WO2011030762A1 - 発泡性複合樹脂粒子、その製造方法、予備発泡粒子および発泡成形体 - Google Patents

発泡性複合樹脂粒子、その製造方法、予備発泡粒子および発泡成形体 Download PDF

Info

Publication number
WO2011030762A1
WO2011030762A1 PCT/JP2010/065339 JP2010065339W WO2011030762A1 WO 2011030762 A1 WO2011030762 A1 WO 2011030762A1 JP 2010065339 W JP2010065339 W JP 2010065339W WO 2011030762 A1 WO2011030762 A1 WO 2011030762A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite resin
resin particles
particles
weight
expanded
Prior art date
Application number
PCT/JP2010/065339
Other languages
English (en)
French (fr)
Inventor
正彦 小澤
恭孝 筒井
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to JP2011530839A priority Critical patent/JP5629689B2/ja
Publication of WO2011030762A1 publication Critical patent/WO2011030762A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene

Definitions

  • the present invention relates to an expandable composite resin particle (hereinafter, also referred to as an expandable composite resin particle) containing a styrene resin and an olefin resin as a resin component, a production method thereof, pre-expanded particles, and an expanded molded body. More specifically, the present invention relates to a foam in which the average bubble diameter of the bubble in contact with the surface layer after the pre-foaming and the bubble inside is greatly different and the aliphatic amide compound and the high-boiling point plasticizer are dispersed. The present invention relates to a conductive composite resin particle, a method for producing the same, pre-expanded particles, and an expanded molded body.
  • the curing step in manufacturing the expandable composite resin particles can be shortened or omitted, and a foam molded article having excellent crack resistance, moldability, etc. is manufactured. can do.
  • expandable polystyrene resin particles imparted with foaming performance By impregnating polystyrene resin particles with a volatile foaming agent such as propane, butane, or pentane, expandable polystyrene resin particles imparted with foaming performance can be obtained. Since the expandable polystyrene resin particles are excellent in retention of the foaming agent, they can be stored at room temperature or in a refrigerated state. Therefore, it is possible to heat the expandable polystyrene resin particles at appropriate times to form pre-expanded particles, which are filled in a mold of a molding machine and heated to form a foamed molded product.
  • a volatile foaming agent such as propane, butane, or pentane
  • this foamed molded article is excellent in heat insulation, buffer and lightness, it is widely used as a food container such as a fish box, a shock absorber for home appliances, a heat insulator for building materials, and the like.
  • this foamed molded product has a problem that it is easily broken by an impact or the like, and there has been a limit to expansion of applications.
  • Patent Document 1 proposes expandable composite resin particles aiming to make both properties compatible by complementing the disadvantages of polystyrene resin and polyolefin resin.
  • foamable composite resin particles capable of secondary foaming in which the surface layer is made of a polyolefin resin and the core is made of a polystyrene resin have been proposed.
  • the foamable composite resin particles are usually subjected to a curing process for a long time before preliminary foaming.
  • the foamable composite resin particles are not subjected to a curing process, it is not possible to obtain foamable composite resin particles that can be foamed stably up to a predetermined multiple, and as a result, a foamed molded article having excellent crack resistance and moldability can be obtained. I can't get it.
  • the foamable composite resin particles contain many non-uniform foamable composite resin particles in the system.
  • the pre-expanded particles obtained by pre-expanding the expandable composite resin particles contain many pre-expanded particles having a core due to the fact that the system is not uniformly expanded. is there. Therefore, in order to avoid the above-mentioned problem and make the inside of the expandable composite resin particles uniform, a curing process has been conventionally incorporated in the manufacturing process of the expandable composite resin particles.
  • the curing step is usually performed by applying the foamable composite resin particles in an environment of 70 ° C. or less for a long time (12 hours or more), so that the desired foamable composite resin particles can be obtained.
  • the foamable composite resin particles in an environment of 70 ° C. or less for a long time (12 hours or more), so that the desired foamable composite resin particles can be obtained.
  • it is recognized as an essential process, it is not a preferable process from the viewpoint of production cost.
  • Patent Documents 2 to 7 various methods for producing expandable resin particles that can shorten or omit the curing period have been proposed.
  • the present inventors performed a supplementary test according to Patent Document 1.
  • a composite resin particle in which polystyrene resin particles are coated with a polyolefin resin is impregnated with a foaming agent and immediately subjected to preliminary foaming, the polystyrene resin only foams greatly and the polyolefin resin Foamed slightly or not.
  • the interface between the polyolefin-based resin and the polystyrene-based resin on the surface is separated during the foaming process to obtain the desired foamed molded article. I could't.
  • the dissipation of the foaming agent from the surface layer was remarkable, and it was difficult to store the foamed composite resin particles in the state. Therefore, it is assumed that the expandable composite resin particles are not implemented on an industrial scale.
  • Patent Documents 2 to 7 disclose a method for producing expandable resin particles that can shorten or omit the curing period by suspension polymerization of a polymerizable monomer containing various aliphatic amide compounds in an aqueous medium. ing. In order to confirm the technical effect of the aliphatic amide compound, the present inventors conducted additional tests according to Patent Documents 2 to 7.
  • expandable composite resin particles containing a polyolefin resin, a polystyrene resin and a foaming agent
  • the expandable composite resin particles include 120 to 560 parts by weight of the polystyrene resin with respect to 100 parts by weight of the polyolefin resin, and pre-expanded particles obtained by pre-expanding the expandable composite resin particles from the surface.
  • the average bubble diameter A of the bubbles in contact with the skin layer of the pre-expanded particles is a point half the radius of the pre-expanded particles.
  • an expandable composite resin particle that forms the pre-expanded particle having a value A / B of 2 to 6 divided by the average cell diameter B of bubbles passing through the resin, and that simultaneously contains an aliphatic amide compound and a high-boiling point plasticizer. Is done.
  • pre-expanded particles containing a polyolefin resin, a polystyrene resin and a foaming agent
  • the pre-expanded particles contain 120 to 560 parts by weight of the polystyrene-based resin with respect to 100 parts by weight of the polyolefin-based resin, and the bulk multiple of the pre-expanded particles is 10 to 60 times from the surface of the pre-expanded particles.
  • the average bubble diameter A of the bubbles in contact with the skin layer of the pre-expanded particles was set to a point half the radius of the pre-expanded particles.
  • a value A / B divided by the average bubble diameter B of the passing bubbles is 2 to 6, and the pre-expanded particles contain the aliphatic amide compound and the high boiling point plasticizer at the same time.
  • a method for producing the foamable composite resin particles the step of producing composite resin particles by polymerizing a styrene monomer in the presence of the polyolefin resin, the styrene monomer.
  • a process for producing expandable composite resin particles is provided.
  • the expandable composite resin particles of the present invention can improve crack resistance, moldability, and the like, which have been problems with foamed molded products, and can easily shorten or omit the curing process.
  • the curing process can be shortened or omitted more easily.
  • the curing process can be shortened or omitted more easily.
  • the shortening or omission of the curing process can also be facilitated by using any one of the specific glycerin fatty acid ester and adipic acid ester as the high boiling point plasticizer.
  • the high-boiling plasticizer has a specific solubility parameter, the curing process can be shortened or omitted more easily.
  • the curing process can be shortened or omitted more easily.
  • pentane as a foaming agent, expandable composite resin particles having excellent storage stability in addition to the technical effects can be obtained.
  • the foamable composite resin particles contain a colorant at a specific ratio, it is possible to obtain a foamed molded article having excellent crack resistance and moldability and having a beautiful appearance.
  • the expandable composite resin particles of the present invention it is possible to provide pre-expanded particles, which are intermediates of the above-mentioned foamed molded product, in which the average bubble diameters of the bubbles in contact with the surface layer and the internal bubbles are greatly different. Further, by molding the pre-expanded particles in a mold, it is possible to obtain a foamed molded article having a desired multiple and excellent in crack resistance, moldability and the like.
  • the curing process of the expandable composite resin particles can be shortened or omitted.
  • the process of drying the dispersion medium is not required, and the intended foamable composite resin particles can be easily obtained. It is possible to manufacture the foamed composite resin particles more uniformly.
  • the step of impregnating the foaming agent can more easily impregnate the composite resin particles with the foaming agent or the like by circulating the foaming agent in the container holding the composite resin particles. it can.
  • the foaming agent is pentane
  • the time required for the impregnation temperature to reach a constant temperature, the temperature at which the foaming agent is impregnated, and the content of the foaming agent in the foamable composite resin particles are preferably set.
  • Time required for the impregnation temperature to reach a constant temperature when the content of the foaming agent is changed (hereinafter also referred to as the constant temperature time) X minutes and the temperature at which the blowing agent is impregnated (hereinafter also referred to as the impregnation temperature) Y ° C. It is the graph which plotted the formula which shows the relationship. It is a figure explaining the measuring method of the average bubble diameter A and B of a pre-expanded particle.
  • 3 is a schematic view of a foaming agent impregnation apparatus used in Example 2.
  • FIG. 4 is an electron micrograph of a cut surface of pre-expanded particles of Example 4.
  • FIG. 4 is an electron micrograph of a cut surface of pre-expanded particles of Example 2.
  • FIG. 6 is an electron micrograph of a cut surface of pre-expanded particles of Comparative Example 9.
  • 4 is an electron micrograph of a cut surface of pre-expanded particles of Comparative Example 10. It is a graph which shows the analytical curve for measuring the polystyrene-type resin ratio of the pre-expanded particle of an Example and a comparative example. It is an electron micrograph of the section of cored pre-expanded particles (comparative example 3). It is a figure for demonstrating the measuring method of the average bubble diameter of the pre-expanded particle in a cored evaluation method.
  • the expandable composite resin particles of the present invention are expandable composite resin particles containing a polyolefin resin, a polystyrene resin and a foaming agent
  • the expandable composite resin particles include 120 to 560 parts by weight of the polystyrene resin with respect to 100 parts by weight of the polyolefin resin, and pre-expanded particles obtained by pre-expanding the expandable composite resin particles from the surface.
  • the average bubble diameter A of the bubbles in contact with the skin layer of the pre-expanded particles is a point half the radius of the pre-expanded particles.
  • Expandable composite resin particles that form the pre-expanded particles having a value A / B of 2 to 6 divided by the average cell diameter B of the bubbles passing through the same, and that simultaneously contain an aliphatic amide compound and a high-boiling point plasticizer. .
  • the method for measuring the average bubble diameter will be described in detail in the Examples section.
  • the foamable composite resin particles contain polyolefin resin and polystyrene resin as resin components, foam molding having excellent moldability, crack resistance, etc. from the foamable composite resin particles that are the subject of the present invention
  • the body can be manufactured.
  • the expandable composite resin particles of the present invention contain an aliphatic amide compound and a high-boiling plasticizer, the curing process during the manufacturing process of the expandable composite resin particles can be shortened or omitted.
  • the expandable composite resin particles of the present invention will be described below. It does not specifically limit as polyolefin resin, A well-known resin can be used.
  • the polyolefin resin may be crosslinked.
  • polyethylene resins such as branched low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, and cross-linked products of these polymers
  • polypropylene resins such as propylene homopolymer, ethylene-propylene random copolymer, propylene-1-butene copolymer, and ethylene-propylene-butene random copolymer.
  • low density is preferably 0.91 ⁇ 0.94g / cm 3, more preferably 0.91 ⁇ 0.93g / cm 3.
  • the high density is preferably 0.95 to 0.97 g / cm 3 , and more preferably 0.95 to 0.96 g / cm 3 .
  • the medium density is an intermediate density between the low density and the high density.
  • the polystyrene resin is not particularly limited, and can be obtained by polymerizing a styrene monomer.
  • a styrene monomer any of styrene and substituted styrene (substituent includes lower alkyl, halogen atom (especially chlorine atom) and the like) can be used.
  • substituted styrene include chlorostyrenes, vinyltoluenes such as p-methylstyrene, and ⁇ -methylstyrene. Of these, styrene is generally preferred.
  • the styrenic monomer is a mixture of styrene and substituted styrene, a small amount of other monomers copolymerizable with styrene (for example, acrylonitrile, alkyl methacrylate (about 1 to 8 carbon atoms in the alkyl portion), maleic acid, and the like. Mixtures with mono to dialkyl (alkyl group having about 1 to 4 carbon atoms), divinylbenzene, ethylene glycol mono to diacrylic acid or methacrylic acid ester, maleic anhydride, N-phenylmaleide and the like can be used. In these mixtures, styrene preferably occupies a dominant amount (for example, 50% by weight or more). Further, other vinyl monomers may be used in combination as long as the properties of the expandable composite resin particles, the pre-expanded particles and the foamed molded product, the production process, and the like are not affected.
  • the polystyrene resin is contained in the foamable composite resin particles in the range of 120 to 560 parts by weight with respect to 100 parts by weight of the polyolefin resin particles.
  • the blending amount of the styrene monomer as the raw material of the polystyrene resin with respect to 100 parts by weight of the polyolefin resin particles is also 120 to 560 parts by weight, the same as that of the polystyrene resin. If the amount of the styrene monomer used is more than 560 parts by weight, the polystyrene resin particles may not be impregnated and the polystyrene resin single particles may be generated.
  • the crack resistance of the foamed molded product is lowered, but also the chemical resistance may be lowered.
  • the amount is less than 120 parts by weight, the ability to hold the foaming agent of the foamable composite resin particles is lowered, and the rigidity of the foamed molded product may be lowered.
  • Other resins may be used in combination as long as the properties of the expandable composite resin particles, pre-expanded particles and foamed molded product, the production process, and the like are not affected.
  • the foaming agent various known volatile foaming agents can be used.
  • pentane examples include normal pentane, isopentane alone or as a mixture, industrial pentane, and petroleum ether.
  • a small amount of butane, isobutane, cyclohexane, cyclopentane, hexane or the like may be used in combination.
  • the pentane content is preferably 80% by weight or more. Since pentane has a higher boiling point than butane which has been used as a conventional foaming agent, dissipation of the foaming agent from the foamable composite resin particles can be suppressed. In some cases, it is possible to stably improve crack resistance, moldability, and the like. In addition, the storage stability of the expandable composite resin particles may be excellent.
  • the content of the foaming agent is preferably 8.0 to 12.0% by weight, and more preferably 8.5 to 11.5% by weight with respect to the foamable composite resin particles.
  • the content of the foaming agent is lower than 8.0% by weight, the foamability of the foamable composite resin particles may be lowered.
  • foamability is lowered, it becomes difficult to obtain low-bulk density pre-expanded particles having a high bulk ratio, and the foam-molded product obtained by molding the pre-expanded particles in a mold has a reduced fusion rate and is resistant to cracking. May decrease.
  • pre-expanded particles having a low bulk density and a bulk ratio higher than 60 times are obtained.
  • the bubble size in the pre-expanded particles tends to be excessive, and the moldability and the strength characteristics such as compression and bending of the obtained foamed molded product may be reduced.
  • the bulk ratio may not easily change during the production of the foamed molded product.
  • an aliphatic amide compound having an amide bond is contained in the foamable composite resin particles.
  • the aliphatic amide compound is used to make the diameter of the cells contained in the pre-foamed particles after the pre-foaming uniform and dense without subjecting the foamable composite resin particles to a curing process.
  • an unimpregnated portion called a core is easily formed at the center of the expandable composite resin particles.
  • a foamed part and an unexpanded part are mixed in one pre-expanded particle, and the foaming molding obtained from such a pre-expanded particle may not be provided with desired crack resistance, moldability, etc.
  • the aliphatic amide compound a known aliphatic amide compound can be used as long as the cell can be formed.
  • the aliphatic amide compound has the general formula (I): R 1 —CO—NH— (CH 2 ) m —NH—CO—R 2 (I) (Wherein R 1 and R 2 are each an alkyl or alkenyl group having 7 to 23 carbon atoms, and m is 1 to 6)
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each preferably a linear or branched alkyl group or alkenyl group having 12 to 18 carbon atoms. As long as the curing process aimed at by the present invention can be shortened or omitted, any substituent may be included.
  • R 6 may be a hydrogen atom.
  • M and n are each preferably 1 to 4.
  • aliphatic amide compound examples include fatty acid bisamides such as methylene bis lauric acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, hexamethylene bis palmitic acid amide, and ethylene bis oleic acid amide; N, N′— Aliphatic carboxylic acid diamides such as dioleyl adipic acid amide, N, N′-distearyl adipic acid amide, N, N′-dilauryl adipic acid amide; N-lauryl stearic acid amide, N-palmityl stearic acid amide, Examples thereof include aliphatic monoamides such as N-oleyl stearamide, N-stearyl stearamide, N-behenyl stearamide, and stearamide. Moreover, an aliphatic amide compound may be used individually or may use 2 or more types together.
  • ethylene bis stearic acid amide ethylene bis oleic acid amide and stearic acid amide as the aliphatic amide compound.
  • the aliphatic amide compound is usually preferably contained in a proportion of 0.08 to 1.0% by weight, preferably 0.1 to 0.9% by weight, based on the foamable composite resin particles. More preferably. When the aliphatic amide compound is contained in a proportion of less than 0.08% by weight with respect to the expandable composite resin particles, a desired cell forming effect may not be obtained. On the other hand, when the aliphatic amide compound is contained in a proportion of more than 1.0% by weight based on the foamable composite resin particles, suspension stability during polymerization, moldability of the foamed molded product, and the like may be impaired. .
  • the amount of the aliphatic amide compound in the expandable composite resin particles can be quantified by a GCMS-SIM method after subjecting the expandable composite resin particles to Soxhlet extraction.
  • the high boiling point plasticizer preferably has a solubility parameter (also referred to as SP value in the present invention) of 8.5 to 10.0, more preferably 8.5 to 9.5. .
  • SP value is in the range of 8.5 to 10.0, higher compatibility between the high-boiling plasticizer and the foaming agent and the aliphatic amide compound can be expected. As a result, the curing process can be further shortened or It can be omitted.
  • the boiling point of the high-boiling plasticizer is preferably 150 to 400 ° C., more preferably 200 to 350 ° C.
  • the boiling point of the high-boiling plasticizer is lower than 150 ° C., volatilization or scattering of the high-boiling plasticizer may not be prevented during either the polymerization process or the impregnation process.
  • the boiling point of the high boiling point plasticizer is higher than 400 ° C., the curing process may not be shortened or omitted from the viewpoint of compatibility with the aliphatic amide compound.
  • the high boiling point plasticizer is used to uniformly disperse the aliphatic amide compound in the foamable composite resin particles.
  • foamable composite resin particles are produced without using high-boiling plasticizers, aliphatic amide compounds often do not exhibit solubility in foaming agents and the like and are not uniformly dispersed in the foamed composite resin particles. It is guessed. As a result, the technical effect possessed by the aliphatic amide compound cannot be sufficiently obtained, and a curing process is required.
  • the high-boiling point plasticizer that is compatible with the aliphatic amide compound since the high-boiling point plasticizer that is compatible with the aliphatic amide compound is used in combination, the aliphatic amide compound and the high-boiling point plasticizer are present in the system in a uniformly dispersed state even after the polymerization is completed. To do.
  • the high boiling point plasticizer since the high boiling point plasticizer is compatible with the foaming agent, the aliphatic amide compound can be more uniformly dispersed in the foamable composite resin particles even after the subsequent impregnation step of the foaming agent. As a result, it is considered that the conventional curing process can be shortened or omitted.
  • a known high-boiling plasticizer can be used as long as the curing process can be shortened or omitted compared to the prior art.
  • high-boiling plasticizers include dibutyl adipate, diisononyl adipate, dioctyl adipate, diisodecyl adipate, diisobutyl adipate for adipates; dioctyl phthalate, dibutyl phthalate, phthalate for phthalates Dimethyl, diallyl phthalate, diisobutyl phthalate, dihexyl phthalate and the like; dibutyl sebacate for sebacic acid esters; monopalmitate, glycerin monobehenate, glycerin mono12-hydroxystearate, glycerin monooleate for sebacic acid esters, Monoglycerides such as glycerin monocaprylate, glycerin monocaprate,
  • a high boiling point plasticizer may be used independently or may use 2 or more types together.
  • either glycerin fatty acid ester or adipic acid ester is preferable as the high boiling point plasticizer.
  • the high-boiling plasticizer is usually preferably contained in a proportion of 0.2 to 2.0% by weight, preferably 0.3 to 1.5% by weight, based on the foamable composite resin particles. More preferably. If the plasticizer is contained in a proportion of less than 0.2% by weight with respect to the expandable composite resin particles, the desired curing process may not be shortened or omitted. On the other hand, when the high-boiling plasticizer is contained in a proportion of more than 2.0% by weight with respect to the expandable composite resin particles, problems such as unstable dimensions of the obtained foamed molded product may be caused.
  • the amount of the high boiling point plasticizer in the expandable composite resin particles can be quantified by gas chromatography analysis of the expandable composite resin particles. The quantification can also be performed by liquid chromatography analysis or the like.
  • the foamable composite resin particle of the present invention contains a colorant
  • a foamed molded article having a more beautiful appearance can be obtained.
  • Any known organic dyes, organic pigments, inorganic dyes, inorganic pigments and the like can be used as the colorant as long as they do not affect the desired physical properties.
  • black colorants such as carbon black, copper oxide, manganese dioxide, aniline black, furnace black; Yellow colorants such as yellow lead, zinc yellow, cadmium yellow, yellow iron oxide, mineral fast yellow; Orange colorants such as red yellow lead, molybdenum orange, permanent orange GTR, pyrazolone orange, vulcan orange, etc .; Red colorants such as bengara, cadmium red, red lead, mercury sulfide, cadmium; Purple colorants such as manganese purple, fast violet B, methyl violet lake, etc .; Blue colorants such as bitumen, cobalt blue, alkali blue lake, Victoria blue lake, phthalocyanine blue; Green colorants such as chrome green, chromium oxide, pigment green B, micalite green lake; Examples thereof include white colorants such as zinc white, titanium oxide, antimony white, and zinc sulfide.
  • Yellow colorants such as yellow lead, zinc yellow, cadmium yellow, yellow iron oxide, mineral fast yellow
  • Orange colorants such as red yellow
  • the colorant is contained in an amount of preferably 0.01 to 2.5% by weight, more preferably 0.02 to 0.25% by weight, based on the foamable composite resin particles. If the colorant is less than 0.01% by weight with respect to the foamable composite resin particles, sufficient colorability may not be obtained. On the other hand, if the colorant is more than 2.5% by weight, the colorant is not sufficient. Color unevenness due to non-dispersion may be a problem.
  • the colorant can be used alone or in combination of two or more different colors. Moreover, even if it is the same color, 2 or more types can also be used together.
  • the foamable composite resin particles and the following foamed molded article in addition to the oil agent, powder, fluorine compound, resin, surfactant, sticky agent, flame retardant , Flame retardant aids, preservatives, fragrances, UV protection agents (including organic and inorganic, may be any of UV-A and B), salts, solvents, antioxidants, chelating agents
  • UV protection agents including organic and inorganic, may be any of UV-A and B
  • salts including organic and inorganic, may be any of UV-A and B
  • solvents including organic and inorganic, may be any of UV-A and B
  • the expandable composite resin particles of the present invention can be obtained by impregnating and polymerizing a styrene monomer in a polyolefin resin particle to produce a polystyrene resin.
  • the polyolefin resin particles can be obtained by a known method.
  • polyolefin resin particles can be produced by first melt-extruding a polyolefin resin using an extruder and then granulating it by underwater cutting, strand cutting, or the like.
  • the shape of the polyolefin resin to be used is, for example, a true sphere, an oval sphere (egg), a cylinder, a prism, a pellet, or a granular.
  • the polyolefin resin particles are also referred to as micropellets.
  • the micropellets are dispersed in an aqueous medium in a polymerization vessel, and polymerization is performed while impregnating the styrenic monomer into the micropellets.
  • aqueous medium include water and a mixed medium of water and a water-soluble solvent (for example, alcohol).
  • the polyolefin resin particles are preferably impregnated with the styrene monomer while polymerizing.
  • polymerizing after making it impregnate superposition
  • the styrene monomer not impregnated in the polyolefin resin particles may be polymerized alone to produce a large amount of fine particle polystyrene resin particles.
  • the polyolefin resin particles are impregnated and polymerized with a styrene monomer to produce foamable composite resin particles in which the average bubble diameter of the bubbles in contact with the surface layer after the pre-foaming and the internal bubbles are greatly different. be able to. As a result, a foamed molded article having excellent crack resistance, moldability, etc. can be produced.
  • An oil-soluble radical polymerization initiator can be used for the polymerization of the styrene monomer.
  • a polymerization initiator widely used for the polymerization of styrene monomers can be used.
  • oil-soluble radical polymerization initiators may be used alone or in combination of two or more
  • Various methods can be used as a method of adding the polymerization initiator to the aqueous medium in the polymerization vessel. For example, (1) A method in which a polymerization initiator is dissolved and contained in a styrene monomer in a container different from the polymerization container, and the styrene monomer is supplied into the polymerization container. (2) A solution is prepared by dissolving a polymerization initiator in a part of a styrene monomer, a solvent such as isoparaffin or a plasticizer.
  • the amount of the polymerization initiator used is usually preferably 0.02 to 2.00% by weight of the total amount of styrene monomer used.
  • the temperature of the aqueous medium when the styrene monomer is polymerized in the micropellets is not particularly limited, but is preferably in the range of ⁇ 30 to + 20 ° C. of the melting point of the polyolefin resin to be used. More specifically, 70 to 140 ° C. is preferable, and 80 to 130 ° C. is more preferable.
  • the temperature of the aqueous medium may be a constant temperature from the start to the end of the polymerization of the styrenic monomer, or may be increased stepwise. When increasing the temperature of the aqueous medium, it is preferable to increase it at a rate of temperature rise of 0.1 to 2 ° C./min.
