WO2011037146A1 - 樹脂成形方法および樹脂成形品 - Google Patents

樹脂成形方法および樹脂成形品 Download PDF

Info

Publication number
WO2011037146A1
WO2011037146A1 PCT/JP2010/066432 JP2010066432W WO2011037146A1 WO 2011037146 A1 WO2011037146 A1 WO 2011037146A1 JP 2010066432 W JP2010066432 W JP 2010066432W WO 2011037146 A1 WO2011037146 A1 WO 2011037146A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
resin
mold
resin molding
molding method
Prior art date
Application number
PCT/JP2010/066432
Other languages
English (en)
French (fr)
Inventor
鈴木 淳一朗
Original Assignee
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社 filed Critical 東海ゴム工業株式会社
Priority to CN2010800168125A priority Critical patent/CN102395453A/zh
Priority to EP10818819.4A priority patent/EP2481548A4/en
Priority to US13/145,162 priority patent/US20110268923A1/en
Priority to JP2011513779A priority patent/JPWO2011037146A1/ja
Publication of WO2011037146A1 publication Critical patent/WO2011037146A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • B29C2045/2714Gates elongated, e.g. film-like, annular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the present invention relates to a resin molding method and a resin molded article using a molten resin containing a filler as a raw material.
  • FIG. 22 shows a perspective view of a conventional engine mount.
  • the engine mount 100 is an injection-molded product of resin.
  • the engine mount 100 is manufactured by first disposing the elastic member 101 in the cavity and then injecting the fiber-containing molten resin into the cavity from the single-point gate 102 (shown by a thin line in FIG. 22).
  • FIG. 23 shows a schematic perspective view of a resin flow channel having a one-point gate.
  • FIG. 24 shows a schematic view of a cross section in the XXIV-XXIV direction of FIG.
  • the resin flow path 103 is provided with a runner 104, a one-point gate 105, and a cavity 106.
  • the molten resin 107 flows into the cavity 106 in a circle centered on the single-point gate 105.
  • the flow velocity distribution in the extension direction (flow passage direction) A100 of the cavity 106 varies. Specifically, the flow velocity of the cross-sectional center portion 106a is increased.
  • the flow velocity of the cross-sectional longitudinal direction both end portions 106 b and the flow velocity of the cross-sectional short direction both end portions 106 c become slow.
  • an oriented portion 107a with high fiber orientation in the molten resin 107, and a non-oriented portion 107b with low orientation. Will appear.
  • the non-alignment portion 107 b is disposed in the central portion where the flow velocity of the molten resin 107 is high.
  • the non-alignment portion 107 b has an elliptical shape.
  • the alignment portion 107a is disposed around the non-alignment portion 107b.
  • the alignment portion 107 a is formed by applying a shearing force between the mold surface 109 of the mold and the molten resin 107.
  • the difference between the flow velocity of the cross-sectional center portion 106 a and the flow velocity of the cross-sectional longitudinal direction both end portions 106 b or the flow velocity of the cross-sectional short direction both end portions 106 c is excessively large, It becomes difficult to form the alignment part 107a. For this reason, the ratio of the orientation part 107a in a resin molded product becomes small. Therefore, the strength of the resin molded product is reduced.
  • JP-A-8-142218 JP 2003-231156 A Japanese Patent Application Laid-Open No. 10-34762
  • Patent Document 1 discloses a resin molding method for intentionally generating a weld line.
  • the baffle member is disposed in the resin flow path.
  • the flow of the molten resin collides with the baffle member and branches.
  • a weld line is formed by re-association of the flow fronts once diverted.
  • the fibers in the molten resin are oriented along the extending direction of the weld line.
  • Patent Documents 2 and 3 also disclose a resin molding method for orienting fibers in a molten resin by generating a weld line.
  • FIG. 25 is a schematic view of a broken surface in a direction substantially orthogonal to the flow passage direction when a weld line is temporarily formed on the engine mount. Note that portions corresponding to those in FIG. 24 are denoted by the same reference numerals. FIG. 25 corresponds to the XXV-XXV direction cut surface of FIG.
  • the strength in the extending direction of the weld line 108 is improved, but the strength in the direction substantially orthogonal to the extending direction of the weld line 108 is reduced. That is, in the weld line 108, the fibers are oriented along the weld line 108. For this reason, the strength of the resin molded product in the direction substantially orthogonal to the extending direction of the weld line 108 is reduced.
  • the engine mount 100 shown in FIG. 22 normally moves up and down relatively with respect to a mating member inserted into the cylindrical portion 101a while maintaining a substantially horizontal state.
  • a load F100 is applied substantially equally over the axial direction (left and right direction) to the inner peripheral surface of the cylindrical portion 101a.
  • the engine mount 100 may move up and down relatively with respect to a mating member inserted into the cylindrical portion 101a. In this case, the load is not substantially uniformly applied in the axial direction of the cylindrical portion 101a.
  • stress acts so that the end is flipped up. Therefore, as shown by the arrow Y100, stress acts in a direction substantially orthogonal to the extending direction of the weld line 108 (that is, in the direction in which the strength is low).
  • the strength in the extending direction of the weld line 108 can be improved.
  • the strength in the direction substantially orthogonal to the extending direction of the weld line 108 is reduced. Then, a stress caused by the load F100 may act in a direction substantially orthogonal to the extending direction of the weld line 108.
  • An object of the present invention is to provide a resin molding method and a resin molded product which can improve strength while suppressing the occurrence of weld lines.
  • the mold is tightened, an expanded portion disposed downstream of the nozzle of the molding machine to expand the channel cross-sectional area, and the downstream side of the expanded portion And a linear gate disposed downstream of the throttle portion, and a gate disposed downstream of the gate in a direction in which the throttle portion communicates with the gate.
  • the resin molding method of the present invention has a mold clamping process, an injection process, and a mold opening process.
  • a resin flow channel is formed in the mold clamping step.
  • an expansion portion, a throttling portion, a gate, and a cavity are disposed from the upstream side toward the downstream side.
  • molten resin is injected into the resin flow path.
  • the extension By passing through the extension, the flow of molten resin diffuses.
  • the flow of molten resin once diffused is contracted.
  • a stream of contracted molten resin passes through the gate.
  • the gate has a slit shape. For this reason, the flow of the molten resin becomes belt-like by passing through the gate.
  • the communication direction of the throttle portion-gate crosses the extending direction of the cross direction extending portion of the cavity. For this reason, the molten resin which has passed through the gate collides with the mold surface (including the surface of the insert member) which defines the crosswise extension, and then flows into the cavity.
  • the mold opening step the resin molded product is taken out of the mold.
  • the resin molding method of the present invention when the molten resin passes through the expanded portion and the squeezed portion, it is possible to suppress the variation in the flow velocity distribution of the molten resin in the flow channel direction. That is, the dispersion of the flow velocity distribution can be suppressed by temporarily diffusing and throttling the flow of the molten resin.
  • the gate has a linear shape, not a pin point shape or a spot shape. Also in this point, the variation in the flow velocity distribution of the molten resin in the flow channel direction can be suppressed.
  • “linear” includes a linear shape, a curved shape, and a state in which a linear shape and a curved shape are combined.
  • the gate width (line width) may or may not be constant over the entire gate length (total line length).
  • the obstructing member is not intentionally disposed in the resin flow channel. For this reason, it can suppress that a weld line generate
  • the gate may have a slit shape.
  • the gate has a slit shape, not a pin point shape or a spot shape. That is, the gate has a linear shape. Also, the gate width is constant over the entire gate length. For this reason, the dispersion
  • the short side of the cross section of the flow passage in the cross direction extending portion is preferably 4 mm or more.
  • the resin molding method of the present invention is suitable for producing a thick, fiber-reinforced resin molded product as in the present configuration.
  • the long side of the gate and the long side of the flow passage cross section in the cross direction extending portion are substantially parallel, and It is better to have a configuration that is approximately the same length. According to this configuration, the variation in the flow velocity distribution of the molten resin can be suppressed as compared with the case where the long side of the gate is shorter than the long side of the flow passage cross section.
  • the long side of the gate means a straight line connecting both ends in the longitudinal direction of the gate.
  • the communication direction between the narrowed portion and the gate and the extending direction of the cross direction extending portion are substantially orthogonal to each other. It is better to have
  • the molten resin passing through the gate flows from the substantially vertical direction into the cross direction extending portion. Therefore, the flow of the molten resin can be easily diverted to two hands. Further, it is possible to suppress the occurrence of deviation in the flow rate between one branch flow and the other branch flow.
  • the expansion direction of the flow path cross-sectional area in the expansion portion and the throttling direction of the flow path cross-sectional area in the throttling portion It is better to have a substantially orthogonal configuration. According to this configuration, it is possible to suppress variations in the flow velocity distribution in two directions (the expansion direction and the throttling direction) substantially orthogonal to each other.
  • the resin molded article of the present invention has, in the fracture surface, an orientation portion having a high degree of orientation of the filler and a non-orientation having a low degree of orientation of the filler than the orientation.
  • a fracture direction of the fracture surface is a direction intersecting with an extension direction of the gate side surface having a linear gate cut mark, and the orientation part Is arranged in a frame shape along the shape of the outer edge of the fractured surface, and the non-alignment portion is arranged inside the alignment portion.
  • the alignment portion is arranged in a frame shape along the shape of the outer edge of the fracture surface. For this reason, the thickness of the oriented portion in the fracture surface is unlikely to vary. Therefore, the strength of the resin molded product can be improved. In addition, variations in the strength distribution of the resin molded product can be suppressed.
  • the gate cut mark is not pinpoint-like or spot-like but linear. Also in this point, the variation in the flow velocity distribution of the molten resin in the flow channel direction can be suppressed.
  • “linear” includes a linear shape, a curved shape, and a state in which a linear shape and a curved shape are combined.
  • the gate cut mark width (line width) may or may not be constant over the entire gate cut mark length (line length).
  • the gate cut trace is preferably configured to have a slit shape.
  • the gate cut marks have a linear shape.
  • the gate cut trace width is constant over the entire length of the gate cut trace.
  • the alignment portion is arranged in a frame shape along the shape of the outer edge of the fracture surface. For this reason, the thickness of the oriented portion in the fracture surface is unlikely to vary. Therefore, the strength of the resin molded product can be improved. In addition, variations in the strength distribution of the resin molded product can be suppressed.
  • the alignment portion is a gate-side alignment portion close to the gate-side surface with the non-alignment portion interposed therebetween, and a back direction to the gate-side surface It is preferable that the thickness of the anti-gate-side alignment portion is larger than the thickness of the gate-side alignment portion. According to this configuration, it is possible to strengthen the resin molded product particularly against the load input to the resin molded product from the non-gate side surface.
  • FIG. 5 is a front view of a straight gate having a total of eight circular portions at both longitudinal ends and in the longitudinal middle. It is a front view of the paddle-like gate whose gate width becomes thin toward the longitudinal center from both ends in the longitudinal direction.
  • FIG. 2 is a perspective view of an engine mount molded with a wavy gate.
