超臨界流体処理、撹拌処理のうち少なくとも1つから選ばれる分散処理を行った後、樹脂に添加することにより二酸化炭素排出量削減効果の高い樹脂材料が得られる。

Description

二酸化炭素排出量削減樹脂組成物およびその製造方法並びにその用途
 本発明は、二酸化炭素排出量削減樹脂組成物およびその製造方法並びにその用途に関するものである。
 樹脂材料は、軽量、腐食に強い、成形が容易等の特徴を活かして、フィルム、シート、ボトルを始めとする各種成型品に加工され、日常生活用品から産業用途まで幅広い分野において大量に使用され、我々の生活を支えている。しかし、幅広く大量に普及したため、廃棄時の焼却における有害物質の発生等各種問題を引き起こしている。ここで代表的な有害物質であるダイオキシンの排出問題は、燃焼温度の制御によって解決されてきているが、地球温暖化への影響から排出量削減が強く望まれている二酸化炭素は、燃焼の最終生成物の1つであるため、削減が難しいのが現状である。
 一方、この焼却への対策として、埋め立てによって自然分解する生分解性樹脂も存在するが、大量に使用される樹脂材料を全て置き換え、埋め立てによって処分することは困難であるため、樹脂の廃棄方法は焼却が重要な位置を占めてしまう。
 また、廃棄量そのものを削減する方法として、再生利用が行われているが、再生利用はまだ一部であるのと、再利用を重ねるごとに強度等の物性が落ち、最終的に焼却されることとなるため、二酸化炭素排出の根本的な解決とはならない。
 以上の様な二酸化炭素排出問題を解決するため、二酸化炭素の発生を抑制する化合物を樹脂に配合する方法(例えば特許文献1および2および3参照)が出願されている。
 特許文献1では、二酸化炭素の発生を抑制する化合物として炭酸カルシウム、アルミノ珪酸塩および水酸化カルシウムを用いている。特許文献2では、ゼオライト、炭酸カルシウム、特定の難燃化剤を用いている。特許文献3では、ココナツ中果皮繊維を用いている。
特開2008-106171号公報 特開平7-188487号公報 特開2006-77048号公報
 しかしながら、特許文献1および特許文献2では、有機化合物である樹脂と相溶性の悪い無機化合物を二酸化炭素の発生を抑制する化合物として、通常の方法で押出機によって混練り、配合するため、無機化合物の分散性が悪く、凝集が起こって樹脂の耐衝撃強度の低下を招いてしまう。また、凝集することによって無機化合物の表面積が小さくなるため、アルミノ珪酸塩やゼオライトの空孔に二酸化炭素を吸着させる効果や、水酸化カルシウムと二酸化炭素の化学反応を活かしきれない。そのため、無機化合物による二酸化炭素の吸収量を多くするためには無機化合物の配合量を増やすこととなり、さらに耐衝撃性が落ちて脆い材料となり、樹脂材料の軽いという特長も失われてしまう。
 また、特許文献3では、植物由来の配合物であるため、耐熱性が低く樹脂成型時の高温で変色や臭いが発生する。従って、成形温度と方法が制限され、樹脂材料の化学的安定性と成形が容易であるという特長が失われてしまう。
 このように樹脂の特長を活かしたまま焼却時の二酸化炭素排出量を削減することは非常に困難であるが、政府によって二酸化炭素削減量の長期目標も発表される等、この問題は、ますます避けて通れないものとなり、今後、樹脂の特長を損なわず、二酸化炭素排出量の削減が可能な樹脂材料の需要が一層増加していくものと考えられる。
 本発明は、上記の様な従来技術に鑑み、二酸化炭素吸収効果を持った無機化合物または有機化合物の分散性を高めて、焼却時の二酸化炭素排出量の削減効果が高く、軽量で機械的物性に優れた樹脂材料とその製造方法および用途を提供することを目的とする。
 前記課題を解決するための、本発明の第1の二酸化炭素排出量削減樹脂組成物は、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、樹脂に添加してなることを特徴とする。
 第2の二酸化炭素排出量削減樹脂組成物は、前記分散処理を、超臨界流体処理、超音波照射処理および攪拌処理のうち少なくとも1つから選ばれることを特徴とする。
 第3の二酸化炭素排出量削減樹脂組成物は、前記二酸化炭素吸収剤が、金属水酸化物、金属酸化物、アルミノ珪酸塩、チタン酸化合物およびリチウム化合物のうち少なくとも1つから選ばれることを特徴とする。
 第4の二酸化炭素排出量削減樹脂組成物は、前記分散助剤が、脂肪酸金属塩、高分子界面活性剤および両親媒性脂質のうち少なくとも1つから選ばれることを特徴とする。
 第5の二酸化炭素排出量削減樹脂組成物は、前記樹脂が、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂およびポリスチレン系樹脂の少なくとも1つから選ばれることを特徴とする。
 前記課題を解決するための、本発明の第1の二酸化炭素排出量削減樹脂組成物の製造方法は、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、樹脂に添加してなることを特徴とする。
 第2の二酸化炭素排出量削減樹脂組成物の製造方法は、前記分散処理が、超臨界流体処理、超音波照射処理および攪拌処理の少なくとも1つから選ばれることを特徴とする。
 第3の二酸化炭素排出量削減樹脂組成物の製造方法は、前記二酸化炭素吸収剤が、金属水酸化物、金属酸化物、アルミノ珪酸塩、チタン酸化合物およびリチウム化合物のうち少なくとも1つから選ばれることを特徴とする。
 第4の二酸化炭素排出量削減樹脂組成物の製造方法は、前記分散助剤が、脂肪酸金属塩、高分子界面活性剤および両親媒性脂質のうち少なくとも1つから選ばれることを特徴とする。
 第5の二酸化炭素排出量削減樹脂組成物の製造方法は、前記樹脂が、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂およびポリスチレン系樹脂のうち少なくとも1つから選ばれることを特徴とする。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリエチレン樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、包装、容器、建築資材、農業資材、漁業資材、電気部品、機械部品、雑貨・日用品および発泡品であることを特徴とする。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリプロピレンに添加してなる二酸化炭素排出量削減樹脂組成物の用途が、包装、容器、農業資材、漁業資材、自動車構成部品、家電、雑貨・日用品、繊維製品および医療品であることを特徴とする。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリエチレンテレフタレート樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、包装、容器、シート、自動車構成部品、雑貨・日用品および繊維製品であることを特徴とする。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、液晶樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、容器、漁業資材、電気部品、機械部品、光学部品、自動車構成部品、雑貨・日用品および繊維製品であることを特徴とする。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリアミド樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、包装、農業資材、漁業資材、電気部品、機械部品、光学部品、自動車構成部品、雑貨・日用品、繊維製品および医療品であることを特徴とする。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、塩化ビニル樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、包装、容器、農業資材、建築資材、自動車構成部品、雑貨・日用品、発泡品、繊維製品および印刷・広告であることを特徴とする。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリスチレン樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、容器、建築資材、家電、自動車構成部品、雑貨・日用品および発泡品であることを特徴とする。
 本発明によれば、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、樹脂に添加することにより、樹脂との相溶性が悪い二酸化炭素吸収剤を凝集させずに樹脂に対して分散させることができ、高い二酸化炭素の吸収効果を有する二酸化炭素排出量削減樹脂組成物を得ることが可能となる。
 また、分散性を高くし、樹脂と接触する二酸化炭素吸収剤の表面積を増大できることで、少ない量で高い二酸化炭素の吸収効果が得られるため、樹脂に対する二酸化炭素吸収剤の添加量の削減が可能となり、樹脂本来の軽量、成形の容易性などの特性を損なうことが無く、用途展開を大幅に広げることが可能となる。
 さらに、添加する二酸化炭素吸収剤を用途に応じて適宜選択することにより、軽量で耐衝撃性の高い二酸化炭素排出量削減樹脂組成物の製造が可能となる。
本発明に係る二酸化炭素排出量削減樹脂組成物の実施例の評価結果 従来の樹脂組成物の評価結果 二酸化炭素吸収剤の種類における実施例と比較例との二酸化炭素排出量の比較図 分散助剤の種類における実施例と比較例との二酸化炭素排出量の比較 樹脂の種類における実施例と比較例との二酸化炭素排出量の比較 分散処理方法における二酸化炭素排出量の比較 分散処理を行わない場合の分散助剤中の二酸化炭素吸収剤の分散性を示す透過型電子顕微鏡写真 超臨界流体処理を行った場合の分散助剤中の二酸化炭素吸収剤の分散性を示す透過型電子顕微鏡写真 超音波処理を行った場合の分散助剤中の二酸化炭素吸収剤の分散性を示す透過型電子顕微鏡写真 攪拌処理を行った場合の分散助剤中の二酸化炭素吸収剤の分散性を示す透過型電子顕微鏡写真 超臨界流体処理における暴露時間と二酸化炭素吸収剤の平均粒子径との関係 超音波照射処理における照射時間と二酸化炭素吸収剤の平均粒子径との関係 攪拌処理における攪拌時間と二酸化炭素吸収剤の平均粒子径との関係 分散助剤の配合量と二酸化炭素吸収剤の平均粒子径との関係 二酸化炭素吸収剤分散液の配合量と二酸化炭素排出量および衝撃強さとの関係 本発明に係るポリオレフィン系の樹脂を用いた場合の二酸化炭素排出量削減樹脂組成物の用途一覧 本発明に係るポリエステル系の樹脂を用いた場合の二酸化炭素排出量削減樹脂組成物の用途一覧 本発明に係るポリアミド系の樹脂を用いた場合の二酸化炭素排出量削減樹脂組成物の用途一覧 本発明に係る塩化ビニル系の樹脂を用いた場合の二酸化炭素排出量削減樹脂組成物の用途一覧 本発明に係るポリスチレン系の樹脂を用いた場合の二酸化炭素排出量削減樹脂組成物の用途一覧