  • the polymerization conversion rate can be measured with a monitor in the polymerization system using gas chromatography of the reaction mixture.
  • the aliphatic amide compound and the high-boiling plasticizer when added to the polymerization system, they may be added to the polymerization system as appropriate, or may be added in several times. You may add after making it melt
  • the shape and structure of the polymerization vessel that can be used in the present invention are not particularly limited as long as it is conventionally used for suspension polymerization of styrene monomers.
  • the shape of the stirring blades there is no particular limitation on the shape of the stirring blades.
  • paddle blades such as V-type paddle blades, fiddler blades, inclined paddle blades, flat paddle blades, pull margin blades, turbine blades, fan turbine blades, etc.
  • Turbine blades, and propeller blades such as marine propeller blades.
  • the stirring blade may be a single-stage blade or a multi-stage blade.
  • a baffle may be provided in the polymerization container.
  • crosslinking when using particles made of a crosslinked polyolefin resin, crosslinking may be performed in advance before impregnating the styrene monomer, or during the impregnation and polymerization of the styrene monomer in the micropellet. Or after impregnating and polymerizing a styrenic monomer in a micropellet.
  • crosslinking agent used for crosslinking the polyolefin resin examples include 2,2-di-t-butylperoxybutane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxy. An organic peroxide such as hexane may be mentioned.
  • a crosslinking agent may be individual or may be used together 2 or more types. The amount of the crosslinking agent used is usually preferably 0.05 to 1.00% by weight based on the polyolefin resin particles (micropellets).
  • a method for adding a crosslinking agent for example, a method in which a crosslinking agent is directly added to a polyolefin resin, a method in which a crosslinking agent is dissolved in a solvent, a plasticizer, or a styrene monomer, and a crosslinking agent is dispersed in water.
  • a method of adding after adding them for example, a method of adding after adding them.
  • the method of adding after dissolving a crosslinking agent in a styrene-type monomer is preferable.
  • the impregnation with the foaming agent is performed by bringing the foaming agent into contact with the composite resin particles in the presence of 50 parts by weight or more of the foaming agent with respect to 100 parts by weight of the composite resin particles and in the absence of the dispersion medium.
  • a dispersion medium such as water that is usually used in the foaming agent impregnation step is not used, the composite resin particles can be effectively impregnated with the foaming agent, and an aqueous medium drying step is required. It is also effective from the standpoint of manufacturing cost.
  • High-boiling plasticizers have excellent compatibility with aliphatic amide compounds and foaming agents, so when impregnating foaming agents into composite resin particles, further homogenize aliphatic amide compounds within the foamable composite resin particles. As a result, the curing process can be further shortened and omitted.
  • the foaming agent is impregnated after the impregnation of the styrene monomer and the polymerization.
  • the impregnation with the foaming agent is performed in the presence of 50 parts by weight or more of the foaming agent with respect to 100 parts by weight of the composite resin particles. This corresponds to impregnating the composite resin particles with the foaming agent by contacting or immersing the composite resin particles in an excessive amount of the foaming agent.
  • the impregnation method include a method of mixing a foaming agent and composite resin particles, a method of circulating the foaming agent in a container holding the composite resin particles, and the like.
  • the foaming agent supply tank for storing the foaming agent, and the temperature of the foaming agent from the foaming agent supply tank are controlled (temperature increase and constant temperature).
  • a foaming agent to the impregnation tank from a foaming agent supply tank or a foaming agent supply tank.
  • a circulation type impregnation apparatus equipped with a circulation pump that enables the foaming agent recovered from the impregnation tank to be introduced into the foaming agent supply tank can be used.
  • This method is effective in that the contact opportunity of the composite resin particles and the foaming agent in the impregnation tank and the temperature in the impregnation tank can be made uniform, and the foaming agent can be recovered and reused after the impregnation is completed. .
  • FIG. 1 shows the result of plotting an equation showing the relationship between the impregnation temperature Y and the constant temperature time X when the foaming agent content x is 8.0, 10, 11, and 12.
  • means 8.0
  • means 10, ⁇ means 11, and ⁇ means actually measured value.
  • the above equation and the actual measurement value coincide with each other with high accuracy.
  • expandable composite resin particles having an average particle diameter of preferably 800 to 2400 ⁇ m, more preferably 1200 to 2000 ⁇ m are obtained.
  • the average particle diameter of the foamable composite resin particles is larger than 2400 ⁇ m, the appearance of the obtained foamed molded product may not be beautiful.
  • the average particle diameter of the foamable composite resin particles is smaller than 800 ⁇ m, it may not be possible to produce a foamed molded article having a desired multiple.
  • the foaming agent is impregnated at a predetermined temperature for a predetermined time
  • the foaming agent is removed, and the foamed composite resin particles are filled again in a sealed container, and the curing process is performed for about 12 hours or more in an environment of 70 ° C.
  • the expandable composite resin particles obtained after the impregnation step are considered to contain a foaming agent, an aliphatic amide compound and a high-boiling plasticizer uniformly in the system. Can be omitted.
  • the process time may be 3 hours or less. Therefore, the production process of the present invention can improve the production process of the expandable composite resin particles from the viewpoint of time and economy.
  • Pre-expanded particles can be obtained by heating the expandable composite resin particles impregnated with the foaming agent using a heating medium such as water vapor and pre-expanding to a predetermined bulk density, if necessary.
  • the bulk expansion ratio of the pre-expanded particles of the present invention is 10 to 60 times (bulk density 0.017 to 0.100 g / cm 3 ), preferably 15 to 50 times (bulk density 0.020 to 0.067 g / cm 3 ). It is.
  • the bulk multiple is larger than 60 times, the crack resistance of the obtained foamed molded product may be lowered.
  • the weight of the obtained foamed molded product may increase.
  • the average bubble diameter A (hereinafter referred to as the bubble diameter) of the bubbles in contact with the skin layer of the pre-foamed particle Value A / B (hereinafter referred to as value A /), which is obtained by dividing the average bubble diameter B by the average bubble diameter B (hereinafter also referred to as average bubble diameter B) passing through half the radius of the pre-expanded particles. (Also referred to as B) becomes 2-6.
  • the value A / B is preferably 2 to 5.
  • the foamed molded product obtained from the pre-expanded particles may not have sufficient crack resistance.
  • the foamed molded product obtained from the pre-expanded particles may not obtain a sufficient expansion ratio, and the appearance may not be beautiful.
  • the expandable composite resin particles of the present invention uniformly contain an aliphatic amide compound and a high boiling point plasticizer in the system, there are very few pre-expanded particles having a cored state. Therefore, problems such as poor appearance of foamed molded products and insufficient crack resistance, which are recognized in the prior art, are not recognized in the present invention.
  • pre-expanded particles are filled into a mold of a molding machine, heated and subjected to secondary foaming, and the pre-expanded particles are fused and integrated to obtain a foam-molded article having a desired shape.
  • a molding machine there can be used an EPS molding machine or the like used when producing a foam molded body from polystyrene resin pre-foamed particles.
  • the expandable composite resin particles of the present invention contain a polyolefin resin such as a polyethylene resin, a foam molded article having good crack resistance can be obtained.
  • the crack resistance of the foamed molded product can be evaluated by measuring the falling ball impact strength.
  • a foamed molded article having sufficient crack resistance when the bulk magnification is 30 times, a foamed molded article having sufficient crack resistance can be obtained by having a falling ball impact strength of 40 cm or more.
  • the falling ball impact strength of the foam molded article is lower than 40 cm, the crack resistance of the foam molded article is not sufficient, and the foam molded article may be easily broken by an impact or the like.
  • the bulk multiple when the bulk multiple is 40 times, it is possible to obtain a foamed molded article having sufficient crack resistance by having a falling ball impact strength of 30 cm or more.
  • the bulk multiple is 50 times, 20 cm or more By having the falling ball impact strength, a foamed molded article having sufficient crack resistance can be obtained.
  • the foam-molded article obtained in the present invention has smoothness (nozzle) with few pinholes (dents) on the surface of the foam-molded article, that is, moldability. It is extremely excellent.
  • the obtained foamed molded product can be used for applications such as cushioning materials (cushion materials) for home appliances, electronic parts, various industrial materials, food containers and the like.
  • Pre-foaming conditions 10-15kg of foamable composite resin particles are put into a normal pressure pre-foaming machine (Sekisui Koki Co., Ltd. SKK-70) preheated with steam, and air is introduced while stirring at a setting of about 0.02 MPa while stirring. Is also supplied and foamed to a predetermined bulk density (bulk multiple) in about 2 to 3 minutes.
  • ⁇ In-mold molding conditions The pre-expanded particles are filled in a mold of a molding machine, heated and cooled under the following conditions, and then the molded foam is removed from the mold.
  • Molding machine ACE-3SP manufactured by Sekisui Koki Co., Ltd. Mold dimension: 300mm (width) x 400mm (length) x 50mm (thickness) Molding conditions Mold heating: 5 seconds One side heating: 10 seconds Reverse one side heating: 5 seconds Double-side heating: 20 seconds Water cooling: 40 seconds Vacuum cooling: Until the maximum surface pressure becomes 0.01 kgf / cm 2 or less Set steam pressure: 0 .6 to 1.0 kgf / cm 2
  • Polymerization conversion rate (% by weight) 100 ⁇ (MN) / M M is the total weight (g) of the styrene monomer used, including the unreacted styrene monomer, and N is the weight (g) of the unreacted styrene monomer.
  • N is quantified by, for example, gas chromatography. The quantitative determination of the styrene monomer by gas chromatography is performed by dissolving composite resin particles in N, N-dimethylformamide and adding an internal standard solution (cyclopentanol).
  • ⁇ Aliphatic amide compound content in expandable composite resin particles Aliphatic amide compound components are extracted by precisely weighing 0.1 g of the shredded foamable composite resin particles on a glass extraction cylindrical filter, and Soxhlet extraction with chloroform for 10 hours. Next, after removing chloroform, the sample is dissolved again in a chloroform / hexafluoroisopropanol (HFIP) mixed solution to obtain an analytical sample. The obtained analytical sample is subjected to quantitative analysis of the aliphatic amide compound by gas chromatography mass spectrometry-selected ion detection method (GCMS-SIM method).
  • GCMS-SIM method gas chromatography mass spectrometry-selected ion detection method
  • the content of high-boiling plasticizers other than glycerin diacetate monolaurate was analyzed by the following gas chromatography analysis.
  • the sample is completely dissolved by adding 0.1 g of the foamable composite resin particles to 10 ml of hot toluene at about 80 ° C. and heating for 5 hours.
  • the solution is then reprecipitated with 40 ml of methanol and stirred for 1 hour. Thereafter, the solution is filtered using No5 filter paper, an internal standard solution (cyclopentanol) is added, and the sample is made up with methanol to prepare an analytical sample.
  • the high-boiling plasticizer content is quantified by subjecting the obtained analytical sample to gas chromatography analysis.
  • Gas Chromatography Measurement Conditions Equipment GCMS-QP5050A manufactured by Shimadzu Corporation
  • Carrier gas helium
  • Carrier gas flow rate 1.2 ml / min
  • the high boiling point plasticizer content about glycerol diacetomonolaurate was analyzed by the following liquid chromatography analysis.
  • the sample is completely dissolved by adding 0.2 g of expandable composite resin particles to 20 ml of hot toluene at about 80 ° C. and heating for 5 hours. After reprecipitation with 70 ml of methanol, the solution is stirred for 1 hour. Then, the solution is filtered using No5 filter paper, and the filtrate is evaporated to dryness. After dissolving in methanol again, make up to 20 ml.
  • the high-boiling plasticizer content is quantified by performing liquid chromatography analysis after filtering the Messup solution with an aqueous 0.45 ⁇ m chromatodisc.
  • Liquid Chromatography Measurement Conditions Device LC-10Avp manufactured by Shimadzu Corporation Column: TSKgel ODS-80TS QA (4.6 ⁇ 150) manufactured by TOSOH Column temperature: 40 ° C Mobile phase: Methanol Mobile phase flow rate: 0.7 ml / min Pump temperature: room temperature Measurement time: 10 min Detection: Light scattering Injection volume: 50 ⁇ l Detector: ELtech ELSD-2000 Drift Tube temperature: 60 ° C Gas flow rate: 1.6ml / min
  • a measurement sample is prepared by accurately weighing 5 to 20 mg of expandable composite resin particles. This measurement sample is set in a pyrolysis furnace (manufactured by Shimadzu Corporation: PYR-1A) maintained at 180 to 200 ° C., and the measurement sample is sealed and heated for 120 seconds to release the blowing agent component. A chart of the blowing agent component is obtained for the released blowing agent component using a gas chromatography (manufactured by Shimadzu Corporation: GC-14B, detector: FID) under the following conditions. Based on the calibration curve of the foaming agent component measured in advance, the foaming agent content (% by weight) in the foamable composite resin particles is calculated from the obtained chart.
  • foamable composite resin particles are predispersed in 10 ml of a 0.1% nonionic surfactant solution using a touch mixer and ultrasonic waves, and this is equipped with an ISOTON II (Beckman Coulter).
  • ISOTON II Bact. Coulter
  • a beaker satisfying Electrolytic solution for measurement
  • drop with a dropper while gently stirring and adjust the concentration meter reading on the main body screen to about 10%.
  • an aperture size of 100 ⁇ m, a current of 1600, a gain of 2, and a polarity of + are input to the Multisizer II main body (the aperture size and the like can be changed as required) and measured manually.
  • the beaker is gently stirred to the extent that bubbles do not enter, and the measurement is terminated when 100,000 foamable composite resin particles are measured.
  • the average particle diameter is an average value of the measured values.
  • ⁇ Bulk density and bulk multiple of pre-expanded particles The weight (a) of about 5 g of pre-expanded particles is weighed at the second decimal place. Next, weighed pre-expanded particles in a 500 cm 3 graduated cylinder with a minimum memory unit of 5 cm 3 , and a round resin plate slightly smaller than the caliber of the graduated cylinder, about 1.5 cm wide at the center, The volume (b) of the pre-expanded particles is read by applying a pressing tool in which a rod-shaped resin plate having a length of about 30 cm is fixed upright, and the bulk density (g) of the pre-expanded particles is calculated according to the formula (a) / (b). / Cm 3 ). The bulk multiple is the reciprocal of the bulk density, that is, the formula (b) / (a).
  • ⁇ Average cell diameter of pre-expanded particles> is performed as follows. First, pre-expanded particles pre-expanded to a bulk ratio of 10 to 60 times, preferably a bulk ratio of 15 to 50 times are produced. Next, 10 pre-expanded particles are collected arbitrarily and each is divided into two from the surface through the center with a razor. The cross section of the two divided sections is photographed with a scanning electron microscope (S-3000N manufactured by Hitachi, Ltd.) at a magnification of 15 to 30 times (in some cases, 200 times). Next, the captured images are printed one by one on A4 paper. From the printed image, as shown in FIG. 2, the length of the skin layer, the number of bubbles in contact with the skin layer, the length of the curve passing through a half point of the radius, and the number of bubbles on this curve are measured. (Measure bubbles that are in contact with the curve.)
  • the average chord length (t) of the bubbles is calculated by the following formula.
  • Bubble diameter D t / 0.616
  • the object is to measure the absorbance ratio (A 698 / A 2850 ) in the following manner, and to measure the ratio of the pre-expanded particles or the polystyrene-based resin of the expanded molded article.
  • pre-expanded particles 10 particles are arbitrarily collected, and each is divided into two from the surface through the center with a razor, and an infrared absorption spectrum is obtained by ATR method infrared spectroscopic analysis of the cross section of the two divided sections.
  • each pre-expanded particle is divided into two equal parts (for example, pre-expanded particles having a particle diameter of 5 mm are cut into 2.5 ⁇ 0.5 mm), and the ATR prism is closely attached to the cross section. To measure.
  • the absorbance ratio (A 698 / A 2850 ) is calculated from each infrared absorption spectrum, and the minimum absorbance ratio and the maximum absorbance ratio are excluded. The arithmetic average of the remaining 8 absorbance ratios is defined as the absorbance ratio (A 698 / A 2850 )).
  • the absorbance is measured using a measuring device sold by Nicolet under the trade name “Fourier transform infrared spectrophotometer MAGNA 560”. A standard sample is obtained by the following method.
  • injection molding machine for example, a machine sold under the trade name “CS-183” by CSI can be used, and for example, molding can be performed under the following conditions. Injection molding conditions: heating temperature 200 to 250 ° C., kneading time 10 minutes The absorbance ratio of the standard sample with the above ratio was measured with the measuring device, and the polystyrene resin ratio (% by weight) and the absorbance ratio (A 698 / A 2850 ) The calibration curve of FIG. 8 is obtained by graphing the relationship.
  • the average cell diameter of the pre-expanded particles is measured as follows. Pre-expanded to 30-fold, 40-fold or 50-fold bulk, arbitrarily collect 50 pre-expanded particles, each divided into two from the surface through the center with a razor, and the cross section of the section divided into two The image is magnified 15 to 30 times (in some cases 200 times) with a microscope (S-3000N manufactured by Hitachi, Ltd.).
  • the captured images are printed one by one on A4 paper.
  • the length of a curve passing through a point having a radius of 4/5 and the number of bubbles on this curve are measured from the printed image (the bubbles that are in contact with the curve are also measured).
  • the length of a curve passing through a point having a radius of 1/5 and the number of bubbles on this curve are measured (also measuring bubbles in contact with the curve). From the measurement results, the average chord length (t) of the bubbles is calculated by the following equation.
  • Average chord length (t) line length / (number of bubbles x photo magnification) Then, by using the average chord length (t), a curve passing through the average bubble diameter (P) on the curve passing through the point of 4/5 of the radius of the pre-expanded particle cross section and the point of 1/5 of the radius by the following formula The upper average bubble diameter (Q) is calculated.
  • Average bubble diameter (mm) t / 0.616
  • the ratio (P / Q) of the average bubble diameter (P) on the curve passing through the point of 4/5 of the radius of the pre-foamed particle cross section and the average bubble diameter (Q) on the curve passing through the point of 1/5 of the radius is When it is 5 or more, it is determined that the pre-expanded particles are cored (for example, see FIG. 9). Further, when no clear bubbles are confirmed near the center of the pre-expanded particle cross section, it is also determined that the core is cored. The above is measured for 50 pre-expanded particles arbitrarily collected, and the mixture ratio of core pre-expanded particles is less than 10%, and 10% or more is rejected.
  • test piece of 215 mm (length) ⁇ 40 mm (width) ⁇ 20 mm (thickness) cut out from a predetermined multiple of the foamed molded product was placed on a space of 150 mm between fulcrums, A 321 g hard ball is dropped, and the falling ball impact strength, that is, the 50% breaking height is calculated by the following formula.
  • the test piece shall have no epidermis on all six sides.
  • H50 Hi + d [ ⁇ (i ⁇ ni) /N ⁇ 0.5]
  • Hi Test height (cm) when the height level (i) is 0, and the height at which the test piece is expected to break
  • d Height interval (cm) when the test height is raised or lowered
  • ni number of test pieces destroyed (or not destroyed) at each level
  • ⁇ 0.5 Negative when using destroyed data, positive when using non-destructed data.
  • ⁇ Novi (smoothness) evaluation of the surface of the foamed molded product A test piece with a skin of 50 mm ⁇ 50 mm is cut out from a foamed product having a predetermined bulk multiple, and the number of particles on the surface of the test piece (skin surface) is measured. Between particles to be measured refers to a contact point where three or more pre-expanded particles are in contact. Next, the number of pinholes (indentations) between particles is measured. From the above measurement results, the nobility (smoothness) of the surface of the foamed molded product is calculated by the following formula.
  • Nobi (smoothness) of foamed molded product (1 ⁇ number of pinholes between particles / number of all particles) ⁇ 5 Judgment criteria are: Nobi of the foamed molded product passes 4 or more, and less than 4 rejects.
  • Example 1 Ethylene / vinyl acetate copolymer resin particles (NUC-3450 manufactured by Nippon Unicar Co., Ltd.) were heated and mixed in an extruder and granulated into pellets by an underwater cutting method (100 particles of ethylene / vinyl acetate copolymer resin particles). Adjusted to 40 mg). 14 kg of the ethylene / vinyl acetate copolymer resin particles were placed in a 100 L autoclave with a stirrer. Further, 45 kg of pure water, 315 g of magnesium pyrophosphate and 1.35 g of sodium dodecylbenzenesulfonate were added as an aqueous medium.
  • the obtained mixture was stirred to form a suspension of an aqueous medium, kept at room temperature (about 25 ° C.) for 10 minutes, and then heated to 60 ° C.
  • 6.0 kg of a styrene monomer in which 7.2 g of dicumyl peroxide was dissolved was dropped into this suspension over 30 minutes. After dripping, it hold
  • ethylene bis stearamide (Kao wax EB-FF manufactured by Kao Corporation; aliphatic amide) 30 g of glycerol diacetomonolaurate (also referred to as GAL in the present invention; high-boiling plasticizer) (PL-012R, SP value 9.4, boiling point 285 ° C., manufactured by Riken Vitamin Co.) It was added dropwise over a period of minutes. After completion of the dropping, the temperature was maintained at 90 ° C.
  • prefoamed particles having a bulk ratio of 30 times were obtained by prefoaming with a bulk ratio of 30 times.
  • the pre-expanded particles had an average cell diameter A of 1060 ⁇ m, an average cell diameter B of 230 ⁇ m, and a value A / B of 4.6.
  • the mixing ratio of cored pre-expanded particles was 2%.
  • the obtained pre-expanded particles were allowed to stand at room temperature for 1 day, and then placed in a molding die having a size of 400 mm (length) ⁇ 300 mm (width) ⁇ 50 mm (thickness).
  • the mold was heated by introducing 0.8 kgf / cm 2 of water vapor for 40 seconds. Then, it cooled until the maximum surface pressure of the foaming molding fell to 0.1 kgf / cm ⁇ 2 >, and the foaming molding of multiple 30 times was taken out.
  • the falling ball impact strength of the foamed molded product was 46.5 cm. Further, the foam molded article had a nobi of 5.0, and the appearance was beautiful.
  • Example 2 Ethylene / vinyl acetate copolymer resin particles (LV-115 manufactured by Nippon Polyethylene Co., Ltd.) were heated and mixed in an extruder and granulated into pellets by an underwater cut method (100 particles of ethylene / vinyl acetate copolymer resin particles). Adjusted to 80 mg per unit). 10.5 kg of the ethylene / vinyl acetate copolymer resin particles were placed in a 100 L autoclave equipped with a stirrer. Further, 45 kg of pure water, 315 g of magnesium pyrophosphate, and 1.6 g of sodium dodecylbenzenesulfonate were added as an aqueous medium.
  • the obtained mixture was stirred to form a suspension of an aqueous medium, kept at room temperature (about 25 ° C.) for 10 minutes, and then heated to 60 ° C.
  • 4.5 kg of styrene monomer in which 5.4 g of dicumyl peroxide was dissolved was dropped into this suspension over 30 minutes. After dripping, it hold
  • the temperature inside the impregnation tank was maintained at 40 ° C., and the circulation of pentane was continued for 120 minutes. After 120 minutes, supply of the heating medium to the heating facility and temperature control were stopped, and instead, the refrigerant was supplied to the heating facility and the circulating pentane was cooled. After about 20 minutes, the temperature of the impregnation tank dropped to 20 ° C.
  • the three-way valve was switched, and the circulating pentane was collected in the pentane supply tank.
  • the foamable composite resin particles were taken out from the inside of the impregnation tank to obtain 16.5 kg of foamable composite resin particles.
  • the amount of the foaming agent, the aliphatic amide compound and the high boiling point plasticizer in the foamable composite resin particles were 10.81% by weight, 0.75% by weight and 0.46% by weight, respectively, with respect to the foamable composite resin particles. there were.
  • the average particle diameter of the expandable composite resin particles was 1410 ⁇ m.
  • the foamable composite resin particles were subjected to preliminary foaming aiming at a bulk ratio of 50 times without being subjected to a curing process, thereby obtaining prefoamed particles having a bulk ratio of 50 times.
  • the pre-expanded particles had an average cell diameter A of 710 ⁇ m, an average cell diameter B of 320 ⁇ m, and a value A / B of 2.2. Further, the mixing ratio of cored pre-expanded particles was 8%.
  • the obtained pre-expanded particles were allowed to stand at room temperature for 1 day, and then placed in a molding die having a size of 400 mm (length) ⁇ 300 mm (width) ⁇ 50 mm (thickness).
  • the mold was heated by introducing 0.8 kgf / cm 2 of water vapor for 40 seconds. Then, it cooled until the maximum surface pressure of the foaming molding fell to 0.1 kgf / cm ⁇ 2 >, and the foaming molding of multiple 50 times was taken out.
  • the falling ball impact strength of the foamed molded product was 23.5 cm. Further, the foam molded article had a nobi of 4.5, and the appearance was beautiful.
  • Example 3 Ethylene / vinyl acetate copolymer resin particles (NUC-3450 manufactured by Nippon Unicar Co., Ltd.) were heated and mixed in an extruder and granulated into pellets by an underwater cutting method (100 particles of ethylene / vinyl acetate copolymer resin particles). Adjusted to 40 mg). 14 kg of the ethylene / vinyl acetate copolymer resin particles were placed in a 100 L autoclave with a stirrer. Further, 45 kg of pure water, 315 g of magnesium pyrophosphate and 1.35 g of sodium dodecylbenzenesulfonate were added as an aqueous medium.
  • the obtained mixture was stirred to form a suspension of an aqueous medium, kept at room temperature (about 25 ° C.) for 10 minutes, and then heated to 60 ° C.
  • 6.0 kg of a styrene monomer in which 7.2 g of dicumyl peroxide was dissolved was dropped into this suspension over 30 minutes. After dripping, it hold
  • the temperature inside the impregnation tank was maintained at 35 ° C., and the circulation of pentane was continued as it was for 360 minutes. After 360 minutes, supply of the heating medium to the heating facility and temperature control were stopped, and instead, the refrigerant was supplied to the heating facility, and the circulating pentane was cooled. After about 20 minutes, the temperature of the impregnation tank dropped to 20 ° C.
  • the three-way valve was switched, and the circulating pentane was collected in the pentane supply tank.
  • the foamable composite resin particles were taken out from the inside of the impregnation tank to obtain 16.5 kg of foamable composite resin particles.
  • the amount of the foaming agent, the aliphatic amide compound and the high-boiling plasticizer in the foamable composite resin particles were 10.78% by weight, 0.66% by weight and 0.45% by weight, respectively, with respect to the foamable composite resin particles. there were.
  • the average particle diameter of the expandable composite resin particles was 1150 ⁇ m.
  • prefoamed particles having a bulk ratio of 30 times were obtained by prefoaming with a bulk ratio of 30 times.
  • the pre-expanded particles had an average cell diameter A of 760 ⁇ m, an average cell diameter B of 280 ⁇ m, and a value A / B of 2.7.
  • the mixing ratio of cored pre-expanded particles was 2%.
  • the obtained pre-expanded particles were allowed to stand at room temperature for 1 day, and then placed in a molding die having a size of 400 mm (length) ⁇ 300 mm (width) ⁇ 50 mm (thickness).
  • the mold was heated by introducing 0.8 kgf / cm 2 of water vapor for 40 seconds. Then, it cooled until the maximum surface pressure of the foaming molding fell to 0.1 kgf / cm ⁇ 2 >, and the foaming molding of multiple 30 times was taken out.
  • the falling ball impact strength of the foamed molded product was 43.0 cm. Further, the foam molded article had a nobi of 4.5, and the appearance was beautiful.
