WO2011036759A1 - リチウム二次電池及びその製造方法 - Google Patents

リチウム二次電池及びその製造方法 Download PDF

Info

Publication number
WO2011036759A1
WO2011036759A1 PCT/JP2009/066600 JP2009066600W WO2011036759A1 WO 2011036759 A1 WO2011036759 A1 WO 2011036759A1 JP 2009066600 W JP2009066600 W JP 2009066600W WO 2011036759 A1 WO2011036759 A1 WO 2011036759A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
material layer
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2009/066600
Other languages
English (en)
French (fr)
Inventor
哲 後藤
井上 薫
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/066600 priority Critical patent/WO2011036759A1/ja
Priority to KR1020127007531A priority patent/KR101366471B1/ko
Priority to CN2009801613132A priority patent/CN102484290A/zh
Priority to US13/497,604 priority patent/US20120321947A1/en
Priority to JP2011532838A priority patent/JP5229598B2/ja
Publication of WO2011036759A1 publication Critical patent/WO2011036759A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium secondary battery. Specifically, the present invention relates to a lithium secondary battery suitably used as a vehicle-mounted power source under high-rate charge / discharge and a method for manufacturing the battery.
  • a lithium secondary battery (typically a lithium ion battery) that is lightweight and has a high energy density is expected to be preferably used as a high-output power source for mounting on a vehicle (for example, an automobile, particularly a hybrid automobile or an electric automobile).
  • an electrode active material layer (specifically, a positive electrode active material layer and a negative electrode capable of reversibly inserting and extracting lithium ions on the surface of the electrode current collector). Active material layer).
  • a paste-like composition in which a positive electrode active material such as a lithium transition metal composite oxide is dispersed in an appropriate solvent (a slurry-like composition is included in the paste-like composition.
  • This type of composition is simply referred to as a paste.)
  • some secondary batteries are supposed to be used in such a manner that high-rate pulse charge / discharge in which a large current flows instantaneously is repeated in a short time.
  • a lithium secondary battery used as a high output power source mounted on a vehicle is a typical example, but a battery used in such a mode is an electrode accompanying movement of a charge carrier as compared with a battery used in a household electric product. Since the load on the active material layer is large, internal resistance may increase due to repeated charge and discharge. As one of the causes of such an increase in internal resistance, the amount of electrolyte retained in the gap formed in the electrode active material layer and the ion concentration distribution balance in the electrolyte are biased toward one electrode. Etc.
  • the amount of electrolyte impregnation per predetermined area of the positive electrode active material layer and the negative electrode active material layer is calculated as the electrolyte retention capacity, respectively, and the electrolyte retention capacity (a) of the positive electrode active material layer and the negative electrode active capacity are calculated.
  • a lithium secondary battery in which the relationship between the material layer and the electrolyte solution holding capacity (b) satisfies 0.9 ⁇ a / b ⁇ 1.3 is disclosed.
  • the suitable liquid amount of electrolyte solution with respect to the sum total of the void volume of each of a positive electrode, a negative electrode, and a separator is examined.
  • Patent Document 3 the percentage of void volume of the positive electrode active material layer (V p) and the void volume of the negative electrode active material layer (V n), 0.3 ⁇ ( V p / V n) ⁇ 0.5 A lithium secondary battery that satisfies the requirements is disclosed.
  • the present invention was created to solve the above-described conventional problems related to lithium secondary batteries, and the object of the present invention is to determine the relative void volume of each of the positive electrode active material layer and the negative electrode active material layer. It is intended to provide a lithium secondary battery having excellent battery characteristics (cycle characteristics or high rate characteristics) as a vehicle-mounted high-output power source that suppresses an increase in internal resistance and a manufacturing method thereof. Another object is to provide a vehicle including such a lithium secondary battery.
  • a positive electrode having a positive electrode active material layer including a positive electrode active material formed on the surface of a positive electrode current collector, and a negative electrode including a negative electrode active material formed on the surface of the negative electrode current collector There is provided a lithium secondary battery including a negative electrode having an active material layer.
  • the positive electrode active material of the lithium secondary battery according to the present invention has at least lithium and nickel and / or cobalt as main constituent elements (typically nickel and / or cobalt among constituent metal elements other than lithium).
  • the positive electrode active material layer has a porosity of 30% or more and 40% or less, and the negative electrode active material layer has a porosity of 30. % To 45%.
  • the void volume ratio (Sa / Sb) between the void volume (Sa) per unit area in the positive electrode active material layer and the void volume (Sb) per unit area in the negative electrode active material layer is 0.9 ⁇ ( Sa / Sb) ⁇ 1.4 is satisfied.
  • the “lithium secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by movement of lithium ions between the positive and negative electrodes.
  • a secondary battery generally referred to as a lithium ion battery is a typical example included in the lithium secondary battery in this specification.
  • the “positive electrode active material” refers to a positive electrode capable of reversibly occluding and releasing (typically inserting and desorbing) chemical species (here, lithium ions) that serve as charge carriers in a secondary battery.
  • the “negative electrode active material” refers to a negative electrode material capable of reversibly occluding and releasing the chemical species.
  • the “porosity” refers to the ratio of the volume of the void (space) portion existing inside the positive electrode active material layer or the negative electrode active material layer to the entire volume.
  • the lithium secondary battery for a high-output power source used in a mode where high-rate pulse charge / discharge is repeated in a short time is a reaction in the electrolyte solution on the positive electrode side during discharge (lithium ions occluded on the negative electrode side). Is moved to the positive electrode side).
  • the present inventor makes the reaction on the positive electrode side during discharge into a diffusion-controlled state by forming the voids in the positive electrode active material layer to be equal to or larger than the void volume in the negative electrode active material layer, and the internal resistance is reduced. It was found that the increase can be suppressed. Therefore, the lithium secondary battery disclosed herein has a void volume ratio (Sa /) between the void volume (Sa) per unit area in the positive electrode active material layer and the void volume (Sb) per unit area in the negative electrode active material layer.
  • the lithium composite oxide constituting the positive electrode active material has the following formula: Li (Ni 1-x Co x ) O 2 (1) (X in the formula (1) is a composite oxide represented by 0 ⁇ x ⁇ 0.5).
  • a positive electrode active material for a lithium secondary battery according to a preferred embodiment is composed of a lithium composite oxide containing nickel, which has a large theoretical lithium ion storage capacity and is inexpensive, and cobalt which improves electronic conductivity.
  • the lithium complex oxide is configured such that the cobalt molar ratio x satisfies the relationship of 0 ⁇ x ⁇ 0.5, and the nickel molar ratio is larger than the cobalt molar ratio.
  • the void volume (Sa) per unit area in the positive electrode active material layer and the void volume (Sb) per unit area in the negative electrode active material layer The void volume ratio (Sa / Sb) satisfies 1 ⁇ (Sa / Sb) ⁇ 1.1.
  • the void volume of the positive electrode active material layer is too small, it is not preferable because the reaction in the electrolyte solution on the positive electrode side during high-rate discharge stagnates as described above, but on the other hand, if the void volume of the positive electrode active material layer is too large, This time, the amount of electrolyte retained in the positive electrode active material layer becomes too large, and the amount of electrolyte retained in the voids in the negative electrode active material layer decreases, resulting in an increase in internal resistance.
  • the positive electrode active material layer has a layer density of 2 g / cm 3 or more and 2.5 g / cm 3 or less.
  • layer density refers to the density of solid content forming the positive electrode active material layer. The smaller the layer density of the positive electrode active material layer, the larger the void volume of the positive electrode active material layer. Therefore, in order to control the diffusion reaction on the positive electrode side during discharge, the positive electrode active material layer has a layer density of 2 g / cm 3 or more and 2.5 g / cm 3 or less, whereby a void volume is suitably formed and charge transfer is performed. Is performed with high efficiency. As a result, it is possible to provide a lithium secondary battery in which an increase in internal resistance is suppressed even when high-rate pulse charge / discharge is repeated.
  • the positive electrode having a positive electrode active material layer including a positive electrode active material formed on the surface of the positive electrode current collector and the surface of the negative electrode current collector are provided as other aspects for realizing the above object.
  • a method for manufacturing a lithium secondary battery comprising a negative electrode having a negative electrode active material layer containing a negative electrode active material.
  • the production method disclosed herein has, as the positive electrode active material, at least lithium and nickel and / or cobalt as main constituent elements (typically nickel and / or of constituent metal elements other than lithium).
  • the active material layer is formed so that the porosity of the positive electrode active material layer is 30% or more and 40% or less, and the negative electrode The active material layer is formed so that the porosity of the active material layer is 30% to 45%.
  • the void volume ratio (Sa / Sb) between the void volume (Sa) per unit area in the positive electrode active material layer and the void volume (Sb) per unit area in the negative electrode active material layer is 0.9 ⁇ ( The positive electrode active material layer and the negative electrode active material layer are formed so as to satisfy Sa / Sb) ⁇ 1.4.
  • the lithium secondary battery used in a mode in which high-rate pulse charging / discharging in which a large current flows instantaneously is repeated in a short time is a reaction in the electrolyte solution on the positive electrode side during discharge (lithium ions occluded on the negative electrode side (Which moves to the positive electrode side) is diffusion-controlled. Therefore, the present inventor makes the reaction on the positive electrode side during discharge into a diffusion-controlled state by forming the voids in the positive electrode active material layer to be approximately the same as or larger than the void volume in the negative electrode active material layer, It has been found that an increase in resistance can be suppressed.
  • the void volume ratio (Sa / Sb) between the void volume (Sa) per unit area in the positive electrode active material layer and the void volume (Sb) per unit area in the negative electrode active material layer is 0.9.
  • ⁇ (Sa / Sb) ⁇ 1.4 is satisfied, and the positive electrode active material layer has a porosity of 30% to 40% and a negative electrode active material layer has a porosity of 30% to 45%.
  • a material layer and a negative electrode active material layer are formed. Thereby, the amount of the electrolyte solution retained in the gap is suitably maintained in each electrode active material layer, and the ion concentration distribution balance in the electrolyte solution is not biased to one electrode side even under high rate pulse charge / discharge, An increase in internal resistance can be suppressed. As a result, it is possible to provide a method for producing a lithium secondary battery having excellent battery characteristics (cycle characteristics or high rate characteristics) as a vehicle-mounted high-output power source, particularly good low-temperature cycle characteristics under low-temperature pulse charge / discharge conditions. it can.
  • the lithium composite oxide constituting the positive electrode active material is represented by the following formula: Li (Ni 1-x Co x ) O 2 (1) (X in the formula (1) uses a composite oxide represented by 0 ⁇ x ⁇ 0.5).
  • a preferred embodiment of the positive electrode active material made of a lithium composite oxide satisfying the above formula (1) includes nickel and cobalt as constituent metal elements other than lithium.
  • the composite oxide containing nickel has a large theoretical lithium ion storage capacity, and the raw material cost can be kept low.
  • electronic conductivity is improved by containing cobalt with a molar ratio smaller than the molar ratio of nickel. Therefore, a lithium secondary battery having excellent battery characteristics (cycle characteristics or high rate characteristics) can be manufactured by using a composite oxide having such a composition ratio as a positive electrode active material.
  • the void volume ratio (Sa / Sb) between the void volume (Sa) per unit area in the positive electrode active material layer and the void volume (Sb) per unit area in the negative electrode active material layer is 1 ⁇
  • the positive electrode active material layer and the negative electrode active material layer are formed so as to satisfy (Sa / Sb) ⁇ 1.1.
  • each active material layer such that the void volume ratio (Sa / Sb) between the positive electrode active material layer and the negative electrode active material layer satisfies 1 ⁇ (Sa / Sb) ⁇ 1.1, the internal resistance Is further suppressed, and a lithium secondary battery having more excellent battery characteristics (cycle characteristics or high-rate characteristics), in particular, good low-temperature cycle characteristics under low-temperature pulse charge / discharge can be manufactured.