  • 3 is a photograph of a fracture surface of the sample of Example 1. It is a copy of the same photograph. It is a photograph of the torn surface of the sample of Comparative Example 1. It is a copy of the same photograph. It is a perspective view of the conventional engine mount. It is a model perspective view of the resin flow path which has a single-point gate. It is a schematic diagram of the XXIV-XXIV direction broken surface of FIG. It is a schematic diagram of the torn surface of the direction substantially orthogonal to the flow path direction when a weld line is temporarily formed in an engine mount.
  • FIG. 1 shows a perspective view of the mold used in the resin molding method of the present embodiment in the mold open state.
  • FIG. 2 shows a perspective view of the movable mold in the mold clamping state of the same mold.
  • FIG. 3 shows a right side view in the movable mold clamping state.
  • the mold 1 includes a fixed mold 20, a movable mold 21, slide cores 22 ⁇ / b> U and 22 ⁇ / b> D for throttling members, slide cores 280 F and 280 R for recesses, and slide cores 281 for nut fixing. And have.
  • the fixed mold 20 is made of chromium molybdenum steel, and has a rectangular parallelepiped block shape.
  • the movable mold 21 is made of chromium molybdenum steel and has a rectangular plate shape.
  • the fixed mold 20 is provided with a sprue 200 extending in the left-right direction. That is, the left end of the sprue 200 is open at the left surface of the fixed mold 20.
  • the runner 290 connects the left end of the sprue 200 and the approximate center of the slide core recess 291 in the longitudinal direction.
  • the cavity 292 is disposed substantially at the center of the fixed mold 20 left surface and the movable mold 21 right surface.
  • a protrusion 295L is provided to project from the right surface of the movable mold 21.
  • the protrusion 295 L is disposed in the cavity 292. In the mold clamping state, the tip of the protrusion 295L is in contact with the left surface of the fixed mold 20.
  • An elastic member 296 is attached to the protrusion 295L. That is, in the cavity 292, the elastic member 296 is disposed.
  • the elastic member 296 integrally includes a rubber main body 296a and a metal cylindrical portion 296b.
  • the front recess 293F is continuous with the front of the cavity 292, and the rear recess 293R is continuous with the rear of the cavity 292.
  • the slide core 280F for the recess is accommodated in the front recess 293F, and the slide core 280R for the recess is accommodated in the rear recess 293R so as to be movable in the front-rear direction.
  • the lower recess 294 continues below the cavity 292.
  • a nut fixing slide core 281 is accommodated so as to be movable in the vertical direction.
  • the pair of protrusions 282 is disposed on the top surface of the nut fixing slide core 281.
  • a nut 283 is annularly mounted on the projection 282.
  • the slide core recess 291 is disposed in front of and above the cavity 292.
  • the slide core 22U, 22D for a throttling member is accommodated in the slide core recess 291 so as to be movable in the front lower-rear upper direction.
  • FIG. 4 shows a perspective view of the slide core for the diaphragm member.
  • the squeeze member slide core 22U is made of chromium molybdenum steel, and has a rectangular parallelepiped block shape.
  • a diaphragm member 220U is formed on the lower surface of the diaphragm member slide core 22U.
  • the aperture member 220U extends in the left-right direction.
  • the cross section of the diaphragm member 220U has a rectangular shape.
  • the material and configuration of the diaphragm member slide core 22D are the same as those of the diaphragm member slide core 22U.
  • the squeeze member slide core 22D is accommodated movably facing the squeeze member slide core 22U. That is, the diaphragm member 220U and the diaphragm member 220D face each other.
  • the mold 1 can be switched between a mold open state and a mold clamped state.
  • the movable mold 21 is separated to the left with reference to the fixed mold 20.
  • the slide member core 22U for the throttling member and the slide core 22D for the throttling member are respectively separated at the rear upper side and the front lower side (see FIG. 3).
  • the recess slide core 280F stands by at the front of the front recess 293F.
  • the recess slide core 280R stands by at the rear of the rear recess 293R.
  • a nut fixing slide core 281 stands by at the lower portion of the lower recess 294.
  • the right surface of the movable mold 21 is brought into contact with the left surface of the fixed mold 20.
  • the runner 290 By bringing the movable mold 21 into contact with the fixed mold 20, between the fixed mold 20 and the movable mold 21, the runner 290, the recess 291 for the slide core, the cavity 292, the front recess 293 F, the rear recess 293 R and the lower recess 294 Is formed.
  • the slide core 22U for the throttling member is substantially at the center in the longitudinal direction of the slide core recess 291.
  • the slide member 22D for the throttling member In the front recess 293F, the recess slide core 280F is moved to the rear of the front recess 293F. The rear portion of the recess slide core 280F enters the cavity 292. Also, in the rear recess 293R, the recess slide core 280R is moved to the front of the rear recess 293R. The front of the recess slide core 280R enters the cavity 292.
  • the nut fixing slide core 281 is moved to the upper part of the lower recess 294.
  • the upper portion of the nut fixing slide core 281 enters the cavity 292.
  • the resin flow path 90 is formed inside the mold 1 in a clamped state.
  • the resin flow passage 90 includes a sprue 200, a runner 290, an expansion portion 26, a throttling portion 24, a gate 25, and a cavity 292.
  • the extension portion 26 is disposed downstream of the runner 290.
  • the flow passage cross-sectional area of the resin flow passage 90 (a cross-sectional area in a direction substantially perpendicular to the direction from which the molten resin flows from the front upper side to the rear lower side in this portion) is rapidly increased.
  • the expansion direction of the flow passage cross-sectional area in the expansion portion 26 is the left-right direction.
  • the dimension of the flow passage cross section of the expanded portion 26 is 50 mm (long side in the left-right direction) ⁇ 6 mm (front lower side-rear upper short side).
  • the throttling portion 24 is disposed downstream of the expanding portion 26.
  • the throttling portion 24 is formed between the throttling member 220D of the squeeze member slide core 22D and the throttling member 220U of the squeeze member slide core 22U.
  • the diaphragm 24 extends in the left-right direction.
  • the flow passage cross-sectional area of the throttling portion 24 becomes sharply smaller than the flow passage cross-sectional area of the expansion portion 26.
  • the throttling direction of the flow passage cross-sectional area in the throttling portion 24 is front lower, rear upper.
  • the dimension of the flow passage cross section of the narrowed portion 24 is 50 mm (long side in the left-right direction) ⁇ 2 mm (front lower side-rear upper short side).
  • the gate 25 is disposed downstream of the narrowed portion 24.
  • the gate 25 has a slit shape. That is, the gate 25 has a rectangular shape including long sides extending in the left-right direction and short sides extending in the front lower side and the rear upper side.
  • the dimension of the flow passage cross section of the gate 25 is 50 mm (long side in the left-right direction) ⁇ 4 mm (front lower side-rear upper short side).
  • the cavity 292 is disposed downstream of the gate 25. As shown by a dashed-dotted line frame in FIG. 3, the gate 25 opens in the crosswise extending portion 292 a of the cavity 292.
  • the crosswise extending portion 292a extends in the front lower side and the back upper side.
  • the throttling portion 24 and the gate 25 extend from the front upper side to the rear lower side.
  • the extending direction of the cross direction extending portion 292a and the communication direction of the throttle portion 24 and the gate 25 are substantially orthogonal to each other.
  • the cross section of the crosswise extending portion 292a (in which the molten resin flows from the front lower to the rear upper or from the rear upper to the front lower, the cross section in a direction substantially perpendicular to the direction) is rectangular It is
  • the long side of the channel cross section extends in the left-right direction.
  • the short side of the flow channel cross section extends in the upper front-back lower direction.
  • the long side of the gate 25 and the long side of the channel cross section are substantially parallel and have substantially the same length.
  • the resin flow path communicating with the sprue 200 ⁇ runner 290 ⁇ expansion portion 26 ⁇ throttle portion 24 ⁇ gate 25 ⁇ cavity 292 from the upstream side to the downstream side 90 are formed.
  • the flow channel direction of the resin flow channel 90 of the cavity 292 is the extension direction of the cavity 292, that is, the circumferential direction around the elastic member 296.
  • the resin molding method of the present embodiment includes a mold clamping process, an injection process, and a mold opening process.
  • the elastic member 296 is attached to the protrusion 295L.
  • the movable mold 21 is brought into contact with the fixed mold 20 from the left.
  • the slide members 22U and 22D for a drawing member are brought into contact with each other in the recess 291 for the slide core.
  • the recess slide core 280F is moved rearward.
  • the recess slide core 280R is moved forward.
  • the nut fixing slide core 281 attached with the nut 283 is moved upward.
  • molten resin is injected into the resin flow path 90 from the nozzle of the molding machine.
  • the molten resin comprises nylon 66 and glass fiber.
  • Nylon 66 is included in the base material of the present invention.
  • Glass fibers are included in the filler of the present invention. Glass fibers are dispersed in the molten nylon 66.
  • the cylinder temperature of the molding machine is about 290.degree. Also, the temperature of the mold 1 is about 80.degree.
  • FIG. 5 the model perspective view of the 1st step of the injection
  • FIG. 6 the model perspective view of the 2nd step of the same injection
  • FIG. 7 shows a schematic perspective view of the third step of the same injection step.
  • the molten resin 91 flows in the resin flow passage 90.
  • the flow passage cross-sectional area of the resin flow passage 90 is expanded in the lateral direction in the expansion portion 26. For this reason, the flow of the molten resin 91 also expands in the left-right direction.
  • the substantially central portion in the left-right direction quickly reaches the throttling portion 24.
  • the flow passage cross-sectional area of the throttling portion 24 is narrow, the flow resistance is high. Therefore, while the substantially central portion in the lateral direction of the flow of the molten resin 91 passes through the throttling portion 24, both lateral end portions of the flow of the expanded molten resin 91 catch up with the substantially central portion in the lateral direction. Thus, the variation in the flow velocity distribution of the molten resin 91 is corrected. As shown in FIG. 6, after passing through the narrowed portion 24, the molten resin 91 passes through the slit-like gate 25.
  • the molten resin 91 which has passed through the gate 25 first collides with the main body 296 a of the elastic member 296, and then branches into two hands (lower front and rear upper). Thereafter, molten resin 91 flows in the circumferential direction along the outer peripheral surface of main body 296a. Then, the molten resin 91 spreads throughout the cavity 292. The molten resin that has spread is cooled and solidified in the cavity 292.
  • the slide members 22U and 22D for the drawing member are separated in the recess 291 for the slide core.
  • the recess slide core 280F is moved forward.
  • the recess slide core 280R is moved rearward.
  • the nut fixing slide core 281 is moved downward.
  • the movable mold 21 is separated leftward with respect to the fixed mold 20. After that, the gate is cut and the engine mount is completed.
  • the resin molded product of the present embodiment is an engine mount.
  • FIG. 8 shows a perspective view of the engine mount of the present embodiment.
  • the engine mount 70 described below is a schematic one, and the gate cut mark GC may not be confirmed on the engine mount 70 depending on the processing after the mold opening process.
  • the engine mount 70 of the present embodiment integrally includes a bracket 700 and an elastic member 296.
  • the vertical length W1 of the engine mount 70 is 110 mm.
  • the longitudinal length W2 of the engine mount 70 is 100 mm.
  • the left-right direction length W3 of the engine mount 70 is 50 mm.
  • the minimum value of the radial thickness W4 of the bracket 700 is 11 mm.
  • the engine mount 70 is used to fix the engine of the vehicle to the vehicle body.
  • the engine mount 70 can suppress transmission of engine vibration to the vehicle body.
  • a rectangular gate cut mark GC is formed on the gate side surface (outer peripheral surface) 704 of the bracket 700.
  • FIG. 9 shows a schematic view of the broken surface in the direction of IX-IX in FIG.
  • an alignment portion 702 and a non-alignment portion 703 are disposed on the fracture surface 701.
  • the alignment portion 702 has a substantially rectangular shape.
  • the orientation portion 702 is arranged in a frame shape along the shape (rectangular shape) of the outer edge of the fracture surface 701.
  • the non-alignment portion 703 has a substantially rectangular shape.
  • the non-alignment portion 703 is disposed inside the alignment portion 702.
  • the front edge of the fracture surface 701 corresponds to the gate side surface 704.