  • Example 4 (1) 210 g of ethylene bis stearamide is converted to 52.5 g of ethylene bis stearamide, (2) Except for changing GAL 1.75 kg to 1.75 kg of diisobutyl adipate (also referred to as DIBA in the present invention; high boiling point plasticizer) (DI4A manufactured by Taoka Chemical Industries, SP value 8.9, boiling point 293 ° C.) Were carried out in the same manner as in Example 3 to obtain expandable composite resin particles, pre-expanded particles and a foam-molded product.
  • DIBA diisobutyl adipate
  • DIBA high boiling point plasticizer
  • the amount of the foaming agent, the aliphatic amide compound and the high boiling point plasticizer in the foamable composite resin particles were 10.89% by weight, 0.13% by weight and 0.43% by weight with respect to the foamable composite resin particles, respectively. there were.
  • the average particle diameter of the expandable composite resin particles was 1150 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 1150 ⁇ m, an average cell diameter B of 260 ⁇ m, and a value A / B of 4.4. Further, the mixing ratio of cored pre-expanded particles was 3%.
  • the falling ball impact strength of the foamed molded product was 46.0 cm. Further, the foam molded article had a nobi of 5.0, and the appearance was beautiful.
  • Example 5 (1) 17 kg of isopentane at the impregnation step is changed to 13.6 kg of isopentane and 3.4 kg of normal pentane. (2) Impregnation conditions during the impregnation step 35 ° C., 360 minutes circulation to 25 ° C., 1080 minutes circulation, (3) Ethylene bis stearic acid amide 210g to ethylene bis stearic acid amide 105g, (4) Except that GAL 1.75 kg was changed to GAL 3.5 kg, the same procedure as in Example 3 was carried out to obtain expandable composite resin particles, pre-expanded particles, and an expanded molded body.
  • the amount of the foaming agent, the aliphatic amide compound and the high-boiling plasticizer in the foamable composite resin particles were 10.11% by weight, 0.74% by weight and 0.96% by weight with respect to the foamable composite resin particles, respectively. there were.
  • the average particle diameter of the expandable composite resin particles was 1150 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 480 ⁇ m, an average cell diameter B of 210 ⁇ m, and a value A / B of 2.3. Further, the mixing ratio of cored pre-expanded particles was 1%.
  • the falling ball impact strength of the foamed molded product was 46.5 cm. Further, the foam molded article had a nobi of 5.0, and the appearance was beautiful.
  • Example 6 (1) 14 kg of ethylene / vinyl acetate copolymer resin particles and 21 kg of styrene monomer at the time of the styrene monomer polymerization step are changed to 10.5 kg of ethylene / vinyl acetate copolymer resin particles and 24.5 kg of styrene monomer, (2) Impregnation conditions during the impregnation step 35 ° C., 360 minutes circulation into 40 ° C., 45 minutes circulation, (3) Ethylene bis stearic acid amide 210g to ethylene bis stearic acid amide 105g, (4) From 1.75 kg of GAL to 1.4 kg of GAL, (5) The bulk expansion ratio of the pre-expanded particles at the time of the pre-expansion step is 30 times 50 times, (6) Expandable composite resin particles, pre-expanded particles, and expanded molded body by carrying out in the same manner as in Example 3 except that the multiple 30 times of the expanded molded body in the mold foaming step was changed to 50 times
  • the amount of the foaming agent, the aliphatic amide compound and the high boiling point plasticizer in the foamable composite resin particles were 8.70% by weight, 0.26% by weight and 0.34% by weight with respect to the foamable composite resin particles, respectively. there were.
  • the average particle diameter of the expandable composite resin particles was 1410 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 660 ⁇ m, an average cell diameter B of 290 ⁇ m, and a value A / B of 2.3. Further, the mixing ratio of cored pre-expanded particles was 5%.
  • the falling ball impact strength of the foamed molded product was 22.5 cm. Further, the foam molded article had a nobi of 5.0, and the appearance was beautiful.
  • Example 7 14 kg of ethylene / vinyl acetate copolymer resin particles and 21 kg of styrene monomer at the time of the styrene monomer polymerization step were converted into 7 kg of linear low density polyethylene resin particles (NF-464A manufactured by Nippon Polyethylene Co., Ltd.) and 28 kg of styrene monomer.
  • linear low density polyethylene resin particles NF-464A manufactured by Nippon Polyethylene Co., Ltd.
  • the amount of the foaming agent, the aliphatic amide compound and the high boiling point plasticizer in the foamable composite resin particles were 11.10% by weight, 0.90% by weight and 1.39% by weight with respect to the foamable composite resin particles, respectively. there were.
  • the average particle diameter of the expandable composite resin particles was 1570 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 470 ⁇ m, an average cell diameter B of 200 ⁇ m, and a value A / B of 2.4. Further, the mixing ratio of the cored pre-expanded particles was 0%.
  • the falling ball impact strength of the foamed molded product was 48.5 cm. Further, the foam molded article had a nobi of 5.0, and the appearance was beautiful.
  • Example 8 (1) Impregnation conditions during the impregnation step 35 ° C. for 360 minutes circulation to 40 ° C. for 240 minutes circulation, (2) 210 g of ethylene bis stearic acid amide was added to 105 g of ethylene bis oleic acid amide (Nippon Yushi Co., Ltd. Alfro AD-281F; aliphatic amide compound). (3) GAL 1.75kg to DIBA 1.75kg, (4) 50 times the bulk multiple of the pre-expanded particles during the pre-expansion step, (5) Expandable composite resin particles, pre-expanded particles, and expanded molded body by carrying out in the same manner as in Example 3 except that the multiple 30 times of the expanded molded body in the mold foaming step was changed to 50 times. Got.
  • the amount of the foaming agent, the aliphatic amide compound and the high-boiling plasticizer in the foamable composite resin particles were 11.85% by weight, 0.27% by weight and 0.41% by weight with respect to the foamable composite resin particles, respectively. there were.
  • the average particle diameter of the expandable composite resin particles was 1150 ⁇ m.
  • the average cell diameter A of the pre-expanded particles was 1470 ⁇ m, the average cell diameter B was 390 ⁇ m, and the value A / B was 3.8.
  • the mixing ratio of cored pre-expanded particles was 2%.
  • the falling ball impact strength of the foamed molded product was 40.5 cm. Further, the foam molded article had a nobi of 4.5, and the appearance was beautiful.
  • Example 9 High density polyethylene (product name 09S53B, manufactured by Tosoh Corporation) [(1) ethylene homopolymer or copolymer of ethylene and ⁇ -olefin having 3 to 8 carbon atoms, (2) density 936 g / cm 3 , (3) 2.
  • MFR melt flow rate
  • MS melt tension at 160 ° C. (mN)
  • MFR log
  • expandable composite resin particles, pre-expanded particles and a foamed molded product were obtained.
  • the amount of the foaming agent, the aliphatic amide compound and the high-boiling plasticizer in the foamable composite resin particles were 10.90% by weight, 0.75% by weight and 0.44% by weight with respect to the foamable composite resin particles, respectively. there were.
  • the average particle diameter of the expandable composite resin particles was 1150 ⁇ m.
  • the foamable composite resin particles were subjected to preliminary foaming aiming at a bulk ratio of 50 times without being subjected to a curing process, thereby obtaining prefoamed particles having a bulk ratio of 50 times.
  • the pre-expanded particles had an average cell diameter A of 1100 ⁇ m, an average cell diameter B of 320 ⁇ m, and a value A / B of 3.4. Further, the mixing ratio of cored pre-expanded particles was 4%.
  • the obtained pre-expanded particles were allowed to stand at room temperature for 1 day, and then placed in a molding die having a size of 400 mm (length) ⁇ 300 mm (width) ⁇ 50 mm (thickness).
  • the mold was heated by introducing 0.9 kgf / cm 2 of water vapor for 40 seconds. Then, it cooled until the maximum surface pressure of the foaming molding fell to 0.1 kgf / cm ⁇ 2 >, and the foaming molding of multiple 50 times was taken out.
  • the falling ball impact strength of the foamed molded product was 29.5 cm. Further, the foam molded article had a nobi of 4.5, and the appearance was beautiful.
  • Example 10 By supplying 100 parts by weight of polypropylene resin (manufactured by Prime Polymer Co., Ltd., product name F-744NP, melting point 140 ° C.) to an extruder, melt-kneading, and granulating pellets by an underwater cutting method, spherical (egg-shaped) Polypropylene resin particles were obtained (adjusted to 80 mg per 100 grains).
  • polypropylene resin manufactured by Prime Polymer Co., Ltd., product name F-744NP, melting point 140 ° C.
  • expandable composite resin particles, pre-expanded particles and a foamed molded product were obtained.
  • the amount of the foaming agent, the aliphatic amide compound and the high-boiling plasticizer in the foamable composite resin particles were 11.02% by weight, 0.89% by weight and 0.42% by weight with respect to the foamable composite resin particles, respectively. there were.
  • the average particle diameter of the expandable composite resin particles was 1350 ⁇ m.
  • prefoamed particles having a bulk ratio of 40 times were obtained by prefoaming with a bulk ratio of 40 times according to the following prefoaming conditions.
  • the pre-expanded particles had an average cell diameter A of 900 ⁇ m, an average cell diameter B of 270 ⁇ m, and a value A / B of 3.3. Further, the mixing ratio of cored pre-expanded particles was 4%.
  • the obtained pre-expanded particles are allowed to stand at room temperature for 1 day, and then the obtained pre-expanded particles are filled in a mold of a molding machine, steam-heated and cooled according to the following in-mold forming conditions, Was removed from the mold.
  • the falling ball impact strength of the foamed molded product was 30.5 cm. Further, the foam molded article had a nobi of 4.5, and the appearance was beautiful.
  • Pre-foaming conditions Into a PSX40 pre-foaming machine (manufactured by Kasahara Kogyo Co., Ltd.) preheated with steam, 1.0 kg of expandable composite resin particles were introduced, and steam was introduced at a setting of a gauge pressure of 0.05 MPa while stirring. Pre-expanded particles were obtained by foaming to 40 times the bulk ratio.
  • ⁇ In-mold molding conditions The pre-expanded particles are filled in a mold of a molding machine, heated and cooled under the following conditions, and then the molded foam is removed from the mold.
  • Molding machine DABO Japan, product name BPM-7454 Mold dimension: 300mm (width) x 400mm (length) x 50mm (thickness) Molding conditions
  • Mold heating 5 seconds
  • One side heating 10 seconds
  • Reverse one side heating 5 seconds
  • Double-sided heating 20 seconds
  • Set steam pressure 2. 5 to 3.0 kgf / cm 2
  • Example 11 Expandable composite resin particles by carrying out in the same manner as in Example 3 except that 210 g of ethylenebisstearic acid amide was changed to 210 g of stearic acid amide (manufactured by NOF Corporation, product name Alflow S-10). Thus, pre-expanded particles and a foam-molded product were obtained.
  • the amount of the foaming agent, the aliphatic amide compound and the high boiling point plasticizer in the foamable composite resin particles were 10.61% by weight, 0.64% by weight and 0.42% by weight, respectively, with respect to the foamable composite resin particles. there were.
  • the average particle diameter of the expandable composite resin particles was 1100 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 1110 ⁇ m, an average cell diameter B of 200 ⁇ m, and a value A / B of 5.6. Further, the mixing ratio of cored pre-expanded particles was 8%.
  • the falling ball impact strength of the foamed molded product was 41.5 cm. Further, the foam molded article had a nobi of 4.5, and the appearance was beautiful.
  • Example 12 Particles containing 3% by weight of furnace black in ethylene / vinyl acetate copolymer resin are 15.52 kg of EVA particles (Nippon Polyethylene, LV-211) and furnace black (Mitsubishi Chemical). 480g) (manufactured by Co., Ltd.) was mixed, heated and mixed in an extruder, and granulated by strand cutting to obtain pellets (3% by weight of EVA black containing furnace black was adjusted to 80mg per 100 grains. , Average particle diameter of about 1 mm). 14 kg of EVA particles containing 3% by weight of furnace black were placed in a 100 L autoclave equipped with a stirrer.
  • the temperature was lowered to 125 ° C., and 14 kg of styrene monomer in which 84 g of dicumyl peroxide was dissolved as a polymerization initiator was dropped into this dispersion for 4 hours.
  • the mixture was held at 125 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization.
  • the reaction solution was cooled to 80 ° C., and 1.75 kg of GAL in which 350 g of ethylenebisstearic acid amide was dissolved was added to the system.
  • expandable composite resin particles, pre-expanded particles and a foamed molded product were obtained.
  • the amount of the foaming agent, the aliphatic amide compound and the high boiling point plasticizer in the foamable composite resin particles are 11.30% by weight, 0.91% by weight and 0.42% by weight, respectively, with respect to the foamable composite resin particles. there were.
  • the average particle diameter of the expandable composite resin particles was 1400 ⁇ m.
  • prefoamed particles having a bulk ratio of 30 times were obtained by prefoaming with a bulk ratio of 30 times.
  • the average cell diameter A of the pre-expanded particles was 1150 ⁇ m
  • the average cell diameter B was 250 ⁇ m
  • the value A / B was 4.6.
  • the mixing ratio of cored pre-expanded particles was 5%.
  • 0.9 kgf / cm 2 of water vapor was introduced for 40 seconds and heated. Then, it cooled until the maximum surface pressure of the foaming molding fell to 0.1 kgf / cm ⁇ 2 >, and the foaming molding of multiple 50 times was taken out.
  • the falling ball impact strength of the foamed molded product was 55.5 cm. Further, the foam molded article had a nobi of 4.5, and the appearance was beautiful.
  • Furnace black 5 wt% polypropylene resin particles are polypropylene resin particles (manufactured by Prime Polymer, trade name “F-744NP”, melting point: 140 ° C.) 19.0 kg and furnace black (Mitsubishi Chemical Corporation, # 650B). 1000 g was mixed, heated and mixed in an extruder, and granulated into pellets by an underwater cutting method. The polypropylene resin particles containing 5% by weight of furnace black were adjusted to 80 mg per 100 particles, and the average particle size was about 1 mm.
  • expandable composite resin particles, pre-expanded particles and a foamed molded product were obtained.
  • the amount of the foaming agent, the aliphatic amide compound and the high-boiling point plasticizer in the foamable composite resin particles were 11.12% by weight, 0.88% by weight and 0.42% by weight, respectively, with respect to the foamable composite resin particles. there were.
  • the average particle diameter of the expandable composite resin particles was 1340 ⁇ m.
  • the foamed composite resin particles were prefoamed aiming at a bulk ratio of 40 times according to the prefoaming conditions of Example 10 to obtain prefoamed particles having a bulk ratio of 40 times.
  • the pre-expanded particles had an average cell diameter A of 1040 ⁇ m, an average cell diameter B of 280 ⁇ m, and a value A / B of 3.7. Further, the mixing ratio of cored pre-expanded particles was 5%.
  • the obtained pre-expanded particles were allowed to stand at room temperature for 1 day, and then the obtained pre-expanded particles were filled in a mold of a molding machine, heated by steam according to the in-mold molding conditions of Example 10, cooled, and then expanded.
  • the molded body was removed from the mold.
  • the falling ball impact strength of the foamed molded product was 31.5 cm. Further, the foam molded article had a nobi of 4.5, and the appearance was beautiful.
  • Comparative Example 1 (1) The polymerization conversion of 67.4% of the styrene monomer at the start of dropping of the aliphatic amide compound and the high-boiling point plasticizer at the time of adding the aliphatic amide compound and the high-boiling point plasticizer to 54.1%, (2) Impregnation conditions during the impregnation step 35 ° C., 90 minutes stirring was changed to 40 ° C., 45 minutes stirring, except that the same procedure as in Example 1 was carried out. Particle and falling ball impact strength were obtained.
  • the amount of the foaming agent, the aliphatic amide compound and the high boiling point plasticizer in the foamable composite resin particles were 8.61% by weight, 0.26% by weight and 0.92% by weight with respect to the foamable composite resin particles, respectively. there were.
  • the average particle diameter of the expandable composite resin particles was 1100 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 1210 ⁇ m, an average cell diameter B of 180 ⁇ m, and a value A / B of 6.7.
  • the mixing ratio of cored pre-expanded particles was 85%.
  • the falling ball impact strength of the foamed molded product was 32.5 cm. Further, the foam molded article had a nobi of 4.0, and the appearance was beautiful. Since the mixture ratio of cored pre-expanded particles was large and the falling ball impact strength of the foamed molded product was low, the desired pre-expanded particles and foamed molded product could not be obtained.
  • the amount of the foaming agent, the aliphatic amide compound, and the high-boiling plasticizer in the foamable composite resin particles were 8.61% by weight, 0.26% by weight, and 0.09% by weight, respectively, with respect to the foamable composite resin particles. there were.
  • the average particle diameter of the expandable composite resin particles was 1100 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 1220 ⁇ m, an average cell diameter B of 190 ⁇ m, and a value A / B of 6.4. Further, the mixing ratio of cored pre-expanded particles was 75%.
  • the falling ball impact strength of the foamed molded product was 30.5 cm. Further, the foam molded article had a nobi of 4.0, and the appearance was beautiful. Since the mixture ratio of cored pre-expanded particles was large and the falling ball impact strength of the foamed molded product was low, the desired pre-expanded particles and foamed molded product could not be obtained.
  • Comparative Example 3 (1) 14 kg of ethylene / vinyl acetate copolymer resin particles and 21 kg of styrene monomer at the time of the styrene monomer polymerization step are changed to 10.5 kg of ethylene / vinyl acetate copolymer resin particles and 24.5 kg of styrene monomer, (2) Impregnation conditions during the impregnation step 35 ° C., 360 minutes circulation into 40 ° C., 45 minutes circulation, (3) 210 g of ethylene bis stearamide is converted to 17.5 g of ethylene bis stearamide. (4) Expandable composite resin particles and pre-expanded particles were obtained in the same manner as in Example 3 except that 1.75 kg of GAL was changed to 3.5 kg of GAL.
  • the amount of the foaming agent, the aliphatic amide compound, and the high-boiling plasticizer in the foamable composite resin particles were 8.63%, 0.04%, and 0.89% by weight with respect to the foamable composite resin particles, respectively. there were.
  • the average particle diameter of the expandable composite resin particles was 1420 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 1230 ⁇ m, an average cell diameter B of 180 ⁇ m, and a value A / B of 6.8.
  • the mixing ratio of cored pre-expanded particles was 80%.
  • the falling ball impact strength of the foamed molded product was 14.5 cm. Further, the foam molded article had a nobi of 4.0, and the appearance was beautiful. Since the mixture ratio of cored pre-expanded particles was large and the falling ball impact strength of the foamed molded product was low, the desired pre-expanded particles and foamed molded product could not be obtained.
  • the amount of the foaming agent, the aliphatic amide compound, and the high-boiling plasticizer in the foamable composite resin particles were 8.63%, 0.26%, and 2.20% by weight, respectively, with respect to the foamable composite resin particles. there were.
  • the average particle diameter of the expandable composite resin particles was 1420 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 560 ⁇ m, an average cell diameter B of 220 ⁇ m, and a value A / B of 2.5. Further, the mixing ratio of cored pre-expanded particles was 4%.
  • the desired foamed molded product could not be obtained due to shrinkage of the foamed molded product during the production of the foamed molded product. Therefore, the subsequent examination was stopped.
  • Comparative Example 5 (1) 14 kg of ethylene / vinyl acetate copolymer resin particles and 21 kg of styrene monomer at the time of the styrene-based monomer polymerization step were changed to 17.5 kg of ethylene / vinyl acetate copolymer resin particles and 17.5 kg of styrene monomer.
  • the amount of the foaming agent, the aliphatic amide compound and the high-boiling plasticizer in the foamable composite resin particles were 8.54%, 0.28% and 1.30% by weight, respectively, with respect to the foamable composite resin particles. there were.
  • the average particle diameter of the expandable composite resin particles was 1000 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 580 ⁇ m, an average cell diameter B of 230 ⁇ m, and a value A / B of 2.5. Further, the mixing ratio of cored pre-expanded particles was 3%. Although an attempt was made to produce pre-expanded particles having a bulk ratio of 30 times, it was not possible to obtain pre-expanded particles having a desired bulk ratio. Therefore, the subsequent examination was stopped.
  • the amount of the foaming agent, the aliphatic amide compound and the high boiling point plasticizer in the foamable composite resin particles were 8.55% by weight, 0.27% by weight and 1.31% by weight with respect to the foamable composite resin particles, respectively. there were.
  • the average particle diameter of the expandable composite resin particles was 1710 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 800 ⁇ m, an average cell diameter B of 300 ⁇ m, and a value A / B of 2.7. Further, the mixing ratio of cored pre-expanded particles was 9%.
  • the falling ball impact strength of the foamed molded product was 13.5 cm. Further, the foam molded article had a nobi of 4.5, and the appearance was beautiful. The value of the falling ball impact strength of the foamed molded product was low, and a desired foamed molded product could not be obtained.
  • Comparative Example 7 (1) 14 kg of ethylene / vinyl acetate copolymer resin particles and 21 kg of styrene monomer at the time of the styrene monomer polymerization step are changed to 10.5 kg of ethylene / vinyl acetate copolymer resin particles and 24.5 kg of styrene monomer, (2) Impregnation conditions during the impregnation step 35 ° C., 360 minutes circulation into 40 ° C., 45 minutes circulation, (3) Ethylene bis stearic acid amide 210g to ethylene bis stearic acid amide 105g, (4) 1.75 kg of GAL was added to 3.5 kg of liquid paraffin (Sumoyl P-200, SP value 7.5, boiling point 300 ° C.
  • the amount of the foaming agent, the aliphatic amide compound and the high boiling point plasticizer in the foamable composite resin particles were 8.61% by weight, 0.27% by weight and 0.86% by weight with respect to the foamable composite resin particles, respectively. there were.
  • the average particle diameter of the expandable composite resin particles was 1420 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 1300 ⁇ m, an average cell diameter B of 200 ⁇ m, and a value A / B of 6.5.
  • the mixing ratio of cored pre-expanded particles was 80%.
  • the falling ball impact strength of the foamed molded product was 13.0 cm.
  • the foam molded article had a nobi of 4.0, and the appearance was beautiful. Since the mixture ratio of cored pre-expanded particles was large and the falling ball impact strength of the foamed molded product was low, the desired pre-expanded particles and foamed molded product could not be obtained.
  • Comparative Example 8 (1) 14 kg of ethylene / vinyl acetate copolymer resin particles and 21 kg of styrene monomer at the time of the styrene monomer polymerization step are changed to 10.5 kg of ethylene / vinyl acetate copolymer resin particles and 24.5 kg of styrene monomer, (2) Impregnation conditions during the impregnation step 35 ° C., 360 minutes circulation into 40 ° C., 45 minutes circulation, (3) Ethylene bis stearic acid amide 210g to ethylene bis stearic acid amide 105g, (4) 1.75 kg of GAL was added to 3.5 kg of dimethyl phthalate (Sankyo Chemical Co., Ltd.
  • the amount of the foaming agent, the aliphatic amide compound and the high-boiling point plasticizer in the foamable composite resin particles were 8.53 wt%, 0.27 wt% and 0.87 wt%, respectively, with respect to the foamable composite resin particles. there were.
  • the average particle diameter of the expandable composite resin particles was 1420 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 1210 ⁇ m, an average cell diameter B of 190 ⁇ m, and a value A / B of 6.3. Further, the mixing ratio of cored pre-expanded particles was 80%.
  • the falling ball impact strength of the foamed molded product was 13.0 cm.
  • the foam molded article had a nobi of 4.0, and the appearance was beautiful. Since the mixture ratio of cored pre-expanded particles was large and the falling ball impact strength of the foamed molded product was low, the desired pre-expanded particles and foamed molded product could not be obtained.
  • Comparative Example 9 Without using an aliphatic amide compound and a high-boiling plasticizer, 2 kg of composite resin particles obtained according to the production method described in Example 2, 0.5 g of sodium dodecylbenzenesulfonate and 2 L of water were put into a 5 L autoclave with a pressure-resistant stirrer. Then, 300 g of isopentane was injected. This was heated to 60 ° C. and stirred for 180 minutes. Then, it cooled to 25 degreeC and took out the foamable composite resin particle. The amount of foaming agent in the foamable composite resin particles was 10.12% by weight. The average particle diameter of the expandable composite resin particles was 1610 ⁇ m.
  • the foamable composite resin particles were immediately pre-foamed aiming at a bulk magnification of 50 times, thereby obtaining pre-foamed particles having a bulk magnification of 50 times.
  • the pre-expanded particles had an average cell diameter A of 930 ⁇ m, an average cell diameter B of 660 ⁇ m, and a value A / B of 1.4. Further, the mixing ratio of the cored pre-expanded particles was 0%.
  • the obtained pre-expanded particles were allowed to stand at room temperature for 1 day, and then placed in a molding die having a size of 400 mm (length) ⁇ 300 mm (width) ⁇ 50 mm (thickness).
  • the mold was heated by introducing 0.8 kgf / cm 2 of water vapor for 40 seconds. Then, it cooled until the maximum surface pressure of the foaming molding fell to 0.1 kgf / cm ⁇ 2 >, and the foaming molding of multiple 50 times was taken out.
  • the falling ball impact strength of the foamed molded product was 17.5 cm. Further, the foam molded article had a nobi of 4.5, and the appearance was beautiful. Since the falling ball impact strength of the foamed molded product was low, a desired foamed molded product could not be obtained.
  • Comparative Example 10 By carrying out in the same manner as in Comparative Example 9 except that the amount of isopentane used was changed from 300 g to 240 g, expandable composite resin particles, pre-expanded particles and a foam-molded product were obtained.
  • the amount of the foaming agent in the expandable composite resin particles was 8.50% by weight with respect to the expandable composite resin particles.
  • the average particle diameter of the expandable composite resin particles was 1610 ⁇ m.
  • the pre-expanded particles had an average cell diameter A of 440 ⁇ m, an average cell diameter B of 320 ⁇ m, and a value A / B of 1.4. Further, the mixing ratio of the cored pre-expanded particles was 0%.
  • the falling ball impact strength of the foamed molded product was 23.5 cm. Further, the foam molded article had a Nobi of 3.0, and the appearance was poor. Since the appearance was poor, the desired foamed molded article could not be obtained.
  • Table 1 shows examination conditions such as raw material types and impregnation conditions in Examples and Comparative Examples.
  • Table 2 shows the evaluation results of the expandable composite resin particles, the pre-expanded particles and the foamed molded product obtained in Examples and Comparative Examples.
  • the pre-expanded particles obtained in Examples 1 to 13 have a very small mixing ratio of the pre-expanded particles that are cored even though the expandable composite resin particles are not subjected to the curing process. It can be confirmed that it has a desired bulk multiple. On the other hand, from many of the pre-expanded particles obtained in the comparative examples, it can be confirmed that good cored evaluation results and bulk multiples cannot be obtained.
  • the resin composition of the expandable composite resin particles of Examples 1 to 13 is that the value A / B of the pre-expanded particles is in the range of 2 to 6 in which the polystyrene resin is 120 to 560 parts by weight with respect to 100 parts by weight of the polyolefin resin. Indicates that it is within. Further, from FIGS. 4 and 5, in the pre-expanded particles of Examples 2 and 4, the average bubble diameter of the bubbles in contact with the skin layer is larger than the average bubble diameter of the bubbles passing through the half point of the radius. I understand that. On the other hand, from FIGS.
  • the pre-expanded particles of Comparative Examples 9 and 10 have a large gap between the average bubble diameter of the bubbles in contact with the skin layer and the average bubble diameter of the bubbles passing through half the radius. It can also be seen that there is no difference. Therefore, a foamed molded article having sufficient crack resistance (falling ball impact strength) can be obtained from the foamable composite resin particles described in Examples 1 to 13.
  • a desired foamable composite resin particle, pre-foamed particle, and a foamed molded article having excellent crack resistance can be produced without the curing process conventionally performed by the production method of the present invention. ing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ポリオレフィン系樹脂、ポリスチレン系樹脂および発泡剤を含む発泡性複合樹脂粒子であって、前記発泡性複合樹脂粒子が、前記ポリオレフィン系樹脂100重量部に対して前記ポリスチレン系樹脂を120~560重量部含み、前記発泡性複合樹脂粒子を予備発泡させて得られる予備発泡粒子をその表面から中心を通って2分割した切片の断面を走査型電子顕微鏡で撮影した場合、前記予備発泡粒子の表皮層に接している気泡の平均気泡径Aを前記予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径Bで除算した値A/Bが2~6となる前記予備発泡粒子を形成し、かつ、脂肪族アミド化合物および高沸点可塑剤を同時に含む発泡性複合樹脂粒子。