 本発明者は、上記課題を解決するため鋭意研究を行った結果、二酸化炭素吸収剤の分散性を向上させる処理を行い、樹脂に添加することで、燃焼時の二酸化炭素排出量削減効果が高い樹脂組成物が得られることを見出し、本発明を完成した。
 すなわち本発明は、二酸化炭素吸収剤と分散助剤を混合して分散処理後、樹脂に添加してなる二酸化炭素排出量削減樹脂組成物およびその製造方法並びにその用途に関するものである。
 以下に、その詳細を説明する。
 本発明における二酸化炭素吸収剤とは、二酸化炭素を化学的または物理的に吸着する物質であればいかなるものでもよい。例えば、無機化合物では、金属水酸化物、金属酸化物、アルミノ珪酸塩、チタン酸化合物、リチウムシリケート、シリカゲル、アルミナおよび活性炭が好ましく、有機化合物では、ココナツ中果皮繊維が好ましい。
 上記金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等を挙げることができる。
 上記金属酸化物としては、酸化マグネシウム、酸化カルシウム、酸化亜鉛等を挙げることができる。
 上記アルミノ珪酸塩としては、非晶質アルミノシリケート、天然ゼオライト、合成ゼオライト等を挙げることができる。
 上記チタン酸化合物としては、チタン酸バリウム、オルソチタン酸バリウム等を挙げることができる。
 本発明における分散助剤とは、無機化合物または有機化合物である二酸化炭素吸収剤を樹脂中に効率良く分散できる物質であればいかなるものでもよい。例えば、脂肪酸金属塩、高分子界面活性剤および両親媒性脂質が好ましい。
 上記脂肪酸金属塩としては、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、12-ヒドロキシステアリン酸カルシウム、12-ヒドロキシステアリン酸亜鉛、12-ヒドロキシステアリン酸マグネシウム、12-ヒドロキシステアリン酸アルミニウム、12-ヒドロキシステアリン酸バリウム、12-ヒドロキシステアリン酸リチウム、12-ヒドロキシステアリン酸ナトリウム、12-ヒドロキシステアリン酸カリウム等を挙げることができる。
 上記高分子界面活性剤としては、ポリアクリル酸ナトリウム、ポリカルボン酸ナトリウム、オレフィン・マレイン酸共重合体ナトリウム塩、ポリオキシエチレン型ジェミニ型界面活性剤(POE30-10-ODEs、POE20-10ODEs、POE10-10-ODEs)、リン酸エステル型ジェミニ型界面活性剤(POH-10-ODEs)、ジカルボン酸型ジェミニ型界面活性剤(DC-10-ODEs)等を挙げることができる。
 上記両親媒性脂質としては、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジン酸、ホスファチジルグリセロール、ホスファチジルイノシトール、カルジオピン、卵黄レシチン、水添卵黄レシチン、大豆レシチン、水添大豆レシチン等のグリセロリン脂質、スフィンゴミエリン、セラミドホスホリルエタノールアミン、セラミドホスホリルグリセロール等のスフィンゴリン脂質等を挙げることができる。
 本発明における分散処理とは、二酸化炭素吸収剤の表面を分散助剤で効率良く覆い、二酸化炭素吸収剤が均一に分散した分散液を調製できる方法であればいかなるものでもよい。
 例えば、超臨界流体処理、超音波照射処理および撹拌処理が好ましい。
 前記分散液の溶媒としては、水または有機溶媒が好ましい。有機溶媒として具体的には、エタノール、ジクロロメタン、ヘキサン等を挙げることができる。
 前記超臨界流体処理では、二酸化炭素吸収剤と分散助剤との混合物を超臨界流体に暴露することで、二酸化炭素吸収剤の分散性を向上させる。前記超臨界流体としては、超臨界状態の二酸化炭素が好ましい。
 本発明における超臨界状態の二酸化炭素とは、臨界温度30.98℃および臨界圧力7.3773MPa以上の超臨界状態にある二酸化炭素を意味する。なお、臨界温度のみ、あるいは臨界圧力のみが臨界条件の二酸化炭素では、超臨界状態とはいわない。
 ここで、二酸化炭素吸収剤としての水酸化カルシウムを100重量部、分散助剤としての12-ヒドロキシステアリン酸カルシウムを1重量部、分散溶媒としてのイオン交換水20重量部を混合したものに対して、処理圧力20MPa、処理温度25℃、40℃、60℃、120℃および130℃においてそれぞれ15分間の超臨界流体処理を行ったものの透過型電子顕微鏡写真を図8に示す。
 なお、写真中の黒い部分は分散助剤に被覆された二酸化炭素吸収剤、白い部分は分散助剤の水溶液である。
 各処理温度における超臨界流体処理後の混合物を比較すると、超臨界処理条件を満たしていない処理温度25℃で分散処理を行ったものは、二酸化炭素吸収剤の粒子径が1μm以上であり、分散助剤の水溶液中に二酸化炭素吸収剤が分散せずに凝集している(図8(a)参照)。これに対し、超臨界処理条件を満たしている処理温度40℃で分散処理を行ったものは、二酸化炭素吸収剤の粒子径が100nm程度であり、混合物中の二酸化炭素吸収剤が均一に分散している(図8(b)参照)。このことから、超臨界流体処理では、二酸化炭素が超臨界状態となる圧力および温度の両方が満たされた状態での処理が必要であるといえる。
 また、処理温度60℃および処理温度120℃で分散処理を行ったものについては、二酸化炭素吸収剤の粒子径が共に約10nm程であり、高い分散性が得られている(図8(c)および(d)参照)。しかし、処理温度が130℃を超えると、二酸化炭素吸収剤の粒子径が約0.8μmとなり、二酸化炭素吸収剤が凝集していることが分かる。(図8(e)参照)つまり、処理温度は高すぎても悪く、過剰な条件の処理温度では逆に分散効果が抑制されてしまう。
 前記超音波照射処理では、二酸化炭素吸収剤と分散助剤との混合物に対して、15KHzから60KHzの周波数、75Wから600W程度の強度の超音波を照射することで、二酸化炭素吸収剤の分散性を向上させる。
 ここで、二酸化炭素吸収剤としての水酸化カルシウムを100重量部、分散助剤としての12-ヒドロキシステアリン酸カルシウムを1重量部、分散溶媒としてのイオン交換水20重量部を混合したものに対して、60℃の条件下で40KHzの周波数、50W、75W、300W、600Wおよび700Wの強度の超音波においてそれぞれ30分間の超音波照射処理を行ったものの透過型電子顕微鏡写真を図9に示す。
 各強度における超音波照射処理後の混合物を比較すると、50Wの強度の超音波照射で分散処理を行ったものは、二酸化炭素吸収剤の粒子径が約1μmであり、処理後の混合物中の二酸化炭素吸収剤が分散せずに凝集している(図9(a)参照)。これに対し、75Wの強度の超音波照射で分散処理を行ったものは、二酸化炭素吸収剤の粒子径が150nm程度であり、混合物中の二酸化炭素吸収剤が均一に分散している(図9(b)参照)。
 また、300Wおよび600Wの強度での超音波照射では、二酸化炭素吸収剤の粒子径が共に約80nm程であり、高い分散性が得られている(図9(c)および(d)参照)。しかし、700Wの強度での超音波照射では、二酸化炭素吸収剤の粒子径が約1μmとなり、二酸化炭素吸収剤が凝集していることが分かる(図9(e)参照)。
 このことから、超音波照射処理では、75Wから600Wの強度での超音波照射が好ましく、これよりも弱い強度の超音波照射では、十分な分散効果が得られず、反対にこれよりも強い強度の超音波照射では、分散助剤の機能が失われるため好ましくないといえる。
 また、前記攪拌処理では、二酸化炭素吸収剤と分散助剤との混合物を1,000rpmないし20,000rpmの回転速度で攪拌することで、二酸化炭素吸収剤の分散性を向上させる。
 ここで、二酸化炭素吸収剤としての水酸化カルシウムを100重量部、分散助剤としての12-ヒドロキシステアリン酸カルシウムを1重量部、分散溶媒としてのイオン交換水20重量部を混合したものに対して、60℃の条件下で500rpm、1,000rpm、15,000rpm、20,000rpmおよび25,000rpmの回転速度においてそれぞれ30分間の攪拌処理を行ったものの透過型電子顕微鏡写真を図10に示す。
 各回転速度における攪拌処理後の混合物を比較すると、500rpmの回転速度で処理を行ったものは、二酸化炭素吸収剤の粒子径にバラツキが見られ、大きいものでは3μm以上となり、混合物中の二酸化炭素吸収剤が分散せずに凝集している(図10(a)参照)。これに対し、1,000rpmの回転速度で処理を行ったものは、二酸化炭素吸収剤に粒子径が100nm程度であり、混合物中の二酸化炭素吸収剤が均一に分散している(図10(b)参照)。
 また、15,000rpmおよび20,000rpmの回転速度で処理を行ったものは、二酸化炭素吸収剤の粒子径が共に60nm程であり、高い分散性が得られている(図10(c)および(d)参照)。しかし、25,000rpmの回転速度で処理を行ったものは、二酸化炭素吸収剤の粒子径が約0.8μmとなり、二酸化炭素吸収剤が凝集していることが分かる(図10(e)参照)。
 このことから、攪拌処理では、1,000rpmから20,000rpmの回転速度での処理が好ましく、これよりも遅い回転速度での処理では、回転速度が足りずに十分な分散が起こらず、二酸化炭素吸収剤が凝集し、反対にこれよりも早い回転速度では、分散助剤が二酸化炭素吸収剤の表面を被覆するのを妨げて、二酸化炭素吸収剤に凝集がおこるため好ましくない。
 本発明における樹脂は、一般に使用される樹脂であればいかなるものでもよい。例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、ポリスチレン系樹脂が好ましい。 
 上記の成分と分散処理によって二酸化炭素排出量削減樹脂組成物を製造するには、次のようにすれば良い。
 まず、二酸化炭素吸収剤と分散助剤を水または有機溶媒と混合し、超臨界流体処理、超音波照射処理および撹拌処理のいずれかよって二酸化炭素吸収剤分散液を製造する。この時、二酸化炭素吸収剤が均一に分散されると混合物が透明性を有するようになる。
 混合比は、二酸化炭素吸収剤100重量部に対して分散助剤は0.1~10重量部であることが好ましい。さらに、分散助剤が0.1~5重量部であることが最も好ましい。
 なお、二酸化炭素吸収剤に対する分散助剤の添加量がこれよりも少ないと、製造される混合物である二酸化炭素吸収剤分散液中の二酸化炭素吸収剤が十分に分散せず、最終的に混合される樹脂に対する分散性が悪くなり、二酸化炭素の吸収量が低くなるからである。
 また、前記添加量がこれよりも多くなると、二酸化炭素吸収剤の十分な濃度の二酸化炭素吸収剤分散液が得られず、樹脂へ添加する二酸化炭素吸収剤分散剤の必要濃度を満たすには、その添加量が多くなり、結局混練りしづらくなるからである。
 超臨界流体処理を行う場合、上記混合物に対して、二酸化炭素下で30.98℃以上の温度まで加温し、7.37MPa以上の温度で1分ないし12時間行うことが好ましく、60℃ないし120℃の温度で10分から1時間行うことが最も好ましい。