  • the trailing edge of the fracture surface 701 corresponds to the non-gate side surface (inner circumferential surface) 705.
  • the opposite gate side surface 705 is opposed to the gate side surface 704 in the front-rear direction (radial direction).
  • the opposite gate side surface 705 is in contact with the outer peripheral surface of the main body 296a.
  • a gate side alignment portion 702 a is interposed between the gate side surface 704 and the non-alignment portion 703. Further, an anti-gate side alignment portion 702 b is interposed between the anti-gate side surface 705 and the non-alignment portion 703.
  • the thickness W6 of the opposite gate side alignment portion 702b is larger than the thickness W5 of the gate side alignment portion 702a.
  • the non-alignment portion 703 is arranged to be shifted from the center of the fracture surface 701 toward the gate side surface 704. This thickness difference can be observed over the entire circumference of the bracket 700. That is, the thickness of the alignment portion 702 is larger on the inner side in the radial direction than on the outer side in the radial direction.
  • the fracture surface 701 can be observed by, for example, breaking (not cutting) the bracket 700 in the radial direction by a tensile test or the like.
  • breaking (not cutting) the bracket 700 in the radial direction by a tensile test or the like.
  • the function and effect of the resin molding method and the engine mount 70 of the present embodiment will be described.
  • the resin molding method of the present embodiment as shown in FIGS. 5 and 6, the molten resin 91 passes through the expanded portion 26 and the squeezed portion 24 so that the molten resin in the flow path direction (front upper ⁇ rear lower) Variations in the flow velocity distribution 91 can be suppressed. That is, by diffusing and narrowing the flow of the molten resin 91 once, it is possible to suppress the variation in the flow velocity distribution.
  • the gate 25 has a slit shape, not a pin point shape or a spot shape. Also in this point, it is possible to suppress the variation of the flow velocity distribution of the molten resin 91 in the flow channel direction (front upper ⁇ rear lower).
  • the alignment portion 702 shown in FIG. 9 is likely to be formed along the mold surface (including the surface of the main body 296a) of the mold 1. For this reason, the ratio of the orientation part 702 in the engine mount 70 becomes large. Therefore, the strength (tensile strength and bending strength) of the engine mount 70 can be improved. Further, according to the resin molding method of the present embodiment, the obstructing member is not intentionally disposed in the resin flow passage 90. Therefore, generation of weld lines on the engine mount 70 can be suppressed.
  • the minimum value of the radial thickness W4 of the bracket 700 is 11 mm. That is, the short side (the front upper side and the rear lower side) of the cross section of the flow passage in the cross direction extending portion 292a of the cavity 292 shown in FIG. 5 is 11 mm.
  • the resin molding method of this embodiment is suitable for producing a thick resin molded product.
  • the long side in the horizontal direction of the gate 25 and the long side in the horizontal direction of the flow passage cross section in the cross direction extending portion 292a are substantially parallel. , And approximately the same length. For this reason, the variation in the flow velocity distribution of the molten resin 91 can be suppressed as compared with the case where the long side in the lateral direction of the gate 25 is shorter than the long side in the lateral direction of the channel.
  • the extending direction (front lower-rear upper) of the cross direction extending portion 292a, and the communication direction (front of the throttle portion 24 and the gate 25) Upper-rear lower) is substantially orthogonal. For this reason, the flow of the molten resin 91 can be easily diverted to two hands.
  • the alignment portion 702 is arranged in a rectangular frame shape along the shape of the outer edge of the fracture surface 701. For this reason, compared with the conventional fractured surface shown in FIG. 24, the thickness of the alignment portion 702 hardly varies. Therefore, the strength of engine mount 70 can be improved.
  • the thickness W6 of the anti-gate side orientation portion 702b is set larger than the thickness W5 of the gate side orientation portion 702a. Therefore, the strength against the stress applied from the inner side in the radial direction can be improved.
  • FIG. 10 shows a schematic perspective view of a resin flow channel in the resin molding method of the present embodiment.
  • the gate 25 is connected to the downstream side of the narrowed portion 24 without expanding the cross-sectional area of the flow passage (the width of the flow passage in the front lower side and the rear upper side). That is, the flow passage cross-sectional area of the narrowed portion 24 and the flow passage cross-sectional area of the gate 25 substantially coincide with each other.
  • the resin molding method and the engine mount of the present embodiment have the same effects as those of the resin molding method and the engine mount of the first embodiment in terms of parts having the same configuration. Further, according to the resin molding method of the present embodiment, the length of the short side of the gate 25 (the width between the front lower and the rear upper) is small. Therefore, the gate 25 can be easily removed from the molded engine mount.
  • the type of base material of the molten resin 91 is not particularly limited.
  • polyamide nylon 6, nylon 66, nylon 46, nylon 610, nylon 612, aromatic nylon, etc.
  • polyethylene polypropylene
  • polystyrene polystyrene
  • acrylonitrile-butadiene-styrene resin polyacetal
  • polycarbonate modified polyphenylene ether
  • polybutylene terephthalate Polyethylene terephthalate
  • polyphenylene sulfide and the like can be used.
  • the type of filler of the molten resin 91 is not particularly limited.
  • glass fibers, carbon fibers, aramid fibers, boron fibers, alumina fibers, metal fibers, silicon carbide fibers, wollastonite, whiskers, kaolinite, talc, mica, montmorillonite, clay, carbon nanotubes and the like can be used.
  • the shape of the filler is not particularly limited. As shown in FIG. 11A, a fiber type filler 800 may be used. Further, as shown in FIG. 11B, a thin plate type filler 801 may be used. In addition, as shown in FIG. 11C, a filler 802 of elliptical sphere type may be used. That is, the shape of the filler may be anisotropic. Also, the material of the mold 1 is not particularly limited. Further, the position of the gate 25 in the mold 1 is not particularly limited.
  • the shape of the gate 25 may not be slit.
  • a gate 25 in the shape of a wavy line (sine curve) may be disposed.
  • the long side L1 of the gate 25 in FIG. 12 is a straight line connecting both ends in the longitudinal direction.
  • a zigzag gate 25 may be disposed.
  • the long side L1 of the gate 25 in FIG. 13 is a straight line connecting both ends in the longitudinal direction.
  • a linear gate 25 having circular portions at both ends in the longitudinal direction may be disposed.
  • a linear gate 25 having a total of eight circular portions at both longitudinal ends and in the longitudinal middle may be disposed.
  • paddle-shaped gates 25 may be arranged such that the gate width is narrowed from both longitudinal ends toward the longitudinal center. That is, as shown in FIGS. 14 to 16, the width of the gate 25 may not be constant over the entire length of the gate 25.
  • the strength in the amplitude direction (a direction orthogonal to the long side L1) of the gate 25 is determined in the vicinity of the gate cut mark of the resin molded article. It can be improved.
  • the amplitude of the gate 25 in the vicinity of the gate cut mark can be improved.
  • FIG. 17 shows a perspective view of an engine mount molded using a wavy gate.
  • the gate cut trace GC has a wavy shape extending in the left-right direction.
  • stress tends to be concentrated on the stress concentration portion S1.
  • the strength of the engine mount 70 tends to decrease. For this reason, the gate cut trace GC should be formed avoiding the stress concentration portion S1.
  • the gate cut trace GC may have to be formed in the stress concentration portion S1.
  • the strength in the amplitude direction (vertical direction) of the gate cut mark GC is improved in the vicinity of the gate cut mark GC of the engine mount 70. It can be done. That is, the reduction in strength due to the formation of the gate cut trace GC can be reduced by using the gate 25 that is not linear.
  • the molding conditions of the resin molding method of the present embodiment are not particularly limited.
  • the cylinder temperature and the mold temperature of the molding machine may be appropriately set in accordance with the characteristics of the molten resin 91 to be used, the specifications of the engine mount 70, and the like.
  • the sample of Example 1 is the engine mount 70 of the first embodiment shown in FIG.
  • the sample of Example 1 was produced by the resin molding method of the first embodiment.
  • the sample of Comparative Example 1 is the conventional engine mount 100 shown in FIG.
  • the sample of Comparative Example 1 was produced by a resin molding method using the conventional single-point gate 102.
  • the molding conditions of both resin molding methods were unified except resin flow paths.
  • the temperature of the resin was 300.degree.
  • the mold temperature was 80 ° C.
  • the injection speed was 30 mm / s.
  • the cooling time was 30 seconds.
  • the dimensions and materials of the samples of Example 1 and Comparative Example 1 were also unified.
  • the photograph of the torn surface of the sample of Example 1 is shown in FIG. FIG. 19 shows a copy of the photograph.
  • the photograph of the torn surface of the sample of the comparative example 1 is shown in FIG. FIG. 21 shows a copy of the same photo.
  • the whitish central portion of the fracture surface 92 is the non-alignment portion 94.
  • the fluffing part (the part where the rough asperity is formed) surrounding the periphery of the non-alignment part 94 is the alignment part 93.
  • the fracture surface 92 of the sample of Example 1 is the sample of Comparative Example 1.
  • the orienting portion 93 is formed along the shape of the outer edge of the fracture surface 92 than the fracture surface 92 of FIG. That is, it can be seen that the orientation part 93 of the sample of Example 1 has a shape closer to a rectangle.
  • the thickness of the fractured surface 92 of the sample of Example 1 is larger than that of the fractured surface 92 of the sample of Comparative Example 1 in the vertical direction of the alignment portion 93 near the upper and lower edges of the fractured surface 92.
  • the variation in the thickness in the vertical direction of the alignment portion 93 is small over the entire length in the horizontal direction.
  • the gate side alignment portion 93 a is interposed between the gate side surface 95 of the fracture surface 92 of the sample of the first embodiment and the non-alignment portion 94. Further, an anti-gate side alignment portion 93 b is interposed between the anti-gate side surface 96 and the non-alignment portion 94. It can be seen that the vertical thickness of the opposite gate side alignment portion 93b is larger than the vertical thickness of the gate side alignment portion 93a.
  • Example 2 The dimensions of each sample are the same in Example 2, Comparative Example 2, and Reference Example 2. That is, the dimensions of each sample are similar to the dimensions of the engine mount 70 of FIG. Reference Example 2 is not a known technique.
  • the resin forming the samples of Example 2, Comparative Example 2, and Reference Example 2 50% by mass of the filler (glass fiber) (based on 100% by mass of the matrix) was blended in the matrix (nylon 66). It is a thing.
  • the molding conditions for each sample are the same except for the shape of the gate 25.
  • the gate 25 of the second embodiment is similar to the first embodiment.
  • the throttling portion 24 and the expanding portion 26 are disposed on the upstream side of the gate 25.
  • the dimension of the flow passage cross section of the expanded portion 26 is 50 mm ⁇ 6 mm.
  • the dimension of the flow passage cross section of the narrowed portion 24 is 50 mm ⁇ 2 mm.
  • the dimension of the flow passage cross section of the gate 25 is 50 mm ⁇ 4 mm.
  • the gate of Comparative Example 2 is a single-point gate 102 shown in FIG.
  • the throttling portion 24 and the expansion portion 26 are not disposed upstream of the single-point gate 102.
  • the diameter of the single point gate 102 is 5 mm.
  • the gate of the reference example 2 is a multi gate obtained by dividing the gate 25 of the first embodiment into 12 (long side is divided into 12).
  • the throttling portion 24 and the expansion portion 26 are disposed upstream of the multigate.
  • the dimension of the flow passage cross section of the expanded portion 26 is 50 mm ⁇ 6 mm.
  • the dimension of the flow passage cross section of the narrowed portion 24 is 50 mm ⁇ 2 mm.
  • the overall dimensions of the multichannel gate cross section are 50 mm ⁇ 4 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 ウェルドラインの発生を抑制しつつ強度向上が可能な樹脂成形方法および樹脂成形品を提供することを課題とする。樹脂成形方法は、金型1を締め、成形機のノズルの下流側に配置され流路断面積を拡張する拡張部26と、拡張部26の下流側に配置され流路断面積を絞る絞り部24と、絞り部24の下流側に配置される線状のゲート25と、ゲート25の下流側に配置され絞り部24とゲート25との連通方向に対して交差する方向に延在する交差方向延在部292aを有するキャビティ292と、を備える樹脂流路90を形成する型締め工程と、樹脂流路90に溶融樹脂91を注入し、ゲート25から交差方向延在部292aに溶融樹脂91を分流させながら流し込む注入工程と、金型1を開き、溶融樹脂91が固化して形成される樹脂成形品70を取り出す型開き工程と、を有する。