Description

発泡性複合樹脂粒子、その製造方法、予備発泡粒子および発泡成形体
 本発明は、樹脂成分としてスチレン系樹脂およびオレフィン系樹脂を含む発泡性複合樹脂粒子(以下、発泡性複合樹脂粒子とも称する)、その製造方法、予備発泡粒子および発泡成形体に関する。さらに詳しくは、本発明は、予備発泡後の表面層に接している気泡と内部の気泡の平均気泡径が大きく異なり、脂肪族アミド化合物および高沸点可塑剤が分散された状態で含まれる、発泡性複合樹脂粒子、その製造方法、予備発泡粒子および発泡成形体に関する。本発明の発泡性複合樹脂粒子を用いることにより、発泡性複合樹脂粒子を製造する際の養生工程を短縮または省略することができ、優れた耐割れ性、成形性等を有する発泡成形体を製造することができる。
 ポリスチレン樹脂粒子にプロパン、ブタン、ペンタン等の揮発性発泡剤を含浸することにより、発泡性能が付与された発泡性ポリスチレン樹脂粒子を得ることができる。発泡性ポリスチレン樹脂粒子は、発泡剤の保持性に優れるため、室温もしくは冷蔵状態で保管することができる。従って、適時に発泡性ポリスチレン樹脂粒子を加熱して予備発泡粒子とし、これを成形機の金型内に充填、加熱して発泡成形体とすることができる。この発泡成形体は、断熱性、緩衝性、軽量性に優れていることから、魚箱等の食品容器、家電製品等の緩衝材、建材用断熱材等として広く用いられている。しかし、この発泡成形体は、衝撃等によって割れやすいという問題点があり、用途の拡大には限界があった。
 このため、上記問題点を解決するために、ポリスチレン系樹脂とポリオレフィン系樹脂とを複合化させた発泡性複合樹脂粒子が種々提案されている。例えば特許文献1においては、ポリスチレン系樹脂とポリオレフィン系樹脂の欠点を互いに補完することにより、両者の特性を両立させることを目的とした発泡性複合樹脂粒子が提案されている。具体的には、表面層がポリオレフィン系樹脂からなり、芯部がポリスチレン系樹脂からなる2次発泡可能な発泡性複合樹脂粒子が提案されている。
 また、発泡性複合樹脂粒子は、通常、予備発泡前に長時間に亘る養生工程に付される。発泡性複合樹脂粒子が養生工程に付されていない場合、所定倍数まで安定に発泡し得る発泡性複合樹脂粒子を得ることはできず、その結果、耐割れ性、成形性に優れる発泡成形体を得ることはできない。これは、発泡性複合樹脂粒子中に、系内の不均一な発泡性複合樹脂粒子が多く含まれるためである。またその結果、発泡性複合樹脂粒子を予備発泡させることにより得られる予備発泡粒子中に、系内が均一に発泡していないことに起因する、芯部を有する予備発泡粒子が多く含まれるためである。よって、前記の問題を回避し、発泡性複合樹脂粒子内を均一とするために、従来、養生工程が発泡性複合樹脂粒子の製造工程中に組み込まれている。
 しかしながら、前記の養生工程は、通常、発泡性複合樹脂粒子を70℃以下の環境下で、長時間(12時間以上)付することにより行われるため、目的とする発泡性複合樹脂粒子を得るためには必須の工程であると認められるものの、製造コスト等の点からは好ましい工程ではない。
 これらの知見に鑑みて、養生期間を短縮または省略し得る様々な発泡性樹脂粒子の製造方法が提案されている(特許文献2~7)。
特開昭54-119563号公報 特開昭48-48588号公報 特開昭59-161441号公報 特開昭59-161442号公報 特開昭59-166538号公報 特開昭59-168037号公報 特開平02-286726号公報
 本発明者等は特許文献1に従って追試を行った。ここで、ポリスチレン系樹脂粒子がポリオレフィン系樹脂で被覆されている複合樹脂粒子に、発泡剤を含浸させて直ちに予備発泡を行った場合、内部のポリスチレン系樹脂が大きく発泡するのみで、ポリオレフィン系樹脂は僅かに発泡するかまたは発泡しなかった。また、得られた予備発泡粒子を使用して発泡成形体を得ようとすると、発泡の過程で、表面のポリオレフィン系樹脂とポリスチレン系樹脂との界面が分離し、目的とする発泡成形体を得ることはできなかった。さらに、表面層からの発泡剤の散逸が顕著であり、発泡性複合樹脂粒子の状態での保管は困難であった。
 従って、この発泡性複合樹脂粒子は工業的規模で実施されてはいないと推測される。
 特許文献2~7においては、各種脂肪族アミド化合物を含む重合性モノマーを水性媒体中で懸濁重合することにより、養生期間を短縮または省略することができる発泡性樹脂粒子の製造方法が開示されている。本発明者等は、前記脂肪族アミド化合物の技術的効果を確認するために特許文献2~7に従って追試を行った。
 しかしながら、養生工程に付さなかった発泡性樹脂粒子から得られた予備発泡粒子には前記芯部の存在が多く認められ、その結果所望の発泡成形体を製造することはできなかった。この原因は、脂肪族アミド化合物が系内で均一に分散しておらず、脂肪族アミド化合物の技術的効果を十分に引き出すことができなかったためと推測される。
 従って、養生工程を短縮または省略することができ、併せて耐割れ性、成形性等に優れた発泡成形体を得ることができる発泡性複合樹脂粒子、その製造方法等の提供が望まれている。
 かくして本発明によれば、ポリオレフィン系樹脂、ポリスチレン系樹脂および発泡剤を含む発泡性複合樹脂粒子であって、
 前記発泡性複合樹脂粒子が、前記ポリオレフィン系樹脂100重量部に対して前記ポリスチレン系樹脂を120~560重量部含み、前記発泡性複合樹脂粒子を予備発泡させて得られる予備発泡粒子をその表面から中心を通って2分割した切片の断面を走査型電子顕微鏡で撮影した場合、前記予備発泡粒子の表皮層に接している気泡の平均気泡径Aを前記予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径Bで除算した値A/Bが2~6となる前記予備発泡粒子を形成し、かつ、脂肪族アミド化合物および高沸点可塑剤を同時に含む発泡性複合樹脂粒子が提供される。
 また、本発明によれば、ポリオレフィン系樹脂、ポリスチレン系樹脂および発泡剤を含む予備発泡粒子であって、
 前記予備発泡粒子が前記ポリオレフィン系樹脂100重量部に対して前記ポリスチレン系樹脂を120~560重量部含み、前記予備発泡粒子の嵩倍数が10~60倍であり、前記予備発泡粒子の表面から中心を通って2分割した切片の断面を走査型電子顕微鏡で撮影した場合、前記予備発泡粒子の表皮層に接している気泡の平均気泡径Aを前記予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径Bで除算した値A/Bが2~6となり、かつ、前記予備発泡粒子が脂肪族アミド化合物および高沸点可塑剤を同時に含む予備発泡粒子が提供される。
 さらに、本発明によれば、上記の発泡性複合樹脂粒子の製造方法であって、前記ポリオレフィン系樹脂の存在下、スチレン系モノマーを重合することにより複合樹脂粒子を製造する工程、前記スチレン系モノマーの重合転化率が65%に到達後および前記スチレン系モノマーの重合終了後のいずれかに前記脂肪族アミド化合物および前記高沸点化合物を前記複合樹脂粒子に含有させる工程および前記複合樹脂粒子100重量部に対して50重量部以上の前記発泡剤の存在下、かつ、分散媒の不存在下に、前記複合樹脂粒子に前記発泡剤を接触させて、前記複合樹脂粒子に前記発泡剤を含浸させる工程を含む発泡性複合樹脂粒子の製造方法が提供される。
 本発明の発泡性複合樹脂粒子は、発泡成形体の課題であった耐割れ性、成形性等を改善することができ、養生工程の短縮または省略を容易に図ることができる。
 脂肪族アミド化合物として特定の脂肪酸ビスアミド、脂肪族ジカルボン酸ジアミドおよび脂肪酸モノアミドのいずれかを用いることにより、養生工程の短縮または省略をより容易に図ることができる。
 脂肪族アミド化合物としてエチレンビスステアリン酸アミド、エチレンビスオレイン酸アミドおよびステアリン酸アミドのいずれかを用いることにより、養生工程の短縮または省略をさらにより容易に図ることができる。
 高沸点可塑剤として特定のグリセリン脂肪酸エステルおよびアジピン酸エステルのいずれかを用いることによっても、養生工程の短縮または省略をより容易に図ることもできる。
 高沸点可塑剤が特定の溶解パラメーターを有する場合、養生工程の短縮または省略をさらに容易に図ることもできる。
 特定量の脂肪族アミド化合物および高沸点可塑剤を用いることにより、養生工程の短縮または省略をさらにより容易に図ることもできる。
 発泡剤としてペンタンを用いることにより、前記技術的効果に加えて貯蔵安定性に優れた発泡性複合樹脂粒子を得ることもできる。
 発泡性複合樹脂粒子が着色剤を特定の割合で含む場合、耐割れ性、成形性に優れ、さらに外観が美麗な発泡成形体を得ることができる。
 本発明の発泡性複合樹脂粒子により、前記の発泡成形体の中間体である、表面層に接している気泡と内部の気泡の平均気泡径が大きく異なる予備発泡粒子を提供することができる。
 また、前記の予備発泡粒子を型内成形することにより、所望の倍数の、かつ、耐割れ性、成形性等に優れた発泡成形体を得ることができる。
 本発明の製造方法により、発泡性複合樹脂粒子の養生工程を短縮または省略することができる。
 また、本発明の製造方法において、多量の水等の分散媒を使用しないため、前記技術的効果に加えて、分散媒の乾燥工程等を要さず、目的とする発泡性複合樹脂粒子を容易に製造することができ、発泡性複合樹脂粒子内部の均一化をより向上させることもできる。
 さらに、本発明の製造方法において、発泡剤を含浸する工程が複合樹脂粒子を保持した容器中で発泡剤を循環させることにより、より容易に複合樹脂粒子への発泡剤等の含浸を行うことができる。
 加えて、本発明の製造方法において、発泡剤がペンタンであり、含浸温度が恒温に達するのに必要な時間、発泡剤を含浸させる温度、発泡性複合樹脂粒子の発泡剤の含有量を好適に設定することにより、さらにより容易に発泡剤等の含浸を行うことができる。
発泡剤の含有量を変化させた場合の、含浸温度が恒温に達するのに必要な時間(以下、恒温時間とも称する)X分と発泡剤を含浸させる温度(以下、含浸温度とも称する)Y℃との関係を示す式をプロットしたグラフである。 予備発泡粒子の平均気泡径AおよびBの測定法を説明する図である。 実施例2で使用した発泡剤含浸装置の概略図である。 実施例4の予備発泡粒子の切断面の電子顕微鏡写真である。 実施例2の予備発泡粒子の切断面の電子顕微鏡写真である。 比較例9の予備発泡粒子の切断面の電子顕微鏡写真である。 比較例10の予備発泡粒子の切断面の電子顕微鏡写真である。 実施例と比較例の予備発泡粒子のポリスチレン系樹脂比率を測定するための検量線を示すグラフである。 有芯の予備発泡粒子(比較例3)の断面の電子顕微鏡写真である。 有芯評価方法における予備発泡粒子の平均気泡径の測定法を説明する為の図である。
 本発明の発泡性複合樹脂粒子は、ポリオレフィン系樹脂、ポリスチレン系樹脂および発泡剤を含む発泡性複合樹脂粒子であって、
 前記発泡性複合樹脂粒子が、前記ポリオレフィン系樹脂100重量部に対して前記ポリスチレン系樹脂を120~560重量部含み、前記発泡性複合樹脂粒子を予備発泡させて得られる予備発泡粒子をその表面から中心を通って2分割した切片の断面を走査型電子顕微鏡で撮影した場合、前記予備発泡粒子の表皮層に接している気泡の平均気泡径Aを前記予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径Bで除算した値A/Bが2~6となる前記予備発泡粒子を形成し、かつ、脂肪族アミド化合物および高沸点可塑剤を同時に含む発泡性複合樹脂粒子である。
 平均気泡径の測定法は、実施例の欄で詳説する。
 本発明においては、発泡性複合樹脂粒子が樹脂成分としてポリオレフィン系樹脂およびポリスチレン系樹脂を含むため、本発明の課題である発泡性複合樹脂粒子から優れた成形性、耐割れ性等を有する発泡成形体を製造することができる。
 また、本発明の発泡性複合樹脂粒子が脂肪族アミド化合物および高沸点可塑剤を含むため、発泡性複合樹脂粒子の製造工程時の養生工程を短縮または省略することができる。
 以下に本発明の発泡性複合樹脂粒子について説明する。
 ポリオレフィン系樹脂としては特に限定されず、公知の樹脂を使用することができる。また、ポリオレフィン系樹脂は架橋していてもよい。例えば、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-メチルメタクリレート共重合体、これら重合体の架橋体等のポリエチレン系樹脂、プロピレン単独重合体、エチレン-プロピレンランダム共重合体、プロピレン-1-ブテン共重合体、エチレン-プロピレン-ブテンランダム共重合体等のポリプロピレン系樹脂が挙げられる。前記例示中、低密度は、0.91~0.94g/cm3であることが好ましく、0.91~0.93g/cm3であることがより好ましい。高密度は、0.95~0.97g/cm3であることが好ましく、0.95~0.96g/cm3であることがより好ましい。中密度は、これら低密度と高密度の中間の密度である。
 ポリスチレン系樹脂は、特には限定されず、スチレン系モノマーを重合することにより得ることができる。スチレン系モノマーは、スチレンおよび置換スチレン(置換基には、低級アルキル、ハロゲン原子(特に塩素原子)等が含まれる)のいずれも使用できる。置換スチレンとしては、例えば、クロロスチレン類、p-メチルスチレン等のビニルトルエン類、α-メチルスチレン等が挙げられる。この内、スチレンが一般に好ましい。また、スチレン系モノマーは、スチレンと、置換スチレンとの混合物、スチレンと共重合可能な少量の他のモノマー(例えば、アクリロニトリル、メタクリル酸アルキルエステル(アルキル部分の炭素数1~8程度)、マレイン酸モノないしジアルキル(アルキル部分の炭素数1~4程度)、ジビニルベンゼン、エチレングリコールのモノないしジアクリル酸ないしメタクリル酸エステル、無水マレイン酸、N-フェニルマレイド等)との混合物が使用できる。これら混合物中、スチレンが優位量(例えば、50重量%以上)を占めることが好ましい。また、得られる発泡性複合樹脂粒子、予備発泡粒子および発泡成形体の物性、製造工程等に影響を与えない限りその他のビニル系モノマーを併用してもよい。
 ポリスチレン系樹脂は、発泡性複合樹脂粒子中に、ポリオレフィン系樹脂粒子100重量部に対して120~560重量部の範囲で含まれる。また、ポリオレフィン系樹脂粒子100重量部に対するポリスチレン系樹脂の、原料のスチレン系モノマーの配合量も、ポリスチレン系樹脂と同じ、120~560重量部である。
 スチレン系モノマーの使用量が560重量部より多いと、ポリオレフィン系樹脂粒子に含浸されずに、ポリスチレン系樹脂単独の粒子が発生することがある。加えて、発泡成形体の耐割れ性が低下するだけでなく、耐薬品性も低下することもある。一方、120重量部より少ないと、発泡性複合樹脂粒子の発泡剤を保持する能力が低下し、発泡成形体の剛性が低下することがある。
 なお、得られる発泡性複合樹脂粒子、予備発泡粒子および発泡成形体の物性、製造工程等に影響を与えない限りその他の樹脂を併用してもよい。
 発泡剤として、公知の種々の揮発性発泡剤を使用することができる。本発明においては、ペンタンを用いることが好ましい。ペンタンとしては、ノルマルペンタン、イソペンタンの単独または混合物、工業用ペンタン、石油エーテルが挙げられる。また、ブタン、イソブタン、シクロヘキサン、シクロペンタン、ヘキサン等を少量併用してもよい。発泡剤中、ペンタンの含量は、80重量%以上であることが好ましい。ペンタンは従来発泡剤として用いられているブタンと比べて高い沸点を有しているため、発泡性複合樹脂粒子からの発泡剤の散逸等を抑えることができ、その結果、得られる発泡成形体の耐割れ性、成形性等の向上を安定に図ることができることがある。また、発泡性複合樹脂粒子の貯蔵安定性にも優れることがある。
 発泡剤の含有量は、発泡性複合樹脂粒子に対して、8.0~12.0重量%が好ましく、8.5~11.5重量%であることがより好ましい。発泡剤の含有量が8.0重量%より低いと、発泡性複合樹脂粒子の発泡性が低下することがある。発泡性が低下すると、嵩倍数の高い低嵩密度の予備発泡粒子が得られ難くなると共に、この予備発泡粒子を型内成形して得られる発泡成形体は、融着率が低下し、耐割れ性が低下することがある。一方、12.0重量%より高いと、嵩倍数が60倍より高い、低嵩密度の予備発泡粒子が得られる。しかし、予備発泡粒子中の気泡サイズが過大となり易く、成形性の低下や、得られる発泡成形体の圧縮、曲げ等の強度特性の低下が発生することがある。なお、本発明においては、予備発泡粒子内に発泡剤が含まれている場合、発泡成形体製造時に嵩倍数が変化しにくいことがある。
 本発明においては、アミド結合を有する脂肪族アミド化合物が発泡性複合樹脂粒子中に含まれる。ここで、脂肪族アミド化合物は、発泡性複合樹脂粒子を養生工程に付することなく、予備発泡後の予備発泡粒子中に含まれるセルの径を均一、かつ、緻密にするために用いられる。脂肪族アミド化合物を用いず、発泡性複合樹脂粒子を養生工程に付さなかった場合、発泡性複合樹脂粒子の中心部分に芯と呼ばれる未含浸部分ができ易い。また、一つの予備発泡粒子内に発泡部分と未発泡部分とが混在し、そのような予備発泡粒子から得られる発泡成形体は所望の耐割れ性、成形性等を備えないことがある。脂肪族アミド化合物としては、前記セルを形成することができる限り、公知の脂肪族アミド化合物を使用することができる。
 本発明においては、脂肪族アミド化合物が、一般式(I):
1-CO-NH-(CH2m-NH-CO-R2     (I)
(式中、R1およびR2はそれぞれ炭素数7~23のアルキル基またはアルケニル基であり、mは1~6である)
で表される脂肪酸ビスアミド、
一般式(II):
3-NH-CO-(CH2n-CO-NH-R4     (II)
(式中、R3およびR4はそれぞれ炭素数7~23のアルキル基またはアルケニル基であり、nは1~6である)
で表される脂肪族ジカルボン酸ジアミドおよび
一般式(III):
5-CO-NH-R6     (III)
(式中、R5は炭素数7~23のアルキル基またはアルケニル基であり、R6は炭素数7~23のアルキル基もしくはアルケニル基または水素原子である)
で表される脂肪酸モノアミドから選択されることが好ましい。
 ここで、所望の発泡成形体の物性等に影響を与えない限り、前記の脂肪酸ビスアミド等を単独で使用しても、2種以上を併用してもよい。
 ここで、R1、R2、R3、R4、R5およびR6は、それぞれ好ましくは炭素数12~18の直鎖状および分枝鎖状のいずれかのアルキル基またはアルケニル基をいい、本発明の目的とする養生工程を短縮または省略し得る限り任意の置換基を含んでいてもよい。同様にR6は水素原子であってもよい。炭素数が23より高い場合、炭素数に比例するより大きな発泡剤の分散効果を得ることができないことがある。一方、炭素数が7より低い場合、高沸点可塑剤への溶解性の低下により、均一なセル形成効果を得ることができないことがある。また、mおよびnは、それぞれ好ましくは1~4である。mまたはnが6より高い場合、同様に炭素数に比例するより大きな発泡剤の分散効果を得ることができないことがある。一方、mまたはnが1より低い場合、物質ごとに分散効果が異なることがある。
 前記脂肪族アミド化合物としては、例えば、メチレンビスラウリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、ヘキサメチレンビスパルミチン酸アミド、エチレンビスオレイン酸アミド等の脂肪酸ビスアミド;N,N'-ジオレイルアジピン酸アミド、N,N'-ジステアリルアジピン酸アミド、N,N'-ジラウリルアジピン酸アミド等の脂肪族カルボン酸ジアミド;N-ラウリルステアリン酸アミド、N-パルミチルステアリン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルステアリン酸アミド、N-ベヘニルステアリン酸アミド、ステアリン酸アミド等の脂肪族モノアミドが挙げられる。また、脂肪族アミド化合物を単独で使用しても二種以上を併用してもよい。
 本発明においては、脂肪族アミド化合物として、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミドおよびステアリン酸アミドのいずれかを用いることがより好ましい。
 また、脂肪族アミド化合物は、通常、発泡性複合樹脂粒子に対して0.08~1.0重量%の割合で含有されることが好ましく、0.1~0.9重量%の割合で含有されることがより好ましい。脂肪族アミド化合物が発泡性複合樹脂粒子に対して0.08重量%より少ない割合で含有される場合、所望のセル形成効果を得ることができないことがある。一方、脂肪族アミド化合物が発泡性複合樹脂粒子に対して1.0重量%より多い割合で含有される場合、重合の際の懸濁安定性、発泡成形体の成形性等を損なうことがある。ここで、発泡性複合樹脂粒子中の脂肪族アミド化合物量を、発泡性複合樹脂粒子をソックスレー抽出に付した後、GCMS-SIM法により定量することができる。
 本発明において、高沸点可塑剤は、その溶解パラメーター(本発明において、SP値とも称する)が8.5~10.0であることが好ましく、8.5~9.5であることがより好ましい。SP値が8.5~10.0の範囲であれば、高沸点可塑剤と、発泡剤および脂肪族アミド化合物とのより高い相溶性を期待することができ、その結果養生工程のさらなる短縮または省略を図ることができる。
 なお、SP値は蒸発エンタルピー(ΔE)およびモル体積(V)を次式:
SP値((cal/cm31/2)=(ΔE/V)1/2
に代入することにより算出される。
 また、高沸点可塑剤の沸点は、150~400℃であることが好ましく、200~350℃であることがより好ましい。高沸点可塑剤の沸点が150℃より低い場合、重合工程時および含浸工程時のいずれかに高沸点可塑剤の揮発、飛散等を防ぎ得ないことがある。また、高沸点可塑剤の沸点が400℃より高い場合、脂肪族アミド化合物との相溶性の観点から養生工程を短縮または省略できないことがある。
 高沸点可塑剤は、脂肪族アミド化合物を発泡性複合樹脂粒子中で均一に分散するために用いられる。高沸点可塑剤を用いずに発泡性複合樹脂粒子を製造した場合、脂肪族アミド化合物は、発泡剤等への溶解性を示さないことが多く、発泡複合樹脂粒子中で均一に分散していないと推測される。その結果、脂肪族アミド化合物の有する技術的効果を十分に引き出すことはできず、養生工程を要することとなる。
 一方、本発明においては、脂肪族アミド化合物に相溶性を示す高沸点可塑剤を併用するため、重合終了後も脂肪族アミド化合物および高沸点可塑剤が均一に分散された状態で系内に存在する。また、高沸点可塑剤は発泡剤にも相溶性を示すため、次いで行われる発泡剤の含浸工程後においても、脂肪族アミド化合物を発泡性複合樹脂粒子内でより均一に分散することができる。その結果、従来行われる養生工程を短縮または省略することができると考えられる。
 本発明においては、先行技術と比べて、養生工程を短縮または省略することができる限り、公知の高沸点可塑剤を使用することができる。高沸点可塑剤としては、例えば、アジピン酸エステル類ではアジピン酸ジブチル、アジピン酸ジイソノニル、アジピン酸ジオクチル、アジピン酸ジイソデシル、アジピン酸ジイソブチル等;フタル酸エステル類ではフタル酸ジオクチル、フタル酸ジブチル、フタル酸ジメチル、フタル酸ジアリル、フタル酸ジイソブチル、フタル酸ジヘキシル等;セバシン酸エステル類ではセバシン酸ジブチル等;グリセリン脂肪酸エステルではモノパルミテート、グリセリンモノベヘネート、グリセリンモノ12-ヒドロキシステアレート、グリセリンモノオレート、グリセリンモノカプリレート、グリセリンモノカプレート、グリセリンモノラウレート等のモノグリセリド、グリセリンジアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンジアセトモノオレート、グリセリンモノアセトモノステアレート等のアセチル化モノグリセライド、コハク酸脂肪酸モノグリセリド、クエン酸脂肪酸モノグリセリド、ジアセチル酒石酸脂肪酸モノグリセリド等の有機酸モノグリセライド等が挙げられる。また、高沸点可塑剤を単独で使用しても2種以上を併用してもよい。本発明においては、グリセリン脂肪酸エステルおよびアジピン酸エステルのいずれかが高沸点可塑剤として好ましい。本発明においては、前記の点に鑑みて、高沸点可塑剤としてグリセリンジアセテトモノラウレートおよびアジピン酸ジイソブチルのいずれかを用いることがより好ましい。
 また、高沸点可塑剤は、通常、発泡性複合樹脂粒子に対して0.2~2.0重量%の割合で含有されることが好ましく、0.3~1.5重量%の割合で含有されることがより好ましい。可塑剤が発泡性複合樹脂粒子に対して0.2重量%より少ない割合で含有される場合、所望の養生工程を短縮または省略することができないことがある。一方、高沸点可塑剤が発泡性複合樹脂粒子に対して2.0重量%より多い割合で含有される場合、得られる発泡成形体の寸法が安定しない等の問題を引き起こすことがある。ここで、発泡性複合樹脂粒子のガスクロマトグラフィ分析により、発泡性複合樹脂粒子中の高沸点可塑剤量を定量することができる。なお、液体クロマトグラフィ分析等によっても前記の定量を行うことができる。
 本発明の発泡性複合樹脂粒子が着色剤を含む場合、より外観が美麗な発泡成形体を得ることができる。
 着色剤としては、所望の物性等に影響を与えない限り、公知の有機系染料、有機系顔料、無機系染料、無機系顔料等をいずれも使用することができる。
 具体的には、カーボンブラック、酸化銅、二酸化マンガン、アニリンブラック、ファーネスブラック等の黒色着色剤;
 黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファストイエロー等の黄色着色剤;
 赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ等の橙色着色剤;
 ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム等の赤色着色剤;
 マンガン紫、ファストバイオレットB、メチルバイオレットレーキ等の紫色着色剤;
 紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー等の青色着色剤;
 クロムグリーン、酸化クロム、ピクメントグリーンB、マイカライトグリーンレーキ等の緑色着色剤;
 亜鉛華、酸化チタン、アンチモン白、硫化亜鉛等の白色着色剤等
を挙げることができる。
 本発明においては、着色剤は発泡性複合樹脂粒子に対して、好ましくは0.01~2.5重量%、より好ましくは0.02~0.25重量%含まれる。着色剤が発泡性複合樹脂粒子に対して、0.01重量%より少ない場合、十分な着色性を得ることができないことがあり、他方、2.5重量%より多い場合、着色剤が十分に分散しないことに起因する色むらが問題となることがある。本発明において着色剤は1種を単独で使用でき、または2種以上の異なる色のものを併用することもできる。また同色であっても、2種以上を併用することもできる。
 本発明においては、所望の物性に影響を与えない限り、発泡性複合樹脂粒子および以下の発泡成形体等は、他に油剤、粉体、フッ素化合物、樹脂、界面活性剤、粘剤、難燃剤、難燃助剤、防腐剤、香料、紫外線防御剤(有機系、無機系を含む。UV-A、Bのいずれに対応していても構わない)、塩類、溶媒、酸化防止剤、キレート剤、中和剤、pH調整剤、昆虫忌避剤等の各種成分を含むこともできる。
 本発明の発泡性複合樹脂粒子は、ポリオレフィン系樹脂粒子中にスチレン系モノマーを含浸重合してポリスチレン系樹脂を生成させることにより得ることができる。ポリオレフィン系樹脂粒子は、公知の方法で得ることができる。例えば、まず、押出機を使用してポリオレフィン系樹脂を溶融押出した後、水中カット、ストランドカット等により造粒することで、ポリオレフィン系樹脂粒子を製造することができる。通常、使用するポリオレフィン系樹脂の形状は、例えば、真球状、楕円球状(卵状)、円柱状、角柱状、ペレット状またはグラニュラー状である。以下では、ポリオレフィン系樹脂粒子をマイクロペレットとも称する。
 次いで、マイクロペレットを重合容器内の水性媒体中に分散させ、スチレン系モノマーをマイクロペレットに含浸させながら重合させる。水性媒体としては、水、水と水溶性溶媒(例えば、アルコール)との混合媒体が挙げられる。
 ポリオレフィン系樹脂粒子へのスチレン系モノマーの含浸は、重合させつつ行うことが好ましい。なお、含浸させた後に重合を行う場合、ポリオレフィン系樹脂粒子の表面近傍でのスチレン系モノマーの重合が起こり易い。また、ポリオレフィン系樹脂粒子中に含浸されなかったスチレン系モノマーが単独で重合して、多量の微粒子状のポリスチレン系樹脂粒子を生成することがある。
 本発明においては、ポリオレフィン系樹脂粒子へスチレン系モノマーを含浸重合させることにより、予備発泡後の表面層に接している気泡と内部の気泡の平均気泡径が大きく異なる発泡性複合樹脂粒子を製造することができる。また、その結果、優れた耐割れ性、成形性等を有する発泡成形体を製造することができる。
 スチレン系モノマーの重合には、油溶性のラジカル重合開始剤を使用できる。重合開始剤としては、スチレン系モノマーの重合に汎用されている重合開始剤を使用できる。例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t-ブチルパーオキシオクトエート、t-ヘキシルパーオキシオクトエート、t-ブチルパーオキシベンゾエート、t-アミルパーオキシベンゾエート、t-ブチルパーオキシビバレート、t-ブチルパーオキシイソプロピルカーボネート、t-ヘキシルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサノエート、ジ-t-ブチルパーオキシヘキサハイドロテレフタレート、2,2-ジ-t-ブチルパーオキシブタン、ジ-t-ヘキシルパーオキサイド、ジクミルパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。なお、これら油溶性のラジカル重合開始剤は、単独で用いても2種以上を併用してもよい。
 重合開始剤を重合容器内の水性媒体に添加する方法としては、種々の方法が挙げられる。例えば、
(1)重合容器とは異なる容器内でスチレン系モノマーに重合開始剤を溶解して含有させ、このスチレン系モノマーを重合容器内に供給する方法、
(2)重合開始剤をスチレン系モノマーの一部、イソパラフィン等の溶剤または可塑剤に溶解させて溶液を作製する。この溶液と、所定量のスチレン系モノマーとを重合容器内に同時に供給する方法、
(3)重合開始剤を水性媒体に分散させた分散液を作製する。この分散液とスチレン系モノマーとを重合容器内に供給する方法
等が挙げられる。前記重合開始剤の使用量は、通常スチレン系モノマーの使用総量の0.02~2.00重量%添加することが好ましい。
 また、スチレン系モノマーをマイクロペレット中にて重合させる際の水性媒体の温度は、特に限定されないが、使用するポリオレフィン系樹脂の融点の-30~+20℃の範囲であることが好ましい。より具体的には、70~140℃が好ましく、80~130℃がより好ましい。さらに、水性媒体の温度は、スチレン系モノマーの重合開始から終了までの間、一定温度であってもよいし、段階的に上昇させてもよい。水性媒体の温度を上昇させる場合には、0.1~2℃/分の昇温速度で上昇させることが好ましい。
 本発明においては、ポリオレフィン系樹脂の存在下、スチレン系モノマーを重合することにより複合樹脂粒子を製造する際、スチレン系モノマーの重合転化率が65%に到達後および重合完結後のいずれかに、脂肪族アミド化合物および高沸点可塑剤を重合系内に加える。
 また、重合転化率は以下の式:
重合転化率(重量%)=100×(M-N)/M
(式中、Mは未反応スチレン系モノマーを含む、用いるスチレン系モノマーの全重量(g)であり、Nは前記未反応スチレン系モノマーの重量(g)である)
で算出する。スチレン系モノマーの重合転化率が65%に到達しない場合に、脂肪族アミド化合物および高沸点可塑剤を重合系内に加えると、得られる予備発泡粒子が芯部を有することがある。この場合、目的とする耐割れ性、成形性を有さない発泡成形体が得られないことがある。なお、重合転化率は反応混合物のガスクロマトグラフィを用いた重合系内のモニター等により測定し得る。
 また、脂肪族アミド化合物および高沸点可塑剤を重合系内に加える場合、適宜それぞれ単独で重合系内に加えてもよく、数回に分けて加えてもよく、脂肪族アミド化合物を高沸点可塑剤およびスチレン系モノマーのいずれかに溶解させた後に加えてもよい。さらに、重合完結後に脂肪族アミド化合物および高沸点可塑剤を加える場合、下記の含浸工程時に適宜加えてもよい。
 本発明において用い得る重合容器の形状および構造としては、従来からスチレン系モノマーの懸濁重合に用いられているものであれば、特に限定されない。同様に、攪拌翼の形状についても特に限定はなく、具体的には、V型パドル翼、ファードラー翼、傾斜パドル翼、平パドル翼、プルマージン翼等のパドル翼、タービン翼、ファンタービン翼等のタービン翼、マリンプロペラ翼のようなプロペラ翼等が挙げられる。これら攪拌翼の内では、パドル翼が好ましい。攪拌翼は、単段翼であっても多段翼であってもよい。重合容器に邪魔板(バッフル)を設けてもよい。
 また、架橋したポリオレフィン系樹脂からなる粒子を使用する場合、架橋は、スチレン系モノマーを含浸させる前に予め行っておいてもよいし、マイクロペレット中にスチレン系モノマーを含浸、重合させている間に行ってもよいし、マイクロペレット中にスチレン系モノマーを含浸、重合させた後に行ってもよい。
 ポリオレフィン系樹脂の架橋に用いられる架橋剤としては、例えば、2,2-ジ-t-ブチルパーオキシブタン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキサン等の有機過酸化物が挙げられる。なお、架橋剤は、単独でも二種以上併用してもよい。また、架橋剤の使用量は、通常、ポリオレフィン系樹脂粒子(マイクロペレット)に対して0.05~1.00重量%が好ましい。
 架橋剤を添加する方法としては、例えば、架橋剤をポリオレフィン系樹脂に直接添加する方法、溶剤、可塑剤またはスチレン系モノマーに架橋剤を溶解させた上で添加する方法、架橋剤を水に分散させた上で添加する方法等が挙げられる。この内、スチレン系モノマーに架橋剤を溶解させた上で添加する方法が好ましい。
 次いで、複合樹脂粒子への発泡剤の含浸方法について説明する。発泡剤の含浸は、複合樹脂粒子100重量部に対して50重量部以上の発泡剤の存在下、かつ、分散媒の不存在に、複合樹脂粒子に発泡剤を接触させることにより行う。本発明においては、発泡剤の含浸工程時に通常併用する水等の分散媒を用いないため、複合樹脂粒子に発泡剤の含浸を効果的に行うことができ、水性媒体の乾燥工程等を要せず、製造コスト等の面からも有効である。また、脂肪族アミド化合物および高沸点可塑剤の分散媒体への溶出を防止することができるため好ましい。高沸点可塑剤は脂肪族アミド化合物および発泡剤と優れた相溶性を示すため、複合樹脂粒子への発泡剤の含浸時、脂肪族アミド化合物の発泡性複合樹脂粒子内での均一化をさらに図り、その結果、養生工程の短縮および省略をより図ることができる。
 本発明の発泡性複合樹脂粒子を得るために、スチレン系モノマーの含浸および重合終了後に発泡剤を含浸させる。発泡剤の含浸は、複合樹脂粒子100重量部に対して50重量部以上の発泡剤存在下で行われる。これは複合樹脂粒子を過剰量の発泡剤に接触または浸漬することで、複合樹脂粒子に発泡剤を含浸させることに対応している。含浸法の一例として、発泡剤と複合樹脂粒子とを混合する方法、複合樹脂粒子が保持された容器中に発泡剤を循環させる方法等が挙げられる。
 ここで、複合樹脂粒子が保持された容器中で発泡剤を循環させる方法としては、発泡剤を貯留する発泡剤供給タンク、発泡剤供給タンクから出た発泡剤の温度を制御(昇温および恒温あるいは冷却)する加温設備、加温設備から出た発泡剤が投入され、かつ、発泡剤を複合樹脂粒子に含浸させる含浸タンク、発泡剤供給タンクからの発泡剤の含浸タンクへの投入を可能にし、かつ、含浸タンクから回収された発泡剤の発泡剤供給タンクへの投入を可能とする循環ポンプを備えた循環式の含浸装置を使用できる。この方法では、含浸タンク内で複合樹脂粒子と発泡剤の接触機会および含浸タンク内の温度を均一にすることができ、含浸終了後に発泡剤を回収して再度利用できる等の点で有効である。
 また、恒温時間をX分、含浸温度をY℃、発泡性複合樹脂粒子の発泡剤の含有量をx重量%とすると、式Y=-[(1/4)x+2]LnX+4x+19が、8.0≦x≦12.0の範囲で成り立つ。Yは25~50℃、Xは10~2000分であることが好ましい。発泡剤の含有量であるxが8.0、10、11および12の場合の含浸温度Yと恒温時間Xとの関係を示す式をプロットした結果を図1に示す。図1中の○は8.0、◇は10、△は11、□は12の場合の実測値を意味している。図1から明らかなように、前記式と実際の測定値とは精度よく一致している。
 本発明においては、好ましくは800~2400μm、より好ましくは1200~2000μmの平均粒子径を有する発泡性複合樹脂粒子が得られる。発泡性複合樹脂粒子の平均粒子径が2400μmより大きい場合、得られる発泡成形体の外観が美麗でないことがある。一方、発泡性複合樹脂粒子の平均粒子径が800μmより小さい場合、所望の倍数を有する発泡成形体を製造することができないことがある。
 先行技術においては、発泡剤を所定温度で所定時間含浸後、発泡剤を除去し、再度、発泡性複合樹脂粒子を密閉容器に充填し、おおよそ12時間以上、70℃以下の環境下で養生工程に付する必要がある。しかしながら、本発明においては、含浸工程終了後に得られる発泡性複合樹脂粒子は系内に均一に発泡剤、脂肪族アミド化合物および高沸点可塑剤を含むと考えられるため、前記の養生工程を短縮または省略することができる。本発明においては、例えば、本発明で得られた発泡性複合樹脂粒子を70℃以下の環境下で養生工程に付した場合、工程時間を3時間以下とすることができる場合がある。従って、本発明の製造方法により、時間的、経済的な観点から発泡性複合樹脂粒子の製造工程を改善することができる。
 次に、発泡性複合樹脂粒子から予備発泡粒子、さらに発泡成形体を得る方法について説明する。発泡剤が含浸された発泡性複合樹脂粒子を、必要に応じて、水蒸気等の加熱媒体を用いて加熱して所定の嵩密度に予備発泡させることで、予備発泡粒子を得ることができる。本発明の予備発泡粒子の嵩倍数は、10~60倍(嵩密度0.017~0.100g/cm3)、好ましくは15~50倍(嵩密度0.020~0.067g/cm3)である。嵩倍数が60倍より大きいと、得られる発泡成形体の耐割れ性が低下することがある。一方、10倍より小さいと、得られる発泡成形体の重量が増加することがある。
 本発明においては、予備発泡粒子の表面から中心を通って2分割した切片の断面を走査型電子顕微鏡で撮影した場合、予備発泡粒子の表皮層に接している気泡の平均気泡径A(以下、平均気泡径Aとも称する)を予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径B(以下、平均気泡径Bとも称する)で除算した値A/B(以下、値A/Bとも称する)が2~6となる。また、値A/Bは好ましくは2~5である。値A/Bが2より低い場合、前記予備発泡粒子から得られる発泡成形体は十分な耐割れ性を有さないことがある。一方、値A/Bが6より高い場合、前記予備発泡粒子から得られる発泡成形体は十分な発泡倍数を得られず、外観が美麗でないことがある。
 本発明の発泡性複合樹脂粒子は系内に均一に脂肪族アミド化合物および高沸点可塑剤を含むため、有芯状態を有する予備発泡粒子は極めて少ない。よって、先行技術において認められる発泡成形体の外観不良、耐割れ性不足等の問題は本発明においては認められない。
 本発明においては、予備発泡粒子を成形機の型内に充填し、加熱して2次発泡させ、予備発泡粒子同士を融着一体化させることにより、所望の形状を有する発泡成形体を得ることができる。前記成形機としては、ポリスチレン系樹脂予備発泡粒子から発泡成形体を製造する際に用いられるEPS成形機等を用いることができる。
 本発明の発泡性複合樹脂粒子はポリエチレン系樹脂のようなポリオレフィン系樹脂を含むため、良好な耐割れ性を有する発泡成形体を得ることができる。ここで、発泡成形体の耐割れ性については、落球衝撃強度を測定することにより評価することができる。
 本発明においては、嵩倍数が30倍である場合、40cm以上の落球衝撃強度を有することで十分な耐割れ性を有する発泡成形体を得ることができる。発泡成形体の落球衝撃強度が40cmより低い場合、発泡成形体の耐割れ性は十分ではなく、発泡成形体は衝撃等により割れ易くなることがある。また、嵩倍数が40倍である場合、30cm以上の落球衝撃強度を有することで十分な耐割れ性を有する発泡成形体を得ることができ、さらに、嵩倍数が50倍である場合、20cm以上の落球衝撃強度を有することで十分な耐割れ性を有する発泡成形体を得ることができる。嵩倍数が30倍である場合と同様に、発泡成形体の落球衝撃強度がそれぞれ30cm、20cmより低い場合、発泡成形体の耐割れ性は十分ではなく、発泡成形体は衝撃等により割れ易くなることがある。
 また、本発明で得られる発泡成形体は、その原料として用いる予備発泡粒子が前記の構造を有するため、発泡成形体表面にピンホール(くぼみ)等の少ない平滑性(ノビ)、即ち成形性に極めて優れたものである。
 従って、得られる発泡成形体は、家電製品等の緩衝材(クッション材)、電子部品、各種工業資材、食品等の搬送容器等の用途に用いることができる。
 以下実施例を挙げてさらに説明するが、本発明は、これら実施例により限定されるものではない。以下に各種製造条件および測定方法を説明する。
 <予備発泡条件>
 スチームで予熱した常圧予備発泡機(積水工機製作所社製SKK-70)に発泡性複合樹脂粒子を10~15kg投入し、攪拌しながら約0.02MPaの設定でスチームを導入しつつ、空気も供給して、約2~3分間で所定の嵩密度(嵩倍数)まで発泡させる。
 <型内成形条件>
 予備発泡粒子を成形機の金型内に充填し、次の条件でスチーム加熱および冷却した後に発泡成形体を金型から取り出す。
成形機:積水工機製作所社製ACE-3SP
金型寸法:300mm(幅)×400mm(長さ)×50mm(厚さ)
成形条件 金型加熱:5秒
     一方加熱:10秒
    逆一方加熱:5秒
     両面加熱:20秒
       水冷:40秒
     真空冷却:最高面圧が0.01kgf/cm2以下になるまで
  設定スチーム圧:0.6~1.0kgf/cm2
 <複合樹脂粒子中のスチレン系モノマーの重合転化率>
 重合転化率は以下の式で算出する。
 重合転化率(重量%)=100×(M-N)/M
 Mは未反応スチレン系モノマーを含む、用いるスチレン系モノマーの全重量(g)であり、Nは前記未反応スチレン系モノマーの重量(g)である。Nは、例えば、ガスクロマトグラフィ等により定量される。ガスクロマトグラフィによるスチレン系モノマーの定量は、複合樹脂粒子をN,N-ジメチルホルムアミドに溶解し、内部標準液(シクロペンタノール)を加えて測定する。
 ガスクロマトグラフィの測定条件
 装置:島津製作所社製 GC-14A
 カラム:ジーエルサイエンス社製 PEG-20M PT25% 60/80(I.D.3mmφ×2m)
 カラム温度:95℃で25分間保持
 検出器温度:220℃
 注入口温度:220℃
 キャリアーガス:窒素
 キャリアーガス流量:40ml/min
 <発泡性複合樹脂粒子中の脂肪族アミド化合物含有量>
 細断した発泡性複合樹脂粒子0.1gをガラス製抽出円筒フィルターに精秤し、クロロホルムで10時間ソックスレー抽出することにより、脂肪族アミド化合物成分を抽出する。次いで、クロロホルムを除去した後、クロロホルム/ヘキサフルオロイソプロパノール(HFIP)混合溶液に再度溶解させることにより分析試料とする。得られる分析試料をガスクロマトグラフィ質量分析-選択イオン検出法(GCMS-SIM法)により脂肪族アミド化合物の定量分析を行う。
 ガスクロマトグラフィの測定条件
 装置:島津製作所社製 GCMS-QP5050A
 カラム:Ultra ALLOY+-1 0.15μm 0.25φ×15w
 カラム温度:10℃/分で200℃から380℃まで昇温し、380℃で保持
 キャリアーガス:ヘリウム
 キャリアーガス流量:1.4ml/min
 注入法:スプリット法 1.5
 イオン化法:EI法 70eV
 選択イオン:m/z=30
 注入量:1μl
 <発泡性複合樹脂粒子中の高沸点可塑剤含有量>
 本発明においては、以下のガスクロマトグラフィ分析によりグリセリンジアセテトモノラウレート以外の高沸点可塑剤含有量を分析した。
 発泡性複合樹脂粒子0.1gを約80℃の熱トルエン10mlに加え、5時間加熱することにより試料を完全に溶解させる。次いでメタノール40mlで再沈澱させた後、溶液に1時間攪拌を加える。その後、No5濾紙を用いて溶液を濾過し、内部標準液(シクロペンタノール)を加え、メタノールを用いてメスアップすることにより分析試料を作製する。得られる分析試料をガスクロマトグラフィ分析することにより、高沸点可塑剤含有量を定量する。
 ガスクロマトグラフィの測定条件
 装置:島津製作所社製 GCMS-QP5050A
 カラム:J&W社製DB-5(0.25μm×0.25mmφ×30m)
 カラム温度:70℃で1分間保持した後、15℃/分で260℃まで昇温し、次いで10℃/分で300℃まで昇温し、300℃で3分間保持
 検出器温度:280℃
 注入口温度:240℃
 キャリアーガス:ヘリウム
 キャリアーガス流量:1.2ml/min
 また、以下の液体クロマトグラフィ分析によりグリセリンジアセテトモノラウレートについての高沸点可塑剤含有量を分析した。
 発泡性複合樹脂粒子0.2gを約80℃の熱トルエン20mlに加え、5時間加熱することにより試料を完全に溶解させる。次いでメタノール70mlで再沈澱させた後、溶液を1時間攪拌する。その後、No5濾紙を用いて溶液を濾過し、濾液を蒸発乾固させる。再度メタノールに溶解後、20mlにメスアップする。メスアップ液を水系0.45μmクロマトディスクで濾過後、液体クロマトグラフィ分析することにより、高沸点可塑剤含有量を定量する。
 液体クロマトグラフィの測定条件
 装置:島津製作所社製 LC-10Avp
 カラム:TOSOH製 TSKgel ODS-80TS QA (4.6×150)
 カラム温度:40℃
 移動相:メタノール
 移動相流量:0.7ml/min
 ポンプ温度:室温
 測定時間:10min
 検出:光散乱
 注入量:50μl
 検出器:Altech社製 ELSD-2000
 Drift Tube温度:60℃
 ガス流量:1.6ml/min
 <発泡性複合樹脂粒子の発泡剤含有量>
 発泡性複合樹脂粒子を5~20mg精秤することにより、測定試料を作製する。この測定試料を180~200℃に保持された熱分解炉(島津製作所社製:PYR-1A)にセットし、測定試料を密閉後、120秒間に亘って加熱して発泡剤成分を放出させる。この放出される発泡剤成分をガスクロマトグラフィ(島津製作所社製:GC-14B、検出器:FID)を用いて下記条件にて発泡剤成分のチャートを得る。予め測定しておいた発泡剤成分の検量線に基づいて、得られたチャートから発泡性複合樹脂粒子中の発泡剤含有量(重量%)を算出する。
ガスクロマトグラフィの測定条件
 装置:島津製作所社製 GC-14B
 カラム:信和化工社製 Shimalite 60/80 NAW (φ3mm×3m)
 カラム温度:70℃
 検出器温度:110℃
 注入口温度:110℃
 キャリアーガス:窒素
 キャリアーガス流量:60ml/min
 <発泡性複合樹脂粒子の平均粒子径>
 平均粒子径の大きさはマルチサイザーII(ベックマンコールター社製)で測定する値である。測定方法はCoulter Electronics Limited発行のReference MANUAL FOR THE COULTER MULTISIZER(1987)に従って、50μmアパチャーを用いてキャリブレーションを行い測定する。
 具体的には、発泡性複合樹脂粒子0.1gを0.1%ノニオン系界面活性剤溶液10ml中にタッチミキサーおよび超音波を用いて予備分散させ、これを本体備え付けの、ISOTON II(ベックマンコールター社製:測定用電解液)を満たすビーカー中に、緩く攪拌しながらスポイドで滴下して、本体画面の濃度計の示度を10%前後に合わせる。次にマルチサイザーII本体にアパチャーサイズを100μm、Currentを1600、Gainを2、Polarityを+と入力(アパチャーサイズ等は必要に応じて変更して入力可能である)してmanualで測定を行う。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、発泡性複合樹脂粒子を10万個測定する点で測定を終了する。平均粒子径はこの測定値の平均値である。
 <予備発泡粒子の嵩密度および嵩倍数>
 約5gの予備発泡粒子の重量(a)を小数以下2位で秤量する。次に、最小メモリ単位が5cm3である500cm3メスシリンダーに秤量した予備発泡粒子を入れ、これにメスシリンダーの口径よりやや小さい円形の樹脂板であって、その中心に巾約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてて、予備発泡粒子の体積(b)を読み取り、式(a)/(b)により予備発泡粒子の嵩密度(g/cm3)を求める。なお、嵩倍数は、嵩密度の逆数、即ち、式(b)/(a)とする。
 <予備発泡粒子の平均気泡径>
 ASTM D2842-69の試験方法に準拠し以下のように測定する。まず、嵩倍数10~60倍、好ましくは嵩倍数15~50倍に予備発泡させた予備発泡粒子を製造する。次に、任意に予備発泡粒子を10個採取し、それぞれ剃刀により表面から中心を通って2分割する。2分割した切片の断面を走査型電子顕微鏡(日立製作所社製S-3000N)で15~30倍(場合により200倍)に拡大して撮影する。次に、撮影した画像をA4用紙上に1画像づつ印刷する。印刷された画像から、図2に示すように、表皮層の長さとこの表皮層に接している気泡数と、半径の1/2の点を通る曲線の長さとこの曲線上の気泡数を計測する(曲線に接している気泡も計測する)。
 計測結果から下記式により気泡の平均弦長(t)を算出する。ただし、任意の直線は、できる限り気泡が接点でのみ接しないようにする(接してしまう場合は気泡数に含める)。
平均弦長t=線長/(気泡数×写真の倍率)
 そして、気泡弦長tを用いて、次式により個々の粒子の気泡径を算出する。
気泡径D=t/0.616
 さらに、それらの算術平均を平均気泡径とする。
平均気泡径(mm)=(気泡径n=1+気泡径n=2+…+気泡径n=10)/10
 <予備発泡粒子のポリスチレン系樹脂比率>
 吸光度比(A698/A2850)を下記の要領で測定し、予備発泡粒子あるいは発泡成形体のポリスチレン系樹脂比率を測定することを目的とする。
 予備発泡粒子の場合、任意に10個採取し、それぞれ剃刀により表面から中心を通って2分割し、2分割した切片の断面をATR法赤外分光分析することにより赤外吸収スペクトルを得る。
 発泡成形体の場合、発泡成形体より任意に粒子を10個採取し、それぞれ剃刀により表面から中心を通って2分割し、2分割した切片の断面をATR法赤外分光分析することにより赤外吸収スペクトルを得る。