  • the active material layer is formed so that the positive electrode active material layer has a layer density of 2 g / cm 3 or more and 2.5 g / cm 3 or less.
  • a void volume is suitably formed in the active material layer.
  • a vehicle provided with any lithium secondary battery disclosed herein (which may be a lithium secondary battery produced by any production method disclosed herein).
  • the lithium secondary battery provided by the present invention has battery characteristics (cycle characteristics or high-rate characteristics) particularly suitable as a power source for batteries mounted on vehicles, particularly good low-temperature cycle characteristics under low-temperature pulse charge / discharge. May be shown. Therefore, the lithium secondary battery disclosed herein can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile equipped with an electric motor such as a hybrid vehicle or an electric vehicle.
  • FIG. 1 is a perspective view schematically showing the outer shape of a lithium secondary battery according to an embodiment.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a perspective view schematically showing the shape of the 18650 type lithium secondary battery produced in the example.
  • FIG. 4 is a graph showing the relationship between the void volume ratio and the resistance increase rate.
  • FIG. 5 is a side view schematically showing a vehicle (automobile) including the lithium secondary battery according to the embodiment.
  • the lithium secondary battery provided by the present invention is suitably used particularly as a high output power source by having the above-described configuration.
  • Lithium secondary batteries which are used for a long time in a manner that repeats high-rate pulse charging / discharging in a short time to flow a large current instantaneously, charge / discharge because the load on the electrode active material layer accompanying the movement of charge carriers (lithium ions) is large.
  • the amount of the electrolytic solution held in the gap formed in the electrode active material layer and the ion concentration distribution balance in the electrolytic solution are biased toward one electrode side, and the internal resistance tends to increase.
  • the present inventor has observed that the reaction in the electrolyte solution on the positive electrode side during discharge (lithium ions occluded on the negative electrode side moves to the positive electrode side) is diffusion-controlled, and the positive electrode active material
  • the aspect of the void in the electrode active material layer more specifically by defining it from the relative ratio of the void volume of the layer and the negative electrode active material layer and the respective suitable void ratio, It was found that the increase can be suppressed.
  • the positive electrode active material layer includes a positive electrode active material capable of inserting and extracting lithium ions.
  • a positive electrode active material capable of inserting and extracting lithium ions.
  • the positive electrode active material of the lithium secondary battery disclosed herein at least lithium (Li) and nickel (Ni) and / or cobalt (Co) as main constituent elements (typically other than lithium) Lithium composite oxide is used in which the total molar composition ratio of nickel and / or cobalt among the constituent metal elements is 50% or more.
  • a more preferable positive electrode active material is a composite oxide having lithium, nickel, and cobalt as essential constituent elements, and has the following formula: Li (Ni 1-x Co x ) O 2 (1) (X in the formula (1) satisfies the condition 0 ⁇ x ⁇ 0.5).
  • Such a complex oxide includes nickel, which has a large theoretical lithium ion storage capacity and is inexpensive, and cobalt which improves electronic conductivity.
  • the molar ratio of nickel in the lithium composite oxide is configured so as to be larger than the molar ratio of cobalt.
  • the composite oxide may contain at least one or more metal elements other than lithium, nickel, and cobalt, typically in a smaller proportion than cobalt and nickel.
  • minute elements include aluminum (Al), manganese (Mn), chromium (Cr), iron (Fe), vanadium (V), magnesium (Mg), titanium (Ti), zirconium (Zr), and niobium.
  • Nb molybdenum (Mo), tungsten (W), copper (Cu), zinc (Zn), gallium (Ga), indium (In), tin (Sn), lanthanum (La) and cerium (Ce) It may be one or more metal elements selected from the group.
  • the lithium composite oxide for example, a lithium composite oxide powder prepared and provided by a conventionally known method can be used as it is.
  • the oxide can be prepared by mixing several raw material compounds appropriately selected according to the atomic composition at a predetermined molar ratio and firing by an appropriate means.
  • a granular lithium composite oxide powder substantially composed of secondary particles having a desired average particle size and / or particle size distribution is obtained.
  • the particle size of the lithium composite oxide is not particularly limited.
  • the positive electrode active material layer may contain optional components such as a conductive material and a binder as necessary in addition to the positive electrode active material.
  • a conductive powder material such as carbon powder or carbon fiber is preferably used.
  • carbon powder various carbon blacks such as acetylene black, furnace black, ketjen black, and graphite powder are preferable.
  • conductive fibers such as carbon fibers and metal fibers, metal powders such as copper and nickel, and organic conductive materials such as polyphenylene derivatives can be contained alone or as a mixture thereof. In addition, only 1 type may be used among these, or 2 or more types may be used together.
  • the binder the same binder as that used for the positive electrode of a general lithium secondary battery can be appropriately employed. It is preferable to select a polymer that is soluble or dispersible in the solvent used.
  • cellulose polymers such as carboxymethyl cellulose (CMC) and hydroxypropyl methyl cellulose (HPMC); polyvinyl alcohol (PVA); polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene
  • PVA polytetrafluoroethylene
  • PTFE polytetrafluoroethylene-hexafluoropropylene
  • Water-soluble or water-dispersible polymers such as fluorine resins such as polymers (FEP); vinyl acetate copolymers; rubbers such as styrene butadiene rubber (SBR) and acrylic acid-modified SBR resins (SBR latex); Can be adopted.
  • a polymer such as polyvinylidene fluoride (PVDF) or polyvinylidene chloride (PVDC) can be preferably used.
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • Such a binder may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polymer material exemplified above may be used for the purpose of exhibiting the function as a thickener or other additive of the above composition.
  • any of an aqueous solvent and a non-aqueous solvent can be used.
  • the aqueous solvent is typically water, but may be any water-based solvent as a whole, that is, water or a mixed solvent mainly composed of water can be preferably used.
  • the solvent other than water constituting the mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • a particularly preferred example is a solvent consisting essentially of water.
  • preferable examples of the non-aqueous solvent include N-methyl-2-pyrrolidone (NMP), methyl ethyl ketone, toluene and the like.
  • the positive electrode active material is mixed with an appropriate solvent (aqueous solvent or non-aqueous solvent) together with a conductive material, a binder and the like to prepare a paste or slurry-like paste for forming a positive electrode active material layer.
  • an appropriate solvent aqueous solvent or non-aqueous solvent
  • the ratio of the positive electrode active material to the positive electrode active material layer is preferably about 50% by mass or more (typically 50 to 95% by mass), and about 70 to 95% by mass. % (For example, 75 to 90% by mass) is more preferable.
  • the proportion of the conductive material in the positive electrode active material layer can be, for example, about 2 to 20% by mass, and is usually preferably about 2 to 15% by mass. Further, in the composition using the binder, the proportion of the binder in the positive electrode active material layer can be, for example, about 1 to 10% by mass, and usually about 2 to 5% by mass.
  • the paste prepared by mixing the constituent materials in this way is applied to the positive electrode current collector 32, and after the solvent is evaporated and dried, the paste is compressed (pressed). Thereby, the positive electrode of the lithium secondary battery in which the positive electrode active material layer is formed on the positive electrode current collector is obtained.
  • a conductive member made of a highly conductive metal is preferably used as the positive electrode current collector to which the paste is applied.
  • a conductive member made of a highly conductive metal is preferably used.
  • aluminum or an alloy containing aluminum as a main component can be used.
  • the shape of the positive electrode current collector can vary depending on the shape of the lithium secondary battery, and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • the paste can be suitably applied to the positive electrode current collector by using an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
  • an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
  • it can dry favorably by using natural drying, a hot air, low-humidity air, a vacuum, infrared rays, far-infrared rays, and an electron beam individually or in combination.
  • a conventionally known compression method such as a roll press method or a flat plate press method can be employed. In adjusting the thickness, the thickness may be measured with a film thickness measuring instrument, and the press pressure may be adjusted to compress a plurality of times until a desired thickness is obtained.
  • the negative electrode disclosed here has a negative electrode active material layer containing a negative electrode active material formed on the surface of a negative electrode current collector.
  • a conductive member made of a metal having good conductivity is preferably used as the negative electrode current collector.
  • copper or an alloy containing copper as a main component can be used as the negative electrode current collector.
  • the shape of the negative electrode current collector is not particularly limited because it can be different depending on the shape of the lithium secondary battery as in the case of the positive electrode current collector.
  • a negative electrode active material the 1 type, or 2 or more types of the substance conventionally used for a lithium secondary battery can be used without limitation.
  • a carbon particle is mentioned as a suitable negative electrode active material.
  • a particulate carbon material (carbon particles) containing a graphite structure (layered structure) at least partially is preferably used. Any carbon material of a so-called graphitic material (graphite), non-graphitizable carbon material (hard carbon), easily graphitized carbon material (soft carbon), or a combination of these materials is preferably used. obtain.
  • graphite particles can be preferably used. Since the graphite particles can suitably occlude lithium ions as charge carriers, they are excellent in conductivity.
  • the particle size is small and the surface area per unit volume is large, it can be a negative electrode active material suitable for high-rate pulse charge / discharge.
  • various polymer materials that can function as the binders listed in the constituent elements of the positive electrode can be suitably used for the negative electrode active material layer.
  • the negative electrode active material is mixed with a binder or the like in an appropriate solvent (water, organic solvent and mixed solvent thereof) to prepare a paste or slurry-like paste for forming a negative electrode active material layer.
  • the paste thus prepared is applied to the negative electrode current collector, the solvent is volatilized and dried, and then compressed (pressed). Thereby, the negative electrode of the lithium secondary battery which has the negative electrode active material layer formed using this paste on a negative electrode collector is obtained.
  • coating, drying, and the compression method can use a conventionally well-known means similarly to the manufacturing method of the above-mentioned positive electrode.
  • the lithium secondary battery disclosed herein is defined in a multifaceted manner from the relative ratio of the void volume between the positive electrode active material layer and the negative electrode active material layer and the respective suitable void ratios. First, the relative ratio of the void volume between the positive electrode active material layer and the negative electrode active material layer will be described.
  • a void volume ratio (a void volume (Sa) per unit area in the positive electrode active material layer) to a void volume (Sb) per unit area in the negative electrode active material layer ( Sa / Sb) is typically 0.9 ⁇ (Sa / Sb) ⁇ 1.4, preferably 1 ⁇ (Sa / Sb) ⁇ 1.4, more preferably 1 ⁇ (Sa / Sb) ⁇ 1.
  • a positive electrode active material layer and a negative electrode active material layer are formed.
  • the void volume per unit area of the positive electrode active material layer is formed to be approximately the same as or larger than the void volume per unit area of the negative electrode active material layer.
  • electrolysis on the positive electrode side during discharge is performed. Reaction in the liquid (lithium ions occluded on the negative electrode side move to the positive electrode side) is promoted.
  • the amount of electrolyte solution retained in the gap is suitably maintained in each electrode active material layer, and the ion concentration distribution balance in the electrolyte solution is not biased to one electrode side even under high-rate pulse charge / discharge, An increase in internal resistance can be suppressed.
  • the void volume per unit area (mL / cm 2 ) of the positive electrode active material layer is determined by first punching a predetermined area from the produced positive electrode with a punch or the like, and mass of the positive electrode active material layer per unit area (g / cm 2 ) is measured.
  • the porosity of the positive electrode active material layer and the negative electrode active material layer is preferably set as follows.
  • the porosity of the positive electrode active material is typically 30% or more and 40% or less, preferably 33% or more and 39% or less, while the porosity of the negative electrode active material layer is typically 30% or more and 45%.
  • it is preferably set to 30% or more and 40% or less, respectively.