Description

樹脂成形方法および樹脂成形品
 本発明は、充填材入りの溶融樹脂を原料とする樹脂成形方法および樹脂成形品に関する。
 図22に、従来のエンジンマウントの斜視図を示す。エンジンマウント100は、樹脂の射出成形品である。エンジンマウント100は、まずキャビティに弾性部材101を配置し、次いで繊維を含有する溶融樹脂を一点式ゲート102(図22に細線で示す。)からキャビティに注入することにより、作製される。
 ところが、一点式ゲート102を用いると、繊維の配向性が高い配向部が、エンジンマウント100に形成されにくい。図23に、一点式ゲートを有する樹脂流路の模式斜視図を示す。図24に、図23のXXIV-XXIV方向破断面の模式図を示す。
 図23に示すように、樹脂流路103は、ランナー104と、一点式ゲート105と、キャビティ106と、を備えている。溶融樹脂107は、一点式ゲート105を中心とする円状に、キャビティ106に流れ込む。このため、キャビティ106の延在方向(流路方向)A100における流速分布は、ばらついてしまう。具体的には、断面中央部分106aの流速が速くなる。また、断面長手方向両端部分106bの流速や断面短手方向両端部分106cの流速が遅くなる。
 このため、図24に示すように、流路方向に略直交する方向の破断面には、溶融樹脂107中の繊維の配向性が高い配向部107aと、配向性が低い非配向部107bと、が現れる。非配向部107bは、溶融樹脂107の流速が速い中央部分に配置される。非配向部107bは、楕円状を呈している。配向部107aは、非配向部107bの周囲に配置される。
 ここで、配向部107aは、金型の型面109と溶融樹脂107との間に剪断力が作用することにより、形成される。ところが、図23に示すように、断面中央部分106aの流速と、断面長手方向両端部分106bの流速や断面短手方向両端部分106cの流速と、の差が過剰に大きいと、型面109付近に配向部107aが形成されにくくなる。このため、樹脂成形品における配向部107aの割合が小さくなる。したがって、樹脂成形品の強度が低下してしまう。
特開平8-142218号公報 特開2003-231156号公報 特開平10-34762号公報
 樹脂成形品の特定の方向の強度を向上させるためには、樹脂成形品にウェルドラインを形成すればよい。例えば、特許文献1には、ウェルドラインを意図的に発生させる樹脂成形方法が開示されている。同文献開示の樹脂成形方法によると、樹脂流路に邪魔部材が配置されている。樹脂流路において、溶融樹脂の流れは、邪魔部材に衝突して分流する。一旦分流した流動先端同士が再び会合することにより、ウェルドラインが形成される。ここで、溶融樹脂中の繊維は、ウェルドラインの延在方向に沿って配向する。このため、同文献開示の樹脂成形方法によると、樹脂成形品の、ウェルドラインの延在方向の強度(引張強度や曲げ強度)を向上させることができる。特許文献2、特許文献3にも、特許文献1と同様に、ウェルドラインを発生させることにより、溶融樹脂中の繊維を配向させる樹脂成形方法が開示されている。
 図25に、仮にエンジンマウントにウェルドラインを形成した場合の、流路方向に略直交する方向の破断面の模式図を示す。なお、図24と対応する部位については、同じ符号で示す。また、図25は、図22のXXV-XXV方向破断面に対応している。
 図25に示すように、破断面にウェルドライン108を形成すると、ウェルドライン108の周囲に、配向部107aが形成される。このため、配向部107aの割合を大きくすることができる。
 ところで、樹脂成形品にウェルドライン108を配置すると、ウェルドライン108延在方向の強度が向上する反面、ウェルドライン108延在方向に略直交する方向の強度が低下してしまう。すなわち、ウェルドライン108では、ウェルドライン108に沿って繊維が配向する。このため、樹脂成形品の、ウェルドライン108延在方向に略直交する方向の強度が低下してしまう。
 ところで、図22に示すエンジンマウント100は、通常、略水平状態を保ったまま、円筒部101aに挿通される相手側部材に対して、相対的に上下動する。この場合、円筒部101aの内周面には、軸方向(左右方向)に亘って略均等に、荷重F100が加わる。
 しかしながら、エンジンマウント100は、稀に、略水平状態ではなく、傾斜した状態で、円筒部101aに挿通される相手側部材に対して、相対的に上下動する場合がある。この場合、円筒部101aの軸方向に亘って、荷重が略均等に加わらなくなる。
 この場合、図25に矢印Y101で示すように、端部がめくれ上がるように、応力が作用する。このため、矢印Y100で示すように、ウェルドライン108の延在方向に略直交する方向(つまり強度が低い方向)に、応力が作用してしまう。
 このように、エンジンマウント100にウェルドライン108を形成すると、ウェルドライン108の延在方向の強度を向上させることができる。ところが、その反面、ウェルドライン108の延在方向に略直交する方向の強度が低下してしまう。そして、ウェルドライン108の延在方向に略直交する方向には、荷重F100に起因する応力が作用することがある。
 本発明の樹脂成形方法および樹脂成形品は、上記課題に鑑みて完成されたものである。本発明は、ウェルドラインの発生を抑制しつつ強度向上が可能な樹脂成形方法および樹脂成形品を提供することを目的とする。
 (1)上記課題を解決するため、本発明の樹脂成形方法は、金型を締め、成形機のノズルの下流側に配置され流路断面積を拡張する拡張部と、該拡張部の下流側に配置され流路断面積を絞る絞り部と、該絞り部の下流側に配置される線状のゲートと、該ゲートの下流側に配置され該絞り部と該ゲートとの連通方向に対して交差する方向に延在する交差方向延在部を有するキャビティと、を備える樹脂流路を形成する型締め工程と、該ノズルから、該樹脂流路に、母材と、該母材に分散される異方性の固体の充填材と、を備える溶融樹脂を注入し、該ゲートから該交差方向延在部に該溶融樹脂を分流させながら流し込む注入工程と、該金型を開き、該溶融樹脂が固化して形成される樹脂成形品を取り出す型開き工程と、を有することを特徴とする。
 本発明の樹脂成形方法は、型締め工程と、注入工程と、型開き工程と、を有している。型締め工程においては、樹脂流路を形成する。樹脂流路には、上流側から下流側に向かって、拡張部と、絞り部と、ゲートと、キャビティとが配置されている。
 注入工程においては、樹脂流路に溶融樹脂を注入する。拡張部を通過することにより、溶融樹脂の流れは拡散する。絞り部を通過することにより、一旦拡散した溶融樹脂の流れは収縮する。収縮した溶融樹脂の流れは、ゲートを通過する。ここで、ゲートは、スリット状を呈している。このため、溶融樹脂の流れは、ゲートを通過することにより、帯状になる。また、絞り部-ゲートの連通方向と、キャビティの交差方向延在部の延在方向と、は交差している。このため、ゲートを通過した溶融樹脂は、交差方向延在部を区画する型面(インサート部材の表面を含む。)に衝突してから、キャビティに流れ込む。型開き工程においては、金型から樹脂成形品を取り出す。
 本発明の樹脂成形方法によると、拡張部および絞り部を溶融樹脂が通過することにより、流路方向における溶融樹脂の流速分布のばらつきを、抑制することができる。すなわち、溶融樹脂の流れを一旦拡散させ絞ることにより、流速分布のばらつきを抑制することができる。
 また、ゲートは、ピンポイント状、スポット状ではなく、線状を呈している。この点においても、流路方向における溶融樹脂の流速分布のばらつきを、抑制することができる。ここで、「線状」とは、直線状、曲線状、直線状と曲線状とが組み合わさった状態を含むものである。なお、ゲート幅(線幅)は、ゲート全長(線全長)に亘って、一定であっても、一定でなくてもよい。
 流速分布のばらつきを抑制できると、金型の型面に沿って、配向部(充填材の配向度が高い部分)が形成されやすくなる。このため、樹脂成形品における配向部の割合が大きくなる。したがって、樹脂成形品の強度(引張強度や曲げ強度)を向上させることができる。また、本発明の樹脂成形方法によると、樹脂流路に意図的に邪魔部材が配置されていない。このため、樹脂成形品にウェルドラインが発生するのを抑制することができる。
 (2)好ましくは、上記(1)の構成において、前記ゲートは、スリット状を呈している構成とする方がよい。本構成によると、ゲートはピンポイント状、スポット状ではなく、スリット状を呈している。つまり、ゲートは直線状を呈している。また、ゲート幅は、ゲート全長に亘って、一定である。このため、流路方向における溶融樹脂の流速分布のばらつきを、抑制することができる。
 (3)好ましくは、上記(1)または(2)の構成において、前記交差方向延在部における流路断面の短辺は、4mm以上である構成とする方がよい。本発明の樹脂成形方法は、本構成のように、肉厚の厚い繊維強化タイプの樹脂成形品を作製するのに好適である。
 (4)好ましくは、上記(1)ないし(3)のいずれかの構成において、前記ゲートの長辺と、前記交差方向延在部における流路断面の長辺と、は略平行であり、かつ略同長である構成とする方がよい。本構成によると、ゲートの長辺の方が、流路断面の長辺よりも、短い場合と比較して、溶融樹脂の流速分布のばらつきを抑制することができる。ここで、ゲートがスリット状でない場合、言い換えるとゲートが直線状でない場合、ゲートの長辺とは、ゲートの長手方向両端同士を結ぶ直線をいう。
 (5)好ましくは、上記(1)ないし(4)のいずれかの構成において、前記絞り部と前記ゲートとの連通方向と、前記交差方向延在部の延在方向と、は略直交している構成とする方がよい。
 本構成によると、ゲートを通過した溶融樹脂は、略垂直方向から交差方向延在部に流れ込む。このため、溶融樹脂の流れを、簡単に二手に分流させることができる。また、一方の分流と、他方の分流との間で、流量に偏りが発生するのを抑制することができる。
 (6)好ましくは、上記(1)ないし(5)のいずれかの構成において、前記拡張部における前記流路断面積の拡張方向と、前記絞り部における前記流路断面積の絞り方向と、は略直交している構成とする方がよい。本構成によると、互いに略直交する二方向(拡張方向および絞り方向)に、流速分布のばらつきを抑制することができる。
 (7)また、上記課題を解決するため、本発明の樹脂成形品は、破断面に、充填材の配向度が高い配向部と、該配向部よりも該充填材の配向度が低い非配向部と、を備えてなる樹脂成形品であって、前記破断面の破断方向は、線状のゲートカット跡を有するゲート側表面の延在方向に対して、交差する方向であり、前記配向部は、該破断面の外縁の形状に沿って枠状に配置され、前記非配向部は、該配向部の内側に配置されることを特徴とする。