 ここで粒子中心部の測定では、各予備発泡粒子を2等分(例えば、粒子径5mmの予備発泡粒子を2.5±0.5mmに切断する)し、さらにその断面にATRプリズムを密着させて測定する。
 各赤外吸収スペクトルから吸光度比(A698/A2850)をそれぞれ算出し、最小の吸光度比と最大の吸光度比を除外する。そして、残余8個の吸光度比の相加平均を吸光度比(A698/A2850))とする。なお、吸光度は、Nicolet社から商品名「フーリエ変換赤外分光光度計 MAGNA560」で販売されている測定装置を用いて測定する。
 標準試料は、次の方法により得る。まず、組成割合(ポリスチレン系樹脂/ポリエチレン系樹脂)が下記比率になるように測定しようとする複合樹脂粒子に含まれるものと同じ組成のポリスチレン系樹脂およびポリエチレン系樹脂を合計2g精秤する。
 組成割合(PS/PE;重量比):0/10=PE系樹脂のみ、1/9、2/8、3/7、4/6、5/5、6/4、7/3、8/2、10/0=PS樹脂のみ
 これを小型射出成形機にて下記条件に加熱混練して、直径が25mmでかつ高さが2mmの円柱状に成形することによって標準試料を得る。
 なお、小型射出成形機としては、例えば、CSI社から商品名「CS-183」で販売されているものを用い、例えば、下記の条件で成形できる。
射出成形条件:加熱温度200~250℃、混練時間10分
 前記比率の標準試料の吸光度比を前記測定装置で測定し、ポリスチレン系樹脂比率(重量%)と吸光度比(A698/A2850)の関係をグラフ化することで、図8の検量線が得られる。
 図8において、ポリスチレン系樹脂比率が30重量%以下の場合、検量線は下記の式(1)で近似される。
Y=21.112X   (1)
 また、図8において、ポリスチレン系樹脂比率が30重量%より多く80重量%未満の場合、検量線は下記の式で近似される。
Y=28.415Ln(X)+20.072   (2)
 さらに、図8において、ポリスチレン系樹脂比率が80重量%以上の場合、検量線は下記の式で近似される。
Y=12.577Ln(X)+53.32   (3)
 なお、前記式において、Xは吸光度比(A698/A2850)を示し、Yはポリスチレン系樹脂比率を示す。
 予備発泡粒子または発泡成形体試料のポリスチレン系樹脂比率(重量%)が、図8の検量線に基づいて算出される。
<予備発泡粒子の有芯評価方法>
 ASTM D2842-69の試験方法に準拠し、以下のように予備発泡粒子の平均気泡径を測定する。
 嵩倍数30倍、40倍または50倍に予備発泡し、この予備発泡粒子を任意に50個採取し、それぞれ剃刀により表面から中心を通って2分割し、2分割した切片の断面を走査型電子顕微鏡(日立製作所社製S-3000N)で15~30倍(場合により200倍)に拡大して撮影する。
 次に撮影した画像をA4用紙上に1画像ずつ印刷する。印刷された画像から図10に示すように半径の4/5の点を通る曲線の長さとこの曲線上の気泡数を計測する(曲線に接している気泡も計測する)。同様に半径の1/5の点を通る曲線の長さとこの曲線上の気泡数を計測する(曲線に接している気泡も計測する)。計測結果から次式により気泡の平均弦長(t)をそれぞれ算出する。
   平均弦長(t)=線長/(気泡数×写真の倍率)
 そして、平均弦長(t)を用いて、次式により予備発泡粒子の断面の半径の4/5の点を通る曲線上の平均気泡径(P)と半径の1/5の点を通る曲線上の平均気泡径(Q)を算出する。
   平均気泡径(mm)=t/0.616
 予備発泡粒子断面の半径の4/5の点を通る曲線上の平均気泡径(P)と半径の1/5の点を通る曲線上の平均気泡径(Q)の比率(P/Q)が5以上のとき、この予備発泡粒子は有芯であると判断する(例えば、図9参照)。
 また、予備発泡粒子断面の中心付近に明確な気泡が確認できない場合も有芯であると判断する。
 以上を任意に採取した予備発泡粒子50個についてそれぞれ測定し、有芯である予備発泡粒子の混入割合が10%未満を合格、10%以上を不合格とする。
 <発泡成形体の密度および倍数>
 発泡成形体(成形後、40℃で20時間以上乾燥させたもの)から切り出した試験片(例75×300×35mm)の重量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(g/cm3)を求める。なお、倍数は密度の逆数、すなわち式(b)/(a)とする。
 <発泡成形体の落球衝撃強度>
 JIS K 7211に準拠し、所定の倍数の発泡成形体から切り出した215mm(長さ)×40mm(幅)×20mm(厚さ)の試験片を支点間の間隔150mmの上に載置して、321gの剛球を落とし、落球衝撃強度、即ち、50%破壊高さを次の計算式により算出する。なお、試験片は、6面とも表皮はないものとする。
H50=Hi+d[Σ(i・ni)/N±0.5]
H50:50%破壊高さ(cm)
Hi:高さ水準(i)が0のときの試験高さ(cm)であり、試験片が破壊することが予測される高さ
d:試験高さを上下させるときの高さ間隔(cm)
i:Hiのときを0とし、1つずつ増減する高さ水準
(i=…-3、-2、-1、0、1、2、3…)
ni:各水準において破壊した(または破壊しなかった)試験片の数
N:破壊した(または破壊しなかった)試験片の総数(N=Σni)(いずれか多いほうのデータを使用する。なお、同数の場合はどちらを使用してもよい)
±0.5:破壊したデータを使用するときは負を、破壊しなかったデータを使用するときは正をとる。
 <発泡成形体表面のノビ(平滑性)評価>
 所定の嵩倍数の発泡成形体から任意に50mm×50mmの表皮付き試験片を切り出し、試験片表面(表皮面)の粒子間の個数を計測する。計測する粒子間とは、予備発泡粒子が3個以上で接している接点のことをいう。次に粒子間のピンホール(くぼみ)の個数を計測する。
 上記の計測結果から下記式により発泡成形体表面のノビ(平滑性)を算出する。
発泡成形体のノビ(平滑性)=(1-粒子間ピンホール個数/全粒子間個数)×5
 判定基準は、発泡成形体のノビが4以上を合格、4未満を不合格とする。
 実施例1
 エチレン・酢酸ビニル共重合体樹脂粒子(日本ユニカー社製NUC-3450)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(エチレン・酢酸ビニル共重合体樹脂粒子は、100粒あたり40mgに調整した)。このエチレン・酢酸ビニル共重合体樹脂粒子14kgを攪拌機付100Lオートクレーブに入れた。さらに、水性媒体として、純水45kg、ピロリン酸マグネシウム315gおよびドデシルベンゼンスルホン酸ソーダ1.35gを加えた。得られた混合物を、攪拌することで水性媒体の懸濁液とし、10分間、常温(約25℃)に保持し、その後60℃に昇温した。次いで、この懸濁液に、ジクミルパーオキサイド7.2gを溶解させたスチレンモノマー6.0kgを30分間かけて滴下した。滴下後、30分間、60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後130℃に昇温し、この温度で2時間攪拌を続けた。
 その後、90℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ15gを加えた。その後、重合開始剤としてベンゾイルパーオキサイド39.9g、t-ブチルパーオキシベンゾエート3.15gと架橋剤としてのジクミルパーオキサイド102.2gとを溶解したスチレンモノマー5kgを2時間かけて滴下した。次いで、スチレンモノマー10kgを1時間45分間かけて滴下しつつ、スチレンモノマーの重合転化率が67.4重量%の時点から、エチレンビスステアリン酸アミド(花王社製カオーワックスEB-FF;脂肪族アミド化合物)105gを溶解したグリセリンジアセテトモノラウレート(本発明において、GALとも称する;高沸点可塑剤)(理研ビタミン社製PL-012R、SP値9.4、沸点285℃)3.5kgを30分かけて滴下した。滴下終了後、90℃で1時間30分間保持し、次いで、143℃に昇温し、その温度で2時間30分間保持して重合を完結させた。その後、常温まで冷却し、粒子を取り出した。以上の工程により、エチレン・酢酸ビニル共重合体樹脂粒子100重量部に対してスチレン系モノマーを150重量部使用した複合樹脂粒子を得た。
 この複合樹脂粒子2kgおよびイソペンタン2kgを耐圧攪拌機付5Lオートクレーブに投入し、35℃に昇温し、その温度で360分間撹拌した。その後、室温まで冷却して発泡性複合樹脂粒子を取り出した。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して11.01重量%、0.27重量%および0.95重量%であった。発泡性複合樹脂粒子の平均粒子径は1100μmであった。
 次いで発泡性複合樹脂粒子を養生工程に付することなく、嵩倍数30倍を狙って予備発泡させることで、嵩倍数30倍の予備発泡粒子を得た。
 予備発泡粒子の、平均気泡径Aは1060μmであり、平均気泡径Bは230μmであり、値A/Bは4.6であった。
 また、有芯である予備発泡粒子の混入割合は2%であった。
 得られた予備発泡粒子を1日間室温に放置した後、400mm(長さ)×300mm(幅)×50mm(厚さ)の大きさの成形用金型内に入れた。この金型に、0.8kgf/cm2の水蒸気を40秒間導入して加熱した。その後、発泡成形体の最高面圧が0.1kgf/cm2に低下するまで冷却して、倍数30倍の発泡成形体を取り出した。
 発泡成形体の落球衝撃強度は、46.5cmであった。
 また、発泡成形体のノビは5.0であり、その外観は美麗であった。
 実施例2
 エチレン・酢酸ビニル共重合体樹脂粒子(日本ポリエチレン社製LV-115)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(エチレン・酢酸ビニル共重合体樹脂粒子は、100粒あたり80mgに調整した)。このエチレン・酢酸ビニル共重合体樹脂粒子10.5kgを攪拌機付100Lオートクレーブに入れた。さらに、水性媒体として、純水45kg、ピロリン酸マグネシウム315gおよびドデシルベンゼンスルホン酸ソーダ1.6gを加えた。得られた混合物を、攪拌することで水性媒体の懸濁液とし、10分間、常温(約25℃)に保持し、その後60℃に昇温した。次いで、この懸濁液に、ジクミルパーオキサイド5.4gを溶解させたスチレンモノマー4.5kgを30分間かけて滴下した。滴下後、30分間、60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後130℃に昇温し、この温度で1時間45分間攪拌を続けた。
 その後、90℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ11.4gを加えた。その後、重合開始剤としてベンゾイルパーオキサイド39.2g、t-ブチルパーオキシベンゾエート4.9gと架橋剤としてのジクミルパーオキサイド115.5gとを溶解したスチレンモノマー6.2kgを2時間かけて滴下した。次いで、スチレンモノマー13.8kgを2時間かけて滴下後、スチレンモノマーの重合転化率が89.0重量%の時点から、エチレンビスステアリン酸アミド280gを溶解したGAL1.75kgを30分かけて滴下した。滴下終了後、90℃で30分間保持し、次いで、143℃に昇温し、その温度で2時間保持して重合を完結させた。その後、常温まで冷却し、粒子を取り出した。以上の工程により、エチレン・酢酸ビニル共重合体樹脂粒子100重量部に対してスチレン系モノマーを233重量部使用した複合樹脂粒子を得た。
 この複合樹脂粒子15kgを容量32Lの図3の含浸タンクに充填した。ペンタン供給タンクより18℃、17kgのイソペンタンを1m3/hrの循環ポンプを使用して含浸タンクに供給した。含浸タンク中のペンタンの液面は、複合樹脂粒子が十分浸漬し得る位置とした。含浸タンクの底部のスクリーンは、複合樹脂粒子の最小粒径0.7mmに対し、目開き0.3mmの網を使用した。加温設備の熱媒側の出口温度が41℃となるように熱媒温度を制御し、ペンタンの循環を実施した。含浸タンク内部の温度を40℃に維持し、そのまま120分間ペンタンの循環を継続した。120分間経過後、加温設備への熱媒の供給・温度制御を停止し、代わって、加温設備に冷媒を供給し、循環しているペンタンを冷却した。約20分後、含浸タンクの温度は、20℃まで低下した。
 その後、三方弁の切り替えを行い、循環しているペンタンをペンタン供給タンクに回収した。前記操作終了後、含浸タンクの内部から発泡性複合樹脂粒子を取り出し、発泡性複合樹脂粒子を16.5kg得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して10.81重量%、0.75重量%および0.46重量%であった。発泡性複合樹脂粒子の平均粒子径は1410μmであった。
 次いで発泡性複合樹脂粒子を養生工程に付することなく、嵩倍数50倍を狙って予備発泡させることで、嵩倍数50倍の予備発泡粒子を得た。
 予備発泡粒子の、平均気泡径Aは710μmであり、平均気泡径Bは320μmであり、値A/Bは2.2であった。
 また、有芯である予備発泡粒子の混入割合は8%であった。
 得られた予備発泡粒子を1日間室温に放置した後、400mm(長さ)×300mm(幅)×50mm(厚さ)の大きさの成形用金型内に入れた。この金型に、0.8kgf/cm2の水蒸気を40秒間導入して加熱した。その後、発泡成形体の最高面圧が0.1kgf/cm2に低下するまで冷却して、倍数50倍の発泡成形体を取り出した。
 発泡成形体の落球衝撃強度は、23.5cmであった。
 また、発泡成形体のノビは4.5であり、その外観は美麗であった。
 実施例3
 エチレン・酢酸ビニル共重合体樹脂粒子(日本ユニカー社製NUC-3450)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(エチレン・酢酸ビニル共重合体樹脂粒子は、100粒あたり40mgに調整した)。このエチレン・酢酸ビニル共重合体樹脂粒子14kgを攪拌機付100Lオートクレーブに入れた。さらに、水性媒体として、純水45kg、ピロリン酸マグネシウム315gおよびドデシルベンゼンスルホン酸ソーダ1.35gを加えた。得られた混合物を、攪拌することで水性媒体の懸濁液とし、10分間、常温(約25℃)に保持し、その後60℃に昇温した。次いで、この懸濁液に、ジクミルパーオキサイド7.2gを溶解させたスチレンモノマー6.0kgを30分間かけて滴下した。滴下後、30分間、60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後130℃に昇温し、この温度で2時間攪拌を続けた。
 その後、90℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ15gを加えた。その後、重合開始剤としてベンゾイルパーオキサイド39.9g、t-ブチルパーオキシベンゾエート3.15gと架橋剤としてのジクミルパーオキサイド102.2gとを溶解したスチレンモノマー5kgを2時間かけて滴下した。次いで、スチレンモノマー10kgを1時間45分間かけて滴下した。滴下終了後、90℃で1時間30分間保持し、次いで、143℃に昇温し、その温度で2時間30分間保持して重合を完結させた。その後、80℃まで反応液を冷却し、エチレンビスステアリン酸アミド210gを溶解したGAL1.75kgを系内に加えた。次いで、143℃に再度昇温し、その温度で1時間30分間保持し、常温まで冷却した後、複合樹脂粒子を取り出した。以上の工程により、エチレン・酢酸ビニル共重合体樹脂粒子100重量部に対してスチレン系モノマーを150重量部使用した複合樹脂粒子を得た。
 この複合樹脂粒子15kgを容量32Lの図3の含浸タンクに充填した。ペンタン供給タンクより18℃、17kgのイソペンタンを1m3/hrの循環ポンプを使用して含浸タンクに供給した。含浸タンク中のペンタンの液面は、複合樹脂粒子が十分浸漬し得る位置とした。含浸タンクの底部のスクリーンは、複合樹脂粒子の最小粒径0.7mmに対し、目開き0.3mmの網を使用した。加温設備の熱媒側の出口温度が36℃となるように熱媒温度を制御し、ペンタンの循環を実施した。含浸タンク内部の温度を35℃に維持し、そのまま360分間ペンタンの循環を継続した。360分間経過後、加温設備への熱媒の供給・温度制御を停止し、代わって、加温設備に冷媒を供給し、循環しているペンタンを冷却した。約20分後、含浸タンクの温度は、20℃まで低下した。
 その後、三方弁の切り替えを行い、循環しているペンタンをペンタン供給タンクに回収した。前記操作終了後、含浸タンクの内部から発泡性複合樹脂粒子を取り出し、発泡性複合樹脂粒子を16.5kg得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して10.78重量%、0.66重量%および0.45重量%であった。発泡性複合樹脂粒子の平均粒子径は1150μmであった。
 次いで発泡性複合樹脂粒子を養生工程に付することなく、嵩倍数30倍を狙って予備発泡させることで、嵩倍数30倍の予備発泡粒子を得た。
 予備発泡粒子の、平均気泡径Aは760μmであり、平均気泡径Bは280μmであり、値A/Bは2.7であった。
 また、有芯である予備発泡粒子の混入割合は2%であった。
 得られた予備発泡粒子を1日間室温に放置した後、400mm(長さ)×300mm(幅)×50mm(厚さ)の大きさの成形用金型内に入れた。この金型に、0.8kgf/cm2の水蒸気を40秒間導入して加熱した。その後、発泡成形体の最高面圧が0.1kgf/cm2に低下するまで冷却して、倍数30倍の発泡成形体を取り出した。
 発泡成形体の落球衝撃強度は、43.0cmであった。
 また、発泡成形体のノビは4.5であり、その外観は美麗であった。
 実施例4
(1)エチレンビスステアリン酸アミド210gをエチレンビスステアリン酸アミド52.5gに、
(2)GAL1.75kgをアジピン酸ジイソブチル(本発明において、DIBAとも称する;高沸点可塑剤)(田岡化学工業社製DI4A、SP値8.9、沸点293℃)1.75kgに変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して10.89重量%、0.13重量%および0.43重量%であった。発泡性複合樹脂粒子の平均粒子径は1150μmであった。
 予備発泡粒子の、平均気泡径Aは1150μmであり、平均気泡径Bは260μmであり、値A/Bは4.4であった。
 また、有芯である予備発泡粒子の混入割合は3%であった。
 発泡成形体の落球衝撃強度は、46.0cmであった。
 また、発泡成形体のノビは5.0であり、その外観は美麗であった。
 実施例5
(1)含浸工程時のイソペンタン17kgをイソペンタン13.6kgおよびノルマルペンタン3.4kgに、
(2)含浸工程時の含浸条件35℃、360分間の循環を25℃、1080分間の循環に、
(3)エチレンビスステアリン酸アミド210gをエチレンビスステアリン酸アミド105gに、
(4)GAL1.75kgをGAL3.5kgに
変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して10.11重量%、0.74重量%および0.96重量%であった。発泡性複合樹脂粒子の平均粒子径は1150μmであった。
 予備発泡粒子の、平均気泡径Aは480μmであり、平均気泡径Bは210μmであり、値A/Bは2.3であった。
 また、有芯である予備発泡粒子の混入割合は1%であった。
 発泡成形体の落球衝撃強度は、46.5cmであった。
 また、発泡成形体のノビは5.0であり、その外観は美麗であった。
 実施例6
(1)スチレン系モノマー重合工程時のエチレン・酢酸ビニル共重合体樹脂粒子14kgおよびスチレンモノマー21kgをエチレン・酢酸ビニル共重合体樹脂粒子10.5kgおよびスチレンモノマー24.5kgに、
(2)含浸工程時の含浸条件35℃、360分間の循環を40℃、45分間の循環に、
(3)エチレンビスステアリン酸アミド210gをエチレンビスステアリン酸アミド105gに、
(4)GAL1.75kgをGAL1.4kgに、
(5)予備発泡工程時の予備発泡粒子の嵩倍数30倍を50倍に、
(6)型枠発泡工程時の発泡成形体の倍数30倍を50倍に
変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して8.70重量%、0.26重量%および0.34重量%であった。発泡性複合樹脂粒子の平均粒子径は1410μmであった。
 予備発泡粒子の、平均気泡径Aは660μmであり、平均気泡径Bは290μmであり、値A/Bは2.3であった。
 また、有芯である予備発泡粒子の混入割合は5%であった。
 発泡成形体の落球衝撃強度は、22.5cmであった。
 また、発泡成形体のノビは5.0であり、その外観は美麗であった。
 実施例7
(1)スチレン系モノマー重合工程時のエチレン・酢酸ビニル共重合体樹脂粒子14kgおよびスチレンモノマー21kgを直鎖状低密度ポリエチレン系樹脂粒子(日本ポリエチレン社製NF-464A)7kgおよびスチレンモノマー28kgに、
(2)エチレンビスステアリン酸アミド210gをエチレンビスステアリン酸アミド350gに、
(3)GAL1.75kgをGAL5.25kgに、
(4)予備発泡工程時の予備発泡粒子の嵩倍数30倍を40倍に、
(5)型枠発泡工程時の発泡成形体の倍数30倍を40倍に
変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して11.10重量%、0.90重量%および1.39重量%であった。発泡性複合樹脂粒子の平均粒子径は1570μmであった。
 予備発泡粒子の、平均気泡径Aは470μmであり、平均気泡径Bは200μmであり、値A/Bは2.4であった。
 また、有芯である予備発泡粒子の混入割合は0%であった。
 発泡成形体の落球衝撃強度は、48.5cmであった。
 また、発泡成形体のノビは5.0であり、その外観は美麗であった。
 実施例8
(1)含浸工程時の含浸条件35℃、360分間の循環を40℃、240分間の循環に、
(2)エチレンビスステアリン酸アミド210gをエチレンビスオレイン酸アミド(日本油脂社製アルフローAD-281F;脂肪族アミド化合物)105gに、
(3)GAL1.75kgをDIBA1.75kgに、
(4)予備発泡工程時の予備発泡粒子の嵩倍数30倍を50倍に、
(5)型枠発泡工程時の発泡成形体の倍数30倍を50倍に
変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して11.85重量%、0.27重量%および0.41重量%であった。発泡性複合樹脂粒子の平均粒子径は1150μmであった。
 予備発泡粒子の、平均気泡径Aは1470μmであり、平均気泡径Bは390μmであり、値A/Bは3.8であった。
 また、有芯である予備発泡粒子の混入割合は2%であった。
 発泡成形体の落球衝撃強度は、40.5cmであった。
 また、発泡成形体のノビは4.5であり、その外観は美麗であった。
 実施例9
 高密度ポリエチレン(東ソー社製、製品名09S53B)[(1)エチレン単独重合体またはエチレンと炭素数3~8のα-オレフィンとの共重合体、(2)密度936g/cm3、(3)2.16kg加重時のMFR(メルトフローレート)が10分、(4)MS(160℃での溶融張力(mN))>90-130log(MFR)]100重量部を押出機に供給し、溶融混練し、水中カット方式により造粒ペレット化することにより、球状(卵状)の高密度ポリエチレン系樹脂粒子を得た(100粒あたり40mgに調整した)。次いで、攪拌機付100Lオートクレーブに前記高密度ポリエチレン系樹脂粒子10.5kgを入れ、水性媒体として純水45kg、ピロリン酸マグネシウム400gおよびドデシルベンゼンスルホン酸ソーダ4gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水系懸濁液とした。次いで、この懸濁液中にジクミルパーオキサイド10.5gを溶解させたスチレンモノマー5.2kgを30分間かけて滴下した。滴下後30分間保持し、130℃に昇温し、この温度で2時間攪拌を続けた。
 その後、120℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ160gを加え、10分間保持した後、重合開始剤としてのジクミルパーオキサイド73.5gを溶解したスチレンモノマー19.3kgを5時間30分かけて滴下した。この滴下終了後、120℃で1時間保持した後、140℃に昇温し、3時間保持して重合を完結した。その後、80℃まで反応液を冷却し、エチレンビスステアリン酸アミド280gを溶解したGAL1.75kgを系内に加えた。次いで、143℃に再度昇温し、その温度で1時間30分間保持し、常温まで冷却した後、複合樹脂粒子を取り出した。以上の工程により、高密度ポリエチレン系樹脂粒子100重量部に対してスチレン系モノマー233重量部使用した複合樹脂粒子を得た。
 この複合樹脂粒子を使用し、実施例3と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して10.90重量%、0.75重量%および0.44重量%であった。発泡性複合樹脂粒子の平均粒子径は1150μmであった。
 次いで発泡性複合樹脂粒子を養生工程に付することなく、嵩倍数50倍を狙って予備発泡させることで、嵩倍数50倍の予備発泡粒子を得た。
 予備発泡粒子の、平均気泡径Aは1100μmであり、平均気泡径Bは320μmであり、値A/Bは3.4であった。
 また、有芯である予備発泡粒子の混入割合は4%であった。
 得られた予備発泡粒子を1日間室温に放置した後、400mm(長さ)×300mm(幅)×50mm(厚さ)の大きさの成形用金型内に入れた。この金型に、0.9kgf/cm2の水蒸気を40秒間導入して加熱した。その後、発泡成形体の最高面圧が0.1kgf/cm2に低下するまで冷却して、倍数50倍の発泡成形体を取り出した。
 発泡成形体の落球衝撃強度は29.5cmであった。
 また、発泡成形体のノビは4.5であり、その外観は美麗であった。
 実施例10
 ポリプロピレン系樹脂(プライムポリマー社製、製品名F-744NP、融点140℃)100重量部を押出機に供給し、溶融混練し、水中カット方式により造粒ペレット化することにより、球状(卵状)のポリプロピレン系樹脂粒子を得た(100粒あたり80mgに調整した)。次いで、攪拌機付100Lオートクレーブに前記ポリプロピレン系樹脂粒子14kgを入れ、水性媒体として純水45kg、ピロリン酸マグネシウム400gおよびドデシルベンゼンスルホン酸ソーダ4gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水系懸濁液とした。次いで、この懸濁液中にジクミルパーオキサイド14gを溶解させたスチレンモノマー7kgを30分間かけて滴下した。滴下後30分間保持し、140℃に昇温し、この温度で2時間攪拌を続けた。
 その後、125℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ160gを加え、10分間保持した後、重合開始剤としてのジクミルパーオキサイド73.5gを溶解したスチレンモノマー14kgを5時間30分かけて滴下した。この滴下終了後、125℃で1時間保持した後、140℃に昇温し、3時間保持して重合を完結した。その後、80℃まで反応液を冷却し、エチレンビスステアリン酸アミド350gを溶解したGAL1.75kgを系内に加えた。次いで、143℃に再度昇温し、その温度で1時間30分間保持し、常温まで冷却した後、複合樹脂粒子を取り出した。以上の工程により、ポリプロピレン系樹脂粒子100重量部に対してスチレン系モノマー150重量部使用した複合樹脂粒子を得た。
 この複合樹脂粒子を使用し、実施例3と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して11.02重量%、0.89重量%および0.42重量%であった。発泡性複合樹脂粒子の平均粒子径は1350μmであった。
 次いで発泡性複合樹脂粒子を養生工程に付することなく、以下の予備発泡条件に従って嵩倍数40倍を狙って予備発泡させることで、嵩倍数40倍の予備発泡粒子を得た。
 予備発泡粒子の、平均気泡径Aは900μmであり、平均気泡径Bは270μmであり、値A/Bは3.3であった。
 また、有芯である予備発泡粒子の混入割合は4%であった。
 得られた予備発泡粒子を1日間室温に放置した後、得られた予備発泡粒子を成形機の金型内に充填し、以下の型内成形条件に従ってスチーム加熱し、冷却した後、発泡成形体を金型から取り出した。
 発泡成形体の落球衝撃強度は30.5cmであった。
 また、発泡成形体のノビは4.5であり、その外観は美麗であった。
<予備発泡条件>
 スチームで予熱したPSX40予備発泡機(笠原工業社製)に発泡性複合樹脂粒子1.0kgを投入し、攪拌しながらゲージ圧力0.05MPaの設定でスチームを導入し、100~180秒間で所定の嵩倍数40倍まで発泡させて予備発泡粒子を得た。
<型内成形条件>
 予備発泡粒子を成形機の金型内に充填し、次の条件でスチーム加熱および冷却した後に発泡成形体を金型から取り出す。
成形機:DABOジャパン社製、製品名BPM-7454
金型寸法:300mm(幅)×400mm(長さ)×50mm(厚さ)
成形条件 金型加熱:5秒
     一方加熱:10秒
    逆一方加熱:5秒
     両面加熱:20秒
       水冷:40秒
     真空冷却:最高面圧が0.01kgf/cm2になるまで
  設定スチーム圧:2.5~3.0kgf/cm2
 実施例11
(1)エチレンビスステアリン酸アミド210gをステアリン酸アミド(日油社製、製品名アルフローS-10)210gに
変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して10.61重量%、0.64重量%および0.42重量%であった。発泡性複合樹脂粒子の平均粒子径は1100μmであった。
 予備発泡粒子の、平均気泡径Aは1110μmであり、平均気泡径Bは200μmであり、値A/Bは5.6あった。
 また、有芯である予備発泡粒子の混入割合は8%であった。
 発泡成形体の落球衝撃強度は、41.5cmであった。
 また、発泡成形体のノビは4.5であり、その外観は美麗であった。
 実施例12
 エチレン・酢酸ビニル共重合体樹脂(以下、EVAとも称する)に、ファーネスブラックを3重量%含有させた粒子は、EVA粒子(日本ポリエチレン社製、LV-211)15.52kgとファーネスブラック(三菱化学社製、♯650B)480gを混合し、これを押出機にて加熱混合してストランドカットにより造粒ペレット化することで得た(ファーネスブラック3重量%含有EVA粒子は100粒あたり80mgに調整した、平均粒子径約1mm)。このファーネスブラック3重量%含有EVA粒子14kgを攪拌機付100Lオートクレーブに入れた。次いで、水性媒体として純水45kg、ピロリン酸マグネシウム315g、ドデシルベンゼンスルホン酸ソーダ4gを加え、攪拌して水性媒体中にEVA粒子を分散させ、10分間保持し、その後60℃に昇温した。次いで、この分散液中にジクミルパーオキサイド14gを溶解させたスチレンモノマー7kgを30分滴下した。滴下後30分保持し、130℃に昇温し、この温度で2時間攪拌を続けた。
 その後、125℃に温度を下げ、この分散液中に、重合開始剤としてジクミルパーオキサイド84gを溶解したスチレンモノマー14kgを4時間滴下した。この滴下終了後、125℃で1時間保持した後に140℃に昇温し3時間保持して重合を完結した。その後、80℃まで反応液を冷却し、エチレンビスステアリン酸アミド350gを溶解したGAL1.75kgを系内に加えた。次いで、143℃に再度昇温し、その温度で1時間30分保持し、常温まで冷却した後、複合樹脂粒子を取り出した。以上の工程により、着色剤を含むエチレン・酢酸ビニル共重合体樹脂粒子100重量部に対してスチレン系モノマー150重量部使用した複合樹脂粒子を得た。
 この複合樹脂粒子を使用し、実施例3と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して11.30重量%、0.91重量%、0.42重量%であった。発泡性複合樹脂粒子の平均粒子径は1400μmであった。
 次いで発泡性複合樹脂粒子を養生工程に付することなく、嵩倍数30倍を狙って予備発泡させることで、嵩倍数30倍の予備発泡粒子を得た。
 予備発泡粒子の平均気泡径Aは1150μmであり、平均気泡径Bは250μmであり、値A/Bは4.6であった。
 また、有芯である予備発泡粒子の混入割合は5%であった。
 得られた予備発泡粒子を1日間室温に放置した後、
 0.9kgf/cm2の水蒸気を40秒間導入し加熱した。その後、発泡成形体の最高面圧が0.1kgf/cm2に低下するまで冷却して、倍数50倍の発泡成形体を取り出した。
 発泡成形体の落球衝撃強度は55.5cmであった。
 また、発泡成形体のノビは4.5であり、その外観は美麗であった。
 実施例13
 ファーネスブラック5重量%含有ポリプロピレン系樹脂粒子は、ポリプロピレン系樹脂粒子(プライムポリマー社製、商品名「F-744NP」、融点:140℃)19.0kgとファーネスブラック(三菱化学社製、♯650B)1000gを混合し、これを押出機にて加熱混合して水中カット方式により造粒ペレット化して作製した。ファーネスブラック5重量%含有ポリプロピレン系樹脂粒子は100粒あたり80mgに調整し、平均粒子径は約1mmであった。次いで、攪拌機付100Lオートクレーブに前記ポリプロピレン系樹脂粒子14kgを入れ、水性媒体として純水45kg、ピロリン酸マグネシウム400gおよびドデシルベンゼンスルホン酸ソーダ4gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水系懸濁液とした。次いで、この懸濁液中にジクミルパーオキサイド14gを溶解させたスチレンモノマー7kgを30分間かけて滴下した。滴下後30分間保持し、140℃に昇温し、この温度で2時間攪拌を続けた。
 その後、125℃に温度を下げ、この懸濁液中にドデシルベンゼンスルホン酸ソーダ160gを加え、10分間保持した後、重合開始剤としてジクミルパーオキサイド63gを溶解したスチレンモノマー14kgを4時間にわたり滴下した。
 この滴下終了後、125℃で1時間保持した後、140℃に昇温し、3時間保持して重合を完結した。その後、80℃まで反応液を冷却し、エチレンビスステアリン酸アミド350gを溶解したGAL1.75kgを系内に加えた。 次いで、143℃に再度昇温し、その温度で1時間30分保持し、常温まで冷却した後、複合樹脂粒子を取り出した。
 以上の工程により、着色剤を含むポリプロピレン系樹脂粒子100重量部に対してスチレン系モノマー150重量部使用した複合樹脂粒子を得た。
 この複合樹脂粒子を使用し、実施例3と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して11.12重量%、0.88重量%、0.42重量%であった。発泡性複合樹脂粒子の平均粒子径は1340μmであった。
 次いで発泡性複合樹脂粒子を養生工程に付することなく、実施例10の予備発泡条件に従って嵩倍数40倍を狙って予備発泡させることで、嵩倍数40倍の予備発泡粒子を得た。
 予備発泡粒子の、平均気泡径Aは1040μmであり、平均気泡径Bは280μmであり、値A/Bは3.7であった。
 また、有芯である予備発泡粒子の混入割合は5%であった。
 得られた予備発泡粒子を1日間室温に放置した後、得られた予備発泡粒子を成形機の金型内に充填し、実施例10の型内成形条件に従ってスチーム加熱し、冷却した後、発泡成形体を金型から取り出した。
 発泡成形体の落球衝撃強度は31.5cmであった。
 また、発泡成形体のノビは4.5であり、その外観は美麗であった。
 比較例1
(1)脂肪族アミド化合物および高沸点可塑剤添加工程時の、脂肪族アミド化合物および高沸点可塑剤滴下開始の際のスチレンモノマーの重合転化率67.4%を54.1%に、
(2)含浸工程時の含浸条件35℃、90分間の攪拌を40℃、45分間の攪拌に
変更したこと以外は、実施例1と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および落球衝撃強度を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して8.61重量%、0.26重量%および0.92重量%であった。発泡性複合樹脂粒子の平均粒子径は1100μmであった。
 予備発泡粒子の、平均気泡径Aは1210μmであり、平均気泡径Bは180μmであり、値A/Bは6.7であった。
 また、有芯である予備発泡粒子の混入割合は85%であった。
 発泡成形体の落球衝撃強度は、32.5cmであった。
 また、発泡成形体のノビは4.0であり、その外観は美麗であった。
 有芯である予備発泡粒子の混入割合が多く、発泡成形体の落球衝撃強度は低いものであったため、所望の予備発泡粒子および発泡成形体を得ることはできなかった。
 比較例2
(1)含浸工程時の含浸条件35℃、90分間の攪拌を40℃、45分間の攪拌に、
(2)GAL3.5kgをGAL0.35kgに
変更したこと以外は、実施例1と同様に実施することにより、発泡性複合樹脂粒子および予備発泡粒子を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して8.61重量%、0.26重量%および0.09重量%であった。発泡性複合樹脂粒子の平均粒子径は1100μmであった。
 予備発泡粒子の、平均気泡径Aは1220μmであり、平均気泡径Bは190μmであり、値A/Bは6.4であった。
 また、有芯である予備発泡粒子の混入割合は75%であった。
 発泡成形体の落球衝撃強度は、30.5cmであった。
 また、発泡成形体のノビは4.0であり、その外観は美麗であった。
 有芯である予備発泡粒子の混入割合が多く、発泡成形体の落球衝撃強度は低いものであったため、所望の予備発泡粒子および発泡成形体を得ることはできなかった。
 比較例3
(1)スチレン系モノマー重合工程時のエチレン・酢酸ビニル共重合体樹脂粒子14kgおよびスチレンモノマー21kgをエチレン・酢酸ビニル共重合体樹脂粒子10.5kgおよびスチレンモノマー24.5kgに、
(2)含浸工程時の含浸条件35℃、360分間の循環を40℃、45分間の循環に、
(3)エチレンビスステアリン酸アミド210gをエチレンビスステアリン酸アミド17.5gに、
(4)GAL1.75kgをGAL3.5kgに
変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子および予備発泡粒子を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して8.63重量%、0.04重量%および0.89重量%であった。発泡性複合樹脂粒子の平均粒子径は1420μmであった。
 予備発泡粒子の、平均気泡径Aは1230μmであり、平均気泡径Bは180μmであり、値A/Bは6.8であった。
 また、有芯である予備発泡粒子の混入割合は80%であった。
 発泡成形体の落球衝撃強度は、14.5cmであった。
 また、発泡成形体のノビは4.0であり、その外観は美麗であった。
 有芯である予備発泡粒子の混入割合が多く、発泡成形体の落球衝撃強度は低いものであったため、所望の予備発泡粒子および発泡成形体を得ることはできなかった。
 比較例4
(1)スチレン系モノマー重合工程時のエチレン・酢酸ビニル共重合体樹脂粒子14kgおよびスチレンモノマー21kgをエチレン・酢酸ビニル共重合体樹脂粒子10.5kgおよびスチレンモノマー24.5kgに、
(2)含浸工程時の含浸条件35℃、360分間の循環を40℃、45分間の循環に、
(3)エチレンビスステアリン酸アミド210gをエチレンビスステアリン酸アミド105gに、
(4)GAL1.75kgをGAL8.75kgに、
(5)予備発泡工程時の予備発泡粒子の嵩倍数30倍を50倍に
変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子および予備発泡粒子を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して8.63重量%、0.26重量%および2.20重量%であった。発泡性複合樹脂粒子の平均粒子径は1420μmであった。
 予備発泡粒子の、平均気泡径Aは560μmであり、平均気泡径Bは220μmであり、値A/Bは2.5であった。
 また、有芯である予備発泡粒子の混入割合は4%であった。
 しかし、発泡成形体製造時において、発泡成形体の収縮のため、所望の発泡成形体を得ることはできなかった。
 よって、以後の検討を中止した。
 比較例5
(1)スチレン系モノマー重合工程時のエチレン・酢酸ビニル共重合体樹脂粒子14kgおよびスチレンモノマー21kgをエチレン・酢酸ビニル共重合体樹脂粒子17.5kgおよびスチレンモノマー17.5kgに、
(2)含浸工程時の含浸条件35℃、360分間の循環を40℃、45分間の循環に、
(3)エチレンビスステアリン酸アミド210gをエチレンビスステアリン酸アミド105gに、
(4)GAL1.75kgをGAL5.25kgに
変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子および予備発泡粒子を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して8.54重量%、0.28重量%および1.30重量%であった。発泡性複合樹脂粒子の平均粒子径は1000μmであった。
 予備発泡粒子の、平均気泡径Aは580μmであり、平均気泡径Bは230μmであり、値A/Bは2.5であった。
 また、有芯である予備発泡粒子の混入割合は3%であった。
 嵩倍数30倍の予備発泡粒子の製造を試みたが、所望の嵩倍数の予備発泡粒子を得ることはできなかった。
 よって、以後の検討を中止した。
 比較例6
(1)スチレン系モノマー重合工程時のエチレン・酢酸ビニル共重合体樹脂粒子14kgおよびスチレンモノマー21kgをエチレン・酢酸ビニル共重合体樹脂粒子3.5kgおよびスチレンモノマー31.5kgに、
(2)含浸工程時の含浸条件35℃、360分間の循環を40℃、45分間の循環に、
(3)エチレンビスステアリン酸アミド210gをエチレンビスステアリン酸アミド105gに、
(4)GAL1.75kgをGAL5.25kgに、
(5)予備発泡工程時の予備発泡粒子の嵩倍数30倍を50倍に、
(6)型枠発泡工程時の発泡成形体の倍数30倍を50倍に
変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して8.55重量%、0.27重量%および1.31重量%であった。発泡性複合樹脂粒子の平均粒子径は1710μmであった。
 予備発泡粒子の、平均気泡径Aは800μmであり、平均気泡径Bは300μmであり、値A/Bは2.7であった。
 また、有芯である予備発泡粒子の混入割合は9%であった。
 発泡成形体の落球衝撃強度は、13.5cmであった。
 また、発泡成形体のノビは4.5であり、その外観は美麗であった。
 発泡成形体の落球衝撃強度の値が低く、所望の発泡成形体を得ることはできなかった。
 比較例7
(1)スチレン系モノマー重合工程時のエチレン・酢酸ビニル共重合体樹脂粒子14kgおよびスチレンモノマー21kgをエチレン・酢酸ビニル共重合体樹脂粒子10.5kgおよびスチレンモノマー24.5kgに、
(2)含浸工程時の含浸条件35℃、360分間の循環を40℃、45分間の循環に、
(3)エチレンビスステアリン酸アミド210gをエチレンビスステアリン酸アミド105gに、
(4)GAL1.75kgを流動パラフィン(松村石油社製スモイルP-200、SP値7.5、沸点300℃)3.5kgに、
(5)予備発泡工程時の予備発泡粒子の嵩倍数30倍を50倍に、
(6)型枠発泡工程時の発泡成形体の倍数30倍を50倍に
変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子および予備発泡粒子を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して8.61重量%、0.27重量%および0.86重量%であった。発泡性複合樹脂粒子の平均粒子径は1420μmであった。
 予備発泡粒子の、平均気泡径Aは1300μmであり、平均気泡径Bは200μmであり、値A/Bは6.5であった。
 また、有芯である予備発泡粒子の混入割合は80%であった。
 発泡成形体の落球衝撃強度は、13.0cmであった。
 また、発泡成形体のノビは4.0であり、その外観は美麗であった。
 有芯である予備発泡粒子の混入割合が多く、発泡成形体の落球衝撃強度は低いものであったため、所望の予備発泡粒子および発泡成形体を得ることはできなかった。
 比較例8
(1)スチレン系モノマー重合工程時のエチレン・酢酸ビニル共重合体樹脂粒子14kgおよびスチレンモノマー21kgをエチレン・酢酸ビニル共重合体樹脂粒子10.5kgおよびスチレンモノマー24.5kgに、
(2)含浸工程時の含浸条件35℃、360分間の循環を40℃、45分間の循環に、
(3)エチレンビスステアリン酸アミド210gをエチレンビスステアリン酸アミド105gに、
(4)GAL1.75kgをフタル酸ジメチル(三協化学社製フタル酸ジメチル、SP値10.7、沸点295℃)3.5kgに、
(5)予備発泡工程時の予備発泡粒子の嵩倍数30倍を50倍に、
(6)型枠発泡工程時の発泡成形体の倍数30倍を50倍に
変更したこと以外は、実施例3と同様に実施することにより、発泡性複合樹脂粒子および予備発泡粒子を得た。
 発泡性複合樹脂粒子中の発泡剤量、脂肪族アミド化合物および高沸点可塑剤量は、それぞれ発泡性複合樹脂粒子に対して8.53重量%、0.27重量%および0.87重量%であった。発泡性複合樹脂粒子の平均粒子径は1420μmであった。
 予備発泡粒子の、平均気泡径Aは1210μmであり、平均気泡径Bは190μmであり、値A/Bは6.3であった。
 また、有芯である予備発泡粒子の混入割合は80%であった。
 発泡成形体の落球衝撃強度は、13.0cmであった。
 また、発泡成形体のノビは4.0であり、その外観は美麗であった。
 有芯である予備発泡粒子の混入割合が多く、発泡成形体の落球衝撃強度は低いものであったため、所望の予備発泡粒子および発泡成形体を得ることはできなかった。
 比較例9
 脂肪族アミド化合物および高沸点可塑剤を用いずに、実施例2に記載の製造方法に従って得られた複合樹脂粒子2kg、ドデシルベンゼンスルホン酸ソーダ0.5gおよび水2Lを耐圧攪拌機付5Lオートクレーブに投入し、イソペンタン300gを注入した。これを60℃に昇温し、180分間撹拌した。その後、25℃まで冷却して発泡性複合樹脂粒子を取り出した。
 発泡性複合樹脂粒子中の発泡剤量は10.12重量%であった。発泡性複合樹脂粒子の平均粒子径は1610μmであった。
 その後、直ちに発泡性複合樹脂粒子を嵩倍数50倍を狙って予備発泡させることで、嵩倍数50倍の予備発泡粒子を得た。
 予備発泡粒子の、平均気泡径Aは930μmであり、平均気泡径Bは660μmであり、値A/Bは1.4であった。
 また、有芯である予備発泡粒子の混入割合は0%であった。
 得られた予備発泡粒子を1日間室温に放置した後、400mm(長さ)×300mm(幅)×50mm(厚さ)の大きさの成形用金型内に入れた。この金型に、0.8kgf/cm2の水蒸気を40秒間導入して加熱した。その後、発泡成形体の最高面圧が0.1kgf/cm2に低下するまで冷却して、倍数50倍の発泡成形体を取り出した。
 発泡成形体の落球衝撃強度は、17.5cmであった。
 また、発泡成形体のノビは4.5であり、その外観は美麗であった。
 発泡成形体の落球衝撃強度は低いものであったため、所望の発泡成形体を得ることはできなかった。
 比較例10
 イソペンタンの使用量を300gから240gに変更したこと以外は比較例9と同様に実施することにより、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体を得た。
 発泡性複合樹脂粒子中の発泡剤量は、発泡性複合樹脂粒子に対して8.50重量%であった。発泡性複合樹脂粒子の平均粒子径は1610μmであった。
 予備発泡粒子の、平均気泡径Aは440μmであり、平均気泡径Bは320μmであり、値A/Bは1.4であった。
 また、有芯である予備発泡粒子の混入割合は0%であった。
 発泡成形体の落球衝撃強度は、23.5cmであった。
 また、発泡成形体のノビは3.0であり、その外観は不良であった。
 その外観は不良であったため、所望の発泡成形体を得ることはできなかった。
 実施例2および4ならびに比較例3、9および10で得られた予備発泡粒子の電子顕微鏡写真を図4~7および9に示す。
 表1に、実施例および比較例の原料種、含浸条件等の検討条件を示す。
 表2に、実施例および比較例で得られた発泡性複合樹脂粒子、予備発泡粒子および発泡成形体の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例1~13で得られた予備発泡粒子は、発泡性複合樹脂粒子を養生工程に付していないにもかかわらず、有芯である予備発泡粒子の混入割合が極めて少なく、所望の嵩倍数を有していることが確認できる。一方、比較例において得られた予備発泡粒子の多くからは、良好な有芯評価結果および嵩倍数を得ることができないことも確認できる。
 また、実施例1~13の発泡性複合樹脂粒子の樹脂組成はポリオレフィン系樹脂100重量部に対してポリスチレン系樹脂120~560重量部の、予備発泡粒子の値A/Bが2~6の範囲内であることを示している。さらに、図4および5から、実施例2および4の予備発泡粒子は、表皮層に接している気泡の平均気泡径が半径の1/2の点を通る気泡の平均気泡径より大きくなっていることが分かる。一方、図6および7から、比較例9および10の予備発泡粒子は、表皮層に接している気泡の平均気泡径と半径の1/2の点を通る気泡の平均気泡径との間に大きな差異が存在しないことも分かる。
 このため、実施例1~13に記載の発泡性複合樹脂粒子から、十分な耐割れ性(落球衝撃強度)を有する発泡成形体を得ることができる。
 従って、本発明の製造方法により従来行われていた養生工程を要さず、所望の発泡性複合樹脂粒子、予備発泡粒子および優れた耐割れ性を有する発泡成形体を製造することができることを示している。
A1     恒温時間(min)
A2     含浸温度(℃)
B1     表皮層に接している気泡
B2     表皮層
B3     予備発泡粒子断面
B4     線上或いは接している気泡
B5     半径の1/2の点を通る曲線
C1     温度計
C2     含浸タンク
C3     加温設備
C4     ペンタン供給タンク
C5     循環ポンプ
D1     実施例4
D2     実施例2
D3     比較例9
D4     比較例10
D5     比較例3
E1     PS量30重量%以下
E2     PS量30重量%より多く80重量%未満
E3     PS量80重量%以上
F1     半径の4/5の点を通る曲線
F2     曲線上の気泡と曲線に接している気泡
F3     半径の1/5の点を通る曲線
F4     予備発泡粒子断面