 ここで、処理温度60℃、処理圧力20MPaでの超臨界流体処理の暴露時間における粒度分布測定を行い、その結果から各暴露時間の平均粒子径を算出し、その結果から得られた暴露時間と平均粒子径との関係を図11に示す。
 暴露時間が10分よりも短い場合すなわち0.1分、0.5分および1分の場合、分散助剤に対する二酸化炭素吸収剤の分散性が不十分で凝集が起こり、二酸化炭素吸収剤の平均粒子径が約400nmから700nmと大きいことが分かる。また、暴露時間が1時間よりも長い場合すなわち2時間から24時間では、暴露時間1時間の場合とほとんど平均粒子径に違いは認められなかった。
 また、超音波照射処理を行う場合、前記混合物に対して、40℃ないし80℃の条件下で、15KHzないし60KHzの周波数、75Wないし600W程度の強度の超音波を5分間から60分間照射することが好ましく、40KHzの周波数、300Wの強度の超音波を30分間照射することが最も好ましい。
 ここで、60℃の条件下で40KHzの周波数、300Wの強度の超音波での超音波照射処理の照射時間における粒度分布測定を行い、その結果から各照射時間の平均粒子径を算出し、その結果から得られた照射時間と平均粒子径との関係を図12に示す。
 照射時間が5分よりも短い場合すなわち0.1分、0.5分および1分の場合、分散剤に対する二酸化炭素吸収剤の分散性が不十分で凝集が起こり、二酸化炭素吸収剤の平均粒子径が約400nmから約800nmと大きいことが分かる。また、照射時間が60分よりも長い場合すなわち90分、120分および180分では、照射時間60分の場合とほとんど平均粒子径に違いは認められなかった。
 また、攪拌処理を行う場合、前記混合物混合物に対して、40℃ないし80℃程度の温度条件下で、1,000rpmないし20,000rpm程度の回転速度で5分間から60分間攪拌することが好ましく、60℃の温度下で、15,000rpmの回転速度で30分間攪拌することが最も好ましい。
 ここで、60℃、15000rpmの回転速度での攪拌処理の攪拌時間における粒度分布測定を行い、その結果から各攪拌時間の平均粒子径を算出し、その結果から得られた攪拌時間と平均粒子径との関係を図13に示す。
 攪拌時間が5分よりも短い場合すなわち0.1分、0.5分および1分の場合、分散剤に対する二酸化炭素吸収剤の分散性が不十分で凝集が起こり、二酸化炭素吸収剤の平均粒子径が約400nmから約900nmと大きいことが分かる。また、攪拌時間が60分よりも長い場合すなわち90分、120分および180分では、攪拌時間30分の場合とほとんど平均粒子径に違いは認められなかった。
 また、二酸化炭素吸収剤としての水酸化カルシウム100重量部、イオン交換水20重量部に対して、分散助剤としての12-ヒドロキシステアリン酸カルシウムを50、20、10、5、1、0.5、0.1、0.05および0.01重量部で変化させ、処理温度60℃、処理圧力20MPaで超臨界流体処理を15分間行い、その時の分散助剤の配合量と二酸化炭素吸収剤の平均粒子径との関係を図14に示す。
 分散助剤が50重量部では、平均粒子径が1μm以上となり、二酸化炭素吸収剤が凝集している。分散助剤が20重量部以下では、徐々に二酸化炭素吸収剤の平均粒子径が小さくなり、1重量部で最も小さくなっている。
 その後、再び平均粒子径が大きくなり、0.01重量部では約500nmと二酸化炭素吸収剤に凝集が起こっている。
 このことから、二酸化炭素吸収剤100重量部に対して、分散助剤は、0.1~5重量部添加されることが好ましいといえる。
 また、二酸化炭素吸収剤としての水酸化カルシウム100重量部、分散助剤としての12-ヒドロキシステアリン酸カルシウム1重量部、分散媒体としてのイオン交換水20重量部に対して、処理温度60℃、処理圧力20MPaで超臨界流体処理を15分間行って得られた二酸化炭素吸収剤分散液を、樹脂としての低密度ポリエチレン100重量部に対して0.001、0.01、0.1、1、10、20、30、40、50、60および70重量部混合して得られた二酸化炭素排出量削減樹脂組成物の二酸化炭素吸収剤分散液の配合量と衝撃強さとの関係および二酸化炭素吸収剤分散液の配合量と二酸化炭素排出量との関係を図15に示す。
 なお、図15において、二酸化炭素吸収剤分散液の配合量が0.001、0.01、0.1、1、10、20および30重量部のとき、引張衝撃強さ試験において破壊しない強度であることを確認した。
 衝撃強さは、二酸化炭素吸収剤分散液の配合量が増加するにしたがって強度が低下し、40重量部では、20kJ/m2、50重量部では、12kJ/m2、60重量部では、6kJ/m2、70重量部では、2kJ/m2で破壊した。
 反対に、二酸化炭素排出量は、二酸化炭素吸収剤分散液の配合量が増加するしたがって二酸化炭素排出量が減少し良好な値を示している。
 このことから、衝撃強さが良好で二酸化炭素排出量の削減量に優れた二酸化炭素排出量削減樹脂組成物を得るためには、樹脂100重量部に対して、二酸化炭素吸収剤分散液を0.1~40重量部添加されることが好ましいといえる。
 上記の操作で得られた各種二酸化炭素吸収剤分散液を樹脂に対して、毎分100ml程度で噴霧しながら添加するとともにミキサーで15分間程度撹拌して混合物を得る。その後、当該混合物を二軸押出機、単軸押出機、加熱型三本ロール、加熱加圧ニーダー、バンバリーミキサー等を用いて通常の方法で混練りすることにより、本発明の二酸化炭素排出量削減樹脂組成物のペレットを得ることができる。
 次に、上記のようにして製造された二酸化炭素排出量削減樹脂組成物の用途を下記および図16、図17、図18、図19および図20に列挙するが、その用途は、記載項目に限定されるものではない。
 本発明の二酸化炭素排出量削減樹脂組成物の用途としては、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリエチレン樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の場合、包装(フィルム、レジ袋、ゴミ袋、包装テープ、ロープ、等)、容器(化粧品容器、薬品容器、食品容器、カップ等)、建築資材(水道パイプ、断熱材パネル、パレット、ホース、養生シート等)、農業資材(ビニールハウス被覆材、マルチフィルム、米袋、肥料袋、飼料袋、土嚢袋、育苗ポット、プランター、植木鉢等)、漁業資材(漁網、釣り糸等)電気部品(コンデンサー、電線被覆材等)、機械部品(ローラ、スクリュー、軸受等)、雑貨・日用品(ショッピングバック、文房具、バケツ、造花等)、発泡品(発泡緩衝材、クッション材、吸音材、静電気対策発泡間紙、保温材、断熱材等)等である。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリプロピレンに添加してなる二酸化炭素排出量削減樹脂組成物の場合は、包装(テープ、バンド、紐、フィルム、プラスチック段ボールなど)、容器(化粧品ボトル、薬品容器、トレイなど)、農業資材(プランターなど)、漁業資材(海洋用途のロープ、漁網など)、自動車構成部品(計器パネル、内装、エアバッグカバー、バンパーなど)、家電(冷蔵庫内装、洗濯機外装、テレビ・ラジオの外装など)、雑貨・日用品(各種ケース(アイスクーラー、スーツケースなど)、文房具、レジャー用食器、玩具、スポーツ用品、人工芝、屋外家具など)、繊維製品(衣類(下着、アンダーシャツなど))、医療品(医療用衣類、注射器シリンジなど)等である。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリエチレンテレフタレート樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の場合は、包装(テープ、ブリスターパック、食品包装フィルムなど)、容器(飲料ボトル、化粧品ボトル、その他汎用ボトルなど)、シート(カード、ラベル、磁気テープの基材など)、自動車構成部品(タイヤコード、シートベルトなど)、雑貨・日用品(傘、レインコート、テントなど)、繊維製品(クッション中綿、寝具中綿、衣類、縫い糸など)等である。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、液晶樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の場合は、容器(溶媒容器、溶媒輸送部品、精密機器ケースなど)、漁業資材(漁網など)、電気部品(プリント基板、コネクタ・ボビン・光ピックアップ部品のケース、マイクロモータ部品、フィルム状電子回路基板など)、機械部品(コンプレッサー部品、ショックアブソーバー構成部品、パソコン・複写機・プリンタの内部構成部品、回転機器の軸受、油圧機構のシールパッキン、コンパウンド、燃料電池構成部品)、光学部品(光学フィルム、光ファイバー構成材料など)、自動車構成部品(電装部品、塗装など)、雑貨・日用品(ストリングのコーティングなど)、繊維製品(不織布など)等である。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリアミド樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の場合は、包装(食品フィルムなど)、農業資材(ネット、テグス、ホース、ロープなど)、漁業資材(漁網、釣り糸など)、電気部品(クランプ、照明部材など)、機械部品(パイプ、搬送用ローラ、ナイロンリベット、ナイロンプラグ、冷却用ファンなど)、光学部品(レンズ、ライト、美術品、装飾品など)、自動車構成部品(エアバッグ、エンジンカバー、ドアミラーステイ、ドアハンドルカバー、内装(シート、カバーなど)、タイヤコードなど)、雑貨・日用品(ドア取っ手、くし、ナイフ、フォーク、椅子キャスター、歯ブラシの毛など)、繊維製品(カーテン、カーペット、スポーツウェア(水着、スキーウェアなど)、靴下、肌着など)、医療品(手洗ブラシ、ほ乳瓶、チューブなど)等である。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、塩化ビニル樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の場合は、包装(ブリスターパッケージなど)、容器(トレイ、シャンプー容器、洗剤容器など)、農業資材(ハウス被覆材、保温シートなど)、建築資材(パイプ(硬質・軟質水道用パイプ、雨どいなど)、壁紙、電線被覆材など)、自動車構成部品(アンダーコートなど)、雑貨・日用品(人工皮革(カバン、靴など)、文房具(消しゴムなど)、玩具(フィギアなど)など)、発泡品(クッション材、風力発電のブレードの芯材、鉄道車両・特殊車両・船舶の壁部の芯材など)、繊維製品(衣類など)、印刷・広告(印刷用ラミネートフィルム、ラベルなど)等である。