 本発明の樹脂成形品によると、配向部が、破断面の外縁の形状に沿って枠状に配置されている。このため、破断面における配向部の肉厚がばらつきにくい。したがって、樹脂成形品の強度を向上させることができる。また、樹脂成形品の強度分布のばらつきを、抑制することができる。
 また、ゲートカット跡は、ピンポイント状、スポット状ではなく、線状を呈している。この点においても、流路方向における溶融樹脂の流速分布のばらつきを、抑制することができる。ここで、「線状」とは、直線状、曲線状、直線状と曲線状とが組み合わさった状態を含むものである。なお、ゲートカット跡幅(線幅)は、ゲートカット跡全長(線全長)に亘って、一定であっても、一定でなくてもよい。
 (8)好ましくは、上記(7)の構成において、前記ゲートカット跡は、スリット状を呈している構成とする方がよい。本構成によると、ゲートカット跡は直線状を呈している。また、ゲートカット跡幅は、ゲートカット跡全長に亘って、一定である。本構成によると、配向部が、破断面の外縁の形状に沿って枠状に配置されている。このため、破断面における配向部の肉厚がばらつきにくい。したがって、樹脂成形品の強度を向上させることができる。また、樹脂成形品の強度分布のばらつきを、抑制することができる。
 (9)好ましくは、上記(7)または(8)の構成において、前記配向部は、前記非配向部を挟んで、前記ゲート側表面に近いゲート側配向部と、該ゲート側表面に背向する反ゲート側表面に近い反ゲート側配向部と、を有し、該反ゲート側配向部の肉厚は、該ゲート側配向部の肉厚よりも、大きい構成とする方がよい。本構成によると、特に、反ゲート側表面から樹脂成形品に入力される荷重に対して、樹脂成形品を強化することができる。
 本発明によると、ウェルドラインの発生を抑制しつつ強度向上が可能な樹脂成形方法および樹脂成形品を提供することができる。
第一実施形態の樹脂成形方法に用いる金型の型開き状態における斜視図である。 同金型の可動型の型締め状態における斜視図である。 同可動型の型締め状態における右面図である。 絞り部材用スライドコアの斜視図である。 同樹脂成形方法の注入工程の第一段階の模式斜視図である。 同注入工程の第二段階の模式斜視図である。 同注入工程の第三段階の模式斜視図である。 本実施形態のエンジンマウントの斜視図である。 図8のIX-IX方向破断面の模式図である。 第二実施形態の樹脂成形方法の樹脂流路の模式斜視図である。 (a)は繊維タイプの充填材の斜視図である。(b)は薄板タイプの充填材の斜視図である。(c)は楕円球タイプの充填材の斜視図である。 波線状のゲートの正面図である。 ジグザグ状のゲートの正面図である。 長手方向両端に円形部を有する直線状のゲートの正面図である。 長手方向両端および長手方向中間に合計八個の円形部を有する直線状のゲートの正面図である。 長手方向両端から長手方向中央に向かってゲート幅が細くなるパドル状のゲートの正面図である。 波線状のゲートを用いて成形されたエンジンマウントの斜視図である。 実施例1のサンプルの破断面の写真である。 同写真の模写図である。 比較例1のサンプルの破断面の写真である。 同写真の模写図である。 従来のエンジンマウントの斜視図である。 一点式ゲートを有する樹脂流路の模式斜視図である。 図23のXXIV-XXIV方向破断面の模式図である。 仮にエンジンマウントにウェルドラインを形成した場合の、流路方向に略直交する方向の破断面の模式図である。
 以下、本発明の樹脂成形方法および樹脂成形品の実施の形態について説明する。
 <第一実施形態>
 [樹脂成形方法に用いる金型]
 まず、本実施形態の樹脂成形方法に用いる金型について説明する。
 (金型の構成)
 まず、金型の構成について説明する。図1に、本実施形態の樹脂成形方法に用いる金型の型開き状態における斜視図を示す。なお、固定型20については、左面付近のみを示す。図2に、同金型の可動型の型締め状態における斜視図を示す。図3に、同可動型の型締め状態における右面図を示す。
 図1~図3に示すように、金型1は、固定型20と、可動型21と、絞り部材用スライドコア22U、22Dと、凹部用スライドコア280F、280Rと、ナット固定用スライドコア281と、を備えている。
 固定型20は、クロムモリブデン鋼製であって、直方体のブロック状を呈している。可動型21は、クロムモリブデン鋼製であって、長方形板状を呈している。固定型20の左面と可動型21の右面とが当接することにより、固定型20と可動型21との間に、ランナー290とスライドコア用凹部291とキャビティ292と前方凹部293Fと後方凹部293Rと下方凹部294とが形成されている。
 固定型20には、左右方向に延在するスプルー200が穿設されている。すなわち、スプルー200の左端は、固定型20の左面に開口している。ランナー290は、当該スプルー200の左端と、スライドコア用凹部291の長手方向略中央と、を連結している。
 キャビティ292は、固定型20左面および可動型21右面の、略中央に配置されている。可動型21の右面からは突起295Lが突設されている。突起295Lは、キャビティ292内に配置されている。型締め状態において、突起295Lの先端は、固定型20の左面に当接している。突起295Lには、弾性部材296が装着されている。すなわち、キャビティ292内には、弾性部材296が配置されている。具体的には、弾性部材296は、ゴム製の本体296aと、金属製の円筒部296bと、を一体的に備えている。
 前方凹部293Fはキャビティ292の前方に、後方凹部293Rはキャビティ292の後方に、それぞれ連なっている。前方凹部293Fには、凹部用スライドコア280Fが、後方凹部293Rには凹部用スライドコア280Rが、それぞれ前後方向に移動可能に収容されている。
 下方凹部294は、キャビティ292の下方に連なっている。下方凹部294には、ナット固定用スライドコア281が、上下方向に移動可能に収容されている。ナット固定用スライドコア281の上面には、前記一対の突起282が配置されている。突起282には、ナット283が環装されている。
 スライドコア用凹部291は、キャビティ292の前上方に配置されている。スライドコア用凹部291には、絞り部材用スライドコア22U、22Dが、前下-後上方向に、移動可能に収容されている。
 図4に、絞り部材用スライドコアの斜視図を示す。絞り部材用スライドコア22Uは、クロムモリブデン鋼製であって、直方体のブロック状を呈している。絞り部材用スライドコア22Uの下面には、絞り部材220Uが形成されている。絞り部材220Uは、左右方向に延在している。絞り部材220Uの断面は、矩形状を呈している。
 絞り部材用スライドコア22Dの材質、構成は、上記絞り部材用スライドコア22U同様である。スライドコア用凹部291において、絞り部材用スライドコア22Dは、絞り部材用スライドコア22Uと対向して、移動可能に収容されている。すなわち、絞り部材220Uと絞り部材220Dとは対向している。
 (金型の動き)
 次に、金型1の動きについて説明する。金型1は、型開き状態と、型締め状態と、に切り替え可能である。
 型開き状態においては、図1に示すように、固定型20を基準に、可動型21が左方に離間している。また、スライドコア用凹部291の固定型20側部分においては、絞り部材用スライドコア22Uが後上方に、絞り部材用スライドコア22Dが前下方に、それぞれ離間している(図3参照)。また、前方凹部293Fの固定型20側部分においては、前方凹部293Fの前部に、凹部用スライドコア280Fが待機している。並びに、後方凹部293Rの固定型20側部分においては、後方凹部293Rの後部に、凹部用スライドコア280Rが待機している。また、下方凹部294の固定型20側部分においては、下方凹部294の下部に、ナット固定用スライドコア281が待機している。
 型開き状態から型締め状態に切り替える際は、可動型21の右面を、固定型20の左面に、当接させる。可動型21を固定型20に当接させることにより、固定型20と可動型21との間に、ランナー290とスライドコア用凹部291とキャビティ292と前方凹部293Fと後方凹部293Rと下方凹部294とが形成される。
 また、可動型21と固定型20との当接に並行して、スライドコア用凹部291において、図3に示すように、スライドコア用凹部291の長手方向略中央で、絞り部材用スライドコア22Uと、絞り部材用スライドコア22Dと、を当接させる。また、前方凹部293Fにおいて、前方凹部293Fの後部に、凹部用スライドコア280Fを移動させる。凹部用スライドコア280Fの後部は、キャビティ292に進入する。並びに、後方凹部293Rにおいて、後方凹部293Rの前部に、凹部用スライドコア280Rを移動させる。凹部用スライドコア280Rの前部は、キャビティ292に進入する。また、下方凹部294において、下方凹部294の上部に、ナット固定用スライドコア281を移動させる。ナット固定用スライドコア281の上部は、キャビティ292に進入する。このようにして、金型1を、型開き状態から型締め状態に切り替える。なお、金型1を、型締め状態から型開き状態に切り替える場合は、上記一連の過程を逆方向に実行する。
 [樹脂流路]
 次に、金型1に形成される樹脂流路について説明する。樹脂流路90は、型締め状態の金型1の内部に形成されている。樹脂流路90は、スプルー200と、ランナー290と、拡張部26と、絞り部24と、ゲート25と、キャビティ292と、を備えている。
 拡張部26は、ランナー290の下流側に配置されている。拡張部26においては、樹脂流路90の流路断面積(この部分を溶融樹脂は前上方→後下方に流れるから、当該方向に対して略垂直方向の断面積)が、急激に大きくなる。拡張部26における流路断面積の拡張方向は、左右方向である。拡張部26の流路断面の寸法は、50mm(左右方向長辺)×6mm(前下方-後上方短辺)である。
 図3に示すように、絞り部24は、拡張部26の下流側に配置されている。絞り部24は、絞り部材用スライドコア22Dの絞り部材220Dと、絞り部材用スライドコア22Uの絞り部材220Uと、の間に形成されている。絞り部24は、左右方向に延在している。絞り部24の流路断面積は、拡張部26の流路断面積に対して、急激に小さくなる。絞り部24における流路断面積の絞り方向は、前下方-後上方である。絞り部24の流路断面の寸法は、50mm(左右方向長辺)×2mm(前下方-後上方短辺)である。
 ゲート25は、絞り部24の下流側に配置されている。ゲート25は、スリット状を呈している。すなわち、ゲート25は、左右方向に延在する長辺と、前下方-後上方に延在する短辺と、からなる長方形状を呈している。ゲート25の流路断面の寸法は、50mm(左右方向長辺)×4mm(前下方-後上方短辺)である。