Claims (13)

  1.  ポリオレフィン系樹脂、ポリスチレン系樹脂および発泡剤を含む発泡性複合樹脂粒子であって、
     前記発泡性複合樹脂粒子が、前記ポリオレフィン系樹脂100重量部に対して前記ポリスチレン系樹脂を120~560重量部含み、前記発泡性複合樹脂粒子を予備発泡させて得られる予備発泡粒子をその表面から中心を通って2分割した切片の断面を走査型電子顕微鏡で撮影した場合、前記予備発泡粒子の表皮層に接している気泡の平均気泡径Aを前記予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径Bで除算した値A/Bが2~6となる前記予備発泡粒子を形成し、かつ、脂肪族アミド化合物および高沸点可塑剤を同時に含む発泡性複合樹脂粒子。
  2.  前記脂肪族アミド化合物が、
    一般式(I):
    1-CO-NH-(CH2m-NH-CO-R2     (I)
    (式中、R1およびR2はそれぞれ炭素数7~23のアルキル基またはアルケニル基であり、mは1~6である)
    で表される脂肪酸ビスアミド、
    一般式(II):
    3-NH-CO-(CH2n-CO-NH-R4     (II)
    (式中、R3およびR4はそれぞれ炭素数7~23のアルキル基またはアルケニル基であり、nは1~6である)
    で表される脂肪族ジカルボン酸ジアミドおよび
    一般式(III):
    5-CO-NH-R6     (III)
    (式中、R5は炭素数7~23のアルキル基またはアルケニル基であり、R6は炭素数7~23のアルキル基もしくはアルケニル基または水素原子である)
    で表される脂肪酸モノアミドから選択される請求項1に記載の発泡性複合樹脂粒子。
  3.  前記脂肪族アミド化合物が、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミドおよびステアリン酸アミドから選択される請求項1に記載の発泡性複合樹脂粒子。
  4.  前記発泡性複合樹脂粒子が、前記高沸点可塑剤としてグリセリン脂肪酸エステルおよびアジピン酸エステルのいずれかを含む請求項1に記載の発泡性複合樹脂粒子。
  5.  前記発泡性複合樹脂粒子が、前記高沸点可塑剤として溶解パラメーターが8.5~10.0である高沸点可塑剤を含む請求項1に記載の発泡性複合樹脂粒子。
  6.  前記発泡性複合樹脂粒子が、前記脂肪族アミド化合物および前記高沸点可塑剤を、前記発泡性複合樹脂粒子に対してそれぞれ0.08~1.0重量%および0.2~2.0重量%の割合で含む請求項1に記載の発泡性複合樹脂粒子。
  7.  前記発泡性複合樹脂粒子が、前記発泡剤としてペンタンを、前記発泡性複合樹脂粒子に対して8.0~12.0重量%の割合で含む請求項1に記載の発泡性複合樹脂粒子。
  8.  前記発泡性複合樹脂粒子が、着色剤を前記発泡性複合樹脂粒子に対して0.01~2.5重量%の割合で含む請求項1に記載の発泡性複合樹脂粒子。
  9.  ポリオレフィン系樹脂、ポリスチレン系樹脂および発泡剤を含む予備発泡粒子であって、
     前記予備発泡粒子が前記ポリオレフィン系樹脂100重量部に対して前記ポリスチレン系樹脂を120~560重量部含み、前記予備発泡粒子の嵩倍数が10~60倍であり、前記予備発泡粒子の表面から中心を通って2分割した切片の断面を走査型電子顕微鏡で撮影した場合、前記予備発泡粒子の表皮層に接している気泡の平均気泡径Aを前記予備発泡粒子の半径の1/2の点を通る気泡の平均気泡径Bで除算した値A/Bが2~6となり、かつ、前記予備発泡粒子が脂肪族アミド化合物および高沸点可塑剤を同時に含む予備発泡粒子。
  10.  請求項9に記載の予備発泡粒子を型内成形した発泡成形体。
  11.  請求項1に記載の発泡性複合樹脂粒子の製造方法であって、
     前記ポリオレフィン系樹脂の存在下、スチレン系モノマーを重合することにより複合樹脂粒子を製造する工程、前記スチレン系モノマーの重合転化率が65%に到達後および前記スチレン系モノマーの重合終了後のいずれかに前記脂肪族アミド化合物および前記高沸点化合物を前記複合樹脂粒子に含有させる工程および前記複合樹脂粒子100重量部に対して50重量部以上の前記発泡剤の存在下、かつ、分散媒の不存在下に、前記複合樹脂粒子に前記発泡剤を接触させて、前記複合樹脂粒子に前記発泡剤を含浸させる工程を含む発泡性複合樹脂粒子の製造方法。
  12.  前記発泡剤を含浸させる工程が、前記複合樹脂粒子を保持した容器中で前記発泡剤を循環させる工程である請求項11に記載の発泡性複合樹脂粒子の製造方法。
  13.  前記発泡剤が、ペンタンであり、前記発泡剤の含浸が、含浸温度が恒温に達するのに必要な時間をX分、前記発泡剤を含浸させる温度をY℃、前記発泡性複合樹脂粒子の発泡剤の含有量をx重量%とすると、下記式:
    Y=-[(1/4)x+2]LnX+4x+19(xは8.0~12.0の範囲)
    を満たす条件で行われる請求項11に記載の発泡性複合樹脂粒子の製造方法。
PCT/JP2010/065339 2009-09-11 2010-09-07 発泡性複合樹脂粒子、その製造方法、予備発泡粒子および発泡成形体 WO2011030762A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011530839A JP5629689B2 (ja) 2009-09-11 2010-09-07 発泡性複合樹脂粒子、その製造方法、予備発泡粒子および発泡成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009210713 2009-09-11
JP2009-210713 2009-09-11

Publications (1)

Publication Number Publication Date
WO2011030762A1 true WO2011030762A1 (ja) 2011-03-17

Family

ID=43732434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065339 WO2011030762A1 (ja) 2009-09-11 2010-09-07 発泡性複合樹脂粒子、その製造方法、予備発泡粒子および発泡成形体

Country Status (3)

Country Link
JP (1) JP5629689B2 (ja)
TW (1) TW201127888A (ja)
WO (1) WO2011030762A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197357A (ja) * 2011-03-22 2012-10-18 Sekisui Plastics Co Ltd 発泡性ポリスチレン系着色樹脂粒子とその製造方法、着色樹脂予備発泡粒子及び着色樹脂発泡成形体
WO2014157538A1 (ja) * 2013-03-28 2014-10-02 積水化成品工業株式会社 複合樹脂発泡成形体
CN105026473A (zh) * 2013-03-29 2015-11-04 积水化成品工业株式会社 发泡颗粒的制造方法、发泡颗粒的制造装置及发泡颗粒
JP2016037551A (ja) * 2014-08-07 2016-03-22 Dmノバフォーム株式会社 水架橋性発泡樹脂組成物並びに発泡体及びその製造方法
CN110832018A (zh) * 2017-07-03 2020-02-21 株式会社Jsp 烯烃类热塑性弹性体发泡粒子
CN110997778A (zh) * 2017-08-04 2020-04-10 株式会社钟化 发泡性聚苯乙烯系树脂颗粒、聚苯乙烯系预发泡颗粒和发泡成型体
IT201900012666A1 (it) * 2019-07-23 2021-01-23 Materias S R L Perline espanse con gradienti di morfologia e/o densità, e schiume sinterizzate da esse ottenute
WO2021054318A1 (ja) * 2019-09-20 2021-03-25 積水化成品工業株式会社 発泡成形体、及びその利用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053487A (ja) * 1973-09-12 1975-05-12
WO2005021624A1 (ja) * 2003-08-29 2005-03-10 Sekisui Plastics Co., Ltd. オレフィン改質ポリスチレン系樹脂予備発泡粒子、その製造方法及び発泡成形体
JP2005239968A (ja) * 2004-02-27 2005-09-08 Sekisui Plastics Co Ltd 発泡性スチレン系樹脂粒子、スチレン系樹脂予備発泡粒子及び発泡成形品
JP2009263639A (ja) * 2008-03-31 2009-11-12 Sekisui Plastics Co Ltd 発泡性スチレン改質ポリオレフィン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053487A (ja) * 1973-09-12 1975-05-12
WO2005021624A1 (ja) * 2003-08-29 2005-03-10 Sekisui Plastics Co., Ltd. オレフィン改質ポリスチレン系樹脂予備発泡粒子、その製造方法及び発泡成形体
JP2005239968A (ja) * 2004-02-27 2005-09-08 Sekisui Plastics Co Ltd 発泡性スチレン系樹脂粒子、スチレン系樹脂予備発泡粒子及び発泡成形品
JP2009263639A (ja) * 2008-03-31 2009-11-12 Sekisui Plastics Co Ltd 発泡性スチレン改質ポリオレフィン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197357A (ja) * 2011-03-22 2012-10-18 Sekisui Plastics Co Ltd 発泡性ポリスチレン系着色樹脂粒子とその製造方法、着色樹脂予備発泡粒子及び着色樹脂発泡成形体
JPWO2014157538A1 (ja) * 2013-03-28 2017-02-16 積水化成品工業株式会社 複合樹脂発泡成形体
CN105073859A (zh) * 2013-03-28 2015-11-18 积水化成品工业株式会社 复合树脂发泡成型体
WO2014157538A1 (ja) * 2013-03-28 2014-10-02 積水化成品工業株式会社 複合樹脂発泡成形体
CN105026473A (zh) * 2013-03-29 2015-11-04 积水化成品工业株式会社 发泡颗粒的制造方法、发泡颗粒的制造装置及发泡颗粒
US20160009890A1 (en) * 2013-03-29 2016-01-14 Sekisui Plastics Co., Ltd. Method for producing foamed particles, apparatus for producing foamed particles, and foamed particles
CN105026473B (zh) * 2013-03-29 2018-06-12 积水化成品工业株式会社 发泡颗粒的制造方法、发泡颗粒的制造装置及发泡颗粒
JP2016037551A (ja) * 2014-08-07 2016-03-22 Dmノバフォーム株式会社 水架橋性発泡樹脂組成物並びに発泡体及びその製造方法
CN110832018A (zh) * 2017-07-03 2020-02-21 株式会社Jsp 烯烃类热塑性弹性体发泡粒子
CN110997778A (zh) * 2017-08-04 2020-04-10 株式会社钟化 发泡性聚苯乙烯系树脂颗粒、聚苯乙烯系预发泡颗粒和发泡成型体
US11312835B2 (en) 2017-08-04 2022-04-26 Kaneka Corporation Expandable polystyrene resin particles, polystyrene pre-expanded particles, and foam molded body
CN110997778B (zh) * 2017-08-04 2022-06-24 株式会社钟化 发泡性聚苯乙烯系树脂颗粒、聚苯乙烯系预发泡颗粒和发泡成型体
IT201900012666A1 (it) * 2019-07-23 2021-01-23 Materias S R L Perline espanse con gradienti di morfologia e/o densità, e schiume sinterizzate da esse ottenute
WO2021014371A1 (en) * 2019-07-23 2021-01-28 Materias S.R.L. Expanded beads having density and/or cell morphology gradients, and sintered foams obtained therefrom
WO2021054318A1 (ja) * 2019-09-20 2021-03-25 積水化成品工業株式会社 発泡成形体、及びその利用

Also Published As

Publication number Publication date
JP5629689B2 (ja) 2014-11-26
JPWO2011030762A1 (ja) 2013-02-07
TW201127888A (en) 2011-08-16

Similar Documents

Publication Publication Date Title
JP5629689B2 (ja) 発泡性複合樹脂粒子、その製造方法、予備発泡粒子および発泡成形体
EP2133372B1 (en) Particle of carbon-containing modified polystyrene resin, expandable particle of carbon-containing modified polystyrene resin, expanded particle of carbon-containing modified polystyrene resin, molded foam of carbon-containing modified polystyrene resin, and processes for producing these
JP6170703B2 (ja) ポリスチレン系複合樹脂粒子とその製造方法、発泡性粒子、発泡粒子及び発泡成形体
JP5232397B2 (ja) 改質ポリスチレン系樹脂粒子の製造方法、発泡性改質ポリスチレン系樹脂粒子、改質ポリスチレン系樹脂発泡粒子、改質ポリスチレン系樹脂発泡成形体
WO2007138916A1 (ja) 発泡性ポリエチレン系樹脂粒子及びその製造方法
US10066072B2 (en) Composite resin particles, process for producing same, expandable beads, expanded beads, foamed molded object, and automotive interior trim
JP6473675B2 (ja) スチレン系樹脂発泡性粒子及びその製造方法、発泡粒子、発泡成形体並びにその用途
JP2008266583A (ja) カーボン含有改質ポリスチレン系樹脂粒子、発泡性カーボン含有改質ポリスチレン系樹脂粒子、カーボン含有改質ポリスチレン系樹脂発泡粒子、カーボン含有改質ポリスチレン系樹脂発泡成形体およびこれらの製造方法
JP5641785B2 (ja) 発泡性ポリスチレン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体
JP6453995B2 (ja) 複合樹脂粒子とその発泡性粒子、発泡粒子及び発泡成形体
JP2011026436A (ja) 発泡性複合樹脂粒子、その製造方法、予備発泡粒子および発泡成形体
JP6081267B2 (ja) ポリスチレン系複合樹脂粒子とその製造方法、発泡性粒子、発泡粒子及び発泡成形体
JP5690632B2 (ja) シード重合用ポリプロピレン系樹脂粒子、その製造方法、複合樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体
JP2009263639A (ja) 発泡性スチレン改質ポリオレフィン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体
JP2011084593A (ja) スチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法
JP2011068776A (ja) 発泡成形体
JP2020050784A (ja) 複合樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体
JP2011052167A (ja) スチレン改質ポリエチレン系樹脂予備発泡粒子、発泡成形体および製造方法
JP5536357B2 (ja) スチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法及びスチレン改質ポリエチレン系樹脂発泡成形体
JP6407113B2 (ja) スチレン系樹脂発泡成形体及びその製造方法並びにその用途
JP6081266B2 (ja) 発泡成形体
JP6031614B2 (ja) カーボンブラック含有複合樹脂予備発泡粒子とその製造方法及び発泡成形体
JP6262114B2 (ja) 複合樹脂粒子の製造方法
JP6228610B2 (ja) ポリスチレン系複合樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子及び発泡成形体の製造方法
JP2014177540A (ja) 発泡性ポリスチレン系着色複合樹脂粒子、発泡粒子と発泡成形体及びそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815359

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530839

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815359

Country of ref document: EP

Kind code of ref document: A1