  • the electrode active material layer having a suitably set porosity is a conductive path. Is formed efficiently and improves the conductivity of the lithium secondary battery.
  • the shape of the void may take various shapes depending on the material constituting the active material layer and the manufacturing method, but may be any shape, and is generally spherical or its deformation in many cases.
  • the layer density of the positive electrode active material layer is typically 2 g / cm 3 or more and 2.5 g / cm 3 or less, for example, 2.2 g / cm 3 or more and 2.5 g / cm 3 .
  • the smaller the layer density of the positive electrode active material layer the larger the void volume of the positive electrode active material layer. Therefore, in order to make the reaction on the positive electrode side during diffusion to be diffusion-controlled, by setting the layer density of the positive electrode active material layer in the above range, a void volume is suitably formed and charge transfer is performed with high efficiency.
  • a rectangular lithium secondary battery will be described as one specific example of the lithium secondary battery according to the present invention, but the present invention is not intended to be limited to such an example.
  • matters other than the matters specifically mentioned in the present specification and matters necessary for carrying out the present invention for example, the configuration and manufacturing method of an electrode body including a positive electrode and a negative electrode, the configuration and manufacturing of a separator and an electrolyte
  • General techniques related to the construction of a method, a lithium secondary battery, and other batteries can be understood as design matters of a person skilled in the art based on the prior art in this field.
  • FIG. 1 is a perspective view schematically showing a rectangular lithium secondary battery according to an embodiment
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the lithium secondary battery 100 according to the present embodiment includes a rectangular parallelepiped battery case 10 and a lid body 14 that closes the opening 12 of the case 10.
  • a flat electrode body (wound electrode body 20) and an electrolyte can be accommodated in the battery case 10 through the opening 12.
  • the lid 14 is provided with a positive terminal 38 and a negative terminal 48 for external connection, and a part of the terminals 38 and 48 protrudes to the surface side of the lid 14. Also, some of the external terminals 38 and 48 are connected to the internal positive terminal 37 or the internal negative terminal 47, respectively, inside the case.
  • a wound electrode body 20 is accommodated in the case 10.
  • the electrode body 20 includes a positive electrode sheet 30 in which a positive electrode active material layer 34 is formed on the surface of a long sheet-like positive electrode current collector 32, and a negative electrode active material layer 44 on the surface of a long sheet-like negative electrode current collector 42. Is formed from a negative electrode sheet 40 on which is formed, and a long sheet-like separator 50.
  • one end portion 35 along the longitudinal direction is a portion where the positive electrode current collector 32 is exposed without forming the positive electrode active material layer 34 (positive electrode active material layer non-formation portion 36).
  • one end portion 46 along the longitudinal direction thereof is a portion where the negative electrode current collector 42 is exposed without forming the negative electrode active material layer 44 (negative electrode active material layer non-formed) Part 46).
  • the electrode sheets 30 and 40 are slightly shifted and overlapped so that the portion 46 is disposed separately at one end and the other end along the longitudinal direction. In this state, a total of four sheets 30, 50, 40, 50 are wound, and then the obtained wound body is crushed from the lateral direction to be ablated, thereby obtaining a flat wound electrode body 20.
  • the internal positive electrode terminal 37 is joined to the positive electrode active material layer non-formation portion 36 of the positive electrode current collector 32 and the internal negative electrode terminal 47 is joined to the exposed end portion of the negative electrode current collector 42 by ultrasonic welding, resistance welding or the like. And it electrically connects with the positive electrode sheet 30 or the negative electrode sheet 40 of the winding electrode body 20 formed in the said flat shape.
  • the lithium secondary battery 100 of this embodiment can be constructed by injecting an electrolyte and sealing the injection port.
  • a suitable separator sheet 50 used between the positive / negative electrode sheets 30 and 40 what was comprised with porous polyolefin resin is mentioned.
  • a porous separator sheet made of synthetic resin for example, made of polyolefin such as polyethylene
  • a separator is unnecessary (that is, in this case, the electrolyte itself can function as a separator).
  • the same electrolyte as the non-aqueous electrolyte conventionally used for lithium secondary batteries can be used without any particular limitation.
  • a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent.
  • the non-aqueous solvent include one or two selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and the like. More than seeds can be used.
  • the supporting salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3.
  • Lithium compounds (lithium salts) such as LiI can be used.
  • concentration of the support salt in a nonaqueous electrolyte solution may be the same as that of the nonaqueous electrolyte solution used with the conventional lithium secondary battery, and there is no restriction
  • An electrolyte containing a suitable lithium compound (supporting salt) at a concentration of about 0.1 to 5 mol / L can be used.
  • the lithium secondary battery constructed in this way has excellent battery characteristics (cycle characteristics or high-rate characteristics) as a vehicle-mounted high-output power supply in which the increase in internal resistance is suppressed, particularly low-temperature pulse charge / discharge. It may exhibit good low temperature cycle characteristics under conditions.
  • the lithium secondary battery (sample battery) disclosed herein was constructed and its performance was evaluated. However, it is not intended to limit the present invention to those shown in the specific examples.
  • ⁇ Test Example 1> A lithium secondary battery in which the porosity of the positive electrode active material was changed while the porosity of the negative electrode active material was constant was constructed.
  • a negative electrode (negative electrode sheet) for a lithium secondary battery was produced. That is, ion-exchanged water such that graphite as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) are in a mass ratio of 98: 1: 1.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the negative electrode for a lithium secondary battery thus obtained had a layer density of the negative electrode active material layer of 1.34 g / cm 3 , a porosity of 39%, and a void volume per unit area of 3.0 mL / cm 2. It was.
  • a positive electrode (positive electrode sheet) for a lithium secondary battery was produced. That is, lithium composite oxide (LiNi 0.8 Co 0.2 O 2 ) powder as a positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder, A paste for forming a positive electrode active material layer was prepared by mixing with N-methylpyrrolidone (NMP) so that the mass% ratio of the materials became various ratios. The paste is applied to both surfaces of a sheet-like aluminum foil having a thickness of about 10 ⁇ m as a positive electrode current collector, and after moisture in the paste is dried, the paste is stretched into a sheet shape by a roller press machine.
  • NMP N-methylpyrrolidone
  • the sample was molded to a thickness of about 75 ⁇ m (both sides). 1 to 8 positive electrode sheets were obtained. Sample No. obtained in this way. The layer density (g / cm 3 ), porosity (%), and void volume per unit area (mL / cm 2 ) of the positive electrode active material layer of the positive electrode for lithium secondary batteries 1 to 8 were calculated. In Table 1, Sample No. Each data of 1 to 8 is shown.
  • a cylindrical lithium secondary battery having a diameter of 18 mm and a height of 65 mm (18650 type) as shown in FIG. 3 was constructed using the positive electrodes 1 to 8 (positive electrode sheet) in the following procedure. That is, a negative electrode sheet and a positive electrode sheet were laminated together with two separators having a thickness of 25 ⁇ m, and this laminated sheet was wound to produce a wound electrode body. This electrode body is housed in a container together with the electrolytic solution, and the opening of the container is sealed. A total of eight types of lithium secondary batteries (sample batteries) using 1 to 8 different positive electrode sheets were constructed.
  • a volume ratio of 3 Using a solution obtained by dissolving the support salt LiPF 6 at a concentration of 1 mol / L in a mixed solvent of 7 ethylene carbonate (EC) and diethyl carbonate (DEC).
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the void volume ratio (Sa / Sb) between the void volume (Sa) per unit area in the positive electrode active material layer and the void volume (Sb) per unit area in the negative electrode active material layer is 0.
  • the lithium secondary batteries showing .93 (sample No. 4), 1.00 (sample No. 5), 1.10 (sample No. 2), and 1.03 (sample No. 1) have a resistance increase rate. Was smaller than 1.25, and it was confirmed that an increase in internal resistance could be suppressed even after a cycle due to high-rate pulse charge / discharge under low temperature conditions.
  • the porosity of the positive active material layer had a large resistance increase rate. Focusing on the porosity of the positive active material layer, the porosity of the positive electrode active material layer of the lithium secondary battery having a small resistance increase rate is 35 to 39%, and the layer density is 2.30 to 2.45 g / cm 3 . (The porosity of the negative electrode active material layer is all 39%.)
  • a lithium secondary battery in which the porosity of the negative electrode active material was changed while the porosity of the positive electrode active material was constant was constructed.
  • a positive electrode (positive electrode sheet) for a lithium secondary battery was produced. That is, lithium composite oxide (LiNi 0.8 Co 0.2 O 2 ) powder as a positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder, A paste for forming a positive electrode active material layer was prepared by mixing with N-methylpyrrolidone (NMP) so that the mass% ratio of the material was 87: 10: 3.
  • NMP N-methylpyrrolidone
  • the paste is applied to both surfaces of a sheet-like aluminum foil having a thickness of about 10 ⁇ m as a positive electrode current collector, and after moisture in the paste is dried, the paste is stretched into a sheet shape by a roller press machine. The thickness was molded to about 75 ⁇ m (both sides) to obtain a positive electrode sheet.
  • the positive electrode for the lithium secondary battery thus obtained had a layer density of the positive electrode active material layer of 2.45 g / cm 3 , a porosity of 10%, and a void volume per unit area of 2.6 mL / cm 2. It was.
  • the negative electrode (negative electrode sheet) for lithium secondary batteries was produced. That is, ion-exchanged water such that graphite as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) are in a mass ratio of 98: 1: 1. And a paste for forming a negative electrode active material layer was prepared. And paste was apply
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • the negative electrode active material layer was formed to a thickness of about 80 ⁇ m (both sides) by stretching it into a sheet with a roller press. 9 to 13 negative electrode sheets were obtained. Sample No. obtained in this way. The layer density (g / cm 3 ), porosity (%), and void volume per unit area (mL / cm 2 ) of the negative electrode active material layer of the negative electrode for lithium secondary batteries 9 to 13 were calculated. Table 2 shows the sample numbers. Each data of 9-13 is shown.
  • the lithium secondary battery has a resistance increase rate smaller than 1.25 and has an internal resistance even after cycling by pulse charge / discharge under low temperature conditions. It was confirmed that the increase in the amount could be suppressed.
  • Sample No. whose void volume ratio was smaller than the above sample. 9 and sample no. 10 and Sample No. in which the void volume ratio was larger than the above sample. In 13, the resistance increase rate was large.
  • the porosity of the negative active material layer of the lithium secondary battery which had a small resistance increase rate, was 30 to 35%. (The porosity of the positive electrode active material layer is all 33%.)
  • FIG. 4 is a graph showing the relationship between the void volume ratio and the resistance increase rate in Tables 1 and 2.
  • the horizontal axis represents the void volume ratio (Sa / Sb) between the void volume per unit area (Sa) in the positive electrode active material layer and the void volume (Sb) per unit area in the negative electrode active material layer.
  • the axis indicates the resistance increase rate.
  • the increase rate of the internal resistance is small in the lithium secondary battery having the void volume ratio of about 0.9 to 1.4.
  • the present invention has been described in detail above, the above embodiments and examples are merely examples, and the invention disclosed herein includes various modifications and changes of the above-described specific examples.
  • the battery of the various content from which an electrode body structural material and electrolyte differ may be sufficient.
  • the size and other configurations of the battery can be appropriately changed depending on the application (typically for in-vehicle use).
  • the lithium secondary battery according to the present invention has excellent battery characteristics (cycle characteristics or high rate characteristics) as described above, it can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. . Therefore, as schematically shown in FIG. 5, the present invention provides a vehicle 1 (typically an automobile, particularly a hybrid) provided with such a lithium secondary battery (typically a battery pack formed by connecting a plurality of series batteries) 100 as a power source. Automobiles, electric vehicles, automobiles equipped with electric motors such as fuel cell vehicles).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明により提供されるリチウム二次電池は、正極活物質が少なくともリチウムと、ニッケル及び/又はコバルトとを構成元素の主体とするリチウム複合酸化物により構成されており、正極活物質層の空隙率は30%以上40%以下であり、且つ負極活物質層の空隙率は30%以上45%以下である。そして、上記正極活物質層における単位面積当たりの空隙体積(Sa)と上記負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、0.9≦(Sa/Sb)≦1.4を満たす。