 キャビティ292は、ゲート25の下流側に配置されている。図3に一点鎖線枠で示すように、ゲート25は、キャビティ292の交差方向延在部292aに開口している。交差方向延在部292aは、前下方-後上方に延在している。これに対して、絞り部24とゲート25とは、前上方-後下方に延在している。このように、交差方向延在部292aの延在方向と、絞り部24とゲート25との連通方向と、は略直交している。
 また、交差方向延在部292aの流路断面(この部分を溶融樹脂は前下方→後上方、あるいは後上方→前下方に流れるから、当該方向に対して略垂直方向の断面)は、長方形状を呈している。流路断面の長辺は、左右方向に延在している。流路断面の短辺は、前上方-後下方に延在している。このように、ゲート25の長辺と、流路断面の長辺と、は略平行であり、かつ略同長である。
 このように、型締め状態の金型1の内部には、上流側から下流側に向かって、スプルー200→ランナー290→拡張部26→絞り部24→ゲート25→キャビティ292と連通する樹脂流路90が形成されている。キャビティ292の樹脂流路90の流路方向は、キャビティ292の延在方向、つまり弾性部材296を中心とする円周方向である。
 [樹脂成形方法]
 次に、本実施形態の樹脂成形方法について説明する。本実施形態の樹脂成形方法は、型締め工程と注入工程と型開き工程とを有している。
 (型締め工程)
 まず、型締め工程について説明する。型締め工程においては、金型1を、図1に示す型開き状態から、図2、図3に示す型締め状態に、切り替える。
 具体的には、まず、突起295Lに弾性部材296を装着する。次いで、固定型20に対して、可動型21を左方から当接させる。それから、スライドコア用凹部291内において、絞り部材用スライドコア22U、22Dを当接させる。また、前方凹部293F内において、凹部用スライドコア280Fを後方に移動させる。また、後方凹部293R内において、凹部用スライドコア280Rを前方に移動させる。また、下方凹部294内において、ナット283装着済みのナット固定用スライドコア281を上方に移動させる。
 (注入工程)
 次に、注入工程について説明する。注入工程においては、成形機のノズルから、樹脂流路90に、溶融樹脂を注入する。溶融樹脂は、ナイロン66と、ガラス繊維と、を備えている。ナイロン66は、本発明の母材に含まれる。ガラス繊維は、本発明の充填材に含まれる。ガラス繊維は、溶融状態のナイロン66に分散している。成形機のシリンダ温度は約290℃である。また、金型1の温度は約80℃である。
 図5に、本実施形態の樹脂成形方法の注入工程の第一段階の模式斜視図を示す。図6に、同注入工程の第二段階の模式斜視図を示す。図7に、同注入工程の第三段階の模式斜視図を示す。
 図5に示すように、溶融樹脂91は、樹脂流路90内を流動する。樹脂流路90の流路断面積は、拡張部26において、左右方向に拡張する。このため、溶融樹脂91の流れも、左右方向に拡張する。
 溶融樹脂91の流れのうち左右方向略中央部分は、いち早く絞り部24に到達する。しかしながら、絞り部24の流路断面積は狭いため、流動抵抗が高い。したがって、溶融樹脂91の流れの左右方向略中央部分が絞り部24を通過する間に、拡張した溶融樹脂91の流れの左右方向両端部分が、左右方向略中央部分に追いついてくる。このようにして、溶融樹脂91の流速分布のばらつきが、補正される。図6に示すように、絞り部24を通過した後、溶融樹脂91は、スリット状のゲート25を通過する。
 図7に示すように、ゲート25を通過した溶融樹脂91は、まず弾性部材296の本体296aに衝突し、次いで二手(前下方と後上方)に分流する。その後、溶融樹脂91は、本体296aの外周面に沿って、周方向に流動する。そして、溶融樹脂91は、キャビティ292全体に行き渡る。行き渡った溶融樹脂は、キャビティ292において、冷却、固化される。
 (型開き工程)
 次に、型開き工程について説明する。型開き工程においては、金型1を、図2、図3に示す型締め状態から、図1に示す型開き状態に、再び切り替える。
 具体的には、図3に示すように、まず、スライドコア用凹部291内において、絞り部材用スライドコア22U、22Dを離間させる。また、前方凹部293F内において、凹部用スライドコア280Fを前方に移動させる。また、後方凹部293R内において、凹部用スライドコア280Rを後方に移動させる。また、下方凹部294内において、ナット固定用スライドコア281を下方に移動させる。次いで、固定型20に対して、可動型21を左方に離間させる。その後、ゲートカットが施され、エンジンマウントが完成する。
 [樹脂成形品]
 次に、本実施形態の樹脂成形品について説明する。本実施形態の樹脂成形品は、エンジンマウントである。図8に、本実施形態のエンジンマウントの斜視図を示す。以下に説明するエンジンマウント70は、模式的なものであり、型開き工程後の処理によっては、エンジンマウント70に、ゲートカット跡GCが確認できない場合もある。
 図8に示すように、本実施形態のエンジンマウント70は、ブラケット700と弾性部材296とを一体的に備えている。エンジンマウント70の上下方向長さW1は110mmである。エンジンマウント70の前後方向長さW2は100mmである。エンジンマウント70の左右方向長さW3は50mmである。ブラケット700の径方向肉厚W4の最小値は、11mmである。
 エンジンマウント70は、車両のエンジンを車体に固定するために用いられる。エンジンマウント70により、エンジンの振動が車体に伝わるのを抑制することができる。ブラケット700のゲート側表面(外周面)704には、長方形状のゲートカット跡GCが形成されている。
 図9に、図8のIX-IX方向破断面の模式図を示す。図9に示すように、破断面701には、配向部702と非配向部703とが配置されている。配向部702は、略長方形状を呈している。配向部702は、破断面701の外縁の形状(長方形状)に沿って、枠状に配置されている。非配向部703は、略長方形状を呈している。非配向部703は、配向部702の内側に配置されている。
 破断面701の前縁は、ゲート側表面704に相当する。一方、破断面701の後縁は、反ゲート側表面(内周面)705に相当する。反ゲート側表面705は、ゲート側表面704に、前後方向(径方向)に対向している。反ゲート側表面705は、本体296aの外周面に当接している。
 ゲート側表面704と非配向部703との間には、ゲート側配向部702aが介在している。また、反ゲート側表面705と非配向部703との間には、反ゲート側配向部702bが介在している。反ゲート側配向部702bの肉厚W6は、ゲート側配向部702aの肉厚W5よりも、大きくなっている。言い換えると、非配向部703は、破断面701の中央から、ゲート側表面704方向にずれて配置されている。この肉厚差は、ブラケット700の全周に亘って観察することができる。すなわち、配向部702の肉厚は、径方向外側よりも径方向内側の方が、大きくなっている。
 なお、破断面701は、一例として、引張試験などによりブラケット700を径方向に破断(切断ではない)させることにより、観察することができる。ガラス繊維の配向性が高いほど、破断面701におけるガラス繊維の毛羽立ちの程度がより高くなる。
 [作用効果]
 次に、本実施形態の樹脂成形方法およびエンジンマウント70の作用効果について説明する。本実施形態の樹脂成形方法によると、図5、図6に示すように、拡張部26および絞り部24を溶融樹脂91が通過することにより、流路方向(前上方→後下方)における溶融樹脂91の流速分布のばらつきを、抑制することができる。すなわち、溶融樹脂91の流れを一旦拡散させ絞ることにより、流速分布のばらつきを抑制することができる。
 また、ゲート25はピンポイント状、スポット状ではなく、スリット状を呈している。この点においても、流路方向(前上方→後下方)における溶融樹脂91の流速分布のばらつきを、抑制することができる。
 流速分布のばらつきを抑制できると、金型1の型面(本体296aの表面含む)に沿って、図9に示す配向部702が形成されやすくなる。このため、エンジンマウント70における配向部702の割合が大きくなる。したがって、エンジンマウント70の強度(引張強度や曲げ強度)を向上させることができる。また、本実施形態の樹脂成形方法によると、樹脂流路90に意図的に邪魔部材が配置されていない。このため、エンジンマウント70にウェルドラインが発生するのを抑制することができる。
 また、本実施形態の樹脂成形方法によると、図8に示すように、ブラケット700の径方向肉厚W4の最小値は、11mmである。すなわち、図5に示すキャビティ292の交差方向延在部292aにおける流路断面の短辺(前上方-後下方に延在する辺)は、11mmである。このように、本実施形態の樹脂成形方法は、肉厚の厚い樹脂成形品を作製するのに好適である。
 また、本実施形態の樹脂成形方法によると、図5に示すように、ゲート25の左右方向長辺と、交差方向延在部292aにおける流路断面の左右方向長辺と、は略平行であり、かつ略同長である。このため、ゲート25の左右方向長辺の方が、流路断面の左右方向長辺よりも、短い場合と比較して、溶融樹脂91の流速分布のばらつきを抑制することができる。
 また、本実施形態の樹脂成形方法によると、図5に示すように、交差方向延在部292aの延在方向(前下方-後上方)と、絞り部24とゲート25との連通方向(前上方-後下方)と、は略直交している。このため、溶融樹脂91の流れを、簡単に二手に分流させることができる。
 また、本実施形態の樹脂成形方法によると、図5に示すように、拡張部26における流路断面積の拡張方向(左右方向)と、絞り部24における流路断面積の絞り方向(前下方-後上方)と、は略直交している。このため、互いに略直交する二方向(拡張方向および絞り方向)に、流速分布のばらつきを抑制することができる。
 また、本実施形態のエンジンマウント70によると、図9に示すように、配向部702が、破断面701の外縁の形状に沿って長方形枠状に配置されている。このため、図24に示す従来の破断面と比較して、配向部702の肉厚がばらつきにくい。したがって、エンジンマウント70の強度を向上させることができる。
 ところで、エンジンマウント70においては、図8に示すように、円筒部296bに荷重F1が加わる。このため、ブラケット700には、径方向内側から応力が加わる。この点、本実施形態のエンジンマウント70によると、図9に示すように、反ゲート側配向部702bの肉厚W6は、ゲート側配向部702aの肉厚W5よりも、大きく設定されている。このため、径方向内側から加わる応力に対する強度を向上させることができる。