 また、二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリスチレン樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の場合は、容器(食品包装容器、トレイ、レジャー用コップ、レジャー用スプーン・フォークなど)、建築資材(壁断熱材など)、家電(テレビの筐体、エアコンの外装、CDケースなど)、自動車構成部品(ランプレンズなど)、雑貨・日用品(歯ブラシの柄、玩具(プラモデルなど)、文房具(ペン、定規など)など)、発泡品(緩衝材など)等である。
 以下、実施例を挙げ、本発明をさらに詳しく説明する。なお、本発明は、これらの実施例に何ら制約されるものではない。
(実施例1)
 二酸化炭素吸収剤として水酸化カルシウム100重量部、分散助剤として12-ヒドロキシステアリン酸カルシウム1重量部、イオン交換水20重量部を60℃に保たれた高圧ステンレス容器に入れて密閉し、圧力が20MPaになるように二酸化炭素を注入して超臨界状態とし、温度と圧力を保ちながら15分間攪拌混合後、二酸化炭素を排出して大気圧に戻す超臨界処理を行い、二酸化炭素吸収剤分散液を得た。次に、低密度ポリエチレン樹脂(株式会社プライムポリマー製、モアテック0168N)100重量部に対し二酸化炭素吸収剤分散液30重量部を毎分100mlで噴霧しながらミキサーで15分間攪拌処理した。これを真空で乾燥させて水分を取り除き、軸内径30mmの2軸押出機で混練りし、ペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例1における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例1とする。
(実施例2)
 実施例1において、二酸化炭素吸収剤としての水酸化カルシウムを酸化カルシウムに変えて超臨界処理を行い、得られた二酸化炭素吸収剤分散液を低密度ポリエチレン樹脂に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例2における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例2とする。
(実施例3)
 実施例1において、二酸化炭素吸収剤としての水酸化カルシウムを非晶質アルミノシリケートに変えて超臨界処理を行い、得られた二酸化炭素吸収剤分散液を低密度ポリエチレン樹脂に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例3における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例3とする。
(実施例4)
 実施例1において、二酸化炭素吸収剤としての水酸化カルシウムをチタン酸バリウムに変えて超臨界処理を行い、得られた二酸化炭素吸収剤分散液を低密度ポリエチレン樹脂に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例4における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例4する。
(実施例5)
 実施例1において、二酸化炭素吸収剤としての水酸化カルシウムをリチウムシリケートに変えて超臨界処理を行い、得られた二酸化炭素吸収剤分散液を低密度ポリエチレン樹脂に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例5における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例5とする。
(実施例6)
 実施例1において、分散助剤としての12-ヒドロキシステアリン酸カルシウム(脂肪酸金属塩)をホスファチジルコリン(両親媒性脂質)に変えて超臨界処理を行い、得られた二酸化炭素吸収剤分散液を低密度ポリエチレン樹脂に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例6における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例6とする。
(実施例7)
 実施例1において、分散助剤としての12-ヒドロキシステアリン酸カルシウム(脂肪酸金属塩)をオレフィン・マレイン酸共重合体ナトリウム塩(高分子界面活性剤)に変えて超臨界処理を行い、得られた二酸化炭素吸収剤分散液を低密度ポリエチレン樹脂に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例7における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例7とする。
(実施例8)
 実施例3において、分散助剤としての12-ヒドロキシステアリン酸カルシウム(脂肪酸金属塩)をホスファチジルコリン(両親媒性脂質)に変えて超臨界処理を行い、得られた二酸化炭素吸収剤分散液を低密度ポリエチレン樹脂に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例8における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例8とする。
(実施例9)
 実施例3において、分散助剤としての12-ヒドロキシステアリン酸カルシウム(脂肪酸金属塩)をポリアクリル酸ナトリウム(高分子界面活性剤)に変えて超臨界処理を行い、得られた二酸化炭素吸収剤分散液を低密度ポリエチレン樹脂に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例9における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例9とする。
(実施例10)
 実施例1において、分散助剤としての12-ヒドロキシステアリン酸カルシウム(脂肪酸金属塩)をポリオキシエチレン型ジェミニ型界面活性剤であるPOE30-10-ODEs(高分子界面活性剤)に代えて超臨界処理を行い、得られた二酸化炭素吸収剤分散液を低密度ポリエチレン樹脂に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例10における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例10とする。
(実施例11)
 実施例1において、超臨界処理後に得られた二酸化炭素吸収剤分散液をPET樹脂(帝人化成株式会社製、A-PET FR)に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例11における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例11とする。
(実施例12)
 実施例1において、超臨界処理後に得られた二酸化炭素吸収剤分散液をナイロン6樹脂(東レ株式会社製、アミランCM1017)に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例12における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例12とする。
(実施例13)
 実施例1において、超臨界処理後に得られた二酸化炭素吸収剤分散液をPVC樹脂(サン・アロー化成株式会社製、SE-1100)に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例13における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例13とする。
(実施例14)
 実施例1において、超臨界処理後に得られた二酸化炭素吸収剤分散液をPS樹脂(PSジャパン株式会社製、HIPS 475D)に添加してペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例14における前記超臨界処理行程を除く全行程を行って得た樹脂組成物を比較例14とする。
(実施例15)
 二酸化炭素吸収剤としての水酸化カルシウム100重量部、分散助剤としての12-ヒドロキシステアリン酸カルシウム1重量部、イオン交換水20重量部をガラス製容器に入れ、60℃の条件下において、超音波ホモジナイザーにて40KHzの周波数、出力300Wの超音波を15分間照射する超音波照射処理を行い、二酸化炭素吸収剤分散液を得た。次に、低密度ポリエチレン樹脂100重量部に対し、二酸化炭素吸収剤分散液30重量部を毎分100mlで噴霧しながらミキサーで15分間攪拌処理した。これを真空で乾燥させて水分を取り除き、軸内径30mmの2軸押出機で混練りし、ペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例15における前記超音波照射処理行程を除く全行程を行って得た樹脂組成物を比較例15とする。なお、比較例15は、比較例1と同一のものである。
(実施例16)
 実施例15において、二酸化炭素吸収剤として非晶質アルミノシリケート、分散助剤としてホスファチジルコリン(両親媒性脂質)を混合した混合物に対して超音波照射処理を行い、得られた二酸化炭素吸収剤分散液を用いて、実施例15と同様の製造方法でペレット状の二酸化炭素排出量削減樹脂を得た。
 また、実施例16における前記超音波照射処理行程を除く全行程を行って得た樹脂組成物を比較例16とする。なお、比較例16は、比較例8と同一のものである。
(実施例17)
 二酸化炭素吸収剤としての水酸化カルシウム100重量部、分散助剤としての12-ヒドロキシステアリン酸カルシウム1重量部、イオン交換水20重量部をステンレス容器に入れ、60℃の条件下において、攪拌機(エム・テクニック株式会社製、CLEARMIX CLM-0.8S)にセットし回転数10,000rpmで30分間攪拌する攪拌処理を行い、二酸化炭素吸収剤分散液を得た。次に、低密度ポリエチレン樹脂100重量部に対し、二酸化炭素吸収剤分散液30重量部を毎分100mlで噴霧しながらミキサーで15分間攪拌処理した。これを真空で乾燥させて水分を取り除き、軸内径30mmの2軸押出機で混練りし、ペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例17における前記攪拌処理行程を除く全行程を行って得た樹脂組成物を比較例17とする。なお、比較例17は、比較例1と同一である。
(実施例18)
 実施例17において、二酸化炭素吸収剤として非晶質アルミノシリケート、分散助剤としてホスファチジルコリン(両親媒性脂質)を混合した混合物に対して攪拌処理を行い、得られた二酸化炭素吸収剤分散液を用いて、実施例17と同様の製造方法でペレット状の二酸化炭素排出量削減樹脂を得た。
 また、実施例18における攪拌処理工程を除く全行程を行って得た樹脂組成物を比較例18とする。なお、比較例18は、比較例8と同一である。
(実施例19)