Description

リチウム二次電池及びその製造方法
 本発明は、リチウム二次電池に関する。詳しくは、車両搭載用電源としてハイレート充放電下で好適に用いられるリチウム二次電池および該電池を製造する方法に関する。
 近年、リチウム二次電池やニッケル水素電池等の二次電池は、電気を駆動源とする車両搭載用電源、あるいはパソコン及び携帯端末その他の電気製品等に搭載される電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池(典型的にはリチウムイオン電池)は、車両(例えば自動車、特にハイブリッド自動車、電気自動車)搭載用高出力電源として好ましく用いられるものとして期待されている。
 この種のリチウム二次電池の一つの典型的な構成では、電極集電体の表面にリチウムイオンを可逆的に吸蔵および放出し得る電極活物質層(具体的には、正極活物質層および負極活物質層)を有する。例えば、正極の場合、リチウム遷移金属複合酸化物等の正極活物質が、適当な溶媒に分散された状態のペースト状組成物(ペースト状組成物にはスラリー状組成物が包含される。以下、この種の組成物を単にペーストと呼称する。)が正極集電体表面に塗布されることにより形成された正極活物質層を有している。
 ところで、二次電池の用途のなかには、瞬間的に大電流を流すハイレートのパルス充放電を短時間で繰り返す態様で使用されることが想定されるものがある。例えば、車両搭載用高出力電源として用いられるリチウム二次電池はその典型例であるが、かかる態様で用いられる電池は、家庭用電気製品に用いられる電池に比べて、電荷担体の移動に伴う電極活物質層に対する負荷が大きいため、充放電の繰り返しによって内部抵抗が上昇する虞がある。このような内部抵抗の上昇の要因の一つとして、電極活物質層中に形成された空隙に保持されている電解液量や、電解液中のイオン濃度分布バランスが一方の電極側に偏ることなどが挙げられる。特に、ハイレートのパルス充放電下では、その傾向が顕著にみられる。そこで、電極活物質層の空隙率または空隙体積などで電極活物質層の空隙に保持される電解液量を規定することにより、サイクル特性(耐久性)を向上させる試みが行われている。このような従来技術として、特許文献1~3が挙げられる。
 特許文献1には、正極活物質層および負極活物質層の所定面積当たりの電解液の含浸量を電解液保持能力としてそれぞれ算出し、正極活物質層の電解液保持能力(a)と負極活物質層の電解液保持能力(b)との関係が0.9≦a/b≦1.3を満たすリチウム二次電池について開示している。また、特許文献2では、正極と負極とセパレータそれぞれの空隙体積の総和に対する、電解液の好適な液量について検討されている。さらに、特許文献3では、正極活物質層の空隙体積(V)と負極活物質層の空隙体積(V)との割合が、0.3≦(V/V)≦0.5を満たすリチウム二次電池について開示されている。
日本国特許出願公開第平09-22689号公報 日本国特許出願公開第2000-294294号公報 日本国特許出願公開第2003-331825号公報
 しかしながら、上記列挙した従来技術では、正極活物質層と負極活物質層の空隙率または空隙体積の相対比率(割合)の最適化について検討はされているが、それぞれの活物質層の好適な空隙態様についての技術的検討は未だ十分とは言えない。例えば、特許文献1のように電極活物質層の空隙体積の相対比率のみを規定した場合、負極のペースト塗布量を増加させると負極活物質層の空隙の総体積が増えるため、正極活物質層の空隙体積も増やす必要がある。しかしながら、正極活物質層の空隙体積が所定の割合以上増えると、二次電池の高出力化に欠かせない正極活物質の高密度が実現されず、結果として電子導電性(イオン電導性)を低下させてしまう。そのため、正極活物質層と負極活物質層の空隙体積または空隙率の相対比率のみでは電池特性(ハイレート特性またはサイクル特性)を改善するのは困難であるといえる。
 そこで、本発明は、リチウム二次電池に関する上記従来の問題点を解決すべく創出されたものであり、その目的とするところは、正極活物質層および負極活物質層それぞれの空隙体積の相対的な調整を図り、内部抵抗の上昇が抑制された車両搭載用高出力電源として優れた電池特性(サイクル特性またはハイレート特性)を有するリチウム二次電池とその製造方法を提供することである。また、このようなリチウム二次電池を備える車両を提供することを他の目的とする。
 上記目的を実現するべく本発明により、正極集電体の表面に形成された正極活物質を含む正極活物質層を有する正極と、負極集電体の表面に形成された負極活物質を含む負極活物質層を有する負極とを備える、リチウム二次電池が提供される。本発明に係るリチウム二次電池の正極活物質は、少なくともリチウムと、ニッケル及び/又はコバルトとを構成元素の主体とする(典型的にはリチウム以外の構成金属元素のうち、ニッケル及び/又はコバルトのモル組成比が50%以上である)リチウム複合酸化物により構成されており、上記正極活物質層の空隙率は30%以上40%以下であり、且つ上記負極活物質層の空隙率は30%以上45%以下である。そして、上記正極活物質層における単位面積当たりの空隙体積(Sa)と上記負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、0.9≦(Sa/Sb)≦1.4を満たす。
 なお、本明細書において「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電が実現される二次電池をいう。一般にリチウムイオン電池と称される二次電池は、本明細書におけるリチウム二次電池に包含される典型例である。
 また、本明細書において「正極活物質」とは、二次電池において電荷担体となる化学種(ここではリチウムイオン)を可逆的に吸蔵および放出(典型的には挿入および脱離)可能な正極側の活物質をいい、本明細書において「負極活物質」とは、上記化学種を可逆的に吸蔵および放出可能な負極側の物質をいう。
 さらに、本明細書において「空隙率」とは、正極活物質層または負極活物質層の全体積に対する、その内部に存在する空隙(空間)部分の体積の割合をいう。
 本発明では、ハイレートのパルス充放電を短時間で繰り返す態様で使用されるリチウム二次電池において、正極活物質層と負極活物質層との空隙体積の相対比率と、それぞれの好適な空隙率とから多面的に規定することにより、電極活物質層中の空隙の態様をより具体的に示すことができる。
 ここで、ハイレートのパルス充放電を短時間で繰り返す態様で使用される高出力電源用のリチウム二次電池は、放電時の正極側における電解液中の反応(負極側に吸蔵されていたリチウムイオンが正極側に移動する)が拡散律速となっている。本発明者は、正極活物質層の空隙を負極活物質層の空隙体積と同程度か、あるいはそれよりも大きく形成することにより、放電時の正極側の反応が拡散律速状態となり、内部抵抗の上昇を抑制することができることを見出した。従って、ここに開示されるリチウム二次電池は、正極活物質層における単位面積当たりの空隙体積(Sa)と負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、0.9≦(Sa/Sb)≦1.4を満たし、且つ正極活物質層の空隙率が30%以上40%以下であり、負極活物質層の空隙率が30%以上45%以下に設定される。これにより、空隙に保持されている電解液量がそれぞれの電極活物質層において好適に維持されるため、ハイレートのパルス充放電下においても電解液中のイオン濃度分布バランスが一方の電極側に偏ることなく、内部抵抗の上昇が抑制される。従って、本発明より車両搭載用高出力電源として優れた電池特性(サイクル特性またはハイレート特性)、特に低温パルス充放電条件下において良好な低温サイクル特性を有するリチウム二次電池を提供することができる。
 また、ここで開示されるリチウム二次電池の好ましい一態様では、上記正極活物質を構成するリチウム複合酸化物は、以下の式:
 Li(Ni1-xCo)O   (1)
(式(1)中のxは、0<x<0.5を満たす)で示される複合酸化物である。
 好ましい一態様のリチウム二次電池の正極活物質は、理論上のリチウムイオン吸蔵容量が大きく安価でもあるニッケルと、電子導電性を向上させるコバルトとを含むリチウム複合酸化物から成る。また、かかるリチウム複合酸化物のコバルトのモル比xが、0<x<0.5の関係を満たし、ニッケルのモル比がコバルトのモル比よりも大きくなるように構成される。その結果、上記リチウム複合酸化物を用いることにより、優れた電池特性(サイクル特性またはハイレート特性)を有するリチウム二次電池を提供することができる。
 ここに開示されるリチウム二次電池の好ましい他の一態様では、上記正極活物質層における単位面積当たりの空隙体積(Sa)と上記負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、1≦(Sa/Sb)≦1.1を満たす。
 正極活物質層の空隙体積が小さ過ぎると、上述のようにハイレート放電時における正極側の電解液中の反応が停滞するため好ましくないが、他方、正極活物質層の空隙体積が大き過ぎると、今度は正極活物質層の電解液保持量が多くなり過ぎて、負極活物質層の空隙に保持される電解液量が少なくなり、結果として内部抵抗を増大させてしまうこととなる。そのため、空隙体積比(Sa/Sb)が、1≦(Sa/Sb)≦1.1を満たすことにより、内部抵抗の上昇がさらに抑制され、より優れた電池特性(サイクル特性またはハイレート特性)、特に低温パルス充放電下において良好な低温サイクル特性を有するリチウム二次電池を提供することができる。
 また、さらに好ましい一態様では、上記正極活物質層の層密度は、2g/cm以上2.5g/cm以下である。ここで、「層密度」は、当該正極活物質層を形成している固形分密度をいう。
 正極活物質層の層密度が小さいほど、正極活物質層の空隙体積は大きくなる。そのため、放電時の正極側の反応を拡散律速させるため、正極活物質層の層密度を2g/cm以上2.5g/cm以下に設定することにより、空隙体積が好適に形成され電荷移動が高効率で行われる。その結果、ハイレートのパルス充放電を繰り返しても、内部抵抗の上昇が抑制されたリチウム二次電池を提供することができる。
 また、本発明は、上記目的を実現する他の側面として、正極集電体の表面に形成された正極活物質を含む正極活物質層を有する正極と、負極集電体の表面に形成された負極活物質を含む負極活物質層を有する負極とを備えるリチウム二次電池を製造する方法を提供する。ここに開示される製造方法は、上記正極活物質として、少なくともリチウムと、ニッケル及び/又はコバルトとを構成元素の主体とする(典型的にはリチウム以外の構成金属元素のうち、ニッケル及び/又はコバルトのモル組成比が50%以上である)リチウム複合酸化物を使用して、上記正極活物質層の空隙率が30%以上40%以下になるように該活物質層を形成し、上記負極活物質層の空隙率が30%以上45%以下になるように該活物質層を形成する。そして、上記正極活物質層における単位面積当たりの空隙体積(Sa)と上記負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、0.9≦(Sa/Sb)≦1.4を満たされるように正極活物質層および負極活物質層を形成する。
 瞬間的に大電流を流すハイレートのパルス充放電を短時間で繰り返す態様で使用されるリチウム二次電池は、放電時の正極側における電解液中の反応(負極側に吸蔵されていたリチウムイオンが正極側に移動する)が拡散律速となる。そのため、本発明者は、正極活物質層の空隙を負極活物質層の空隙体積と同程度か、あるいはそれよりも大きく形成することにより、放電時の正極側の反応が拡散律速状態となり、内部抵抗の上昇を抑制することができることを見出した。また、正極活物質層における空隙体積が大き過ぎてもまた正極活物質層の空隙に保持される電解液量が過多となり、負極活物質層の電解液保持力が低下するため好ましくない。そこで、本発明では、正極活物質層における単位面積当たりの空隙体積(Sa)と負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、0.9≦(Sa/Sb)≦1.4を満たし、さらに、正極活物質層の空隙率が30%以上40%以下、負極活物質層の空隙率が30%以上45%以下になるように正極活物質層および負極活物質層を形成する。これにより、空隙に保持される電解液量がそれぞれの電極活物質層において好適に維持され、ハイレートのパルス充放電下においても電解液中のイオン濃度分布バランスが一方の電極側に偏ることなく、内部抵抗の上昇が抑制することができる。その結果、車両搭載用高出力電源として優れた電池特性(サイクル特性またはハイレート特性)、特に低温パルス充放電条件下において良好な低温サイクル特性を有するリチウム二次電池を製造する方法を提供することができる。
 また、ここに開示される製造方法の好ましい一態様では、上記正極活物質を構成するリチウム複合酸化物として、以下の式:
 Li(Ni1-xCo)O   (1)
 (式(1)中のxは、0<x<0.5を満たす)で示される複合酸化物を使用する。
 上記式(1)を満たすリチウム複合酸化物からなる正極活物質の好ましい一態様は、リチウム以外の構成金属元素としてニッケルおよびコバルトを含む。ニッケルを含む複合酸化物は、理論上のリチウムイオン吸蔵容量が大きく、また原料コストを安価に抑えられる。また、ニッケルのモル比よりも少ないモル比でコバルトが含まれることにより、電子導電性が向上されている。そのため、かかる組成比の複合酸化物を正極活物質として用いることにより、優れた電池特性(サイクル特性またはハイレート特性)を有するリチウム二次電池を製造することができる。
 また、好ましくは、上記正極活物質層における単位面積当たりの空隙体積(Sa)と上記負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、1≦(Sa/Sb)≦1.1を満たされるように正極活物質層および負極活物質層を形成する。
 正極活物質層と負極活物質層との空隙体積比(Sa/Sb)が、1≦(Sa/Sb)≦1.1を満たされるようにそれぞれの活物質層を形成することにより、内部抵抗の上昇がさらに抑制され、より優れた電池特性(サイクル特性またはハイレート特性)、特に低温パルス充放電下において良好な低温サイクル特性を有するリチウム二次電池を製造することができる。
 さらに、好ましい一態様としては、上記正極活物質層の層密度が2g/cm以上2.5g/cm以下になるように該活物質層を形成する。
 正極活物質層の層密度(固形分密度)が小さいほど、正極活物質層の空隙体積は大きくなる。そのため、放電時の正極側の反応を拡散律速させるため、正極活物質層の層密度が2g/cm以上2.5g/cm以下になるように正極活物質層を形成することにより、該活物質層には空隙体積が好適に形成される。これにより、電極間の電荷移動が高効率で行われるため、ハイレートのパルス充放電を繰り返しても、内部抵抗の上昇が抑制されたリチウム二次電池を製造することができる。
 また、本発明によると、ここに開示されるいずれかのリチウム二次電池(ここに開示されるいずれかの製造方法により製造されたリチウム二次電池であり得る。)を備える車両を提供する。本発明によって提供されるリチウム二次電池は、上述のように特に車両に搭載される電池の電源として適した電池特性(サイクル特性またはハイレート特性)、特に低温パルス充放電下において良好な低温サイクル特性を示すものであり得る。したがって、ここに開示されるリチウム二次電池は、ハイブリッド自動車、電気自動車のような電動機を備える自動車等の車両に搭載されるモーター(電動機)用の電源として好適に使用され得る。
図1は、一実施形態に係るリチウム二次電池の外形を模式的に示す斜視図である。 図2は、図1におけるII-II線断面図である。 図3は、実施例で作製した18650型リチウム二次電池の形状を模式的に示す斜視図である。 図4は、空隙体積比と抵抗増加率との関係を示すグラフである。 図5は、一実施形態に係るリチウム二次電池を備えた車両(自動車)を模式的に示す側面図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 本発明によって提供されるリチウム二次電池は、上述した構成を備えることにより、特に高出力電源として好適に用いられる。瞬間的に大電流を流すハイレートのパルス充放電を短時間で繰り返す態様で長期用いられるリチウム二次電池は、電荷担体(リチウムイオン)の移動に伴う電極活物質層に対する負荷が大きいため、充放電の繰り返しによって電極活物質層中に形成された空隙に保持されている電解液量や、電解液中のイオン濃度分布バランスが一方の電極側に偏り、内部抵抗が上昇し易い。そこで、本発明者は、放電時の正極側における電解液中の反応(負極側に吸蔵されていたリチウムイオンが正極側に移動する)が拡散律速となっていることに注視し、正極活物質層と負極活物質層の空隙体積の相対比率と、それぞれの好適な空隙率とから多面的に規定することによって電極活物質層中の空隙の態様をより具体的に示すことで、内部抵抗の上昇を抑制することができることを見出した。
 まず、本発明を特徴付ける正極集電体の表面に形成された正極活物質層を構成する材料について説明する。上記正極活物質層には、リチウムイオンを吸蔵および放出可能な正極活物質が含まれる。
 ここに開示されるリチウム二次電池の正極活物質としては、少なくともリチウム(Li)と、ニッケル(Ni)及び/又はコバルト(Co)とを構成元素の主体とする(典型的にはリチウム以外の構成金属元素のうち、ニッケル及び/又はコバルトの合計モル組成比が50%以上である)リチウム複合酸化物が用いられる。
 また、より好ましい正極活物質としては、リチウムと、ニッケルと、コバルトとを必須構成元素とする複合酸化物であって、以下の式:
 Li(Ni1-xCo)O   (1)
 (式(1)中のxは、0<x<0.5を満たす)で示される複合酸化物が用いられる。かかる複合酸化物は、理論上のリチウムイオン吸蔵容量が大きく安価でもあるニッケルと、電子導電性を向上させるコバルトとを含む。さらに、かかるリチウム複合酸化物のニッケルのモル比はコバルトのモル比よりも大きくなるような組成比で構成されるのが好ましい。
 なお、上記複合酸化物には、リチウムと、ニッケルと、コバルト以外に他の少なくとも一種または二種以上の金属元素を典型的には上記コバルトおよびニッケルよりも少ない割合で含むものであってもよい。例えば、かかる微少含有元素としては、アルミニウム(Al),マンガン(Mn),クロム(Cr),鉄(Fe),バナジウム(V),マグネシウム(Mg),チタン(Ti),ジルコニウム(Zr),ニオブ(Nb),モリブデン(Mo),タングステン(W),銅(Cu),亜鉛(Zn),ガリウム(Ga),インジウム(In),スズ(Sn),ランタン(La)およびセリウム(Ce)からなる群から選択される一種または二種以上の金属元素であり得る。
 また、上記リチウム複合酸化物として、例えば、従来公知の方法で調製・提供されるリチウム複合酸化物粉末をそのまま使用することができる。例えば、原子組成に応じて適宜選択されるいくつかの原料化合物を所定のモル比で混合し、適当な手段で焼成することによって該酸化物を調製することができる。また、焼成物を適当な手段で粉砕、造粒および分級することにより、所望する平均粒径および/または粒径分布を有する二次粒子によって実質的に構成された粒状のリチウム複合酸化物粉末を得ることができる。本実施形態においては、リチウム複合酸化物の粒径を特に限定するものではない。
 上記正極活物質層は、上記正極活物質の他に、導電材、結着材等の任意成分を必要に応じて含有し得る。導電材としては、カーボン粉末やカーボンファイバー等の導電性粉末材料が好ましく用いられる。カーボン粉末としては、種々のカーボンブラック、例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト粉末等が好ましい。また、炭素繊維、金属繊維などの導電性繊維類、銅、ニッケル等の金属粉末類およびポリフェニレン誘導体などの有機導電性材料などを単独又はこれらの混合物として含ませることができる。なお、これらのうち一種のみを用いても、二種以上を併用してもよい。
 また、結着材としては、一般的なリチウム二次電池の正極に使用される結着材と同様のもの等を適宜採用することができる。使用する溶媒に溶解または分散可溶なポリマーを選択することが好ましい。例えば、水系溶媒を用いる場合においては、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)等のフッ素系樹脂;酢酸ビニル共重合体;スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)等のゴム類;等の水溶性または水分散性ポリマーを好ましく採用することができる。また、非水系溶媒を用いる場合においては、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等のポリマーを好ましく採用することができる。このような結着材は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、上記で例示したポリマー材料は、結着材としての機能の他に、上記組成物の増粘材その他の添加材としての機能を発揮する目的で使用されることもあり得る。
 上記溶媒としては、水系溶媒および非水系溶媒のいずれも使用可能である。水系溶媒は、典型には水であるが、全体として水性を示すものであればよく、すなわち、水または水を主体とする混合溶媒を好ましく用いることができる。該混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。例えば、水系溶媒の凡そ80質量%以上(より好ましくは凡そ90質量%以上、さらに好ましくは凡そ95質量%以上)が水である溶媒の使用が好ましい。特に好ましい例として、実質的に水からなる溶媒が挙げられる。また、非水系溶媒の好適例としては、N-メチル-2-ピロリドン(NMP)、メチルエチルケトン、トルエン等が例示される。
 次いで、ここに開示されるリチウム二次電池の正極の作製方法について説明する。
 上記正極活物質を導電材及び結着材等と共に上記適当な溶媒(水系溶媒または非水系溶媒)で混合して、ペーストまたはスラリー状の正極活物質層形成用ペーストを調製する。各構成材料の配合比率は、例えば、正極活物質層に占める正極活物質の割合は、凡そ50質量%以上(典型的には50~95質量%)であることが好ましく、凡そ70~95質量%(例えば75~90質量%)であることがより好ましい。また、正極活物質層に占める導電材の割合は、例えば凡そ2~20質量%とすることができ、通常は凡そ2~15質量%とすることが好ましい。さらに、結着材を使用する組成では、正極活物質層に占める結着材の割合を例えば凡そ1~10質量%とすることができ、通常は凡そ2~5質量%とすることが好ましい。こうして各構成材料を混合して調製したペーストを正極集電体32に塗布し、溶媒を揮発させて乾燥させた後、圧縮(プレス)する。これにより正極活物質層が正極集電体上に形成されたリチウム二次電池の正極が得られる。
 上記ペーストが塗布される正極集電体としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。正極集電体の形状は、リチウム二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。
 なお、正極集電体に上記ペーストを塗布する方法としては、従来公知の方法と同様の技法を適宜採用することができる。例えば、スリットコーター、ダイコーター、グラビアコーター、コンマコーター等の適当な塗布装置を使用することにより、正極集電体に該ペーストを好適に塗布することができる。また、溶媒を乾燥するにあたっては、自然乾燥、熱風、低湿風、真空、赤外線、遠赤外線、および電子線を、単独または組合せにて用いることにより良好に乾燥し得る。さらに、圧縮方法としては、従来公知のロールプレス法、平板プレス法等の圧縮方法を採用することができる。かかる厚さを調整するにあたり、膜厚測定器で該厚みを測定し、プレス圧を調整して所望の厚さになるまで複数回圧縮してもよい。
 次に、本実施形態に係るリチウム二次電池の負極の各構成要素について説明する。ここで開示される負極は、負極集電体の表面に形成された負極活物質を含む負極活物質層を有する。
 まず、負極集電体としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅、または銅を主成分とする合金を用いることができる。負極集電体の形状は、正極集電体と同様にリチウム二次電池の形状等に応じて異なり得るため特に制限はない。
 また、負極活物質としては、従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。例えば、好適な負極活物質としてカーボン粒子が挙げられる。少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好適に使用され得る。中でも特に、黒鉛粒子を好ましく使用することができる。黒鉛粒子は、電荷担体としてのリチウムイオンを好適に吸蔵することができるため導電性に優れる。また、粒径が小さく単位体積当たりの表面積が大きいことからよりハイレートのパルス充放電に適した負極活物質となり得る。
 なお、負極活物質層には、上記負極活物質の他に、上述の正極の構成要素で列挙した結着材として機能し得る各種のポリマー材料を好適に使用し得る。
 次いで、リチウム二次電池の負極の作製方法について説明する。
 上記負極活物質を結着材等と共に適当な溶媒(水、有機溶媒およびこれらの混合溶媒)で混合して、ペーストまたはスラリー状の負極活物質層形成用ペーストを調製する。こうして調製したペーストを負極集電体に塗布し、溶媒を揮発させて乾燥させた後、圧縮(プレス)する。これにより該ペーストを用いて形成された負極活物質層を負極集電体上に有するリチウム二次電池の負極が得られる。なお、塗布、乾燥および圧縮方法は、上述の正極の製造方法と同様に従来公知の手段を用いることができる。
 ここに開示されるリチウム二次電池は、正極活物質層と負極活物質層の空隙体積の相対比率と、それぞれの好適な空隙率とから多面的に規定される。
 まず、正極活物質層と負極活物質層の空隙体積の相対比率について説明する。 ここに開示されるリチウム二次電池の好ましい一態様では、正極活物質層における単位面積当たりの空隙体積(Sa)と負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、典型的には0.9≦(Sa/Sb)≦1.4、好ましくは1≦(Sa/Sb)≦1.4、より好ましくは1≦(Sa/Sb)≦1.1、を満たすように正極活物質層および負極活物質層を形成する。このように、正極活物質層の単位面積当たりの空隙体積を負極活物質層の単位面積当たりの空隙体積と同程度か、あるいはそれよりも大きく形成されることにより、放電時の正極側における電解液中の反応(負極側に吸蔵されていたリチウムイオンが正極側に移動する)が促進される。その結果、空隙に保持される電解液量がそれぞれの電極活物質層において好適に維持され、ハイレートのパルス充放電下においても電解液中のイオン濃度分布バランスが一方の電極側に偏ることなく、内部抵抗の上昇が抑制することができる。
 ここで、上記単位面積当たりの空隙体積の算出方法について説明する。例えば、正極活物質層の単位面積当たりの空隙体積(mL/cm)は、まず、上記作製した正極から所定面積をポンチ等で打ち抜き、単位面積当たりの正極活物質層の質量(g/cm)を測定する。そして、上記測定した単位面積当たりの正極活物質層の質量(g/cm)に該活物質層中に含まれる各構成材料(例えば正極活物質、導電材、結着材等)の組成比(配合比率)をかけて、それぞれの単位面積当たりの質量(g/cm)を求め、さらに各構成材料の真比重(g/mL)で割ることにより、単位面積当たりの各構成材料の体積(mL/cm)を、以下の式(2)より求めることができる(式(2)は、正極活物質の単位面積あたりの体積である。)
式:
[単位面積当たりの正極活物質の体積]=[単位面積当たりの正極活物質層の質量]×[正極活物質の配合比率]/[正極活物質の真比重]  (2)
 次いで、上記求めた単位面積当たりの各構成材料の体積(mL/cm)を、単位面積当たりの正極活物質層の体積(mL/cm)から全て引くことにより、正極活物質層に存在する単位面積当たりの空隙体積(mL/cm)を求めることができる。具体的には、以下の式(3)で示される。
式:
[正極活物質層の単位面積当たりの空隙体積]=[単位面積当たりの正極活物質層の体積]-{[単位面積当たりの正極活物質の体積]+[単位面積当たりの導電材の体積]+[単位面積当たりの結着材の体積]}   (3)
 また、ここに開示されるリチウム二次電池は、正極活物質層および負極活物質層の空隙率がそれぞれ以下のように設定されるのが好ましい。正極活物質の空隙率は、典型的には30%以上40%以下、好ましくは33%以上39%以下であり、他方、負極活物質層の空隙率は、典型的には30%以上45%以下、好ましくは30%以上40%以下にそれぞれ設定される。電極活物質層の空隙は、二次電池の充放電に伴う電荷担体の移動経路(吸蔵放出される場所)として利用されるため、空隙率が好適に設定された電極活物質層は、導電パスが効率良く形成され、リチウム二次電池の導電性を向上させる。また、空隙の形状は、活物質層を構成する材料や製造方法により様々な形状を取り得るが、どのような形状でもよく、一般には球状またはその変形であることが多い。
 さらに、上記正極活物質層の層密度は、典型的には2g/cm以上2.5g/cm以下、例えば2.2g/cm以上2.5g/cmであることが好ましい。通常、正極活物質層の層密度が小さいほど、正極活物質層の空隙体積は大きくなる。そのため、放電時の正極側の反応を拡散律速させるため、正極活物質層の層密度を上記範囲に設定することにより、空隙体積が好適に形成され電荷移動が高効率で行われる。
 以下、本発明に係るリチウム二次電池の一つの具体例として、角型形状のリチウム二次電池について説明するが、本発明をかかる例に限定することを意図したものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製造方法、セパレータや電解質の構成および製造方法、リチウム二次電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
 図1は、一実施形態に係る角型形状のリチウム二次電池を模式的に示す斜視図であり、図2は、図1中のII-II線断面図である。図1および図2に示されるように、本実施形態に係るリチウム二次電池100は、直方体形状の角型の電池ケース10と、該ケース10の開口部12を塞ぐ蓋体14とを備える。この開口部12より電池ケース10内部に扁平形状の電極体(捲回電極体20)及び電解質を収容することができる。また、蓋体14には、外部接続用の正極端子38と負極端子48とが設けられており、それら端子38,48の一部は蓋体14の表面側に突出している。また、外部端子38,48の一部はケース内部で内部正極端子37または内部負極端子47にそれぞれ接続されている。
 図2に示されるように、本実施形態では該ケース10内に捲回電極体20が収容されている。該電極体20は、長尺シート状の正極集電体32の表面に正極活物質層34が形成された正極シート30、長尺シート状の負極集電体42の表面に負極活物質層44が形成された負極シート40、および長尺シート状のセパレータ50から構成されている。
 また、捲回される正極シート30において、その長手方向に沿う一方の端部35は正極活物質層34が形成されずに正極集電体32が露出した部分(正極活物質層非形成部36)を、捲回される負極シート40においても、その長手方向に沿う一方の端部46は負極活物質層44が形成されずに負極集電体42が露出した部分(負極活物質層非形成部46)をそれぞれ有する。正極シート30と負極シート40を二枚のセパレータ50とともに重ね合わせる際には、両活物質層34、44を重ね合わせるとともに正極シートの活物質層非形成部36と負極シートの活物質層非形成部46とが長手方向に沿う一方の端部と他方の端部に別々に配置されるように、電極シート30、40をややずらして重ね合わせる。この状態で計四枚のシート30,50,40,50を捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平形状の捲回電極体20が得られる。
そして、正極集電体32の正極活物質層非形成部36に内部正極端子37を、負極集電体42の該露出端部には内部負極端子47をそれぞれ超音波溶接、抵抗溶接等により接合し、上記扁平形状に形成された捲回電極体20の正極シート30または負極シート40と電気的に接続する。こうして得られた捲回電極体20を電池ケース10に収容した後、電解質を注入し、注入口を封止することによって、本実施形態のリチウム二次電池100を構築することができる。なお、上記電池ケース10の構造、大きさ、材料(例えば金属製またはラミネートフィルム製であり得る)等について特に制限はない。
 なお、正負極シート30、40間に使用される好適なセパレータシート50としては、多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、合成樹脂製(例えばポリエチレン等のポリオレフィン製)多孔質セパレータシートを好適に使用し得る。なお、電解質として固体電解質若しくはゲル状電解質を使用する場合には、セパレータが不要な場合(即ちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。
 電解質は、従来からリチウム二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等からなる群から選択された一種又は二種以上を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等のリチウム化合物(リチウム塩)を用いることができる。なお、非水電解液における支持塩の濃度は、従来のリチウム二次電池で使用される非水電解液と同様でよく、特に制限はない。適当なリチウム化合物(支持塩)を0.1~5mol/L程度の濃度で含有させた電解質を使用することができる。
 このようにして構築されたリチウム二次電池は、上述したように、内部抵抗の上昇が抑制された車両搭載用高出力電源として優れた電池特性(サイクル特性またはハイレート特性)、特に低温パルス充放電条件下において良好な低温サイクル特性を示すものであり得る。
 以下の試験例において、ここで開示されるリチウム二次電池(サンプル電池)を構築し、その性能評価を行った。ただし、本発明をかかる具体例に示すものに限定することを意図したものではない。
<試験例1>
 負極活物質の空隙率を一定にして、正極活物質の空隙率を変化させたリチウム二次電池を構築した。
 まず、リチウム二次電池用の負極(負極シート)を作製した。すなわち、負極活物質としてのグラファイトと、結着材としてのスチレンブタジエンゴム(SBR)、とカルボキシメチルセルロース(CMC)とを、これら材料の質量%比が98:1:1となるようにイオン交換水と混合して、負極活物質層形成用ペーストを調製した。そして、負極集電体としての厚み約10μmの銅箔の両面に、調製したペーストを塗布した。次いで、ペースト中の水分を乾燥させた後、ローラプレス機にてシート状に引き伸ばして負極活物質層の厚さを約80μm(両面)に成形し、負極シートを得た。こうして得られたリチウム二次電池用の負極は、負極活物質層の層密度が1.34g/cm、空隙率が39%、および単位面積当たりの空隙体積が3.0mL/cmであった。
 次に、リチウム二次電池用の正極(正極シート)を作製した。すなわち、正極活物質としてのリチウム複合酸化物(LiNi0.8Co0.2)粉末と、導電材としてのアセチレンブラックと、結着材としてのポリビニリデンフロライド(PVDF)とを、これら材料の質量%比が様々な比率になるようにN-メチルピロリドン(NMP)と混合して、正極活物質層形成用ペーストを調製した。かかるペーストを、正極集電体としての厚み約10μmのシート状のアルミニウム箔の両面に塗布し、ペースト中の水分を乾燥させた後、ローラプレス機にてシート状に引き伸ばして正極活物質層の厚さを約75μm(両面)に成形し、サンプルNo.1~8の正極シートを得た。こうして得られたサンプルNo.1~8のリチウム二次電池用の正極の正極活物質層の層密度(g/cm)、空隙率(%)、および単位面積当たりの空隙体積(mL/cm)を算出した。表1に、サンプルNo.1~8の各データを示す。
 上記作製した空隙率が一定の負極(負極シート)、および空隙率が異なるサンプルNo.1~8の正極(正極シート)をそれぞれ用いて、以下に示す手順で、図3に示すような、直径18mm、高さ65mm(18650型)の円筒型リチウム二次電池を構築した。すなわち、負極シートと正極シートとを2枚の厚さ25μmのセパレータとともに積層し、この積層シートを捲回して捲回電極体を作製した。この電極体を電解液とともに容器に収容し、容器の開口部を封止することにより、サンプルNo.1~8の異なる正極シートを用いた計8種類のリチウム二次電池(サンプル電池)を構築した。なお、電解液としては、体積比3:7のエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒に1mol/Lの濃度で支持塩LiPFを溶解したものを使用した。
[低温サイクル特性]
 次に、上記構築した各リチウム二次電池の出力特性を評価する指標として、温度条件-15℃でハイレートのパルス充放電によるサイクル試験をし、サイクル後の内部抵抗増加率を調べた。すなわち、-15℃の温度条件下にて、定電流定電圧(CC-CV)充電によって各電池をSOC60%の充電状態に調整した。その後、20Cで放電し、放電開始から10秒後の電圧を測定し、I-V特性グラフを作成した。このI-V特性グラフの傾きから、-15℃における初期内部抵抗値(mΩ)を算出した。
 そして、同様の条件で各電池をSOC60%に調整した後、-15℃の温度条件下にて、20Cで10秒間放電し、2Cで100秒間充電する短形波パルス充放電サイクルを1000サイクル繰り返した。そして、1000サイクル後の電池について、上記初期内部抵抗値の測定と同様にして内部抵抗値を測定し、次式:{(サイクル後IV抵抗値)/(初期IV抵抗値)}×100;により、上記パルス充放電サイクルの前後における内部抵抗値増加率(%)を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、正極活物質層における単位面積当たりの空隙体積(Sa)と負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、0.93(サンプルNo.4)、1.00(サンプルNo.5)、1.10(サンプルNo.2)、および1.03(サンプルNo.1)を示すリチウム二次電池は、抵抗増加率が1.25より小さく、低温条件下のハイレートのパルス充放電によるサイクル後でも、内部抵抗の上昇を抑制し得ることが確認された。
 他方、空隙体積比が上記サンプルよりも小さい、0.87(サンプルNo.3)、0.83(サンプルNo.8)、0.77(サンプルNo.7)、および0.70(サンプルNo.6)を示すリチウム二次電池は、抵抗増加率が大きかった。
 また、正活物質層の空隙率に着目すると、抵抗増加率が小さかったリチウム二次電池の正極活物質層の空隙率は35~39%であり、層密度は2.30~2.45g/cmであった。(なお、負極活物質層の空隙率は全て39%である。)
<試験例2>
 次に、正極活物質の空隙率を一定にして、負極活物質の空隙率を変化させたリチウム二次電池を構築した。
 まず、リチウム二次電池用の正極(正極シート)を作製した。すなわち、正極活物質としてのリチウム複合酸化物(LiNi0.8Co0.2)粉末と、導電材としてのアセチレンブラックと、結着材としてのポリビニリデンフロライド(PVDF)とを、これら材料の質量%比が87:10:3となるようN-メチルピロリドン(NMP)と混合して、正極活物質層形成用ペーストを調製した。かかるペーストを、正極集電体としての厚み約10μmのシート状のアルミニウム箔の両面に塗布し、ペースト中の水分を乾燥させた後、ローラプレス機にてシート状に引き伸ばして正極活物質層の厚さを約75μm(両面)に成形し、正極シートを得た。こうして得られたリチウム二次電池用の正極は、正極活物質層の層密度が2.45g/cm、空隙率が10%、および単位面積当たりの空隙体積が2.6mL/cmであった。
 次いで、リチウム二次電池用の負極(負極シート)を作製した。すなわち、負極活物質としてのグラファイトと、結着材としてのスチレンブタジエンゴム(SBR)と、カルボキシメチルセルロース(CMC)とを、これら材料の質量%比が98:1:1となるようにイオン交換水と混合して、負極活物質層形成用のペーストを調製した。そして、負極集電体としての厚み約10μmの銅箔の両面に負極活物質層の層密度が様々な値となるようにペーストを塗布した。次いで、ペースト中の水分を乾燥させた後、ローラプレス機にてシート状に引き伸ばして負極活物質層の厚さを約80μm(両面)に成形し、サンプルNo.9~13の負極シートを得た。こうして得られたサンプルNo.9~13のリチウム二次電池用の負極の負極活物質層の層密度(g/cm)、空隙率(%)、および単位面積当たりの空隙体積(mL/cm)を算出した。表2に、サンプルNo.9~13の各データを示す。
 上記作製した空隙率が一定の正極(正極シート)、および空隙率が異なるサンプルNo.9~13の負極(負極シート)をそれぞれ用いて、試験例1と同様の手順で、図3に示すような、直径18mm、高さ65mm(18650型)の計5種類の円筒型リチウム二次電池(サンプル電池)を構築した。
[低温サイクル特性]
 次に、上記構築した各リチウム二次電池の出力特性を評価する指標として、温度条件-15℃でパルス充放電によるサイクル試験をし、試験例1と同様の手順でサイクル後の内部抵抗増加率を調べた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、正極活物質層における単位面積当たりの空隙体積(Sa)と負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、1.05(サンプルNo.11)および1.32(サンプルNo.12)を示すリチウム二次電池は、抵抗増加率が1.25より小さく、低温条件下のパルス充放電によるサイクル後でも、内部抵抗の上昇を抑制し得ることが確認された。
 他方、空隙体積比が上記サンプルよりも小さかったサンプルNo.9およびサンプルNo.10、および空隙体積比が上記サンプルよりも大きかったサンプルNo.13では、抵抗増加率が大きかった。
 また、負活物質層の空隙率に着目すると、抵抗増加率が小さかったリチウム二次電池の負極活物質層の空隙率は30~35%であった。(なお、正極活物質層の空隙率は全て33%である。)
 表1および表2の空隙体積比と抵抗増加率との関係をグラフにしたものを図4に示す。図4は、横軸が正極活物質層における単位面積当たりの空隙体積(Sa)と負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)を示し、縦軸が抵抗増加率を示す。
 図4から明らかなように、空隙体積比が凡そ0.9~1.4を示すリチウム二次電池では、内部抵抗増加率が小さいことが確認される。
 以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。例えば、電極体構成材料や電解質が異なる種々の内容の電池であってもよい。また、該電池の大きさおよびその他の構成についても、用途(典型的には車載用)によって適切に変更することができる。
 本発明に係るリチウム二次電池は、上述したように優れた電池特性(サイクル特性またはハイレート特性)を有するため、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。したがって本発明は、図5に模式的に示すように、かかるリチウム二次電池(典型的には複数直列接続してなる組電池)100を電源として備える車両1(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供する。
 
 
 

Claims (9)

  1.  正極集電体の表面に形成された正極活物質を含む正極活物質層を有する正極と、負極集電体の表面に形成された負極活物質を含む負極活物質層を有する負極とを備える、リチウム二次電池であって、
     前記正極活物質は、少なくともリチウムと、ニッケル及び/又はコバルトとを構成元素の主体とするリチウム複合酸化物により構成されており、
     前記正極活物質層の空隙率は30%以上40%以下であり、且つ前記負極活物質層の空隙率は30%以上45%以下であり、
     ここで、前記正極活物質層における単位面積当たりの空隙体積(Sa)と前記負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、0.9≦(Sa/Sb)≦1.4を満たす、リチウム二次電池。
  2.  前記正極活物質を構成するリチウム複合酸化物は、以下の式:
     Li(Ni1-xCo)O   (1)
     (式(1)中のxは、0<x<0.5を満たす)
    で示される複合酸化物である、請求項1に記載のリチウム二次電池。
  3.  前記正極活物質層における単位面積当たりの空隙体積(Sa)と前記負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、1≦(Sa/Sb)≦1.1を満たす、請求項1または2に記載のリチウム二次電池。
  4.  前記正極活物質層の層密度は、2g/cm以上2.5g/cm以下である、請求項1~3のいずれかに記載のリチウム二次電池。
  5.  正極集電体の表面に形成された正極活物質を含む正極活物質層を有する正極と、負極集電体の表面に形成された負極活物質を含む負極活物質層を有する負極とを備えるリチウム二次電池を製造する方法であって、
     前記正極活物質として、少なくともリチウムと、ニッケル及び/又はコバルトとを構成元素の主体とするリチウム複合酸化物を使用して、前記正極活物質層の空隙率が30%以上40%以下になるように該活物質層を形成し、
     前記負極活物質層の空隙率が30%以上45%以下になるように該活物質層を形成し、
     ここで、前記正極活物質層における単位面積当たりの空隙体積(Sa)と前記負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、0.9≦(Sa/Sb)≦1.4を満たされるように正極活物質層および負極活物質層を形成する、製造方法。
  6.  前記正極活物質を構成するリチウム複合酸化物として、以下の式:
     Li(Ni1-xCo)O   (1)
     (式(1)中のxは、0<x<0.5を満たす)
    で示される複合酸化物を使用する、請求項5に記載の製造方法。
  7.  前記正極活物質層における単位面積当たりの空隙体積(Sa)と前記負極活物質層における単位面積当たりの空隙体積(Sb)との空隙体積比(Sa/Sb)が、1≦(Sa/Sb)≦1.1を満たされるように正極活物質層および負極活物質層を形成する、請求項5または6に記載の製造方法。
  8.  前記正極活物質層の層密度が2g/cm以上2.5g/cm以下になるように正極活物質層を形成する、請求項5~7のいずれかに記載の製造方法。
  9.  請求項1~4のいずれかに記載のリチウム二次電池または請求項5~8のいずれかに記載の製造方法により製造されたリチウム二次電池、を備える車両。
     
PCT/JP2009/066600 2009-09-25 2009-09-25 リチウム二次電池及びその製造方法 WO2011036759A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/066600 WO2011036759A1 (ja) 2009-09-25 2009-09-25 リチウム二次電池及びその製造方法
KR1020127007531A KR101366471B1 (ko) 2009-09-25 2009-09-25 리튬 2차 전지 및 그 제조 방법
CN2009801613132A CN102484290A (zh) 2009-09-25 2009-09-25 锂二次电池和其制造方法
US13/497,604 US20120321947A1 (en) 2009-09-25 2009-09-25 Lithium secondary battery and manufacturing method for same
JP2011532838A JP5229598B2 (ja) 2009-09-25 2009-09-25 リチウム二次電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066600 WO2011036759A1 (ja) 2009-09-25 2009-09-25 リチウム二次電池及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011036759A1 true WO2011036759A1 (ja) 2011-03-31

Family

ID=43795530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066600 WO2011036759A1 (ja) 2009-09-25 2009-09-25 リチウム二次電池及びその製造方法

Country Status (5)

Country Link
US (1) US20120321947A1 (ja)
JP (1) JP5229598B2 (ja)
KR (1) KR101366471B1 (ja)
CN (1) CN102484290A (ja)
WO (1) WO2011036759A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076996A1 (ja) * 2011-11-25 2013-05-30 パナソニック株式会社 リチウムイオン二次電池用負極およびその製造方法、ならびにリチウムイオン二次電池
WO2014103849A1 (en) * 2012-12-28 2014-07-03 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
CN104205466A (zh) * 2012-03-30 2014-12-10 丰田自动车株式会社 锂离子二次电池
KR101506452B1 (ko) * 2012-04-16 2015-03-30 주식회사 엘지화학 이차전지용 양극
KR101506451B1 (ko) 2012-04-16 2015-03-30 주식회사 엘지화학 이차전지용 음극
WO2015046468A1 (ja) * 2013-09-30 2015-04-02 日立化成株式会社 リチウムイオン二次電池
JPWO2013057826A1 (ja) * 2011-10-20 2015-04-02 トヨタ自動車株式会社 非水電解液二次電池およびその利用
JP2015156259A (ja) * 2014-02-19 2015-08-27 株式会社日本触媒 リチウムイオン二次電池
JP2015201442A (ja) * 2014-04-02 2015-11-12 トヨタ自動車株式会社 非水電解液二次電池
JP2017157571A (ja) * 2011-11-09 2017-09-07 Necエナジーデバイス株式会社 リチウムイオン二次電池用負極、その製造方法およびリチウムイオン二次電池
JP2018067465A (ja) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 負極の製造方法
WO2018084320A1 (ja) * 2016-11-07 2018-05-11 日産自動車株式会社 リチウムイオン電池用正極及びリチウムイオン電池
WO2018084319A1 (ja) * 2016-11-07 2018-05-11 日産自動車株式会社 リチウムイオン電池用負極及びリチウムイオン電池
US11024835B2 (en) 2016-11-07 2021-06-01 Nissan Motor Co., Ltd. Positive electrode for lithium ion battery and lithium ion battery
JP7401511B2 (ja) 2021-12-14 2023-12-19 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池および組電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143069B2 (ja) * 2016-11-07 2022-09-28 三洋化成工業株式会社 リチウムイオン電池用負極及びリチウムイオン電池
JP6776994B2 (ja) * 2017-04-18 2020-10-28 トヨタ自動車株式会社 全固体リチウムイオン二次電池の製造方法
CN111525099B (zh) * 2019-02-02 2021-08-06 宁德时代新能源科技股份有限公司 钠离子电池
WO2022266799A1 (zh) * 2021-06-21 2022-12-29 宁德新能源科技有限公司 电化学装置和电子装置
CN116802823A (zh) * 2021-11-30 2023-09-22 宁德新能源科技有限公司 电化学装置和电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090982A (ja) * 1998-07-14 2000-03-31 Denso Corp 非水電解質二次電池
JP2003331825A (ja) * 2002-05-16 2003-11-21 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2007109636A (ja) * 2005-09-14 2007-04-26 Nissan Motor Co Ltd 電池用電極
JP2007207535A (ja) * 2006-02-01 2007-08-16 Hitachi Vehicle Energy Ltd リチウムイオン二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3615491B2 (ja) * 2001-03-05 2005-02-02 松下電器産業株式会社 非水電解質二次電池およびその製造法
US20040121234A1 (en) * 2002-12-23 2004-06-24 3M Innovative Properties Company Cathode composition for rechargeable lithium battery
CN100338801C (zh) * 2003-05-13 2007-09-19 三菱化学株式会社 层状锂镍系复合氧化物粉末及其制造方法
WO2004102702A1 (ja) * 2003-05-13 2004-11-25 Mitsubishi Chemical Corporation 層状リチウムニッケル系複合酸化物粉体及びその製造方法
KR100612227B1 (ko) 2003-05-22 2006-08-11 삼성에스디아이 주식회사 리튬 설퍼 전지용 양극 및 이를 포함하는 리튬 설퍼 전지
GB2412484B (en) * 2004-07-27 2006-03-22 Intellikraft Ltd Improvements relating to electrode structures in batteries
US20060024579A1 (en) 2004-07-27 2006-02-02 Vladimir Kolosnitsyn Battery electrode structure and method for manufacture thereof
JP5192710B2 (ja) * 2006-06-30 2013-05-08 三井金属鉱業株式会社 非水電解液二次電池用負極
EP1978587B1 (en) * 2007-03-27 2011-06-22 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
JP5339766B2 (ja) * 2007-04-12 2013-11-13 パナソニック株式会社 非水電解質二次電池
WO2008153113A1 (en) * 2007-06-12 2008-12-18 Canon Kabushiki Kaisha Method of manufacturing membrane electrode assembly, method of manufacturing fuel cell, membrane electrode assembly, and fuel cell
US9083055B2 (en) * 2009-05-08 2015-07-14 Samsung Sdi Co., Ltd. Electrode with plural active material layers with different amounts of conductive material for rechargeable lithium battery and method for manufacturing the same and rechargeable lithium battery including the electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090982A (ja) * 1998-07-14 2000-03-31 Denso Corp 非水電解質二次電池
JP2003331825A (ja) * 2002-05-16 2003-11-21 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2007109636A (ja) * 2005-09-14 2007-04-26 Nissan Motor Co Ltd 電池用電極
JP2007207535A (ja) * 2006-02-01 2007-08-16 Hitachi Vehicle Energy Ltd リチウムイオン二次電池

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9219278B2 (en) 2011-10-20 2015-12-22 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and use thereof
JPWO2013057826A1 (ja) * 2011-10-20 2015-04-02 トヨタ自動車株式会社 非水電解液二次電池およびその利用
JP2017157571A (ja) * 2011-11-09 2017-09-07 Necエナジーデバイス株式会社 リチウムイオン二次電池用負極、その製造方法およびリチウムイオン二次電池
WO2013076996A1 (ja) * 2011-11-25 2013-05-30 パナソニック株式会社 リチウムイオン二次電池用負極およびその製造方法、ならびにリチウムイオン二次電池
US9362550B2 (en) 2011-11-25 2016-06-07 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for lithium ion secondary batteries and method for producing the negative electrode, and lithium ion secondary battery
JPWO2013076996A1 (ja) * 2011-11-25 2015-04-27 パナソニックIpマネジメント株式会社 リチウムイオン二次電池用負極およびその製造方法、ならびにリチウムイオン二次電池
CN104205466A (zh) * 2012-03-30 2014-12-10 丰田自动车株式会社 锂离子二次电池
DE112012006167B4 (de) 2012-03-30 2024-03-28 Toyota Jidosha Kabushiki Kaisha Lithium-Ionen-Sekundärbatterie
US9882207B2 (en) 2012-03-30 2018-01-30 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
CN107134562A (zh) * 2012-03-30 2017-09-05 丰田自动车株式会社 锂离子二次电池
KR101506451B1 (ko) 2012-04-16 2015-03-30 주식회사 엘지화학 이차전지용 음극
KR101506452B1 (ko) * 2012-04-16 2015-03-30 주식회사 엘지화학 이차전지용 양극
JP2014130717A (ja) * 2012-12-28 2014-07-10 Ricoh Co Ltd 非水電解液蓄電素子
WO2014103849A1 (en) * 2012-12-28 2014-07-03 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
WO2015046468A1 (ja) * 2013-09-30 2015-04-02 日立化成株式会社 リチウムイオン二次電池
JPWO2015046468A1 (ja) * 2013-09-30 2017-03-09 日立化成株式会社 リチウムイオン二次電池
JP2015156259A (ja) * 2014-02-19 2015-08-27 株式会社日本触媒 リチウムイオン二次電池
JP2015201442A (ja) * 2014-04-02 2015-11-12 トヨタ自動車株式会社 非水電解液二次電池
KR101846767B1 (ko) 2014-04-02 2018-04-06 도요타지도샤가부시키가이샤 비수 전해질 2차 전지
JP2018067465A (ja) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 負極の製造方法
JP7048205B2 (ja) 2016-10-19 2022-04-05 トヨタ自動車株式会社 負極の製造方法
WO2018084320A1 (ja) * 2016-11-07 2018-05-11 日産自動車株式会社 リチウムイオン電池用正極及びリチウムイオン電池
WO2018084319A1 (ja) * 2016-11-07 2018-05-11 日産自動車株式会社 リチウムイオン電池用負極及びリチウムイオン電池
US11024835B2 (en) 2016-11-07 2021-06-01 Nissan Motor Co., Ltd. Positive electrode for lithium ion battery and lithium ion battery
JP7401511B2 (ja) 2021-12-14 2023-12-19 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池および組電池

Also Published As

Publication number Publication date
KR20120079075A (ko) 2012-07-11
JPWO2011036759A1 (ja) 2013-02-14
US20120321947A1 (en) 2012-12-20
JP5229598B2 (ja) 2013-07-03
KR101366471B1 (ko) 2014-02-21
CN102484290A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5229598B2 (ja) リチウム二次電池及びその製造方法
US10522816B2 (en) Lithium secondary battery
JP5648869B2 (ja) 電池用電極およびその利用
JP5614600B2 (ja) リチウムイオン二次電池及びその製造方法
JP5773209B2 (ja) リチウム二次電池
JP4487220B1 (ja) リチウム二次電池用正極およびその製造方法
JP5158452B2 (ja) リチウム二次電池用正極とその利用
JP5382445B2 (ja) リチウムイオン二次電池
JP2011134670A (ja) リチウム二次電池用正極活物質
JP2011090876A (ja) リチウム二次電池および該電池の製造方法
JP2010282873A (ja) リチウム二次電池およびその製造方法
JP5527597B2 (ja) リチウム二次電池の製造方法
JP5585834B2 (ja) リチウムイオン二次電池
WO2011108119A1 (ja) リチウム二次電池および該電池に用いられるセパレータ
JP2011028898A (ja) リチウム二次電池用の正極とその製造方法
JP5605614B2 (ja) リチウム二次電池の製造方法
JP5510704B2 (ja) 二次電池および該電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161313.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849790

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011532838

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13497604

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127007531

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849790

Country of ref document: EP

Kind code of ref document: A1