 <第二実施形態>
 本実施形態の樹脂成形方法およびエンジンマウントと、第一実施形態の樹脂成形方法およびエンジンマウントと、の相違点は、樹脂流路の形状だけである。ここでは、相違点についてのみ説明する。
 図10に、本実施形態の樹脂成形方法の樹脂流路の模式斜視図を示す。なお、図5と対応する部位については、同じ符号で示す。図10に示すように、絞り部24の下流側には、流路断面積(前下方-後上方の流路幅)が拡張することなく、ゲート25が連なっている。すなわち、絞り部24の流路断面積と、ゲート25の流路断面積と、が略一致している。
 本実施形態の樹脂成形方法およびエンジンマウントは、第一実施形態の樹脂成形方法およびエンジンマウントと、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の樹脂成形方法によると、ゲート25の短辺の長さ(前下方-後上方の幅)が小さい。このため、成形後のエンジンマウントからゲート25を切除しやすい。
 <その他>
 以上、本発明の樹脂成形方法および樹脂成形品の実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
 溶融樹脂91の母材の種類は特に限定しない。例えば、ポリアミド(ナイロン6、ナイロン66、ナイロン46、ナイロン610、ナイロン612、芳香族ナイロンなど)、ポリエチレン、ポリプロピレン、ポリスチレン、アクリロニトリル-ブタジエン-スチレン樹脂、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイドなどを用いることができる。
 また、溶融樹脂91の充填材の種類も特に限定しない。例えば、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、金属繊維、炭化珪素繊維、ワラストナイト、ウイスカー、カオリナイト、タルク、マイカ、モンモリロナイト、クレー、カーボンナノチューブなどを用いることができる。
 また、充填材の形状も特に限定しない。図11(a)に示すように、繊維タイプの充填材800を用いてもよい。また、図11(b)に示すように、薄板タイプの充填材801を用いてもよい。また、図11(c)に示すように、楕円球タイプの充填材802を用いてもよい。すなわち、充填材の形状は、異方性を有していればよい。また、金型1の材質も特に限定しない。また、金型1におけるゲート25の位置も特に限定しない。
 また、ゲート25の形状は、スリット状でなくてもよい。図12に示すように、波線(サインカーブ)状のゲート25を配置してもよい。なお、図12のゲート25の長辺L1は、長手方向両端同士を結ぶ直線である。図13に示すように、ジグザグ状のゲート25を配置してもよい。なお、図13のゲート25の長辺L1は、長手方向両端同士を結ぶ直線である。図14に示すように、長手方向両端に円形部を有する直線状のゲート25を配置してもよい。図15に示すように、長手方向両端および長手方向中間に合計八個の円形部を有する直線状のゲート25を配置してもよい。図16に示すように、長手方向両端から長手方向中央に向かってゲート幅が細くなるパドル状のゲート25を配置してもよい。つまり、図14~図16に示すように、ゲート25の幅は、ゲート25の全長に亘って、一定でなくてもよい。
 特に、図12、図13に示すゲート25のように、ゲート25が直線状でない場合、樹脂成形品のゲートカット跡付近において、ゲート25の振幅方向(長辺L1に直交する方向)の強度を向上させることができる。
 また、図12、図13に示すゲート25のように、ゲート25の内部に長辺L1方向全長に亘って一直線に連なる部分がない場合、樹脂成形品のゲートカット跡付近において、ゲート25の振幅方向(長辺L1に直交する方向)の強度を向上させることができる。
 図17に、波線状のゲートを用いて成形されたエンジンマウントの斜視図を示す。なお、図8と対応する部位については、同じ符号で示す。図17に示すように、ゲートカット跡GCは、左右方向に延在する波線状を呈している。図17にハッチングを施すように、エンジンマウント70使用時においては、応力集中部S1に応力が集中しやすい。一方、ゲートカット跡GC付近においては、エンジンマウント70の強度が低下しやすい。このため、ゲートカット跡GCは、応力集中部S1を避けて、形成される方がよい。
 しかしながら、エンジンマウント70の金型構造などによっては、ゲートカット跡GCを応力集中部S1に形成せざるを得ない場合がある。この場合に、図12、図13に示すような、直線状ではないゲート25を用いると、エンジンマウント70のゲートカット跡GC付近において、ゲートカット跡GCの振幅方向(上下方向)の強度を向上させることができる。すなわち、ゲートカット跡GCが形成されることによる強度低下を、直線状ではないゲート25を用いることで、低減することができる。
 また、本実施形態の樹脂成形方法の成形条件も特に限定しない。例えば、成形機のシリンダ温度や金型温度などは、使用する溶融樹脂91の特性やエンジンマウント70のスペックなどに応じて、適宜設定すればよい。
 以下、エンジンマウントの破断面の観察結果について説明する。実施例1のサンプルは、図8に示す第一実施形態のエンジンマウント70である。実施例1のサンプルは、第一実施形態の樹脂成形方法により作製した。比較例1のサンプルは、図22に示す従来のエンジンマウント100である。比較例1のサンプルは、従来の一点式ゲート102を用いた樹脂成形方法により作製した。なお、双方の樹脂成形方法の成形条件は、樹脂流路以外、統一した。例えば、樹脂の温度は300℃とした。また、金型温度は80℃とした。また、射出速度は30mm/sとした。また、冷却時間は30秒とした。また、実施例1および比較例1のサンプルの寸法、材質も統一した。
 図18に、実施例1のサンプルの破断面の写真を示す。図19に、同写真の模写図を示す。図20に、比較例1のサンプルの破断面の写真を示す。図21に、同写真の模写図を示す。図18~図21に示すように、破断面92のうち、白っぽい中央部分が非配向部94である。これに対して、非配向部94の周囲を囲む毛羽立っている部分(粗い凹凸が形成されている部分)が配向部93である。
 実施例1のサンプル(図18、図19)と、比較例1のサンプル(図20、図21)と、を比較すると、実施例1のサンプルの破断面92の方が、比較例1のサンプルの破断面92よりも、配向部93が破断面92の外縁の形状に沿って形成されていることが判る。すなわち、実施例1のサンプルの配向部93の方が、より長方形に近い形状であることが判る。また、実施例1のサンプルの破断面92の方が、比較例1のサンプルの破断面92よりも、破断面92上下縁付近の配向部93の上下方向肉厚が、大きいことが判る。また、配向部93の上下方向肉厚のばらつきが、左右方向全長に亘って、小さいことが判る。
 また、図18、図19に示すように、実施例1のサンプルの破断面92のゲート側表面95と非配向部94との間には、ゲート側配向部93aが介在している。また、反ゲート側表面96と非配向部94との間には、反ゲート側配向部93bが介在している。反ゲート側配向部93bの上下方向肉厚は、ゲート側配向部93aの上下方向肉厚よりも、大きいことが判る。
 次に、上記第一実施形態のエンジンマウントに対して行った破壊強度測定試験について説明する。なお、以下の部材の符号は、図1~図8(第一実施形態)を援用したものである。
 <サンプル>
 各サンプルの寸法は、実施例2、比較例2、参考例2全て同じである。すなわち、各サンプルの寸法は、図8のエンジンマウント70の寸法と同様である。なお、参考例2は、公知技術ではない。実施例2、比較例2、参考例2のサンプルを形成する樹脂は、母材(ナイロン66)に、充填材(ガラス繊維)が50質量%(母材を100質量%とする)配合されたものである。
 <樹脂成形方法>
 各サンプルの成形条件は、ゲート25の形状以外、全て同じである。実施例2のゲート25は、第一実施形態同様である。ゲート25の上流側には、絞り部24、拡張部26が配置されている。拡張部26の流路断面の寸法は、50mm×6mmである。絞り部24の流路断面の寸法は、50mm×2mmである。ゲート25の流路断面の寸法は、50mm×4mmである。
 比較例2のゲートは、図22に示す一点式ゲート102である。一点式ゲート102の上流側には、絞り部24、拡張部26が配置されていない。一点式ゲート102の直径は、5mmである。
 参考例2のゲートは、第一実施形態のゲート25を12分割(長辺を12分割)した、マルチゲートである。マルチゲートの上流側には、絞り部24、拡張部26が配置されている。拡張部26の流路断面の寸法は、50mm×6mmである。絞り部24の流路断面の寸法は、50mm×2mmである。マルチゲートの12個の流路断面の全体寸法は、50mm×4mmである。
 <試験方法および試験結果>
 破壊強度の測定は、以下の手順で行った。まず、エンジンマウント70を治具に固定した。次いで、金属製の丸棒を、円筒部296bに挿入した。それから、当該丸棒を、図8における上方に引っ張った。丸棒の上昇速度は、20mm/minとした。エンジンマウント70が破壊した際の応力を、破壊強度とした。比較例2の破壊強度を100%とした場合、実施例2および参考例2の破壊強度は、共に113%だった。このことから、比較例2と比較して、実施例2および参考例2は破壊強度が高いことが判った。
 1:金型。
 20:固定型、21:可動型、22D:絞り部材用スライドコア、22U:絞り部材用スライドコア、24:絞り部、25:ゲート、26:拡張部、70:エンジンマウント(樹脂成形品)、90:樹脂流路、91:溶融樹脂、92:破断面、93:配向部、93a:ゲート側配向部、93b:反ゲート側配向部、94:非配向部、95:ゲート側表面、96:反ゲート側表面。
 200:スプルー、220D:絞り部材、220U:絞り部材、280F:凹部用スライドコア、280R:凹部用スライドコア、281:ナット固定用スライドコア、282:突起、283:ナット、290:ランナー、291:スライドコア用凹部、292:キャビティ、292a:交差方向延在部、293F:前方凹部、293R:後方凹部、294:下方凹部、295L:突起、296:弾性部材、296a:本体、296b:円筒部、700:ブラケット、701:破断面、702:配向部、702a:ゲート側配向部、702b:反ゲート側配向部、703:非配向部、704:ゲート側表面、705:反ゲート側表面、800~802:充填材。
 F1:荷重、GC:ゲートカット跡、L1:長辺、W1:上下方向長さ、W2:前後方向長さ、W3:左右方向長さ、W4:径方向肉厚、W5:肉厚、W6:肉厚。