 有機化合物の二酸化炭素吸収剤としてのココナツ中果皮繊維100重量部、分散助剤としての12-ヒドロキシステアリン酸カルシウム1重量部、イオン交換水20重量部をステンレス容器に入れ、60℃の条件下において、攪拌機(エム・テクニック株式会社製、CLEARMIX CLM-0.8S)にセットし回転数10,000rpmで30分間攪拌する攪拌処理を行い、二酸化炭素吸収剤分散液を得た。次に、低密度ポリエチレン樹脂(株式会社プライムポリマー製、モアテック0168N)100重量部に対し、二酸化炭素吸収剤分散液30重量部を毎分100mlで噴霧しながらミキサーで15分間攪拌処理した。これを真空で乾燥させて水分を取り除き、軸内径30mmの2軸押出機で混練りし、ペレット状の二酸化炭素排出量削減樹脂組成物を得た。
 また、実施例19における前記撹拌処理行程を行わずに全行程を行って得た樹脂組成物を比較例19とする。
 上記実施例1ないし実施例19の二酸化炭素排出量削減樹脂組成物および比較例1ないし比較例19の樹脂組成物に対して、引張衝撃強さ測定(JISK7160に記載の方法)、引張降伏応力測定(JISK7161に記載の方法)、曲げ弾性率測定(JISK7171に記載の方法)および二酸化炭素排出量測定(JISK7217に記載の方法)による評価を行った。以下に詳しい評価方法を説明する。
評価方法
(衝撃強さ測定)
 測定には、デジタル衝撃試験機DR-IB試験機(株式会社東洋精機製作所製)を用いて行った。
 試験片は、JIS規格の材料規格に従って、ペレット状の実施例1ないし実施例19の二酸化炭素排出量削減樹脂組成物および比較例1ないし比較例19樹脂組成物を射出成形により長さ80mm、幅10mm、厚さ4mmのノッチ付きの板状に直接型成形もしくは、一旦、圧縮成型または射出成形によって板材を成形後、切削加工により前記寸法の試験片を作製する。測定は、試験片の一端を台座に固定されたつかみ具、他端を移動可能なクロスヘッド支持台にそれぞれ固定し、任意の重さのストライカを衝撃速度3.46m/sで前記クロスヘッド支持台に衝突させて行う。なお、測定は各10回ずつ行った。
(引張降伏応力測定)
 測定には、ストログラフHT試験機(株式会社東洋精機製作所製)を用いて行った。
 試験片は、JIS規格の材料規格に従って、ペレット状の実施例1ないし実施例19の二酸化炭素排出量削減樹脂組成物および比較例1ないし比較例19の樹脂組成物を射出成形により20mm×5mmの平行部を有する、長さ100mm、幅25mm、厚さ4mmのダンベル状の板状試験片に直接型成形もしくは、一旦、圧縮成型または射出成形によって板材を成型後、切削加工により前記寸法の試験片を作製する。測定は、試験片の両端を固定し、試験片の長さ方向に一定の引張加重を加えて、各瞬間における応力とその応力に対応するひずみを測定し、応力-ひずみ曲線図から降伏点における降伏応力を求める。なお、測定は各5回ずつ行った。
(曲げ弾性率測定)
 測定には、ベントグラフ-2試験機(株式会社東洋精機製作所製)を用いて行った。
 試験片は、JIS規格の材料規格に従って、ペレット状の実施例1ないし実施例19の二酸化炭素排出量削減樹脂組成物および比較例1ないし比較例19の樹脂組成物を射出成形により長さ80mm、幅10mm、厚さ4mmの板状試験片に直接型成形もしくは、一旦、圧縮成型または射出成形によって板材を成形後、切削加工により前記寸法の試験片を作製する。測定は、試験片の両端を64mmの支点間隔で自由支持し、支点間の中央に加圧くさびにより曲げ加重(試験応力)を加えて、破壊応力およびたわみを測定する。なお、測定は各5回ずつ行った。
(二酸化炭素排出量測定)
 測定には、プラスチック燃焼試験機(株式会社スギヤマゲン製)を用いて行った。
 試料は、重量0.1gの試験片の実施例1ないし実施例19の二酸化炭素排出量削減樹脂組成物および比較例1ないし比較例19の樹脂組成物を用いた。測定は、0.1gの試料を、ガス供給量0.5L/min、設定温度750℃の条件下で10分間燃焼させ、その際に発生した二酸化炭素の総排出量を測定する。なお、測定は各3回ずつ行った。
 図1には、実施例の二酸化炭素排出量、引張降伏応力、曲げ弾性率および引張衝撃強さの評価結果、図2には、比較例の二酸化炭素排出量、引張降伏応力、曲げ弾性率および引張衝撃強さの評価結果をそれぞれ示す。なお、各評価結果は、測定回数に対する平均の値を記載する。
 いずれの二酸化炭素吸収剤、分散助剤および樹脂の組み合わせにおいても、二酸化炭素吸収剤と分散助剤からなる混合物に対して分散処理を行った各実施例が、分散処理を行わなかった各比較例と比較して二酸化炭素排出量が大幅に減少していることが分かる。
 また、各実施例では、引張降伏応力、曲げ弾性率および引張衝撃強さの機械的性質においても各比較例と比べて良好な値を示した。
 さらに、各実施例に用いた樹脂単体の機械的強度を100%として各実施例の機械的強度を比較すると、多くは90~70%であり、十分な機械的強度を備えていることを確認した。中には、機械的強度が劣るものもあるが、当該負荷が作用しない用途に用いるとよい。
 本発明の二酸化炭素排出量削減性能をさらに詳しく説明するために、二酸化炭素吸収剤の種類、分散助剤の種類、樹脂の種類および分散処理方法の種類における二酸化炭素排出量の比較を以下に考察する。
(二酸化炭素吸収剤の種類における二酸化炭素排出量の比較)
 二酸化炭素吸収剤を水酸化カルシウム(実施例1および比較例1)、酸化カルシウム(実施例2および比較例2)、非晶質アルミノシリケート(実施例3および比較例3)、チタン酸バリウム(実施例4および比較例4)およびリチウムシリケート(実施例5および比較例5)とした場合の二酸化炭素排出量の削減量を比較する。
 なお、このとき分散助剤には、12-ヒドロキシステアリン酸カルシウム、樹脂には低密度ポリエチレン樹脂(LLDPE)を用いた。
 図3に示すように、いずれの二酸化炭素吸収剤においても大幅な二酸化炭素排出量の削減が認められ、水酸化カルシウムの場合51.6%、酸化カルシウムの場合52.5%、非晶質アルミノシリケートの場合56.4%、チタン酸バリウムの場合55.0%およびリチウムシリケートの場合53.4%の排出量削減を実現している。
 特に、アルミノケイ酸塩の一種である非晶質アルミノシリケートにおいては、56.4%と最も良好な結果を示した。
(分散助剤の種類における二酸化炭素排出量の比較)
 また、二酸化炭素吸収剤を水酸化カルシウムとし、分散助剤を12-ヒドロキシステアリン酸カルシウム(実施例1および比較例1)、ホスファチジルコリン(実施例6および比較例6)、オレフィン・マレイン酸共重合体ナトリウム塩(実施例7および比較例7)およびPOE30-10-ODEs(実施例10および比較例10)とした場合の二酸化炭素排出量の削減量を比較する。
 図4(a)に示すように、いずれの分散助剤においても大幅な二酸化炭素排出量の削減が認められ、12-ヒドロキシステアリン酸カルシウムの場合51.6%、ホスファチジルコリンの場合52.5%、オレフィン・マレイン酸共重合体ナトリウム塩の場合51.8%およびPOE30-10-ODEsの場合53.8%の排出量削減を実現している。
 特に、高分子界面活性剤であるPOE30-10-ODEsにおいては、53.8%と最も良好な結果を示した。
 さらに、前記二酸化炭素吸収剤において最も良好な削減量を示した、非晶質アルミノシリケートを二酸化炭素吸収剤として、分散助剤を12-ヒドロキシステアリン酸カルシウム(実施例3および比較例3)、ホスファチジルコリン(実施例8および比較例8)およびポリアクリル酸ナトリウム(実施例9および比較例9)とした場合の二酸化炭素排出量の削減量を比較する。
 図4(b)に示すように、二酸化炭素吸収剤を水酸化カルシウムとした場合よりも全体として良好な値を示し、12-ヒドロキシステアリン酸カルシウムの場合56.4%、ホスファチジルコリンの場合51.5%およびポリアクリル酸ナトリウムの場合55.0%の排出量削減を実現している。
 特に、脂肪酸金属塩である12-ヒドロキシステアリン酸カルシウムにおいて56.4%と最も良好な結果を示した。
 この評価結果では、わずかながらに二酸化炭素吸収剤と分散助剤とに効果的な組み合わせが認められるものの、いずれの組み合わせにおいても組み合わせによる二酸化炭素排出量の削減量に大きな差がないことを示している。
(樹脂の種類における二酸化炭素排出量の比較)
 また、二酸化炭素吸収剤を水酸化カルシウム、分散助剤を12-ヒドロキシステアリン酸カルシウムとした混合物を低密度ポリエチレン樹脂(LLDPE)(実施例1および比較例1)、PET樹脂(実施例11および比較例11)、ナイロン6樹脂(実施例12および比較例12)、ポリ塩化ビニリデン樹脂(PVC)(実施例13および比較例13)およびポリスチレン樹脂(PS)(実施例14および比較例14)とした場合の二酸化炭素排出量の削減量を比較する。
 図5に示すように、樹脂による効果の違いはほとんどなく、いずれの樹脂においても大幅な二酸化炭素排出量の削減が認められ、LLDPEの場合51.6%、PETの場合42.0%、ナイロン6の場合52.0%、PVCの場合51.3%およびPSの場合52.5%の排出量削減を実現している。
(分散処理方法の種類における二酸化炭素排出量の比較)
 また、二酸化炭素吸収剤を水酸化カルシウム、分散剤を12-ヒドロキシステアリン酸カルシウムとした混合物に対し、分散処理を行わないもの(比較例1)、超臨界流体処理を行ったもの(実施例1)、超音波照射処理を行ったもの(実施例15)、攪拌処理を行ったもの(実施例17)について二酸化炭素排出量の削減量を比較する。
 図6(a)に示すように、いずれの分散処理方法においても、分散処理を行わないものと比較して二酸化炭素排出量が半分程度にまで減少しており、超臨界流体処理の場合51.6%、著音波照射処理で場合51.6%、攪拌処理の場合51.9%の排出量削減を実現している。
 さらに、二酸化炭素吸収剤を非晶質アルミノシリケート、分散助剤をホスファチジルコリンとした混合物に対し、分散処理を行わないもの(比較例8)、超臨界流体処理を行ったもの(実施例8)、超音波照射処理を行ったもの(実施例16)、攪拌処理を行ったもの(実施例18)について二酸化炭素排出量の削減量を比較する。
 図6(b)に示すように、いずれの分散処理方法においても、二酸化炭素吸収剤を水酸化カルシウム、分散剤を12-ヒドロキシステアリン酸カルシウムとした場合と同様に、分散処理を行わないものと比較して二酸化炭素排出量が半分程度にまで減少しており、超臨界流体処理の場合51.5%、超音波照射処理の場合53.5%、攪拌処理の場合51.5%の排出量削減を実現している。
 このことから、分散処理方法の種類に関係なく、二酸化炭素吸収剤と分散助剤との混合物に対して分散処理を行い、樹脂に対する二酸化炭素吸収剤の分散性を高めることにより、得られた二酸化炭素排出量削減樹脂組成物の二酸化炭素排出量が50%程度削減されるという極めて有用な評価結果が得られた。
 このような、本発明の二酸化炭素排出量削減樹脂組成物によれば、樹脂本来の特長も有していることから、既存の樹脂製品の二酸化炭素排出量削減樹脂組成物への転換が容易であり、地球温暖化抑制に対する早期効果を実現することができる。
 なお、本発明は、前記実施形態のものに限定されるものはなく、必要に応じて種々変更することが可能である。

Claims (17)

  1.  二酸化炭素吸収剤と分散助剤との混合物を分散処理後、樹脂に添加してなる二酸化炭素排出量削減樹脂組成物。
  2.  前記分散処理は、超臨界流体処理、超音波照射処理および撹拌処理のうち少なくとも1つから選ばれる請求項1に記載の二酸化炭素排出量削減樹脂組成物。
  3.  前記二酸化炭素吸収剤は、金属水酸化物、金属酸化物、アルミノ珪酸塩、チタン酸化合物およびリチウム化合物のうち少なくとも1つから選ばれる請求項1または請求項2に記載の二酸化炭素排出量削減樹脂組成物。
  4.  前記分散助剤は、脂肪酸金属塩、高分子界面活性剤および両親媒性脂質のうち少なくとも1つから選ばれる請求項1乃至請求項3のいずれか1項に記載の二酸化炭素排出量削減樹脂組成物。
  5.  前記樹脂は、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂およびポリスチレン系樹脂のうち少なくとも1つから選ばれる請求項1乃至請求項4のいずれか1項に記載の二酸化炭素排出量削減樹脂組成物。
  6.  二酸化炭素吸収剤と分散助剤との混合物を分散処理後、樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の製造方法。
  7.  前記分散処理は、超臨界流体処理、超音波照射処理および撹拌処理のうち少なくとも1つから選ばれる請求項6に記載の二酸化炭素排出量削減樹脂組成物の製造方法。
  8.  前記二酸化炭素吸収剤は、金属水酸化物、金属酸化物、アルミノ珪酸塩、チタン酸化合物およびリチウム化合物のうち少なくとも1つから選ばれる請求項6または請求項7に記載の二酸化炭素排出量削減樹脂組成物の製造方法。
  9.  前記分散助剤は、脂肪酸金属塩、高分子界面活性剤および両親媒性脂質のうち少なくとも1つから選ばれる請求項6乃至請求項8のいずれか1項に記載の二酸化炭素排出量削減樹脂組成物の製造方法。
  10.  前記樹脂は、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂およびポリスチレン系樹脂のうち少なくとも1つから選ばれる請求項6乃至請求項9のいずれか1項に記載の二酸化炭素排出量削減樹脂組成物の製造方法。
  11.  二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリエチレン樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、包装、容器、建築資材、農業資材、漁業資材、電気部品、機械部品、雑貨・日用品および発泡品であることを特徴とした二酸化炭素排出量削減樹脂組成物の用途。
  12.  二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリプロピレンに添加してなる二酸化炭素排出量削減樹脂組成物の用途が、包装、容器、農業資材、漁業資材、自動車構成部品、家電、雑貨・日用品、繊維製品および医療品であることを特徴とした二酸化炭素排出量削減樹脂組成物の用途。
  13.  二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリエチレンテレフタレート樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、包装、容器、シート、自動車構成部品、雑貨・日用品および繊維製品であることを特徴とした二酸化炭素排出量削減樹脂組成物の用途。
  14.  二酸化炭素吸収剤と分散助剤との混合物を分散処理後、液晶樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、容器、漁業資材、電気部品、機械部品、光学部品、自動車構成部品、雑貨・日用品および繊維製品であることを特徴とした二酸化炭素排出量削減樹脂組成物の用途。
  15.  二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリアミド樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、包装、農業資材、漁業資材、電気部品、機械部品、光学部品、自動車構成部品、雑貨・日用品、繊維製品および医療品であることを特徴とした二酸化炭素排出量削減樹脂組成物の用途。
  16.  二酸化炭素吸収剤と分散助剤との混合物を分散処理後、塩化ビニル樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、包装、容器、農業資材、建築資材、自動車構成部品、雑貨・日用品、発泡品、繊維製品および印刷・広告であることを特徴とした二酸化炭素排出量削減樹脂組成物の用途。
  17.  二酸化炭素吸収剤と分散助剤との混合物を分散処理後、ポリスチレン樹脂に添加してなる二酸化炭素排出量削減樹脂組成物の用途が、容器、建築資材、家電、自動車構成部品、雑貨・日用品および発泡品であることを特徴とした二酸化炭素排出量削減樹脂組成物の用途。
PCT/JP2010/066730 2009-09-27 2010-09-27 二酸化炭素排出量削減樹脂組成物およびその製造方法並びにその用途 WO2011037238A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10818910.1A EP2481778A4 (en) 2009-09-27 2010-09-27 RESIN COMPOSITION FOR REDUCING CARBON DIOXIDE EMISSIONS, PROCESS FOR PRODUCING THE SAME, AND USE THEREOF
US13/498,426 US20120184656A1 (en) 2009-09-27 2010-09-27 Resin composition for carbon dioxide emission reduction, method for producing the same, and use thereof
KR1020127010501A KR101926766B1 (ko) 2009-09-27 2010-09-27 이산화탄소 배출량 삭감 수지 조성물 및 그 제조 방법 및 그 용도
JP2011533070A JP6170652B2 (ja) 2009-09-27 2010-09-27 二酸化炭素排出量削減樹脂組成物およびその製造方法並びにその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-240849 2009-09-27
JP2009240849 2009-09-27

Publications (1)

Publication Number Publication Date
WO2011037238A1 true WO2011037238A1 (ja) 2011-03-31

Family

ID=43795978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066730 WO2011037238A1 (ja) 2009-09-27 2010-09-27 二酸化炭素排出量削減樹脂組成物およびその製造方法並びにその用途

Country Status (5)

Country Link
US (1) US20120184656A1 (ja)
EP (1) EP2481778A4 (ja)
JP (3) JP6170652B2 (ja)
KR (1) KR101926766B1 (ja)
WO (1) WO2011037238A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090498A1 (ja) * 2010-12-27 2012-07-05 サトーホールディングス株式会社 ラベル、印字用紙の最上層形成材料、情報担持媒体、リストバンド用クリップおよびこれらを用いた二酸化炭素削減方法
JP2012171997A (ja) * 2011-02-18 2012-09-10 Sato Knowledge & Intellectual Property Institute 固形燃料およびこれを用いた二酸化炭素削減方法
JP2016132172A (ja) * 2015-01-20 2016-07-25 株式会社トッパン・コスモ 化粧シート
JP2016215379A (ja) * 2015-05-14 2016-12-22 株式会社トッパン・コスモ 化粧シート
JP2017025151A (ja) * 2015-07-17 2017-02-02 凸版印刷株式会社 樹脂シート、積層シート及び発泡壁紙
JP2017075427A (ja) * 2015-10-15 2017-04-20 旭化成株式会社 柔軟性を有するスパンボンド不織布
JP2017075426A (ja) * 2015-10-15 2017-04-20 旭化成株式会社 ポリオレフィン系スパンボンド不織布
JP2017177814A (ja) * 2016-03-24 2017-10-05 凸版印刷株式会社 化粧シート及び化粧シートの製造方法
JP2019204591A (ja) * 2018-05-21 2019-11-28 吉野川電線株式会社 耐捻回ケーブル
JP2021017661A (ja) * 2019-07-17 2021-02-15 井上染工株式会社 Co2削減剤を含む糸の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140230286A1 (en) * 2013-02-20 2014-08-21 Tracy Ann Paugh Biodegradable shoe sole with fixed or detachable upper shoe components
JP7301733B2 (ja) * 2019-12-26 2023-07-03 株式会社トクヤマ 印刷用シート

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188487A (ja) 1993-12-27 1995-07-25 Kyowa Leather Cloth Co Ltd 塩化ビニル系樹脂組成物、シート状物及び壁装材
JPH07247119A (ja) * 1994-03-15 1995-09-26 Ishihara Sangyo Kaisha Ltd 二酸化チタン水性分散体
JP2003147628A (ja) * 2001-11-02 2003-05-21 Mitsubishi Rayon Co Ltd 二酸化チタンの水分散スラリー及び該スラリーを含有する紡糸原液
JP2006077048A (ja) 2004-09-07 2006-03-23 Sankoh Wise:Kk 二酸化炭素低減プラスチック成形品
JP2007182465A (ja) * 2006-01-04 2007-07-19 Daito Kasei Kogyo Kk 超微粒子分散体およびその分散体を含有する樹脂組成物
JP2008106171A (ja) 2006-10-26 2008-05-08 Takahashi Gensaku 樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317950A (ja) * 1986-07-10 1988-01-25 Nitto Kasei Kogyo Kk 塩素含有樹脂用安定剤の製造方法
JPH10192670A (ja) * 1996-12-27 1998-07-28 Inoue Seisakusho:Kk 超臨界状態を用いた分散方法及び分散装置
JP2000256525A (ja) * 1999-03-11 2000-09-19 Mitsubishi Chem Mkv Co 粉体成形用塩化ビニル系樹脂組成物
US6890997B2 (en) * 2002-10-08 2005-05-10 Rohm And Haas Company Powder coating of free radical curable epoxy resin and another free radical curable resin
JP2007077213A (ja) * 2005-09-12 2007-03-29 Masamitsu Nagahama 二酸化炭素減少剤、樹脂材料の製造方法、二酸化炭素減少剤の使用
JP5229916B2 (ja) * 2007-04-13 2013-07-03 独立行政法人産業技術総合研究所 大気圧以上の圧力に依存して吸着・脱離可能な二酸化炭素吸着剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188487A (ja) 1993-12-27 1995-07-25 Kyowa Leather Cloth Co Ltd 塩化ビニル系樹脂組成物、シート状物及び壁装材
JPH07247119A (ja) * 1994-03-15 1995-09-26 Ishihara Sangyo Kaisha Ltd 二酸化チタン水性分散体
JP2003147628A (ja) * 2001-11-02 2003-05-21 Mitsubishi Rayon Co Ltd 二酸化チタンの水分散スラリー及び該スラリーを含有する紡糸原液
JP2006077048A (ja) 2004-09-07 2006-03-23 Sankoh Wise:Kk 二酸化炭素低減プラスチック成形品
JP2007182465A (ja) * 2006-01-04 2007-07-19 Daito Kasei Kogyo Kk 超微粒子分散体およびその分散体を含有する樹脂組成物
JP2008106171A (ja) 2006-10-26 2008-05-08 Takahashi Gensaku 樹脂組成物

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10026341B2 (en) 2010-12-27 2018-07-17 Sato Holdings Kabushiki Kaisha Label, wristband clip, paper material and ink ribbon containing carbon dioxide absorbent liposome
JPWO2012090498A1 (ja) * 2010-12-27 2014-06-05 サトーホールディングス株式会社 ラベル、印字用紙の最上層形成材料、情報担持媒体、リストバンド用クリップおよびこれらを用いた二酸化炭素削減方法
WO2012090498A1 (ja) * 2010-12-27 2012-07-05 サトーホールディングス株式会社 ラベル、印字用紙の最上層形成材料、情報担持媒体、リストバンド用クリップおよびこれらを用いた二酸化炭素削減方法
JP5830034B2 (ja) * 2010-12-27 2015-12-09 サトーホールディングス株式会社 ラベル、印字用紙の最上層形成材料、情報担持媒体及びこれらを用いた二酸化炭素削減方法
JP2016048380A (ja) * 2010-12-27 2016-04-07 サトーホールディングス株式会社 リストバンド用クリップ
US9489872B2 (en) 2010-12-27 2016-11-08 Sato Holdings Kabushiki Kaisha Label, printing paper top layer formation material, information-bearing medium, wristband clip, and carbon dioxide reduction method using same
JP2012171997A (ja) * 2011-02-18 2012-09-10 Sato Knowledge & Intellectual Property Institute 固形燃料およびこれを用いた二酸化炭素削減方法
JP2016132172A (ja) * 2015-01-20 2016-07-25 株式会社トッパン・コスモ 化粧シート
JP2016215379A (ja) * 2015-05-14 2016-12-22 株式会社トッパン・コスモ 化粧シート
JP2017025151A (ja) * 2015-07-17 2017-02-02 凸版印刷株式会社 樹脂シート、積層シート及び発泡壁紙
JP2017075426A (ja) * 2015-10-15 2017-04-20 旭化成株式会社 ポリオレフィン系スパンボンド不織布
JP2017075427A (ja) * 2015-10-15 2017-04-20 旭化成株式会社 柔軟性を有するスパンボンド不織布
JP2017177814A (ja) * 2016-03-24 2017-10-05 凸版印刷株式会社 化粧シート及び化粧シートの製造方法
JP7013665B2 (ja) 2016-03-24 2022-02-01 凸版印刷株式会社 化粧シート及び化粧シートの製造方法
JP7040698B2 (ja) 2018-05-21 2022-03-23 吉野川電線株式会社 耐捻回ケーブル
JP2019204591A (ja) * 2018-05-21 2019-11-28 吉野川電線株式会社 耐捻回ケーブル
WO2019225291A1 (ja) * 2018-05-21 2019-11-28 吉野川電線株式会社 耐捻回ケーブル
JP2021017661A (ja) * 2019-07-17 2021-02-15 井上染工株式会社 Co2削減剤を含む糸の製造方法

Also Published As

Publication number Publication date
KR20120095882A (ko) 2012-08-29
JP6487483B2 (ja) 2019-03-20
US20120184656A1 (en) 2012-07-19
JPWO2011037238A1 (ja) 2013-02-21
JP2017155239A (ja) 2017-09-07
KR101926766B1 (ko) 2019-03-07
JP2016014157A (ja) 2016-01-28
JP6170652B2 (ja) 2017-07-26
EP2481778A1 (en) 2012-08-01
EP2481778A4 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
JP6487483B2 (ja) 二酸化炭素排出量削減樹脂組成物およびその製造方法
CN103080235B (zh) 树脂复合材料及树脂复合材料的制造方法
KR102380168B1 (ko) 수지 조성물, 및 성형품
CN102127245B (zh) 一种生物可降解聚合物发泡粒子的制备方法
TWI303258B (en) Biodegradable resin composition, filler therefor and molded article thereof
JP6060451B2 (ja) 二酸化炭素排出量削減樹脂組成物の製造方法
JP4983079B2 (ja) 樹脂組成物およびそれからなる成形品
Peydayesh et al. Sustainable bioplastics from amyloid fibril-biodegradable polymer blends
Wang et al. Facile construction of cellulose/montmorillonite nanocomposite biobased plastics with flame retardant and gas barrier properties
JP2011104274A (ja) 硫黄系ガス消臭剤
Luna et al. Polymer nanocomposites for food packaging
Pichaiyut et al. Biodegradability and thermal properties of novel natural rubber/linear low density polyethylene/thermoplastic starch ternary blends
Öner et al. Development of poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)/boron nitride bionanocomposites with enhanced barrier properties
WO2023112514A1 (ja) 樹脂組成物、及び成形品
JP2023123591A (ja) 生分解性フィルム
ES2673023T5 (es) Plástico biodigestible, biocompostable y biodegradable
CN102093682A (zh) 一种轻质聚乳酸复合材料及其制备方法
JP6692236B2 (ja) 脂肪族ポリエステル樹脂組成物の製造方法
JP6707736B2 (ja) 樹脂組成物、複合材料及び樹脂組成物の製造方法
Erbetta et al. Characterization and lifetime estimation of high density polyethylene containing a prodegradant agent
JP5292868B2 (ja) 樹脂組成物並びに該樹脂組成物からなる成形品及びフィルム
JP2004263158A (ja) 帯電防止性ポリ乳酸系樹脂組成物
JPWO2018012583A1 (ja) 脂肪族ポリエステル樹脂組成物の製造方法
JP7178754B1 (ja) 樹脂組成物及び成形品
JP2008303300A (ja) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011533070

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13498426

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010818910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010818910

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127010501

Country of ref document: KR

Kind code of ref document: A