Claims (9)

  1.  金型を締め、成形機のノズルの下流側に配置され流路断面積を拡張する拡張部と、該拡張部の下流側に配置され流路断面積を絞る絞り部と、該絞り部の下流側に配置される線状のゲートと、該ゲートの下流側に配置され該絞り部と該ゲートとの連通方向に対して交差する方向に延在する交差方向延在部を有するキャビティと、を備える樹脂流路を形成する型締め工程と、
     該ノズルから、該樹脂流路に、母材と、該母材に分散される異方性の固体の充填材と、を備える溶融樹脂を注入し、該ゲートから該交差方向延在部に該溶融樹脂を分流させながら流し込む注入工程と、
     該金型を開き、該溶融樹脂が固化して形成される樹脂成形品を取り出す型開き工程と、
    を有する樹脂成形方法。
  2.  前記ゲートは、スリット状を呈している請求項1に記載の樹脂成形方法。
  3.  前記交差方向延在部における流路断面の短辺は、4mm以上である請求項1または請求項2に記載の樹脂成形方法。
  4.  前記ゲートの長辺と、前記交差方向延在部における流路断面の長辺と、は略平行であり、かつ略同長である請求項1ないし請求項3のいずれかに記載の樹脂成形方法。
  5.  前記絞り部と前記ゲートとの連通方向と、前記交差方向延在部の延在方向と、は略直交している請求項1ないし請求項4のいずれかに記載の樹脂成形方法。
  6.  前記拡張部における前記流路断面積の拡張方向と、前記絞り部における前記流路断面積の絞り方向と、は略直交している請求項1ないし請求項5のいずれかに記載の樹脂成形方法。
  7.  破断面に、充填材の配向度が高い配向部と、該配向部よりも該充填材の配向度が低い非配向部と、を備えてなる樹脂成形品であって、
     前記破断面の破断方向は、線状のゲートカット跡を有するゲート側表面の延在方向に対して、交差する方向であり、
     前記配向部は、該破断面の外縁の形状に沿って枠状に配置され、
     前記非配向部は、該配向部の内側に配置されることを特徴とする樹脂成形品。
  8.  前記ゲートカット跡は、スリット状を呈している請求項7に記載の樹脂成形品。
  9.  前記配向部は、前記非配向部を挟んで、前記ゲート側表面に近いゲート側配向部と、該ゲート側表面に背向する反ゲート側表面に近い反ゲート側配向部と、を有し、
     該反ゲート側配向部の肉厚は、該ゲート側配向部の肉厚よりも、大きい請求項7または請求項8に記載の樹脂成形品。
PCT/JP2010/066432 2009-09-25 2010-09-22 樹脂成形方法および樹脂成形品 WO2011037146A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800168125A CN102395453A (zh) 2009-09-25 2010-09-22 树脂成形方法及树脂成形品
EP10818819.4A EP2481548A4 (en) 2009-09-25 2010-09-22 RESIN MOLDING METHOD AND MOLDED RESIN PRODUCT
US13/145,162 US20110268923A1 (en) 2009-09-25 2010-09-22 Resin molding method and resin molding
JP2011513779A JPWO2011037146A1 (ja) 2009-09-25 2010-09-22 樹脂成形方法および樹脂成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-220408 2009-09-25
JP2009220408 2009-09-25

Publications (1)

Publication Number Publication Date
WO2011037146A1 true WO2011037146A1 (ja) 2011-03-31

Family

ID=43795892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066432 WO2011037146A1 (ja) 2009-09-25 2010-09-22 樹脂成形方法および樹脂成形品

Country Status (5)

Country Link
US (1) US20110268923A1 (ja)
EP (1) EP2481548A4 (ja)
JP (1) JPWO2011037146A1 (ja)
CN (1) CN102395453A (ja)
WO (1) WO2011037146A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091783A1 (ja) * 2012-12-10 2014-06-19 東洋ゴム工業株式会社 防振装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013205141A1 (de) * 2013-03-22 2014-09-25 BSH Bosch und Siemens Hausgeräte GmbH Schmelzeleitsystem für In-Mold-Decoration (IMD)- oder In-Mold-Labeling (IML)-Verfahren zum Spritzgießen
JP6166413B1 (ja) * 2016-03-30 2017-07-19 株式会社ケーヒン 回路装置の製造方法及び回路装置
WO2018036821A1 (de) * 2016-08-26 2018-03-01 Basf Se Verfahren zur kontinuierlichen herstellung von faserverstärkten schaumstoffen
CN107030985A (zh) * 2016-11-22 2017-08-11 嘉兴信元精密模具科技有限公司 一种用于克服产品气痕缺陷的浇口结构
CN114744804A (zh) 2017-02-13 2022-07-12 株式会社三井高科技 定子层叠铁芯的制造方法及定子层叠铁芯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178121U (ja) * 1986-04-30 1987-11-12
JPH08142218A (ja) 1994-11-18 1996-06-04 Polyplastics Co 樹脂成形方法及び樹脂成形品
JPH1034762A (ja) 1996-07-19 1998-02-10 Seiko Epson Corp 高精度歯車およびその射出成形方法
JP2002086493A (ja) * 2000-09-19 2002-03-26 Denso Corp 樹脂成形体及びその成形方法
JP2003231156A (ja) 2003-01-24 2003-08-19 Seiko Epson Corp ウエルドラインの生成方法
JP2006076150A (ja) * 2004-09-09 2006-03-23 Polyplastics Co 変形防止樹脂成形品用金型、変形防止樹脂成形品の成形方法
JP2008207387A (ja) * 2007-02-23 2008-09-11 Toyoda Gosei Co Ltd 自動車用樹脂外装品の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1343356A (en) * 1970-12-07 1974-01-10 Dayco Corp Injection moulding of transmission belts
GB1506851A (en) * 1975-06-05 1978-04-12 Jesman L Shortening mobile aerials
JPS60124226A (ja) * 1983-12-09 1985-07-03 Daikyo Kk 自動車用ホイルの製造方法
CA2046722A1 (en) * 1990-07-12 1992-01-13 Arao Umeda Method for manufacturing fiber reinforced elastic sheet, apparatus for manufacturing the same and mold to be used
JPH06238711A (ja) * 1993-02-12 1994-08-30 Olympus Optical Co Ltd プラスチックの射出成形方法および装置
US5753155A (en) * 1996-05-08 1998-05-19 Bayer Corporation Gating for production of rigid polyurethane foam
DE10125560A1 (de) * 2001-05-23 2002-11-28 Basf Ag Verfahren zur Herstellung von Formteilen aus Polyamid-Nanocomposites
US6893599B2 (en) * 2002-09-09 2005-05-17 Patent Holding Company Method for making a reinforced, polymeric article in a reaction injection molding system and mold for use therein
JP2008213393A (ja) * 2007-03-07 2008-09-18 Jtekt Corp 樹脂巻き部品
US20110130216A1 (en) * 2009-12-01 2011-06-02 Taylor Made Golf Company, Inc. Golf ball constructs and related systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178121U (ja) * 1986-04-30 1987-11-12
JPH08142218A (ja) 1994-11-18 1996-06-04 Polyplastics Co 樹脂成形方法及び樹脂成形品
JPH1034762A (ja) 1996-07-19 1998-02-10 Seiko Epson Corp 高精度歯車およびその射出成形方法
JP2002086493A (ja) * 2000-09-19 2002-03-26 Denso Corp 樹脂成形体及びその成形方法
JP2003231156A (ja) 2003-01-24 2003-08-19 Seiko Epson Corp ウエルドラインの生成方法
JP2006076150A (ja) * 2004-09-09 2006-03-23 Polyplastics Co 変形防止樹脂成形品用金型、変形防止樹脂成形品の成形方法
JP2008207387A (ja) * 2007-02-23 2008-09-11 Toyoda Gosei Co Ltd 自動車用樹脂外装品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2481548A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091783A1 (ja) * 2012-12-10 2014-06-19 東洋ゴム工業株式会社 防振装置
CN104541087A (zh) * 2012-12-10 2015-04-22 东洋橡胶工业株式会社 防振装置

Also Published As

Publication number Publication date
EP2481548A4 (en) 2013-10-02
CN102395453A (zh) 2012-03-28
US20110268923A1 (en) 2011-11-03
EP2481548A1 (en) 2012-08-01
JPWO2011037146A1 (ja) 2013-02-21

Similar Documents

Publication Publication Date Title
WO2011037146A1 (ja) 樹脂成形方法および樹脂成形品
Geyer et al. Enhancing the weld line strength of injection molded components
JP5162273B2 (ja) 射出成形用金型及び樹脂成形品
Malzahn et al. Transverse core fiber alignment in short-fiber injection-molding
KR101536338B1 (ko) 사출 성형품의 제조방법
JP4613971B2 (ja) 樹脂成形方法および樹脂成形品および金型
JP5586019B2 (ja) 射出成形金型
JP2004017629A (ja) 樹脂成形体の成形方法
JP3250065B2 (ja) 樹脂成形方法及び樹脂成形品
JP2002192562A (ja) 射出成形品及び射出成形用金型
JP4024174B2 (ja) 加圧流体注入ノズル
JP2021094716A (ja) 樹脂成形品
JP5520658B2 (ja) 防振部材の成形方法および防振部材
JP5817155B2 (ja) Rtm成形方法
JP3958152B2 (ja) 樹脂成形用金型
JPH07205208A (ja) 射出成形金型
JPH11165328A (ja) 射出成形用金型
Parsons et al. Thermoplastic composite injection-overmoulding with indirectly-loaded reinforcement: Design for manufacture
CN104918730B (zh) 金属合金注射成型方法及设备
JP2002127190A (ja) 射出成形方法及び射出成形用金型
JP3642948B2 (ja) 射出成形用金型のゲート部構造
JP3701597B2 (ja) 射出成形金型
JP3892518B2 (ja) ガス射出成形用ガス注入ピンを用いた成形用金型
JP2007295110A (ja) スピーカ振動板及びその製造方法
JP2019089206A (ja) 成形装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016812.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011513779

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13145162

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010818819

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE